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The pseudocubic (PC) parameterization of O4 tetrahedra [Reifenberg &

Thomas (2018). Acta Cryst. B74, 165–181] is applied to quartz (SiO2) and its

structural analogue germanium dioxide (GeO2). In �-quartz and GeO2, the

pseudocubes are defined by three length parameters, aPC, bPC and cPC, together

with an angle parameter �PC. In �-quartz, �PC has a fixed value of 90�. For

quartz, the temperature evolution of parameters for the pseudocubes and the

silicon ion network is established by reference to the structural refinements of

Antao [Acta Cryst. (2016), B72, 249–262]. In �-quartz, the curve-fitting

employed to express the non-linear temperature dependence of pseudocubic

length and Si parameters exploits the model of a first-order Landau phase

transition utilized by Grimm & Dorner [J. Phys. Chem. Solids (1975), 36, 407–

413]. Since values of tetrahedral tilt angles about h100i axes also result from the

pseudocubic transformation, a curve for the observed non-monotonic variation

of �PC with temperature can also be fitted. Reverse transformation of curve-

derived values of [Si+PC] parameters to crystallographic parameters a, c, xSi, xO,

yO and zO at interpolated or extrapolated temperatures is demonstrated for �-

quartz. A reverse transformation to crystallographic parameters a, c, xO is

likewise carried out for �-quartz. This capability corresponds to a method of

structure prediction. Support for the applicability of the approach to GeO2 is

provided by analysing the structural refinements of Haines et al. [J. Solid State

Chem. (2002), 166, 434–441]. An analysis of trends in tetrahedral distortion and

tilt angle in �-quartz and GeO2 supports the view that GeO2 is a good model for

quartz at high pressure.

1. Introduction

Although the �$� quartz inversion has been an issue of

scientific investigation for some 130 years (Dolino, 1990), a

strong stimulus to review current modelling methods for its

crystal structures has been provided by the work of Antao

(2016). By using synchrotron powder X-ray diffraction

coupled with Rietveld structure refinements, she extended the

range of structural data well into the temperature range of

stability of �-quartz and provided a set of structural data for �-

and �-quartz with a fine temperature mesh. A total of 67 new

structural refinements resulted from her work, 42 for �-quartz

and 25 for �-quartz, thereby providing an extensive dataset for

structural analysis.

The foundation of several structural modelling studies of

quartz and its homeotypes was laid by Grimm & Dorner

(1975), who identified the tilt angle of � of SiO4 tetrahedra

about h100i axes in �-quartz as the microscopic order para-

meter in a first-order Landau model of the �$� phase tran-

sition. Parameter �0 in equation (1) corresponds to the jump in

tilt angle at the transition temperature T0, with Tc a scaling

parameter.
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Grimm and Dorner (1975) assumed regular tetrahedra as a

starting point for fitting equation (1) to values of � derived

from crystallographic data. This resulted in the values �0 =

7.3�, T0 = 846 K and T0 � Tc = 10 K. They noted that the

accuracy of the crystallographic data then available was

insufficient to test the validity of equation (1), further that ‘a

direct measurement of the tilt angle analogous to the case of

SrTiO3 would be desirable.’

This notwithstanding, equation (1) has been widely adopted

in subsequent studies of the temperature dependence of the

structures of �-quartz and its homeotypes. This can be

attributed to the greater suitability of � or �2 compared to

direct temperature as an independent variable when

describing the temperature dependence of structural para-

meters such as the Si—O—Si angle by means of low-order

polynomials. It is appropriate, therefore, to regard �, also

denoted Q in later studies, as a temperature-derived tilt angle,

irrespective of the degree of agreement with a structurally

derived tilt angle.

Carpenter et al. (1998) adopted this approach to derive

quadratic relationships between spontaneous strains e1 and e3

with Q2. They also utilized the structural data of Kihara (1990)

for �-quartz to reveal a linear relationship between the mean

Si—O bond length and the square of the tilt angle. By virtue of

her extensive structural dataset, Antao (2016) has further

shown that strain parameters e1, e3, (c/a) and volume strain Vs

vary linearly with Q2 for �-quartz She also proposed linear

relationships between atomic parameters zO and xSi with Q.

Mean Si–Si distances and Si—O—Si angles were also shown to

vary systematically with Q. In both cases, tilt angle was

calculated according to the method of Grimm & Dorner

(1975) assuming regular tetrahedra.

The structural refinements of Antao (2016) refer to space

group P3221 (No. 154) for �-quartz and space group P6222

(No. 180) for �-quartz. The coordinates for �-quartz corre-

spond to the z(+)-setting (Donnay & Le Page, 1978)1. When

cooling right-handed �-quartz (space group P6222), formation

either of an �1 or an �2 trigonal structure depends on the sense

of the tetrahedral tilting.2 These are in space groups P3221 and

P3121, respectively.

Ever since the early crystal-chemical treatments of quartz,

the view has dominated that the SiO4 tetrahedra deviate

insignificantly from perfect regularity. Megaw (1973a) states

this clearly: ‘We have already recognized the importance of a

regular (or nearly regular) tetrahedron as a structure-building

unit.’ In the seminal work of Grimm & Dorner (1975) in

relating tetrahedral tilt angle to the Landau order parameter

in equation (1), the assumption of regular tetrahedra was

maintained as an expedient. Taylor (1984) explicitly called this

assumption into question, to quote from his abstract: ‘Tilting

models of framework compounds are critically examined and

their failure to match the observed structural behaviour is

attributed to changes in tetrahedral distortion. For quartz it

appears that during compression the change in tetrahedral

distortion is virtually all angular (O—Si—O angles), whereas

during thermal expansion the change in distortion is in the

Si—O distances. Such behaviour may typify the behaviour of

many other framework compounds but the structural data

needed to establish this are lacking.’

The current availability of high-quality structural data for

quartz following the work of Antao (2016) now supersedes the

final remark of Taylor for this framework compound.

Furthermore, a new approach for quantifying the distortions

of O4 tetrahedra has recently been proposed by Reifenberg &

Thomas (2018). In the latter work, the pressure variation of

the structure of the coesite polymorph of SiO2 was taken as a

basis for defining a general procedure known as a pseudocubic

transformation. Just as it is possible to generate a regular

tetrahedron from a cube by taking two diagonally related

corners of each cube face, the reverse procedure also holds: a

regular tetrahedron will generate a regular cube, whereas a

distorted tetrahedron will generate a distorted cube known as

a pseudocube (Fig. 1). Such a pseudocube is, in general,

characterized by six parameters, aPC, bPC, cPC, �PC, �PC and �PC

(Fig. 1), as for a triclinic unit cell. As shown in Fig. 1(a), the

shape of a generalized tetrahedron is also defined by six

parameters. It follows that all volumes and types of distortion

of tetrahedral O4 cages can be quantitatively modelled by

pseudocubic transformations.

Whereas the distorted O4 tetrahedra in coesite result in six

independent pseudocubic parameters, the twofold symmetry

axes through their centres-of-coordinates in �-quartz dictate

that two of the pseudocubic angles are equal to 90�.
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Figure 1
(a) The form of a generalized tetrahedron is defined by six parameters: fy,
gx, gy, hx, hy and hz. These correspond to the non-zero components of its
three bounding vectors in Cartesian coordinates. (b) A pseudocube is
formed from the tetrahedron by inverting the four vectors from its centre-
of-coordinates (large light purple circle) to oxygen ions, i.e. p, q, r and s, to
form vectors �p, �q, �r and �s. Small red circles: pseudocube vertices
occupied by oxygen ions; small blue circles: vacant pseudocube vertices
(taken from Reifenberg & Thomas, 2018).

