research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Crystal structure of the uranyl arsenate mineral hügelite, Pb2(UO2)3O2(AsO4)2(H2O)5, revisited: a correct unit cell, twinning and hydrogen bonding

crossmark logo

aInstitute of Physics ASCR, v.v.i., Na Slovance 2, Praha 8, 18221, Czech Republic, and bDepartment of Mineralogy and Petrology, National Museum, Cirkusová 1740, Praha 9, 19300, Czech Republic
*Correspondence e-mail: plasil@fzu.cz

Edited by R. Černý, University of Geneva, Switzerland (Received 25 February 2021; accepted 16 April 2021; online 14 May 2021)

Revisiting the structure of uranyl arsenate mineral hügelite provided some corrections to the available structural data. The previous twinning model (by reticular merohedry) in hügelite has been corrected. Twinning of the monoclinic unit cell [a = 7.0189 (7) Å, b = 17.1374 (10) Å, c = 8.1310 (10) Å and β = 108.904 (10)°], which can be expressed as a mirror in [100], leads to a pseudo-orthorhombic unit cell (a = 7.019 Å, b = 17.137 Å, c = 61.539 Å and β = 90.02°), which is eight times larger, with respect to the unit-cell volume, than a real cell. Moreover, the unit cell of chosen here and the unit cell given by the previous structure description both lead to the same supercell. A new structure refinement undertaken on an untwinned crystal of hügelite resulted in R = 4.82% for 12 864 reflections with Iobs > 3σ(I) and GOF = 1.12. The hydrogen-bonding scheme has been proposed for hügelite for the first time.

1. Introduction

Uranyl arsenates are, along with uranyl phosphates, the most common alteration products after oxidation weathering of uraninite (Finch & Murakami, 1999[Finch, R. J. & Murakami, T. (1999). Reviews in Mineralogy, Vol. 38, Uranium: Mineralogy, Geochemistry and the Environment, edited by P. C. Burns & R. Finch, pp. 91-179. Chantilly, VA: Mineralogical Society of America and Geochemical Society.]; Krivovichev & Plášil, 2013[Krivovichev, S. V. & Plášil, J. (2013). Uranium, from cradle to grave, MAC Short Course series, Vol. 43, edited by P. C. Burns & G. E. Sigmon, pp. 15-119. Québec: Mineralogical Association of Canada.]; Plášil, 2014[Plášil, J. (2014). J. Geosci. 59, 99-114.]). They occur in the uppermost oxidized parts of uranium deposits, surviving the near-surface or surface con­ditions due to their very low solubility in aqueous solutions (e.g. Vochten & Goeminne, 1984[Vochten, R. & Goeminne, A. (1984). Phys. Chem. Miner. 11, 95-100.]; Gorman-Lewis et al., 2009[Gorman-Lewis, D., Shvareva, T., Kubatko, K. A., Burns, P. C., Wellman, D. M., McNamara, B., Szymanowski, J. E. S., Navrotsky, A. & Fein, J. B. (2009). Environ. Sci. Technol. 43, 7416-7422.]; Maher et al., 2013[Maher, K., Bargar, J. R. & Brown, G. E. Jr (2013). Inorg. Chem. 52, 3510-3532.]). The most common uranyl arsenates com­prise minerals of the well-known autunite group: a Cu-member zeunerite, Cu[(UO2)(AsO4)]2(H2O)12, and a Ca-mem­ber uranospinite, Ca[(UO2)(AsO4)]2(H2O)10. The mineral hügelite, Pb2[(UO2)3O2(AsO4)2](H2O)5, was described originally as a lead–zinc vanadate hydrate (Dürrfeld, 1913[Dürrfeld, V. (1913). Z. Krystallogr. Mineral. 51, 278-279.]), but was redetermined later (Walenta & Wimmenauer, 1961[Walenta, K. & Wimmenauer, W. (1961). Jahresh. Geol. Landesamtes Baden-Wuerttemb. 4, 7-37.]) as a lead uranyl arsenate hydrate, structurally related to dumontite, Pb2[(UO2)3O2(PO4)2]·5H2O (Piret & Piret-Meunier, 1988[Piret, P. & Piret-Meunier, J. (1988). Bull. Minéral. 111, 439-442.]). Later on, it was investigated again, from the material originating from the type locality, which is the Michael Mine at Weiler, near Lahr in the Black Forest, Baden–Württemberg, Germany (Walenta, 1979[Walenta, K. (1979). Tschermaks Mineral. Petrogr. Mitt. 26, 11-19.]). This study updated morphological crystallographic data and physical and optical properties, providing a new formula, Pb2(UO2)3(AsO4)2(OH)4·3H2O, and produced new crystallographic data. According to that study, hügelite is monoclinic, space group P21/m or P21, with a = 8.13 Å, b = 17.27 Å, c = 7.01 Å, β = 109°, Z = 2 and Dcalc = 5.80 Mg m−3. In 2003, Locock & Burns (2003[Locock, A. J. & Burns, P. C. (2003). Mineral. Mag. 67, 1109-1120.]) undertook a modern crystallographic study based on a crystal originating from `Geroldseck, Baden', Germany. Based on the diffraction experiment using a four-circle diffractometer with a CCD detector, they inferred hügelite to be monoclinic, twinned by pseudomerohedry, with unit-cell parameters a = 31.066 (3) Å, b = 17.303 (2) Å, c = 7.043 (1) Å, β = 96.492 (2)°, V = 3761.6 (1) Å3, Z = 8 and Dcalc = 5.74 Mg m−3. Thus, the unit-cell reported by them is twice as large as the original description. They reported that the crystal was twinned by pseudomerohedry, giving a very large pseudo-orthorhombic C-centred cell with the dimensions (transformed settings) a = 7.043 Å, b = 61.733 Å, c = 17.303 Å and γ = 90.02°. They further commented on and judged this twinning model, and presented a final refinement with a reasonable R1 value of 3.3%, nevertheless with a very low value of goodness-of-fit, S = 0.68 (thus, we assume the authors overestimated their data quality). We notice that Bruker SHELXTL Version 5 was used in the aforementioned study.

The new find of the rare mineral hügelite from the small uranium deposit Labská, Krkonoše Mts. (Czechia), prompted us to perform a new diffraction experiment, which revealed that the actual twinning in hügelite is different from the description presented by Locock & Burns (2003[Locock, A. J. & Burns, P. C. (2003). Mineral. Mag. 67, 1109-1120.]). Here we report on the results of our analysis that might help to understand the nature of the twinning in this mineral, as well as helping in future analyses of similarly twinned crystal structures.

2. Methodology

2.1. Sample

The hügelite crystal used in this study was extracted from a specimen collected by Pavel Škácha from the Labská uranium deposit. This small uranium deposit is located approximately 5 km to the south of the town of Špindlerův Mlýn in the Krkonoše Mountains (Eastern Bohemia, Czechia). Hügelite forms elongated prismatic crystals apparently flattened on one of the prismatic faces. Crystals reach maximally up to 1 mm across (Fig. 1[link]). They are dark orange in colour. Hügelite was found on a few specimens only, associated with more abundant dumontite. Phosphuranylite and saleéite were also identified in the association.

[Figure 1]
Figure 1
An aggregate of the tabular yellow crystals of hügelite from the Labská deposit. Field of view 7 mm (photo by P. Škácha).

2.2. Single-crystal X-ray diffraction

We studied two tiny crystals of hügelite from the Labská deposit. While the first crystal (hereafter denoted Labská I) of approximate dimensions 0.038 × 0.013 × 0.007 mm was later found to be affected by twinning, the second crystal (Labská II), having similar, but somewhat larger, dimensions (0.067 × 0.018 × 0.005 mm) was found later on to be untwinned. Diffraction experiments were carried out at room temperature with a Rigaku SuperNova single-crystal diffractometer. The diffraction experiment was carried out using Mo Kα radiation (λ = 0.71073 Å) from a micro-focus X-ray tube collimated and monochromated by mirror optics and detected by an Atlas S2 CCD detector.

For both experiments, ω-rotational scans (of frame width 1°) were adopted and a full sphere of the diffraction data was collected. For the larger crystal, Labská II, an increased counting time per frame, equal to 840 s (compared to 400 s for Labská I), a high-sensitivity mode of the CCD detector (binning of pixels 2×2, with a high-gain option) and high-redundancy of the data set (∼7) were used to reveal even weak reflections.

The diffraction experiment for Labská I, as expected, due to previous results given by Locock & Burns (2003[Locock, A. J. & Burns, P. C. (2003). Mineral. Mag. 67, 1109-1120.]), provided a particularly complicated diffraction pattern, caused by twinning due to reticular merohedry (Petříček et al., 2016[Petříček, V., Dušek, M. & Plášil, J. (2016). Z. Kristallogr. 231, 583-599.]). The studied crystal was found to be monoclinic, but with different unit-cell parameters than given by Locock & Burns (2003[Locock, A. J. & Burns, P. C. (2003). Mineral. Mag. 67, 1109-1120.]). Actually, the unit-cell parameters found are a = 7.0189 (7) Å, b = 17.1374 (10) Å, c = 8.1310 (10) Å and β = 108.904 (10)°, with V = 925.29 (15) Å3 and Z = 2 (Table 1[link]). The reticular twin (diffraction type II) was found by the routine implemented in the JANA2006 program (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]). The twin operation is a mirror in the [100] direction; the second twin domain can be obtained by the matrix (−1 0 0 | 0 1 0 | 0.75 0 1), simulating a pseudo-orthorhombic supercell, which is eight times larger than a real (sub)cell (a = 7.019 Å, b = 17.137 Å, c = 61.539 Å and β = 90.02°). Therefore, during the data reduction, each twin domain was integrated alone and later imported into the JANA2006 program utilizing the already known twin matrix that helped to define the orientation of each unit cell, thus resolving fully overlapped reflections. Those reflections, present in both data blocks, were included only one time to avoid their multiple occurrences in the refinement. The refinement in JANA2006 including the twin model led to reasonable values of the twin fractions, i.e. 0.877 (1):0.123 (1) (Table 1[link]); noticeably, the second twin domain is rather weak. The refinement, which took into account twinning, improved/smoothed slightly the difference Fourier; nevertheless, there are still false maxima due to poorly fitted absorption (apparent in the vicinity of the U atoms). The fact that intensities (and namely those of the contributing second domain) are quite weak resulted in the refinement converging to higher R = 7.58% for 2110 reflections with I > 3σ(I) (GOF = 1.63); noticeably, on first sight, we have also to take into account a different approach to the weighting scheme of the current refinement and a criterion for observed intensities.

Table 1
Details of the data collection and refinement for the two different crystals of hügelite from the Labská deposit

  Labská I Labská II
Structural formula Pb2(UO2)3O2[(As0.597P0.403)O4)]2(H2O)5 Pb2(UO2)3O2[(As0.583P0.417)O4)]2(H2O)5
a, b, c (Å), β (°) 7.0189 (7), 17.137 (1), 8.131 (1), 108.90 (1) 7.0258 (3), 17.1769 (5), 8.1463 (7), 108.886 (5)
V3) 925.3 (2) 930.18 (10)
Space group P21/m P21/m
Z 2 2
Dcalc (Mg m−3) for the above formula 5.667 5.669
Temperature (K) 297 297
Radiation type, wavelength (Å) Mo Kα, 0.71073 Mo Kα, 0.71073
Crystal dimensions (µm) 38 × 18 × 7 67 × 18 × 5
Limiting θ angles (°) 2.90–29.48 2.38–29.78
Limiting Miller indices –9 ≤ h ≤ 9, −23 ≤ k ≤ 23, −11 ≤ l ≤ 10 –9 ≤ h ≤ 9, −23 ≤ k ≤ 23, −11 ≤ l ≤ 10
No. of reflections measured 21 107 19 219
No. of unique reflections 4200 19 152
No. of observed reflections (criterion) 2107 [Iobs > 3σ(I)] 12 864 [Iobs > 3σ(I)]
Completeness, Rint 0.93, 0.148 0.92, 0.069
Absorption correction (mm−1), Tmin, Tmax 46.59, 0.645, 1.000 46.30, 0.501, 1.000
F000 1319 1338
Parameters refined, restraints, constraints 134, 0, 13 141, 3, 27
R, wR (obs) 0.0763, 0.1837 0.0482, 0.1181
R, wR (all) 0.1591, 0.2263 0.0750, 0.1373
GOF obs, GOF all 1.67, 1.49 1.12, 1.07
Δρmin, Δρmax (e Å−3) −4.02, 6.61 (0.6 Å to U1) −4.02, 5.04 (0.8 Å to U1)
Weighting scheme w = 1/[σ2(I) + 0.0036I2] w = 1/[σ2(I) + 0.0036I2]
Twin fractions 1, 2 0.8734 (12), 0.1266 (12)  
Twin matrix    
  [\left({\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr {0.75} & 0 & { - 1} \cr } } \right)]  
     

The diffraction experiment for Labská II provided a similar unit cell, with a = 7.0258 (3) Å, b = 17.1769 (5) Å, c = 8.1463 (7) Å and β = 108.886 (5)°, with V = 930.18 (6) Å3 and Z = 2 (Table 1[link]). The second experiment indicated that the crystal is less affected by the twinning than the first crystal; the current unit cell indexed 82% of all observed reflections compared to 29% indexed from the first experiment. The reciprocal space projections and reconstructions did not reveal any important contribution of the second domain; this was also proven later from the refinement. The second refinement in JANA2006 converged to excellent agreement factors (Table 1[link]). It is noteworthy that the GOF for the Labská II refinement is 1.07 for all 19 152 reflections.

Structure solution for the Labská I crystal was carried out using the intrinsic phasing algorithm of the SHELXT program (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]); refinement of Labská II was carried out using the model obtained for Labská I. Details of the data collection and refinement for both crystals are given in Table 1[link], final atomic coordinates and displacement parameters in Table 2[link], selected interatomic distances and hydrogen-bond parameters in Table 3[link], and a bond-valence analysis in Table 4[link]. The bond-valence analysis was made following the procedure of Brown (2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, p. 278. Oxford University Press.], 2009[Brown, I. D. (2009). Chem. Rev. 109, 6858-6919.]) using bond-valence parameters pro­vided by Gagné & Hawthorne (2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]). The formula of the crystal studied, based on refined occupancies and bond-valence calculations, is Pb2(UO2)3O2[(As0.583P0.417)O4)]2(H2O)5 (Z = 2 and Dcalc = 5.669 Mg m−3).

Table 2
Atomic coordinates, isotropic and equivalent displacement parameters (Å) and site occupancies for the crystal structure of hügelite (Labská II)

Atom x/a y/b z/c Uiso*/Ueq
U1 0.20432 (12) 0.64347 (4) 0.41418 (11) 0.0148 (3)
U2 0.70073 (18) 0.75 0.40346 (17) 0.0179 (4)
Pb 0.63490 (15) 0.39415 (5) 0.05046 (13) 0.0277 (4)
As** 0.6916 (4) 0.55246 (16) 0.3866 (4) 0.0148 (11)
O1 1.008 (3) 0.75 0.380 (3) 0.016 (5)
O2 0.390 (3) 0.75 0.417 (3) 0.016 (5)
O3 0.807 (4) 0.75 0.632 (3) 0.032 (9)
O4 0.146 (3) 0.6333 (9) 0.184 (2) 0.022 (6)
O5 1.165 (4) 0.75 0.918 (3) 0.036 (10)
O6 0.590 (4) 0.75 0.170 (3) 0.025 (9)
O7 0.262 (3) 0.6491 (8) 0.646 (2) 0.028 (7)
O8 0.542 (3) 0.6162 (9) 0.435 (3) 0.033 (7)
O9 0.585 (3) 0.5111 (10) 0.203 (2) 0.035 (7)
O10 0.288 (4) 0.3429 (15) 0.088 (3) 0.067 (12)
O11 0.863 (3) 0.6154 (10) 0.374 (3) 0.037 (8)
O12 0.999 (3) 0.4474 (12) 0.137 (3) 0.044 (8)
O13 0.781 (2) 0.4928 (8) 0.543 (2) 0.021 (6)
H1o5 1.076 (9) 0.75 0.962 (10) 0.0315*
H2o5 1.123 (12) 0.75 0.8153 (17) 0.0315*
H1o10 0.2364 0.3051 0.03525 0.0778*
H2o10 0.2463 0.3656 0.1567 0.0778*
H1o12 1.0882 0.4218 0.1242 0.0534*
H2o12 1.0236 0.4910 0.1855 0.0534*
Note: (**) occupancy 0.597 (16) As/0.403 (16) P.

Table 3
Selected interatomic distances (Å) and hydrogen-bond geometry (Å, °) in the structure of hügelite (Labská II)

U1—O4 1.808 (5) U2—O1 2.238 (7) Pb—O4iv 2.835 (6)
U1—O7 1.811 (6) U2—O2 2.228 (6) Pb—O5v 2.809 (3)
U1—O1i 2.245 (4) U2—O3 1.796 (8) Pb—O6vi 3.169 (4)
U1—O2 2.242 (4) U2—O6 1.799 (7) Pb—O7ii 2.455 (5)
U1—O8 2.387 (5) U2—O8 2.611 (5) Pb—O9 2.447 (6)
U1—O11i 2.366 (5) U2—O8iii 2.611 (5) Pb—O9iv 2.664 (5)
U1—O13ii 2.362 (5) U2—O11 2.638 (5) Pb—O10 2.670 (7)
〈U1—Ouranyl 1.810 U2—O11iii 2.638 (5) Pb—O12 2.585 (5)
〈U1—Oeq 2.320 〈U2—Ouranyl 1.798 〈Pb—O〉 2.704
    〈U2—Oeq 2.494    
    As/P—O8 1.629 (6)    
    As/P—O9 1.617 (5)    
    As/P—O11 1.640 (5)    
    As/P—O13 1.589 (5)    
    〈As/P—O〉 1.619    
D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1o5⋯O10xv 0.82 (2) 2.96 (6) 3.78 (1) 136 (4)
O5—H2o5⋯O3v 0.820 (16) 2.23 (6) 2.838 (9) 131 (7)
O10—H1o10⋯O6vi 0.82 2.55 2.973 (10) 113
O10—H2o10⋯O12i 0.82 2.21 2.876 (9) 138
O12—H1o12⋯O10viii 0.82 2.06 2.876 (9) 172
O12—H2o12⋯O13vii 0.82 2.22 2.746 (8) 122
Symmetry codes: (i) [x-1, y, z]; (ii) −x + 1, −y + 1, −z + 1; (iii) x, −y + [3 \over 2], z; (iv) −x + 1, −y + 1, −z; (v) −x + 2, y − [1 \over 2], −z + 1; (vi) [-x+1, y-{\script{1\over 2}}, -z]; (vii) [-x+2, -y+1, -z+1]; (viii) x+1, y, z; (xv) x+1, y, z+1.

