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A detailed analysis of the recently published deformation potentials for

application in orbital-free density functional theory is given. Since orbital-free

density functional theory is a purely density-based description of quantum

mechanics, it may in the future provide itself useful in quantum crystallography

as it establishes a direct link between experiment and theory via a single

meaningful quantity: the electron density. In order to establish this goal,

sufficiently accurate approximations for the kinetic energy have to be found.

The present work is a further step in this direction. The so-called deformation

potentials allow the interaction between the atoms to be taken into account

through the help of their electron density only. It is shown that the present

ansatz provides a systematic pathway beyond the recently introduced atomic

fragment approach.

1. Introduction

Quantum crystallography (Massa et al., 1995, 1999) is a vividly

evolving field at the edge of quantum mechanics and crystal-

lography combining the strengths of each individual field for

enhancing the descriptive power of the model (Macchi et al.,

2015; Grabowsky et al., 2017; Genoni et al., 2018; Macchi,

2020). Usually, those strategies rely on sophisticated formal-

isms [due to subtle but important theoretical aspects

(Coleman, 1963; Schmider et al., 1992)] matching the experi-

mental data to a density matrix (Gillet & Becker, 2004) or

wavefunction approach (Jayatilaka, 1998) since many

chemical bonding descriptors such as the electron localization

function (ELF) (Becke & Edgecombe, 1990; Savin et al., 1992)

or the electron localizability indicator (ELI) (Kohout, 2004;

Kohout et al., 2004, 2005, 2008) require the first-order density

matrix or the pair-density as input. The use of wavefunction

approaches allows the insertion of further theoretical concepts

such as Extremely Localized Molecular Orbitals (Sironi et al.,

2007), which provides a link to orbital-based interpretation of

chemical bonding as well as to further methodological devel-

opment due to their extremely localized nature and thus, their

expected transferability.

However, orbitals are – although admittedly useful – arti-

ficial objects solely born from our own conception. There are

prominent concepts within the field of quantum chemical

topology (Popelier & Aicken, 2003) providing insight into

chemical bonding analysis based on the electron density only.

The quantum theory of atoms in molecules (QTAIM) (Bader,

1990) is probably the most well-known representative in the

field, but also the source function (Gatti et al., 2003) is a purely

density-based indicator for chemical bonding. Additionally,
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extensive efforts have been undertaken in order to extract

chemical bonding information from experimental densities by

employing approximate kinetic energy densities from the

gradient expansion (Tsirelson & Stash, 2002b,a,c; Stash &

Tsirelson, 2005; Tsirelson et al., 2013) or via inhomogeneity

measures of the electron density (Wagner & Kohout., 2011;

Finzel et al., 2012) using !-restricted space partitioning

(Martı́n Pendás et al., 2012; Kohout, 2016). However, care

must be taken when employing those indicators as they may

markedly differ from their pure quantum mechanic counter-

parts due to their approximate nature.

The aim of this work is to present a new method, namely the

bifunctional approach, providing a purely density-based

treatment of quantum mechanics for possible future applica-

tion in the field of quantum crystallography. Since the method

is based on the electron density only, it avoids the detour of

the above-mentioned matching formalisms to density matrices

or wavefunctions. The new method falls into the field of

orbital-free density functional theory (OF-DFT) (Wang &

Carter, 2000; Ho et al., 2008; Shin & Carter, 2014; Witt et al.,

2018; Lehtomäki et al., 2014; Ghosh & Suryanarayana, 2016).

Although founded in 1964 by the famous Hohenberg–Kohn

theorems (Hohenberg & Kohn, 1964), progress in this field

was hampered due to the lack of sufficiently accurate kinetic

energy functionals (Karasiev & Trickey, 2015). First attempts

were made with gradient expansion techniques, which until

now remain the most common research line in the field

(Thomas, 1927; Fermi, 1928; von Weizsäcker, 1935; Kirzhnits,

1957; Hodges, 1973; Murphy, 1981; Yang, 1986; Yang et al.,

1986; Lee & Ghosh, 1986; Kozlowski & Nalewajski, 1986; Lee

et al., 1991; Thakkar, 1992; Liu & Parr, 1997; Tran & Weso-

lowski, 2002; Ayers et al., 2002; Chai & Weeks, 2004; Ghir-

inghelli & Delle Site, 2008; Lee et al., 2009; Ghiringhelli et al.,

2010; Salazar et al., 2016; Ludeña et al., 2018). As nicely shown

by Trickey and co-workers (Trickey et al., 2011; Karasiev et al.,

2014; Karasiev & Trickey, 2015) parameterization of general-

ized-gradient approximations must be performed with care,

otherwise these approximations run the risk of producing

negative contributions to the Pauli kinetic energy.

The Pauli kinetic energy is a concept that goes back to

March (1986), who defined it as the difference between the full

kinetic energy and the von Weizsäcker part (von Weizsäcker,

1935), which is analytically known and can be seen as the

kinetic energy of a bosonic system in its ground-state (having

the same density like the fermionic system). Therefore, the

Pauli kinetic energy is interpreted as the extra kinetic energy

necessary to move the electrons into their individual orbitals.

As such the Pauli kinetic energy is always of positive nature.

Since the Pauli kinetic energy represents the only unknown

part of the full kinetic energy, it has been subject of intense

theoretical studies (March, 1986; Levy & Ou-Yang, 1988;

Nagy, 1991; Nagy & March, 1991; Nagy & March, 1992; Holas

& March, 1995; Amovilli & March, 1998; Nagy, 2008, 2010,

2011; Tsirelson et al., 2013; Kraisler & Schild, 2020; Kocák et

al., 2020).

The present work also contributes in this direction. It has

been shown recently that reliable approximations for the Pauli

kinetic energy can be obtained via bifunctional formalism,

involving the electron density and an approximate Pauli

potential employing the bare atomic fragment approach

(Finzel, 2018a,b, 2019, 2020) and a so-called deformation

potential that takes the interaction between two atoms into

account (Finzel, 2021). The present work is a direct follow-up

paper of the latter publication (Finzel, 2021), in which the

recently proposed ansatz is subjected to further investigations.

Therefore, a detailed analysis of those deformation potentials

is given here. It is shown how they work and why they work,

and where additional improvements can be expected.

2. Theory

In contrast to density functional development in the context of

Kohn–Sham density functional theory (KS-DFT), aiming to

approximate the electron–electron repulsion, namely the

exchange-correlation part, the target in OF-DFT is to

approximate the kinetic energy for the system of interest.

Following the Hohenberg–Kohn theorems (Hohenberg &

Kohn, 1964), the total electronic energy E of a system can be

expressed as a functional of the electron density �:

E½�� ¼ Ts½�� þ Vee½�� þ VZ½��; ð1Þ

where Ts½�� is the non-interacting kinetic energy, Vee[�] is the

Coulomb repulsion between the electrons and VZ½�� is the

electron–nuclear attraction energy. Strictly speaking,

equation (1) should refer to the full kinetic energy

(T ¼ Ts þ Tc) consisting of the non-interacting kinetic energy

Ts, originating from KS theory, and a correction Tc. The latter

term, however, has been shown to be of minor magnitude

(Görling & Ernzerhof, 1995) and is, therefore, usually merged

with the exchange-correlation part of the electron–electron

interaction. Thus, Ts is directly introduced in equation (1) as

the scaling properties of the non-interacting kinetic energy

will be explicitly addressed later.

The electron–nuclear attraction energy

VZ½�� ¼

Z
�ðrÞvZðrÞ dr ð2Þ

is known exactly as electron density functional by means of

the electron density and the nuclear potential of a molecule

vZðrÞ =
P

A vA
ZðrÞ, which is given by the superposition of all

atomic nuclear potentials vA
ZðrÞ ¼ �ZA=jr� RAj, where ZA is

the nuclear charge and RA is the nuclear coordinate. In the

context of density functional theory (DFT), the electron–

electron repulsion Vee[�] is frequently split into the Hartree

energy EH½�� and the exchange-correlation energy EXC½��. The

Hartree term is usually interpreted as the classical part of the

electron–electron repulsion, and it is given by:

EH½�� ¼
1

2

Z Z
�ðrÞ�ðr0Þ

jr� r0j
dr0 dr: ð3Þ

As pointed out at the beginning of this section, in OF-DFT

methods the focus is set on approximating the kinetic energy

and thus, functional approximations for the exchange-corre-

lation part are generously accepted. Therefore, for simplicity
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reasons the exchange-correlation part is expressed as local

exchange energy ELDA
X ½�� (Hohenberg & Kohn, 1964) only:

ELDA
X ½�� ¼ �CX

Z
�

4
3ðrÞ dr ð4Þ

with CX ¼ 3=ð4�Þð3�2Þ
1=3
� 0.73856.

As mentioned in the Introduction, the non-interacting

kinetic energy Ts½�� can be regarded as been constructed from

a bosonic part, the von Weizsäcker term TW (von Weizsäcker,

1935), and a remainder, the Pauli kinetic energy TP, which

consequently, is defined as the difference (March, 1986):

TP ¼ Ts � TW: ð5Þ

Based on the viewpoint that the von Weizsäcker kinetic

energy TW is the kinetic energy for a bosonic system in its

ground-state (with the actual fermionic density), an analytical

expression for the von Weizsäcker kinetic energy density tWðrÞ

in terms of the electron density can easily be derived:

TW½�� ¼

Z
tWðrÞ dr ¼

Z
1

8

r�ðrÞ½ �
2

�ðrÞ
dr: ð6Þ

Accepting the approximations for the exchange-correlation

energy, the Pauli kinetic energy TP is the only unknown

functional expression for a purely orbital-free description of

quantum mechanics.

As in recently published papers (Finzel, 2018a, 2019, 2020,

2021), the Pauli kinetic energy is evaluated from the so-called

bifunctional expression:

TP½�; vP� ¼ �
1

2

Z
�ðrÞ rrvPðrÞ dr ð7Þ

involving both the electron density �(r) and the Pauli potential

vPðrÞ as two separate variables.

A bifunctional expression is obtained by exploiting the

homogenous scaling behavior of a functional and further

neglecting the density dependence of the respective functional

derivative. For a functional F which obeys homogeneous

scaling behavior:

F½��� ¼ �
kF½��: ð8Þ

with the homogeneously scaled electron density

��ðrÞ ¼ �
3�ð�rÞ, whereby � is a parameter and k is the

respective scaling constant (k = 2 in the case of Ts), the

functional value can equally be obtained from (Levy &

Perdew, 1985):

F½�� ¼ �
1

k

Z
�ðrÞ r � rv

�
½��; r

�
dr ð9Þ

where

v
�
½��; r

�
¼
�F½��

��
ð10Þ

is the functional derivative of F. Note that the integral kernel

in equation (9) is position dependent, the integral value,

however, is not. In the above context, the functional derivative

is a true functional derivative v
�
½��; r

�
, explicitly given in terms

of � when the functional expression of F[�] is given analyti-

cally in terms of the electron density. In this case the functional

value can, of course, be obtained from the density functional

F[�] alone. The trick in the bifunctional formalism is to

suppress the density dependence of the potential, now being a

formal functional derivative v(r). Note that, although an

analytical density dependence of the potential can be

suggested, for example, as a possible update of the potential

with respect to density changes, those analytical dependencies

are not exploited in order to obtain the corresponding parent

functional. Thus, the formal functional derivative does not

have to obey scaling rules, as the functional value from the

properly scaling – yet unknown – functional expression can

always be obtained from

F½�; v� ¼ �
1

k

Z
�ðrÞ rrvðrÞ dr: ð11Þ

Note that the above equation is a bifunctional expression [in

contrast to equation (9)] as it depends on two separate vari-

ables � and v. Thus, based on the homogenous scaling beha-

vior and the corresponding formulas (Levy & Perdew, 1985)

the bifunctional expression allows the extraction of the energy

value of the otherwise unknown functional expression. As a

consequence, the bifunctional expression provides exactly the

KS Pauli kinetic energy, when the molecular electron density

and the molecular Pauli potential are inserted into equation

(7). The KS Pauli potential of the molecule is only known in

terms of the molecular KS eigenfunctions ’iðrÞ and their

respective eigenvalues "i (Levy & Ou-Yang, 1988):

vPðrÞ ¼
�Tp

��
¼

tPðrÞ

�ðrÞ
þ
X

i

�
"M � "i

� j’iðrÞj
2

�ðrÞ
: ð12Þ

In the above equation, the sum runs over all occupied eigen-

functions and "M is the highest occupied eigenvalue of the

system. The Pauli kinetic energy tPðrÞ is given by:

tPðrÞ ¼
1

2

X
i

jr’iðrÞj
2
� tWðrÞ: ð13Þ

Obviously, in an orbital-free formalism, the KS eigenfunctions

and eigenvalues are of course not available. However, as

recently shown (Finzel, 2021), sufficiently accurate approx-

imations for the molecular Pauli potential can be found in

order to properly describe chemical bonding by choosing the

following ansatz v�def
P ðrÞ for the Pauli potential:

vP � v�def
P ðrÞ ¼ v�

P ðrÞ þ vdef
P ðrÞ ð14Þ

employing the bare atomic fragment approach v�
P ðrÞ:

v�
P ðrÞ ¼

X
A

vA
P ðr� RAÞ ð15Þ

and a so-called deformation potential vdef
P ðrÞ.

vdef
P ðrÞ ¼

c 1
2 r�þðrÞ
� �2

þd 1
2 r��ðrÞ
� �2

� cþd
N tWðrÞ

�ðrÞ
; ð16Þ

that is based on the constructive �þðrÞ and destructive ��ðrÞ
interactions between the atoms. In the above equation c and d

are the number of constructive and destructive electron
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sharing, respectively, and N is the total number of electrons in

the system. The respective atomic interactions ��ðrÞ are

expressed via the following ansatz:

��ðrÞ ¼
1

2ð1� SÞ½ �
1=2

�AðrÞ ��BðrÞ
� �

: ð17Þ

where S is the overlap between the functions �AðrÞ and �BðrÞ.

The individual atomic contributions �AðrÞ are given by:

�AðrÞ ¼
�AðrÞ

NA

� �1=2

: ð18Þ

where NA and �AðrÞ are the number of electrons and the

electron density of atom A, respectively. Finally, the Pauli

kinetic energy is obtained from the bifunctional expression:

T�def
P ½�; v�def

P � ¼ �
1

2

Z
�ðrÞ r � rv�def

P ðrÞ dr ð19Þ

and the total electronic energy is given by

E½�; v�def
P � ¼TW½�� þ T�def

P

�
�; v�def

P

�
þ EH½��

þ ELDA
X ½�� þ VZ½��: ð20Þ

3. Computational details

In the current approach, the molecular electron density is

given by a simple monopole expansion using atom-centered

squared real-type node-less Slater functions. Core regions are

described by 1s-type functions:

’1sðrÞ ¼ N1s expð��1srÞ; ð21Þ

whereas valence regions are modeled by 2s-type functions:

’2sðrÞ ¼ N2s r expð��2srÞ; ð22Þ

with N1s and N2s being the respective normalizations

constants. Note that node-less Slater functions are not orbitals,

but serve to expand the electron density.

In the present work, energy minimization has been

performed by optimizing the respective exponents �1s and �2s,

while keeping the corresponding shell occupations fixed [for

details see Finzel (2021)].

KS calculations (molecular data for comparison and closed-

shell atoms for the bare atomic fragment approach) were

performed with the ADF (Software for Chemistry & Mate-

rials, 2017) program at LDA (Xonly) level using the QZ4P

basis sets.

4. Results and discussion

Equation (14) provides a model for the molecular Pauli

potential that explicitly includes the interaction between the

atoms by means of the deformation potential, which relies on

the number of constructive and destructive electron sharing.

Although the underlying idea goes back to molecular orbital

(MO) theory, referring to the number of bonding versus anti-

bonding orbitals, the proposed ansatz, in principle, allows for

any real non-negative number of c and d (including non-

integer values) and can be based on any convenient model

that measures electron sharing. In this work, integer numbers

that are multiples of two (accounting for doubly occupied

molecular orbitals in the sense of MO theory) are tested. As

will be shown later, the influence of c and d on the resultant

bond distances is systematic, thereby allowing for valid inter-

polation between the chosen numbers of c and d.

The first test case with c = 0 and d = 0 is the bare atomic

fragment approach itself, in which case the equilibrium bond

distances directly follow the size of the core shells, which

decrease from Li to Ne and thus, yield a very short bond

length in the case of Ne2 [for a detailed explanation see Finzel

(2021)]. The construction of a deformation potential with c = 2

and d = 0 means that one electron pair interacts constructively,

while there are no destructive terms at all. This model can, of

course, be tested for all dimers in order to show the systematic

behavior of the proposed model, but only in the case of Li2 is

this model in accordance with the MO concept (Li–Li having

one single shared electron pair). Increasing c while keeping d

equal to zero signifies an increasing constructive electron

sharing with one, two, three, four and five electron pairs for c =

0, 2, 4, 6, 8 and 10, respectively. The latter are of course not

realized within the second-row homonuclear dimers, but with

respect to the methodology itself it is worth investigating in

order to test whether this will lead to a systematic decrease in

the bond lengths. Deformation models with d = 2 share one

electron pair of destructive nature. In the sense of MO theory,

c = 2 and d = 2 would be the electronic graph describing Be2

with one constructive and one destructive electron pair.

According to MO theory the following next dimers B2, C2 and

N2 would be characterized by d = 2 (in all cases) and c = 4, 6

and 8, respectively, but of course other combinations of c and

d are valid for testing. Following the MO concept beginning

from O2 additional destructive terms have to be added. Thus,

c = 8 for O2, F2 and Ne2, and d = 4, 6 and 8, respectively, for the

design of MO-compatible deformation potentials. However, as

stated before all combinations of c and d are tested in order to

investigate whether or not the proposed ansatz behaves

systematically (which is of significant importance for the

applicability of further possible models for c and d).

In order to investigate the reliability of the proposed ansatz,

deformation potentials for various combinations of construc-

tive and destructive interaction terms were generated and

their performance with respect to the chemical bonding was

tested. For example, those bonding curves, showing the total

energy as a function of the internuclear distance, are depicted

for the N2 molecule in Fig. 1. As can be seen from the figure,

the proposed ansatz yields reasonable bonding curves over a

large set of possible input for c and d.

That aspect is noteworthy, since the design of kinetic energy

density functionals providing reasonable energy differences,

e.g. for a molecule with varying internuclear distance, is

extremely challenging, while so-called single-shot functionals

(aiming to represent the kinetic energy for a special system of

interest, e.g. at the equilibrium bond distance) can conve-

niently be obtained numerically by inversion of KS equations

or with the help of an appropriate parameterization. In

quantum crystallography

Acta Cryst. (2021). B77, 458–466 Kati Finzel � Deformation potentials with application in orbital-free DFT 461



contrast, the proposed ansatz does not require ad hoc para-

meterization. However, specific chemical knowledge about the

number of valence electrons of the participating atoms is

needed in order to determine meaningful choices for c and d.

In return, meaningful choices of c and d yield bound systems.

Additionally, bond lengths obtained from those deformation

potentials all lie within a reasonable range, e.g. they vary from

1.8 bohr to 3.3 bohr in the case of the N2 molecule. Notably,

changes in the equilibrium bond length are remarkably

systematic. Increasing the number of constructive terms (for a

fixed number of d) (see for example energy curves depicted by

dashed lines) yields decreasing bond distances [follow the data

shown in blue (c = 0) to the data shown in violet (c = 10)

(Fig. 1)], while increasing the number of destructive terms (for

fixed c) yields increasing bond distances [see for example data

represented in black (c = 8) with increasing number of

destructive terms, d = 0 depicted by dashed lines, d = 2

depicted by full lines, and d = 4 depicted by dashed-dotted

lines (Fig. 1)]. This is a favorable outcome with respect to

chemical bonding theory. Adding more constructive terms

favors chemical bonding, while adding destructive terms

correspondingly weakens the bond. The proposed model, thus,

provides systematic and predictable results for a given choice

of deformation potential. Those aspects are, on the one hand,

given by the systematic construction of the deformation

potentials and, on the other hand, the impact of such poten-

tials on its ability to describe chemical bonding can equally be

rationalized by visualization.

Fig. 2 presents the equilibrium bond distances for the

second-row homonuclear dimers as a function of the number

of constructive terms. As can be seen from the figure, the

observations made for N2 are valid for all examined test cases,

meaning that with increasing c the respective bond distance

decreases accordingly. Additionally, note also that the bond-

length contraction behaves in a systematic way. For bond

distances with d = 0 the contraction becomes more

pronounced with decreasing nuclear charge, see for example

the bond lengths depicted with square icons beginning from

Ne2, shown in yellow, to Be2, shown in light blue (Fig. 2).

Larger atoms, thus, exhibit a more compressible behavior in

the proposed model. Moreover, for one and the same dimer

X2, the bond-length contraction for increasing d is more

pronounced, which is also due to the size effect. The respective

energy minima with higher values for d are shifted towards

larger bond distances and the impact of increasing numbers

for c is higher in those regions as the energy curve is much

flatter here.

Thus, due to their systematic nature the recently introduced

deformation potentials enable substantial improvement of the

description of chemical bonding within the second-row

homonuclear dimers compared to the bare atomic fragment

approach. As can be seen from Fig. 2, the bare atomic frag-

ment approach yields systematically decreasing bond lengths

for X2 when going from Li (shown in dark blue) to Ne (shown

in yellow), see entries at the very left side of the figure where

c = 0 and d = 0 (data represented by squares). In the bare

atomic fragment approach, only the effect due to the Pauli

repulsion of a given atomic density with the core electrons of

its neighboring atoms is taken into account, not the nature of

the interaction of the valence densities. Since the core regions

decrease in size from Li to Ne, the respective Pauli repulsion

decreases, and consequently, the resultant bond distance

decreases. As a matter of fact, adding constructive terms to the

bare atomic fragment approach yields an even smaller bond

length, and thus, Ne2 with d = 0 exhibits the shortest bond

distances for the examined test cases (see the data depicted by
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Figure 1
Total energy of N2 as a function of the internuclear distance from
OF-DFT using various deformation potentials. Dashed lines: d = 0; full
lines: d = 2; dashed–dotted lines: d = 4. Dark blue: c = 0; light blue: c = 2;
light green: c = 4; dark green: c = 6; black: c = 8; violet: c = 10.

Figure 2
Equilibrium bond length for second-row homonuclear dimers from
OF-DFT using various deformation potentials as a function of
constructive interaction terms. Squares: no destructive terms, circles:
two destructive terms, diamonds: four destructive terms, triangles: six
destructive terms. Yellow: Ne2; orange: F2; red: O2; black: N2; dark green:
C2; light green: B2; light blue: Be2; dark blue: Li2. Equilibrium bond
lengths from deformation potentials in accordance with MO concept are
highlighted by large symbols, hereby B2 RAB = 4.12 bohr (shown by light-
green circle), C2 RAB = 3.02 bohr (shown by dark-green circle), N2 RAB =
2.38 bohr (shown by black circle), and O2 RAB = 2.77 bohr (shown by red
diamond). The equilibrium bond length for N2 has recently been reported
by Finzel (2021).
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Figure 3
Pauli potential (PP) and components for second-row dimers. The first column depicts the molecular PP evaluated from Kohn–Sham orbitals (Finzel,
2021) whereas the second column depicts the orbital-free approximation v�def

P together with its components v�
P (Finzel, 2021) and vdef

P shown in columns
three and four, respectively. First row: Ne2 color scale from 0.0 (blue) to 41.0 (white). Second row: F2 color scale from 0.0 (blue) to 36.0 (white). Third
row: O2 color scale from 0.0 (blue) to 26.0 (white). Fourth row: N2 color scale from 0.0 (blue) to 18.5 (white). Fifth row: C2 color scale from 0.0 (blue) to
14.3 (white). Sixth row: B2 color scale from 0.0 (blue) to 8.9 (white). Seventh row: Be2 color scale from 0.0 (blue) to 5.2 (white). Eighth row: Li2 color
scale from 0.0 (blue) to 2.4 (white). Orthoslices are shown within the range of 5�8 bohr for all dimers.



yellow squares in Fig. 2). As shown by the data, a systematic

lengthening of bond distances is obtained by adding more

destructive terms. Different values of d are represented by

different symbols, d = 0 depicted by squares, d = 2 depicted by

circles and d = 4 depicted by diamonds. Usually deformation

potentials with d = 6 or higher yield unbound atoms. There-

fore, F2 and Ne2 are unbound when c and d are chosen

according to MO theory [for further details see Finzel (2021)].

In summary, the calculated equilibrium bond lengths build a

consistent set, which is in accordance with our expectation

from traditional electronic structure theory (Kutzelnigg,

2002). Based on the knowledge of molecular orbital (MO)

theory, prominent experimental findings like the bond-length

contraction for N2 within the list of the second-row homo-

nuclear dimers can be rationalized. Recall that the density is

represented by a simple monopole expansion in this work, and

thus, the experimentally observed bond-length contraction is

reproduced without the necessity of introducing angular

quantum numbers (s-, p-, d-orbitals) for the participating

atoms. In Fig. 2, deformation potentials with c and d in

accordance with MO theory are labeled by large icons, hereby

B2 RAB = 4.12 bohr (shown by a light-green circle), C2 RAB =

3.02 bohr (shown by a dark-green circle), N2 RAB = 2.38 bohr

(shown by a black circle), and O2 RAB = 2.77 bohr (shown by a

red diamond) (calculations for Li2 do not converge, and Be2,

F2 and Ne2 are unbound within that model). However, the

data nicely reveals the bond-length contraction from B2

(shown in light green) via C2 (shown in dark green) to N2

(shown in black), which is due to subsequently increasing

constructive interaction, together with the lengthening of the

internuclear distance from N2 to O2 (data for O2 is shown in

red), since the number of destructive terms d increases from

d = 2 in N2 to d = 4 in O2. Thus, the electron counting rules

(from the MO concept) in connection with spherical atoms are

sufficient to explain the experimentally observed bond-length

contraction.

As shown in recently published work (Finzel, 2021), the

currently proposed model of deformation potentials slightly

overestimates the destructive interaction terms, consequently

yielding bond lengths that are somewhat too long compared to

the corresponding experimental data. This aspect can also be

visually observed by comparison of the approximate mole-

cular Pauli potentials v�def
P ðrÞ and the orbital-based KS Pauli

potentials (PP) at the equilibrium bond distances obtained

from KS/LDA/QZ4P calculations. The data are compiled in

Fig. 3, together with the components v�
P ðrÞ and vdef

P ðrÞ, shown

in columns three and four, respectively. At first glance, the

close similarity between the orbital-based KS PP, shown in the

first column, and the approximate molecular PP v�def
P ðrÞ,

shown in the second column, can be noticed. Apparently, the

recently proposed ansatz is able to mimic the molecular KS PP

not only in the core regions, but also in the bonding regions,

where minor characteristics are of high importance. However,

by careful visual inspection a slight imbalance can be noticed.

As can be seen, the impact of the destructive terms is some-

what over-charged in the current model. Values of the

approximate PP at the bond critical point are slightly higher

compared to their KS data. Consequently, in this region the

gradient of the approximate PP is higher than the corre-

sponding gradient for the KS PP, and the Pauli repulsion is

more pronounced. This effect is particularly noticeable in Ne2

and F2, but the general trend applies to all second-row

homonuclear dimers. The data in Fig. 3, thus, reveals that by

careful inspection of approximate deformation potentials and

subsequent engineering, systematic improvements can be

obtained.

A proof-of-concept is given by analyzing columns three and

four in Fig. 3 depicting the bare atomic fragment approach and

the deformation potential for the second-row homonuclear

dimers X2 with X = Ne, shown in the first row, until X = Li,

shown in the last row. The reader will note the strong impact of

the deformation potential within the core regions in the case

of N2, shown in the fourth row, and somewhat smaller in the

cases of C2 and O2, depicted below and above, respectively.

Although, aimed to approximate the first term tP=� of the

orbital-based KS PP, a quantity that is always positive, the

approximate deformation potential exhibits negative values

within the core regions. This is due to the fact that the

approximate deformation potential is not built from the

respective eigenfunctions, while the KS Pauli kinetic energy is

given in terms of such orbitals. Nevertheless, the full approx-

imate PP v�def
P ðrÞ is positive everywhere, a mandatory

requirement for appropriate approximations of the Pauli

potential (Karasiev & Trickey, 2015). However, the fact that

the deformation potential in the cases of O2, N2 and C2 has a

non-negligible contribution in the core regions signifies

(already by visual inspection) that in contrast to the bare

atomic fragment approach (Finzel, 2019) (depicted in column

three) optimization of the core regions will have an impact on

the corresponding OF-DFT calculations and thus, influences

the resultant bonding curve.

The above-mentioned aspect has been verified by

comparing the chemical bonding curves from valence opti-

mized (optimization of �2s only) and the fully optimized

electron-density (optimization of �1s and �2s) calculations. The

corresponding equilibrium bond lengths together with the

respective dissociation energies are compiled in Table 1. As

can be seen from the data, the bond distances are indeed

influenced by the optimization of the core electron density. In

all cases the additional optimization leads to smaller equili-

brium bond lengths. As can be expected from the data in Fig. 3,
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Table 1
Equilibrium bond length RAB (in bohr) and dissociation energies D0 (in
hartree) for O2, N2 and C2 from OF-DFT with optimized valence regions
(val opt) as well as core and valence optimized electron density (full opt).

Valence optimized equilibrium bond length have recently been reported by
Finzel (2021).

val opt full opt

RAB D0 RAB D0

O2 2.77 0.511 2.73 0.663
N2 2.38 2.330 2.33 2.631
C2 3.02 0.724 2.99 0.809



this effect is most pronounced in the case of the N2 molecule,

where the most prominent bond-length contraction in

connection with the core-density optimization is found. The

respective dissociation energies behave accordingly, and

despite being somewhat high are in good agreement with the

concept of multiple bonding, showing that N2 has the highest

dissociation energy in this model.

5. Conclusion

In this work, the recently published deformation potentials

with application in orbital-free density functional theory were

subjected to a detailed analysis.

In principle, orbital-free density functional theory (OF-

DFT) provides a direct link between experimental measure-

ments and quantum theory based on a single quantity with

interpretative meaning: the electron density. As such OF-DFT

avoids detours via wavefunctions or density matrices.

However, in the past there has been no general formalism of

OF-DFT in reasonable accordance with orbital-based

quantum theory. The present work aims to overcome such

shortcomings. It was shown that based on the recently intro-

duced bifunctional approach, sufficiently accurate approx-

imations can be found that allow a reliable description of

chemical bonding.

Here, a detailed analysis of those approximations was given.

The recently introduced deformation potentials together with

their underlying reasonings were presented in detail. It was

shown how they work and why they work, and that based on

careful inspection, the performance of a given deformation

potential can be predicted in advance. Those findings offer a

new strategy for systematic improvements in OF-DFT.
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