1 In order to generate the coordinates of Donnay & Le Page (1978), it would
be necessary to shift the unit cell origin by ½0; 0;� 1

3� from the origin in
International Tables of X-ray Crystallography (Hahn, 1995). The latter was
adopted by Antao (2016).
2 The �1 and �2 structures are Dauphiné twins related by a 180� rotation about
the threefold axis (Antao, 2016).



This is shown in Fig. 2(a), in which pseudocubic axes aPC are

oriented parallel to the twofold axes. The face-on view of the

pseudocube along the x-axis in Fig. 2(b) shows a parallelogram

with twofold symmetry and internal angle �PC.

A secondary result of the pseudocubic transformation is

that it allows angles �v and �h to be defined as direct indicators

of tetrahedral tilt angle � about the [100] axis, and more

generally h100i axes: a tetrahedral rotation by this angle also

leads to a rotation � of its pseudocube about the same axis.

However, unlike the tetrahedral edge vectors, the edge vectors

of the pseudocube are aligned with the crystal axes. Angle �v is

defined as the angle between pseudocubic axis cPC and crystal

axis z and angle �h as the angle between pseudocubic axis bPC

and its projection in the crystal xy plane. Owing to small

deviations of pseudocubic angle �PC from 90�, �h and �v are

not exactly equal to each other. Nevertheless, a method is now

provided for measuring the tetrahedral tilt angle directly, as

sought by Grimm & Dorner (1975). The method does not

require any approximations or abstract geometrical reference

points other than the crystal axes. In the current work, the

dependence of �h, �v and mean tilt angle � = (�h + �v)/2 on

temperature-derived tilt angle � (or equivalently Q) are

examined, thereby revealing the extent to which equation (1)

holds for �-quartz.

The significance of a direct measurement of tilt angle may

be made clear by comparing the completely general pseudo-

cubic method with alternative structural approaches advo-

cated by Megaw (1973b) and Grimm & Dorner (1975) for

quartz, as well as the method of Haines et al. (2003) adopted

for the quartz homeotype FePO4. Megaw adopted as a basis an

idealized tetrahedron of orthorhombic symmetry, as in

�-quartz, and maintained this form as an approximation in

�-quartz. This approach is equivalent to allowing a pseudo-

cube with unequal edge lengths but with angle �PC fixed at 90�.

The method of Grimm and Dorner is more restrictive, as it

amounts to assuming a regular cube as the pseudocubic form.

Haines et al., by comparison, examined the deviations in

orientation of tetrahedral edges PR and QS from�45� (Fig. 3).

Fig. 3 shows the alternative senses of tilt in space group

P3221 for �-quartz and in its enantiomorphic space group

P3121, in which the 16 structures of GeO2 between 294 and

1344 K to be examined here were set (Haines et al., 2002).3

In addition to investigating the validity of equation (1) in

describing the temperature variation of tilt angle as deter-

mined by the pseudocubic method, an important further aim

of this work is to exploit the pseudocubic transformation for

the purpose of structure prediction at temperatures outside

the ranges of experimental investigation of Antao (2016) and

Haines et al. (2002). Since the pseudocubes only relate to the

oxygen ions, the silicon or germanium ions are treated in a

separate cationic network. This is consistent with the general

methodology of ionic network analysis (INA) (Thomas, 2017).

In Fig. 4, the positions of the silicon ions along the screw axes

in �-quartz have been collapsed on to the xy plane, in order to

form a two-dimensional framework defined by parameters L

and �. � is equal to zero in the higher-symmetry �-structure.

The crystal structures of �-quartz and GeO2 are defined by

two unit-cell and four positional parameters, i.e. a, c, xSi, xO, yO

and zO, which are known collectively as six degrees of freedom

(d.o.f.). In �-quartz, by comparison, there are three degrees of

freedom4, i.e. a, c and xO. The question arises as to how many

independent transformed parameters are required to define

the O4 pseudocubes and silicon ion networks in the two quartz

modifications. For �-quartz, six independent parameters are
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Figure 2
(a) The O4 tetrahedron corresponding to the silicon ion at x, 0, 2

3 (as in
space group P3221) and its corresponding pseudocube. Length aPC is
shown. (b) The pseudocube shown in projection perpendicular to the x-
axis [O4(mp): centre-of-coordinates of O4 tetrahedron and associated
pseudocube; �h,�v: horizontally and vertically defined pseudocubic tilt
angles]. (Modifed from an original figure given by Reifenberg & Thomas,
2018.)

Figure 3
Oxygen ion pseudocubes (left) in �-quartz (space group P3221) and
(right) in GeO2 (space group P3121) viewed along the crystallographic x-
axis with the z-axis vertical. Vectors bPC and cPC are the two axes of the
pseudocube that enclose angle �PC. Angles �h and �v are tilt angles with
horizontal and vertical reference directions. Lines PR and QS are
tetrahedral edges (solid lines: at front; dashed lines: at rear).

3 GeO2 was set in the r(+) setting according to Donnay and Le Page (1978). In
order to generate the coordinates of Donnay and Le Page, it would be
necessary to shift the unit cell origin by ½0; 0;� 1

3� from the origin in
International Tables of X-ray Crystallography (Hahn, 1995). The latter was
used by Haines et al. (2002).
4 Use of the concept of structural degrees of freedom has been made freely in
earlier work (Thomas, 2017; Reifenberg & Thomas, 2018).



required, i.e. aPC, bPC, cPC, �PC, L and �. These match exactly

the six d.o.f. of the structure. In �-quartz, just three indepen-

dent parameters are required, although the pseudocubes and

silicon ion network deliver four: aPC, bPC, cPC and L. This

disparity is resolved by noting that parameters aPC and bPC are

interdependent.5 It should also be noted that the tetrahedral

tilt angle in �-quartz, �, is not a transformed parameter in this

sense: if the six crystal structural parameters or alternatively

the six independent transformed parameters are known, the

value of � follows by calculation.

This article is structured as follows. In x2, analytical

expressions are given for the values of transformed para-

meters aPC, bPC, cPC, �PC, L and �, henceforth denoted

[Si+PC] or [Ge+PC], in terms of crystal structural parameters

a, c, xSi or xGe, xO, yO and zO. An expression is also given for tilt

angles �v and �h in terms of crystal structural parameters. In

x3.1, the transformed parameters calculated for �-quartz are

summarized by reference to Table S1 in x4 of the supporting

information. Sections x3.2 to x3.4 refer to �-quartz: the

temperature variation of the three tilt angles �v and �h and

mean tilt angle � = (�h + �v)/2 is compared to the temperature-

derived value of tilt angle according to equation (1) in x3.2.

This equation is subsequently exploited as a baseline curve for

a quantitative description of the variation of the three tilt

angles with temperature. In x3.3, curves are derived for the

temperature variation of [Si+PC] parameters in �-quartz, with

their application for the purpose of structure prediction shown

in x3.4. x3.5 deals with GeO2 as a whole, referring to Table S2

in x4 of the supporting information. In x3.6, �-quartz is like-

wise dealt with as a whole, with reference made to Table S3. In

x4.1 a comparison of the temperature- and pressure-depen-

dent behaviour of �-quartz and GeO2 is made, with a discus-

sion of the significance of tetrahedral distortions in framework

structures carried out in x4.2.

2. Parameterization of the cation frameworks and the
O4 tetrahedra in a-quartz, GeO2 and b-quartz
structures

The analytical treatment here applies to the three space

groups relevant to the experimental data of Antao (2016) and

Haines et al. (2002), i.e. P3221, P3121 and P6222. Although the

notation xSi is used, it is to be understood that this also applies

to the x-coordinate for germanium in the GeO2 structure. The

equations quoted here are derived as follows in the supporting

information: xS1: cationic network parameters L and � in

�-quartz and GeO2; xS2: PC parameters and tilt angles in

�-quartz and GeO2; xS3: PC parameters in �-quartz. These

derivations are based on the appropriate space group

symmetry, in order to fix the Si or Ge ions in space and to form

connected O4 tetrahedral cages.

2.1. The cationic network

The transformations from a and xSi to L and � for �-quartz

are as follows:

L ¼ a 1� 3xSi þ 3x2
Si

� �1=2
; ð2Þ

� ¼ arccos

"
1

2ð1� 3xSi þ 3x2
SiÞ

1=2

#
: ð3Þ

In the case of �-quartz, the value xSi = 0.5 leads to the results

L = a/2 and � = 0.

Reverse transformation from [Si+PC] to crystal structural

parameters proceeds according to equations (4) and (5).

a ¼ 2L cos � ð4Þ

Quadratic equation (5) follows from equation (1):

3x2
Si � 3xSi þ 1�

L2

a2
¼ 0 ð5Þ

The smaller of the two roots corresponds to the value of xSi.

2.2. Pseudocubic parameters and tilt angles in a-quartz and
germanium dioxide

The six parameters of the pseudocubes for the O4 tetra-

hedra may be calculated as follows from unit-cell parameters a

and c together with the x, y and z parameters of the oxygen

ions:

aPC ¼ a
3xO

2
� 1

� �����
����: ð6Þ

The expression for parameter bPC depends on whether space

group P3221 or space group P3121 applies, as for �-quartz and

GeO2, respectively.

bPC ¼
3

4
a2x2

O þ c2 2zO �
5

3

� �2
" #1=2

ð7Þ

[for space group P3221],
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Figure 4
Silicon ions (blue, green and yellow circles) of �-quartz in xy-projection in
space group P3221 (blue: z = 2

3; green: z = 1
3; yellow: z = 0). These form a 2D

framework characterized by two parameters, L (equilateral triangle side-
length) and � (deviation of angle from 60� in constitutive triangle of
hexagonal void). Lengths p and q show the unequal radii of the hexagonal
voids, with p < q (taken from Figure 12 of Reifenberg and Thomas, 2018).

5 This is discussed in xS3 of the supporting information.



bPC ¼
3

4
a2xO

2 þ c2 2zO �
1

3

� �2
" #1=2

ð8Þ

[for space group P3121],

cPC ¼
3a2

4
�xO þ 2yO

� �2
þ

c2

9

� �1=2

ð9Þ

The results for parameter �PC are likewise dependent on the

space group that applies.

�PC ¼ arccos

"
1
3 c2 2zO �

5
3

� �
� 3

4 a2 x2
O � 2xOyO

� �
bPCcPC

#
ð10Þ

[for space group P3221] ,

�PC ¼ arccos

"
� 1

3 c2 2zO �
1
3

� �
� 3

4 a2 x2
O � 2xOyO

� �
bPCcPC

#
ð11Þ

[for space group P3121]

�PC ¼ �PC ¼ 90� ð12Þ

In Figs. 3(a) and 3(b), tilt angles �v and �h are shown for

tetrahedra with cations at xSi, 0, 2
3 and xGe, 0, 1

3 in �-quartz and

GeO2, respectively. In both cases,

�v ¼ arccos
c

3cPC

� �
ð13Þ

and

�h ¼ arccos
ð3Þ1=2

axO

2bPC

� �
: ð14Þ

Calculation of the mean tilt-angle,

� ¼
�v þ �hð Þ

2
; ð15Þ

is straightforward. From the geometry in Fig. 3, it follows that

�PC ¼ 90� � �v � �hð Þ: ð16Þ

Equation (16) represents an alternative to equations (10) and

(11) for calculating the pseudocubic angle �PC. It also reveals

how deviations of the pseudocubic angle from 90� result from

differences in the values of tilt-angles �v and �h.

The INA method demands that reverse transformations

from pseudocubic to crystal structural parameters can take

place. In this connection, equations (4) and (5) relating to the

cationic network enable this for cell parameter a and cation

parameter xSi. The remaining four parameters, i.e. c, xO, yO, zO,

may be calculated as follows from the pseudocubic para-

meters. Parameter xO is derived from aPC via equation (6).

Parameters c, yO and zO are derived from the values of bPC, cPC

and �PC by finding self-consistent solutions of equations (7) to

(11) using numerical methods. These reverse transformations

are carried out in x3.4 for �-quartz.

2.3. Pseudocubic parameters in b-quartz

The six parameters of the pseudocubes for the O4 tetra-

hedra in �-quartz may similarly be calculated analytically from

unit-cell parameters a and c together with the xO parameter of

the oxygen ions6:

aPC ¼ ð3Þ
1=2axO; ð17Þ

bPC ¼ a 3xO � 1
� ��� ��; ð18Þ

cPC ¼
c

3
; ð19Þ

�PC ¼ �PC ¼ �PC ¼ 90�: ð20Þ

The lengths of pseudocubic axes aPC and bPC are inter-

dependent, since both are determined by parameters a and xO.

Parameter L in the cation network is equal to twice the unit-

cell parameter a, and the pseudocubes yield values for x0 and c

by reverse transformation. These transformations are carried

out in x3.6.

3. The temperature variation of [Si+PC] parameters for
quartz and [Ge+PC] parameters for germanium dioxide

3.1. Parameters calculated for a-quartz

[Si+PC] parameters calculated for �-quartz from the data of

Antao (2016) are listed in Table S1. Also listed are the

volumes of the unit cell (VUC), tetrahedral volumes (Vtetra),

the ratios of the volume occupied by tetrahedra to the unit-cell

volume (3Vtetra/VUC), the length-based tetrahedral distortion

parameters (�PC) [equation (21); Reifenberg & Thomas, 2018],

together with tilt angles �v and �h.

�PC ¼
aPC � L0;PC

�� ��þ bPC � L0;PC

�� ��þ cPC � L0;PC

�� ��
3L0;PC

ð21Þ

with L0,PC = (aPC + bPC + cPC)/3.

3.2. Curve-fitting for the temperature variation of tilt angles
in a-quartz

The correlation of values of order parameter � calculated

from equation (1) using the parameters of Grimm & Dorner

(1975) with values of �v, �h and � calculated directly from the

structural refinements of Antao (2016) via equations (13) to

(15) is shown in Fig. 5.

It is observed that the correlation between the black curve

and the other three curves is only qualitative. This indicates

that, although the predominant contribution to the micro-

scopic Landau order parameter is made by tetrahedral tilting,

there will also be a small contribution to this from tetrahedral

distortion.

Fitting of the curves linking experimental points for �v, �h

and �m was carried out by expressing these three parameters

as a function of �, using polynomials of order 3. The fitting

coefficients are listed in Table 1.
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6 Values of x0 in equations (17) and (18) are in accordance with the notation in
International Tables for Crystallography (Hahn, 1995) and equal to one half of
the values of Ox quoted by Antao (2016).



3.3. Curve fitting for the temperature variation of [Si+PC]-
parameters in a-quartz

Values of parameters L, �, aPC, bPC, cPC and �PC from

Table S1 for temperatures between 298 and 844 K are plotted

as points with associated error bars in Fig. 6.

The method adopted for fitting the curves was consistent

with the work of other authors (Grimm & Dorner, 1975;

Carpenter et al., 1998; Antao, 2016), in that the order para-

meter � generated by equation (1) was adopted as the inde-

pendent variable. The fitting coefficients listed in Table 2

relate to the reduced order parameter �0 defined in equation

(22)

�0 ¼
½�ðTÞ � �0�

½�ð273 KÞ � �0�
: ð22Þ

Here �0 is the parameter of Grimm & Dorner (1975), which is

equal to 7.3�. This is their tilt angle at the temperature T0,

which is equal to 846 K. Parameter �(273 K) is calculated by

equation (1) to be 16.40�. �(T) is the tilt angle calculated from

equation (1) for a temperature lying between 273 and 846 K.

Therefore equation (22) delivers a parameter between 0 and 1

for decreasing temperatures between 846 and 273 K, respec-

tively. The fitted curves are shown in Fig. 6. It should be noted

that the use of polynomial coefficients allows parameters L, �,

aPC, bPC and cPC to vary independently of one another, even

though a single Landau order parameter calculated from

temperature according to equation (1) is at the core of the

fitting method. As a formal contribution to the method, the

Landau function provides a more linear baseline that enables

the fitting of low-order polynomials. If the five parameter

values were fitted directly to reduced temperature, a higher

order would be required in order to accommodate the

significant non-linearity in the parameter–variation in the

region of the phase transition, i.e. at T � Tc. However, such a

step would also introduce undesirable short-range artefacts in

the fitted curves of questionable physical basis.

The curve fitted for parameter �PC was calculated from

equation (17) utilizing values for tilt angles �v and �h calcu-

lated from the coefficients in Table 1 and shown in Fig. 5.

3.4. Structural prediction for a-quartz via the INA method

The fine temperature-mesh adopted by Antao (2016) means

that there is more to be gained by calculating crystal structures

outside the range of 298–844 K than by calculating structures

at intermediate temperatures. Therefore four of the

temperatures chosen for Table 3, 273 K, 283 K, 293 K and

846 K lie outside this range. A large separation in tempera-
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Figure 6
(a) Silicon framework parameters L and �; (b) oxygen pseudocube
parameters aPC, bPC, cPC and �PC.

Table 1
Fitting coefficients for tilt angles �v, �h and � in �-quartz.

�v (�) �h (�) � (�)

a0 1.19197 � 100 6.32541 � 100 3.77495 � 100

a1 1.38790 � 100
�7.60768 � 10�1 3.08692 � 10�1

a2 �6.68003 � 10�2 1.50911 � 10�1 4.21756 � 10�2

a3 2.18006 � 10�3
�4.19733 � 10�3

�1.00113 � 10�3

r.m.s.d. (�) 3.82 � 10�2 6.16 � 10�8 1.60 � 10�8

Table 2
Fitting coefficients for parameters L, �, aPC, bPC and cPC in �-quartz [equation (A1.2)].

Parameter a0 a1 a2 a3 r.m.s.d.

L (Å) 2.49095 � 100
�6.87965 � 10�3

�2.41458 � 10�2 7.89793 � 10�3 5.12 � 10�5

� (�) 1.73590 � 100 4.47954 � 100
�4.07902 � 10�1

�1.80983 � 10�1 2.14 � 10�2

aPC (Å) 1.85951 � 100 2.23242 � 10�3 2.64983 � 10�2
�1.55218 � 10�2 6.98 � 10�4

bPC (Å) 1.81594 � 100 6.10459 � 10�3 3.41215 � 10�3
�5.56681 � 10�4 4.19 � 10�4

cPC (Å) 1.83589 � 100 3.27551 � 10�2
�2.31572 � 10�2 2.48268 � 10�2 2.99 � 10�4

Figure 5
Comparison of the order parameter � (black curve) with structurally
derived values of tilt angles, �v, �h and � with points and curves in red,
blue and brown, respectively. Temperature range: 273–846 K.



tures of 100 K has been chosen for temperatures within the

range given by Antao (2016). Table 3 should be read from the

top downwards. The first step is to calculate the Grimm and

Dorner order parameter, �, via equation (1). Thereafter

parameters �v and �h are calculated via equation (A1.1) and

the fitting coefficients of Table 1. In Table 3, the equations

used to calculate [Si+PC]-parameters from �PC down to cPC

are listed in the right-hand column. Thereafter the equations

used to calculate the crystallographic parameters by reverse

transformation from [Si+PC]-parameters are quoted in this

column.

Calculated crystal structural parameters at the ten

temperatures chosen are quoted below the horizontal rule in

Table 3. The final three parameters, yO, zO and c, were

calculated via an iterative process using the GRG algorithm

within the Microsoft Excel Solver software environment. Self-

consistent solutions to equations (7), (9) and (10) were sought,

using trial values for these three parameters. Their values were

refined in order to bring values of bPC, cPC and �PC calculated

from these equations into agreement with the values calcu-

lated from the coefficients relating to equation (A1.2) and

quoted in Table 3. An indication of the self-consistency of the

method is provided by the values of r.m.s. deviation quoted in

the final line of Table 3. This parameter is defined in

equation (23).

r:m:s:d:ð%Þ ¼

( �
bPCð7Þ � bPCðA1:2Þ

bPCðA1:2Þ

�2

þ

�
cPCð9Þ � cPCðA1:2Þ

cPCðA1:2Þ

�2

þ

�
�PCð10Þ � �PCðA1:2�

�PCðA1:2Þ

�2
!1=2)

� 100%

ð23Þ

The numbers in the smallest brackets in equation (23) are

equation numbers.

3.5. Tilt angles and [Ge+PC]-parameters for GeO2

Although the 16 structures of GeO2 refer to temperatures

between 294 and 1344 K (Haines et al., 2002), the �-quartz-

type structure for GeO2 is metastable with respect to a rutile-

type phase at temperatures up to 	1273 K. It is the equili-

brium phase only at higher temperatures up to the melting

point of 	1390 K (Liu & Bassett, 1986). Landau parameters

Tc and T0 as for �-quartz cannot be derived from structural

data, as melting takes place on rising temperature before any

such �!� phase transition.

Length-based parameters L, aPC, bPC, cPC are larger for

GeO2 than for �-quartz. Values of pseudocubic angle �PC are

also uniformly larger, lying in the range 91.11� � �PC� 91.60�,

compared to 88.53� � �PC � 90.45� for �-quartz. This obser-

vation signifies a greater degree of angular distortion of the

tetrahedra. Larger values of �PC also point to tetrahedra that

are comparatively more distorted, as discussed further in x4.1.

Values of the parameter 3Vtetra/VUC are higher for GeO2, this

implying larger tilt angles: the greater the degree of tetra-

hedral tilting, the larger the proportion of space occupied by

the tetrahedra. Tilt angles �v and �h are indeed consistently

larger than for �-quartz, although they span narrower ranges:

22.36� � �v� 25.46�; 23.73� � �h� 26.63�. As for �-quartz, the

smallest values in each range apply to the highest temperature.

The implication is that GeO2 at 1344 K is still far away from an

�!� phase transition.

The ability to measure tilt angles directly in this work was

exploited by adopting mean tilt angle as the order parameter �
for GeO2 instead of an equation of the form of (1). A quad-

ratic function was fitted to the experimental data for this

purpose, as summarized in equation (24).

�ðKÞ ¼ a0 þ a1½TðKÞ� þ a2½TðKÞ�
2
½294<TðKÞ< 1344� ð24Þ
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Table 3
[Si+PC]-parameters for �-quartz at ten temperatures calculated from the INA curves in Fig. 6 and associated polynomial coefficients in Tables 1 and 2.

Corresponding, calculated crystallographic parameters are listed below the horizontal rule.

T (K) 273 283 293 300 400 500 600 700 800 846 Equation

� (�) 16.404 16.342 16.279 16.235 15.549 14.744 13.753 12.427 10.191 7.300 (1)
�v (�) 15.607 15.548 15.488 15.446 14.817 14.121 13.316 12.307 10.706 8.612 (A1.1)
�h (�) 15.927 15.877 15.826 15.789 15.203 14.461 13.488 12.121 9.803 7.181 (A1.1)
�PC (�) 90.320 90.329 90.338 90.343 90.386 90.340 90.172 89.814 89.097 88.569 (16)
�0 (�) 1.0000 0.9932 0.9863 0.9814 0.9060 0.8176 0.7088 0.5631 0.3176 0.0000 (22)
L (Å) 2.46782 2.46804 2.46825 2.46841 2.47077 2.47350 2.47675 2.48083 2.48658 2.49095 (A1.2)
� (�) 5.62656 5.60521 5.58350 5.56808 5.32508 5.02677 4.64175 4.09670 3.11159 1.73590 (A1.2)
aPC (Å) 1.87272 1.87266 1.87260 1.87255 1.87174 1.87057 1.86888 1.86640 1.86239 1.85951 (A1.2)
bPC (Å) 1.82490 1.82482 1.82475 1.82469 1.82386 1.82291 1.82178 1.82036 1.81821 1.81594 (A1.2)
cPC (Å) 1.87031 1.86990 1.86949 1.86920 1.86502 1.86076 1.85631 1.85142 1.84475 1.83589 (A1.2)

a (Å) 4.9119 4.9125 4.9131 4.9135 4.9202 4.9280 4.9373 4.9490 4.9658 4.9796 (4)
xSi 0.4716 0.4717 0.4718 0.4719 0.4731 0.4746 0.4766 0.4793 0.4843 0.4913 (5)
xO 0.4125 0.4125 0.4126 0.4126 0.4131 0.4136 0.4143 0.4152 0.4166 0.4177 (6)
yO 0.2655 0.2652 0.2650 0.2649 0.2625 0.2600 0.2572 0.2537 0.2481 0.2410 (7)
zO 0.7869 0.7871 0.7872 0.7874 0.7891 0.7913 0.7941 0.7981 0.8049 0.8123 (9)
c (Å) 5.4035 5.4039 5.4044 5.4046 5.4090 5.4137 5.4192 5.4265 5.4383 5.4444 (10)
r.m.s.d. (%) 0.0003 0.0002 0.0003 0.0003 0.0007 0.0002 0.0008 0.0003 0.0009 0.0011



The following coefficients and r.m.s. deviation apply: a0 =

2.6242 � 101; a1 = �4.0000 � 10�4; a2 = �1.5343 � 10�6;

r.m.s.d.: 0.14�. Just as the thermal Landau order parameter

allowed lower-order polynomials to be fitted for �-quartz,

using the mean tilt angle here fulfils a similar purpose for the

GeO2 fitting.

Values of parameters L, �, aPC, bPC, cPC and �PC from

Table S2 for temperatures between 294 and 1344 K are plotted

as points with associated error bars in Fig. 7.

For the curve-fitting in Fig. 7, the order parameter �
generated by equation (24) was adopted as the independent

variable. The fitting coefficients listed in Table 4 relate to the

reduced order parameter �0 defined in equation (25).

�0 ¼
½�ðTÞ � �ð1344 KÞ�

½�ð273 KÞ � �ð1344 KÞ�
ð25Þ

Thus �0 = 0 at 1344 K and �0 = 1 at 294 K. The curve fitted for

parameter �PC was calculated from equation (17), utilizing

values for tilt angles �v and �h calculated from the coefficients

in Table 5, using equation (A1.1).

Whereas the curves for L, � and cPC lie mostly within the

bounds of the error bars of the experimental points, this does

not apply to parameters aPC, bPC and �PC. It is further

observed that successive experimental points for parameters

aPC and bPC lie alternately above and below the fitted curves.

At a given temperature, a point lying above the aPC trend-

curve corresponds to a point lying below the bPC trend-curve,

and vice versa. It transpires that points lying above the aPC

curve correspond to crystallographic data obtained from a

sample measured with the Special Environment Powder

Diffractometer at Argonne National Laboratory, whereas

points lying below the curve relate to a different sample from

the Polaris medium resolution diffractometer at the Ruther-

ford Appleton Laboratory (Haines et al., 2002). In both cases,

the Rietveld method was used in conjunction with time-of-

flight neutron powder diffraction data.

In view of the uncertainties in the values for parameters aPC,

bPC and �PC, it was decided not to proceed with calculations of

crystallographic parameters at interpolated temperatures, as

carried out in Table 3 for �-quartz. However, the separation of

values for aPC, bPC and cPC into distinctive value-ranges is

beyond question, this allowing a subsequent treatment of

length-based tetrahedral distortion in x4. Owing to the

systematic variation with temperature of INA parameters L, �
and cPC, it is reasonable to assume that the INA method is

applicable, in principle, to GeO2 over the whole temperature

range. The observed fluctuations in the other parameters

correlate with two different samples and experimental

stations.

3.6. Curve-fitting and structural prediction for b-quartz

The evolution with temperature of several derived para-

meters for �- and �-quartz is shown in Fig. 8, based on the

structural refinements of Antao (2016). The unit-cell volume

increases uniformly with temperature in the �-phase and

continues to rise beyond the phase transition to the �-phase to

a maximum value at 921 K, before falling back gently with

increasing temperature (Antao, 2016). The volumes occupied

by the SiO4 tetrahedra decrease strongly with temperature in

the �-phase, this being allowed by the decreasing mean tilt

angle, and continue to fall gradually in the �-phase. The
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Figure 7
(a) Germanium framework parameters L and �; (b) oxygen pseudocube
parameters aPC, bPC, cPC and �PC.

Table 4
Fitting coefficients for parameters L, �, aPC, bPC and cPC in GeO2 [equation (A1.2)].

Parameter a0 a1 a2 a3 r.m.s.d.

L (Å) 2.56107 � 100
�2.07438 � 10�2

�1.42516 � 10�2 2.19897 � 10�3 5.22 � 10�4

� (�) 8.09667 � 100 1.44548 � 100
�7.63365 � 10�1 8.11500 � 10�1 7.98 � 10�2

aPC (Å) 2.03903 � 100
�5.80389 � 10�2 3.20194 � 10�2 – 6.33 � 10�3

bPC (Å) 1.91359 � 100 4.23398 � 10�2
�3.62357 � 10�2 – 5.82 � 10�3

cPC (Å) 2.04208 � 100 5.27147 � 10�2
�1.94495 � 10�2 8.41710 � 10�3 1.28 � 10�3

Table 5
Fitting coefficients for tilt angles �v and �h in GeO2.

�v (�) �h (�)

a0 �9.3270 � 102
�1.7978 � 102

a1 1.1504 � 102 2.4388 � 101

a2 �4.6455 � 100
�1.0021 � 100

a3 6.3008 � 10�2 1.4212 � 10�2

r.m.s.d. (�) 7.54 � 10�2 1.44 � 10�1



length-based tetrahedral distortion, �PC, decreases with

temperature in both phases, with a jump in values observed at

the phase transition. Values ultimately attained at high

temperature in the �-phase are lower than in the �-phase.

Parameter 3Vtetrahedron/VUC, which represents the fraction of

space occupied by the SiO4 tetrahedra, decreases much more

strongly in the �- than in the �-phase. In the former case, the

decrease is facilitated by the reduction in mean tilt angle. In

the latter, the decrease indicates the stronger relative decrease

in tetrahedral volume compared to unit-cell volume.

Pseudocubic parameters aPC and bPC for �-quartz show a

stronger temperature-dependence than cPC, with opposite

trends observed for aPC and bPC. Curves have been fitted to

the variations for aPC and bPC, since equations (17) and (18)

yield, by reverse transformation, values of the a cell parameter

and the oxygen xO parameter.

The two parameters �1,PC and �2,PC are independent indi-

cators of the deviation from regularity of the tetrahedra in �-

quartz. They are defined as follows, whereby xC is a reference

value equal to 1
2�

ð3Þ1=2

6 
 0:21132 (see xS3.2 of the supporting

information).

�1;PC ¼ xO � xC ð26Þ

�2;PC ¼
ð3Þ1=2

9

c

a
� xC ð27Þ

A perfectly regular tetrahedron would have both �1,PC and

�2,PC equal to zero. The contrary motion of their negative

values with increasing temperature in the fourth diagram of

Fig. 8 indicates that perfect tetrahedral regularity is not

attained in �-quartz.

The strong monotonic variation of� �2, PC with temperature

allows a curve-fitting from which values of unit-cell parameter

c can be derived. Taken together, parameters aPC, bPC and

�2, PC with associated curves enable prediction of the structures

of �-quartz at interpolated temperatures. This procedure is

shown in Table 6 for temperatures between 900 and 1200 K in

100 K intervals. The calculation procedure, which uses the

coefficients listed in Table 7, may be inferred by reading the

table from the top downwards.
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Figure 8
Parameter values for quartz derived from the data of Antao (2016): top over the whole temperature-range, bottom over the temperature range of �-
quartz. VUC: unit-cell volume; Vtetrahedron: SiO4-volume; �PC: length-based tetrahedral distortion; aPC, bPC, cPC: pseudocubic parameters; �1,PC, �2,PC.

Table 6
Structural parameters of �-quartz at four temperatures calculated from the three fitted curves in Fig. 8 and associated polynomial coefficients in Table 7†.

T (K) 900 1000 1100 1200 Equation

�0 0.1067 0.3733 0.6400 0.9067 (A2.1)
aPC (Å) 1.8117 1.8135 1.8158 1.8220 (A1.2); Table 7
bPC (Å) 1.8582 1.8558 1.8513 1.8399 (A1.2); Table 7
��2,PC (Å) 0.001146 0.001215 0.001265 0.001314 (A1.2); Table 7

a (Å) 4.9961 4.9967 4.9963 4.9956 (17)
x 0.2094 0.2095 0.2098 0.2106 (18)
c (Å) 5.4563 5.4553 5.4535 5.4515 (19)

† Values of x are in keeping with International Tables for Crystallography (Hahn, 1995) and not the convention employed by Antao (2016).



4. Discussion

4.1. Comparison of the temperature- and pressure-evolution
of quartz and GeO2 structures by means of tetrahedral
distortion parameters

The length- and angle-based tetrahedral distortion para-

meters, �PC and �PC, introduced by Reifenberg & Thomas

(2018) to enable a comparative overview of tetrahedral

distortions under varying conditions of temperature and

pressure, are plotted in Fig. 9 for �-quartz and GeO2. The

former corresponds to equation (21) and the latter parameter

�PCð
�

Þ ¼
�PC

�ð Þ � 90�
�� ��þ �PC

�ð Þ � 90�
�� ��þ �PC

�ð Þ � 90�
�� ��

3

takes on the form of equation (28) when expressed in radians

for �-quartz or GeO2. These two parameters correspond to

normal and shear distortions, respectively, and are normalized

in order to reflect changes in shape and not volume.

�PC ¼
�PC � ð	=2Þ
�� ��

3
ð28Þ

Also plotted are calculated values of mean tilt angle, �, in

degrees.

It is observed that �PC has uniformly higher values in GeO2

compared to �-quartz at a given temperature or pressure, and

further, that the application of hydrostatic pressure increases

the length-based distortion in both crystal structures. The

behaviour of �PC is more complicated. The red points for �-

quartz touch the x-axis at circa 640 K, when �PC changes from

values above 90� to values below 90� on increasing tempera-

ture. The blue points representing GeO2 are uniformly higher

and show a weak dependence on temperature. By comparison,

the application of pressures of up to 5.57 GPa to GeO2 causes

�PC to fall off, corresponding to a reduction in �PC from 91.0 to

89.9�. Such a fall-off is not observed for �-quartz, with a small

upwards trend in �PC seen. This results from �PC values that

are consistently larger than 90�.

Although angular distortion �PC falls with increasing pres-

sure in GeO2, this is not associated with the approach to a

phase transition, as tilt angle � takes on successively higher

values with increasing pressure. This is the primary structural

response of both GeO2 and �-quartz to increasing pressure.

Taken together, these results support the view expressed by

Glinnemann et al. (1992) that unpressurized GeO2 is a good

model of the high-pressure structure of �-quartz: the blue

points for unpressurized GeO2 and the pink points for �-

quartz at high pressure occupy similar regions along the y-axis

in the three diagrams of Fig. 9.

4.2. The significance of tetrahedral distortion in quartz

The term distortion implies deviation from an ideal. Two

fundamental approaches are available for specifying such an

ideal, the first referring to symmetry and the second to

structure. The former leads naturally to considerations of

group theory and the latter to crystal chemistry. In the case of

quartz, as examined here, the aristotype corresponds to space

group P6222 for �-quartz. On cooling below 846 K, a

displacive phase transition to its maximal sub-group P3221

takes place, this corresponding to �-quartz. Bärnighausen

(1980) has described this transition as lattice-equivalent

(translationsgleich). The �!� transition involves the loss of

the twofold rotation symmetry in the parent space group along

h210i axes. It is therefore assigned the index 2 and notation t2.

In terms of structure, the dominant feature observed in the

lower symmetry, trigonal phase is tetrahedral tilting around

the remaining h100i twofold axes, along which the Si atoms lie.

This twofold symmetry restricts the possible distortions of the

SiO4 tetrahedra, such that the distortion of the O4 cages may

be represented by pseudocubes in which two of the angles, �PC

and �PC, are equal to 90� (Fig. 2). A corollary is that four

independent parameters are required to describe this distor-

tion. The term pseudocube also implies the existence of an

ideal of higher symmetry, i.e. the cube, which would be

specified completely by one parameter, aPC, since the

following three constraints apply: (i) bPC = aPC; (ii) cPC = aPC;

(iii) �PC = 90�. Such a cube corresponds to a perfectly regular

O4 tetrahedron.
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Figure 9
Comparison of tetrahedral distortions and tilt angles for �-quartz and
GeO2. Red points: �-quartz at variable temperature (Antao, 2016); blue
points: GeO2 at variable temperature (Haines et al., 2002); brown points:
pressure-variation of �-quartz up to 10.2 GPa (Glinnemann et al., 1992)
[The r(+) setting according to Donnay & Le Page (1978) in space group
P3121 was used. An origin-shift of ½0; 0; 1

3� was applied in order to
generate coordinates compatible with International Tables for Crystal-
lography (Hahn, 1995)]; pink points: pressure variation of �-quartz
between 10.9 and 13.1 GPa (Kim-Zajonz et al., 1999) [The r(+) setting
according to Donnay & Le Page (1978) in space group P3121 was used
with coordinates compatible with International Tables for Crystal-
lography (Hahn, 1995).]; yellow points: pressure variation of GeO2 up
to 5.57 GPa (Glinnemann et al. 1992).



Although space group symmetry allows regular SiO4

tetrahedra to exist in both �- and �-quartz, this ideal is not

observed experimentally. For �-quartz, a regular O4 tetra-

hedron would impose restrictions on both oxygen parameter

xO and c/a ratio such that �1,PC = �2,PC = 0 [see equations (26)

and (27) and the fourth diagram of Fig. 8]. For �-quartz, the

possibility of the existence of perfectly regular tetrahedra has

been addressed by Smith (1963), who showed that this would

require the c/a ratio to be less than 3
2

� �
ð3Þ1=2

� 1
	 


. Equations

(6), (7), (9) and (10) of the current work allow an extension of

Smith’s analysis to examine the consequences of regular

tetrahedra for tilt angle. The above three constraints to form a

cube may be applied, together with a fourth constraint that the

Si ion be located at the centre-of-coordinates of its O4-cage.

Since Smith’s c/a criterion is fulfilled only by the nineteen

structural refinements of Antao (2016) at temperatures T �

566 K, one way to address this question is to take the values

for a and c at these temperatures and to apply the four

constraints in a Microsoft Excel spreadsheet supported by the

iterative GRG refinement in the Solver. The spreadsheet used

for an example structure at 784 K is shown in Fig. 10(a), with

the Solver settings for constraints (i)–(iii) above shown in

Fig. 10(b).

The values of cells B5–B7 are allowed to vary subject to the

constraints that cells C20–C22 contain values less than 0.00001

at the end of the refinement. In this connection, cell C22

contains the difference of the two terms in the numerator of

the argument to the arccos function in equation (10). This is

zero for an �PC angle of 90�. At the end of the refinement, cells

B9–B12 (with light brown background) contain the para-

meters of a perfect cube. Further, the underlying equations,

based on space group symmetry, guarantee that a system of

interconnected regular SiO4 tetrahedra applies. The resulting

oxygen x, y, z parameters necessary for this are given in cells

B5–B7 (with yellow background). Significant differences are

observed relative to the experimental parameters of Antao

(2016) (cells C5–C7), to which irregular tetrahedra with

pseudocubic parameters in cells C9–C12 apply. The value of

xSi in cell B14 is calculated by applying the fourth constraint
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Figure 10
Procedure for calculating the oxygen positional parameters (xO,yO,zO)
and silicon x-coordinate (xSi) of �-quartz with regular tetrahedra for fixed
cell parameters a and c. (a) EXCEL spreadsheet. Cells B9 to B11
correspond to equations (6), (7) and (9), respectively. The formula in cell
B12 calculates the pseudocubic angle aPC according to equation (10). (b)
Settings of the Solver.

Figure 11
Comparison of structural variables for hypothetical �-quartz structures containing regular SiO4 tetrahedra with the experimental structures of Antao
(2016) at temperatures between 566 and 844 K. (a) tilt angle � and tetrahedral volume Vtetra; (b) mean Si—O distance and Si-framework �-parameter;
(c) Si-framework L-parameter.



relating to the location of the silicon ion at the centre-of-

coordinates of its O4 cage. The associated values of L and �,

which relate to the Si-ion framework, are quoted in cells B15

and B16 by application of equations (2) and (3). Equation (13)

is used to calculate the tilt angle, �tilt, resulting for the struc-

ture with regular tetrahedra. �PC = 90� due to the regular

tetrahedral geometry, so that �v = �h. This is is quoted in cell

B13, whereby the value of 6.68� is obtained for the a and c cell

parameters of Antao (2016) at 784 K. This differs significantly

from the experimental value of 10.74� (cell C13).

It is significant that regular tetrahedra give rise to tilt angles

that increase from 1.50 to 8.27� over the temperature range

from 566 to 844 K, whereas the distorted tetrahedra in the

experimental structures of Antao (2016) have tilt angles that

decrease from 13.72 to 8.19� over this range [Fig. 11(a)]. That

the primary Landau order parameter, i.e. tilt angle, should

increase with increasing temperature is non-sensical. It follows

that distorted tetrahedra in the �-phase are necessary for

Landau theory to be applicable. This situation is at variance

with the behaviour of perovskites, i.e. systems of inter-

connected octahedra. In this context, the group-theoretical

analysis of Howard & Stokes (1998) found that, of the 15

possible sub-groups of cubic aristotype Pm�33m corresponding

to different tilting patterns, only one was necessarily associated

with octahedral distortion. They noted that such distortions

were possible and expected in the other systems, but not

required by geometry. These perovskite distortions have been

analysed by other authors [see, for example, Thomas (1998);

Tamazyan & van Smaalen (2007)].

Fig. 11(a) also demonstrates the expected correlation

between tilt angle and tetrahedral volume for both regular and

distorted tetrahedra. The larger tetrahedral volumes of

distorted tetrahedra correlate with larger mean Si—O

distances7,8 as well as angles � in the silicon ion framework

[Fig. 11(b)]. The only case of parallel trends with temperature

between regular and distorted tetrahedra relates to parameter

L in the silicon ion framework [Fig. 11(c)]. In general, the

distorted tetrahedra in the Antao structures permit relatively

longer L values, leading to weaker Si� � �Si repulsions.

Violation of the criterion due to Smith (1963) does not

allow a network of regular tetrahedra to be formed for the cell

parameters obtained at temperatures below 566 K. His

limiting c/a-ratio of 3
2

� �
ð3Þ1=2

� 1
	 


corresponds to a tilt angle

of zero. However, equations (6) to (10) allow an inter-

connected network provided that one of the constraints

encoded in cells C20 to C22 of Fig. 10(a) is relaxed. The results

yielded by the Microsoft Excel Solver for a representative

structure at 345 K are given in Table 8.

The parameters obtained are strongly dependent on the

constraints applied. Tilt angle � is highly variable and is to be

compared with the experimental mean tilt angle at this

temperature of 15.36�. Given this sensitivity, a further issue is

to examine the pseudocubic parameter combinations that

apply to all the experimental structures of Antao (2016). To

this end, the polynomials in Table 2 for these parameters are

plotted as a function of reduced Landau order parameter �0 [as

defined in equation (22)] in Fig. 12. Since it is not possible to

adopt a regular tetrahedron (or equivalently perfect cube) as a

reference over the whole temperature, another method of

normalization has been adopted: values of aPC, bPC and cPC

have been divided by the mean of the three values at each

temperature. In the case of �PC, absolute values have been

divided by their median value (89.48�) over the whole

temperature range. The corresponding normalized para-

meters, for which expansion/contraction effects have been

factored out, are denoted by aPC
0, bPC

0, cPC
0 and �PC

0.

The modes of distortion of the O4 tetrahedra vary over the

temperature range investigated, with the extent of the varia-

tion in parameters increasing in the order aPC
0 < bPC

0 < cPC
0.

The values of parameters aPC
0 and cPC

0 approach each another

as �0 ! 1. This behaviour is close to the third pair of

constraints in Table 8, for which the maximum tilt angle � is

observed. The unique increase in c0PC with increasing order

parameter (! tilt angle) may be rationalized by noting that

increased tilt angles allow progressively larger values of cPC to

be accommodated for a given c cell parameter. This analysis

also allows an independent assessment of the validity of the
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Table 7
Fitting coefficients for parameters aPC, bPC and ��2,PC in �-quartz.

Parameter a0 a1 a2 a3 a4 r.m.s.d.

aPC (Å) 1.8099 � 100 2.1919 � 10�2
�5.6548 � 10�2 6.9719 � 10�2

�1.9627 � 10�2 8.19 � 10�4

bPC (Å) 1.8596 � 100
�1.6295 � 10�2 3.0578 � 10�2

�3.7656 � 10�2
�3.0030 � 10�3 1.41 � 10�3

��2,PC (Å) 1.1080 � 10�3 3.9126 � 10�4
�3.4485 � 10�4 1.8136 � 10�4 – 4.81 � 10�6

Table 8
Pseudocubic parameters and tilt angles � for the cell parameters of Antao
(2016) at 345 K (a = 4.91637 Å; c = 5.40666 Å) that result from four
alternative sets of two applied constraints.

Constraints applied

Parameter
bPC = aPC

�PC ¼ 90�
cPC = bPC

�PC ¼ 90�
aPC = cPC

�PC ¼ 90�
bPC = aPC

cPC = aPC

aPC (Å) 1.8308 1.7948 1.8558 1.8083
bPC (Å) 1.8308 1.8474 1.8196 1.8083
cPC (Å) 1.8522 1.8474 1.8558 1.8083
�PC (�) 90.00 90.00 90.00 92.40
� (�) 13.33 12.69 13.81 5.89

7 In a regular quartz, all four Si—O distances are equal. In �-quartz with
distorted tetrahedra (Antao, 2016), there are two sets of two equal distances.
8 The observed decrease in Si—O distances with temperature in the
experimental structures may an artefact arising from correlated thermal
librations. Antao (2016) advocates a possible correction due to Downs et al.
(1992).



rigid unit (phonon) mode (RUM) approximation, according to

which displacive phase transitions in framework structures

occur without any significant distortion of the MO4 tetrahedra

(O’Keeffe & Hyde, 1976; Giddy et al., 1993).

The ability to generate structural models for �-quartz with

alternative modes of tetrahedral distortion within the Micro-

soft Excel Solver, as shown in Fig. 10 and Table 8, is a useful

by-product of the approach. Since this activity can be

conducted independently of experimental diffraction data, it

constitutes a simple, but versatile model-building method. It is

likely to be useful for the modelling of auxetic (i.e. negative

Poisson’s ratio) or non-auxetic behaviour of �-quartz subject

to different constraints. Pioneering modelling work has been

carried out here by Alderson & Evans (2009), in which

alternative combinations of tetrahedral rotation and dilation

were examined.

Since the [Si+PC] parameters can be reverse-transformed

to crystallographic parameters, the method also allows the

prediction of crystal structure at interpolated or extrapolated

temperatures. This process, along with INA methods in

general (Thomas, 2017; Reifenberg & Thomas, 2018) will be of

benefit when carrying out structural refinements of lower

symmetry structures. The use of alternative, group-theoretical

methods in this context was pioneered by Stokes & Hatch

(1988) and resulted in the ISOTROPY suite of programs

(https://iso.byu.edu/iso/isotropy.php). In particular, the

ISODISTORT web-based tool (Campbell et al., 2006), which

acts as a gateway to the ISOTROPY suite, is geared towards

analysing structural distortions. This proceeds by identifying

the irreducible representations of parent space groups that are

associated with distortions in their sub-groups. It would

therefore be worthwhile to attempt a synthesis of the two

approaches towards the quartz phase transition, both crystal

chemical and group-theoretical.

It is not surprising that length- and angle-based parameters

vary smoothly with temperature and pressure, since they

fundamentally reflect the interactional potential energies and

vibrational energies of the ions. This observation underlies the

importance of crystallographic experiments carried out under

variable (p,T) conditions: they probe structural space.

Furthermore, when lengths and angles are calculated, the

complementary unit cell and atomic positional crystal-

lographic parameters are combined in a Cartesian space that is

conducive to establishing smooth trends with (p,T). This is the

essential purpose of the transformation from crystallographic

to [Si+PC] or, more generally, INA parameters. It therefore

constitutes a technique that could become widely used in the

refinement of structures examined under variable (p,T)-

conditions.

It is intended to extend the current method to formulate

more detailed structure-pieozelectric property relationships

for single-crystal phosphates and arsenates (ABO4; A =

B,Al,Ga,Fe; B = P,As) (Baumgartner et al., 1984, 1989; Sowa,

1991, 1994; Nakae et al., 1995; Haines et al., 2004). These are

homeotypic with �-quartz and GeO2. However, the presence

of two different cations leads to two symmetry-independent

tetrahedra in the unit cell. For this reason, their structures

have not been analysed here. However, continued application

of the tilted regular tetrahedron model to these materials

(Krempl, 2005) points to a need to discriminate more clearly

between tetrahedral tilt and distortion in these materials.

The additional insight regarding tetrahedral distortions in

quartz made possible by the data of Antao (2016) signals how

high-quality crystallographic data can also contribute to a

deeper understanding of phase transitions. This should act as a

spur towards the more regular collection of crystallographic

data of superior quality.

In seeking a microscopic interpretation of the Landau order

parameter, attention in the literature has been focused until

now on the tilt angle of the tetrahedra. This is indeed the

dominant contribution. However, the inability of regular

tetrahedra to generate appropriate values of tilt angle, as

found here, demonstrates the importance of also taking

tetrahedral distortion explicitly into consideration. Thus the

comment of Taylor (1984), that (purely) ‘tilting models of

framework compounds fail to match the observed structural

behaviour’, has been addressed.

In general, the potential of crystal chemistry is far greater

than merely offering a descriptive post-rationalization of

experimentally determined structures. It is also able to offer a

predictive framework for detailed dialogue with experiment.

APPENDIX A
A1. Curve-fitting coefficients for a-quartz

A1.1. Tilt angles ����v, ����h and ����m. Polynomials of the form

� ¼
Xn

i¼0

ai�
i ðA1:1Þ
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Figure 12
Variation of a0PC, b0PC, c0PC and �0PC with reduced order parameter �0 for �-
quartz. Temperatures corresponding to values of �0 are indicated at the
top of the graph. Regular tetrahedra are only possible at values of �0 up to
circa 0.75, as denoted by the red vertical line.



were employed with n = 3 and � calculated from equation (1).

Fitting coefficients ai are listed in Table 1.

A1.2. [Si+PC] parameters L, D, aPC, bPC and cPC. Poly-

nomials of the form of equation (A1.2) were employed with

n = 3.

� ¼
Xn

i¼0

�i�
0i

ðA1:2Þ

The reduced parameter applies here, as defined in equation

(22). Fitting coefficients ai are listed in Table 2.

A2. Curve-fitting coefficients for b-quartz

Polynomials of the form of equation (A1.2) were employed

with n = 4 for parameters aPC and bPC and n = 3 for parameter

��2,PC. The reduced parameter applies here, as defined in

equation (A2.1), whereby the temperatures of 860 K and

1235 K correspond to the minimum and maximum tempera-

tures of the structures reported by Antao (2016) for the

�-phase. Fitting coefficients ai are listed in Table 7.

�0
½�ðTÞ � �ð860 KÞ�

½�ð1235 KÞ � �ð860 KÞ�
ðA2:1Þ
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