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Crystals of the hydrous magnesium orthotellurate(VI) Mg(H2O)2[TeO2(OH)4]

were grown by slow diffusion of an aqueous MgCl2 solution into a KOH/

Te(OH)6 solution immobilized in gelatin. The crystal structure is built of sheets

of nearly regular corner-sharing [MgO6] and [TeO6] octahedra. Half of the

bridging O atoms are connected to disordered H atoms, which are located in

rhomboidal voids (long and short diameters of�5.0 and�2.5 Å, respectively) of

these layers. Moreover, the TeVI atom connects to two OH� ions and the MgII

atom to two H2O molecules. The OH� ions and H2O molecules connect adjacent

layers forming a disordered hydrogen-bonding network. In a given layer, an

adjacent layer may be positioned in four ways, which can be characterized by

one of two origin shifts and one of two orientations with respect to [100]. The

crystals feature a disordered stacking arrangement, leading to rods of diffuse

scattering in the diffraction pattern. The polytypism is explained by application

of the order–disorder (OD) theory. Different refinement models are compared

and the diffuse scattering is evaluated with structure factor calculations. The

correlation coefficient of subsequent origin shifts is � �0.33, whereas the

orientation of the layers is essentially random. Determining the latter is

particularly difficult owing to a small contribution to the diffraction pattern and

virtually indistinguishable diffraction patterns for pairs of correlations with the

same absolute value. On longer standing in a glass vial, an ordered polytype

forms.

1. Introduction

Orthotellurates(VI) of alkaline earth metals with general

formula M2M0[TeVIO6] bear interesting crystal-chemical and

physico-chemical aspects, and a number of these phases and

their solid solutions are structurally well characterized (Prior

et al., 2005; Fu et al., 2008). The structures of nearly all alkaline

earth metal tellurates (except Be) with a single MII cation and

the general formula MII
3 [TeVIO6] have been elucidated [M =

Mg: Schulz & Bayer (1971); M = Ca: Hottentot & Loopstra

(1981); M = Sr, Ba: Stöger et al. (2010)]. The structures of these

tellurates are characterized by rigid, practically regular, octa-

hedral [TeO6]6� units. Ca3[TeO6] (P21/n, Z = 2), Sr3[TeO6] (P1,

Z = 32) and Ba3[TeO6] (I41/a, Z = 80) are hettotypes of the

double perovskite structure type, where the MII atom occupies

two positions with distinctly different coordination spheres.

The ionic radius of MgII, on the other hand, is incompatible

with the large voids required by the double perovskite aris-

totype and therefore Mg3[TeO6] (R3, Z = 2) crystallizes in a

different structure type, isotypic with Mn3[TeO6] (Weil, 2006).

During our ongoing studies of hydrous derivatives of

M3[TeO6] phases with M = Mg, Ca, Sr, Ba we obtained single

crystals of the title compound, Mg(H2O)2[TeO2(OH)4], with a

unique crystal structure. So far, hydrous alkaline earth tellu-
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rates have only been described for Ba (Weil et al., 2016). We

report here on the structure determination and description of

the polytypic structure as well as on thermal behavior of

Mg(H2O)2[TeO2(OH)4].

Symbols used are summarized in Appendix A.

2. Experimental

2.1. Synthesis and crystal growth

Crystals of Mg(H2O)2[TeO2(OH)4] were grown in gelatin

using a gel diffusion technique (Heinisch, 1996). Three gelatin

sheets (�4.5 g) were dissolved in a solution of KOH (4.34 g,

85%wt) and Te(OH)6 (7.89 g) in water (300 ml). From this

mixture, 25 ml of the solution were introduced into a large test

tube. After solidification, the gel was covered with 10 ml of a

neutral gelatin solution, prepared by dissolving one gelatin

sheet (�1.5 g) in water (100 ml). After solidification of the

second gelatin layer, it was covered with MgII solution (10 ml,

0.5%wt) which was obtained by dissolving MgCl2�6H2O

(4.16 g) in water (100 ml). The test tube was sealed with

wrapping film and kept at 295 K for one month. Square-

bipyramidal crystals of Mg(H2O)2[TeO2(OH)4] had formed at

the interface of both gelatin layers. The gel was cut with a

scalpel and crystals with an adequate size for single-crystal

diffraction were isolated under a polarizing microscope.

2.2. Data collection

Diffraction intensities for structure refinements were

collected at room temperature using fine-sliced !- and ’-scans

on a Bruker KAPPA APEX II diffractometer equipped with a

CCD camera (Mo K� radiation, graphite-monochromated).

Bragg intensities were reduced using the SAINT-Plus soft-

ware (Bruker, 2017). An absorption correction was applied

using a multi-scan approach with SADABS (Bruker, 2017)

using the 4/mmm Laue group.

Inspection of the diffraction pattern (reconstructed reci-

procal space layers) revealed lines with pronounced diffuse

scattering. For the quantitative analysis of the diffuse scat-

tering, a second crystal was measured with special attention

paid to minimization of artifacts on a Stoe IPDS-II image-

plate diffractometer using graphite-monochromated Mo K�
radiation produced by a conventional sealed X-ray tube

operated at 50 kV and 40 mA. A 0.5 mm fiber optic collimator

and beam stop were positioned in such a way that the free

beam path in air was 30 mm long, with the crystal in the center.

Compared to the default setup, this arrangement has a

significant shorter air beam path and the background caused

by air-scattering is reduced. The sample-to-detector distance

was set to 100 mm. For further background correction, 46

frames were collected under the same conditions without the

sample. These frames were averaged and used as background

in further processing. The data collection was run as a 180� !-

scan using 0.2� rotation and 2 min exposure times, resulting in

900 measured frames. Reference frames were collected every

2 h using 1 min exposures over a 10� ! rotation. Evaluation of

the 29 reference frames did not show any significant change of

the intensities.

The experimentally determined background was subtracted

from all measured raw data frames. Furthermore, a masking

procedure was applied to flag overexposed spots. XDS

(Kabsch, 2010) was used to determine the orientation matrix

for further processing with a modified version of Xcavate

(Estermann & Steurer, 1998; Estermann, 2001). Intensity

scaling of the original 32-bit images was obtained with

Xcavate, and shading of non-measured areas and extraction of

line profiles were performed with ImageJ (Abràmoff et al.,

2004). One-dimensional streak profiles were extracted by
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Table 1
Crystal data and integration details of Mg(H2O)2[TeO2(OH)4].

Data collection 1 Data collection 2 Data collection 3

Crystal data
Sum formula MgTeO8H8 MgTeO8H8 MgTeO8H8

Mr 486.46 486.46 486.46
Crystal system Tetragonal Tetragonal Tetragonal
Crystal form Square bipyramid Square bipyramid Square bipyramid
Crystal color Colorless Colorless Colorless
Crystal size (mm) 0.15 � 0.15 � 0.22 0.16 � 0.16 � 0.25 0.07 � 0.07 � 0.08

Data collection
Diffractometer Bruker KAPPA APEX II Stoe IPDS-II X06DA beamline
Radiation type, � (Å) Mo K�, 0.71073 Mo K�, 0.71073 Å 0.7085
Temperature (K) 293 293 293
Data collection method !- and ’-scans !-scan !-scan
�max(�) 39.1 29.7 30.0
No. of measured reflections 7344 † †

a, c (Å) 5.32820 (10), 20.6725 (4) 5.334 (2), 20.808 (5) 5.316 (2), 20.791 (4)
V (Å3) 586.886 (11) 592 (3) 587 (3)
Dx (Mg m�3) 3.166 † †
� (mm�1) 5.167 † †
Absorption correction Multi-scan (SADABS) † †
Tmin, Tmax 0.32, 0.46 † †
Rint (Laue class) 0.040 (4/mmm) † †

† No data reduction or refinement performed.



manually determining the lateral center of the streaks and

summing over 20 pixels segments perpendicular to the streaks.

Further diffraction experiments on a crystal (70 mm �

70 mm � 80 mm) kept for six years in gelatin at room condi-

tions have been performed at the X06DA beamline of the

Swiss Light Source (Paul Scherrer Institute, Villigen, Swit-

zerland). Monochromated radiation of 0.7085 Å was utilized

to collect 1800 data frames during a 180� rotation of the crystal

(0.3 seconds per frame) using a Pilatus 2M-F detector. Data

collection was controlled by DA+ (Wojdyla et al., 2018),

evaluation of the orientation matrix and reconstruction of the

reciprocal space layers were performed using XDS and

Xcavate.

Details of the data collections are summarized in Table 1.

2.3. Refinement

The crystal structure of Mg(H2O)2[TeO2(OH)4] was solved

using the charge flipping method implemented in SUPER-

FLIP (Palatinus & Chapuis, 2007) and refined against F 2 in

Jana2006 (Petřı́ček et al., 2014). Owing to disorder, the H

atoms could not be located reliably and thus were not

considered in the refinements. All atoms were refined using

anisotropic atomic displacement parameters (ADPs). More

details on different modeling and refinement attempts are

given below (x3.8).

2.4. Calculation of diffuse scattering

Experimental peak broadening of the one-dimensional

intensity profiles was estimated by fitting Gaussian distribu-

tions to sharp reflections using the least squares (LS) solver

Ceres (Agarwal et al., 2020) refining the origin, reciprocal basis

vector length, variance � (all in pixels) and the individual

intensities (in arbitrary units). The overall peak shape of the

sharp reflections was well described by a Gaussian, only the

base was better described by a Lorentz (Cauchy) distribution.

One-dimensional diffuse scattering was calculated using the

analytical expressions derived below. Atomic coordinates and

ADPs of single layers were taken from the single-crystal

refinements. The atomic form factors were calculated using

polynomial approximations tabulated in International Tables

for Crystallography (Brown et al., 2006). Calculations were

performed on a one-dimensional grid with four times the

resolution of experimental data and later downsampled to the

experimental grid.

Correlation parameters were estimated using a simple

coordinate-descent algorithm optimizing in turn the origin (in

pixels), the length of the reciprocal basis vector (in pixels) and

the correlation parameter (unitless). Each variable was

determined using a golden-section search. When multiple rods

were refined concurrently, a hierarchical coordinate-descent

was performed. In an outer loop, the correlation parameter

was refined, in an inner loop the origin and basis vector length

of each rod.

The validity of such a trivial search was confirmed by noting

that the loss function possesses a single local minimum in each

coordinate. The process was stopped when the change in all

variables fell below a threshhold of 0.001 in the respective

unit. The scale factor was determined after each cycle using a

simple linear least-squares regression with unit weight, which

also provided the loss function Rp ¼
P
jIobs � Icalcj

2=
P
jIobsj

2.

Refinements using the weighting functions w = 1/(Iobs)
e (e =

1,2), which are used in powder diffraction (Toraya, 1998), led

to unreasonable peak shapes owing to an exaggerated

emphasis on the intensities of ‘valleys’ (local minima between

peaks).

2.5. Thermal analysis

Simultaneous thermal analysis (STA) measurements in the

temperature range 30–900�C were performed with a �50 mg

sample in a corundum crucible on a NETZSCH STA 449 C

Jupiter system coupled with a Aeolos quadrupole mass

analyzer. The quartz capillary was kept at 250�C. The

measured mass signals were 2 (H2), 12 (C), 14 (N), 15 (CH3),

16 (CH4, O), 17 (OH), 18 (H2O), 28 (N2, CO), 32 (O2) and 44

(CO2). All measurements were performed under a flowing

argon atmosphere (20 ml min�1) and heating rates of

10 K min�1. Base line corrections of the TG curves were
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Figure 1
A polytype of Mg(H2O)2[TeO2(OH)4] [MDO2 (see x3.4), Pcnm, c = 2c0]
viewed down [010]. Layer names according to the crystallo-chemical and
the OD description are indicated to the right and left, respectively.



carried out by measuring the empty alumina crucible prior to

each measurement. Temperature-dependent powder X-ray

diffraction measurements (PXRD) were performed on a

PANalytical X’Pert PRO diffractometer using a HTK1200

Anton-Paar high-temperature oven chamber mounted on the

diffractometer. Prior to the measurement, the sample was

finely ground and placed on a glass ceramic (Marcor) sample

holder (depth 0.5 mm). The zero point was calibrated with a

LaB6 standard and automatically adjusted during the

measurements with a PC-controllable alignment stage. The

samples were heated under atmospheric conditions at

10 K min�1 to the respective measurement temperature and

kept for 5 min before measurement of each step to ensure

temperature stability.

3. Results and discussion

3.1. Crystal chemistry

Mg(H2O)2[TeO2(OH)4] crystallizes as polytypes composed

of distinct crystallo-chemical layers, designated as Ln, where n

is a sequential number (Fig. 1). The Ln layers possess (idea-

lized) p4/m symmetry (Kopsky & Litvin, 2006) with a square

lattice spanned by (a, b). c0 is the vector perpendicular to the

layer planes with the length of one layer width. Henceforth, all

directions and Miller indices will be given with respect to the

basis (a, b, c0). The Ln layers are composed of close to regular

[MO6] (M = Mg, Te) octahedra, which are connected by

corners forming sheets (Fig. 2).

Both octahedra are located on sites with symmetry 4/m and

are tilted by �26� in opposite directions about [001], thus

leaving rhomboidal voids with a long and a short diameter of

’5.0 and’2.5 Å, respectively. The M positions are alternately

occupied with Te and Mg atoms in a checkerboard pattern.

The O atoms connected only to Te and Mg are labeled O1 and

O2, respectively. The shared O atom is O3 (Fig. 2). The

[MgO6] octahedron is slightly larger than the [TeO6] octahe-

dron with an average Mg—O distance of 2.056 Å compared to

the average Te—O distance of 1.929 Å. Selected distances and

angles are compiled in Table 2.

The rigid conformation of the octahedral [TeO6]6� anion

and the Te—O distances are characteristic for oxotellur-

ates(VI). Reviews on the crystal chemistry of these

compounds were given by Kratotochvı́l & Jenšovský (1986),

Loub (1993), Levason (1997) and Christy et al. (2016). An

octahedral coordination is the most common coordination for

MgII cations, and the average Mg—O distance of 2.057 Å

compares well to the maximum of the distribution of Mg—O

distances of 2.1 Å given in a survey on Mg—O coordination

polyhedra (Blatov et al., 1999; Gagné & Hawthorne, 2016).

Bond valence sums (BVSs) are a useful tool to assign H

atoms, in particular for those cases where H atoms cannot be

located, e.g. in the presence of heavy atoms, from X-ray

diffraction data (Donnay & Allmann, 1970). Neglecting the

contributions of H atoms, in the ideal case, the O atoms of

H2O molecules, OH� ions and O2� ions have total BVS of 0, 1

and 2 valence units (v.u.), respectively. Bond valence calcu-

lations based on the I42d model of x3.8 with

vi ¼ exp½ðRo � RiÞ=b� (Brown, 2002) using the parameters

Ro = 1.693 Å, b = 0.37 for Mg—O and Ro = 1.917 Å, b = 0.37 for

Te—O (Brese & O’Keeffe, 1991) result in BVSs of 0.84 v.u.

(O1), 0.36 v.u. (O2) and 1.34 v.u. (O3). It has to be noted that

these BVS calculations are slightly skewed by substitutional

disorder of the Te and Mg atoms as well as positional disorder

of the O atoms, showed by enlarged ADPs.

According to these BVSs, the Te atoms are bonded to two

OH� anions (O1) and the Mg atoms to two H2O molecules

(O2). The remaining two H atoms per formula unit are

connected to two out of four bridging O3 atoms, amounting to

one per rhomboidal void. Thus, the structural arrangement of

the compound can be expressed with the connectivity formula
2
1½MgðH2OÞ2=1ðO=OHÞ4=2TeðOHÞ2=1�. This is in agreement

with crystallo-chemical considerations and corresponds to an

electronically neutral structure. Moreover, the Te—O bond

lengths distribution in the [TeO2(OH)4]2� octahedron is in

good agreement with those of other structures comprising this

type of anion (Weil, 2004, 2007; Weil et al., 2017).
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Table 2
Selected interatomic distances d (Å) and angles (�) in Mg(H2O)2-
[TeO2(OH)4].

The data are derived from the I42d refinement of x3.8.

Atoms d Atoms Angle

Te—O1 1.972 (2) (2�) O1—Te—O1 180
Te—O3 1.906 (2) (4�) O1—Te—O3 90.97 (6)
Mg—O2 2.044 (3) (2�) O3—Te—O3 90.02 (10)
Mg—O3 2.064 (2) (4�) O3—Te—O3 178.07 (8)
O1� � �O1 2.9316 (14) (2�) O2—Mg—O2 180
O1� � �O2 2.9024 (14) (2�) O2—Mg—O3 90.89 (5)
O2� � �O2 2.8746 (14) (2�) O3—Mg—O3 90.01 (9)
O3� � �O3 2.525 (3) O3—Mg—O3 178.21 (7)

Figure 2
Idealized Ln layer in Mg(H2O)2[TeO2(OH)4] with p4/m symmetry viewed
down [001]. Color codes as in Fig. 1. Crosses indicate the possible origins
of the adjacent layers up to layer translation.



The larger and smaller than ideal BVSs of the H2O mole-

cules and OH� anions (0.36 and 0.83 versus 0 and 1 v.u.) can

be explained by the H atoms being involved in hydrogen-

bonding. Indeed, the distances between close O atoms

[O1� � �O1 2.9316 (14) Å; O1� � �O2 2.9024 (14) Å; O2� � �O2

2.8746 (14) Å; O3� � �O3 2.525 (3) Å] strongly suggest forma-

tion of intra- and interlayer O—H� � �O hydrogen bonds.

3.2. Polytypism

The origin of the Ln+1 layer is related to the origin of the

adjacent Ln layer by a translation of a=2þ c0 or b=2þ c0, as

indicated in Fig. 2. In these two different stacking possibilities

the locations of the Te and Mg atoms are exchanged. An

alternation of the two will henceforth be called Te/Mg

exchange. Moreover, every Ln layer can appear in two

orientations related by mh100i operations. A change in orien-

tation will be called orientation inversion. The four resulting

stacking possibilities are shown in Fig. 3.

3.3. Order–disorder description

The order–disorder (OD) theory (Dornberger-Schiff &

Grell-Niemann, 1961) has been devised to explain the

common occurrence of polytypism in all classes of compounds.

It is based on layers, which do not necessarily correspond to

layers in the crystallo-chemical sense (Grell, 1984). The crucial

point in an OD description is that pairs of adjacent layers are

equivalent, which corresponds to the vicinity condition (VC).

However, pairs of adjacent layers without [Figs. 3(a) and 3(c)]

and with orientation inversion [Figs. 3(b) and 3(d)] are not

equivalent and therefore violate the VC. The particular layer

choice as described here is therefore not of the OD type.

An OD description can nevertheless be achieved by ‘slicing’

the structure into two kinds of layers, designated as A1 and A2

(Fig. 1, left). The structure then belongs to a tetragonal cate-

gory IV OD family built of two kinds of non-polar (with

respect to the stacking direction) layers.
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Figure 4
(a) OD layer A1 of Mg(H2O)2[TeO2(OH)4] and (b) superposition of four
A1 layers in the family structure. Te, Mg and O atoms are represented by
yellow, blue and red spheres of arbitrary radius. The O1 and O2 atoms
above Te and Mg (with respect to [001]) are omitted for clarity.
Disordered 1:1 Te:Mg positions are represented by gray spheres. In (b)
the coordinates of the O3 atom have been idealized to fulfill the equation
x + y = 1

2.

Figure 3
The four kinds of (Ln,Ln+1) layer pairs in Mg(H2O)2[TeO2(OH)4], viewed
down [001]. The Ln layers are marked by brighter colors and dotted lines.
In (c) and (d) the Te and Mg atoms in Ln+1 are exchanged with respect to
(a) and (b). In (d) and (c) the Ln and Ln+1 layers do not, in (b) and (d)
they do feature orientation inversion. Note that under the idealization of
equal Mg—O and Te—O distances, the oxygen substructures are identical
in the (a) and (d) as well as the (b) and (c) layer pairs.



The OD groupoid family symbol reads as

according to the notation of Grell & Dornberger-Schiff (1982).

The first line of the symbol gives the name of the layers, the

second their symmetry and the third one possible arrangement

of adjacent layers. Note that in OD theory, layer group

symbols with five directions are sometimes necessary to

describe tetragonal OD groupoid families. Here, because it is

not necessary to distinguish between the [100] and [010]

directions, as well as the [110] and ½110� directions, the usual

symbols can be used.

The A1 layers possess p4/m symmetry. They are built of the

[MgO6] and [TeO6] octahedra [Fig. 4(a)] and the disordered

hydrogen atom belonging to O2�/OH� in the rhombohedral

void. The A2 layers are built of the OH� anions (O1) and H2O

molecules (O2) that connect the Ln layers [Fig. 5(a)]. Thus, the

O1 and O2 atoms are located at the layer interfaces and

belong to both OD layers. The layer symmetries were deduced

under the assumption of a disordered hydrogen-bonding

network.

The third line of the symbol indicates that, in one possible

arrangement, the origins of the A1
n and A2

nþ1 layers are spaced

by ra + sb + c0/2. According to the stacking rules described

above, (r, s) adopt the values ð12 ; 0Þ or equivalently ð0; 1
2Þ, i.e.

the 4[001] and 2[001] axes of the A1 and A2 layers coincide. Note

that in contrast to many other OD families, here the para-

meters adopt a precise value because adjacent layers share

common atoms (O1 and O2) located on special positions.

The NFZ relationship (Ďurovič, 1997) is a formalism to

determine the alternative stacking possibilities in a family of

OD structures. It is based on the groups Gn of those operations

of the An layers that do not reverse the orientation with

respect to the stacking direction (�-�-POs according to the

OD terminology). For the A1 and A2 layers, Gn is p4 and

pmm2, respectively. Because the adjacent layers are not

equivalent, the NFZ relationship reads as

Z ¼ N=F ¼ ½Gn : Gn \ Gnþ1�, where ½G : H� designates the

index of the subgroup H of G. For any pair of adjacent layers,

Gn \ Gnþ1 ¼ p112.

For an A1
n ! A2

nþ1 contact, Z = N/F = [p4 : p112] = 2. Thus,

given an A1
n layer, the adjacent A2

nþ1 layer can appear in two

orientations (with pmma and pmmb symmetry), which are

related by the fourfold rotation of the A1
n layer. For an

A2
n ! A1

nþ1 contact, Z = N/F = [pmm2 : p112] = 2. Given an A2
n

layer, the adjacent A1
nþ1 layer can likewise appear in two

positions, which in this case are related by the mh100i reflections

of the A2
n layer.

By following these stacking rules, an infinity of polytypes

can be constructed, which are equivalent to the non-OD

polytypes described in the previous section. The usefulness of

the OD description does not only lie in the concise symmetry

classification. It also sheds light on the crystallo-chemical

reasons of the polytypism by splitting them into two distinct

contributions. On the one hand (A2
n�1 ! A1

n ! A2
nþ1), the

orientations of the hydrogen-bonding network to both sides of

the [TeO6] and [MgO6] octahedra may be the same, or

different. On the other hand (A1
n�1 ! A2

n ! A1
nþ1), the inter-

layer hydrogen bonding independent of the orientation of the

octahedral sheets.

3.4. Maximum degree of order polytypes

Polytypes of a maximum degree of order (MDO) are a

central concept of OD theory (Dornberger-Schiff, 1982;

Dornberger-Schiff & Grell, 1982). MDO polytypes cannot be

decomposed into simpler polytypes, i.e. into polytypes

composed only of a selection of pairs, triples or any n-tuples of

adjacent layers. Experience shows that the majority of

macroscopically ordered polytypes are of the MDO type.

There are two kinds of A1
n�1A2

nA1
nþ1 triples, namely with and

without orientation inversion. Moreover, there are two kinds

of A2
n�1A1

nA2
nþ1 triples, namely with and without Te/Mg

exchange.

The combination of these triples results in four MDO

polytypes:

MDO1: never orientation inversion, never Te/Mg exchange,

B112/m, c = 2c0;

MDO2: always orientation inversion, never Te/Mg

exchange, Pcnm, c = 2c0;

MDO3: never orientation inversion, always Te/Mg

exchange, I41/a, c = 4c0;

MDO4: always orientation inversion, always Te/Mg

exchange, I42d, c = 4c0.

All other stacking arrangements can be divided into frag-

ments of MDO polytypes, which therefore represent the

‘alphabet’ of an OD family.

Atomic coordinates for all four MDO polytypes are listed in

Table 3.
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Figure 5
(a) OD layer A2 of Mg(H2O)2[TeO2(OH)4] and (b) superposition of four
A2 layers in the family structure. OH� anions and H2O molecules are
represented by black and white spheres of arbitrary radius. A gray sphere
is an equal superposition (assuming equal Te—O and Mg—O distances),
where + and � symbols mark groups located above and below the
drawing plane, respectively.



3.5. Family structure

The family structure of an OD family is a fictitious structure

in which all stacking possibilities are realized to the same

degree. It plays an important role in the elucidation of OD

structures. The family structure of Mg(H2O)2[TeO2(OH)4] has

F4/mmm symmetry (non-standard setting of I4/mmm) with c =

2c0 (coordinates in Table 3).

For a fixed A1
n layer, the adjacent A2

nþ1 layer can appear in

two orientations related by the 4[001] operation. Each of these

two orientations gives rise to two orientations of the A1
nþ2

layer, which are related by the mh100i operations of the A2
nþ1

layer. Thus, in the family structure the A1 layers are an equal

superposition of four positions (Te/Mg disorder and orienta-

tion disorder) with c4/mmm (non-standard setting of

p4/mmm) symmetry [Fig. 4(b)].

According to analogous reasoning in the A2 layers of the

family structure, the OH� anions and H2O molecules are

disordered in a 1:1 ratio [Fig. 5(b)]. These disordered layers

possess c4/emm (non-standard setting of p4/nmm) symmetry.

3.6. Diffraction pattern

The diffraction pattern of Mg(H2O)2[TeO2(OH)4] features

rods with sharp reflections and rods with broader reflections

on top of prominent one-dimensional diffuse scattering

(Fig. 6). Such diffraction patterns are characteristic for poly-

types with translationally equivalent layers (Jeffery, 1953;

Ferraris et al., 2008), and were the inspiration for the name

‘OD’ (Bragg reflections: order; streaks: disorder).

In Mg(H2O)2[TeO2(OH)4], the Ln layers are not transla-

tionally equivalent, since they can appear in two orientations.

As will be shown below, in this case the reason of the rods

lacking diffuse scattering lies in the particular makeup of the

Ln layers, namely the similar size of the [MgO6] and the [TeO6]

octahedra.

In the reciprocal basis ða	; b	; c	0Þ
T
¼ ða=a2; b=b2; c0=c2

0Þ
T,

the structure factor F(hk�) of a polytype can be calculated as

the sum of the structure factors Fn(hk�) of the individual Ln

layers:

Fðhk�Þ ¼
X1

n¼�1

Fnðhk�Þ: ð1Þ

Since the translation lattices of all layers are spanned by (a, b),

Fn(hk�) is only non-zero for h; k 2 Z. The structure factor

Fn(hk�) can be decomposed into the contributions FO
n ðhk�Þ of

the O3 atom and FM
n ðhk�Þ of the remaining atoms (Te, Mg, O1,

O2):

Fnðhk�Þ ¼ FM
n ðhk�Þ þ FO

n ðhk�Þ: ð2Þ
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Figure 6
The h = 0 . . . 3 planes of reciprocal space of Mg(H2O)2[TeO2(OH)4]
reconstructed from image-plate data. (a) h = 0, (b) h=1, (c)h =2, (d) h = 3.

Table 3
Fractional coordinates, multiplicity, Wyckoff letter and site symmetry in
the four MDO polytypes and the family structure of Mg(H2O)2-
[TeO2(OH)4].

The coordinates were derived from the I41/a (MDO1 and MDO3), I42d
(MDO2 and MDO4) and family structure refinements described in x3.8.

Atom x y z

Multiplicity,
Wyckoff letter,
site symmetry

MDO1 (B112/m, c = 2c0)
Te 0 0 0 2, a, 2/m
Mg 1

2
1
2 0 2, d, 2/m

O1 0 0 0.19082 2, g, ..2
O2 1

2
1
2 0.19786 2, g, ..2

O3 �0.1563 �0.3211 0 4, i, ..m
O30 �0.3211 0.1563 0 4, i, ..m
MDO2 (Pcnm, c = 2c0)
Te 0 0 0 2, a, 1
Mg 1

2
1
2 0 2, c, 1

O1 0 0 0.19074 4, e, ..2
O2 1

2
1
2 0.19780 4, f, ..2

O3 �0.1563 �0.3214 0 4, h, ..m
O30 �0.3214 0.1563 0 4, h, ..m
MDO3 (I41/a, c = 4c0)
Te 0 0 0 4, a, 4
Mg 1

2
1
2 0 4, b, 4

O1 0 0 0.09541 8, e, 2..
O2 1

2
1
2 0.09893 8, e, 2..

O3 �0.3211 �0.1563 �0.0020 16, f, 1
MDO4 (I42d, c = 4c0)
Te 0 0 0 4, a, 4
Mg 1

2
1
2 0 4, b, 4

O1 0 0 0.09537 8, c, 2..
O2 1

2
1
2 0.09890 8, c, 2..

O3 �0.3214 �0.1563 �0.0015 16, e, 1
Family (F4/mmm, c = 2c0)
Te/Mg 0 0 0 2, a, 4/mmm
O1/O2 0 0 0.19445 4, e, 4mm
O3 0.3318 0.1682 0 8, i, m2m.



The origin of the Ln layer can be written as

on ¼ �na=2þ 	nb=2þ nc0 ð3Þ

with �n; 	n 2 Z and �0 = 	0 = 0. Since the origin shift from Ln

to Ln+1 is either a/2 + c0 or b/2 + c0, �n + 	n is even, if and only

if, n is even, which can be expressed by

�n ¼ 	n þ nþ 2mn ð4Þ

with mn 2 Z.

The Mg, Te, O1 and O2 atoms are not affected by orien-

tation inversion, since the eigensymmetry of their (layer

group) orbits is p4/mmm, which contains the reflection

relating both orientations. These parts of the layers are

therefore obtained from the L0 layer by translation along on.

According to equations (3) and (4), FM
n can therefore be

written in terms of FM
0 as

FM
n ðhk�Þ ¼ FM

0 ðhk�Þ expf2
i½ðh�n þ k	nÞ=2þ �n�g ð5Þ

¼ FM
0 ðhk�Þ expf2
i½ðhþ kÞ	n=2þ hn=2þ �n�g: ð6Þ

Note that since Mg, Te, O1 and O2 are located on fourfold

rotation axes, their displacements are isotropic in the (001)

plane and, therefore, disregarding desymmetrization, the

reflection at [100] has no influence on their (harmonic) ADPs.

The orientation of the Ln layer will be described by !n = 0,

1, n 2 Z. If O3 is located on the xþ y ¼ 1
2 line, which is

perfectly realized if d(Te—O3) = d(Mg—O3), !n = 1 corre-

sponds to an additional translation of (a + b)/2 with respect to

on. If the displacement of the O3 atom is likewise isotropic in

the (001) plane, FO
n can be written in terms of FO

0 as

FO
n ðhk�Þ ¼ FO

0 expf2
i½ðhþ kÞð	n þ !nÞ=2þ hn=2þ �n�g

ð7Þ

If h + k is even, then (h + k)	n and (h + k)(	n + !n) are

likewise even and equations (5) and (7) simplify to

FM
n ðhk�Þ ¼ FM

0 expf2
i½hn=2þ �n�g ð8Þ

and

FO
n ðhk�Þ ¼ FO

0 expf2
i½hn=2þ �n�g ð9Þ

and therefore

Fnðhk�Þ ¼ F0ðhk�Þ expf2
i½hn=2þ �n�g ð10Þ

and

Fðhk�Þ ¼ F0ðhk�Þ
X1

n¼�1

expf2
i½nð�þ h=2Þ�g ð11Þ

¼ F0ðhk�Þ
X1

l¼�1

�ð�� l � h=2Þ; ð12Þ

where � is the Dirac delta distribution. Note that the last

equals sign represents an abuse of notation as the given

function series does not converge at any point [technically, the

series converges in the distributional sense (Bricogne, 2010)].

In summary, on rods h + k even only sharp reflections are

observed at � = l/2, l 2 Z, where h, k and l are all even or all

odd. This corresponds to the diffraction pattern of a crystal

with a tetragonal F-centered (tF) lattice with the centered

reciprocal basis ða	; b	; c	0=2Þ. These reflections correspond to

the diffraction pattern of the family structure (x3.5) and are

called the family reflections. All stacking arrangements,

ordered or disordered, contribute equally (proportional to

their volume fraction) to these reflections, since neither �n, 	n

nor !n contribute to equation (12).

On rods h + k odd the simplifications above do not apply

and diffraction intensities can appear at arbitrary positions.

Bragg reflections on these rods are called characteristic

reflections, because they are generated only by certain poly-

types. The characteristic reflections of MDO1/2 are located at

� = l/2, l 2 Z, those of MDO3/4 at � ¼ l=2þ 1
4, l 2 Z.

The calculations above were derived under the assumption

that d(Te—O3) = d(Mg—O3), whereas the actual structure

deviates from this assumption [1.906 (3) versus 2.064 (2) Å].

Moreover, ordered polytypes typically feature desymme-

trization (Ďurovič, 1979). For example, in the MDO3/4 poly-

types, the O3 atom is located slightly off the z = 0 reflection

plane of the p4/m layer symmetry (Table 3). Distinctly

enlarged ADPs of the O1 and O2 atoms show that they are

located on the fourfold axis (which is a twofold axis in the

actual MDO3/4 polytypes) only on average (Fig. 7). These

deviations may lead to violations of the systematic non-crys-

tallographic absences, namely faint streaking and very weak

characteristic reflections on h + k even rods.

3.7. Rods with insignificant contribution of O3

To differentiate between the effects of orientation inversion

and Te/Mg exchange on the diffraction pattern, it is useful to

note that the fractional coordinates x and y of the O3 atom,
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Figure 7
Fragment of the Mg(H2O)2[TeO2(OH)4] structure, showing the ADPs as
ellipsoids drawn at the 75% probability level (Te: yellow, Mg: blue, O:
red). Data taken from the I42d refinement.



which is essentially the only atom affected by orientation

inversion, are close to 1
3 and 1

6, respectively. If the O3 atom is

idealized as being located on such a position, the L0 layer

contains up to translation two O3 atoms at

ðx; y; zÞ
T
¼ ð13 ;

1
6 ; 0ÞT; ð� 1

6 ;
1
3 ; 0ÞT and the two atoms obtained

by inversion at the origin. If, moreover, the displacements of

the O3 atom are considered as being isotropic in the (001)

plane [TO3ðhk�Þ ¼ TO3ðkh�Þ], then the structure factor FO
0 is

FO
0 ðhk�Þ ¼ 2TO3ðhk�Þf O

ðhk�Þfcos½2
ðh=3þ k=6Þ�

þ cos½2
ð�h=6þ k=3Þ�g ð13Þ

where fO(hk�) is the atomic form factor of O. Note that the

structure factor is real and contains only cos terms owing to

the inversion at the origin. If h is divisible by three, i.e. h = 3h0,

h0 2 Z, this expression simplifies for rods h + k odd to

FO
0 ðhk�Þ ¼ 2TO3ðhk�Þf O

ðhk�Þfcosð2
k=6Þ

þ cos½2
ð�h0=2þ k=3Þ�g ð14Þ

¼ 2TO3ðhk�Þf O
ðhk�Þfcosð2
k=6Þ

þ cos½2
ððk� h0Þ=2� k=6Þ�g ð15Þ

¼ 2TO3ðhk�Þf Oðhk�Þfcosð2
k=6Þ

þ cos½2
ð1=2� k=6Þ�g ð16Þ

¼ 0 ð17Þ

(h0 is even, if and only if, h is even and therefore k� h0 is odd).

The same argument can be applied to rods with k divisible by

three. Thus for h or k divisible by three, equation (2) simplifies

to

Fnðhk�Þ ¼ FM
n ðhk�Þ ð18Þ

and equation (1) can ultimately be written as

Fðhk�Þ ¼
X1

n¼�1

FM
0 expf2
i½ðhþ kÞ�n=2þ hn=2þ �n�g: ð19Þ

The variable !n, which describes the orientation of the octa-

hedra, does not affect rods h + k odd with either h or k divi-

sible by three, and any significant diffuse scattering or Bragg

reflections on these rods are due to the arrangement of the Te

and Mg atoms.

To illustrate the effect in absolute terms, plots of jFM
0 j

2 and

jFO
0 j

2 against � are given in Fig. 8 for the 10� and 12� rods.

Indeed, for 10� the contribution of FO
0 is negligible when

compared to FM
0 . On the other hand, 12� features significant

contribution at low scattering angles. In particular, this rod

(including symmetry equivalents) has the highest relative

contribution of FO
0 .

3.8. Classical refinements

To determine atomic coordinates and ADPs, classical

independent atom model refinements were performed. In a

first refinement, only the family reflections were considered.

Excellent reliability factors are thus obtained (Table 4). In the

family structure, Te/Mg exchange and orientation inversion

are realized in 50% of the layers. In principle, the O3 atom is

disordered over four positions. Nevertheless, only two posi-

tions could be resolved, because the Te—O3 and Mg—O3

distances are nearly equal. Likewise, the O1 and O2 atoms

could not be separated without introduction of distance

restraints and therefore were refined as a single O1/O2 posi-

tion.
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Figure 8
Plots of jFM

0 j
2 and jFO

0 j
2 against � for the 10� and 12� rods. Only � 
 0 are

shown, because the structure factors are essentially symmetric by
reflection at the � = 0 plane. jFO

0 j
2 is practically 0 and therefore barely

to be seen at the bottom of the chart.

Table 4
Comparison of the refinements.

The MDO3:MDO4 ratio was derived from the occupancy of the O3/O30 positions. The (MDO1/2):(MDO3/4) ratio was determined from the occupancy ratio of the
Te/Mg positions.

Family 1:1 MDO3/4 MDO3 MDO4

Space group F4/mmm I41/amd I41/a I42d
MDO3:MDO4 1:1 1:1 64:35 (3) 52.8:47.2 (12)
MDO1/2:MDO3/4 1:1 9.2:90.8 (12) 15.4:84.6 (8) 13.6:86.4 (6)
R[F2 > 3�(F2)], wR(F) 0.0121, 0.0313 0.0204, 0.0782 0.0176, 0.0678 0.0166, 0.0581
S 1.33 1.61 1.34 1.17
��min, ��max (eÅ�3) �0.45, 0.27 �0.90, 1.23 �0.71, 0.93 �0.70, 0.80
Coefficient of extinction

(Becker & Coppens, 1974)
490 (110) 800 (200) 960 (170) 750 (140)

No. of parameters 11 24 28 27
Twin operation – – m[100] 1
Twin volume fractions – – 50.4:49.6 (6) 51:49 (9)



On top of the lines of diffuse scattering at h + k odd are

located elongated peaks where the characteristic reflections of

MDO3/4 are expected (Fig. 6). No peaks corresponding to

MDO1/2 were observed (though see x3.13). One has to

realize that treating these peaks as Bragg reflections in

classical refinements will inevitably introduce systematic

errors.

Owing to the systematic non-space group absences (x3.6),

reflection conditions cannot differentiate between MDO3

(I41/a) and MDO4 (I42d). Moreover, owing to diffuse scat-

tering on rods h + k odd, intensities in violation of the

I-centring are observed. Thus, classical space group determi-

nation is unreliable and the diffractometer software strongly

suggests the space group I41/amd (c = 4c0), which is the space

group of a 1:1 superposition of MDO3 and MDO4.

The first model was generated and refined using this

I41/amd symmetry, where the O3 atom is disordered with a 1:1

occupation ratio about the m[100] reflection plane. To achieve

satisfying residuals, occupational disorder of the Te and Mg

atoms (with Mg0 and Te0) had to be introduced, corresponding

to a contribution of MDO1/2 fragments.

Based on the refined model in I41/amd, the symmetry was

reduced by an index of 2 to I41/a (MDO3) and I42d (MDO4),

respectively. The linear parts of the lost operations were

retained as the twin law and the twin volume ratio was refined.

The disordered O3 position was split in both cases into two

distinct positions (O3 and O30). The coordinates and ADPs of

O3 and O30 were constrained to be equal with respect to the

m[100] operation and the occupancies were refined and

constrained to a sum of 1. A comparison of the refinements is

given in Table 4. The volume fraction of MDO3/4 (as opposed

to MDO1/2) was derived from the occupancy of Te as

|2occ(Te) � 1|. Likewise, the volume fraction of the major

domain of the MDO3/MDO4 pair was derived as

|2occ(O3) � 1| (see Appendix B).

According to these refinements, there was �10–15% of

MDO1/2 present in the crystal under investigation. Estimating

the MDO3:MDO4 ratio is more difficult. According to the

refinement with the best reliability factors (I42d), there are

approximately equal amounts of MDO3 and MDO4, which

would correspond to a 50% chance of orientation inversion.

The I41/a refinement on the other hand suggests an

MDO3:MDO4 ratio of �2:1, which shows the difficulty of

deriving these values from routine refinements. The funda-

mental problem is that a disordered stacking is in general not

equivalent to a superposition of MDO polytypes.

Allotwinning, i.e. the association of macroscopic domains of

distinct polytypes (Nespolo et al., 1999), was ruled out owing

to diffuse scattering. Indeed, such models did not lead to

improved reliability factors. Likewise, placing the character-

istic and family reflections on different scales to avoid the

Ďurovič effect (Nespolo & Ferraris, 2001) led to unreliable

refinements because the ratio of polytypes and the ratio of the

scales correlate (Hans et al., 2015). As will be shown below

(x3.10) Te/Mg exchange does occur and thus the single-scale

refinements are preferred, even though the quantification of

Te/Mg exchange is inaccurate.

In summary, neither the amount of MDO1/2 nor the

MDO3:MDO4 ratio can be quantified reliably with routine

refinements, demonstrating the inherent difficulties of struc-

turally characterizing such compounds. Nevertheless, these

refinements are crucial to determine Mg—O and Te—O

distances.

3.9. Disorder model

To quantify the diffuse scattering, a simple growth model

was derived from the OD interpretation given in x3.3. The

crystal is described as an alternating succession of A1 and A2

OD layers. According to the OD description, pairs of adjacent

OD layers are geometrically equivalent, but triples may differ.

Therefore, in the simplest growth model the An layer depends

on the An�1 and An�2 layers. Since there are two kinds of

A1
n�2A2

n�1A1
n triples and two kinds of A2

n�2A1
n�1A2

n triples

(x3.4), this model is fully determined by two parameters. PMgTe

describes the probability of A2
n�2A1

n�1A2
n without Mg/Te-

inversion and Porient the probability of A1
n�2A2

n�1A1
n triples

without orientation inversion. In some cases, it will be more

convenient to express these probabilities in terms of the

correlation coefficients

cMgTe ¼ 2PMgTe � 1; ð20Þ

corient ¼ 2Porient � 1: ð21Þ

This two-parameter model is sufficient to describe all four

MDO polytypes and also of equal overlays of MDO polytypes,

as listed in Table 5.

In this trivial model, each layer triple is considered inde-

pendent of the previous triple. In more refined models, the

orientation–inversion probability could depend on the occur-

rence of Mg/Te inversion and vice versa. Additional para-

meters would then be required.

Growth models are conveniently expressed as Markov

chains (Welberry, 2010). The above model corresponds to the

four-state Markov chain
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Table 5
Extreme growth model parameters and the corresponding polytypes.
Note that the statistical stackings (PMgTe = 0 or Porient = 0) are strictly
speaking not overlays or the family structure, but behave as such.

Polytype PMgTe cMgTe Porient corient

MDO1 1 1 1 1
MDO2 1 1 0 �1
MDO3 0 �1 1 1
MDO4 0 �1 0 �1
MDO1/2 1 1 1

2 0
MDO3/4 0 �1 1

2 0
Family structure 1

2 0 1
2 0



where each step corresponds to a new triple of OD layers,

which has two OD layers in common with the previous triple.

This Markov chain has a period of two since an A1 layer is only

added after every second step (and likewise for A2). Such

chains are developed into two (or more for higher periods)

independent chains, here from the nth triple to the n+2nd

triple. These two Markov chains are most conveniently

expressed in terms of the crystal-chemical Ln layers:

The first Markov chain describes the relation of the origin of

the Ln and Ln+1 layers and the second chain the orientation of

the Ln layer. The chains are independent, because one OD

layer triple does not depend on the previous triple. Each chain

can be considered as an independent nearest-neighbor model,

since the on depends only on on�1 and !n on !n–1.

For PMgTe, Porient 6¼ 0,1, the Markov chains converge to the

equilibrium states P(�on = a/2) = P(�on = b/2) = P(!n = 0) =

P(!n = 1) = 1
2, i.e. after an infinity of layers, both origin shifts

and both layer orientations are equally likely. In the following

only this general case will be considered.

3.10. Diffuse scattering

To calculate the diffraction pattern of disordered structures,

it is advantageous to directly calculate the intensity I(hk�) =

|F(hk�)|2 in terms of pair correlations between layers

(Welberry, 2010):

Iðhk�Þ ¼ jFðhk�Þj2 ð25Þ

¼
X1

n¼�1

Fnðhk�Þ

�����
�����

2

ð26Þ

¼
X1

�n¼�1

X1
n¼�1

Fnðhk�ÞFnþ�nðhk�Þ ð27Þ

where an overline designates the complex conjugate. The

orientation of the Ln layer is flipped with respect to the L0

layer if !n = 1. To express the structure factor of such a layer, it

will be related to the structure factor F�0 of the mirrored L0

layer:

F�0 ðhk�Þ ¼ F0ðhk�Þ ¼ F0ðhk�Þ: ð28Þ

The hk� argument of F will henceforth be omitted for brevity.

The diffraction intensity can then be expressed in terms of

probabilities:

Iðhk�Þ /
X1

�n¼�1

X
��¼0;1

X
�	¼0;1

 
P

��;�	
�n Pþ�n

jF0j
2
þ jF�0 j

2

2

þ P
��;�	
�n P��n

F0F�0 þ F�0 F0

2

!

� exp½2
ið��h=2þ�	k=2þ�n�Þ�

ð29Þ

¼
X1

�n¼�1

s�n ð30Þ

where P
��;�	
�n expresses the probability that the origins of the

Ln and Ln+�n layers are separated by ��na/2 + �	nb/2 + �nc

(up to a full layer lattice translation). Pþ�n and P��n are the

probabilities that the Ln and Ln+�n layers possess the same,

respectively opposite, orientation. s�n, the sum over �� and

�	, is the pair-correlation function of layers spaced by �nc0.

It should be stressed that equation (29) is only valid for an

equal probability of both layer orientations (Porient 6¼ 0, 1,

large domain size) and independence of both Markov chains.

On the flip side, it is valid for more complex growth models

with interactions over more than one layer width.

From the stacking rules it follows that P1;0
�n = P0;1

�n = 0 for �n

even and P0;0
�n = P1;1

�n = 0 for �n odd. Since, as has been shown

above, significant diffuse scattering is only observed on rods

h + k odd, let us concentrate on these. Then, the exponential

factor of the �� = �	 = 1 terms in equation (29) is

exp½2
iðh=2þ k=2þ�n�Þ� = � exp½2
i�n��. Factoring out

the probabilities, for �n even we thus obtain

s�n ¼ ðP
0;0
�n � P1;1

�nÞ

 
Pþ�n

jF0j
2
þ jF�0 j

2

2
þ P��n

F0F�0 þ F�0 F0

2

!

� exp½2
i�n��:

ð31Þ

In analogy, for �n odd and h + k odd, exp½2
iðk=2þ�n�Þ� =
� exp½2
iðh=2þ�n�Þ� (if k is odd h is even and vice-versa)

and therefore

s�n ¼ ðP
1;0
�n � P0;1

�nÞ

 
Pþ�n

jF0j
2
þ jF�0 j

2

2
þ P��n

F0F�0 þ F�0 F0

2

!

� exp½2
iðh=2þ�n�Þ�:

ð32Þ

Let us now derive the ‘pair distribution’ probabilities.

Obviously, the starting state of the growth model is P0;0
0 = 1

and P1;1
0 = 0. As has been noted above, in non-degenerate

cases (PMgTe 6¼ 0,1), the equation (23) converges to an

equilibrium state where the origin shifts �on = a/2+ c0 and

�on = b/2 + c0 are equally likely and therefore P1;0
1 = P0;1

1 = 1
2.

Repeated application of equation (23) to theses initial states

gives the general case (see Appendix C):
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P0;0
�n ¼

1þ ðcMgTeÞ
j�nj=2

2
ð�n evenÞ; ð33Þ

P1;1
�n ¼

1� ðcMgTeÞ
j�nj=2

2
ð�n evenÞ; ð34Þ

P1;0
�n ¼ P0;1

�n ¼
1

2
ð�n oddÞ: ð35Þ

Note that for negative �n, the same reasoning applies and

therefore the absolute value of �n is used in the exponents. In

analogy, according to the Markov chain equation (24) the

probabilities describing the orientations are

Pþ�n ¼
1þ ðcorientÞ

j�nj

2
ð36Þ

P��n ¼
1� ðcorientÞ

j�nj

2
ð37Þ

By substituting equation (35) into equation (32) it follows

that s�n = 0 for odd �n. Note that this is only valid for the

simple nearest-neighbor model of equation (23). In more

general growth models, these terms adopt non-zero values.

For even �n, from equations (33) and (34) it follows that

P0;0
�n � P1;1

�n = (cMgTe)|�n|/2 and equation (31) becomes

s�n ¼ ðcMgTeÞ
j�nj=2

"
jF0j

2
þ jF�0 j

2
þ F0F�0 þ F�0 F0

4

þ ðcorientÞ
j�nj jF0j

2
þ jF�0 j

2
� F0F�0 � F�0 F0

4

#

� exp½2
i�n��: ð38Þ

¼

"
ðcMgTeÞ

j�nj=2 jF0 þ F�0 j
2

2
þ ðcMgTeÞ

j�nj=2
ðcorientÞ

j�nj jF0 � F�0 j
2

2

#

� exp½2
i�n��: ð39Þ

Ultimately, the intensity on rods h + k odd therefore is [see

equation (30)]

Iðhk�Þ ¼
X1

m¼�1

"
ðcMgTeÞ

jmj jF0 þ F�0 j
2

2
þ ðc0Þjmj

jF0 � F�0 j
2

2

#

� exp½2
ið2mÞ��; ð40Þ

where m = �n/2 and

c0 ¼ cMgTeðcorientÞ
2: ð41Þ

By identifying two geometric series (see Appendix D), an

analytical expression of I(hk�) can be given as

Iðhk�Þ / jF0 þ F�0 j
2

1� ðcMgTeÞ
2

2
�

1� 2cMgTe cos½2
ð2�Þ� þ ðcMgTeÞ
2
�

þ jF0 � F�0 j
2 1� ðc0Þ2

2
�

1� 2c0 cos½2
ð2�Þ� þ ðc0Þ2
� ð42Þ

To avoid the unwieldy expressions in the parentheses, we will

introduce the function family

dcðxÞ ¼
1� c2

1� 2c cosð2
xÞ þ c2
; ð43Þ

which describes the shape of one-dimensional diffuse scat-

tering produced by a structure with a simple nearest-neighbor

correlation of �1 < c < 1 (Welberry, 2010). dc(x) is generally

(except for c = 0) a function with periodicity 1, featuring peaks

which are sharper for increasing |c|. For |c| approaching 1, dc(x)

converges to a Dirac comb with sharp reflections for integer x

(c! 1) or half-integer x (c!�1). For c = 0, dc is the constant

function d0(x) = 1.

Using dc, equation (42) simplifies to

Iðhk�Þ /
jF0 þ F�0 j

2

2
dcMgTe
ð2�Þ þ

jF0 � F�0 j
2

2
dc0 ð2�Þ; ð44Þ

which shows that the diffuse scattering is the sum of two

independent shape-functions of the nearest-neighbor corre-

lation cMgTe and c0. The factor jF0 þ F�0 j
2 corresponds to the

(hypothetical) intensity of an superposition of both orienta-

tions of the L0 layer and jF0 � F�0 j
2 to the intensity of the

difference of the electron density of these two orientations.

Since c0 depends on the square of corient [equation (41)],

cMgTe and c0 are of the same sign [sgn(cMgTe) = sgn(c0)]. Thus,

the location of the peaks depends only on cMgTe, but not on

corient. For cMgTe > 0, I(hk�) has peaks at � = l/2, l 2 Z and for

cMgTe < 0 at � = l/2 + 1
4, l 2 Z as is expected for MDO1/2-like and

MDO3/4-like stacking arrangements, respectively.

Moreover, note that from |corient| < 1 follows that |c0| < |cMgTe|

and therefore ordering of the orientation inversion can never

lead to sharper peaks for a given cMgTe, whereas its disorder

can lead to more diffuse peaks.

But most remarkably, under the given assumptions

(nearest-neighbor model, negligible desymmetrization, cMgTe,

corient 6¼ � 1) the diffuse scattering is identical for pairs of

corient with the same absolute value.

3.11. Estimation of the correlation coefficients

Assuming the idealization d(Te—O3) = d(Mg—O3),

orientation inversion corresponds to a translation of O3 by

(a + b)/2 (see x 3.6). Using the decomposition F0 ¼ FM
0 þ FO

0 ,

F�0 then is

F�0 ¼ FM
0 þ FO

0 exp½2
iðhþ kÞ=2�; ð45Þ

which for h + k odd becomes F�0 ¼ FM
0 � FO

0 and consequently

F0 þ F�0 ¼ 2FM
0 ; ð46Þ

F0 � F�0 ¼ 2FO
0 : ð47Þ

Thus, equation (44) becomes

Iðhk�Þ / jFM
0 j

2dcMgTe
ð2�Þ þ jFO

0 j
2dc0 ð2�Þ: ð48Þ

Conveniently, as has been shown above, jFO
0 j is negligible for

rods h + k odd with h or k divisible by three (Fig. 8). Thus,

these rods can be used to estimate cMgTe with only a negligible

contribution of corient.

Fig. 9(a) gives I(10�) plots for different values of cMgTe

calculated using only the jFM
0 j

2 term of equation (48). To
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estimate cMgTe, a simultaneous LS optimization was performed

on the rods listed in Table 6. Fig. 9(b) shows the result of the

LS optimization without convolution of the experimental

peak shape for the 01� rod. As expected, an additional

convolution with the experimental peak shape results in a

slightly more negative correlation cMgTe (�0.353 versus

�0.338). Since the refinements without convolution result

generally in better fits (Table 6), we will henceforth assume the

latter value.

The agreement of the experimental and calculated curves is

reasonable, though not perfect as the experimental peaks are

somewhat narrower. Even though a stronger negative corre-

lation cMgTe leads to narrower peaks, it is in disagreement with

the strong diffuse scattering between the peaks. We suppose

that the sample is composed of domains with different cMgTe

values, some with stronger and some with weaker correlations.

A model taking into account interactions over more than the

nearest-neighbor can be ruled out, since such models produce

valleys of different shapes (Welberry, 2010).

Given cMgTe, |corient| can be determined from the h + k odd

rods with neither h nor k divisible by three. Fig. 10(a) gives

I(12�) plots with cMgTe = �0.338 derived from the 10� rod and

|corient| = 0, 0.9, where the contribution of the jFO
0 j term is

shown separately. The 12� rod features the highest relative

contribution of the O3 atom to the scattering intensity (x3.6).

Even on this rod and with the extreme values of |corient|, the

effect on the peak shape is rather subtle.

Independent LS optimization with fixed cMgTe yielded a zero

correlation of |corient| for all rods listed in Table 7. The

refinement of the 12� rod is displayed in Fig. 10(b). Again,

without convolution of the experimental peak broadening

slightly improved residuals are obtained. However, in both

cases a zero corient is derived. We conclude that the orientation

of the [MgO6] and [TeO6] octahedra is mostly random, which

means that the problem of identical diffraction for pairs of

structures becomes a moot point, since the sign of corient � 0 is

irrelevant.
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Table 6
Residuals of the concurrent refinement of the h + k even rods with h or k
divisible by three.

Rod Rp with convolution Rp without convolution

All 0.022 0.019
01� 0.025 0.021
03� 0.020 0.018
05� 0.016 0.014
10� 0.020 0.016
16� 0.014 0.013
23� 0.017 0.014
30� 0.022 0.019
32� 0.018 0.016
34� 0.019 0.017
36� 0.018 0.017
43� 0.018 0.016

Figure 9
Intensity I(10�) of the 10� rod (a) calculated for various cMgTe values and
(b) with cMgTe optimized against experimental data. Intensity is absolute,
i.e. zero intensity is at the bottom of the chart.

Figure 10
Intensity I(12�) of the 12� rod with fixed cMgTe =�0.338 (a) calculated for
|corient| = 0.9 and |corient| = 0.0 and (b) with |corient| = 0 optimized against
experimental data. Intensity is absolute. Additionally, the contributions
of (a) the jFO

0 j
2 term and (b) the jFM

0 j
2 and jFO

0 j
2 terms are shown.



3.12. Diffuse scattering on h+ k even rods

As has been argued above, pairs of structures with corient of

the same absolute value produce the same diffraction intensity

on h + k odd rods. Moreover, under the idealization of d(Te—

O3) = d(Mg—O3) the h + k even rods are identical for all

stacking arrangements. Thus, such pairs of idealized structures

can be considered as homometric.

Since these assumptions are not perfectly realized, very

weak diffuse scattering is likewise observed on rods h + k even

(Fig. 11). In principle, this could be used to determine the sign

of corient.

The diffuse scattering on these rods can be derived in

analogy to x3.10. However, for h + k even the equalities

exp[2
i(h/2+k/2+�n�)] = exp[2
i�n�] and exp[2
i(h/2

+�n�)] = exp[2
i(k/2+�n�)] hold, since h and k are either

both even or both odd. Conveniently, these terms can be

generalized to exp[2
i(�nh/2+�n�)] for even and odd �n

(see x3.6). Factoring out the probabilities of equation (29), the

leading factors in the equations analogous to equations (31)

and (32) are P0;0
�n þ P1;1

�n = P0;1
�n þ P1;0

�n = 1. Ultimately, the

general expression for s�n on rods h + k even is

s�n ¼

 
Pþ�n

jF0j
2
þ jF�0 j

2

2
þ P��n

F0F�0 þ F�0 F0

2

!

� exp½2
ið�nh=2þ�n�Þ�

ð49Þ

which also holds for more general growth models. Substituting

the probabilities of equations (36) and (37), the intensity

I(hk�) is (setting m = �n)

Iðhk�Þ ¼
X1

m¼�1

 
jF0 þ F�0 j

2

2
þ ðcorientÞ

jmj jF0 � F�0 j
2

2

!

� exp½2
iðmh=2þm�Þ�

ð50Þ

¼
jF0 þ F�0 j

2

2

X1
l¼�1

�

�
�� l �

h

2

�
þ
jF0 � F�0 j

2

2
dcorient
ðh=2þ �Þ:

ð51Þ

The first term corresponds to the Bragg peaks of the family

structure, again committing the abuse of notation. For h + k

even, equation (45) becomes F�0 ¼ FM
0 þ FO

0 and therefore

F0 þ F�0 ¼ 2F0; ð52Þ

F0 � F�0 ¼ 0: ð53Þ

Thus, as shown in x3.6, under the assumption d(Te—O3) =

d(Mg—O3), only family reflections are observed on rods h + k

even. Non-equal Te—O and Mg—O distances lead to a non-

vanishing jF0 � F�0 j
2 and thus diffuse scattering as described

in the second term of equation (51). For distinctly positive

corient one would expect additional peaks on top of the family

reflections and valleys between the family reflections. For

negative corient, additional peaks would be observed between

the family reflections. This is consistent with the MDO1 and

MDO2 polytypes: the lattice of the former (corient = 1) does not

allow for reflections between family reflections owing to the B-

centering, whereas the latter (corient = �1) has a primitive

Bravais lattice and features systematic non-space group

absences in the idealized case, which should be observable for

noticeable deviations therefrom.

In the actual diffraction pattern (Fig. 11), the minute streaks

are basically structureless, confirming the low correlation

corient � 0. Tiny sharp spots are observed, which can however

be explained by �/2 radiation. To prove this assignment, a

Mg(H2O)2[TeO2(OH)4] crystal was quickly scanned using

synchrotron radiation, which confirmed the structureless

diffuse scattering on rods h + k even (Fig. 12).

It has to be noted that equation (51) does not allow for a

simple quantitative estimation of the diffuse scattering in cases

where corient 6¼ 0, because the |F0 � F�0 j
2 factor does not only

represent the deviation of the equidistance of O3 from Mg and

Te, but also generally the deviation from the idealized p4/m

symmetry, which certainly exists as shown by enlarged ADPs.

Moreover, the origin difference between adjacent layers might

deviate slightly from the ideal �o = a/2 + c0/2 or

�o = b/2 + c0/2, which would likewise invalidate the reasoning

in x3.5 and lead to faint diffuse scattering.
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Table 7
Residuals of the individual refinements of the h + k even rods with h or k
divisible by three.

Rod Rp with convolution Rp without convolution

12� 0.014 0.013
14� 0.010 0.008
21� 0.016 0.014
25� 0.016 0.016
41� 0.017 0.016
45� 0.013 0.013

Figure 11
1kl layer with intensities scaled to make weakest effects visible.



All these deviations from the idealized model can not be

simply derived from single-crystal experiments, since they will

differ depending on the adjacent layers. Owing to missing

structural data of all MDO polytypes, these would have to be

derived by relaxation, for example with DFT methods.

In any case, this is of no concern here, since there appears to

be no significant corient.

In summary, we propose a model with a negative correlation

of the Mg/Te stacking cMgTe � �0.34 and a corient � 0 corre-

lation of the orientation, with the caveat that the peak shape is

not described perfectly, as the crystals might be composed of

domains with varying cMgTe.

3.13. Rearrangement of the crystal structure over time

The synchrotron measurement described in the previous

section was performed on a newly isolated crystal seasoned for

six years at 15–35�C in a closed glass vial containing residual

gel from the synthesis. Much to our surprise, in this experi-

ment additional sharp characteristic reflections were observed

on rods h + k odd at integer and half-integer �-values

[Fig. 13(a)], as would be expected for MDO1/2 polytypes. To

confirm the appearance of ordered domains, a different crystal

was measured in-house and likewise featured sharp reflections

with h + k odd [Fig. 13(b)], though only half as many.

For ordered MDO1/2 polytypes (cMgTe = 1), the simplifica-

tions of x3.10 do not apply and therefore macroscopic MDO1

and MDO2 polytypes produce distinctly different intensities

on rods h + k odd. The sharp reflections of the second crystal

can be indexed with the B-centered cell of the MDO1 polytype

[h + 2� even, Fig. 14(a)]. The location of the sharp reflections

of the first crystals could in principle be explained by the

MDO2 polytype. According to structure factor calculations,
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Figure 12
11� rod extracted from synchrotron data. The intensity was scaled up to
show the minute diffuse scattering base line. Intensities are absolute.

Figure 13
1k� plane of crystals seasoned for six years collected (a) at the X06DA
beamline and (b) the IPDS in-house system.

Figure 14
Comparison of the 12� and 21� rods of crystals seasoned for six years
measured at (a) the IPDS in-house system and (b) the X06DA beamline.



for MDO2 one would expect alternately strong and weak

characteristic reflections at opposite positions on 12� and 21�
rods. In the actual crystal though, the strong and weak char-

acteristic reflections appear at the same �-values [Fig. 14(b)],

which means that the characteristic reflections are probably

due to two MDO1 orientation states, related by a fourfold

rotation.

The shape of the diffuse scattering essentially stays the same

during seasoning of the crystals (Fig. 15). We conclude that the

disordered domains slowly convert to ordered MDO1 poly-

types.

We recently measured three newly isolated crystals of the

same synthesis batch after an additional one year time-period

and all of them clearly contained ordered MDO1 fragments.

One of the crystals was twinned by fourfold rotation. The

amount of diffuse scattering did not decrease significantly

compared to the previous year. Thus, the kinetics and

preconditions of the transition are not yet understood.

3.14. Thermal behavior

The thermal decomposition of Mg(H2O)2[TeO2(OH)4] is

connected with a multi-step mechanism between 30–900�C.

The hydrous phase is stable up to a temperature of �160�C in

the oven chamber (Fig. 16; PXRD), followed by an amor-

phization. According to the TG/DTA curves (Fig. 17; STA),

the onsets of the associated mass loss and the endothermic

effect due to dehydration are at �195�C. We ascribe the

different temperatures of the Mg(H2O)2[TeO2(OH)4] stability

field to the different timescales of the two measurement

techniques. Whereas the temperature-dependent PXRD

measurement is slow due to stepwise heating rates and long

measurement times, the STA measurement is much faster with

continuous heating rates and much shorter measurement

times. The mass loss of �25% up to a temperature of 500�C is

due to release of water and oxygen according to the mass

spectra. The amorphous phase remains up to 510�C where first

reflections appear, indicating a crystallization of new phases as

shown by a two-step exothermal effect at �550�C, also asso-

ciated with a release of small amounts of water (onset DTA

first step 545�C, second step 575�C). The diffuse nature of the

reflections in the stability field between �510�C and 570�C

makes a clear assignment difficult. Besides weak reflections

that could be unambiguously assigned to the formation of

Mg3[TeO6], a relationship with trirutile-type Co[Sb2O6]

(Reimers et al., 1989) could be derived from the strong

reflections. Given the very similar ionic radii for Co2+/Mg2+

and Sb5+/Te6+, respectively, this could point to possible exis-

tence of a mixed-valent Te4+/Te6+ compound with composition

Mg[Te2O6]. The assumption of the existence of such a mixed-

valent phase is supported by the detection of oxygen in the
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Figure 15
Comparison of the 12� rods of a freshly synthesized crystal and a crystal
seasoned for six years, both measured at the IPDS in-house system.

Figure 16
Temperature-dependent X-ray diffraction pattern of Mg(H2O)2-
[TeO2(OH)4].

Figure 17
STA measurement of Mg(H2O)2[TeO2(OH)4] with the TG curve in black
and the DTA curve in grey.



mass analyzer during the preceding decomposition step. The

assumed mixed-valent phase transforms above 570�C into a

phase for which the diffraction pattern could be related to

Mg[TeO4] (Sleight et al., 1972), which is stable until �660�C.

Above this temperature another phase is formed for which a

relation to a known phase could not be made. Above �710�C

only the reflections of Mg3[TeO6] are visible, associated with

another small mass loss of�3% in the TG curve under further

release of oxygen. Above this temperature no further mass

loss is observed until 900�C. We currently cannot interpret the

significant endothermal effect in the DTA curve in this

temperature interval (onset 824�C). Since no further mass loss

is observed here, this effect could be related either to a

structural phase transition of (parts of) the remaining material

or to a melting of an amorphous content thereof. Both effects

cannot be related with the temperature-dependent diffraction

pattern, e.g. by splitting or vanishing of reflections or a

significantly broader background. It should be noted that the

same material heated up to 1000�C in another experiment

similar to the STA study resulted in the complete formation of

a glass.

In summary, the decomposition mechanism of Mg(H2O)2-

[TeO2(OH)4] can be formulated as:

I. Mg(H2O)2[TeO2(OH)4](s) ! amorphous material(s) +

H2O(g), O(g)

II. Amorphous material(s) ! ‘Mg[Te2O6]’(s)+ Mg3[TeO6](s)

+ H2O(g)

IIIa. ‘Mg[Te2O6]’(s) + Mg3[TeO6](s) ! Mg[TeO4](s) +

Mg3[TeO6](s)

IIIb. Mg[TeO4](s) + Mg3[TeO6](s) ! unknown phase(s) +

Mg3[TeO6](s)

IV. Unknown phase(s) + Mg3[TeO6](s) ! Mg3[TeO6](s) +

O2(g)

4. Conclusion and outlook

The correlated disorder of Mg(H2O)2[TeO2(OH)4] is notable

because it can be decomposed into two modes, which can be

treated separately. It demonstrates the difficulties of a quan-

titative structure determination inherent to data sets with a

significant diffuse scattering. In such cases, refinements against

Bragg reflections are not sufficient and information on

correlated disorder has to be derived from diffuse scattering.

But even such descriptions can be ambiguous. Here, pairs of

entirely different structures with opposite sign of corient

produce virtually indistinguishable diffraction patterns. Using

a small degree of idealization, simple analytical expressions

describing the diffuse scattering can be derived, which allow

for extremely fast calculations and a more thorough insight on

the observed diffraction phenomena.

A crucial feature in the polytypism of Mg(H2O)2-

[TeO2(OH)4] is the hydrogen-bonding network that connects

adjacent layers. Its role has been ignored in this X-ray study

owing to disorder and the weak scattering power of the

hydrogen atoms. A study using neutron diffraction might

reveal a very different picture, possibly even necessitating the

introduction of a third correlation parameter and different

OD-layer symmetries.

APPENDIX A
Symbols used

/ : Proportional to.

� : Almost equal to.

� : Variance of Gaussian distribution.

n, m, h, k, l : Integers.

x : Real.

w, e : Weighting function and exponent in weighting

function.

Ln : Crystal-chemical layer with sequential index n.

A1
n, A2

nþ1 : OD layers (A1
n: octahedra, A2

nþ1: hydrogen-

bonding network).

Gn : Group of operations of the OD layer An not inverting

the layer orientation.

½G : H� : Index of the subgroup H of G.

a, b : Layer lattice basis vectors.

c0 : Vector perpendicular to layer plane with the length of

one Ln layer width.

c : Basis vector of a specific polytype.

a, b, c0 : Lengths of the vectors a, b, c0.

r, s : Metric parameters describing the relative positions of

adjacent OD layers.

a*, b*, c	0 : Basis vectors of the dual basis to a, b, c0.

h, k, � : Reciprocal coordinates with respect to (a*, b*, c	0)

(h, k: integers; �: real).

F, I : Structure factor and intensity (I = |F|2) of a polytype or

disordered stacking arrangement.

s�n : Sum term in the calculation of I.

Fn : Structure factor of the Ln layer.

FM
n , FO

n : Contributions of the non-O3 atoms and the O3

atom to Fn ¼ FM þ FO
n , respectively.

F�0 : Structure factor of the L0 layer reflected at (100).

TO3 : Displacement parameter of the O3 atom.

fO : Atomic form factor of O.

d(O1—O2) : Distance between atoms O1 and O2.

on : Origin of the Ln layer.

�on : Origin shift from the Ln to the Ln+1 layer.

�n, 	n : Origin of the Ln layer in coordinates: �on = �na/2 +

	nb/2.

!n : Orientation of the Ln layer (! = 0,1).

��, �	, �n : Relative origin shift between two layers

��a + �	b + � nc0 up to layer lattice

translation (��, �	 = 0, 1).

P( . . . ) : Probability that the expression . . . holds.

PMgTe : Probability that the origin shifts on and on+1 are

equal.

Porient : Probability that the orientation of two adjacent

layers is the same (!n equals !n+1).

cMgTe, corient : Nearest-neighbor correlations cMgTe =

2PMgTe � 1 and corient = 2Porient �1.

dc(x) : Shape of the diffuse scattering with nearest-neighbor

correlation c.
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P
��;�	
�n : Probability that the origin shift of the (Ln, Ln+�n)

layer pair is ��a + �	b + �nc0.

Pþ�n, P��n : Probabilities that the Ln and Ln+�n possess the

(!n = !n+�n) or opposite (!n 6¼ !n+�n)

orientation, respectively.

Rp : Residuals for fitting one-dimensionally diffuse

scattering: Rp ¼
P
jIobs � Icalcj

2=
P
jIobsj

2.

APPENDIX B
Derivation of volume fractions from occupancies

The volume fraction of polytypes were derived from refine-

ments using expressions of the type |2occ� 1|, where occ is the

occupancy of an atom. This may seem surprising and is due to

the symmetry used in the refinements.

Consider a superposition of MDO3 and MDO4, which

conveniently possess the same unit-cell parameters. Both

polytypes differ in the position of the O3 atoms, which will be

considered up to fourfold rotation and translation. Repre-

sentative O3 atoms of MDO3 and MDO4 are listed in the first

and second row of Table 8, respectively. A 1 � x : x MDO3/4

superposition then possesses the O3 occupancies shown in the

third row. However, when refined using the MDO4 symmetry

(I42d), the O3 positions equivalent in MDO4 are averaged,

leading to the occupancies listed in the last row.

Thus, such a refinement features two O3 positions with the

occupancies occ(O3) = (1� x)/2 which leads to x = |2occ(O3)�

1|. Note that an occupancy of occ(O3) = 0 likewise corre-

sponds to MDO4, but with a different origin. An analoguous

argument can be made for the Mg/Te sites.

APPENDIX C
General pair distribution probabilities

For �n even P00
�n ¼ 1� P11

�n and P10
�n = P01

�n = 0. Double

application of equation (23) then gives

P00
�nþ2 ¼ PMgTeP00

�n þ ð1� PMgTeÞP
11
�n ð54Þ

¼ PMgTeP00
�n þ ð1� PMgTeÞð1� P00

�nÞ ð55Þ

¼ P00
�nð2PMgTe � 1Þ þ 1� PMgTe ð56Þ

¼ cMgTe þ 1� PMgTe ð57Þ

Repeated substitution of equation (57) into itself leads to

P00
2m ¼ ðcMgTeÞ

m
P00

0 þ ð1� PMgTeÞ
Xm�1

k¼0

ðcMgTeÞ
k

ð58Þ

¼ ðcMgTeÞ
m

P00
0 þ ð1� PMgTeÞ

1� ðcMgTeÞ
m

1� cMgTe

ð59Þ

¼ ðcMgTeÞ
m

P00
0 þ ð1� PMgTeÞ

1� ðcMgTeÞ
m

2� 2PMgTe

ð60Þ

¼ ðcMgTeÞ
mP00

0 þ
1� ðcMgTeÞ

m

2
ð61Þ

Substituting the initial term P00
0 = 1:

P00
2m ¼

1þ ðcMgTeÞ
m

2
; ð62Þ

which can be expressed in terms of �n = 2m as

P00
�n ¼

1þ ðcMgTeÞ
�n=2

2
ð63Þ

An analoguous reasoning applies to �n odd, though with the

initial terms P10
1 = P01

1 = 1
2.

APPENDIX D
Derivation of the peak shape induced by nearest-
neighbor growth models

The shape of the diffuse scattering due to nearest-neighbor

correlated stacking arrangements is long known [see Welberry

(2010), and references therein]. It will be briefly derived here

for a general nearest-neighbor correlation c using geometric

series.

X1
�n¼�1

cjnj expð2
i�n�Þ ¼ 2R
X1
�n¼0

cn expð2
i�n�Þ

( )
� 1

ð64Þ

¼ 2R
X1
�n¼0

½c expð2
i�Þ��n

( )
� 1 ð65Þ

¼ 2R
1

1� c expð2
i�Þ

� �
� 1 ð66Þ

¼ 2R
1� c expð�2
i�Þ

½1� c expð2
i�Þ�½1� c expð�2
i�Þ�

� �
� 1 ð67Þ

¼ 2R
1� c expð�2
i�Þ

1� 2c cosð2
�Þ þ c2

� �
� 1 ð68Þ

¼ 2
1� c cosð2
�Þ

1� 2c cosð2
�Þ þ c2
� 1 ð69Þ
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Table 8
Occupancy of O3 atoms in MDO3/4 superpositions.

Atom positions are idealized and given with respect to the MDO3/4 cell (c =
4c0).

Polytype (x,y,0)T (�x,y,0)T (x,y,14)
T (�x,y,14)

T

MDO3 1 0 1 0
MDO4 1 0 0 1
MDO3/4 (1 � x : x) 1 0 1 � x x
MDO3/4 (1 � x : x)

refined in I42d
(1+ x)/2 (1 � x)/2 (1 � x)/2 (1 + x)/2



¼
1� c2

1� 2c cosð2
�Þ þ c2
ð70Þ

R designates the real part.
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Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625.
Grell, H. (1984). Acta Cryst. A40, 95–99.
Grell, H. & Dornberger-Schiff, K. (1982). Acta Cryst. A38, 49–54.
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