Table 4
Bond-valence analysis (all values given in valence units, v.u.) for hügelite

The bond-valence parameters are taken from Gagné & Hawthorne (2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]).

  U1 U2 As Pb H1O5 H2O5 H1O10 H2O10 H1O12 H2O12 sum–H sum+H*
O1 0.66 0.67                 1.32  
O2 0.66 0.68                 1.34  
O3   1.70       0.20         1.70 1.90
O4 1.65     0.16           0.20 1.82 2.02
O5       0.17 0.80 0.80         0.17 1.77
O6   1.69   0.08     0.20       1.76 1.96
O7 1.64     0.38             2.03 2.03
O8 0.49 0.30 1.27               2.06 2.06
O9     1.31 0.63             1.94 1.94
O10       0.24 0.20   0.80 0.80 0.20   0.24 2.04
O11 0.51 0.29 1.23               2.03 2.03
O12       0.29       0.20 0.80 0.80 0.29 2.09
O13 0.51   1.42               1.93 1.93
Sum 6.12 5.91 5.23 1.95 1.00 1.00 1.00 1.00 1.00 1.00    
Note: (*) idealized bond strengths taken from Brown (2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, p. 278. Oxford University Press.]).

Twin contributions were evaluated visually using the reciprocal layers (Fig. 2[link]) reconstructed from the CCD frames (UNWARP tool within the CrysAlis software; Rigaku OD, 2019[Rigaku (2019). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) and by computer methods using the program JANA2006 (Fig. 3[link]). Twinning and the extra reflections due to twinning are easily visible for the Labská I crystal at the h0l and hk2 layers, for instance, while Labská II provided unbiased frames (Fig. 3[link]). The presence of additional reflections can bias the indexing algorithms, because it simulates the larger unit-cell parameter. While the refinement of the Labská I crystal returned the refined twin fractions 0.877 (1) and 0.123 (1) (Table 1[link]), the second crystal showed a negligible contribution of twinning only when a mirror operation was taken into account, Twvol1/Twvol2 = 0.9994 (5)/0.0006 (5).

[Figure 2]
Figure 2
Twinning in hügelite, showing the reciprocal space reconstruction for the twinned (Labská I) and untwinned (Labská II) crystals. The twin contribution is easily visible in the case of the h0l layer. The biased intensities are apparent for the hk2 layer.
[Figure 3]
Figure 3
Twinning in hügelite, showing (a) the reciprocal space reconstructed from the intensity data in JANA2006 displaying the contribution of the second domain (green). The correct unit-cell vectors are displayed as red and green rectangles. The choice for the centred cell of Locock & Burns (2003[Locock, A. J. & Burns, P. C. (2003). Mineral. Mag. 67, 1109-1120.]) is given in the black dashed lines. (b) The reciprocal space reconstruction of the corresponding h0l layer.

3. Results

Our description of the twinning in hügelite leaves the structure model proposed by Locock & Burns (2003[Locock, A. J. & Burns, P. C. (2003). Mineral. Mag. 67, 1109-1120.]) unchanged. The structure possesses uranyl–arsenate sheets with a phosphuranylite topology (Burns, 2005[Burns, P. C. (2005). Can. Mineral. 43, 1839-1894.]; Lussier et al., 2016[Lussier, A. J., Lopez, R. A. K. & Burns, P. C. (2016). Can. Mineral. 54, 177-283.]), with Pb2+ cations located in the interlayer space between the infinite sheets (Fig. 4[link]).

[Figure 4]
Figure 4
The crystal structure of hügelite projected down the monoclinic b axis. UO7 bipyramids are shown in transparent yellow, UO8 bipyramids are opaque yellow, (As/P)O4 tetrahedra are green, Pb atoms are dark gray (shown as displacement ellipsoids at the 75% probability level), H atoms are light gray and O atoms are red. The unit-cell edges are outlined with solid black lines. H⋯A bonds have been omitted for clarity.

3.1. Twinning in hügelite

The twin operation, i.e. a mirror in [100], leads to a rather large supercell, with V ∼ 7400 Å3. There is a clear relationship between the unit cell derived by Locock & Burns (2003[Locock, A. J. & Burns, P. C. (2003). Mineral. Mag. 67, 1109-1120.]) and the supercell found in our study. The cell of Locock & Burns (2003[Locock, A. J. & Burns, P. C. (2003). Mineral. Mag. 67, 1109-1120.]) is half the volume of the supercell of our choice: our cell thus represents a real cell of hügelite, while the cell of Locock & Burns is a result of twinning (Fig. 3[link]); the unit cell of Locock & Burns (2003[Locock, A. J. & Burns, P. C. (2003). Mineral. Mag. 67, 1109-1120.]) (a = 30.993 Å, b = 17.159 Å, c = 7.022 Å and β = 96.44), when applied a mirror in (001), leads to the same supercell as in the current study. The correct description of twinning in hügelite confirmed the originally reported unit cell (Walenta, 1979[Walenta, K. (1979). Tschermaks Mineral. Petrogr. Mitt. 26, 11-19.]), having a unit-cell volume of ∼930 Å3. The correct unit cell of hügelite (V ∼ 930 Å3), when compared to dumontite (V ∼ 920 Å3), confirms that these two minerals are isotypic As- and P-dominant analogs, respectively. The increase of the unit-cell volume towards the As end member (hügelite), due to the larger effective ionic radius of As5+ compared to P5+, is apparent. It should be noted that the currently investigated crystal of hügelite is not an end member of the solid-solution series, based on the site-scattering refinement (Tables 1[link] and 2[link]).

3.2. Hydrogen bonding in hügelite

Although hügelite is a highly absorbing substance, even for Mo X-rays (μ = 46.30 mm−1), final difference-Fourier calculations revealed few maxima assignable to H atoms around those O atoms that belong, according to the bond-valence analysis, to H2O groups. Because it was impossible to freely refine all the parameters of the H atoms, they were refined using restrictions available in JANA2006 for the hydrogen-bond geometry. Therefore, the scheme presented should be considered as an approximation at best. We also have to emphasize that the higher BV sums for both H atoms and the donor O atoms resulted from the used restraint on the A—H bond length taken as 0.82 Å as a conservative value for the hydrogen-bond length from X-ray analysis.

The hydrogen-bonding scheme can be deduced from the results of the bond-valence analysis (Table 4[link]). There are three symmetrically independent H2O sites (corresponding to O5, O10 and O12), indicating five H2O molecules per unit cell for Z = 2. While atom O5 seems to be three-coordinated (one bond from Pb1 and two bonds to H1O5 and H2O5), atoms O10 and O12 are five- and four-coordinated, respectively. According to the terminology introduced by Schindler & Hawthorne (see, for example, Schindler & Hawthorne, 2008[Schindler, M. & Hawthorne, F. C. (2008). Can. Mineral. 46, 467-501.]), O5 represents the transformer H2O group, while O10 represents an inverse transformer and O12 represents a nontransformer H2O group. Therefore, the current results are in contrast to the theoretical predictions made by Schindler & Hawthorne (2008[Schindler, M. & Hawthorne, F. C. (2008). Can. Mineral. 46, 467-501.]), who concluded that hügelite should contain five inverse transformer (H2O) groups, based on the bond-valence approach. The above-mentioned scheme should be taken as a best-available model only. Due to underbonding of the O1 Ueq and O2 Ueq atoms (with corresponding low BV sums; Table 4[link]), we can speculate about a somewhat different configuration, involving also the two O atoms Ueq. Nevertheless, for such a task, employment of advanced theoretical approaches, as used recently for the uranyl phosphate mineral phurcalite (Plášil et al., 2020[Plášil, J., Kiefer, B., Ghazisaeed, S. & Philippo, S. (2020). Acta Cryst. B76, 502-509.]), would be necessary.

4. Implications – processing the data using JANA2006 to reveal the nature of twinning

Despite the fact that we did not have an original reflection file for the refinement of Locock & Burns (2003[Locock, A. J. & Burns, P. C. (2003). Mineral. Mag. 67, 1109-1120.]), the software we used for the structure analysis, JANA2006, enables us to perform a check for twinning in their structure, based on the available crystallographic information file (CIF). We have to emphasize here that the warning for the hidden translation symmetry in the CIF file of Locock & Burns (2003[Locock, A. J. & Burns, P. C. (2003). Mineral. Mag. 67, 1109-1120.]) was also indicated by PLATON ADDSYM (a quick test in IUCr checkCIF), returning the B Alert: `PLAT113_ALERT_2_B ADDSYM Suggests Possible Pseudo/New Space Group P21/m Check Note: (Pseudo) Lattice Translation Implemented'. The entire procedure we followed in JANA2006 is displayed in Fig. 5[link]. The first step involves a calculation of the theoretical reflection file (Mo Kα, full sphere) based on the atom positions in the CIF of Locock & Burns (2003[Locock, A. J. & Burns, P. C. (2003). Mineral. Mag. 67, 1109-1120.]). The next step involves the calculation of the Patterson map. As the autoconvolution of the electron density itself, it provides important information of the real metrics and can thus reveal the real periodicity features underlying the data. This analysis showed three pronounced Patterson maxima; from them, assuming the omnipresent inversion in the Patterson map, we obtained three translation vectors: (0, 0, 0), (−[1 \over 4], 0, [1 \over 4]), ([1 \over 2], 0, [1 \over 2]), ([1 \over 4], 0, −[1 \over 4]). Those were used for the unit-cell transformation by the matrix | [1 \over 4] 0 −[1 \over 4] | 0 1 0 | 0 0 1 |. After axis transformation (ac), we obtained the following cell: a = 7.043 Å, b = 17.30 Å, c = 8.1554 Å, α = 90°, β = 108.879° and γ = 90°. During the next step, the creation of the refinement reflection file (even if from the simulated data), there were 24 reflections found that violated the translation symmetry. Nevertheless, they were weak. The structure after the transformation into the smaller cell shows few atoms projected into very close positions (<0.5 Å). Merging the 24 atoms and refinement of the simulated structure led then to reasonably low R values (∼4.2% for 2771 reflections). The test for twinning by reticular merohedry/pseudomerohedry (Petříček et al., 2016[Petříček, V., Dušek, M. & Plášil, J. (2016). Z. Kristallogr. 231, 583-599.]) readily revealed an orthorhombic supercell (7.043 Å, 17.302 Å, 61.733 Å, 90°, 89.98°, 90°), with a unit-cell volume eight times larger than the real cell. This supercell is a result of the twinning that can be described as a mirror in (100) of the a = 7.043 Å, b = 17.302 Å, c = 8.1554 Å, α = 90°, β = 108.879° and γ = 90° cell. Fig. 3[link](a) displays a pattern of the eight times larger cell; from this point of view, the cell choice of Locock & Burns (2003[Locock, A. J. & Burns, P. C. (2003). Mineral. Mag. 67, 1109-1120.]) is reasonable and is due to twinning, which had been present in their crystal without any shadow of a doubt.

[Figure 5]
Figure 5
Diagram displaying the procedure for twin-testing in JANA2006.

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); cell refinement: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); data reduction: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018).

(global) top
Crystal data top
Pb2U3As.201O21P0.799H10F(000) = 1338
Mr = 1587.7Dx = 5.669 Mg m3
Monoclinic, P121/m1Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 7003 reflections
a = 7.0258 (3) Åθ = 2.7–29.3°
b = 17.1769 (5) ŵ = 46.30 mm1
c = 8.1463 (7) ÅT = 297 K
β = 108.886 (5)°Prismatic, yellow
V = 930.18 (10) Å30.07 × 0.02 × 0.01 mm
Z = 2
Data collection top
SuperNova, Dual, Cu at home/near, AtlasS2
diffractometer
19152 independent reflections
Radiation source: X-ray tube12864 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.069
Detector resolution: 10.4054 pixels mm-1θmax = 29.8°, θmin = 2.4°
ω scansh = 99
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2323
Tmin = 0.501, Tmax = 1l = 1110
19219 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.07Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0036I2)
19152 reflections(Δ/σ)max = 0.016
141 parametersΔρmax = 5.04 e Å3
3 restraintsΔρmin = 4.02 e Å3
27 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
U10.20433 (3)0.643329 (14)0.41403 (4)0.01152 (9)
U20.70080 (5)0.750.40310 (5)0.01446 (13)
Pb0.63520 (4)0.394231 (17)0.05030 (4)0.02458 (11)
As0.69116 (12)0.55223 (5)0.38661 (13)0.0122 (4)0.583 (5)
P0.69116 (12)0.55223 (5)0.38661 (13)0.0122 (4)0.417 (5)
O11.0114 (9)0.750.3837 (9)0.018 (2)
O20.3903 (8)0.750.4195 (9)0.014 (2)
O30.8069 (9)0.750.6354 (10)0.027 (3)
O40.1462 (7)0.6320 (3)0.1824 (7)0.0220 (19)
O51.1685 (10)0.750.9215 (10)0.026 (3)
O60.5906 (9)0.750.1706 (9)0.020 (3)
O70.2622 (7)0.6501 (3)0.6470 (7)0.0222 (19)
O80.5439 (7)0.6152 (3)0.4342 (8)0.028 (2)
O90.5839 (7)0.5119 (3)0.2001 (7)0.030 (2)
O100.2938 (9)0.3432 (5)0.0899 (9)0.065 (4)
O110.8630 (7)0.6144 (3)0.3737 (8)0.030 (2)
O120.9983 (7)0.4479 (2)0.1406 (9)0.044 (3)
O130.7802 (6)0.4928 (3)0.5421 (7)0.0210 (19)
H1o51.076 (9)0.750.962 (10)0.0315*
H2o51.123 (12)0.750.8153 (17)0.0315*
H1o100.23640.30510.03530.0778*
H2o100.24630.36560.15670.0778*
H1o121.08820.42180.12420.0534*
H2o121.02360.49100.18550.0534*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.00715 (13)0.01164 (13)0.01755 (16)0.00017 (9)0.00645 (10)0.00019 (11)
U20.00681 (17)0.01711 (19)0.0206 (2)00.00602 (15)0
Pb0.02451 (16)0.02622 (17)0.02344 (19)0.00249 (12)0.00834 (12)0.00213 (13)
As0.0067 (5)0.0104 (5)0.0194 (7)0.0007 (3)0.0042 (4)0.0000 (4)
P0.0067 (5)0.0104 (5)0.0194 (7)0.0007 (3)0.0042 (4)0.0000 (4)
O10.015 (3)0.017 (4)0.020 (4)00.004 (3)0
O20.011 (3)0.015 (3)0.018 (4)00.007 (3)0
O30.021 (4)0.033 (4)0.027 (5)00.008 (3)0
O40.028 (3)0.032 (3)0.008 (3)0.005 (2)0.009 (2)0.005 (2)
O50.030 (4)0.036 (5)0.014 (5)00.009 (3)0
O60.017 (3)0.035 (4)0.004 (4)00.000 (3)0
O70.021 (3)0.023 (3)0.023 (3)0.001 (2)0.008 (2)0.004 (2)
O80.017 (3)0.021 (3)0.052 (4)0.003 (2)0.017 (3)0.002 (3)
O90.038 (3)0.021 (3)0.030 (4)0.012 (2)0.009 (3)0.008 (3)
O100.047 (4)0.079 (6)0.081 (7)0.003 (4)0.038 (4)0.009 (5)
O110.015 (2)0.020 (3)0.060 (5)0.004 (2)0.016 (3)0.007 (3)
O120.041 (3)0.036 (4)0.060 (5)0.006 (3)0.022 (3)0.013 (4)
O130.026 (3)0.011 (2)0.028 (4)0.002 (2)0.013 (2)0.001 (2)
Geometric parameters (Å, º) top
U1—O1i2.245 (4)O4—H2o10xiv3.2097
U1—O22.242 (4)O4—H1o12iv2.6721
U1—O41.808 (5)O4—H2o12i2.5728
U1—O71.811 (6)O5—O6xv3.003 (8)
U1—O82.387 (5)O5—O7viii3.055 (9)
U1—O11i2.366 (5)O5—O7ix3.055 (9)
U1—O13ii2.362 (5)O5—H1o50.82 (8)
U1—H2o12i3.2237O5—H2o50.820 (16)
U2—As3.3996 (9)O5—H1o10xi3.1236
U2—Asiii3.3996 (9)O5—H1o10ii3.1236
U2—P3.3996 (9)O5—H2o10xi3.4114
U2—Piii3.3996 (9)O5—H2o10ii3.4114
U2—O12.238 (7)O5—H1o12xii3.415
U2—O22.228 (6)O5—H1o12vii3.415
U2—O31.796 (8)O6—O83.246 (8)
U2—O61.799 (7)O6—O8iii3.246 (8)
U2—O82.611 (5)O6—O10x2.973 (10)
U2—O8iii2.611 (5)O6—O10iv2.973 (10)
U2—O112.638 (5)O6—O113.127 (6)
U2—O11iii2.638 (5)O6—O11iii3.127 (6)
Pb—O4iv2.835 (6)O6—H1o5xiii3.46 (5)
Pb—O5v2.809 (3)O6—H1o10x2.5508
Pb—O6vi3.169 (4)O6—H1o10iv2.5508
Pb—O7ii2.455 (5)O7—O7iii3.432 (7)
Pb—O92.447 (6)O7—O83.082 (9)
Pb—O9iv2.664 (5)O7—O9ii3.097 (7)
Pb—O102.670 (7)O7—O10ii3.164 (7)
Pb—O122.585 (5)O7—O11i3.026 (6)
Pb—H1o5v3.22 (4)O7—O12ii3.351 (9)
Pb—H2o5v3.00 (4)O7—O13ii2.861 (7)
Pb—H1o103.1607O7—H2o5i2.58 (5)
Pb—H2o103.1607O7—H2o10ii3.3138
Pb—H1o123.0784O8—O92.686 (8)
Pb—H2o123.0784O8—O112.446 (8)
As—P0O8—O132.647 (6)
As—O81.629 (6)O8—O13ii2.991 (7)
As—O91.617 (5)O8—H2o10ii3.1955
As—O111.640 (5)O9—O9iv3.114 (8)
As—O131.589 (5)O9—O103.490 (9)
As—H2o123.4234O9—O112.673 (7)
As—H2o12vii3.4922O9—O123.291 (8)
P—O81.629 (6)O9—O132.699 (7)
P—O91.617 (5)O9—H2o103.3949
P—O111.640 (5)O9—H2o123.1495
P—O131.589 (5)O10—O10xvi3.201 (11)
P—H2o123.4234O10—O12i2.876 (9)
P—H2o12vii3.4922O10—H1o5xvii2.96 (5)
O1—O2viii2.583 (9)O10—H1o100.82
O1—O32.860 (12)O10—H1o10xvi2.5937
O1—O4viii2.950 (8)O10—H2o100.82
O1—O4ix2.950 (8)O10—H1o12i2.0611
O1—O62.904 (8)O10—H2o12i3.4085
O1—O7viii2.864 (7)O11—O132.664 (8)
O1—O7ix2.864 (7)O11—O13vii3.005 (6)
O1—O112.543 (6)O11—H1o10iv3.4639
O1—O11iii2.543 (6)O11—H2o123.0388
O1—H2o53.345 (18)O12—O12xviii2.913 (9)
O1—H1o10x3.4246O12—O13vii2.746 (8)
O1—H1o10iv3.4246O12—H1o5v3.498 (16)
O2—O32.886 (8)O12—H1o10viii3.2372
O2—O42.939 (6)O12—H2o10viii2.2143
O2—O4iii2.939 (6)O12—H1o120.82
O2—O62.817 (11)O12—H1o12xviii3.0309
O2—O72.876 (8)O12—H2o120.82
O2—O7iii2.876 (8)O12—H2o12xviii2.8137
O2—O82.540 (5)O13—O13vii3.383 (7)
O2—O8iii2.540 (5)O13—H1o12vii2.9619
O3—O52.838 (9)O13—H2o12vii2.2188
O3—O83.082 (6)H1o5—H2o51.34 (10)
O3—O8iii3.082 (6)H1o5—H1o10xi2.3981
O3—O10xi3.016 (11)H1o5—H1o10ii2.3981
O3—O10ii3.016 (11)H1o5—H2o10xi2.9302
O3—O113.267 (9)H1o5—H2o10ii2.9302
O3—O11iii3.267 (9)H1o5—H1o12xii3.1629
O3—H1o52.72 (6)H1o5—H1o12vii3.1629
O3—H2o52.23 (6)H2o5—H1o10xi3.2774
O3—H1o10xi2.9512H2o5—H1o10ii3.2774
O3—H1o10ii2.9512H2o5—H2o10xi3.3332
O3—H2o10xi2.7132H2o5—H2o10ii3.3332
O3—H2o10ii2.7132H2o5—H1o12xii3.4094
O3—H1o12xii3.4853H2o5—H1o12vii3.4094
O3—H1o12vii3.4853H1o10—H1o10xvi1.8918
O4—O5xiii2.977 (8)H1o10—H2o101.4203
O4—O82.896 (6)H1o10—H2o10xvi3.0869
O4—O10xiv3.197 (7)H1o10—H1o12i2.4728
O4—O11i2.914 (9)H2o10—H1o12i1.4298
O4—O12i3.311 (6)H2o10—H2o12i2.7175
O4—O12iv2.847 (8)H1o12—H1o12xviii3.3514
O4—O13ii3.024 (7)H1o12—H2o121.4203
O4—H1o5xiii2.65 (5)H1o12—H2o12xviii2.8187
O4—H1o10xiv2.9077H2o12—H2o12xviii2.9484
O1i—U1—O270.27 (18)O7ii—O9—O1057.05 (16)
O1i—U1—O492.8 (2)O7ii—O9—O11106.1 (2)
O1i—U1—O789.2 (2)O7ii—O9—O1263.19 (17)
O1i—U1—O8136.64 (18)O7ii—O9—O1358.68 (17)
O1i—U1—O11i66.88 (18)O7ii—O9—H2o1061.18
O1i—U1—O13ii145.20 (19)O7ii—O9—H2o1272.18
O1i—U1—H2o12i119.2O8—O9—O9iv137.6 (2)
O2—U1—O492.4 (2)O8—O9—O10123.0 (3)
O2—U1—O789.7 (2)O8—O9—O1154.3 (2)
O2—U1—O866.47 (17)O8—O9—O12128.8 (2)
O2—U1—O11i137.09 (17)O8—O9—O1358.89 (19)
O2—U1—O13ii143.86 (16)O8—O9—H2o10109.45
O2—U1—H2o12i142.43O8—O9—H2o12115.56
O4—U1—O7177.5 (2)O9iv—O9—O1068.27 (19)
O4—U1—O886.2 (2)O9iv—O9—O11127.2 (3)
O4—U1—O11i87.5 (2)O9iv—O9—O1281.7 (2)
O4—U1—O13ii92.0 (2)O9iv—O9—O13163.4 (3)
O4—U1—H2o12i52.83O9iv—O9—H2o1077.2
O7—U1—O893.5 (2)O9iv—O9—H2o1289.4
O7—U1—O11i91.9 (2)O10—O9—O11161.9 (3)
O7—U1—O13ii85.5 (2)O10—O9—O1299.0 (2)
O7—U1—H2o12i124.75O10—O9—O13103.0 (2)
O8—U1—O11i155.90 (17)O10—O9—H2o1013.59
O8—U1—O13ii78.08 (17)O10—O9—H2o12113.21
O8—U1—H2o12i94.24O11—O9—O1276.46 (19)
O11i—U1—O13ii78.93 (16)O11—O9—O1359.5 (2)
O11i—U1—H2o12i63.71O11—O9—H2o10155.58
O13ii—U1—H2o12i43.49O11—O9—H2o1262.28
As—U2—Asiii175.64 (3)O12—O9—O1386.0 (2)
As—U2—P0O12—O9—H2o10111.03
As—U2—Piii175.64 (3)O12—O9—H2o1214.41
As—U2—O190.264 (18)O13—O9—H2o1097.11
As—U2—O289.714 (18)O13—O9—H2o1281.11
As—U2—O392.167 (18)H2o10—O9—H2o12124.92
As—U2—O687.829 (18)Pb—O10—O3xvii134.4 (2)
As—U2—O827.68 (12)Pb—O10—O4xiv125.3 (3)
As—U2—O8iii152.38 (12)Pb—O10—O6vi68.1 (2)
As—U2—O1128.07 (12)Pb—O10—O7ii48.88 (14)
As—U2—O11iii151.95 (13)Pb—O10—O944.38 (15)
Asiii—U2—P175.64 (3)Pb—O10—O10xvi109.2 (3)
Asiii—U2—Piii0Pb—O10—O12i122.0 (3)
Asiii—U2—O190.264 (18)Pb—O10—H1o5xvii160.3 (14)
Asiii—U2—O289.714 (18)Pb—O10—H1o10120
Asiii—U2—O392.167 (18)Pb—O10—H1o10xvi113.43
Asiii—U2—O687.829 (18)Pb—O10—H2o10120
Asiii—U2—O8152.38 (12)Pb—O10—H1o12i119.84
Asiii—U2—O8iii27.68 (12)Pb—O10—H2o12i111.81
Asiii—U2—O11151.95 (13)O3xvii—O10—O4xiv100.3 (2)
Asiii—U2—O11iii28.07 (12)O3xvii—O10—O6vi115.3 (3)
P—U2—Piii175.64 (3)O3xvii—O10—O7ii86.2 (2)
P—U2—O190.264 (18)O3xvii—O10—O9120.5 (3)
P—U2—O289.714 (18)O3xvii—O10—O10xvi57.9 (2)
P—U2—O392.167 (18)O3xvii—O10—O12i82.6 (3)
P—U2—O687.829 (18)O3xvii—O10—H1o5xvii54.0 (14)
P—U2—O827.68 (12)O3xvii—O10—H1o1077.67
P—U2—O8iii152.38 (12)O3xvii—O10—H1o10xvi62.96
P—U2—O1128.07 (12)O3xvii—O10—H2o1060.91
P—U2—O11iii151.95 (13)O3xvii—O10—H1o12i84.49
Piii—U2—O190.264 (18)O3xvii—O10—H2o12i86.79
Piii—U2—O289.714 (18)O4xiv—O10—O6vi90.2 (2)
Piii—U2—O392.167 (18)O4xiv—O10—O7ii170.1 (3)
Piii—U2—O687.829 (18)O4xiv—O10—O9114.9 (2)
Piii—U2—O8152.38 (12)O4xiv—O10—O10xvi97.7 (2)
Piii—U2—O8iii27.68 (12)O4xiv—O10—O12i55.61 (19)
Piii—U2—O11151.95 (13)O4xiv—O10—H1o5xvii50.8 (10)
Piii—U2—O11iii28.07 (12)O4xiv—O10—H1o1062.3
O1—U2—O2179.4 (2)O4xiv—O10—H1o10xvi87.16
O1—U2—O389.6 (3)O4xiv—O10—H2o1083.54
O1—U2—O691.3 (3)O4xiv—O10—H1o12i56.22
O1—U2—O8117.31 (11)O4xiv—O10—H2o12i64.78
O1—U2—O8iii117.31 (11)O6vi—O10—O7ii93.8 (2)
O1—U2—O1162.23 (11)O6vi—O10—O9111.0 (3)
O1—U2—O11iii62.23 (11)O6vi—O10—O10xvi57.4 (2)
O2—U2—O391.0 (3)O6vi—O10—O12i144.7 (3)
O2—U2—O688.1 (3)O6vi—O10—H1o5xvii92.2 (14)
O2—U2—O862.74 (11)O6vi—O10—H1o1051.94
O2—U2—O8iii62.74 (11)O6vi—O10—H1o10xvi54.02
O2—U2—O11117.73 (11)O6vi—O10—H2o10171.74
O2—U2—O11iii117.73 (11)O6vi—O10—H1o12i144.57
O3—U2—O6179.1 (3)O6vi—O10—H2o12i149.91
O3—U2—O886.67 (17)O7ii—O10—O955.22 (16)
O3—U2—O8iii86.67 (17)O7ii—O10—O10xvi92.1 (2)
O3—U2—O1192.95 (17)O7ii—O10—O12i118.6 (3)
O3—U2—O11iii92.95 (17)O7ii—O10—H1o5xvii138.0 (11)
O6—U2—O892.92 (16)O7ii—O10—H1o10126.89
O6—U2—O8iii92.92 (16)O7ii—O10—H1o10xvi102.5
O6—U2—O1187.47 (17)O7ii—O10—H2o1093.28
O6—U2—O11iii87.47 (17)O7ii—O10—H1o12i117.68
O8—U2—O8iii124.86 (17)O7ii—O10—H2o12i108.54
O8—U2—O1155.55 (17)O9—O10—O10xvi146.2 (2)
O8—U2—O11iii179.41 (13)O9—O10—O12i80.3 (2)
O8iii—U2—O11179.41 (13)O9—O10—H1o5xvii153.8 (10)
O8iii—U2—O11iii55.55 (17)O9—O10—H1o10161.1
O11—U2—O11iii124.04 (17)O9—O10—H1o10xvi154.81
O4iv—Pb—O5v63.7 (2)O9—O10—H2o1076.62
O4iv—Pb—O6vi77.07 (17)O9—O10—H1o12i78.33
O4iv—Pb—O7ii125.15 (15)O9—O10—H2o12i69.18
O4iv—Pb—O9131.56 (18)O10xvi—O10—O12i128.7 (3)
O4iv—Pb—O9iv83.58 (17)O10xvi—O10—H1o5xvii57.3 (7)
O4iv—Pb—O10136.96 (19)O10xvi—O10—H1o1037.05
O4iv—Pb—O1263.16 (19)O10xvi—O10—H1o10xvi10.98
O4iv—Pb—H1o5v51.4 (14)O10xvi—O10—H2o10118.01
O4iv—Pb—H2o5v75.4 (11)O10xvi—O10—H1o12i130.92
O4iv—Pb—H1o10124.23O10xvi—O10—H2o12i138.16
O4iv—Pb—H2o10149.52O12i—O10—H1o5xvii73.6 (9)
O4iv—Pb—H1o1253.54O12i—O10—H1o10109.03
O4iv—Pb—H2o1273.49O12i—O10—H1o10xvi124.01
O5v—Pb—O6vi59.94 (14)O12i—O10—H2o1031.09
O5v—Pb—O7ii70.6 (2)O12i—O10—H1o12i2.21
O5v—Pb—O9146.67 (19)O12i—O10—H2o12i11.43
O5v—Pb—O9iv138.0 (2)H1o5xvii—O10—H1o1040.34
O5v—Pb—O1097.9 (2)H1o5xvii—O10—H1o10xvi50.59
O5v—Pb—O1282.99 (15)H1o5xvii—O10—H2o1079.69
O5v—Pb—H1o5v13.4 (12)H1o5xvii—O10—H1o12i75.65
O5v—Pb—H2o5v15.8 (4)H1o5xvii—O10—H2o12i84.66
O5v—Pb—H1o1088.94H1o10—O10—H1o10xvi26.07
O5v—Pb—H2o10106.59H1o10—O10—H2o10120
O5v—Pb—H1o1270.74H1o10—O10—H1o12i110.69
O5v—Pb—H2o1295.29H1o10—O10—H2o12i120.41
O6vi—Pb—O7ii104.96 (15)H1o10xvi—O10—H2o10120.04
O6vi—Pb—O9143.26 (16)H1o10xvi—O10—H1o12i126.12
O6vi—Pb—O9iv88.82 (14)H1o10xvi—O10—H2o12i134.7
O6vi—Pb—O1060.5 (2)H2o10—O10—H1o12i31.69
O6vi—Pb—O12134.96 (18)H2o10—O10—H2o12i28.65
O6vi—Pb—H1o5v65.6 (8)H1o12i—O10—H2o12i9.72
O6vi—Pb—H2o5v71.5 (8)U1viii—O11—U2104.48 (18)
O6vi—Pb—H1o1047.53U1viii—O11—As149.5 (3)
O6vi—Pb—H2o1073.48U1viii—O11—P149.5 (3)
O6vi—Pb—H1o12121.8U1viii—O11—O154.28 (17)
O6vi—Pb—H2o12148U1viii—O11—O395.19 (19)
O7ii—Pb—O978.36 (18)U1viii—O11—O4viii38.30 (13)
O7ii—Pb—O9iv149.95 (18)U1viii—O11—O6109.6 (2)
O7ii—Pb—O1076.12 (18)U1viii—O11—O7viii36.75 (13)
O7ii—Pb—O1283.28 (19)U1viii—O11—O8157.6 (3)
O7ii—Pb—H1o5v79.0 (14)U1viii—O11—O9138.5 (3)
O7ii—Pb—H2o5v55.3 (6)U1viii—O11—O13118.3 (2)
O7ii—Pb—H1o1081.78U1viii—O11—O13vii50.48 (13)
O7ii—Pb—H2o1071.06U1viii—O11—H1o10iv85.94
O7ii—Pb—H1o1284.39U1viii—O11—H2o1272.02
O7ii—Pb—H2o1282.53U2—O11—As102.7 (2)
O9—Pb—O9iv74.93 (17)U2—O11—P102.7 (2)
O9—Pb—O1085.9 (2)U2—O11—O151.15 (17)
O9—Pb—O1281.64 (17)U2—O11—O333.30 (12)
O9—Pb—H1o5v147.7 (10)U2—O11—O4viii110.3 (2)
O9—Pb—H2o5v131.1 (3)U2—O11—O635.09 (13)
O9—Pb—H1o1098.5U2—O11—O7viii94.53 (18)
O9—Pb—H2o1073.27U2—O11—O861.67 (17)
O9—Pb—H1o1294.89U2—O11—O9111.42 (19)
O9—Pb—H2o1268.41U2—O11—O13118.2 (3)
O9iv—Pb—O1088.40 (19)U2—O11—O13vii150.8 (2)
O9iv—Pb—O12105.94 (16)U2—O11—H1o10iv77.06
O9iv—Pb—H1o5v131.0 (14)U2—O11—H2o12154.61
O9iv—Pb—H2o5v153.8 (4)As—O11—P0
O9iv—Pb—H1o1088.75As—O11—O1153.8 (3)
O9iv—Pb—H2o1088.13As—O11—O3100.1 (3)
O9iv—Pb—H1o12111.19As—O11—O4viii138.2 (3)
O9iv—Pb—H2o1299.95As—O11—O6100.5 (2)
O10—Pb—O12157.7 (2)As—O11—O7viii127.7 (3)
O10—Pb—H1o5v110.5 (10)As—O11—O841.38 (18)
O10—Pb—H2o5v96.3 (14)As—O11—O934.56 (18)
O10—Pb—H1o1012.98As—O11—O1333.78 (15)
O10—Pb—H2o1012.98As—O11—O13vii99.4 (2)
O10—Pb—H1o12159.95As—O11—H1o10iv113.47
O10—Pb—H2o12149.45As—O11—H2o1288.83
O12—Pb—H1o5v73.1 (8)P—O11—O1153.8 (3)
O12—Pb—H2o5v78.5 (13)P—O11—O3100.1 (3)
O12—Pb—H1o10164.7P—O11—O4viii138.2 (3)
O12—Pb—H2o10146.99P—O11—O6100.5 (2)
O12—Pb—H1o1213.34P—O11—O7viii127.7 (3)
O12—Pb—H2o1213.34P—O11—O841.38 (18)
H1o5v—Pb—H2o5v24.4 (17)P—O11—O934.56 (18)
H1o5v—Pb—H1o10100.66P—O11—O1333.78 (15)
H1o5v—Pb—H2o10119.79P—O11—O13vii99.4 (2)
H1o5v—Pb—H1o1260.2P—O11—H1o10iv113.47
H1o5v—Pb—H2o1286.12P—O11—H2o1288.83
H2o5v—Pb—H1o1090.24O1—O11—O357.4 (2)
H2o5v—Pb—H2o10102.06O1—O11—O4viii65.0 (2)
H2o5v—Pb—H1o1268.18O1—O11—O660.58 (17)
H2o5v—Pb—H2o1289.07O1—O11—O7viii61.18 (18)
H1o10—Pb—H2o1025.97O1—O11—O8112.4 (3)
H1o10—Pb—H1o12158.37O1—O11—O9147.5 (3)
H1o10—Pb—H2o12161.35O1—O11—O13149.0 (3)
H2o10—Pb—H1o12154.31O1—O11—O13vii104.5 (2)
H2o10—Pb—H2o12136.95O1—O11—H1o10iv67.52
H1o12—Pb—H2o1226.68O1—O11—H2o12116.07
U2—As—P0O3—O11—O4viii121.5 (2)
U2—As—O848.13 (19)O3—O11—O668.39 (19)
U2—As—O9117.55 (19)O3—O11—O7viii69.77 (19)
U2—As—O1149.18 (18)O3—O11—O863.4 (2)
U2—As—O13127.81 (18)O3—O11—O9126.3 (3)
U2—As—H2o12108.53O3—O11—O1397.5 (3)
U2—As—H2o12vii100.1O3—O11—O13vii123.8 (2)
P—As—O80O3—O11—H1o10iv108.28
P—As—O90O3—O11—H2o12165.81
P—As—O110O4viii—O11—O692.7 (2)
P—As—O130O4viii—O11—O7viii75.02 (18)
P—As—H2o120O4viii—O11—O8159.4 (3)
P—As—H2o12vii0O4viii—O11—O9107.2 (3)
O8—As—O9111.7 (3)O4viii—O11—O13131.1 (2)
O8—As—O1196.9 (3)O4viii—O11—O13vii61.43 (18)
O8—As—O13110.7 (3)O4viii—O11—H1o10iv53.4
O8—As—H2o12154.49O4viii—O11—H2o1251.16
O8—As—H2o12vii96.15O6—O11—O7viii120.1 (2)
O9—As—O11110.3 (3)O6—O11—O870.0 (2)
O9—As—O13114.6 (3)O6—O11—O989.55 (18)
O9—As—H2o1266.5O6—O11—O13131.2 (2)
O9—As—H2o12vii142.09O6—O11—O13vii154.1 (3)
O11—As—O13111.2 (2)O6—O11—H1o10iv45.18
O11—As—H2o1262.56O6—O11—H2o12121.07
O11—As—H2o12vii90.33O7viii—O11—O8122.8 (3)
O13—As—H2o1291.75O7viii—O11—O9150.3 (2)
O13—As—H2o12vii28.02O7viii—O11—O1394.9 (2)
H2o12—As—H2o12vii98.76O7viii—O11—O13vii56.64 (15)
U2—P—As0O7viii—O11—H1o10iv118.48
U2—P—O848.13 (19)O7viii—O11—H2o1296.05
U2—P—O9117.55 (19)O8—O11—O963.1 (2)
U2—P—O1149.18 (18)O8—O11—O1362.2 (2)
U2—P—O13127.81 (18)O8—O11—O13vii135.2 (3)
U2—P—H2o12108.53O8—O11—H1o10iv106.2
U2—P—H2o12vii100.1O8—O11—H2o12128.32
As—P—O80O9—O11—O1360.74 (19)
As—P—O90O9—O11—O13vii97.6 (2)
As—P—O110O9—O11—H1o10iv82.48
As—P—O130O9—O11—H2o1266.57
As—P—H2o120O13—O11—O13vii72.99 (19)
As—P—H2o12vii0O13—O11—H1o10iv143
O8—P—O9111.7 (3)O13—O11—H2o1283.78
O8—P—O1196.9 (3)O13vii—O11—H1o10iv110.96
O8—P—O13110.7 (3)O13vii—O11—H2o1243.07
O8—P—H2o12154.49H1o10iv—O11—H2o1277.6
O8—P—H2o12vii96.15Pb—O12—O4viii128.14 (18)
O9—P—O11110.3 (3)Pb—O12—O4iv62.70 (16)
O9—P—O13114.6 (3)Pb—O12—O7ii46.70 (13)
O9—P—H2o1266.5Pb—O12—O947.35 (13)
O9—P—H2o12vii142.09Pb—O12—O10viii115.3 (2)
O11—P—O13111.2 (2)Pb—O12—O12xviii104.7 (2)
O11—P—H2o1262.56Pb—O12—O13vii127.3 (3)
O11—P—H2o12vii90.33Pb—O12—H1o5v61.9 (10)
O13—P—H2o1291.75Pb—O12—H1o10viii101.62
O13—P—H2o12vii28.02Pb—O12—H2o10viii118.31
H2o12—P—H2o12vii98.76Pb—O12—H1o12120
U1viii—O1—U1ix109.4 (3)Pb—O12—H1o12xviii96.24
U1viii—O1—U2124.06 (17)Pb—O12—H2o12120
U1viii—O1—O2viii54.82 (13)Pb—O12—H2o12xviii96.73
U1viii—O1—O3110.3 (2)O4viii—O12—O4iv124.1 (3)
U1viii—O1—O4viii37.73 (13)O4viii—O12—O7ii129.2 (3)
U1viii—O1—O4ix109.3 (3)O4viii—O12—O985.93 (17)
U1viii—O1—O6121.84 (14)O4viii—O12—O10viii113.3 (2)
U1viii—O1—O7viii39.22 (14)O4viii—O12—O12xviii53.97 (16)
U1viii—O1—O7ix101.7 (2)O4viii—O12—O13vii59.03 (15)
U1viii—O1—O1158.84 (11)O4viii—O12—H1o5v165.9 (13)
U1viii—O1—O11iii168.0 (3)O4viii—O12—H1o10viii125.38
U1viii—O1—H2o587.5 (8)O4viii—O12—H2o10viii112.88
U1viii—O1—H1o10x115.42O4viii—O12—H1o12107.84
U1viii—O1—H1o10iv88.76O4viii—O12—H1o12xviii49.6
U1ix—O1—U2124.06 (17)O4viii—O12—H2o1222.48
U1ix—O1—O2viii54.82 (13)O4viii—O12—H2o12xviii70.15
U1ix—O1—O3110.3 (2)O4iv—O12—O7ii98.29 (19)
U1ix—O1—O4viii109.3 (3)O4iv—O12—O9103.24 (19)
U1ix—O1—O4ix37.73 (13)O4iv—O12—O10viii67.9 (2)
U1ix—O1—O6121.84 (14)O4iv—O12—O12xviii70.2 (2)
U1ix—O1—O7viii101.7 (2)O4iv—O12—O13vii166.6 (3)
U1ix—O1—O7ix39.22 (14)O4iv—O12—H1o5v48.0 (12)
U1ix—O1—O11168.0 (3)O4iv—O12—H1o10viii56.66
U1ix—O1—O11iii58.84 (11)O4iv—O12—H2o10viii77.61
U1ix—O1—H2o587.5 (8)O4iv—O12—H1o1269.49
U1ix—O1—H1o10x88.76O4iv—O12—H1o12xviii76.63
U1ix—O1—H1o10iv115.42O4iv—O12—H2o12143.99
U2—O1—O2viii170.0 (4)O4iv—O12—H2o12xviii54.06
U2—O1—O338.90 (18)O7ii—O12—O955.58 (17)
U2—O1—O4viii122.35 (17)O7ii—O12—O10viii107.5 (2)
U2—O1—O4ix122.35 (17)O7ii—O12—O12xviii149.3 (2)
U2—O1—O638.28 (17)O7ii—O12—O13vii86.4 (2)
U2—O1—O7viii108.9 (3)O7ii—O12—H1o5v64.5 (13)
U2—O1—O7ix108.9 (3)O7ii—O12—H1o10viii99.88
U2—O1—O1166.62 (18)O7ii—O12—H2o10viii101.52
U2—O1—O11iii66.62 (18)O7ii—O12—H1o12112.79
U2—O1—H2o580.1 (14)O7ii—O12—H1o12xviii136.16
U2—O1—H1o10x82.98O7ii—O12—H2o12107.37
U2—O1—H1o10iv82.98O7ii—O12—H2o12xviii143.4
O2viii—O1—O3131.1 (3)O9—O12—O10viii160.8 (2)
O2viii—O1—O4viii63.8 (2)O9—O12—O12xviii98.23 (19)
O2viii—O1—O4ix63.8 (2)O9—O12—O13vii89.8 (2)
O2viii—O1—O6151.7 (4)O9—O12—H1o5v106.8 (11)
O2viii—O1—O7viii63.49 (19)O9—O12—H1o10viii148.18
O2viii—O1—O7ix63.49 (19)O9—O12—H2o10viii157.09
O2viii—O1—O11113.62 (17)O9—O12—H1o12166.23
O2viii—O1—O11iii113.62 (17)O9—O12—H1o12xviii82.81
O2viii—O1—H2o589.9 (14)O9—O12—H2o1272.91
O2viii—O1—H1o10x106.58O9—O12—H2o12xviii103.52
O2viii—O1—H1o10iv106.58O10viii—O12—O12xviii94.7 (3)
O3—O1—O4viii136.46 (15)O10viii—O12—O13vii98.7 (2)
O3—O1—O4ix136.46 (15)O10viii—O12—H1o5v54.4 (11)
O3—O1—O677.2 (3)O10viii—O12—H1o10viii13.86
O3—O1—O7viii78.1 (2)O10viii—O12—H2o10viii11.02
O3—O1—O7ix78.1 (2)O10viii—O12—H1o125.57
O3—O1—O1174.1 (2)O10viii—O12—H1o12xviii110.35
O3—O1—O11iii74.1 (2)O10viii—O12—H2o12124.57
O3—O1—H2o541.2 (14)O10viii—O12—H2o12xviii85.36
O3—O1—H1o10x120.23O12xviii—O12—O13vii111.5 (2)
O3—O1—H1o10iv120.23O12xviii—O12—H1o5v116.7 (13)
O4viii—O1—O4ix86.8 (3)O12xviii—O12—H1o10viii96.96
O4viii—O1—O696.6 (2)O12xviii—O12—H2o10viii103.43
O4viii—O1—O7viii76.95 (17)O12xviii—O12—H1o1290.34
O4viii—O1—O7ix126.7 (3)O12xviii—O12—H1o12xviii15.7
O4viii—O1—O1163.57 (19)O12xviii—O12—H2o1274.94
O4viii—O1—O11iii144.5 (3)O12xviii—O12—H2o12xviii16.35
O4viii—O1—H2o5125.2 (8)O13vii—O12—H1o5v125.5 (11)
O4viii—O1—H1o10x77.7O13vii—O12—H1o10viii110.29
O4viii—O1—H1o10iv53.65O13vii—O12—H2o10viii89.2
O4ix—O1—O696.6 (2)O13vii—O12—H1o1297.13
O4ix—O1—O7viii126.7 (3)O13vii—O12—H1o12xviii108.54
O4ix—O1—O7ix76.95 (17)O13vii—O12—H2o1243.06
O4ix—O1—O11144.5 (3)O13vii—O12—H2o12xviii126.27
O4ix—O1—O11iii63.57 (19)H1o5v—O12—H1o10viii41.49
O4ix—O1—H2o5125.2 (8)H1o5v—O12—H2o10viii56.48
O4ix—O1—H1o10x53.65H1o5v—O12—H1o1259.57
O4ix—O1—H1o10iv77.7H1o5v—O12—H1o12xviii124.64
O6—O1—O7viii135.1 (2)H1o5v—O12—H2o12168
O6—O1—O7ix135.1 (2)H1o5v—O12—H2o12xviii100.35
O6—O1—O1169.71 (16)H1o10viii—O12—H2o10viii21.21
O6—O1—O11iii69.71 (16)H1o10viii—O12—H1o1218.42
O6—O1—H2o5118.4 (14)H1o10viii—O12—H1o12xviii111.91
O6—O1—H1o10x46.65H1o10viii—O12—H2o12138.36
O6—O1—H1o10iv46.65H1o10viii—O12—H2o12xviii84.7
O7viii—O1—O7ix73.61 (19)H2o10viii—O12—H1o1213.5
O7viii—O1—O1167.76 (16)H2o10viii—O12—H1o12xviii119.1
O7viii—O1—O11iii136.0 (3)H2o10viii—O12—H2o12119.87
O7viii—O1—H2o548.3 (8)H2o10viii—O12—H2o12xviii95.47
O7viii—O1—H1o10x154.54H1o12—O12—H1o12xviii106.04
O7viii—O1—H1o10iv124.89H1o12—O12—H2o12120
O7ix—O1—O11136.0 (3)H1o12—O12—H2o12xviii81.98
O7ix—O1—O11iii67.76 (16)H1o12xviii—O12—H2o1267.36
O7ix—O1—H2o548.3 (8)H1o12xviii—O12—H2o12xviii27.81
O7ix—O1—H1o10x124.89H2o12—O12—H2o12xviii91.29
O7ix—O1—H1o10iv154.54U1ii—O13—As138.0 (3)
O11—O1—O11iii132.7 (3)U1ii—O13—P138.0 (3)
O11—O1—H2o589.3 (6)U1ii—O13—O4ii36.68 (12)
O11—O1—H1o10x98.65U1ii—O13—O7ii39.13 (13)
O11—O1—H1o10iv69.16U1ii—O13—O8146.1 (2)
O11iii—O1—H2o589.3 (6)U1ii—O13—O8ii51.33 (13)
O11iii—O1—H1o10x69.16U1ii—O13—O9105.1 (2)
O11iii—O1—H1o10iv98.65U1ii—O13—O11147.9 (3)
H2o5—O1—H1o10x156.64U1ii—O13—O11vii50.59 (13)
H2o5—O1—H1o10iv156.64U1ii—O13—O12vii103.91 (19)
H1o10x—O1—H1o10iv32.07U1ii—O13—O13vii95.91 (17)
U1—O2—U1iii109.6 (3)U1ii—O13—H1o12vii111.47
U1—O2—U2125.05 (14)U1ii—O13—H2o12vii89.4
U1—O2—O1i54.91 (13)As—O13—P0
U1—O2—O3118.78 (16)As—O13—O4ii167.3 (3)
U1—O2—O437.92 (13)As—O13—O7ii100.2 (3)
U1—O2—O4iii109.8 (2)As—O13—O835.13 (18)
U1—O2—O6114.2 (2)As—O13—O8ii109.8 (2)
U1—O2—O739.04 (14)As—O13—O933.00 (16)
U1—O2—O7iii101.4 (3)As—O13—O1135.02 (15)
U1—O2—O859.49 (11)As—O13—O11vii131.3 (3)
U1—O2—O8iii168.9 (3)As—O13—O12vii117.9 (2)
U1iii—O2—U2125.05 (14)As—O13—O13vii86.6 (2)
U1iii—O2—O1i54.91 (13)As—O13—H1o12vii109.78
U1iii—O2—O3118.78 (16)As—O13—H2o12vii132.32
U1iii—O2—O4109.8 (2)P—O13—O4ii167.3 (3)
U1iii—O2—O4iii37.92 (13)P—O13—O7ii100.2 (3)
U1iii—O2—O6114.2 (2)P—O13—O835.13 (18)
U1iii—O2—O7101.4 (3)P—O13—O8ii109.8 (2)
U1iii—O2—O7iii39.04 (14)P—O13—O933.00 (16)
U1iii—O2—O8168.9 (3)P—O13—O1135.02 (15)
U1iii—O2—O8iii59.49 (11)P—O13—O11vii131.3 (3)
U2—O2—O1i170.6 (4)P—O13—O12vii117.9 (2)
U2—O2—O338.47 (19)P—O13—O13vii86.6 (2)
U2—O2—O4109.6 (2)P—O13—H1o12vii109.78
U2—O2—O4iii109.6 (2)P—O13—H2o12vii132.32
U2—O2—O639.66 (17)O4ii—O13—O7ii75.81 (18)
U2—O2—O7123.73 (19)O4ii—O13—O8138.4 (3)
U2—O2—O7iii123.73 (19)O4ii—O13—O8ii57.55 (16)
U2—O2—O866.03 (18)O4ii—O13—O9139.5 (2)
U2—O2—O8iii66.03 (18)O4ii—O13—O11157.5 (2)
O1i—O2—O3150.9 (4)O4ii—O13—O11vii57.80 (18)
O1i—O2—O464.21 (18)O4ii—O13—O12vii69.85 (18)
O1i—O2—O4iii64.21 (18)O4ii—O13—O13vii104.74 (17)
O1i—O2—O6131.0 (3)O4ii—O13—H1o12vii75.06
O1i—O2—O763.0 (2)O4ii—O13—H2o12vii56.28
O1i—O2—O7iii63.0 (2)O7ii—O13—O8123.9 (2)
O1i—O2—O8114.33 (17)O7ii—O13—O8ii63.51 (18)
O1i—O2—O8iii114.33 (17)O7ii—O13—O967.63 (19)
O3—O2—O4131.41 (17)O7ii—O13—O11113.4 (3)
O3—O2—O4iii131.41 (17)O7ii—O13—O11vii62.05 (16)
O3—O2—O678.1 (3)O7ii—O13—O12vii138.9 (2)
O3—O2—O794.3 (2)O7ii—O13—O13vii84.06 (19)
O3—O2—O7iii94.3 (2)O7ii—O13—H1o12vii150.03
O3—O2—O868.88 (15)O7ii—O13—H2o12vii124.66
O3—O2—O8iii68.88 (15)O8—O13—O8ii96.1 (2)
O4—O2—O4iii87.2 (2)O8—O13—O960.3 (2)
O4—O2—O681.3 (2)O8—O13—O1154.84 (19)
O4—O2—O776.95 (17)O8—O13—O11vii161.7 (3)
O4—O2—O7iii126.7 (3)O8—O13—O12vii96.9 (2)
O4—O2—O863.32 (15)O8—O13—O13vii113.0 (2)
O4—O2—O8iii143.9 (3)O8—O13—H1o12vii83.49
O4iii—O2—O681.3 (2)O8—O13—H2o12vii110.61
O4iii—O2—O7126.7 (3)O8ii—O13—O989.8 (2)
O4iii—O2—O7iii76.95 (17)O8ii—O13—O11144.8 (2)
O4iii—O2—O8143.9 (3)O8ii—O13—O11vii101.63 (19)
O4iii—O2—O8iii63.32 (15)O8ii—O13—O12vii112.4 (3)
O6—O2—O7142.87 (14)O8ii—O13—O13vii145.3 (2)
O6—O2—O7iii142.87 (14)O8ii—O13—H1o12vii105.44
O6—O2—O874.4 (2)O8ii—O13—H2o12vii104.65
O6—O2—O8iii74.4 (2)O9—O13—O1159.80 (19)
O7—O2—O7iii73.3 (2)O9—O13—O11vii114.8 (3)
O7—O2—O869.1 (2)O9—O13—O12vii150.6 (2)
O7—O2—O8iii136.9 (3)O9—O13—O13vii88.7 (2)
O7iii—O2—O8136.9 (3)O9—O13—H1o12vii142.24
O7iii—O2—O8iii69.1 (2)O9—O13—H2o12vii164.08
O8—O2—O8iii131.3 (3)O11—O13—O11vii107.0 (2)
U2—O3—O151.5 (2)O11—O13—O12vii92.4 (2)
U2—O3—O250.5 (2)O11—O13—O13vii58.16 (17)
U2—O3—O5145.2 (4)O11—O13—H1o12vii91.64
U2—O3—O857.76 (16)O11—O13—H2o12vii104.35
U2—O3—O8iii57.76 (16)O11vii—O13—O12vii80.54 (18)
U2—O3—O10xi131.7 (2)O11vii—O13—O13vii48.86 (16)
U2—O3—O10ii131.7 (2)O11vii—O13—H1o12vii96
U2—O3—O1153.75 (18)O11vii—O13—H2o12vii69.27
U2—O3—O11iii53.75 (18)O12vii—O13—O13vii83.51 (19)
U2—O3—H1o5161.9 (17)O12vii—O13—H1o12vii15.94
U2—O3—H2o5132.7 (14)O12vii—O13—H2o12vii14.62
U2—O3—H1o10xi145.91O13vii—O13—H1o12vii96.62
U2—O3—H1o10ii145.91O13vii—O13—H2o12vii83.15
U2—O3—H2o10xi124.34H1o12vii—O13—H2o12vii27.31
U2—O3—H2o10ii124.34Pbxii—H1o5—Pbvii100.5 (18)
U2—O3—H1o12xii122.16Pbxii—H1o5—O3102.5 (19)
U2—O3—H1o12vii122.16Pbxii—H1o5—O4xv128.9 (19)
O1—O3—O2102.0 (3)Pbxii—H1o5—O4xix56.7 (6)
O1—O3—O593.7 (3)Pbxii—H1o5—O553.0 (12)
O1—O3—O888.4 (2)Pbxii—H1o5—O6xv56.5 (9)
O1—O3—O8iii88.4 (2)Pbxii—H1o5—O10xi96.4 (3)
O1—O3—O10xi145.60 (19)Pbxii—H1o5—O10ii160.4 (15)
O1—O3—O10ii145.60 (19)Pbxii—H1o5—O12xii45.0 (3)
O1—O3—O1148.49 (16)Pbxii—H1o5—O12vii142 (2)
O1—O3—O11iii48.49 (16)Pbxii—H1o5—H2o569 (2)
O1—O3—H1o5110.4 (16)Pbxii—H1o5—H1o10xi106.52
O1—O3—H2o581.2 (14)Pbxii—H1o5—H1o10ii152.96
O1—O3—H1o10xi151.08Pbxii—H1o5—H2o10xi84.05
O1—O3—H1o10ii151.08Pbxii—H1o5—H2o10ii159.71
O1—O3—H2o10xi130.58Pbxii—H1o5—H1o12xii57.63
O1—O3—H2o10ii130.58Pbxii—H1o5—H1o12vii153.98
O1—O3—H1o12xii109.81Pbvii—H1o5—O3102.5 (19)
O1—O3—H1o12vii109.81Pbvii—H1o5—O4xv56.7 (6)
O2—O3—O5164.2 (4)Pbvii—H1o5—O4xix128.9 (19)
O2—O3—O850.25 (12)Pbvii—H1o5—O553.0 (12)
O2—O3—O8iii50.25 (12)Pbvii—H1o5—O6xv56.5 (9)
O2—O3—O10xi91.0 (3)Pbvii—H1o5—O10xi160.4 (15)
O2—O3—O10ii91.0 (3)Pbvii—H1o5—O10ii96.4 (3)
O2—O3—O1185.1 (2)Pbvii—H1o5—O12xii142 (2)
O2—O3—O11iii85.1 (2)Pbvii—H1o5—O12vii45.0 (3)
O2—O3—H1o5147.5 (17)Pbvii—H1o5—H2o569 (2)
O2—O3—H2o5176.8 (14)Pbvii—H1o5—H1o10xi152.96
O2—O3—H1o10xi99.87Pbvii—H1o5—H1o10ii106.52
O2—O3—H1o10ii99.87Pbvii—H1o5—H2o10xi159.71
O2—O3—H2o10xi93.62Pbvii—H1o5—H2o10ii84.05
O2—O3—H2o10ii93.62Pbvii—H1o5—H1o12xii153.98
O2—O3—H1o12xii109.31Pbvii—H1o5—H1o12vii57.63
O2—O3—H1o12vii109.31O3—H1o5—O4xv125.6 (11)
O5—O3—O8131.30 (12)O3—H1o5—O4xix125.6 (11)
O5—O3—O8iii131.30 (12)O3—H1o5—O590 (5)
O5—O3—O10xi75.7 (3)O3—H1o5—O6xv140 (3)
O5—O3—O10ii75.7 (3)O3—H1o5—O10xi64.0 (11)
O5—O3—O11105.7 (2)O3—H1o5—O10ii64.0 (11)
O5—O3—O11iii105.7 (2)O3—H1o5—O12xii76.4 (10)
O5—O3—H1o516.7 (16)O3—H1o5—O12vii76.4 (10)
O5—O3—H2o512.6 (14)O3—H1o5—H2o555 (4)
O5—O3—H1o10xi65.28O3—H1o5—H1o10xi70.16
O5—O3—H1o10ii65.28O3—H1o5—H1o10ii70.16
O5—O3—H2o10xi75.8O3—H1o5—H2o10xi57.28
O5—O3—H2o10ii75.8O3—H1o5—H2o10ii57.28
O5—O3—H1o12xii64.43O3—H1o5—H1o12xii72.26
O5—O3—H1o12vii64.43O3—H1o5—H1o12vii72.26
O8—O3—O8iii97.4 (2)O4xv—H1o5—O4xix100 (3)
O8—O3—O10xi123.3 (3)O4xv—H1o5—O5106 (3)
O8—O3—O10ii75.6 (2)O4xv—H1o5—O6xv74.4 (12)
O8—O3—O1145.21 (16)O4xv—H1o5—O10xi118 (3)
O8—O3—O11iii111.5 (3)O4xv—H1o5—O10ii69.2 (11)
O8—O3—H1o5128.9 (5)O4xv—H1o5—O12xii152 (3)
O8—O3—H2o5130.4 (3)O4xv—H1o5—O12vii53.01 (17)
O8—O3—H1o10xi120.24O4xv—H1o5—H2o5124 (2)
O8—O3—H1o10ii91.27O4xv—H1o5—H1o10xi105.33
O8—O3—H2o10xi134.56O4xv—H1o5—H1o10ii70.16
O8—O3—H2o10ii66.57O4xv—H1o5—H2o10xi134.1
O8—O3—H1o12xii156.33O4xv—H1o5—H2o10ii70.04
O8—O3—H1o12vii69.16O4xv—H1o5—H1o12xii146.98
O8iii—O3—O10xi75.6 (2)O4xv—H1o5—H1o12vii53.87
O8iii—O3—O10ii123.3 (3)O4xix—H1o5—O5106 (3)
O8iii—O3—O11111.5 (3)O4xix—H1o5—O6xv74.4 (12)
O8iii—O3—O11iii45.21 (16)O4xix—H1o5—O10xi69.2 (11)
O8iii—O3—H1o5128.9 (5)O4xix—H1o5—O10ii118 (3)
O8iii—O3—H2o5130.4 (3)O4xix—H1o5—O12xii53.01 (17)
O8iii—O3—H1o10xi91.27O4xix—H1o5—O12vii152 (3)
O8iii—O3—H1o10ii120.24O4xix—H1o5—H2o5124 (2)
O8iii—O3—H2o10xi66.57O4xix—H1o5—H1o10xi70.16
O8iii—O3—H2o10ii134.56O4xix—H1o5—H1o10ii105.33
O8iii—O3—H1o12xii69.16O4xix—H1o5—H2o10xi70.04
O8iii—O3—H1o12vii156.33O4xix—H1o5—H2o10ii134.1
O10xi—O3—O10ii64.1 (3)O4xix—H1o5—H1o12xii53.87
O10xi—O3—O11165.8 (3)O4xix—H1o5—H1o12vii146.98
O10xi—O3—O11iii102.28 (19)O5—H1o5—O6xv50 (4)
O10xi—O3—H1o562.0 (13)O5—H1o5—O10xi136 (4)
O10xi—O3—H2o586.3 (12)O5—H1o5—O10ii136 (4)
O10xi—O3—H1o10xi15.75O5—H1o5—O12xii89.0 (19)
O10xi—O3—H1o10ii51.52O5—H1o5—O12vii89.0 (19)
O10xi—O3—H2o10xi15.31O5—H1o5—H2o535 (5)
O10xi—O3—H2o10ii79.18O5—H1o5—H1o10xi148.7
O10xi—O3—H1o12xii36.06O5—H1o5—H1o10ii148.7
O10xi—O3—H1o12vii95.17O5—H1o5—H2o10xi119.97
O10ii—O3—O11102.28 (19)O5—H1o5—H2o10ii119.97
O10ii—O3—O11iii165.8 (3)O5—H1o5—H1o12xii101.1
O10ii—O3—H1o562.0 (13)O5—H1o5—H1o12vii101.1
O10ii—O3—H2o586.3 (12)O6xv—H1o5—O10xi142.9 (13)
O10ii—O3—H1o10xi51.52O6xv—H1o5—O10ii142.9 (13)
O10ii—O3—H1o10ii15.75O6xv—H1o5—O12xii99.7 (10)
O10ii—O3—H2o10xi79.18O6xv—H1o5—O12vii99.7 (10)
O10ii—O3—H2o10ii15.31O6xv—H1o5—H2o585 (4)
O10ii—O3—H1o12xii95.17O6xv—H1o5—H1o10xi143.95
O10ii—O3—H1o12vii36.06O6xv—H1o5—H1o10ii143.95
O11—O3—O11iii91.0 (3)O6xv—H1o5—H2o10xi137.28
O11—O3—H1o5116.4 (10)O6xv—H1o5—H2o10ii137.28
O11—O3—H2o597.1 (10)O6xv—H1o5—H1o12xii110.92
O11—O3—H1o10xi153.05O6xv—H1o5—H1o12vii110.92
O11—O3—H1o10ii115.74O10xi—H1o5—O10ii65.4 (13)
O11—O3—H2o10xi178.08O10xi—H1o5—O12xii52.1 (4)
O11—O3—H2o10ii87.46O10xi—H1o5—O12vii115.7 (15)
O11—O3—H1o12xii157.24O10xi—H1o5—H2o5109 (4)
O11—O3—H1o12vii73.42O10xi—H1o5—H1o10xi12.79
O11iii—O3—H1o5116.4 (10)O10xi—H1o5—H1o10ii56.69
O11iii—O3—H2o597.1 (10)O10xi—H1o5—H2o10xi15.98
O11iii—O3—H1o10xi115.74O10xi—H1o5—H2o10ii76.73
O11iii—O3—H1o10ii153.05O10xi—H1o5—H1o12xii39.15
O11iii—O3—H2o10xi87.46O10xi—H1o5—H1o12vii103.41
O11iii—O3—H2o10ii178.08O10ii—H1o5—O12xii115.7 (15)
O11iii—O3—H1o12xii73.42O10ii—H1o5—O12vii52.1 (4)
O11iii—O3—H1o12vii157.24O10ii—H1o5—H2o5109 (4)
H1o5—O3—H2o529 (2)O10ii—H1o5—H1o10xi56.69
H1o5—O3—H1o10xi49.85O10ii—H1o5—H1o10ii12.79
H1o5—O3—H1o10ii49.85O10ii—H1o5—H2o10xi76.73
H1o5—O3—H2o10xi65.32O10ii—H1o5—H2o10ii15.98
H1o5—O3—H2o10ii65.32O10ii—H1o5—H1o12xii103.41
H1o5—O3—H1o12xii59.81O10ii—H1o5—H1o12vii39.15
H1o5—O3—H1o12vii59.81O12xii—H1o5—O12vii153 (2)
H2o5—O3—H1o10xi77.09O12xii—H1o5—H2o581.3 (15)
H2o5—O3—H1o10ii77.09O12xii—H1o5—H1o10xi63.41
H2o5—O3—H2o10xi84.2O12xii—H1o5—H1o10ii108.6
H2o5—O3—H2o10ii84.2O12xii—H1o5—H2o10xi39.05
H2o5—O3—H1o12xii69.3O12xii—H1o5—H2o10ii122.7
H2o5—O3—H1o12vii69.3O12xii—H1o5—H1o12xii12.92
H1o10xi—O3—H1o10ii37.39O12xii—H1o5—H1o12vii146.94
H1o10xi—O3—H2o10xi28.65O12vii—H1o5—H2o581.3 (15)
H1o10xi—O3—H2o10ii65.89O12vii—H1o5—H1o10xi108.6
H1o10xi—O3—H1o12xii44.22O12vii—H1o5—H1o10ii63.41
H1o10xi—O3—H1o12vii79.98O12vii—H1o5—H2o10xi122.7
H1o10ii—O3—H2o10xi65.89O12vii—H1o5—H2o10ii39.05
H1o10ii—O3—H2o10ii28.65O12vii—H1o5—H1o12xii146.94
H1o10ii—O3—H1o12xii79.98O12vii—H1o5—H1o12vii12.92
H1o10ii—O3—H1o12vii44.22H2o5—H1o5—H1o10xi120.06
H2o10xi—O3—H2o10ii94.07H2o5—H1o5—H1o10ii120.06
H2o10xi—O3—H1o12xii22.57H2o5—H1o5—H2o10xi95.44
H2o10xi—O3—H1o12vii108.39H2o5—H1o5—H2o10ii95.44
H2o10ii—O3—H1o12xii108.39H2o5—H1o5—H1o12xii88.89
H2o10ii—O3—H1o12vii22.57H2o5—H1o5—H1o12vii88.89
H1o12xii—O3—H1o12vii115.68H1o10xi—H1o5—H1o10ii46.46
U1—O4—Pbiv136.6 (2)H1o10xi—H1o5—H2o10xi28.76
U1—O4—O1i49.46 (17)H1o10xi—H1o5—H2o10ii69.99
U1—O4—O249.67 (18)H1o10xi—H1o5—H1o12xii50.55
U1—O4—O5xiii128.7 (3)H1o10xi—H1o5—H1o12vii95.76
U1—O4—O855.32 (17)H1o10ii—H1o5—H2o10xi69.99
U1—O4—O10xiv123.4 (3)H1o10ii—H1o5—H2o10ii28.76
U1—O4—O11i54.21 (18)H1o10ii—H1o5—H1o12xii95.76
U1—O4—O12i99.7 (2)H1o10ii—H1o5—H1o12vii50.55
U1—O4—O12iv155.4 (3)H2o10xi—H1o5—H2o10ii85.31
U1—O4—O13ii51.32 (16)H2o10xi—H1o5—H1o12xii26.79
U1—O4—H1o5xiii123.8 (13)H2o10xi—H1o5—H1o12vii111.81
U1—O4—H1o10xiv116.63H2o10ii—H1o5—H1o12xii111.81
U1—O4—H2o10xiv137.52H2o10ii—H1o5—H1o12vii26.79
U1—O4—H1o12iv151.13H1o12xii—H1o5—H1o12vii137.76
U1—O4—H2o12i93.12Pbxii—H2o5—Pbvii111 (2)
Pbiv—O4—O1i145.2 (2)Pbxii—H2o5—O1107.2 (11)
Pbiv—O4—O2102.8 (2)Pbxii—H2o5—O3124.4 (10)
Pbiv—O4—O5xiii57.73 (17)Pbxii—H2o5—O569 (2)
Pbiv—O4—O881.42 (19)Pbxii—H2o5—O7viii118 (3)
Pbiv—O4—O10xiv99.7 (2)Pbxii—H2o5—O7ix51.5 (8)
Pbiv—O4—O11i162.3 (2)Pbxii—H2o5—H1o587.1 (16)
Pbiv—O4—O12i89.97 (19)Pbxii—H2o5—H1o10xi92.26
Pbiv—O4—O12iv54.13 (16)Pbxii—H2o5—H1o10ii121.04
Pbiv—O4—O13ii112.60 (19)Pbxii—H2o5—H2o10xi81.06
Pbiv—O4—H1o5xiii71.9 (16)Pbxii—H2o5—H2o10ii145.83
Pbiv—O4—H1o10xiv104.2Pbxii—H2o5—H1o12xii56.96
Pbiv—O4—H2o10xiv85.84Pbxii—H2o5—H1o12vii151.95
Pbiv—O4—H1o12iv67.9Pbvii—H2o5—O1107.2 (11)
Pbiv—O4—H2o12i96.49Pbvii—H2o5—O3124.4 (10)
O1i—O4—O252.02 (18)Pbvii—H2o5—O569 (2)
O1i—O4—O5xiii91.7 (2)Pbvii—H2o5—O7viii51.5 (8)
O1i—O4—O894.8 (2)Pbvii—H2o5—O7ix118 (3)
O1i—O4—O10xiv83.2 (2)Pbvii—H2o5—H1o587.1 (16)
O1i—O4—O11i51.39 (17)Pbvii—H2o5—H1o10xi121.04
O1i—O4—O12i124.5 (2)Pbvii—H2o5—H1o10ii92.26
O1i—O4—O12iv139.7 (2)Pbvii—H2o5—H2o10xi145.83
O1i—O4—O13ii94.8 (2)Pbvii—H2o5—H2o10ii81.06
O1i—O4—H1o5xiii80.1 (15)Pbvii—H2o5—H1o12xii151.95
O1i—O4—H1o10xiv71.55Pbvii—H2o5—H1o12vii56.96
O1i—O4—H2o10xiv97.36O1—H2o5—O357.6 (4)
O1i—O4—H1o12iv123.04O1—H2o5—O5171 (7)
O1i—O4—H2o12i118.18O1—H2o5—O7viii56.0 (5)
O2—O4—O5xiii81.1 (2)O1—H2o5—O7ix56.0 (5)
O2—O4—O851.61 (15)O1—H2o5—H1o5154 (5)
O2—O4—O10xiv126.2 (2)O1—H2o5—H1o10xi116.34
O2—O4—O11i94.3 (2)O1—H2o5—H1o10ii116.34
O2—O4—O12i145.4 (2)O1—H2o5—H2o10xi98.59
O2—O4—O12iv153.8 (3)O1—H2o5—H2o10ii98.59
O2—O4—O13ii94.46 (19)O1—H2o5—H1o12xii100.78
O2—O4—H1o5xiii81.9 (11)O1—H2o5—H1o12vii100.78
O2—O4—H1o10xiv111.82O3—H2o5—O5131 (7)
O2—O4—H2o10xiv135.43O3—H2o5—O7viii96.8 (5)
O2—O4—H1o12iv154.77O3—H2o5—O7ix96.8 (5)
O2—O4—H2o12i140.24O3—H2o5—H1o596 (5)
O5xiii—O4—O8108.2 (2)O3—H2o5—H1o10xi61.37
O5xiii—O4—O10xiv71.1 (2)O3—H2o5—H1o10ii61.37
O5xiii—O4—O11i130.9 (2)O3—H2o5—H2o10xi54.08
O5xiii—O4—O12i131.6 (2)O3—H2o5—H2o10ii54.08
O5xiii—O4—O12iv75.8 (2)O3—H2o5—H1o12xii72.99
O5xiii—O4—O13ii167.5 (2)O3—H2o5—H1o12vii72.99
O5xiii—O4—H1o5xiii15.3 (15)O5—H2o5—O7viii118 (4)
O5xiii—O4—H1o10xiv64.1O5—H2o5—O7ix118 (4)
O5xiii—O4—H2o10xiv66.8O5—H2o5—H1o535 (4)
O5xiii—O4—H1o12iv74.16O5—H2o5—H1o10xi72.05
O5xiii—O4—H2o12i137.99O5—H2o5—H1o10ii72.05
O8—O4—O10xiv177.8 (3)O5—H2o5—H2o10xi88.48
O8—O4—O11i106.3 (2)O5—H2o5—H2o10ii88.48
O8—O4—O12i100.19 (19)O5—H2o5—H1o12xii83.49
O8—O4—O12iv125.5 (2)O5—H2o5—H1o12vii83.49
O8—O4—O13ii60.65 (16)O7viii—H2o5—O7ix83.4 (18)
O8—O4—H1o5xiii118.8 (11)O7viii—H2o5—H1o5136.1 (9)
O8—O4—H1o10xiv163.42O7viii—H2o5—H1o10xi149.31
O8—O4—H2o10xiv166.91O7viii—H2o5—H1o10ii118.41
O8—O4—H1o12iv142.13O7viii—H2o5—H2o10xi150.53
O8—O4—H2o12i98.57O7viii—H2o5—H2o10ii94.46
O10xiv—O4—O11i73.2 (2)O7viii—H2o5—H1o12xii155.58
O10xiv—O4—O12i81.69 (19)O7viii—H2o5—H1o12vii76.03
O10xiv—O4—O12iv56.47 (19)O7ix—H2o5—H1o5136.1 (9)
O10xiv—O4—O13ii120.3 (2)O7ix—H2o5—H1o10xi118.41
O10xiv—O4—H1o5xiii60.1 (12)O7ix—H2o5—H1o10ii149.31
O10xiv—O4—H1o10xiv14.46O7ix—H2o5—H2o10xi94.46
O10xiv—O4—H2o10xiv14.71O7ix—H2o5—H2o10ii150.53
O10xiv—O4—H1o12iv39.87O7ix—H2o5—H1o12xii76.03
O10xiv—O4—H2o12i83.16O7ix—H2o5—H1o12vii155.58
O11i—O4—O12i73.1 (2)H1o5—H2o5—H1o10xi39.3
O11i—O4—O12iv110.1 (2)H1o5—H2o5—H1o10ii39.3
O11i—O4—O13ii60.78 (18)H1o5—H2o5—H2o10xi61.06
O11i—O4—H1o5xiii115.7 (15)H1o5—H2o5—H2o10ii61.06
O11i—O4—H1o10xiv73.03H1o5—H2o5—H1o12xii68.05
O11i—O4—H2o10xiv85.19H1o5—H2o5—H1o12vii68.05
O11i—O4—H1o12iv98.23H1o10xi—H2o5—H1o10ii33.55
O11i—O4—H2o12i66.93H1o10xi—H2o5—H2o10xi24.79
O12i—O4—O12iv55.85 (19)H1o10xi—H2o5—H2o10ii55.67
O12i—O4—O13ii51.13 (16)H1o10xi—H2o5—H1o12xii43.35
O12i—O4—H1o5xiii132.7 (11)H1o10xi—H2o5—H1o12vii76.84
O12i—O4—H1o10xiv95.45H1o10ii—H2o5—H2o10xi55.67
O12i—O4—H2o10xiv76.73H1o10ii—H2o5—H2o10ii24.79
O12i—O4—H1o12iv59.74H1o10ii—H2o5—H1o12xii76.84
O12i—O4—H2o12i7H1o10ii—H2o5—H1o12vii43.35
O12iv—O4—O13ii105.6 (2)H2o10xi—H2o5—H2o10ii73.12
O12iv—O4—H1o5xiii79.0 (12)H2o10xi—H2o5—H1o12xii24.45
O12iv—O4—H1o10xiv68.46H2o10xi—H2o5—H1o12vii96.93
O12iv—O4—H2o10xiv42.36H2o10ii—H2o5—H1o12xii96.93
O12iv—O4—H1o12iv16.7H2o10ii—H2o5—H1o12vii24.45
O12iv—O4—H2o12i62.31H1o12xii—H2o5—H1o12vii119.86
O13ii—O4—H1o5xiii174.8 (15)Pb—H1o10—O1vi109.31
O13ii—O4—H1o10xiv128.2Pb—H1o10—O3xvii118.1
O13ii—O4—H2o10xiv122.74Pb—H1o10—O4xiv118.45
O13ii—O4—H1o12iv110.77Pb—H1o10—O5xvii166.07
O13ii—O4—H2o12i45.83Pb—H1o10—O6vi66.41
H1o5xiii—O4—H1o10xiv50.88Pb—H1o10—O1047.02
H1o5xiii—O4—H2o10xiv59.1Pb—H1o10—O10xvi112.48
H1o5xiii—O4—H1o12iv72.94Pb—H1o10—O11iv75.15
H1o5xiii—O4—H2o12i137.54Pb—H1o10—O12i98.64
H1o10xiv—O4—H2o10xiv26.26Pb—H1o10—H1o5xvii173.64
H1o10xiv—O4—H1o12iv52.41Pb—H1o10—H2o5xvii154.88
H1o10xiv—O4—H2o12i96.29Pb—H1o10—H1o10xvi118.98
H2o10xiv—O4—H1o12iv26.15Pb—H1o10—H2o1077.02
H2o10xiv—O4—H2o12i79.84Pb—H1o10—H2o10xvi121.33
H1o12iv—O4—H2o12i64.98Pb—H1o10—H1o12i92.74
Pbxii—O5—Pbvii123.8 (2)O1vi—H1o10—O3xvii130.44
Pbxii—O5—O3110.64 (16)O1vi—H1o10—O4xiv54.8
Pbxii—O5—O4xv132.9 (3)O1vi—H1o10—O5xvii80.84
Pbxii—O5—O4xix58.59 (13)O1vi—H1o10—O6vi55.87
Pbxii—O5—O6xv66.00 (12)O1vi—H1o10—O10139.71
Pbxii—O5—O7viii109.8 (3)O1vi—H1o10—O10xvi84.28
Pbxii—O5—O7ix49.29 (13)O1vi—H1o10—O11iv43.32
Pbxii—O5—H1o5113.6 (12)O1vi—H1o10—O12i109.5
Pbxii—O5—H2o596 (3)O1vi—H1o10—H1o5xvii74.33
Pbxii—O5—H1o10xi99.48O1vi—H1o10—H2o5xvii94.95
Pbxii—O5—H1o10ii134.35O1vi—H1o10—H1o10xvi73.97
Pbxii—O5—H2o10xi82.48O1vi—H1o10—H2o10142.2
Pbxii—O5—H2o10ii153.62O1vi—H1o10—H2o10xvi90.47
Pbxii—O5—H1o12xii58.32O1vi—H1o10—H1o12i112.92
Pbxii—O5—H1o12vii177.57O3xvii—H1o10—O4xiv109.06
Pbvii—O5—O3110.64 (16)O3xvii—H1o10—O5xvii55.61
Pbvii—O5—O4xv58.59 (13)O3xvii—H1o10—O6vi133.64
Pbvii—O5—O4xix132.9 (3)O3xvii—H1o10—O1086.58
Pbvii—O5—O6xv66.00 (12)O3xvii—H1o10—O10xvi65.52
Pbvii—O5—O7viii49.29 (13)O3xvii—H1o10—O11iv162.62
Pbvii—O5—O7ix109.8 (3)O3xvii—H1o10—O12i77.76
Pbvii—O5—H1o5113.6 (12)O3xvii—H1o10—H1o5xvii59.99
Pbvii—O5—H2o596 (3)O3xvii—H1o10—H2o5xvii41.54
Pbvii—O5—H1o10xi134.35O3xvii—H1o10—H1o10xvi71.31
Pbvii—O5—H1o10ii99.48O3xvii—H1o10—H2o1066.33
Pbvii—O5—H2o10xi153.62O3xvii—H1o10—H2o10xvi53.35
Pbvii—O5—H2o10ii82.48O3xvii—H1o10—H1o12i79.43
Pbvii—O5—H1o12xii177.57O4xiv—H1o10—O5xvii59.03
Pbvii—O5—H1o12vii58.32O4xiv—H1o10—O6vi106.27
O3—O5—O4xv110.3 (2)O4xiv—H1o10—O10103.24
O3—O5—O4xix110.3 (2)O4xiv—H1o10—O10xvi122.1
O3—O5—O6xv168.7 (4)O4xiv—H1o10—O11iv53.57
O3—O5—O7viii75.3 (2)O4xiv—H1o10—O12i54.88
O3—O5—O7ix75.3 (2)O4xiv—H1o10—H1o5xvii58.96
O3—O5—H1o573 (5)O4xiv—H1o10—H2o5xvii70.28
O3—O5—H2o536 (6)O4xiv—H1o10—H1o10xvi111.84
O3—O5—H1o10xi59.12O4xiv—H1o10—H2o1088.82
O3—O5—H1o10ii59.12O4xiv—H1o10—H2o10xvi117.97
O3—O5—H2o10xi50.45O4xiv—H1o10—H1o12i58.89
O3—O5—H2o10ii50.45O5xvii—H1o10—O6vi127.37
O3—O5—H1o12xii67.02O5xvii—H1o10—O10119.11
O3—O5—H1o12vii67.02O5xvii—H1o10—O10xvi77.3
O4xv—O5—O4xix85.8 (3)O5xvii—H1o10—O11iv108.78
O4xv—O5—O6xv77.7 (2)O5xvii—H1o10—O12i68.42
O4xv—O5—O7viii102.33 (15)O5xvii—H1o10—H1o5xvii7.79
O4xv—O5—O7ix168.1 (3)O5xvii—H1o10—H2o5xvii14.46
O4xv—O5—H1o559 (3)O5xvii—H1o10—H1o10xvi72.37
O4xv—O5—H2o5131 (2)O5xvii—H1o10—H2o1089.12
O4xv—O5—H1o10xi82.29O5xvii—H1o10—H2o10xvi66.63
O4xv—O5—H1o10ii56.87O5xvii—H1o10—H1o12i74.19
O4xv—O5—H2o10xi106.89O6vi—H1o10—O10113.4
O4xv—O5—H2o10ii59.86O6vi—H1o10—O10xvi70.61
O4xv—O5—H1o12xii121.22O6vi—H1o10—O11iv60.4
O4xv—O5—H1o12vii48.83O6vi—H1o10—O12i148.46
O4xix—O5—O6xv77.7 (2)O6vi—H1o10—H1o5xvii119.57
O4xix—O5—O7viii168.1 (3)O6vi—H1o10—H2o5xvii136.52
O4xix—O5—O7ix102.33 (15)O6vi—H1o10—H1o10xvi68.23
O4xix—O5—H1o559 (3)O6vi—H1o10—H2o10143.37
O4xix—O5—H2o5131 (2)O6vi—H1o10—H2o10xvi83.81
O4xix—O5—H1o10xi56.87O6vi—H1o10—H1o12i145.96
O4xix—O5—H1o10ii82.29O10—H1o10—O10xvi131.97
O4xix—O5—H2o10xi59.86O10—H1o10—O11iv96.51
O4xix—O5—H2o10ii106.89O10—H1o10—O12i57.12
O4xix—O5—H1o12xii48.83O10—H1o10—H1o5xvii126.88
O4xix—O5—H1o12vii121.22O10—H1o10—H2o5xvii109.37
O6xv—O5—O7viii95.4 (2)O10—H1o10—H1o10xvi142.95
O6xv—O5—O7ix95.4 (2)O10—H1o10—H2o1030
O6xv—O5—H1o5118 (5)O10—H1o10—H2o10xvi128.92
O6xv—O5—H2o5132 (6)O10—H1o10—H1o12i51.24
O6xv—O5—H1o10xi131.31O10xvi—H1o10—O11iv121.92
O6xv—O5—H1o10ii131.31O10xvi—H1o10—O12i139.77
O6xv—O5—H2o10xi136.32O10xvi—H1o10—H1o5xvii72.72
O6xv—O5—H2o10ii136.32O10xvi—H1o10—H2o5xvii75.45
O6xv—O5—H1o12xii116.42O10xvi—H1o10—H1o10xvi10.98
O6xv—O5—H1o12vii116.42O10xvi—H1o10—H2o10129
O7viii—O5—O7ix68.3 (2)O10xvi—H1o10—H2o10xvi13.29
O7viii—O5—H1o5133 (3)O10xvi—H1o10—H1o12i143.36
O7viii—O5—H2o548 (4)O11iv—H1o10—O12i89.52
O7viii—O5—H1o10xi132.25O11iv—H1o10—H1o5xvii105.53
O7viii—O5—H1o10ii109.4O11iv—H1o10—H2o5xvii122.21
O7viii—O5—H2o10xi124.32O11iv—H1o10—H1o10xvi113.54
O7viii—O5—H2o10ii84.84O11iv—H1o10—H2o10109.03
O7viii—O5—H1o12xii129.55O11iv—H1o10—H2o10xvi131.59
O7viii—O5—H1o12vii70.5O11iv—H1o10—H1o12i89.15
O7ix—O5—H1o5133 (3)O12i—H1o10—H1o5xvii75.1
O7ix—O5—H2o548 (4)O12i—H1o10—H2o5xvii66.05
O7ix—O5—H1o10xi109.4O12i—H1o10—H1o10xvi139.27
O7ix—O5—H1o10ii132.25O12i—H1o10—H2o1034.33
O7ix—O5—H2o10xi84.84O12i—H1o10—H2o10xvi126.5
O7ix—O5—H2o10ii124.32O12i—H1o10—H1o12i6.02
O7ix—O5—H1o12xii70.5H1o5xvii—H1o10—H2o5xvii20.65
O7ix—O5—H1o12vii129.55H1o5xvii—H1o10—H1o10xvi66.77
H1o5—O5—H2o5109 (7)H1o5xvii—H1o10—H2o1096.9
H1o5—O5—H1o10xi23.51H1o5xvii—H1o10—H2o10xvi63.12
H1o5—O5—H1o10ii23.51H1o5xvii—H1o10—H1o12i80.97
H1o5—O5—H2o10xi48.08H2o5xvii—H1o10—H1o10xvi73.23
H1o5—O5—H2o10ii48.08H2o5xvii—H1o10—H2o1079.8
H1o5—O5—H1o12xii65.35H2o5xvii—H1o10—H2o10xvi63.08
H1o5—O5—H1o12vii65.35H2o5xvii—H1o10—H1o12i71.17
H2o5—O5—H1o10xi93.49H1o10xvi—H1o10—H2o10137.05
H2o5—O5—H1o10ii93.49H1o10xvi—H1o10—H2o10xvi18.27
H2o5—O5—H2o10xi77.62H1o10xvi—H1o10—H1o12i144.16
H2o5—O5—H2o10ii77.62H2o10—H1o10—H2o10xvi118.78
H2o5—O5—H1o12xii82.71H2o10—H1o10—H1o12i29.93
H2o5—O5—H1o12vii82.71H2o10xvi—H1o10—H1o12i130.09
H1o10xi—O5—H1o10ii35.25Pb—H2o10—O3xvii126.23
H1o10xi—O5—H2o10xi24.6Pb—H2o10—O4xiv109.91
H1o10xi—O5—H2o10ii56.17Pb—H2o10—O5xvii143.27
H1o10xi—O5—H1o12xii44.16Pb—H2o10—O7ii44.5
H1o10xi—O5—H1o12vii78.81Pb—H2o10—O8ii97
H1o10ii—O5—H2o10xi56.17Pb—H2o10—O943.65
H1o10ii—O5—H2o10ii24.6Pb—H2o10—O1047.02
H1o10ii—O5—H1o12xii78.81Pb—H2o10—O12i128.16
H1o10ii—O5—H1o12vii44.16Pb—H2o10—H1o5xvii131.32
H2o10xi—O5—H2o10ii71.18Pb—H2o10—H2o5xvii150.78
H2o10xi—O5—H1o12xii24.18Pb—H2o10—H1o1077.02
H2o10xi—O5—H1o12vii95.36Pb—H2o10—H1o10xvi89.54
H2o10ii—O5—H1o12xii95.36Pb—H2o10—H1o12i122.21
H2o10ii—O5—H1o12vii24.18Pb—H2o10—H2o12i118.26
H1o12xii—O5—H1o12vii119.53O3xvii—H2o10—O4xiv107.05
U2—O6—Pbx124.30 (16)O3xvii—H2o10—O5xvii53.75
U2—O6—Pbiv124.30 (16)O3xvii—H2o10—O7ii88.38
U2—O6—O150.4 (2)O3xvii—H2o10—O8ii62.25
U2—O6—O252.2 (2)O3xvii—H2o10—O9135.18
U2—O6—O5xiii134.9 (4)O3xvii—H2o10—O10103.77
U2—O6—O853.47 (16)O3xvii—H2o10—O12i103.84
U2—O6—O8iii53.47 (16)O3xvii—H2o10—H1o5xvii57.4
U2—O6—O10x128.9 (2)O3xvii—H2o10—H2o5xvii41.72
U2—O6—O10iv128.9 (2)O3xvii—H2o10—H1o1085.02
U2—O6—O1157.44 (15)O3xvii—H2o10—H1o10xvi60.77
U2—O6—O11iii57.44 (15)O3xvii—H2o10—H1o12i110.69
U2—O6—H1o5xiii122.9 (14)O3xvii—H2o10—H2o12i109.05
U2—O6—H1o10x123.91O4xiv—H2o10—O5xvii53.34
U2—O6—H1o10iv123.91O4xiv—H2o10—O7ii152.54
Pbx—O6—Pbiv102.83 (16)O4xiv—H2o10—O8ii150.91
Pbx—O6—O1124.41 (13)O4xiv—H2o10—O9117.18
Pbx—O6—O297.69 (17)O4xiv—H2o10—O1081.75
Pbx—O6—O5xiii54.05 (9)O4xiv—H2o10—O12i60.03
Pbx—O6—O8142.6 (2)O4xiv—H2o10—H1o5xvii50.86
Pbx—O6—O8iii71.28 (11)O4xiv—H2o10—H2o5xvii66.16
Pbx—O6—O10x51.41 (15)O4xiv—H2o10—H1o1064.92
Pbx—O6—O10iv102.6 (2)O4xiv—H2o10—H1o10xvi79.22
Pbx—O6—O11172.3 (3)O4xiv—H2o10—H1o12i55.45
Pbx—O6—O11iii79.99 (9)O4xiv—H2o10—H2o12i72.88
Pbx—O6—H1o5xiii58.0 (5)O5xvii—H2o10—O7ii137.43
Pbx—O6—H1o10x66.06O5xvii—H2o10—O8ii109.41
Pbx—O6—H1o10iv100.02O5xvii—H2o10—O9167.46
Pbiv—O6—O1124.41 (13)O5xvii—H2o10—O1096.27
Pbiv—O6—O297.69 (17)O5xvii—H2o10—O12i75.66
Pbiv—O6—O5xiii54.05 (9)O5xvii—H2o10—H1o5xvii11.95
Pbiv—O6—O871.28 (11)O5xvii—H2o10—H2o5xvii13.9
Pbiv—O6—O8iii142.6 (2)O5xvii—H2o10—H1o1066.28
Pbiv—O6—O10x102.6 (2)O5xvii—H2o10—H1o10xvi57.2
Pbiv—O6—O10iv51.41 (15)O5xvii—H2o10—H1o12i78.05
Pbiv—O6—O1179.99 (9)O5xvii—H2o10—H2o12i89.8
Pbiv—O6—O11iii172.3 (3)O7ii—H2o10—O8ii56.49
Pbiv—O6—H1o5xiii58.0 (5)O7ii—H2o10—O954.97
Pbiv—O6—H1o10x100.02O7ii—H2o10—O1072.41
Pbiv—O6—H1o10iv66.06O7ii—H2o10—O12i139.24
O1—O6—O2102.6 (3)O7ii—H2o10—H1o5xvii132.64
O1—O6—O5xiii174.7 (4)O7ii—H2o10—H2o5xvii129.13
O1—O6—O884.60 (18)O7ii—H2o10—H1o1094.88
O1—O6—O8iii84.60 (18)O7ii—H2o10—H1o10xvi89.39
O1—O6—O10x88.1 (2)O7ii—H2o10—H1o12i140.32
O1—O6—O10iv88.1 (2)O7ii—H2o10—H2o12i124.19
O1—O6—O1149.71 (12)O8ii—H2o10—O975.17
O1—O6—O11iii49.71 (12)O8ii—H2o10—O10126.19
O1—O6—H1o5xiii173.3 (14)O8ii—H2o10—O12i94.83
O1—O6—H1o10x77.49O8ii—H2o10—H1o5xvii117.32
O1—O6—H1o10iv77.49O8ii—H2o10—H2o5xvii95.52
O2—O6—O5xiii82.7 (3)O8ii—H2o10—H1o10134.69
O2—O6—O848.92 (15)O8ii—H2o10—H1o10xvi112.75
O2—O6—O8iii48.92 (15)O8ii—H2o10—H1o12i101.03
O2—O6—O10x146.01 (18)O8ii—H2o10—H2o12i84.95
O2—O6—O10iv146.01 (18)O9—H2o10—O1089.79
O2—O6—O1189.0 (2)O9—H2o10—O12i92.49
O2—O6—O11iii89.0 (2)O9—H2o10—H1o5xvii167.3
O2—O6—H1o5xiii70.7 (14)O9—H2o10—H2o5xvii165.23
O2—O6—H1o10x158.22O9—H2o10—H1o10119.31
O2—O6—H1o10iv158.22O9—H2o10—H1o10xvi132.76
O5xiii—O6—O899.1 (2)O9—H2o10—H1o12i89.68
O5xiii—O6—O8iii99.1 (2)O9—H2o10—H2o12i78.85
O5xiii—O6—O10x87.5 (2)O10—H2o10—O12i137.89
O5xiii—O6—O10iv87.5 (2)O10—H2o10—H1o5xvii84.33
O5xiii—O6—O11131.22 (12)O10—H2o10—H2o5xvii104.99
O5xiii—O6—O11iii131.22 (12)O10—H2o10—H1o1030
O5xiii—O6—H1o5xiii12.0 (14)O10—H2o10—H1o10xvi46.67
O5xiii—O6—H1o10x97.61O10—H2o10—H1o12i130.77
O5xiii—O6—H1o10iv97.61O10—H2o10—H2o12i143.04
O8—O6—O8iii91.0 (2)O12i—H2o10—H1o5xvii84.46
O8—O6—O10x164.9 (3)O12i—H2o10—H2o5xvii76.66
O8—O6—O10iv101.41 (19)O12i—H2o10—H1o10124.46
O8—O6—O1145.10 (15)O12i—H2o10—H1o10xvi130.66
O8—O6—O11iii110.9 (2)O12i—H2o10—H1o12i7.69
O8—O6—H1o5xiii90.7 (10)O12i—H2o10—H2o12i15.17
O8—O6—H1o10x150.62H1o5xvii—H2o10—H2o5xvii23.5
O8—O6—H1o10iv110.03H1o5xvii—H2o10—H1o1054.34
O8iii—O6—O10x101.41 (19)H1o5xvii—H2o10—H1o10xvi46.88
O8iii—O6—O10iv164.9 (3)H1o5xvii—H2o10—H1o12i85.71
O8iii—O6—O11110.9 (2)H1o5xvii—H2o10—H2o12i99.22
O8iii—O6—O11iii45.10 (15)H2o5xvii—H2o10—H1o1075.4
O8iii—O6—H1o5xiii90.7 (10)H2o5xvii—H2o10—H1o10xvi61.25
O8iii—O6—H1o10x110.03H2o5xvii—H2o10—H1o12i80.76
O8iii—O6—H1o10iv150.62H2o5xvii—H2o10—H2o12i89.05
O10x—O6—O10iv65.1 (3)H1o10—H2o10—H1o10xvi24.68
O10x—O6—O11121.1 (3)H1o10—H2o10—H1o12i120.37
O10x—O6—O11iii73.4 (2)H1o10—H2o10—H2o12i137.79
O10x—O6—H1o5xiii97.6 (12)H1o10xvi—H2o10—H1o12i130.26
O10x—O6—H1o10x14.66H1o10xvi—H2o10—H2o12i145.76
O10x—O6—H1o10iv55.37H1o12i—H2o10—H2o12i17.49
O10iv—O6—O1173.4 (2)Pb—H1o12—O3v89.83
O10iv—O6—O11iii121.1 (3)Pb—H1o12—O4iv58.57
O10iv—O6—H1o5xiii97.6 (12)Pb—H1o12—O5v50.93
O10iv—O6—H1o10x55.37Pb—H1o12—O10viii126.74
O10iv—O6—H1o10iv14.66Pb—H1o12—O1246.66
O11—O6—O11iii96.32 (19)Pb—H1o12—O12xviii91.02
O11—O6—H1o5xiii128.5 (4)Pb—H1o12—O13vii104.57
O11—O6—H1o10x106.5Pb—H1o12—H1o5v62.17
O11—O6—H1o10iv74.42Pb—H1o12—H2o5v54.86
O11iii—O6—H1o5xiii128.5 (4)Pb—H1o12—H1o10viii108.95
O11iii—O6—H1o10x74.42Pb—H1o12—H2o10viii128.64
O11iii—O6—H1o10iv106.5Pb—H1o12—H1o12xviii81.26
H1o5xiii—O6—H1o10x108.7Pb—H1o12—H2o1276.66
H1o5xiii—O6—H1o10iv108.7Pb—H1o12—H2o12xviii86.31
H1o10x—O6—H1o10iv43.53O3v—H1o12—O4iv100.77
U1—O7—Pbii157.8 (3)O3v—H1o12—O5v48.55
U1—O7—O1i51.60 (17)O3v—H1o12—O10viii59.45
U1—O7—O251.24 (17)O3v—H1o12—O12113.94
U1—O7—O5i140.8 (2)O3v—H1o12—O12xviii169.22
U1—O7—O7iii93.7 (2)O3v—H1o12—O13vii87.57
U1—O7—O850.62 (17)O3v—H1o12—H1o5v47.94
U1—O7—O9ii107.1 (2)O3v—H1o12—H2o5v37.72
U1—O7—O10ii123.4 (3)O3v—H1o12—H1o10viii56.35
U1—O7—O11i51.39 (17)O3v—H1o12—H2o10viii46.74
U1—O7—O12ii122.3 (2)O3v—H1o12—H1o12xviii171.01
U1—O7—O13ii55.39 (17)O3v—H1o12—H2o12123.02
U1—O7—H2o5i127.2 (6)O3v—H1o12—H2o12xviii154.13
U1—O7—H2o10ii110.24O4iv—H1o12—O5v57.01
Pbii—O7—O1i147.9 (3)O4iv—H1o12—O10viii83.91
Pbii—O7—O2141.3 (2)O4iv—H1o12—O1293.81
Pbii—O7—O5i60.12 (16)O4iv—H1o12—O12xviii70.67
Pbii—O7—O7iii108.07 (19)O4iv—H1o12—O13vii160.73
Pbii—O7—O8118.11 (18)O4iv—H1o12—H1o5v53.19
Pbii—O7—O9ii50.70 (14)O4iv—H1o12—H2o5v70.77
Pbii—O7—O10ii55.00 (17)O4iv—H1o12—H1o10viii68.7
Pbii—O7—O11i125.2 (2)O4iv—H1o12—H2o10viii98.41
Pbii—O7—O12ii50.02 (14)O4iv—H1o12—H1o12xviii73.55
Pbii—O7—O13ii102.72 (19)O4iv—H1o12—H2o12116.57
Pbii—O7—H2o5i73.2 (4)O4iv—H1o12—H2o12xviii55.8
Pbii—O7—H2o10ii64.44O5v—H1o12—O10viii77.74
O1i—O7—O253.48 (19)O5v—H1o12—O1294.76
O1i—O7—O5i89.2 (2)O5v—H1o12—O12xviii125.68
O1i—O7—O7iii53.20 (13)O5v—H1o12—O13vii121.69
O1i—O7—O892.7 (2)O5v—H1o12—H1o5v13.55
O1i—O7—O9ii152.8 (2)O5v—H1o12—H2o5v13.8
O1i—O7—O10ii135.9 (2)O5v—H1o12—H1o10viii61.65
O1i—O7—O11i51.06 (14)O5v—H1o12—H2o10viii77.77
O1i—O7—O12ii112.4 (2)O5v—H1o12—H1o12xviii123.22
O1i—O7—O13ii100.3 (2)O5v—H1o12—H2o12122.97
O1i—O7—H2o5i75.7 (5)O5v—H1o12—H2o12xviii112.16
O1i—O7—H2o10ii134.64O10viii—H1o12—O12172.21
O2—O7—O5i108.9 (2)O10viii—H1o12—O12xviii112.04
O2—O7—O7iii53.37 (16)O10viii—H1o12—O13vii115.15
O2—O7—O850.33 (16)O10viii—H1o12—H1o5v65.2
O2—O7—O9ii130.8 (2)O10viii—H1o12—H2o5v79.02
O2—O7—O10ii88.2 (2)O10viii—H1o12—H1o10viii18.07
O2—O7—O11i93.2 (2)O10viii—H1o12—H2o10viii17.54
O2—O7—O12ii165.9 (2)O10viii—H1o12—H1o12xviii125.58
O2—O7—O13ii99.5 (2)O10viii—H1o12—H2o12156.09
O2—O7—H2o5i101.4 (8)O10viii—H1o12—H2o12xviii103.36
O2—O7—H2o10ii82.24O12—H1o12—O12xviii73.96
O5i—O7—O7iii55.83 (16)O12—H1o12—O13vii66.92
O5i—O7—O8148.3 (2)O12—H1o12—H1o5v107.51
O5i—O7—O9ii109.9 (2)O12—H1o12—H2o5v93.19
O5i—O7—O10ii83.2 (2)O12—H1o12—H1o10viii155.56
O5i—O7—O11i106.5 (2)O12—H1o12—H2o10viii158.81
O5i—O7—O12ii67.72 (18)O12—H1o12—H1o12xviii60.36
O5i—O7—O13ii150.0 (3)O12—H1o12—H2o1230
O5i—O7—H2o5i13.7 (7)O12—H1o12—H2o12xviii81.28
O5i—O7—H2o10ii97.47O12xviii—H1o12—O13vii102.61
O7iii—O7—O8101.2 (2)O12xviii—H1o12—H1o5v123.85
O7iii—O7—O9ii153.96 (19)O12xviii—H1o12—H2o5v138.22
O7iii—O7—O10ii87.91 (19)O12xviii—H1o12—H1o10viii113.38
O7iii—O7—O11i101.70 (17)O12xviii—H1o12—H2o10viii126.5
O7iii—O7—O12ii120.2 (2)O12xviii—H1o12—H1o12xviii13.6
O7iii—O7—O13ii149.1 (2)O12xviii—H1o12—H2o1267.56
O7iii—O7—H2o5i48.3 (9)O12xviii—H1o12—H2o12xviii15.57
O7iii—O7—H2o10ii94.66O13vii—H1o12—H1o5v130.41
O8—O7—O9ii81.2 (2)O13vii—H1o12—H2o5v108.51
O8—O7—O10ii73.5 (2)O13vii—H1o12—H1o10viii129.4
O8—O7—O11i99.1 (2)O13vii—H1o12—H2o10viii99.91
O8—O7—O12ii138.6 (2)O13vii—H1o12—H1o12xviii95.82
O8—O7—O13ii60.30 (18)O13vii—H1o12—H2o1245.79
O8—O7—H2o5i148.4 (12)O13vii—H1o12—H2o12xviii118.17
O8—O7—H2o10ii59.82H1o5v—H1o12—H2o5v23.05
O9ii—O7—O10ii67.73 (19)H1o5v—H1o12—H1o10viii48.49
O9ii—O7—O11i103.50 (19)H1o5v—H1o12—H2o10viii67.49
O9ii—O7—O12ii61.24 (17)H1o5v—H1o12—H1o12xviii125.27
O9ii—O7—O13ii53.69 (16)H1o5v—H1o12—H2o12136.34
O9ii—O7—H2o5i121.8 (4)H1o5v—H1o12—H2o12xviii108.78
O9ii—O7—H2o10ii63.85H2o5v—H1o12—H1o10viii65.48
O10ii—O7—O11i169.0 (3)H2o5v—H1o12—H2o10viii74.79
O10ii—O7—O12ii104.6 (2)H2o5v—H1o12—H1o12xviii133.47
O10ii—O7—O13ii107.7 (2)H2o5v—H1o12—H2o12118.04
O10ii—O7—H2o5i94.4 (13)H2o5v—H1o12—H2o12xviii125.53
O10ii—O7—H2o10ii14.3H1o10viii—H1o12—H2o10viii29.71
O11i—O7—O12ii75.34 (19)H1o10viii—H1o12—H1o12xviii125.57
O11i—O7—O13ii61.31 (16)H1o10viii—H1o12—H2o12174.12
O11i—O7—H2o5i96.0 (14)H1o10viii—H1o12—H2o12xviii100.97
O11i—O7—H2o10ii155.73H2o10viii—H1o12—H1o12xviii140
O12ii—O7—O13ii82.43 (19)H2o10viii—H1o12—H2o12144.9
O12ii—O7—H2o5i72.2 (11)H2o10viii—H1o12—H2o12xviii119.9
O12ii—O7—H2o10ii111.58H1o12xviii—H1o12—H2o1256.14
O13ii—O7—H2o5i150.0 (15)H1o12xviii—H1o12—H2o12xviii24.74
O13ii—O7—H2o10ii95.78H2o12—H1o12—H2o12xviii80.88
H2o5i—O7—H2o10ii108.22U1viii—H2o12—Pb141.52
U1—O8—U2104.96 (18)U1viii—H2o12—As71.14
U1—O8—As144.7 (3)U1viii—H2o12—Asvii66.72
U1—O8—P144.7 (3)U1viii—H2o12—P71.14
U1—O8—O254.04 (16)U1viii—H2o12—Pvii66.72
U1—O8—O3107.4 (2)U1viii—H2o12—O4viii34.05
U1—O8—O438.52 (13)U1viii—H2o12—O995.38
U1—O8—O697.07 (18)U1viii—H2o12—O10viii126.31
U1—O8—O735.92 (12)U1viii—H2o12—O1144.27
U1—O8—O9114.6 (2)U1viii—H2o12—O12168.23
U1—O8—O11161.4 (3)U1viii—H2o12—O12xviii97.66
U1—O8—O13133.5 (3)U1viii—H2o12—O13vii47.11
U1—O8—O13ii50.59 (13)U1viii—H2o12—H2o10viii124.28
U1—O8—H2o10ii99.46U1viii—H2o12—H1o12140.49
U2—O8—As104.2 (3)U1viii—H2o12—H1o12xviii91.67
U2—O8—P104.2 (3)U1viii—H2o12—H2o12xviii113.55
U2—O8—O251.24 (16)Pb—H2o12—As70.98
U2—O8—O335.57 (15)Pb—H2o12—Asvii113.46
U2—O8—O4100.61 (19)Pb—H2o12—P70.98
U2—O8—O633.62 (11)Pb—H2o12—Pvii113.46
U2—O8—O7104.5 (2)Pb—H2o12—O4viii139.96
U2—O8—O9111.9 (3)Pb—H2o12—O946.25
U2—O8—O1162.78 (17)Pb—H2o12—O10viii90.61
U2—O8—O13119.8 (2)Pb—H2o12—O1197.25
U2—O8—O13ii155.5 (2)Pb—H2o12—O1246.66
U2—O8—H2o10ii86.75Pb—H2o12—O12xviii95.3
As—O8—P0Pb—H2o12—O13vii128.14
As—O8—O2152.5 (4)Pb—H2o12—H2o10viii90.54
As—O8—O3107.9 (2)Pb—H2o12—H1o1276.66
As—O8—O4116.0 (3)Pb—H2o12—H1o12xviii90.5
As—O8—O696.2 (3)Pb—H2o12—H2o12xviii84.1
As—O8—O7146.7 (3)As—H2o12—Asvii81.24
As—O8—O934.01 (16)As—H2o12—P0
As—O8—O1141.73 (18)As—H2o12—Pvii81.24
As—O8—O1334.15 (17)As—H2o12—O4viii89.9
As—O8—O13ii99.1 (2)As—H2o12—O928.09
As—O8—H2o10ii101.7As—H2o12—O10viii148.75
P—O8—O2152.5 (4)As—H2o12—O1128.62
P—O8—O3107.9 (2)As—H2o12—O12114.13
P—O8—O4116.0 (3)As—H2o12—O12xviii119.99
P—O8—O696.2 (3)As—H2o12—O13vii77.42
P—O8—O7146.7 (3)As—H2o12—H2o10viii141.83
P—O8—O934.01 (16)As—H2o12—H1o12140.43
P—O8—O1141.73 (18)As—H2o12—H1o12xviii103.27
P—O8—O1334.15 (17)As—H2o12—H2o12xviii126.21
P—O8—O13ii99.1 (2)Asvii—H2o12—P81.24
P—O8—H2o10ii101.7Asvii—H2o12—Pvii0
O2—O8—O360.87 (17)Asvii—H2o12—O4viii97.14
O2—O8—O465.07 (18)Asvii—H2o12—O9103.87
O2—O8—O656.7 (2)Asvii—H2o12—O10viii83.54
O2—O8—O760.6 (2)Asvii—H2o12—O1180.31
O2—O8—O9135.2 (3)Asvii—H2o12—O12103
O2—O8—O11113.5 (3)Asvii—H2o12—O12xviii149.31
O2—O8—O13162.0 (3)Asvii—H2o12—O13vii19.66
O2—O8—O13ii104.3 (2)Asvii—H2o12—H2o10viii75.96
O2—O8—H2o10ii90.06Asvii—H2o12—H1o1291.56
O3—O8—O4125.3 (2)Asvii—H2o12—H1o12xviii155.53
O3—O8—O669.19 (19)Asvii—H2o12—H2o12xviii152.03
O3—O8—O786.5 (2)P—H2o12—Pvii81.24
O3—O8—O9133.7 (3)P—H2o12—O4viii89.9
O3—O8—O1171.4 (2)P—H2o12—O928.09
O3—O8—O13102.52 (18)P—H2o12—O10viii148.75
O3—O8—O13ii140.3 (3)P—H2o12—O1128.62
O3—O8—H2o10ii51.18P—H2o12—O12114.13
O4—O8—O675.02 (19)P—H2o12—O12xviii119.99
O4—O8—O774.41 (18)P—H2o12—O13vii77.42
O4—O8—O982.0 (2)P—H2o12—H2o10viii141.83
O4—O8—O11126.5 (3)P—H2o12—H1o12140.43
O4—O8—O13132.2 (2)P—H2o12—H1o12xviii103.27
O4—O8—O13ii61.79 (16)P—H2o12—H2o12xviii126.21
O4—O8—H2o10ii137.93Pvii—H2o12—O4viii97.14
O6—O8—O7117.0 (2)Pvii—H2o12—O9103.87
O6—O8—O986.9 (2)Pvii—H2o12—O10viii83.54
O6—O8—O1164.9 (2)Pvii—H2o12—O1180.31
O6—O8—O13126.8 (3)Pvii—H2o12—O12103
O6—O8—O13ii136.6 (2)Pvii—H2o12—O12xviii149.31
O6—O8—H2o10ii120.36Pvii—H2o12—O13vii19.66
O7—O8—O9139.6 (2)Pvii—H2o12—H2o10viii75.96
O7—O8—O11155.7 (3)Pvii—H2o12—H1o1291.56
O7—O8—O13114.6 (3)Pvii—H2o12—H1o12xviii155.53
O7—O8—O13ii56.19 (17)Pvii—H2o12—H2o12xviii152.03
O7—O8—H2o10ii63.69O4viii—H2o12—O9103.23
O9—O8—O1162.6 (2)O4viii—H2o12—O10viii119.06
O9—O8—O1360.79 (19)O4viii—H2o12—O1161.91
O9—O8—O13ii83.8 (2)O4viii—H2o12—O12150.51
O9—O8—H2o10ii133.61O4viii—H2o12—O12xviii63.62
O11—O8—O1362.9 (2)O4viii—H2o12—O13vii77.89
O11—O8—O13ii140.9 (3)O4viii—H2o12—H2o10viii122.76
O11—O8—H2o10ii93.86O4viii—H2o12—H1o12129.66
O13—O8—O13ii83.93 (19)O4viii—H2o12—H1o12xviii59.21
O13—O8—H2o10ii73.01O4viii—H2o12—H2o12xviii79.52
O13ii—O8—H2o10ii95.76O9—H2o12—O10viii135.97
Pb—O9—Pbiv105.1 (2)O9—H2o12—O1151.15
Pb—O9—As136.3 (3)O9—H2o12—O1292.68
Pb—O9—P136.3 (3)O9—H2o12—O12xviii103.8
Pb—O9—O7ii50.94 (14)O9—H2o12—O13vii104.34
Pb—O9—O8165.0 (3)O9—H2o12—H2o10viii133.85
Pb—O9—O9iv55.71 (15)O9—H2o12—H1o12122.53
Pb—O9—O1049.74 (16)O9—H2o12—H1o12xviii88.89
Pb—O9—O11127.3 (2)O9—H2o12—H2o12xviii103.92
Pb—O9—O1251.00 (13)O10viii—H2o12—O11163.77
Pb—O9—O13107.8 (2)O10viii—H2o12—O1244.01
Pb—O9—H2o1063.08O10viii—H2o12—O12xviii85.78
Pb—O9—H2o1265.34O10viii—H2o12—O13vii96.33
Pbiv—O9—As116.0 (3)O10viii—H2o12—H2o10viii8.32
Pbiv—O9—P116.0 (3)O10viii—H2o12—H1o1214.18
Pbiv—O9—O7ii153.1 (2)O10viii—H2o12—H1o12xviii101.88
Pbiv—O9—O888.64 (19)O10viii—H2o12—H2o12xviii74.32
Pbiv—O9—O9iv49.36 (13)O11—H2o12—O12142.5
Pbiv—O9—O1099.26 (17)O11—H2o12—O12xviii107.49
Pbiv—O9—O1198.6 (2)O11—H2o12—O13vii67.66
Pbiv—O9—O12114.1 (2)O11—H2o12—H2o10viii156.19
Pbiv—O9—O13147.1 (3)O11—H2o12—H1o12167.06
Pbiv—O9—H2o1099.03O11—H2o12—H1o12xviii92.27
Pbiv—O9—H2o12111.77O11—H2o12—H2o12xviii120.49
As—O9—P0O12—H2o12—O12xviii88.71
As—O9—O7ii90.6 (2)O12—H2o12—O13vii122.32
As—O9—O834.28 (16)O12—H2o12—H2o10viii44.96
As—O9—O9iv160.6 (3)O12—H2o12—H1o1230
As—O9—O10130.8 (3)O12—H2o12—H1o12xviii97.07
As—O9—O1135.12 (19)O12—H2o12—H2o12xviii72.57
As—O9—O1296.7 (2)O12xviii—H2o12—O13vii136.37
As—O9—O1332.36 (15)O12xviii—H2o12—H2o10viii94.07
As—O9—H2o10120.82O12xviii—H2o12—H1o1284.63
As—O9—H2o1285.41O12xviii—H2o12—H1o12xviii16.74
P—O9—O7ii90.6 (2)O12xviii—H2o12—H2o12xviii16.14
P—O9—O834.28 (16)O13vii—H2o12—H2o10viii89.85
P—O9—O9iv160.6 (3)O13vii—H2o12—H1o12106.9
P—O9—O10130.8 (3)O13vii—H2o12—H1o12xviii137.02
P—O9—O1135.12 (19)O13vii—H2o12—H2o12xviii147.08
P—O9—O1296.7 (2)H2o10viii—H2o12—H1o1217.61
P—O9—O1332.36 (15)H2o10viii—H2o12—H1o12xviii110.19
P—O9—H2o10120.82H2o10viii—H2o12—H2o12xviii82.58
P—O9—H2o1285.41H1o12—H2o12—H1o12xviii99.12
O7ii—O9—O8114.3 (3)H1o12—H2o12—H2o12xviii70.72
O7ii—O9—O9iv105.5 (2)H1o12xviii—H2o12—H2o12xviii28.4
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z; (iv) x+1, y+1, z; (v) x+2, y1/2, z+1; (vi) x+1, y1/2, z; (vii) x+2, y+1, z+1; (viii) x+1, y, z; (ix) x+1, y+3/2, z; (x) x+1, y+1/2, z; (xi) x+1, y+1/2, z+1; (xii) x+2, y+1/2, z+1; (xiii) x1, y, z1; (xiv) x, y+1, z; (xv) x+1, y, z+1; (xvi) x, y+1/2, z; (xvii) x+1, y1/2, z+1; (xviii) x+2, y+1, z; (xix) x+1, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O100.82 (2)2.96 (6)3.78 (1)136 (4)
O5—H2o5···O30.820 (16)2.23 (6)2.838 (9)131 (7)
O10—H1o10···O6vi0.822.552.973 (10)113.40
O10—H2o10···O12i0.822.212.876 (9)137.89
O12—H1o12···O10viii0.822.062.876 (9)172.21
O12—H2o12···O13vii0.822.222.746 (8)122.32
Symmetry codes: (i) x1, y, z; (vi) x+1, y1/2, z; (vii) x+2, y+1, z+1; (viii) x+1, y, z.
 

Acknowledgements

We thank two anonymous reviewers as well as the co-editor Radovan Černý for comments which helped in improving the manuscript.

Funding information

The following funding is acknowledged: Czech Science Foundation (GACR 20-11949S) (grant No. 20-11949S to Institute of Physics ASCR, v.v.i.); Ministry of Culture of the Czech Republic (long-term project DKRVO 2019-2023/1.II.c; National Museum, 00023272) for PŠ.

References

First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, p. 278. Oxford University Press.  Google Scholar
First citationBrown, I. D. (2009). Chem. Rev. 109, 6858–6919.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurns, P. C. (2005). Can. Mineral. 43, 1839–1894.  Web of Science CrossRef CAS Google Scholar
First citationDürrfeld, V. (1913). Z. Krystallogr. Mineral. 51, 278–279.  Google Scholar
First citationFinch, R. J. & Murakami, T. (1999). Reviews in Mineralogy, Vol. 38, Uranium: Mineralogy, Geochemistry and the Environment, edited by P. C. Burns & R. Finch, pp. 91–179. Chantilly, VA: Mineralogical Society of America and Geochemical Society.  Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGorman-Lewis, D., Shvareva, T., Kubatko, K. A., Burns, P. C., Wellman, D. M., McNamara, B., Szymanowski, J. E. S., Navrotsky, A. & Fein, J. B. (2009). Environ. Sci. Technol. 43, 7416–7422.  PubMed CAS Google Scholar
First citationKrivovichev, S. V. & Plášil, J. (2013). Uranium, from cradle to grave, MAC Short Course series, Vol. 43, edited by P. C. Burns & G. E. Sigmon, pp. 15–119. Québec: Mineralogical Association of Canada.  Google Scholar
First citationLocock, A. J. & Burns, P. C. (2003). Mineral. Mag. 67, 1109–1120.  CrossRef ICSD CAS Google Scholar
First citationLussier, A. J., Lopez, R. A. K. & Burns, P. C. (2016). Can. Mineral. 54, 177–283.  Web of Science CrossRef CAS Google Scholar
First citationMaher, K., Bargar, J. R. & Brown, G. E. Jr (2013). Inorg. Chem. 52, 3510–3532.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationPetříček, V., Dušek, M. & Plášil, J. (2016). Z. Kristallogr. 231, 583–599.  Google Scholar
First citationPiret, P. & Piret-Meunier, J. (1988). Bull. Minéral. 111, 439–442.  CAS Google Scholar
First citationPlášil, J. (2014). J. Geosci. 59, 99–114.  Google Scholar
First citationPlášil, J., Kiefer, B., Ghazisaeed, S. & Philippo, S. (2020). Acta Cryst. B76, 502–509.  CrossRef ICSD IUCr Journals Google Scholar
First citationRigaku (2019). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSchindler, M. & Hawthorne, F. C. (2008). Can. Mineral. 46, 467–501.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVochten, R. & Goeminne, A. (1984). Phys. Chem. Miner. 11, 95–100.  CrossRef CAS Google Scholar
First citationWalenta, K. (1979). Tschermaks Mineral. Petrogr. Mitt. 26, 11–19.  CrossRef CAS Google Scholar
First citationWalenta, K. & Wimmenauer, W. (1961). Jahresh. Geol. Landesamtes Baden-Wuerttemb. 4, 7–37.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds