research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Properties and interactions – melting point of tri­bromo­benzene isomers

crossmark logo

aFaculty of Chemistry, University of Opole, Oleska 48, Opole, 45-052, Poland, and bFaculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
*Correspondence e-mail: mbujak@uni.opole.pl, katran@amu.edu.pl

Edited by J. Lipkowski, Polish Academy of Sciences, Poland (Received 1 April 2021; accepted 19 June 2021; online 24 July 2021)

Single crystals of isomeric 1,2,3-tri­bromo­benzene (123TBB), 1,2,4-tri­bromo­benzene (124TBB) and 1,3,5-tri­bromo­benzene (135TBB) have been grown from different solvents and their structures determined by X-ray diffraction at 100, 200 and 270 K. The melting-point differences of ca 40 K between 135TBB, 123TBB and 124TBB have been correlated with the molecular symmetry and packing preferences in the crystal, as well as with the main types of intermolecular halogen interactions, i.e. Br⋯Br, Br⋯C (Br⋯π) and Br⋯H. The relationship between symmetry and melting point in Carnelley's rule has been extended to the accessibility of terminal atoms for the formation of intermolecular interactions, their occurrences and distribution, and the close packing. The electrostatic potential mapped on molecular surfaces demonstrates that in more symmetric molecules the more evenly distributed substituents are more accessible and form more optimum intermolecular interactions.

1. Introduction

Melting point is one of the fundamental thermodynamic parameters that can be quickly and cheaply determined, and used, along with other parameters, to identify a substance, check its purity and characterize its properties. Most physicochemical tables list melting and boiling points, and solubility, along with other parameters of various compounds. These parameters change in a characteristic way for compounds forming a homologous series, for example, analogous derivatives with different substituents. However, the most interesting from a structural point of view are the exceptions and anomalies in the well established trends of these series, and in particular polymorphs and very similar compounds, including isomers.

Numerous studies have been dedicated to the rules and factors affecting the melting point that could be calculated as the quotient of enthalpy and entropy of melting (Carnelley, 1882[Carnelley, T. (1882). London, Edinb. Dubl. Philos. Mag. J. Sci. 13, 112-130.]; Beacall, 1928[Beacall, T. (1928). Recl Trav. Chim. Pays Bas, 47, 37-44.]; Holler, 1948[Holler, A. C. (1948). J. Org. Chem. 13, 70-74.]; Gavezzotti, 1995[Gavezzotti, A. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1399-1404.]; Brown & Brown, 2000[Brown, R. J. C. & Brown, R. F. C. (2000). J. Chem. Educ. 77, 724-731.]; Boese et al., 1999[Boese, R., Weiss, H.-C. & Bläser, D. (1999). Angew. Chem. Int. Ed. 38, 988-992.]; Thalladi & Boese, 2000[Thalladi, V. R. & Boese, R. (2000). New J. Chem. 24, 579-581.]; Thalladi et al., 2000a[Thalladi, V. R., Boese, R. & Weiss, H.-C. (2000a). Angew. Chem. Int. Ed. 39, 918-922.],b[Thalladi, V. R., Boese, R. & Weiss, H.-C. (2000b). J. Am. Chem. Soc. 122, 1186-1190.],c[Thalladi, V. R., Nüsse, M. & Boese, R. (2000c). J. Am. Chem. Soc. 122, 9227-9236.]; Katritzky et al., 2001[Katritzky, A. R., Jain, R., Lomaka, A., Petrukhin, R., Maran, U. & Karelson, M. (2001). Cryst. Growth Des. 1, 261-265.]; Bujak et al., 2008[Bujak, M., Podsiadło, M. & Katrusiak, A. (2008). J. Phys. Chem. B, 112, 1184-1188.]; Joseph et al., 2011[Joseph, S., Sathishkumar, R., Mahapatra, S. & Desiraju, G. R. (2011). Acta Cryst. B67, 525-534.]; Podsiadło et al., 2012[Podsiadło, M., Bujak, M. & Katrusiak, A. (2012). CrystEngComm, 14, 4496-4500.], 2013[Podsiadło, M., Olejniczak, A. & Katrusiak, A. (2013). J. Phys. Chem. C, 117, 4759-4763.]; Yalkowsky & Alantary, 2018[Yalkowsky, S. H. & Alantary, D. (2018). J. Pharm. Sci. 107, 1211-1227.]; Gallagher et al., 2019[Gallagher, J. F., Farrell, M., Hehir, N., Mocilac, P., Aubert, E., Espinosa, E., Guillot, B. & Jelsch, C. (2019). Cryst. Growth Des. 19, 6141-6158.]). The studies showed that the location of substituents in molecules and their ability to form intermolecular interactions cannot be neglected when explaining the melting-point differences of isomers. In a recent study on tetra­chloro­benzene isomers, both the nature and distribution of interactions were correlated with the melting points of these relatively simple compounds, by representing the molecular symmetry and magnitudes of electrostatic potential on the molecular surfaces (Bujak, 2018[Bujak, M. (2018). Acta Cryst. B74, 458-466.]).

In this article, we continue our studies on the differences in melting points of isomers for tri­bromo­benzenes (Scheme 1[link] shows the tri­bromo­benzene isomers, their abbreviations, the molecular point-group symmetries and the melting points). We have determined the crystal structures at 270, 200 and 100 K. The experimental study is supported by a Hirshfeld surface analysis and quantum-chemical calculations. We were particularly interested in the nature of the intermolecular interactions, their thermal behaviour and the relationships of the various structural parameters to the differences in the melting points of these compounds.

[Scheme 1]

All tri­bromo­benzene isomers are solid under ambient conditions, with their melting points above 315 K (Mackay et al., 2006[Mackay, D., Shiu, W. Y., Ma, K.-C. & Lee, S. C. (2006). Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, 2nd ed. Boca Raton, FL: CRC Press.]). As illustrated in Fig. 1[link], in accordance with the molecular symmetry and Carnelley's rule (Carnelley, 1882[Carnelley, T. (1882). London, Edinb. Dubl. Philos. Mag. J. Sci. 13, 112-130.]; Brown & Brown, 2000[Brown, R. J. C. & Brown, R. F. C. (2000). J. Chem. Educ. 77, 724-731.]), the highest melting point is that of 135TBB (396.0 K, molecular symmetry D3h), then lower by 35 K is that of 123TBB (361.0 K C2v symmetry) and still 43 K lower is that of 124TBB (317.7 K, Cs symmetry). These melting-point differences indicate that the structural dissimilarities between the tri­bromo­benzene isomers could be related to their molecular symmetry (i.e. the location of the Br atoms in the aromatic ring), as well as the distinct molecular interactions and crystal packing preferences.

[Figure 1]
Figure 1
Melting points (Mackay et al., 2006[Mackay, D., Shiu, W. Y., Ma, K.-C. & Lee, S. C. (2006). Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, 2nd ed. Boca Raton, FL: CRC Press.]) for series of isomers: (•) tri­chloro- (TCB), (♦) tri­bromo- (TBB) and (▴) tri­iodo­benzenes (TIB), plotted as a function of their molecular weight. The dashed lines joining the points are guides for the eye only.

Of all the tri­bromo­benzenes, so far only the structure of 135TBB was determined at room temperature (Milledge & Pant, 1960[Milledge, H. J. & Pant, L. M. (1960). Acta Cryst. 13, 285-290.]; Belaaraj et al., 1984[Belaaraj, A., Nguyen-ba-Chanh, Haget, Y. & Cuevas-Diarte, M. A. (1984). J. Appl. Cryst. 17, 211.]). Milledge & Pant (1960[Milledge, H. J. & Pant, L. M. (1960). Acta Cryst. 13, 285-290.]) established that 135TBB does not undergo any discontinuous phase transition between room and liquid-nitro­gen temperature.

2. Experimental

Samples of 123TBB (98%; Tokyo Chemical Industry Co. Ltd), 124TBB and 135TBB (95 and 99%, respectively; Fluoro­chem Ltd) were recrystallized from different solvents. The best crystals of 123TBB and 124TBB were obtained at room temperature by the slow evaporation from ethanol (96%, POCH S.A.) solutions, whereas for 135TCB, the tetra­chloro­methane (EUROCHEM BGD Sp. z o.o.) solution performed better.

Single crystals of the tri­bromo­benzene isomers were selected under a polarizing microscope and sealed in thin-walled glass capillaries (from Hilgenberg GmbH, with an internal diameter of 0.3 mm and walls 0.01 mm thick). The samples were cooled in a stream of nitro­gen gas from an Oxford Cryosystems attachment. The diffraction data were collected for each crystal first at 270 K and then at 200 K and 100 K on a single-crystal Xcalibur Eos CCD diffractometer with graphite-monochromated Mo Kα radiation. Reflections were measured using the ω-scan technique with Δω = 1.0° images exposed for 10 (for 123TBB and 135TBB) and 7.5 s (for 124TBB). CrysAlisPro (Rigaku Oxford Diffraction, 2018[Rigaku Oxford Diffraction (2018). CrysAlisPro. Rigaku Corporation, The Woodlands, TX, USA.]) was used for collecting data and data reduction. All data were accounted for Lorentz, polarization and analytical sample absorption effects. The structures were solved by direct methods and refined with SHELX (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.], 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). Noncentrosymmetric 124TBB and 135TBB were refined as inversion twins. The H-atom positions in all the structures were located in difference Fourier maps and the riding model was applied. The isotropic displacement parameters of the H atoms were fixed to 1.2Ueq of their carriers.

Intermolecular contacts were compared using Hirshfeld surface analysis with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatalika, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Australia. https://hirshfeldsurface.net.]) and the structures were drawn with Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). The geometry optimizations and the calculations for 123TBB, 124TBB and 135TBB were performed using the Gaussian 09 program package (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09. Revision A.02. Gaussian Inc., Wallingford CT, USA. https://gaussian.com.]), along with the GaussView 5.0 graphical interface (Dennington et al., 2009[Dennington, R., Keith, T. & Millam, J. (2009). GaussView 5.0. Semichem Inc., Shawnee Mission, KS, USA.]). Density functional theory (DFT) calculations were carried out at the B3LYP/6-311-G(2d,2p) level of theory (Becke, 1988[Becke, A. D. (1988). Phys. Rev. A, 38, 3098-3100.]; Lee et al., 1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]), in a vacuum, for the starting models of the isolated molecules adopted from the X-ray diffraction results.

3. Results

123TBB crystallizes in the monoclinic space group P21/c, 124TBB in the orthorhombic space group Fdd2 and 135TBB in the orthorhombic space group P212121. There is one independent molecule in the asymmetric unit for 135TBB, two for 123TBB and three for 124TBB. For these isomers, no transition or symmetry changes were detected from 270 to 100 K. In this temperature range, the volume of the unit cells of the crystals similarly contract by 3.01 (123TBB), 2.67 (124TBB) and 3.04% (135TBB); their unit-cell parameters contract nearly linearly, but at different rates. The largest linear contraction of 1.49% is that of the shortest a parameter in 135TBB (Table 1[link] and Tables S1–S3 in the supporting information).

Table 1
Selected crystal data for 123TBB, 124TBB and 135TBB at 100 K

  123TBB 124TBB 135TBB
Chemical formula C6H3Br3 C6H3Br3 C6H3Br3
Mr 314.78 314.78 314.78
Crystal system Monoclinic Orthorhombic Orthorhombic
Space group, Z, Z P21/c, 8, 2 Fdd2, 48, 3 P212121, 4, 1
a (Å) 12.7973 (5) 29.313 (2) 4.00341 (11)
b (Å) 8.2623 (3) 78.645 (4) 13.4119 (3)
c (Å) 15.4666 (6) 3.9320 (2) 14.0916 (4)
β (°) 113.102 (5) 90 90
V3) 1504.22 (11) 9064.5 (9) 756.63 (3)
R[F2 > 2σ(F2)] 0.027 0.061 0.018
wR(F2) 0.055 0.135 0.036

The crystals of all the studied isomers, similar to other halogenated benzenes, can be considered as being built of layers composed of tri­bromo­benzene molecules connected through Br⋯Br/C/H interactions (Figs. S1–S3 in the supporting information). At 100 K, the distance between parallel aromatic rings is similar, ca 3.5 Å, in both 123TBB and 135TBB, and it is ca 3.6 Å in 124TBB. The molecules of 123TBB, 124TBB and 135TBB are nearly planar as scrutinized in the supporting information.

The molecular dimensions of the studied tri­bromo­benzenes show some steric hindrance between adjacent Br and H substituents in the aromatic rings. The shortest intramolecular distances of Br⋯Br = 3.307 (1) Å, H⋯H = 2.30 Å and Br⋯H = 2.83 Å, which are clearly below the sums of the van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]), are present in 123TBB and 124TBB at 270 K.

Intermolecular contacts involving Br atoms are present in all isomers and their lengths decrease on cooling (Table 2[link] and Tables S7, S8 and S10). The largest contraction of −0.081 (5) Å between 270 and 100 K is for the Br11⋯Br34 halogen bond in 124TBB. Also, the Br⋯H contacts, in general, contract on cooling (Tables S8 and S9). Interestingly, according to the criterion of the sum of the van der Waals radii, at 270 K, intermolecular Br⋯Br bonds are present only in 123TBB and 124TBB, whereas the first Br⋯Br halogen bond in 135TBB appears in the structure at ca 175 K (Tables 2[link] and S10). The intermolecular contacts for the structures of the isomers at 100 K are discussed below.

Table 2
Short intermolecular Br⋯Br distances (Å) and angles (°) in 123TBB, 124TBB and 135TBB at 270, 200 and 100 K

  270 K 200 K 100 K
123TBB      
Br11⋯Br12i 3.6440 (10) 3.6175 (8) 3.5850 (6)
C11—Br11⋯Br12i 162.75 (19) 162.83 (17) 163.37 (15)
Br11⋯Br12i—C12i 135.03 (16) 135.19 (14) 135.10 (12)
       
124TBB      
Br11⋯Br34ii 3.687 (4) 3.651 (3) 3.606 (3)
C11—Br11⋯Br34ii 99.2 (7) 99.4 (6) 99.7 (5)
Br11⋯Br34ii—C34ii 171.2 (7) 172.6 (6) 172.2 (6)
Br14⋯Br21iii 3.751 (4) 3.722 (3) 3.676 (3)
C14—Br14⋯Br21iii 86.3 (6) 86.2 (6) 86.0 (6)
Br14⋯Br21iii—C21iii 161.4 (7) 162.0 (6) 162.1 (6)
Br14⋯Br31 3.698 (4) 3.672 (3) 3.640 (3)
C14—Br14⋯Br31 165.7 (8) 165.2 (7) 165.4 (6)
Br14⋯Br31—C31 105.6 (7) 105.0 (6) 105.5 (6)
Br21⋯Br24iv 3.630 (4) 3.606 (3) 3.565 (3)
C21—Br21⋯Br24iv 102.7 (6) 102.3 (6) 103.3 (5)
Br21⋯Br24iv—C24iv 174.2 (7) 174.9 (6) 175.9 (6)
       
135TBB      
Br13⋯Br13v 3.7411 (13) 3.7094 (9) 3.6724 (8)
C13—Br13⋯Br13v 151.9 (2) 152.15 (16) 152.14 (15)
Br13⋯Br13v—C13v 112.4 (2) 112.16 (15) 112.30 (14)
Br13⋯Br15vi 3.7458 (11) 3.7252 (8) 3.6994 (7)
C13—Br13⋯Br15vi 118.4 (2) 117.95 (15) 117.93 (15)
Br13⋯Br15vi—C15vi 156.1 (2) 155.94 (17) 156.24 (16)
Symmetry codes: (i) −x + 1, y + [1 \over 2], −z + [1 \over 2]; (ii) x − [1 \over 2], y, z + [3 \over 2]; (iii) x, y, z + 1; (iv) x + [1 \over 4], −y + [1 \over 4], z − [3 \over 4]; (v) x − [1 \over 2], −y + [1 \over 2], −z; (vi) −x + [1 \over 2], −y + 1, z − [1 \over 2].

In 123TBB, the intermolecular Br11⋯Br12 distance is 3.5850 (6) Å. Atoms Br13 and Br23 are involved in C13—Br13⋯π and C23—Br23⋯π interactions (Pang et al., 2013[Pang, X., Wang, H., Zhao, X. R. & Jin, W. J. (2013). CrystEngComm, 15, 2722-2730.]; Wang et al., 2016[Wang, H., Wang, W. & Jin, W. J. (2016). Chem. Rev. 116, 5072-5104.]; Mahadevi & Sastry, 2016[Mahadevi, A. S. & Sastry, G. N. (2016). Chem. Rev. 116, 2775-2825.]). The shortest Br⋯C separations are Br13⋯C23 of 3.393 (4) Å and Br23⋯C13 of 3.395 (5) Å, whereas the corresponding Br⋯π(centroid) distances are 3.392 (2) and 3.464 (2) Å, respectively (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]; Tables 2[link] and S7, and Fig. S4). The intermolecular interactions of the 124TBB molecules are different. According to the criterion of the van der Waals radii, none of the independent molecules form C—Br⋯π interactions, but only Br⋯Br and Br⋯H interactions. Molecule C(11–C16) is involved in six interactions, while molecules C(21–26) and C(31–36) are involved in four halogen bonds each. The shortest Br⋯Br and Br⋯H distances are 3.565 (3) and 2.97 Å, respectively (Tables 2[link], S8 and S9, and Fig. S5). In 135TBB, the Br13⋯Br15 distance is 3.6994 (7) Å and atom Br13 is also engaged in two Br⋯Br bonds of 3.6724 (8) Å, as well as in one Br13⋯π interaction, characterized by Br⋯C distance of 3.549 (5) Å and a Br⋯π(centroid) distance of 3.786 (2) Å (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]; Tables 2[link] and S10, and Fig. S6).

The contribution of specific types of interactions to the overall cohesion forces in the crystals can be estimated roughly by the number and interatomic distances of the intermolecular contacts for one molecule. According to this criterion, the largest contribution of the Br⋯Br bonds is in 135TBB. In this compound, the Br atoms are more exposed and better accessed compared to 123TBB and 124TBB. At low temperature, due to crystal contraction, the distances become shorter, approximately at the same rate for all isomers.

The Br⋯Br halogen bonds formed in tri­bromo­benzenes are somewhat distorted from idealized types I and II. In both 124TBB and 135TBB, the Br⋯Br interactions, mainly of electrostatic type II, are relatively long. In contrast, the 123TBB crystal structure is governed by relatively short dispersion type I Br⋯Br bonds (Desiraju & Parthasarathy, 1989[Desiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725-8726.]; Pedireddi et al., 1994[Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.]; Awwadi et al., 2006[Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952-8960.]; Fourmigué, 2009[Fourmigué, M. (2009). Curr. Opin. Solid State Mater. Sci. 13, 36-45.]; Mukherjee et al., 2014[Mukherjee, A., Tothadi, S. & Desiraju, G. R. (2014). Acc. Chem. Res. 47, 2514-2524.]; Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]).

The Hirshfeld surfaces and corresponding fingerprint plots illustrate the distribution of the types of cohesion forces in tri­bromo­benzenes (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatalika, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Australia. https://hirshfeldsurface.net.]; McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.], 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). This analysis covers a broad range of possible intermolecular contacts, also those longer than the sums of the van der Waals radii. Contacts shorter than the sums of the van der Waals radii, coloured red in Figs. 2[link] and S7, mainly relate to Br⋯Br, Br⋯C (Br⋯π) and Br⋯H. All the fingerprint plots contain the sharp central red regions representing Br⋯Br and two symmetrically located blue spikes for Br⋯H contacts. The blue regions close to the Br⋯Br red areas are due to Br⋯C (Br⋯π) contacts (Fig. S7c). The plot for molecule C(11–16) of 124TBB has a different distribution of H⋯H contacts (blue area between the Br⋯H spikes; Fig. S7b).

[Figure 2]
Figure 2
Hirshfeld surfaces (generated separately for symmetry-independent molecules) mapped with dnorm (−0.02 to 0.80) and close molecules within a radius of 4.0 Å, at 100 K, for (a) two 123TBB molecules [C(11–16) left and C(21–26) right]; (b) three 124TBB molecules [C(11–16) upper, C(21–26) middle and C(31–36) bottom] and (c) 135TBB.

4. Discussion

Because in all the TBB isomers the high and low magnitudes of the calculated electrostatic potentials are associated with the Br atoms, one can expect that the electrostatic interactions mainly govern the aggregation of molecules. Fig. 3[link] shows the contribution of different contacts, assessed according to their portion on the Hirshfeld surfaces. The contacts involving Br atoms, i.e. Br⋯Br, Br⋯C (Br⋯π) and Br⋯H, constitute at least ca 74% of all contacts in the three isomers. It appears from these statistics that the combined contacts of Br⋯Br and Br⋯C (Br⋯π) correlate with the highest melting point of 135TBB; the sum of the Br⋯Br and Br⋯C (Br⋯π) contributions is ca 38 versus ca 31% for both 123TBB and 124TBB. At the same time, the sum of the Br⋯C (Br⋯π) and Br⋯H contacts for 123TBB (ca 66%) is clearly higher than that for the less symmetric isomer 124TBB (ca 55%), having the lowest melting point.

[Figure 3]
Figure 3
Distribution of contacts, at 100 K, based on their area on the Hirshfeld surfaces for 123TBB, 124TBB and 135TBB (the averaged values for the independent molecules are presented, cf. Fig. S8).

Neither the variances in the contribution of specific types of contacts at different temperatures nor those for independent molecules significantly affect the above-mentioned analysis (Fig. S8). Furthermore, as mentioned previously, the Br⋯Br halogen bonds in both 135TBB and 124TBB are of distorted type II, whereas those in 123TBB are of distorted type I. Also, the shortest Br⋯H bonds, found in 124TBB only, are of both distorted type I and II interactions. This shows that both the nature and distribution of specific cohesion forces may contribute to the differentiation of the melting points of isomeric tri­bromo­benzenes.

The magnitudes of the calculated molecular electrostatic potential are correlated with the preferences of particular atoms to form intermolecular interactions (Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]; Fig. S9). The electrostatic potential on the Br atoms in 135TBB is equally distributed, which favours electrostatic type II halogen bonds evenly distributed in space, because Br atoms are easily accessed for intermolecular interactions.

From a thermodynamic point of view, melting is a process that depends on the balance between the enthalpy and entropy of melting. The enthalpy component is associated mainly with molecular size and intermolecular interactions, whereas entropy, related to molecular symmetry and flexibility, affects the arrangement and packing of molecules (Yalkowsky & Alantary, 2018[Yalkowsky, S. H. & Alantary, D. (2018). J. Pharm. Sci. 107, 1211-1227.]). Therefore, the high symmetry of molecules facilitates their interactions and crystal formation, which results in a lower entropy of melting and in a higher melting point.

The selected structural and thermodynamic parameters for the tri­bromo­benzene isomers are collected in Table 3[link]. The unit-cell volume per molecule (V/Z) and the calculated density parameters are comparable for all the studied isomers. The void volume/Z and the relative volume of voids gradually decreases from 123TBB to 124TBB and are lowest for 135TBB (Figs. S1–S3). It appears that the melting point for tri­bromo­benzenes decreases with an increasing number of molecules in the asymmetric unit (Z′); however, this regularity does not apply to the 124TIB and 124TCB isomers (Fig. 4[link]). It is intriguing that in this series of isomers, the least dense 135TBB has the highest melting point, which is inconsistent with the observation that more dense crystals usually have higher melting points.

Table 3
Comparison of selected structural and thermodynamic parameters for 123TBB, 124TBB and 135TBB at 100 K

  123TBB 124TBB 135TBB
Space group P21/c Fdd2 P212121
Z, Z 8, 2 48, 3 4, 1
V/Z 188.03 188.8 189.16
Density (calculated, g cm−3) 2.780 2.768 2.763
Void volume/Z3) 16.2 10.3 7.4
Void volume of V (%) 8.6 5.4 3.9
Molecular symmetry mm2; C2v m; Cs [\overline 6]m2; D3h
Boiling point (K) 556* 548 544
Melting point (K) 361.0 317.7 396.0
Enthalpy of melting (kJ mol−1) Not available 17.9 21.7
Entropy of melting (J K−1 mol−1) Not available 56** 55**
Notes and references: (*) Nakada et al. (1970[Nakada, M., Fukushi, S., Tomita, H. & Mashiko, Y. (1970). Kogyo Kagaku Zasshi, 73, 929-932.]); (**) entropy of melting calculated from the enthalpy of melting (Kuramochi et al., 2004[Kuramochi, H., Maeda, K. & Kawamoto, K. (2004). J. Chem. Eng. Data, 49, 720-724.]; van der Linde et al., 2005[Linde, P. R. van der, van Miltenburg, J. C., van den Berg, G. J. K. & Oonk, H. A. J. (2005). J. Chem. Eng. Data, 50, 164-172.]) and the melting point (Mackay et al., 2006[Mackay, D., Shiu, W. Y., Ma, K.-C. & Lee, S. C. (2006). Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, 2nd ed. Boca Raton, FL: CRC Press.]).
[Figure 4]
Figure 4
Melting points for series of isomers: (•) tri­chloro- (TCB), (♦) tri­bromo- (TBB) and (▴) tri­iodo­benzenes (TIB), plotted as a function of Z′. The solid lines join the points for isomers containing the same halogen atoms, while the dashed lines are for isomers with the same halogen-atom positions in an aromatic ring. Both the solid and dashed lines are guides for the eye only.

The tri­bromo­benzene isomers are composed of ordered rigid molecules; thus, the differences in their melting points, like those of disubstituted benzenes (Gavezzotti, 1995[Gavezzotti, A. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1399-1404.]; Bujak et al., 2007[Bujak, M., Dziubek, K. & Katrusiak, A. (2007). Acta Cryst. B63, 124-131.]; Dziubek & Katrusiak, 2014[Dziubek, K. F. & Katrusiak, A. (2014). Acta Cryst. B70, 492-497.]), can be associated with the enthalpy-related components, such as cohesion forces. This further confirms the arguments based on the analysis of the nature and distribution of intermolecular interactions.

5. Conclusions

The crystals of three tri­bromo­benzene isomers have been investigated at low temperature in order to explore the relationships between the intermolecular interactions and melting points of these compounds. Beside the symmetry, described by Carnelley's rule, the intuitive principle for the melting-point differences can be associated with cohesion forces: the stronger and more frequent the interactions between molecules the more energy is required to melt the crystal. The present results show that the strongest halogen bonds alone cannot account for the melting-point differences. Therefore weaker intermolecular interactions have to be considered too. Higher molecular symmetry provides better access to the Br atoms and hence the specific optimum interactions that correlate with the higher melting point of the particular isomer.

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO 1.171.39.46 (Rigaku Oxford Diffraction, 2018); cell refinement: CrysAlis PRO 1.171.39.46 (Rigaku Oxford Diffraction, 2018); data reduction: CrysAlis PRO 1.171.39.46 (Rigaku Oxford Diffraction, 2018); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2014); molecular graphics: Mercury (Macrae at al., 2020); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2014).

(123TBB_270K) top
Crystal data top
C6H3Br3F(000) = 1152
Mr = 314.78Dx = 2.697 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.9832 (8) ÅCell parameters from 2431 reflections
b = 8.3806 (6) Åθ = 3.0–23.2°
c = 15.5159 (10) ŵ = 15.51 mm1
β = 113.276 (7)°T = 270 K
V = 1550.8 (2) Å3Tabular, yellow
Z = 80.48 × 0.25 × 0.18 mm
Data collection top
Xcalibur, Eos
diffractometer
3041 independent reflections
Radiation source: fine-focus sealed X-ray tube1880 reflections with I > 2σ(I)
Detector resolution: 16.1544 pixels mm-1Rint = 0.086
ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: analytical
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1616
Tmin = 0.046, Tmax = 0.172k = 1010
21557 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0237P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
3041 reflectionsΔρmax = 0.63 e Å3
164 parametersΔρmin = 0.69 e Å3
5 restraintsExtinction correction: SHELXL-2014/7 (Sheldrick 2014), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00081 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.4710 (5)0.2316 (8)0.0498 (4)0.0381 (16)
Br110.54810 (6)0.30051 (10)0.17491 (5)0.0658 (3)
C120.3829 (4)0.1276 (7)0.0257 (4)0.0337 (15)
Br120.33212 (5)0.04958 (9)0.11642 (4)0.0540 (2)
C130.3297 (5)0.0798 (7)0.0662 (4)0.0383 (15)
Br130.20629 (6)0.05844 (10)0.10596 (5)0.0661 (2)
C140.3659 (5)0.1378 (8)0.1329 (4)0.0500 (18)
H140.32980.10640.19510.060*
C150.4546 (5)0.2415 (9)0.1078 (4)0.0532 (19)
H150.47850.27990.15300.064*
C160.5083 (5)0.2889 (8)0.0158 (4)0.0467 (17)
H160.56890.35860.00170.056*
C210.0722 (5)0.7264 (8)0.0415 (4)0.0415 (16)
Br210.11923 (6)0.79773 (10)0.16627 (4)0.0595 (2)
C220.1358 (4)0.6209 (7)0.0146 (4)0.0338 (15)
Br220.27375 (5)0.54326 (9)0.10268 (4)0.0526 (2)
C230.0982 (4)0.5767 (7)0.0783 (4)0.0366 (15)
Br230.18175 (6)0.43587 (10)0.12067 (5)0.0612 (2)
C240.0004 (5)0.6347 (8)0.1434 (4)0.0406 (15)
H240.02510.60350.20590.049*
C250.0627 (5)0.7400 (8)0.1151 (4)0.0467 (17)
H250.12950.78060.15900.056*
C260.0271 (5)0.7852 (8)0.0228 (4)0.0437 (17)
H260.06990.85520.00410.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.039 (3)0.038 (5)0.031 (3)0.009 (3)0.007 (3)0.003 (3)
Br110.0623 (4)0.0825 (7)0.0378 (4)0.0100 (4)0.0041 (3)0.0081 (4)
C120.039 (3)0.036 (4)0.028 (3)0.011 (3)0.015 (3)0.008 (3)
Br120.0579 (4)0.0644 (6)0.0469 (4)0.0062 (4)0.0284 (3)0.0157 (3)
C130.046 (3)0.028 (4)0.043 (4)0.003 (3)0.021 (3)0.000 (3)
Br130.0638 (5)0.0593 (6)0.0634 (5)0.0181 (4)0.0125 (4)0.0098 (4)
C140.060 (4)0.052 (5)0.033 (4)0.014 (4)0.013 (3)0.004 (3)
C150.062 (4)0.056 (6)0.054 (5)0.008 (4)0.036 (4)0.007 (4)
C160.049 (4)0.041 (5)0.052 (4)0.001 (3)0.022 (3)0.002 (3)
C210.048 (4)0.040 (5)0.037 (4)0.009 (3)0.017 (3)0.003 (3)
Br210.0697 (5)0.0728 (7)0.0392 (4)0.0072 (4)0.0249 (3)0.0093 (4)
C220.035 (3)0.032 (4)0.032 (3)0.002 (3)0.010 (3)0.007 (3)
Br220.0412 (4)0.0670 (6)0.0422 (4)0.0051 (3)0.0086 (3)0.0121 (3)
C230.040 (3)0.031 (4)0.039 (4)0.003 (3)0.017 (3)0.001 (3)
Br230.0712 (5)0.0607 (6)0.0548 (5)0.0138 (4)0.0282 (4)0.0060 (4)
C240.049 (4)0.036 (5)0.032 (4)0.005 (3)0.011 (3)0.000 (3)
C250.039 (3)0.048 (5)0.043 (4)0.001 (3)0.005 (3)0.011 (3)
C260.043 (3)0.045 (5)0.046 (4)0.002 (3)0.020 (3)0.003 (3)
Geometric parameters (Å, º) top
C11—C121.368 (7)C21—C261.373 (7)
C11—C161.375 (8)C21—C221.383 (8)
C11—Br111.889 (5)C21—Br211.882 (6)
C12—C131.376 (7)C22—C231.377 (7)
C12—Br121.892 (5)C22—Br221.888 (5)
C13—C141.382 (7)C23—C241.369 (7)
C13—Br131.873 (6)C23—Br231.888 (6)
C14—C151.370 (9)C24—C251.381 (8)
C14—H140.9300C24—H240.9300
C15—C161.376 (7)C25—C261.372 (8)
C15—H150.9300C25—H250.9300
C16—H160.9300C26—H260.9300
C12—C11—C16121.5 (5)C26—C21—C22120.8 (5)
C12—C11—Br11121.4 (4)C26—C21—Br21117.6 (5)
C16—C11—Br11117.1 (5)C22—C21—Br21121.6 (4)
C11—C12—C13119.5 (5)C23—C22—C21118.8 (5)
C11—C12—Br12121.1 (4)C23—C22—Br22120.5 (4)
C13—C12—Br12119.4 (4)C21—C22—Br22120.7 (4)
C12—C13—C14119.5 (6)C24—C23—C22121.2 (6)
C12—C13—Br13122.3 (4)C24—C23—Br23117.6 (4)
C14—C13—Br13118.1 (5)C22—C23—Br23121.2 (4)
C15—C14—C13120.4 (6)C23—C24—C25119.1 (6)
C15—C14—H14119.8C23—C24—H24120.4
C13—C14—H14119.8C25—C24—H24120.4
C14—C15—C16120.2 (6)C26—C25—C24120.7 (6)
C14—C15—H15119.9C26—C25—H25119.7
C16—C15—H15119.9C24—C25—H25119.7
C11—C16—C15118.9 (6)C25—C26—C21119.5 (6)
C11—C16—H16120.5C25—C26—H26120.3
C15—C16—H16120.5C21—C26—H26120.3
C16—C11—C12—C130.4 (9)C26—C21—C22—C230.5 (9)
Br11—C11—C12—C13179.6 (4)Br21—C21—C22—C23178.2 (4)
C16—C11—C12—Br12179.9 (5)C26—C21—C22—Br22178.8 (5)
Br11—C11—C12—Br120.9 (7)Br21—C21—C22—Br220.1 (7)
C11—C12—C13—C140.2 (9)C21—C22—C23—C240.3 (9)
Br12—C12—C13—C14179.4 (5)Br22—C22—C23—C24178.6 (5)
C11—C12—C13—Br13178.6 (5)C21—C22—C23—Br23179.0 (4)
Br12—C12—C13—Br131.0 (7)Br22—C22—C23—Br230.8 (7)
C12—C13—C14—C150.4 (9)C22—C23—C24—C250.4 (9)
Br13—C13—C14—C15178.9 (5)Br23—C23—C24—C25179.0 (5)
C13—C14—C15—C160.1 (10)C23—C24—C25—C260.6 (9)
C12—C11—C16—C150.7 (9)C24—C25—C26—C210.8 (9)
Br11—C11—C16—C15179.9 (5)C22—C21—C26—C250.7 (9)
C14—C15—C16—C110.5 (10)Br21—C21—C26—C25178.0 (5)
(123TBB_200K) top
Crystal data top
C6H3Br3F(000) = 1152
Mr = 314.78Dx = 2.734 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.8999 (7) ÅCell parameters from 3083 reflections
b = 8.3264 (5) Åθ = 3.0–28.4°
c = 15.4925 (8) ŵ = 15.73 mm1
β = 113.204 (6)°T = 200 K
V = 1529.44 (16) Å3Tabular, yellow
Z = 80.48 × 0.25 × 0.18 mm
Data collection top
Xcalibur, Eos
diffractometer
2990 independent reflections
Radiation source: fine-focus sealed X-ray tube2138 reflections with I > 2σ(I)
Detector resolution: 16.1544 pixels mm-1Rint = 0.072
ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: analytical
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1515
Tmin = 0.045, Tmax = 0.169k = 1010
21168 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.025P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2990 reflectionsΔρmax = 0.72 e Å3
164 parametersΔρmin = 0.68 e Å3
0 restraintsExtinction correction: SHELXL-2014/7 (Sheldrick 2014), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00095 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.4724 (4)0.2325 (7)0.0505 (3)0.0278 (13)
Br110.54901 (5)0.30067 (9)0.17552 (4)0.0461 (2)
C120.3828 (4)0.1264 (6)0.0257 (3)0.0240 (12)
Br120.33158 (4)0.04745 (8)0.11625 (4)0.03727 (17)
C130.3299 (4)0.0787 (7)0.0675 (3)0.0272 (12)
Br130.20564 (5)0.06077 (8)0.10688 (4)0.04590 (18)
C140.3660 (4)0.1376 (7)0.1333 (3)0.0325 (13)
H140.32990.10600.19560.039*
C150.4552 (4)0.2432 (8)0.1082 (4)0.0380 (15)
H150.47900.28250.15360.046*
C160.5096 (4)0.2910 (7)0.0157 (4)0.0321 (13)
H160.57040.36140.00170.039*
C210.0714 (4)0.7263 (7)0.0422 (3)0.0290 (13)
Br210.11887 (5)0.79891 (8)0.16692 (4)0.04177 (18)
C220.1369 (4)0.6192 (6)0.0152 (3)0.0244 (12)
Br220.27423 (4)0.54196 (8)0.10302 (4)0.03664 (17)
C230.0976 (4)0.5743 (7)0.0787 (3)0.0263 (12)
Br230.18192 (5)0.43386 (8)0.12093 (4)0.04256 (18)
C240.0018 (4)0.6338 (7)0.1441 (4)0.0306 (13)
H240.02690.60260.20670.037*
C250.0640 (4)0.7410 (8)0.1152 (4)0.0355 (14)
H250.13130.78200.15900.043*
C260.0276 (4)0.7872 (7)0.0230 (4)0.0318 (13)
H260.06980.85970.00450.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.030 (3)0.030 (4)0.021 (3)0.007 (2)0.008 (2)0.001 (2)
Br110.0439 (3)0.0582 (5)0.0255 (3)0.0076 (3)0.0023 (3)0.0058 (3)
C120.028 (3)0.024 (3)0.022 (3)0.004 (2)0.012 (2)0.006 (2)
Br120.0399 (3)0.0447 (4)0.0316 (3)0.0043 (3)0.0188 (2)0.0105 (3)
C130.031 (3)0.021 (3)0.031 (3)0.001 (2)0.014 (2)0.001 (2)
Br130.0448 (3)0.0421 (5)0.0429 (4)0.0128 (3)0.0087 (3)0.0071 (3)
C140.043 (3)0.033 (4)0.017 (3)0.008 (3)0.007 (2)0.000 (2)
C150.047 (4)0.041 (4)0.036 (4)0.009 (3)0.027 (3)0.007 (3)
C160.030 (3)0.031 (4)0.034 (3)0.001 (3)0.011 (2)0.005 (2)
C210.033 (3)0.033 (4)0.023 (3)0.008 (3)0.014 (2)0.000 (2)
Br210.0485 (3)0.0525 (5)0.0263 (3)0.0049 (3)0.0168 (3)0.0063 (3)
C220.023 (3)0.025 (4)0.024 (3)0.001 (2)0.007 (2)0.007 (2)
Br220.0287 (3)0.0474 (4)0.0285 (3)0.0030 (3)0.0056 (2)0.0078 (3)
C230.033 (3)0.020 (3)0.029 (3)0.003 (2)0.014 (2)0.002 (2)
Br230.0489 (4)0.0432 (5)0.0373 (4)0.0099 (3)0.0189 (3)0.0046 (3)
C240.033 (3)0.032 (4)0.023 (3)0.004 (3)0.007 (2)0.001 (2)
C250.028 (3)0.043 (4)0.027 (3)0.001 (3)0.003 (2)0.005 (3)
C260.032 (3)0.032 (4)0.035 (3)0.000 (3)0.017 (3)0.001 (2)
Geometric parameters (Å, º) top
C11—C161.382 (7)C21—C261.376 (7)
C11—C121.384 (7)C21—C221.400 (7)
C11—Br111.882 (5)C21—Br211.883 (5)
C12—C131.391 (6)C22—C231.390 (6)
C12—Br121.888 (4)C22—Br221.872 (5)
C13—C141.367 (7)C23—C241.376 (7)
C13—Br131.876 (5)C23—Br231.881 (5)
C14—C151.378 (8)C24—C251.387 (7)
C14—H140.9300C24—H240.9300
C15—C161.382 (7)C25—C261.372 (7)
C15—H150.9300C25—H250.9300
C16—H160.9300C26—H260.9300
C16—C11—C12121.1 (5)C26—C21—C22120.7 (5)
C16—C11—Br11117.6 (4)C26—C21—Br21117.8 (4)
C12—C11—Br11121.4 (4)C22—C21—Br21121.4 (4)
C11—C12—C13119.0 (4)C23—C22—C21118.0 (4)
C11—C12—Br12121.0 (4)C23—C22—Br22121.2 (4)
C13—C12—Br12120.0 (4)C21—C22—Br22120.7 (4)
C14—C13—C12120.0 (5)C24—C23—C22121.5 (5)
C14—C13—Br13118.6 (4)C24—C23—Br23117.8 (4)
C12—C13—Br13121.4 (4)C22—C23—Br23120.6 (4)
C13—C14—C15120.7 (5)C23—C24—C25119.0 (5)
C13—C14—H14119.6C23—C24—H24120.5
C15—C14—H14119.6C25—C24—H24120.5
C14—C15—C16120.2 (5)C26—C25—C24120.8 (5)
C14—C15—H15119.9C26—C25—H25119.6
C16—C15—H15119.9C24—C25—H25119.6
C11—C16—C15119.0 (5)C25—C26—C21119.9 (5)
C11—C16—H16120.5C25—C26—H26120.0
C15—C16—H16120.5C21—C26—H26120.0
C16—C11—C12—C130.1 (8)C26—C21—C22—C231.2 (8)
Br11—C11—C12—C13179.4 (4)Br21—C21—C22—C23178.4 (4)
C16—C11—C12—Br12179.7 (4)C26—C21—C22—Br22177.8 (4)
Br11—C11—C12—Br121.0 (6)Br21—C21—C22—Br220.7 (6)
C11—C12—C13—C140.5 (8)C21—C22—C23—C240.7 (8)
Br12—C12—C13—C14179.1 (4)Br22—C22—C23—C24178.3 (4)
C11—C12—C13—Br13178.5 (4)C21—C22—C23—Br23178.9 (4)
Br12—C12—C13—Br131.2 (6)Br22—C22—C23—Br230.1 (6)
C12—C13—C14—C150.5 (8)C22—C23—C24—C250.0 (8)
Br13—C13—C14—C15178.5 (4)Br23—C23—C24—C25178.3 (4)
C13—C14—C15—C160.1 (9)C23—C24—C25—C260.1 (8)
C12—C11—C16—C150.7 (8)C24—C25—C26—C210.4 (8)
Br11—C11—C16—C15180.0 (4)C22—C21—C26—C251.1 (8)
C14—C15—C16—C110.7 (8)Br21—C21—C26—C25178.3 (4)
(123TBB_100K) top
Crystal data top
C6H3Br3F(000) = 1152
Mr = 314.78Dx = 2.780 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.7973 (5) ÅCell parameters from 4437 reflections
b = 8.2623 (3) Åθ = 3.0–31.5°
c = 15.4666 (6) ŵ = 15.99 mm1
β = 113.102 (5)°T = 100 K
V = 1504.22 (11) Å3Tabular, yellow
Z = 80.48 × 0.25 × 0.18 mm
Data collection top
Xcalibur, Eos
diffractometer
2944 independent reflections
Radiation source: fine-focus sealed X-ray tube2364 reflections with I > 2σ(I)
Detector resolution: 16.1544 pixels mm-1Rint = 0.060
ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: analytical
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1515
Tmin = 0.044, Tmax = 0.166k = 1010
20735 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0199P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2944 reflectionsΔρmax = 0.71 e Å3
164 parametersΔρmin = 0.59 e Å3
0 restraintsExtinction correction: SHELXL-2014/7 (Sheldrick 2014), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00053 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.4736 (3)0.2316 (6)0.0507 (3)0.0153 (10)
Br110.54994 (4)0.30087 (6)0.17635 (3)0.02269 (13)
C120.3833 (3)0.1246 (5)0.0258 (3)0.0115 (9)
Br120.33085 (3)0.04471 (6)0.11605 (3)0.01838 (12)
C130.3302 (3)0.0789 (6)0.0678 (3)0.0147 (10)
Br130.20472 (4)0.06360 (6)0.10801 (3)0.02237 (12)
C140.3667 (4)0.1383 (6)0.1344 (3)0.0175 (10)
H140.33050.10650.19680.021*
C150.4568 (3)0.2448 (6)0.1088 (3)0.0175 (10)
H150.48080.28540.15400.021*
C160.5113 (4)0.2911 (6)0.0158 (3)0.0178 (10)
H160.57280.36160.00200.021*
C210.0709 (3)0.7280 (6)0.0420 (3)0.0152 (10)
Br210.11865 (4)0.80033 (6)0.16767 (3)0.02038 (12)
C220.1359 (3)0.6191 (6)0.0151 (3)0.0134 (9)
Br220.27500 (3)0.54020 (6)0.10351 (3)0.01850 (12)
C230.0971 (3)0.5749 (6)0.0788 (3)0.0138 (9)
Br230.18230 (4)0.43148 (6)0.12113 (3)0.02108 (12)
C240.0025 (3)0.6345 (6)0.1440 (3)0.0173 (10)
H240.02720.60320.20670.021*
C250.0665 (3)0.7426 (6)0.1156 (3)0.0178 (10)
H250.13420.78340.15950.021*
C260.0299 (3)0.7893 (6)0.0230 (3)0.0157 (10)
H260.07270.86160.00430.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.014 (2)0.020 (3)0.010 (2)0.0040 (19)0.0030 (17)0.0003 (17)
Br110.0224 (2)0.0288 (3)0.0118 (2)0.0039 (2)0.00123 (18)0.00248 (19)
C120.014 (2)0.013 (3)0.010 (2)0.0057 (18)0.0065 (17)0.0044 (16)
Br120.0196 (2)0.0227 (3)0.0146 (2)0.00203 (19)0.00870 (18)0.00521 (18)
C130.013 (2)0.013 (3)0.016 (2)0.0026 (18)0.0034 (18)0.0009 (17)
Br130.0227 (2)0.0213 (3)0.0195 (3)0.0062 (2)0.00440 (19)0.00328 (19)
C140.026 (2)0.014 (3)0.011 (2)0.007 (2)0.0048 (19)0.0001 (17)
C150.022 (2)0.018 (3)0.016 (2)0.005 (2)0.0120 (19)0.0036 (18)
C160.018 (2)0.015 (3)0.020 (3)0.0003 (19)0.0072 (19)0.0027 (18)
C210.018 (2)0.020 (3)0.007 (2)0.0051 (19)0.0049 (17)0.0015 (17)
Br210.0237 (2)0.0261 (3)0.0117 (2)0.0022 (2)0.00738 (18)0.00286 (18)
C220.011 (2)0.012 (3)0.018 (2)0.0001 (18)0.0064 (17)0.0046 (17)
Br220.0150 (2)0.0244 (3)0.0134 (2)0.00150 (19)0.00263 (17)0.00364 (18)
C230.018 (2)0.010 (3)0.015 (2)0.0029 (18)0.0074 (18)0.0020 (17)
Br230.0242 (2)0.0221 (3)0.0173 (2)0.0051 (2)0.00858 (19)0.00186 (18)
C240.016 (2)0.021 (3)0.013 (2)0.0042 (19)0.0040 (18)0.0025 (18)
C250.012 (2)0.023 (3)0.014 (2)0.0023 (19)0.0003 (18)0.0028 (18)
C260.016 (2)0.016 (3)0.019 (2)0.0003 (19)0.0114 (18)0.0012 (18)
Geometric parameters (Å, º) top
C11—C121.384 (6)C21—C261.384 (6)
C11—C161.386 (6)C21—C221.395 (6)
C11—Br111.888 (4)C21—Br211.891 (4)
C12—C131.388 (6)C22—C231.386 (6)
C12—Br121.890 (4)C22—Br221.886 (4)
C13—C141.378 (6)C23—C241.370 (6)
C13—Br131.889 (4)C23—Br231.893 (4)
C14—C151.379 (6)C24—C251.394 (6)
C14—H140.9300C24—H240.9300
C15—C161.384 (6)C25—C261.375 (6)
C15—H150.9300C25—H250.9300
C16—H160.9300C26—H260.9300
C12—C11—C16121.0 (4)C26—C21—C22120.9 (4)
C12—C11—Br11121.2 (3)C26—C21—Br21117.7 (3)
C16—C11—Br11117.8 (3)C22—C21—Br21121.4 (3)
C11—C12—C13118.6 (4)C23—C22—C21118.2 (4)
C11—C12—Br12121.1 (3)C23—C22—Br22121.1 (3)
C13—C12—Br12120.3 (3)C21—C22—Br22120.7 (3)
C14—C13—C12120.8 (4)C24—C23—C22121.6 (4)
C14—C13—Br13118.0 (3)C24—C23—Br23117.8 (3)
C12—C13—Br13121.2 (3)C22—C23—Br23120.6 (3)
C13—C14—C15120.2 (4)C23—C24—C25119.3 (4)
C13—C14—H14119.9C23—C24—H24120.3
C15—C14—H14119.9C25—C24—H24120.3
C14—C15—C16119.9 (4)C26—C25—C24120.4 (4)
C14—C15—H15120.0C26—C25—H25119.8
C16—C15—H15120.0C24—C25—H25119.8
C15—C16—C11119.6 (4)C25—C26—C21119.6 (4)
C15—C16—H16120.2C25—C26—H26120.2
C11—C16—H16120.2C21—C26—H26120.2
C16—C11—C12—C130.6 (7)C26—C21—C22—C230.5 (6)
Br11—C11—C12—C13179.6 (3)Br21—C21—C22—C23178.3 (3)
C16—C11—C12—Br12179.5 (3)C26—C21—C22—Br22178.5 (3)
Br11—C11—C12—Br120.8 (5)Br21—C21—C22—Br220.3 (5)
C11—C12—C13—C140.2 (6)C21—C22—C23—C240.4 (6)
Br12—C12—C13—C14179.0 (3)Br22—C22—C23—C24178.4 (3)
C11—C12—C13—Br13178.9 (3)C21—C22—C23—Br23178.6 (3)
Br12—C12—C13—Br130.0 (5)Br22—C22—C23—Br230.6 (5)
C12—C13—C14—C150.1 (7)C22—C23—C24—C250.1 (7)
Br13—C13—C14—C15178.9 (3)Br23—C23—C24—C25178.9 (3)
C13—C14—C15—C160.5 (7)C23—C24—C25—C260.1 (7)
C14—C15—C16—C111.0 (7)C24—C25—C26—C210.1 (7)
C12—C11—C16—C151.0 (7)C22—C21—C26—C250.2 (7)
Br11—C11—C16—C15179.2 (3)Br21—C21—C26—C25178.6 (3)
(124TBB_270K) top
Crystal data top
C6H3Br3Dx = 2.694 Mg m3
Mr = 314.78Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 3398 reflections
a = 29.408 (3) Åθ = 4.1–20.4°
b = 79.439 (6) ŵ = 15.50 mm1
c = 3.9865 (4) ÅT = 270 K
V = 9313.0 (15) Å3Needle, yellow
Z = 480.93 × 0.13 × 0.07 mm
F(000) = 6912
Data collection top
Xcalibur, Eos
diffractometer
4476 independent reflections
Radiation source: fine-focus sealed X-ray tube2161 reflections with I > 2σ(I)
Detector resolution: 16.1544 pixels mm-1Rint = 0.139
ω scansθmax = 26.0°, θmin = 2.8°
Absorption correction: analytical
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 3636
Tmin = 0.037, Tmax = 0.387k = 8397
19561 measured reflectionsl = 44
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.0465P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
4476 reflectionsΔρmax = 1.33 e Å3
245 parametersΔρmin = 0.84 e Å3
73 restraintsAbsolute structure: Refined as an inversion twin.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.46 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br110.07397 (9)0.00248 (3)0.8776 (8)0.0707 (9)
C110.1253 (8)0.0158 (3)0.842 (6)0.051 (6)
Br120.17867 (10)0.01106 (3)1.0842 (8)0.0704 (9)
C120.1696 (8)0.0111 (2)0.932 (6)0.045 (5)
C130.2066 (8)0.0218 (3)0.891 (6)0.058 (7)
H130.23590.01830.94760.069*
Br140.25041 (10)0.05130 (3)0.7031 (8)0.0765 (10)
C140.1986 (8)0.0374 (2)0.767 (6)0.051 (6)
C150.1564 (8)0.0429 (2)0.653 (6)0.053 (6)
H150.15270.05340.55460.063*
C160.1200 (8)0.0318 (3)0.693 (6)0.058 (6)
H160.09130.03510.62010.069*
Br210.18344 (9)0.08524 (3)0.1320 (8)0.0665 (9)
C210.1344 (8)0.0994 (2)0.262 (6)0.042 (5)
Br220.07466 (9)0.07317 (3)0.0414 (8)0.0667 (8)
C220.0893 (8)0.0946 (2)0.214 (6)0.046 (6)
C230.0553 (7)0.1052 (2)0.300 (5)0.041 (5)
H230.02530.10230.25330.049*
Br240.01752 (9)0.13485 (3)0.5834 (7)0.0630 (8)
C240.0653 (8)0.1204 (2)0.458 (6)0.044 (6)
C250.1091 (8)0.1255 (3)0.502 (6)0.053 (6)
H250.11540.13590.59720.063*
C260.1445 (8)0.1149 (3)0.402 (6)0.054 (6)
H260.17460.11820.43010.064*
Br310.33664 (9)0.08115 (3)0.3840 (8)0.0665 (8)
C310.3833 (8)0.0677 (3)0.199 (5)0.045 (5)
Br320.44290 (10)0.09582 (3)0.2822 (7)0.0657 (8)
C320.4258 (8)0.0739 (3)0.156 (6)0.046 (6)
C330.4600 (8)0.0635 (2)0.026 (6)0.050 (6)
H330.48950.06760.00190.060*
Br340.49606 (9)0.03322 (3)0.2352 (8)0.0677 (9)
C340.4493 (8)0.0468 (3)0.067 (6)0.048 (6)
C350.4069 (8)0.0407 (3)0.015 (7)0.060 (7)
H350.39990.02960.06580.072*
C360.3742 (8)0.0514 (3)0.114 (6)0.057 (7)
H360.34480.04730.14490.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br110.0576 (18)0.0494 (14)0.105 (3)0.0039 (13)0.0046 (18)0.0037 (17)
C110.054 (10)0.040 (10)0.059 (14)0.017 (9)0.008 (12)0.004 (10)
Br120.077 (2)0.0441 (14)0.090 (2)0.0067 (14)0.0037 (19)0.0182 (16)
C120.056 (11)0.034 (9)0.045 (13)0.010 (8)0.018 (11)0.006 (10)
C130.047 (12)0.042 (11)0.085 (19)0.007 (9)0.015 (15)0.006 (13)
Br140.0665 (19)0.0523 (15)0.111 (3)0.0057 (14)0.0124 (19)0.0044 (17)
C140.056 (11)0.029 (9)0.067 (15)0.009 (9)0.013 (12)0.000 (10)
C150.070 (13)0.026 (9)0.061 (14)0.013 (8)0.001 (12)0.012 (10)
C160.067 (12)0.042 (11)0.064 (18)0.012 (9)0.007 (14)0.005 (11)
Br210.0604 (18)0.0500 (15)0.089 (2)0.0088 (13)0.0155 (16)0.0072 (16)
C210.049 (10)0.031 (9)0.045 (13)0.008 (9)0.005 (12)0.019 (9)
Br220.076 (2)0.0438 (14)0.080 (2)0.0028 (13)0.0024 (18)0.0163 (14)
C220.049 (12)0.027 (10)0.060 (16)0.000 (8)0.005 (12)0.000 (10)
C230.043 (11)0.039 (10)0.040 (13)0.001 (8)0.009 (11)0.006 (10)
Br240.0634 (18)0.0500 (14)0.0756 (19)0.0044 (13)0.0061 (17)0.0108 (14)
C240.047 (10)0.028 (10)0.057 (16)0.005 (9)0.006 (12)0.000 (9)
C250.050 (11)0.039 (10)0.070 (16)0.014 (8)0.012 (12)0.009 (10)
C260.038 (10)0.055 (11)0.068 (16)0.013 (9)0.001 (11)0.004 (11)
Br310.0635 (18)0.0539 (15)0.082 (2)0.0077 (14)0.0120 (17)0.0003 (15)
C310.058 (12)0.041 (10)0.037 (14)0.003 (10)0.002 (12)0.011 (10)
Br320.0719 (19)0.0430 (13)0.082 (2)0.0029 (13)0.0029 (16)0.0153 (15)
C320.048 (13)0.045 (11)0.043 (15)0.002 (8)0.015 (12)0.012 (11)
C330.050 (12)0.046 (11)0.055 (16)0.003 (9)0.009 (12)0.012 (12)
Br340.0677 (19)0.0487 (15)0.087 (2)0.0129 (14)0.0082 (17)0.0121 (15)
C340.051 (11)0.048 (11)0.045 (15)0.010 (10)0.002 (12)0.016 (11)
C350.048 (13)0.035 (11)0.10 (2)0.006 (8)0.020 (14)0.004 (12)
C360.047 (13)0.045 (11)0.08 (2)0.005 (9)0.007 (14)0.011 (13)
Geometric parameters (Å, º) top
Br11—C111.85 (2)C23—H230.9300
C11—C121.40 (3)Br24—C241.88 (2)
C11—C161.41 (3)C24—C251.36 (3)
Br12—C121.88 (2)C25—C261.40 (3)
C12—C131.39 (3)C25—H250.9300
C13—C141.36 (3)C26—H260.9300
C13—H130.9300Br31—C311.89 (2)
Br14—C141.90 (2)C31—C321.36 (3)
C14—C151.39 (3)C31—C361.37 (3)
C15—C161.40 (3)Br32—C321.88 (2)
C15—H150.9300C32—C331.40 (3)
C16—H160.9300C33—C341.41 (3)
Br21—C211.90 (2)C33—H330.9300
C21—C261.38 (3)Br34—C341.87 (2)
C21—C221.39 (3)C34—C351.35 (3)
Br22—C221.89 (2)C35—C361.38 (3)
C22—C231.35 (3)C35—H350.9300
C23—C241.40 (3)C36—H360.9300
C12—C11—C16117 (2)C25—C24—C23121 (2)
C12—C11—Br11125.9 (17)C25—C24—Br24119.4 (16)
C16—C11—Br11117.2 (18)C23—C24—Br24119.5 (17)
C13—C12—C11122.5 (19)C24—C25—C26119 (2)
C13—C12—Br12119.8 (18)C24—C25—H25120.3
C11—C12—Br12117.6 (17)C26—C25—H25120.3
C14—C13—C12118 (2)C21—C26—C25119 (2)
C14—C13—H13121.2C21—C26—H26120.3
C12—C13—H13121.2C25—C26—H26120.3
C13—C14—C15124 (2)C32—C31—C36120 (2)
C13—C14—Br14116.1 (18)C32—C31—Br31120.7 (17)
C15—C14—Br14119.5 (16)C36—C31—Br31119.4 (18)
C14—C15—C16117 (2)C31—C32—C33119 (2)
C14—C15—H15121.6C31—C32—Br32123.5 (18)
C16—C15—H15121.6C33—C32—Br32116.9 (17)
C15—C16—C11122 (2)C32—C33—C34119 (2)
C15—C16—H16119.0C32—C33—H33120.3
C11—C16—H16119.0C34—C33—H33120.3
C26—C21—C22120 (2)C35—C34—C33120 (2)
C26—C21—Br21118.2 (17)C35—C34—Br34121.6 (17)
C22—C21—Br21121.6 (16)C33—C34—Br34118.1 (17)
C23—C22—C21120.1 (19)C34—C35—C36119 (2)
C23—C22—Br22119.0 (18)C34—C35—H35120.7
C21—C22—Br22120.9 (16)C36—C35—H35120.7
C22—C23—C24120 (2)C31—C36—C35122 (2)
C22—C23—H23120.1C31—C36—H36118.8
C24—C23—H23120.1C35—C36—H36118.8
C16—C11—C12—C133 (3)C22—C23—C24—Br24178.9 (17)
Br11—C11—C12—C13178.8 (19)C23—C24—C25—C263 (3)
C16—C11—C12—Br12173.1 (17)Br24—C24—C25—C26178.6 (18)
Br11—C11—C12—Br123 (3)C22—C21—C26—C251 (3)
C11—C12—C13—C142 (4)Br21—C21—C26—C25179.6 (18)
Br12—C12—C13—C14177.2 (17)C24—C25—C26—C210 (3)
C12—C13—C14—C155 (4)C36—C31—C32—C330 (3)
C12—C13—C14—Br14178.1 (18)Br31—C31—C32—C33178.5 (17)
C13—C14—C15—C165 (4)C36—C31—C32—Br32177.2 (18)
Br14—C14—C15—C16177.2 (17)Br31—C31—C32—Br322 (3)
C14—C15—C16—C110 (4)C31—C32—C33—C342 (3)
C12—C11—C16—C153 (4)Br32—C32—C33—C34179.0 (17)
Br11—C11—C16—C15179.9 (19)C32—C33—C34—C353 (4)
C26—C21—C22—C231 (3)C32—C33—C34—Br34179.3 (17)
Br21—C21—C22—C23177.9 (17)C33—C34—C35—C363 (4)
C26—C21—C22—Br22177.3 (16)Br34—C34—C35—C36178.9 (19)
Br21—C21—C22—Br224 (3)C32—C31—C36—C350 (4)
C21—C22—C23—C245 (3)Br31—C31—C36—C35178.7 (19)
Br22—C22—C23—C24173.8 (16)C34—C35—C36—C312 (4)
C22—C23—C24—C256 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Br12i0.932.963.69 (2)137
C33—H33···Br22ii0.933.143.96 (2)149
C35—H35···Br12iii0.933.073.80 (2)136
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z1/2; (iii) x+1/2, y, z3/2.
(124TBB_200K) top
Crystal data top
C6H3Br3Dx = 2.716 Mg m3
Mr = 314.78Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 4227 reflections
a = 29.383 (2) Åθ = 3.8–24.2°
b = 79.163 (4) ŵ = 15.63 mm1
c = 3.9713 (3) ÅT = 200 K
V = 9237.4 (10) Å3Needle, yellow
Z = 480.93 × 0.13 × 0.07 mm
F(000) = 6912
Data collection top
Xcalibur, Eos
diffractometer
4444 independent reflections
Radiation source: fine-focus sealed X-ray tube2801 reflections with I > 2σ(I)
Detector resolution: 16.1544 pixels mm-1Rint = 0.116
ω scansθmax = 26.0°, θmin = 2.8°
Absorption correction: analytical
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 3636
Tmin = 0.040, Tmax = 0.388k = 8397
19496 measured reflectionsl = 44
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0368P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4444 reflectionsΔρmax = 1.75 e Å3
245 parametersΔρmin = 0.90 e Å3
85 restraintsAbsolute structure: Refined as an inversion twin.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.42 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br110.07378 (8)0.00241 (3)0.8770 (7)0.0489 (7)
C110.1255 (7)0.0158 (2)0.836 (6)0.037 (5)
Br120.17889 (8)0.01126 (2)1.0872 (7)0.0497 (7)
C120.1677 (7)0.0108 (2)0.931 (4)0.026 (4)
C130.2053 (7)0.0215 (2)0.896 (6)0.042 (5)
H130.23410.01800.96250.051*
Br140.25112 (8)0.05143 (3)0.7025 (7)0.0526 (7)
C140.1988 (8)0.0375 (2)0.762 (6)0.045 (6)
C150.1569 (7)0.0425 (2)0.652 (6)0.041 (5)
H150.15350.05300.54880.049*
C160.1195 (7)0.0321 (2)0.692 (5)0.039 (5)
H160.09070.03570.62570.047*
Br210.18420 (8)0.08511 (2)0.1299 (6)0.0459 (6)
C210.1358 (7)0.0993 (2)0.261 (5)0.032 (4)
Br220.07490 (8)0.07302 (3)0.0375 (6)0.0461 (6)
C220.0889 (7)0.0944 (2)0.218 (5)0.029 (4)
C230.0558 (7)0.1054 (2)0.310 (5)0.031 (4)
H230.02560.10250.27310.037*
Br240.01798 (8)0.13502 (3)0.5871 (6)0.0437 (6)
C240.0655 (7)0.1207 (2)0.454 (5)0.036 (5)
C250.1097 (7)0.1255 (2)0.500 (5)0.038 (5)
H250.11650.13600.59490.046*
C260.1444 (7)0.1145 (2)0.403 (5)0.040 (5)
H260.17450.11780.43590.048*
Br310.33683 (8)0.08126 (3)0.3870 (7)0.0460 (6)
C310.3840 (7)0.0674 (2)0.205 (5)0.032 (5)
Br320.44345 (8)0.09601 (2)0.2855 (6)0.0458 (6)
C320.4261 (6)0.0739 (2)0.166 (5)0.029 (4)
C330.4616 (7)0.0636 (2)0.021 (5)0.040 (5)
H330.49070.06780.01700.049*
Br340.49663 (8)0.03306 (3)0.2411 (6)0.0460 (6)
C340.4501 (7)0.0471 (2)0.058 (5)0.032 (4)
C350.4075 (7)0.0407 (2)0.021 (5)0.037 (5)
H350.40070.02970.08590.045*
C360.3746 (7)0.0511 (2)0.116 (5)0.041 (5)
H360.34530.04700.14790.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br110.0391 (14)0.0330 (11)0.0744 (18)0.0030 (10)0.0067 (14)0.0047 (13)
C110.036 (9)0.024 (8)0.052 (14)0.003 (8)0.007 (11)0.007 (9)
Br120.0529 (15)0.0316 (11)0.0645 (17)0.0035 (11)0.0019 (14)0.0127 (12)
C120.039 (10)0.025 (8)0.015 (9)0.006 (7)0.008 (8)0.003 (8)
C130.042 (10)0.030 (9)0.054 (14)0.002 (8)0.001 (12)0.001 (10)
Br140.0436 (14)0.0359 (12)0.0783 (19)0.0043 (11)0.0101 (14)0.0032 (12)
C140.039 (10)0.027 (9)0.069 (17)0.006 (9)0.007 (12)0.001 (10)
C150.046 (10)0.025 (8)0.053 (11)0.005 (7)0.005 (10)0.008 (8)
C160.040 (10)0.032 (10)0.046 (15)0.005 (8)0.016 (11)0.004 (9)
Br210.0412 (14)0.0337 (11)0.0628 (16)0.0065 (10)0.0098 (13)0.0042 (12)
C210.036 (6)0.030 (6)0.031 (7)0.003 (5)0.008 (6)0.008 (5)
Br220.0530 (16)0.0300 (11)0.0553 (16)0.0030 (11)0.0023 (13)0.0098 (11)
C220.042 (10)0.018 (8)0.027 (11)0.004 (7)0.008 (9)0.004 (8)
C230.039 (9)0.023 (8)0.030 (11)0.001 (7)0.007 (10)0.007 (8)
Br240.0423 (14)0.0349 (11)0.0538 (14)0.0024 (10)0.0046 (13)0.0081 (11)
C240.030 (9)0.026 (9)0.050 (15)0.001 (8)0.003 (10)0.001 (9)
C250.032 (10)0.033 (10)0.050 (15)0.010 (8)0.014 (11)0.000 (9)
C260.029 (8)0.041 (8)0.049 (11)0.005 (7)0.020 (8)0.001 (8)
Br310.0424 (14)0.0361 (11)0.0596 (16)0.0047 (11)0.0087 (13)0.0011 (12)
C310.030 (9)0.022 (8)0.044 (13)0.000 (8)0.006 (10)0.001 (9)
Br320.0463 (15)0.0296 (11)0.0614 (17)0.0025 (10)0.0023 (13)0.0122 (11)
C320.029 (8)0.021 (7)0.037 (10)0.001 (6)0.016 (8)0.008 (8)
C330.039 (11)0.037 (10)0.045 (14)0.001 (8)0.002 (11)0.012 (10)
Br340.0436 (14)0.0353 (11)0.0592 (16)0.0087 (11)0.0050 (12)0.0085 (11)
C340.035 (9)0.022 (8)0.040 (12)0.015 (8)0.000 (9)0.000 (8)
C350.045 (9)0.020 (8)0.046 (11)0.006 (6)0.005 (9)0.011 (8)
C360.038 (9)0.033 (8)0.051 (11)0.014 (7)0.012 (9)0.003 (9)
Geometric parameters (Å, º) top
Br11—C111.861 (19)C23—H230.9300
C11—C121.36 (3)Br24—C241.875 (19)
C11—C161.42 (2)C24—C251.37 (3)
Br12—C121.882 (17)C25—C261.40 (2)
C12—C131.40 (3)C25—H250.9300
C13—C141.39 (2)C26—H260.9300
C13—H130.9300Br31—C311.908 (19)
Br14—C141.91 (2)C31—C321.35 (2)
C14—C151.36 (3)C31—C361.37 (2)
C15—C161.38 (3)Br32—C321.885 (17)
C15—H150.9300C32—C331.44 (2)
C16—H160.9300C33—C341.38 (2)
Br21—C211.887 (19)C33—H330.9300
C21—C261.35 (2)Br34—C341.910 (18)
C21—C221.44 (3)C34—C351.36 (3)
Br22—C221.882 (17)C35—C361.38 (3)
C22—C231.35 (2)C35—H350.9300
C23—C241.37 (2)C36—H360.9300
C12—C11—C16119.5 (18)C25—C24—C23120.1 (19)
C12—C11—Br11123.7 (15)C25—C24—Br24120.0 (15)
C16—C11—Br11116.8 (15)C23—C24—Br24119.9 (15)
C11—C12—C13121.1 (17)C24—C25—C26118.8 (19)
C11—C12—Br12121.6 (15)C24—C25—H25120.6
C13—C12—Br12117.1 (15)C26—C25—H25120.6
C14—C13—C12118.8 (19)C21—C26—C25122.2 (19)
C14—C13—H13120.6C21—C26—H26118.9
C12—C13—H13120.6C25—C26—H26118.9
C15—C14—C13120.9 (19)C32—C31—C36121.0 (19)
C15—C14—Br14121.2 (16)C32—C31—Br31119.5 (14)
C13—C14—Br14117.7 (16)C36—C31—Br31119.4 (15)
C14—C15—C16120.3 (19)C31—C32—C33119.6 (17)
C14—C15—H15119.8C31—C32—Br32124.9 (15)
C16—C15—H15119.8C33—C32—Br32115.5 (14)
C15—C16—C11119.3 (19)C34—C33—C32116.6 (19)
C15—C16—H16120.4C34—C33—H33121.7
C11—C16—H16120.4C32—C33—H33121.7
C26—C21—C22118.0 (18)C35—C34—C33123.7 (18)
C26—C21—Br21120.3 (15)C35—C34—Br34118.7 (14)
C22—C21—Br21121.7 (14)C33—C34—Br34117.5 (15)
C23—C22—C21118.6 (17)C34—C35—C36117.4 (18)
C23—C22—Br22121.6 (16)C34—C35—H35121.3
C21—C22—Br22119.8 (14)C36—C35—H35121.3
C22—C23—C24122.2 (19)C31—C36—C35121.6 (19)
C22—C23—H23118.9C31—C36—H36119.2
C24—C23—H23118.9C35—C36—H36119.2
C16—C11—C12—C132 (3)C22—C23—C24—Br24178.1 (15)
Br11—C11—C12—C13179.5 (15)C23—C24—C25—C261 (3)
C16—C11—C12—Br12174.5 (15)Br24—C24—C25—C26179.3 (16)
Br11—C11—C12—Br124 (3)C22—C21—C26—C251 (3)
C11—C12—C13—C140 (3)Br21—C21—C26—C25179.3 (17)
Br12—C12—C13—C14176.0 (16)C24—C25—C26—C211 (3)
C12—C13—C14—C153 (3)C36—C31—C32—C331 (3)
C12—C13—C14—Br14177.7 (15)Br31—C31—C32—C33178.5 (15)
C13—C14—C15—C164 (4)C36—C31—C32—Br32179.1 (16)
Br14—C14—C15—C16179.0 (16)Br31—C31—C32—Br321 (3)
C14—C15—C16—C113 (3)C31—C32—C33—C342 (3)
C12—C11—C16—C150 (3)Br32—C32—C33—C34177.9 (15)
Br11—C11—C16—C15179.1 (16)C32—C33—C34—C353 (3)
C26—C21—C22—C232 (3)C32—C33—C34—Br34178.7 (14)
Br21—C21—C22—C23178.3 (14)C33—C34—C35—C363 (3)
C26—C21—C22—Br22177.8 (14)Br34—C34—C35—C36179.3 (15)
Br21—C21—C22—Br222 (2)C32—C31—C36—C351 (3)
C21—C22—C23—C243 (3)Br31—C31—C36—C35179.1 (16)
Br22—C22—C23—C24177.3 (15)C34—C35—C36—C311 (3)
C22—C23—C24—C252 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Br12i0.933.013.71 (2)133
C33—H33···Br22ii0.933.073.92 (2)152
C35—H35···Br12iii0.933.053.78 (2)137
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z1/2; (iii) x+1/2, y, z3/2.
(124TBB_100K) top
Crystal data top
C6H3Br3Dx = 2.768 Mg m3
Mr = 314.78Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 5134 reflections
a = 29.313 (2) Åθ = 3.1–27.2°
b = 78.645 (4) ŵ = 15.92 mm1
c = 3.9320 (2) ÅT = 100 K
V = 9064.5 (9) Å3Needle, yellow
Z = 480.93 × 0.13 × 0.07 mm
F(000) = 6912
Data collection top
Xcalibur, Eos
diffractometer
4368 independent reflections
Radiation source: fine-focus sealed X-ray tube3365 reflections with I > 2σ(I)
Detector resolution: 16.1544 pixels mm-1Rint = 0.103
ω scansθmax = 26.0°, θmin = 2.8°
Absorption correction: analytical
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 3636
Tmin = 0.042, Tmax = 0.375k = 8297
19208 measured reflectionsl = 44
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0425P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4368 reflectionsΔρmax = 2.18 e Å3
245 parametersΔρmin = 1.72 e Å3
121 restraintsAbsolute structure: Refined as an inversion twin.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.45 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br110.07364 (7)0.00227 (2)0.8783 (6)0.0268 (5)
C110.1255 (6)0.0158 (2)0.830 (5)0.016 (4)
Br120.17899 (7)0.01151 (2)1.0908 (6)0.0265 (5)
C120.1686 (7)0.0109 (2)0.929 (5)0.016 (4)
C130.2060 (7)0.0215 (2)0.897 (5)0.023 (4)
H130.23490.01800.96640.028*
Br140.25167 (7)0.05160 (2)0.7012 (6)0.0271 (5)
C140.1992 (7)0.0375 (2)0.759 (5)0.021 (4)
C150.1580 (6)0.0430 (2)0.655 (5)0.017 (4)
H150.15490.05390.56460.021*
C160.1194 (7)0.0323 (2)0.683 (5)0.018 (4)
H160.09090.03590.60840.022*
Br210.18472 (7)0.08497 (2)0.1248 (5)0.0229 (5)
C210.1358 (7)0.0989 (2)0.262 (5)0.017 (4)
Br220.07519 (7)0.07272 (2)0.0359 (5)0.0244 (5)
C220.0899 (7)0.0943 (2)0.215 (5)0.019 (4)
C230.0555 (7)0.1052 (2)0.309 (5)0.018 (4)
H230.02520.10210.27180.021*
Br240.01803 (7)0.13522 (2)0.5908 (5)0.0225 (5)
C240.0652 (6)0.1205 (2)0.456 (5)0.016 (4)
C250.1111 (7)0.1255 (2)0.503 (5)0.024 (4)
H250.11800.13590.60240.029*
C260.1452 (7)0.1148 (2)0.399 (5)0.020 (4)
H260.17540.11820.42150.024*
Br310.33716 (7)0.08135 (2)0.3904 (6)0.0243 (5)
C310.3841 (6)0.0677 (2)0.200 (5)0.016 (4)
Br320.44409 (7)0.09620 (2)0.2874 (5)0.0237 (5)
C320.4269 (6)0.0739 (2)0.158 (5)0.017 (4)
C330.4623 (7)0.0635 (2)0.017 (5)0.026 (5)
H330.49160.06760.01890.031*
Br340.49705 (7)0.03286 (2)0.2465 (5)0.0249 (5)
C340.4501 (6)0.0469 (2)0.064 (5)0.017 (4)
C350.4073 (7)0.0404 (2)0.025 (5)0.020 (4)
H350.40050.02940.08900.024*
C360.3736 (7)0.0512 (2)0.116 (5)0.021 (4)
H360.34430.04720.15260.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br110.0240 (12)0.0168 (9)0.0396 (13)0.0016 (8)0.0057 (11)0.0019 (10)
C110.018 (7)0.017 (6)0.014 (8)0.007 (6)0.007 (7)0.006 (6)
Br120.0308 (13)0.0155 (9)0.0333 (13)0.0007 (9)0.0023 (11)0.0052 (10)
C120.021 (6)0.014 (5)0.013 (6)0.002 (5)0.001 (5)0.003 (5)
C130.015 (8)0.024 (8)0.030 (10)0.001 (6)0.006 (9)0.007 (8)
Br140.0236 (12)0.0198 (10)0.0380 (13)0.0027 (9)0.0072 (10)0.0020 (9)
C140.017 (7)0.020 (7)0.026 (9)0.002 (6)0.010 (8)0.004 (7)
C150.026 (7)0.008 (6)0.019 (8)0.002 (5)0.002 (7)0.002 (6)
C160.022 (8)0.013 (7)0.019 (9)0.003 (6)0.002 (8)0.006 (7)
Br210.0230 (12)0.0162 (9)0.0295 (12)0.0021 (8)0.0049 (10)0.0020 (9)
C210.018 (6)0.014 (5)0.018 (6)0.001 (5)0.005 (5)0.008 (5)
Br220.0295 (13)0.0151 (9)0.0285 (12)0.0015 (8)0.0010 (10)0.0058 (9)
C220.023 (9)0.013 (8)0.023 (11)0.000 (6)0.003 (9)0.008 (8)
C230.020 (9)0.020 (8)0.013 (10)0.003 (7)0.002 (9)0.006 (7)
Br240.0232 (12)0.0182 (9)0.0260 (11)0.0015 (8)0.0022 (11)0.0047 (9)
C240.014 (7)0.016 (7)0.018 (9)0.003 (6)0.002 (7)0.008 (6)
C250.022 (9)0.026 (9)0.023 (12)0.004 (7)0.004 (10)0.005 (8)
C260.017 (7)0.021 (7)0.021 (9)0.001 (6)0.009 (8)0.008 (7)
Br310.0247 (12)0.0197 (9)0.0284 (11)0.0040 (8)0.0054 (11)0.0001 (9)
C310.018 (7)0.016 (6)0.015 (9)0.006 (6)0.002 (7)0.005 (6)
Br320.0258 (12)0.0157 (9)0.0296 (12)0.0003 (8)0.0035 (10)0.0061 (9)
C320.017 (6)0.021 (6)0.014 (6)0.001 (5)0.007 (5)0.003 (5)
C330.032 (10)0.017 (8)0.030 (12)0.002 (7)0.011 (10)0.007 (9)
Br340.0262 (12)0.0176 (9)0.0310 (12)0.0038 (9)0.0015 (10)0.0047 (9)
C340.019 (6)0.015 (5)0.016 (6)0.004 (5)0.001 (5)0.004 (5)
C350.025 (8)0.013 (7)0.023 (9)0.003 (6)0.003 (8)0.004 (7)
C360.025 (8)0.014 (7)0.025 (10)0.004 (6)0.006 (8)0.007 (7)
Geometric parameters (Å, º) top
Br11—C111.866 (17)C23—H230.9300
C11—C121.38 (2)Br24—C241.882 (18)
C11—C161.43 (2)C24—C251.41 (3)
Br12—C121.896 (17)C25—C261.37 (2)
C12—C131.38 (2)C25—H250.9300
C13—C141.39 (2)C26—H260.9300
C13—H130.9300Br31—C311.898 (18)
Br14—C141.908 (18)C31—C321.36 (2)
C14—C151.35 (2)C31—C361.37 (2)
C15—C161.42 (2)Br32—C321.896 (17)
C15—H150.9300C32—C331.43 (2)
C16—H160.9300C33—C341.39 (2)
Br21—C211.883 (18)C33—H330.9300
C21—C261.39 (2)Br34—C341.906 (18)
C21—C221.40 (2)C34—C351.36 (2)
Br22—C221.884 (18)C35—C361.42 (2)
C22—C231.38 (2)C35—H350.9300
C23—C241.37 (2)C36—H360.9300
C12—C11—C16118.9 (16)C23—C24—C25120.1 (17)
C12—C11—Br11123.9 (13)C23—C24—Br24120.6 (14)
C16—C11—Br11117.2 (14)C25—C24—Br24119.3 (14)
C11—C12—C13122.1 (16)C26—C25—C24118.8 (18)
C11—C12—Br12120.2 (13)C26—C25—H25120.6
C13—C12—Br12117.6 (14)C24—C25—H25120.6
C12—C13—C14118.0 (18)C25—C26—C21121.7 (18)
C12—C13—H13121.0C25—C26—H26119.2
C14—C13—H13121.0C21—C26—H26119.2
C15—C14—C13122.7 (18)C32—C31—C36121.0 (17)
C15—C14—Br14120.0 (14)C32—C31—Br31121.1 (14)
C13—C14—Br14117.2 (15)C36—C31—Br31117.9 (14)
C14—C15—C16120.0 (17)C31—C32—C33121.0 (17)
C14—C15—H15120.0C31—C32—Br32123.0 (14)
C16—C15—H15120.0C33—C32—Br32116.1 (14)
C15—C16—C11118.2 (17)C34—C33—C32116.0 (18)
C15—C16—H16120.9C34—C33—H33122.0
C11—C16—H16120.9C32—C33—H33122.0
C26—C21—C22118.3 (17)C35—C34—C33124.2 (18)
C26—C21—Br21118.9 (14)C35—C34—Br34119.3 (13)
C22—C21—Br21122.7 (14)C33—C34—Br34116.5 (14)
C23—C22—C21120.4 (17)C34—C35—C36117.5 (17)
C23—C22—Br22119.4 (15)C34—C35—H35121.3
C21—C22—Br22120.1 (14)C36—C35—H35121.3
C24—C23—C22120.6 (18)C31—C36—C35120.4 (18)
C24—C23—H23119.7C31—C36—H36119.8
C22—C23—H23119.7C35—C36—H36119.8
C16—C11—C12—C131 (3)C22—C23—C24—Br24179.0 (14)
Br11—C11—C12—C13178.2 (15)C23—C24—C25—C260 (3)
C16—C11—C12—Br12174.9 (13)Br24—C24—C25—C26179.1 (15)
Br11—C11—C12—Br126 (2)C24—C25—C26—C213 (3)
C11—C12—C13—C140 (3)C22—C21—C26—C253 (3)
Br12—C12—C13—C14176.0 (14)Br21—C21—C26—C25179.8 (16)
C12—C13—C14—C150 (3)C36—C31—C32—C332 (3)
C12—C13—C14—Br14177.7 (15)Br31—C31—C32—C33179.6 (15)
C13—C14—C15—C160 (3)C36—C31—C32—Br32177.3 (14)
Br14—C14—C15—C16177.1 (13)Br31—C31—C32—Br321 (2)
C14—C15—C16—C111 (3)C31—C32—C33—C342 (3)
C12—C11—C16—C152 (3)Br32—C32—C33—C34177.4 (14)
Br11—C11—C16—C15177.8 (13)C32—C33—C34—C352 (3)
C26—C21—C22—C231 (3)C32—C33—C34—Br34179.1 (14)
Br21—C21—C22—C23177.7 (14)C33—C34—C35—C362 (3)
C26—C21—C22—Br22179.0 (13)Br34—C34—C35—C36179.0 (14)
Br21—C21—C22—Br225 (2)C32—C31—C36—C352 (3)
C21—C22—C23—C241 (3)Br31—C31—C36—C35179.8 (14)
Br22—C22—C23—C24176.5 (14)C34—C35—C36—C312 (3)
C22—C23—C24—C252 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Br12i0.932.973.66 (2)133
C33—H33···Br22ii0.933.043.88 (2)152
C35—H35···Br12iii0.933.003.723 (19)136
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z1/2; (iii) x+1/2, y, z3/2.
(135TBB_270K) top
Crystal data top
C6H3Br3Dx = 2.679 Mg m3
Mr = 314.78Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2027 reflections
a = 4.06406 (18) Åθ = 4.2–24.7°
b = 13.5231 (6) ŵ = 15.41 mm1
c = 14.1996 (6) ÅT = 270 K
V = 780.39 (6) Å3Needle, yellow
Z = 40.35 × 0.16 × 0.10 mm
F(000) = 576
Data collection top
Xcalibur, Eos
diffractometer
1520 independent reflections
Radiation source: fine-focus sealed X-ray tube1297 reflections with I > 2σ(I)
Detector resolution: 16.1544 pixels mm-1Rint = 0.067
ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: analytical
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 55
Tmin = 0.072, Tmax = 0.274k = 1616
10906 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.021P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.056(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.49 e Å3
1520 reflectionsΔρmin = 0.46 e Å3
84 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0136 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Refined as an inversion twin.
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.45 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.2972 (17)0.2294 (5)0.3353 (5)0.0360 (17)
Br110.43632 (19)0.10886 (5)0.39102 (6)0.0506 (3)
C120.1386 (16)0.2265 (5)0.2502 (5)0.0369 (17)
H120.09900.16680.21980.044*
C130.0397 (16)0.3146 (5)0.2110 (4)0.0354 (15)
Br130.17512 (18)0.31297 (6)0.09293 (5)0.0491 (2)
C140.1000 (15)0.4037 (5)0.2539 (5)0.0367 (17)
H140.03540.46270.22580.044*
C150.2591 (17)0.4036 (5)0.3398 (5)0.0395 (18)
Br150.35063 (19)0.52405 (5)0.40091 (7)0.0555 (3)
C160.3652 (15)0.3164 (5)0.3816 (5)0.0380 (16)
H160.47770.31680.43860.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.042 (4)0.039 (4)0.027 (4)0.004 (4)0.003 (4)0.003 (3)
Br110.0590 (5)0.0397 (4)0.0530 (5)0.0067 (4)0.0033 (4)0.0058 (4)
C120.038 (4)0.037 (4)0.036 (4)0.005 (3)0.010 (3)0.005 (3)
C130.031 (4)0.046 (4)0.029 (3)0.004 (4)0.004 (3)0.006 (4)
Br130.0522 (4)0.0626 (5)0.0326 (4)0.0040 (4)0.0028 (4)0.0031 (4)
C140.036 (4)0.038 (4)0.037 (4)0.000 (3)0.003 (3)0.001 (3)
C150.038 (4)0.033 (4)0.047 (5)0.003 (4)0.001 (4)0.000 (3)
Br150.0655 (5)0.0383 (4)0.0625 (6)0.0071 (4)0.0088 (6)0.0090 (4)
C160.035 (4)0.044 (4)0.035 (4)0.004 (3)0.001 (3)0.003 (4)
Geometric parameters (Å, º) top
C11—C121.371 (9)C13—Br131.891 (6)
C11—C161.376 (9)C14—C151.380 (10)
C11—Br111.898 (7)C14—H140.9300
C12—C131.375 (9)C15—C161.388 (9)
C12—H120.9300C15—Br151.883 (7)
C13—C141.371 (9)C16—H160.9300
C12—C11—C16122.7 (6)C13—C14—C15118.3 (7)
C12—C11—Br11118.9 (5)C13—C14—H14120.8
C16—C11—Br11118.4 (5)C15—C14—H14120.8
C11—C12—C13118.0 (6)C14—C15—C16121.6 (7)
C11—C12—H12121.0C14—C15—Br15119.9 (6)
C13—C12—H12121.0C16—C15—Br15118.4 (5)
C14—C13—C12122.0 (6)C11—C16—C15117.4 (6)
C14—C13—Br13119.1 (5)C11—C16—H16121.3
C12—C13—Br13118.9 (5)C15—C16—H16121.3
C16—C11—C12—C131.2 (10)C13—C14—C15—C161.8 (10)
Br11—C11—C12—C13180.0 (5)C13—C14—C15—Br15179.5 (5)
C11—C12—C13—C141.0 (10)C12—C11—C16—C151.6 (10)
C11—C12—C13—Br13179.3 (5)Br11—C11—C16—C15179.6 (5)
C12—C13—C14—C151.3 (10)C14—C15—C16—C111.8 (10)
Br13—C13—C14—C15179.6 (5)Br15—C15—C16—C11179.6 (5)
(135TBB_200K) top
Crystal data top
C6H3Br3Dx = 2.717 Mg m3
Mr = 314.78Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2709 reflections
a = 4.03673 (14) Åθ = 4.2–27.7°
b = 13.4739 (4) ŵ = 15.63 mm1
c = 14.1499 (5) ÅT = 200 K
V = 769.62 (4) Å3Needle, yellow
Z = 40.35 × 0.16 × 0.10 mm
F(000) = 576
Data collection top
Xcalibur, Eos
diffractometer
1496 independent reflections
Radiation source: fine-focus sealed X-ray tube1370 reflections with I > 2σ(I)
Detector resolution: 16.1544 pixels mm-1Rint = 0.055
ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: analytical
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 44
Tmin = 0.073, Tmax = 0.274k = 1616
10781 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0113P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.037(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.35 e Å3
1496 reflectionsΔρmin = 0.30 e Å3
84 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0022 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Refined as an inversion twin.
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.49 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.2979 (12)0.2280 (4)0.3360 (4)0.0247 (12)
Br110.43826 (13)0.10723 (4)0.39149 (4)0.03496 (16)
C120.1354 (11)0.2249 (4)0.2501 (3)0.0247 (12)
H120.09290.16500.21990.030*
C130.0382 (12)0.3143 (4)0.2109 (3)0.0249 (11)
Br130.18039 (13)0.31242 (4)0.09253 (4)0.03417 (15)
C140.0968 (11)0.4038 (4)0.2543 (4)0.0258 (12)
H140.02810.46310.22690.031*
C150.2620 (12)0.4030 (4)0.3403 (4)0.0268 (13)
Br150.35318 (13)0.52453 (4)0.40151 (5)0.03821 (17)
C160.3655 (11)0.3155 (4)0.3824 (3)0.0277 (11)
H160.47660.31580.44000.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.022 (2)0.023 (3)0.029 (3)0.000 (3)0.007 (3)0.002 (2)
Br110.0405 (3)0.0270 (3)0.0374 (3)0.0045 (2)0.0026 (3)0.0041 (3)
C120.026 (3)0.023 (3)0.025 (3)0.002 (2)0.004 (2)0.004 (2)
C130.021 (3)0.033 (3)0.020 (3)0.003 (3)0.002 (2)0.002 (3)
Br130.0364 (3)0.0434 (3)0.0226 (3)0.0025 (3)0.0017 (3)0.0021 (3)
C140.026 (3)0.026 (3)0.025 (3)0.003 (2)0.003 (2)0.000 (2)
C150.025 (3)0.022 (3)0.034 (3)0.005 (2)0.004 (2)0.002 (2)
Br150.0452 (3)0.0254 (3)0.0440 (4)0.0049 (2)0.0058 (3)0.0063 (3)
C160.028 (3)0.034 (3)0.021 (3)0.003 (2)0.001 (2)0.002 (3)
Geometric parameters (Å, º) top
C11—C161.376 (7)C13—Br131.894 (5)
C11—C121.382 (7)C14—C151.388 (7)
C11—Br111.894 (5)C14—H140.9300
C12—C131.383 (7)C15—C161.386 (7)
C12—H120.9300C15—Br151.889 (5)
C13—C141.374 (7)C16—H160.9300
C16—C11—C12122.7 (5)C13—C14—C15117.9 (5)
C16—C11—Br11118.6 (4)C13—C14—H14121.1
C12—C11—Br11118.7 (4)C15—C14—H14121.1
C11—C12—C13117.5 (4)C16—C15—C14121.9 (5)
C11—C12—H12121.3C16—C15—Br15118.8 (4)
C13—C12—H12121.3C14—C15—Br15119.2 (4)
C14—C13—C12122.4 (4)C11—C16—C15117.6 (4)
C14—C13—Br13119.2 (4)C11—C16—H16121.2
C12—C13—Br13118.4 (4)C15—C16—H16121.2
C16—C11—C12—C130.2 (7)C13—C14—C15—C160.2 (7)
Br11—C11—C12—C13179.5 (3)C13—C14—C15—Br15179.1 (4)
C11—C12—C13—C140.2 (7)C12—C11—C16—C150.4 (7)
C11—C12—C13—Br13179.2 (3)Br11—C11—C16—C15179.7 (4)
C12—C13—C14—C150.4 (7)C14—C15—C16—C110.2 (7)
Br13—C13—C14—C15179.0 (3)Br15—C15—C16—C11179.5 (4)
(135TBB_100K) top
Crystal data top
C6H3Br3Dx = 2.763 Mg m3
Mr = 314.78Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3792 reflections
a = 4.00341 (11) Åθ = 4.2–30.8°
b = 13.4119 (3) ŵ = 15.90 mm1
c = 14.0916 (4) ÅT = 100 K
V = 756.63 (3) Å3Needle, yellow
Z = 40.35 × 0.16 × 0.10 mm
F(000) = 576
Data collection top
Xcalibur, Eos
diffractometer
1476 independent reflections
Radiation source: fine-focus sealed X-ray tube1395 reflections with I > 2σ(I)
Detector resolution: 16.1544 pixels mm-1Rint = 0.049
ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: analytical
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 44
Tmin = 0.074, Tmax = 0.274k = 1616
10543 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0137P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.036(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.34 e Å3
1476 reflectionsΔρmin = 0.37 e Å3
84 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00088 (19)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Refined as an inversion twin.
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.48 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.2985 (12)0.2268 (3)0.3364 (3)0.0142 (11)
Br110.44078 (12)0.10520 (3)0.39217 (4)0.01827 (14)
C120.1347 (11)0.2240 (3)0.2501 (3)0.0142 (11)
H120.09410.16390.21920.017*
C130.0339 (12)0.3134 (4)0.2116 (3)0.0146 (10)
Br130.18586 (12)0.31174 (4)0.09210 (4)0.01805 (13)
C140.0941 (11)0.4039 (4)0.2543 (4)0.0158 (11)
H140.02530.46330.22660.019*
C150.2615 (11)0.4028 (4)0.3404 (4)0.0165 (11)
Br150.35576 (11)0.52517 (3)0.40228 (4)0.01976 (14)
C160.3671 (11)0.3151 (4)0.3831 (3)0.0150 (10)
H160.47960.31560.44080.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.014 (2)0.011 (2)0.019 (3)0.001 (2)0.004 (2)0.004 (2)
Br110.0209 (3)0.0134 (2)0.0204 (3)0.0022 (2)0.0012 (2)0.0019 (2)
C120.015 (2)0.012 (2)0.016 (3)0.001 (2)0.004 (2)0.002 (2)
C130.012 (2)0.021 (2)0.011 (2)0.002 (2)0.001 (2)0.001 (2)
Br130.0195 (2)0.0215 (2)0.0132 (3)0.0014 (2)0.0011 (2)0.0008 (2)
C140.015 (3)0.015 (3)0.017 (3)0.000 (2)0.003 (2)0.002 (2)
C150.015 (3)0.015 (3)0.020 (3)0.005 (2)0.006 (2)0.003 (2)
Br150.0234 (3)0.0125 (2)0.0233 (3)0.0023 (2)0.0030 (3)0.0031 (2)
C160.012 (2)0.020 (2)0.013 (2)0.002 (2)0.0023 (19)0.003 (2)
Geometric parameters (Å, º) top
C11—C121.382 (7)C13—Br131.900 (4)
C11—C161.383 (6)C14—C151.386 (7)
C11—Br111.898 (5)C14—H140.9300
C12—C131.377 (7)C15—C161.387 (7)
C12—H120.9300C15—Br151.896 (5)
C13—C141.376 (7)C16—H160.9300
C12—C11—C16122.5 (4)C13—C14—C15117.3 (5)
C12—C11—Br11118.9 (4)C13—C14—H14121.3
C16—C11—Br11118.6 (4)C15—C14—H14121.3
C13—C12—C11117.5 (4)C14—C15—C16122.3 (5)
C13—C12—H12121.2C14—C15—Br15119.3 (4)
C11—C12—H12121.2C16—C15—Br15118.3 (4)
C14—C13—C12123.0 (4)C11—C16—C15117.4 (4)
C14—C13—Br13118.7 (4)C11—C16—H16121.3
C12—C13—Br13118.3 (3)C15—C16—H16121.3
C16—C11—C12—C131.1 (7)C13—C14—C15—C160.1 (7)
Br11—C11—C12—C13179.8 (3)C13—C14—C15—Br15179.4 (4)
C11—C12—C13—C141.1 (7)C12—C11—C16—C150.6 (7)
C11—C12—C13—Br13179.1 (3)Br11—C11—C16—C15179.7 (3)
C12—C13—C14—C150.6 (7)C14—C15—C16—C110.1 (7)
Br13—C13—C14—C15178.6 (3)Br15—C15—C16—C11179.4 (4)
 

References

First citationAwwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBeacall, T. (1928). Recl Trav. Chim. Pays Bas, 47, 37–44.  CrossRef CAS Google Scholar
First citationBecke, A. D. (1988). Phys. Rev. A, 38, 3098–3100.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBelaaraj, A., Nguyen-ba-Chanh, Haget, Y. & Cuevas-Diarte, M. A. (1984). J. Appl. Cryst. 17, 211.  CSD CrossRef IUCr Journals Google Scholar
First citationBoese, R., Weiss, H.-C. & Bläser, D. (1999). Angew. Chem. Int. Ed. 38, 988–992.  CrossRef CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBrown, R. J. C. & Brown, R. F. C. (2000). J. Chem. Educ. 77, 724–731.  Web of Science CrossRef CAS Google Scholar
First citationBujak, M. (2018). Acta Cryst. B74, 458–466.  CSD CrossRef IUCr Journals Google Scholar
First citationBujak, M., Dziubek, K. & Katrusiak, A. (2007). Acta Cryst. B63, 124–131.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBujak, M., Podsiadło, M. & Katrusiak, A. (2008). J. Phys. Chem. B, 112, 1184–1188.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCarnelley, T. (1882). London, Edinb. Dubl. Philos. Mag. J. Sci. 13, 112–130.  Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDennington, R., Keith, T. & Millam, J. (2009). GaussView 5.0. Semichem Inc., Shawnee Mission, KS, USA.  Google Scholar
First citationDesiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725–8726.  CrossRef CAS Web of Science Google Scholar
First citationDziubek, K. F. & Katrusiak, A. (2014). Acta Cryst. B70, 492–497.  CSD CrossRef IUCr Journals Google Scholar
First citationFourmigué, M. (2009). Curr. Opin. Solid State Mater. Sci. 13, 36–45.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09. Revision A.02. Gaussian Inc., Wallingford CT, USA. https://gaussian.comGoogle Scholar
First citationGallagher, J. F., Farrell, M., Hehir, N., Mocilac, P., Aubert, E., Espinosa, E., Guillot, B. & Jelsch, C. (2019). Cryst. Growth Des. 19, 6141–6158.  CSD CrossRef CAS Google Scholar
First citationGavezzotti, A. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1399–1404.  CrossRef Web of Science Google Scholar
First citationHoller, A. C. (1948). J. Org. Chem. 13, 70–74.  CrossRef PubMed CAS Google Scholar
First citationJoseph, S., Sathishkumar, R., Mahapatra, S. & Desiraju, G. R. (2011). Acta Cryst. B67, 525–534.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKatritzky, A. R., Jain, R., Lomaka, A., Petrukhin, R., Maran, U. & Karelson, M. (2001). Cryst. Growth Des. 1, 261–265.  Web of Science CrossRef CAS Google Scholar
First citationKuramochi, H., Maeda, K. & Kawamoto, K. (2004). J. Chem. Eng. Data, 49, 720–724.  CrossRef CAS Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationLinde, P. R. van der, van Miltenburg, J. C., van den Berg, G. J. K. & Oonk, H. A. J. (2005). J. Chem. Eng. Data, 50, 164–172.  Google Scholar
First citationMackay, D., Shiu, W. Y., Ma, K.-C. & Lee, S. C. (2006). Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, 2nd ed. Boca Raton, FL: CRC Press.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahadevi, A. S. & Sastry, G. N. (2016). Chem. Rev. 116, 2775–2825.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMilledge, H. J. & Pant, L. M. (1960). Acta Cryst. 13, 285–290.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationMukherjee, A., Tothadi, S. & Desiraju, G. R. (2014). Acc. Chem. Res. 47, 2514–2524.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNakada, M., Fukushi, S., Tomita, H. & Mashiko, Y. (1970). Kogyo Kagaku Zasshi, 73, 929–932.  CrossRef CAS Google Scholar
First citationPang, X., Wang, H., Zhao, X. R. & Jin, W. J. (2013). CrystEngComm, 15, 2722–2730.  Web of Science CSD CrossRef CAS Google Scholar
First citationPedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.  CSD CrossRef Web of Science Google Scholar
First citationPodsiadło, M., Bujak, M. & Katrusiak, A. (2012). CrystEngComm, 14, 4496–4500.  Google Scholar
First citationPodsiadło, M., Olejniczak, A. & Katrusiak, A. (2013). J. Phys. Chem. C, 117, 4759–4763.  Google Scholar
First citationRigaku Oxford Diffraction (2018). CrysAlisPro. Rigaku Corporation, The Woodlands, TX, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThalladi, V. R. & Boese, R. (2000). New J. Chem. 24, 579–581.  Web of Science CrossRef CAS Google Scholar
First citationThalladi, V. R., Boese, R. & Weiss, H.-C. (2000a). Angew. Chem. Int. Ed. 39, 918–922.  CrossRef CAS Google Scholar
First citationThalladi, V. R., Boese, R. & Weiss, H.-C. (2000b). J. Am. Chem. Soc. 122, 1186–1190.  Web of Science CSD CrossRef CAS Google Scholar
First citationThalladi, V. R., Nüsse, M. & Boese, R. (2000c). J. Am. Chem. Soc. 122, 9227–9236.  CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatalika, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Australia. https://hirshfeldsurface.netGoogle Scholar
First citationWang, H., Wang, W. & Jin, W. J. (2016). Chem. Rev. 116, 5072–5104.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYalkowsky, S. H. & Alantary, D. (2018). J. Pharm. Sci. 107, 1211–1227.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds