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A reversible transformation of the unit-cell parameters and atomic coordinates

of centrosymmetric perovskites ABX3 into a Cartesian space is defined.

Analytical expressions for the three vectors for the pseudocubic cell and three

vectors for a BX6 octahedron are derived for space groups Pbmn, Cmcm, Ibmm,

P4/mbm, P4/nmc, I4/mcm and R3c. The following structural parameters may be

derived from these vectors: up to six pseudocubic parameters defining

octahedral geometry; length- and angle-based octahedral distortion parameters

� and �; inclination angles of tilted octahedra, �1, �2 and �3; angles of tilt of

octahedra; AX12:BX6 polyhedral volume ratio, VA/VB; parameters �A and �B

defining the relative contraction of inner AX8 polyhedra and expansion of BX6

octahedra due to octahedral tilting. The application of these parameters is

demonstrated by reference to published crystal structures. The variation of

�A and �B with temperature in the compositional series SrxBa1–xSnO3 and

SrxBa1–xHfO3, as well as the temperature series of BaPbO3 and CaTiO3, is

related to the sequence of phases Pbmn! Ibmm! Pm3m. Stabilization of the

Cmcm phase is likewise interpreted in terms of these two parameters for

NaTaO3 and NaNbO3. The pressure evolution of the structures of MgSiO3,

YAlO3, (La1–xNdx)GaO3 (0 � x � 1) and YAl0.25Cr0.75O3 is modelled with the

appropriate structural parameters, thereby also addressing the characteristics of

the Pbmn! R3c transition. Simulation of MgSiO3 up to 125 GPa and of YAlO3

up to 52 GPa in space group Pbnm is carried out by using the Birch–Murnaghan

equation of state. In both cases, full sets of oxygen coordinates assuming regular

octahedra are generated. Octahedral distortion is also modelled in the latter

system and predicted to have a key influence on structural evolution and the

sequence of phase transitions. The core modelling procedures are made

available as a Microsoft Excel file.

1. Introduction: the modelling of octahedral tilting in
perovskites

Synthetic perovskite-related compounds continue to attract

the attention of many scientists and technologists, irrespective

of whether they are working, for example, on the development

of lead-free piezoelectric ceramics (Shrout & Zhang, 2007) or

on organolead halide ABX3 nanocrystals for photochemical

cells (Jena et al., 2019). In general, the current availability of

high-quality structural data evokes the need for all the

nuances of structural change under varying conditions of

pressure, temperature and composition] (p–T–X) to be

precisely modelled. This expectation is particularly poignant

in the case of perovskite-related compounds, ABX3, since,

according to Mitchell (2002a), all elements, apart from the

noble gases, can be found in a variant of these. In the

pioneering work of Megaw (1973), their structures were

regarded as comprising three essential features: (a) tilting of
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the anion octahedra; (b) displacements of the cations; (c)

octahedral distortions. Definitive work by Glazer (1972) led to

a system of classification based on the sense of tilt of the three

tetrad axes of corner-linked regular octahedra about three

perpendicular, or nearly perpendicular crystal axes.

A regular octahedron is characterized by three pairs of

opposite vertices that are linked by stalks of equal length

passing through its mid-point at right angles to one another.

Two lines of regular octahedra are shown in Figs. 1(a) and

1(b), as they arise in space group Pbnm.

Zigzag chains of adjacent octahedral stalks of uniform

length s are formed, these lying in planes PQRS and TUVW.

When viewed along the yPC axis-of-tilting, the red and blue

octahedra are seen to be rotated in opposite senses [Fig. 1(c)],

leading to Glazer notation b�. By comparison, the red and

green octahedra are rotated in the same sense [Fig. 1(d)]. This

leads to the notation cþ, since the tilt angle is different. As

tilting around the xPC and yPC axes is equivalent, the three-

dimensional tilt system in Pbnm is denoted by a�a�cþ

(Glazer, 1972).

In this now well established a#b#c# nomenclature, super-

scripts # can be +, � or 0, denoting the angles of tilt of

neighbouring octahedra along the three pseudocubic axes as

in-phase (+), anti-phase (�) or zero. Importantly, Glazer

(1972) also showed that the 23 tilt systems for regular octa-

hedra correlated with 15 alternative space groups. As well as

aiding the correct interpretation of perovskite diffraction

patterns (Glazer, 1975), these correlations stimulated group-

theoretical analysis of perovskites, their being confirmed

significantly later by Howard & Stokes (1998, 2002). The latter
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Figure 1
Tilting of regular octahedra about the xPC and yPC axes, as in space group Pbnm. Pseudocubic axes xPC, yPC and zPC are directed parallel to orthorhombic
vectors 1�110

� �
, 110½ � and [001], respectively. (a) Tilting around the yPC axis (in clinographic projection) with �y the angles of inclination of stalks of length s

to the axis; (b) Tilting around the zPC axis (head-on view showing mirror planes); (c) yPC-axis tilting [as in (a)] viewed along the yPC axis towards the
origin; (d) zPC-axis tilting [as in (b)] viewed along the zPC axis towards the origin.



work led to minor modifications to the space groups originally

assigned by Glazer and established a top-down, hierarchical

system of group–subgroup relationships starting from the

cubic Pm3m aristotype for perovskite structures with tilted,

regular octahedra (Fig. 2).

Two independent contributions concerning octahedral

tilting in perovskites were made by Woodward (1997a,b) and

Thomas (1996). Woodward (1997a) concluded that perfectly

regular octahedra could not be linked together in some tilt

systems. The contentious space groups were subsequently

narrowed down to Cmcm (tilt system a0bþc�) and P42/nmc

(aþaþc�) by Howard & Stokes (1998), with only the latter

requiring irregular octahedra. The work of Thomas (1996), by

comparison, was primarily concerned with the dependence of

AX12:BX6 polyhedral volume ratio, VA /VB, on octahedral

tilting in orthorhombic and tetragonal perovskites. Inclination

angles �y and �z in Figs. 1(a) and 1(b), and by extension �x,

were used to relate octahedral stalk lengths s and tilting to the

lengths of pseudocubic cell axes 1, 2 and 3 and therefore cell

volume [equation (1)].

VA=VB � 6 cos2
�
ð�1 þ �2Þ=2

�
cos �3 � 1 ð1Þ

This form results from the coupling of inclination angles �1 and

�2 when pseudocubic axes 1 and 2 are oriented at approxi-

mately 45� to the crystal axes. In untilted structures (with �1 =

�2 = �3 = 0), VA /VB is exactly equal to five (Thomas, 1989).

Tamazyan & van Smaalen (2007) subsequently argued that

inclination angles �1, �2 and �3 defined by Thomas (1996) were

unnecessarily influenced by octahedral distortion. They

therefore proposed an alternative method of calculating tilt

angles, although this was at the expense of losing the simple

link to polyhedral volume ratio expressed by equation (1).

Later work by Wang & Angel (2011) restored the link

between octahedral tilting and ratio VA /VB, employing a

group-theoretical, rather than a geometrical approach to

separate octahedral tilting and distortion. These authors

expressed the ratio VA /VB as a function of the amplitudes of

the normal modes in a cubic perovskite, rather than by direct

calculation from anion coordinates in experimentally deter-

mined crystal structures.

The conflict between geometrical, i.e. crystal-chemical and

group-theoretical methods in describing perovskite structures

is somewhat contrived, since both have legitimate fields of

application and ultimately have similar aims. This was made

clear in seminal work by Knight (2009), who utilized group-

theoretical methods to develop a general parameterization of

centrosymmetric perovskites based on symmetry-adapted

basis vectors of the Pm�33m phase. He also pointed to difficul-

ties with a method earlier proposed by this author for a

general crystal-chemical parameterization of centrosymmetric

perovskites (Thomas, 1998). Two specific problems were

identified, (a) that the method was ‘geometrically complex’;

and (b) that it relied ‘totally on an empirical analysis of known

crystal structures’. He also made the important point, (c), that

the A site has a coordination number less than 12 due to a

geometrically complex coordination polyhedron (Knight,

2009). In the current work, point (a) is addressed by focusing

on the distortion of centrosymmetric octahedra as indepen-

dent geometrical forms. Point (b) is addressed by deriving

analytical expressions dependent on space group for the three

stalk vectors defining octahedral geometry. Point (c) is

addressed by developing a simple parameterization based on

AX8 sub-polyhedra that correlates with the tilt classification

system of Glazer (1972). Details of these methodological

improvements are given in the following section.

2. Elements of the revised crystal-chemical method

2.1. Pseudocubic representations of octahedra

In order that an object can be described as an octahedron, it

requires three recognisable pairs of opposite vertices that may

be linked to each another by vectors. If the ends of the stalks

of a regular octahedron [Fig. 3(a)] are randomly displaced by

limited amounts [Fig. 3(b)], the resulting form is still recog-

nisable as an octahedron [Fig. 3(c)]. The six independent

vertices lead to six sets of x; y; z½ � triplets in Cartesian space,

i.e. 18 parameters. If only the form of the octahedron is rele-

vant, and not its absolute position or orientation, these 18

parameters are reduced to 12 by subtracting six parameters:

three to fix one vertex in space at [0,0,0] and three to define

the orientation of the octahedron. In Fig. 3(c), one vertex has

been fixed at [0,0,0] and the octahedron so rotated that the

opposite vertex is fixed at [0 ,0, z1]. A further rotation of the

octahedron about the z axis has been carried out to fix a vertex

at [0, y2, z2]. The total of six coordinate-components equal to

zero here signifies a reduction in independent parameters

from 18 to 12, i.e. (z1; y2z2; xnynzn; n = 3,5). If, however, the

translations at opposite ends of the three stalks are equal and

opposite [Fig. 3(d)], a centrosymmetric octahedron results

[Fig. 3(e)], in which the three stalks bisect one other at the

centre of symmetry. Only one end of a stalk needs to be fixed
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Figure 2
Group–subgroup relationships among the 15 perovskite space groups
arising from the tilting of regular octahedra. A dashed line signifies that
the corresponding phase transition must be first order (Howard & Stokes,
2002). Reproduced with permission of the International Union of
Crystallography.



in space in order to define the position of the opposite end, so

that the number of independent parameters is halved to six

[Fig. 3(e)]: ðz1; y2z2; x3y3z3Þ. This situation applies to all

perovskites with B ions located at centres of symmetry.

The six independent parameters of a centrosymmetric

octahedron may be assigned to three stalk lengths a1, a2; a3

and three angles of intersection of the stalks, �12, �23 and �31. In

order to visualize the extent of its distortion, a parallelepiped

enclosing the octahedron may be constructed by displacing the

three stalk vectors to a common origin (Fig. 4).

As the three independent edge lengths of the parallelipiped

are approximately equal, it may also be termed a pseudocube.

Such a pseudocube is defined by the same six parameters as

the octahedron, i.e. a1, a2; a3; �12; �23 and �31. It follows that

regular octahedra would lead to pseudocubic representations

of octahedra (PCRO) of cubic form.

In the case of the non-centrosymmetric octahedron of

Fig. 3(c), the six octahedral vertices do not touch their

parallelogram faces at the meeting points of the four quad-

rants [Fig. 4(d)]. The 12 independent parameters may be

accommodated by noting the 2D polar coordinates r; �½ � of the

three emergent octahedral vertices, giving rise to additional

parameters r1, r2; r3; �1; �2 and �3. Thus the PCRO construc-

tion is of general validity for visualizing distorted octahedra.

Its parameterization may prove to be useful for characterizing

non-centrosymmetric and polar perovskites in future work.

The transformation between octahedron and PCRO is also

reversible.

An advantage of the PCRO visualization method is that the

aggregate distortion parameters representing normal and

shear distortion developed for pseudocubic representations of

tetrahedra (PCRT), � and �, (Reifenberg & Thomas, 2018;

Fricke & Thomas, 2021) may be taken over without modifi-

cation [equations (2), (3)].

� ¼
ja1�L0j þ ja2�L0j þ ja3�L0j

3L0

with L0 ¼
ða1þa2þa3Þ

3

ð2Þ

�ð�Þ ¼
�12

�ð Þ � 90�
�� ��þ �23

�ð Þ � 90�
�� ��þ �31

�ð Þ � 90�
�� ��

3
ð3Þ
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Figure 3
The number of independent parameters of a generalized, isolated centrosymmetric octahedron is equal to six. Views (a) to (e) discussed in x2.1.



In this connection, the following values are obtained for the

centrosymmetric and non-centrosymmetric octahedra of

Figs. 3(e) and 3(c), respectively: [�,�] = [0.0367, 11.90�]; [�,�] =

[0.0370, 7.10�]. It follows that the centrosymmetric octahedron

displays a higher degree of angular distortion here. Further-

more, if the angular distortion parameters are expressed in

radians instead of degrees, the relative degree of shear versus

normal distortion can be quantified. Since 11.90� correspond

to 0.21 and 7.10� to 0.12 radian, it follows that the shear

distortion is greater than the normal distortion in both cases.

2.2. Parameterization of PCRO in terms of three vectors

The octahedra in perovskites are not isolated but form a

three-dimensional corner-sharing network. Their crystal

structural parameters, i.e. space group, unit-cell parameters

and atomic coordinates, deliver full information on octahedral

distortion, tilting and connectivity. Importantly, space group

symmetry ensures connectivity. Once the distortion and tilting

of a single octahedron in a structure with only one symmetry-

independent octahedron has been defined, the distortions and

tilting of all the other octahedra in the unit cell follow. To

convey full information on the tilting of this single octahedron

in a structure, its PCRO may be described by the three

Cartesian stalk vectors, a1, a2 and a3 along its pseudocube

edges. Generalized, analytical expressions for these vectors in

different space groups may be derived inductively from known

crystal structures. This process is described in x2.2.1 for space

group Pbnm with B ions located at 4b special positions. The

three vectors defining the axes of the pseudocubic unit cell are

likewise defined in this Cartesian space, so that inclination

angles of the stalks to the three pseudocubic axes, �1, �2 and �3

may straightforwardly be calculated [see Fig. 1, equation (1)

and x2.3]. In addition, the method also allows calculation of tilt

angles �a, �b and �c of the octahedra around the three pseu-

docubic axes, even when the octahedra are distorted.

2.2.1. Space group Pbnm with B ions at 4b positions. The

octahedral cage coordinating the B ion at 01
20 in the unit cell of

orthorhombic space group Pbnm may be taken, this being the

cab setting of space group 62 with standard symbol Pnma. 01
20

is one of the 4b special positions, with X1 ions in 4c special

positions and X2 ions in 8d general positions (see Table S1 in

the supporting information).1

Derivation of the analytical form of stalk, or equivalently

PCRO vectors a1, a2 and a3 starts by taking an example

structure, such as CaTiO3 at 296 K [Yashima & Ali (2009);

ICSD code 162908]: a = 5.3709 Å, b = 5.4280 Å, c = 7.6268 Å;

x(O1) = 0.0708, y(O1) = 0.4830, x(O2) = 0.7113, y(O2) =

0.2891, z(O2) = 0.0375; z(O1) has the fixed value of 1
4.

The essential step is to convert from numerical fractional

coordinates of the titanium ion and its six oxygen neighbours

(Table 1, columns 2–4) to analytical fractional coordinates

(Table 1, columns 8–10). One way to generate the numerical

fractional coordinates would be to use a simple computer

program to generate the Cartesian coordinates of the titanium

and oxygen ions. (Table 1, columns 5–7). The numerical

fractional coordinates (Table 1, columns 2–4) would then

follow by multiplying these by the inverse orthogonalization

matrix, in this trivial case

1=a 0 0

0 1=b 0

0 0 1=c

0
@

1
A:

Letters a to f of the oxygen ions correspond to the atom labels

in Fig. 1(a). They are based on the principle that the octahe-

dral stalk from a to b is oriented closest to the xPC axis in the

positive direction, with the stalks from c to d and from e to f

oriented closest to the positive yPC and zPC directions,

respectively.

The analytical expressions in columns 8 to 10 of Table 1 are

obtained by inspection: the values in columns 2 to 4 are

compared with the starting values of x(O1), y(O1), x(O2),

y(O2) and z(O2). It is important to note that the results

depend on the convention used for expressing these para-
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Figure 4
Visualization of the distortion of octahedra by enclosure in a pseudocube:
(a), (b): centrosymmetric; (c), (d) non-centrosymmetric.

1 Since oxides are exclusively considered in this work, the notation ‘O1,O2 . . . ’
is used interchangeably with ‘X1,X2 . . . ’.



meters. For example, the alternative of x(O1) = 0.4292 and

y(O1) = �0.0170, although symmetrically equivalent, would

lead instead to the results x(O e) = x(O1) � 1
2 and y(O e) =

�y(O1) + 1
2.

The three vectors for the PCRO are now formed in Table 2

by taking the differences in the analytical fractional coordi-

nates for atom pairs (a,b), (c,d) and (e,f) given in Table 1.

Cartesian vectors are formed by multiplying these differences

by the orthogonalization matrix

a 0 0

0 b 0

0 0 c

0
@

1
A:

The Cartesian axes are parallel to the axes of the ortho-

rhombic unit cell in this case.

By adopting this analytical representation, vectors a1, a2 and

a3 are no longer tied to the example structure of CaTiO3: they

apply to all perovskites in space group Pbnm, provided that

the B ions occupy 4b sites and that the correct convention in

choosing the values parameters x(O1), y(O1), x(O2), y(O2)

and z(O2) has been followed. All eight crystallographic

parameters are involved in defining the geometry of the

PCRO in space group Pbnm: a, b, c, x(O1), y(O1), x(O2),

y(O2), z(O2). For regular octahedra, six of these eight degrees

of freedom (d.o.f.) would be used up in forming octahedra of a

particular volume, with five defining the regular form and the

sixth the volume. The remaining two d.o.f. would be used to

define the unit-cell parameters and octahedral tilting. If the

octahedra were only approximately regular, as is generally the

case, more d.o.f. would be available for optimizing the octa-

hedral tilting and unit-cell volume, in response to different A

and B ion radii or to changing temperature or hydrostatic

pressure. Thus the idea of structural compromise in forming

connected octahedral networks in perovskites can be

modelled in response to varying (p–T–X) conditions.

2.2.2. Other space groups. The other space groups analysed

in this work are those that commonly arise in experimentally

determined crystal structures. They span the following space

groups: Pbmn (B ions in 4a sites), Cmcm, Ibmm, P4/mbm,

P42/nmc, I4/mcm, R�33c, Pm�33m. Tables similar to Table 2 are

generated for them in xS2 of the supporting information.

2.3. Implementation of the crystallographic to structural
transformation in the Microsoft Excel Solver environment

Structural analysis requires a one-way transformation from

crystallographic to structural parameters. For example, crys-

tallographic parameters a, b, c, xi, yi, zi are transformed to

structural parameters such as PCRO parameters and tilt

angles. By comparison, structural prediction requires a

reversible transformation between the two parameter sets.

The modeller will seek to establish systematic variations in the

structural parameters with (p–T–X). If successful, interpola-

tions and extrapolations to other (p–T–X) values can be made

before reverse-transforming to crystallographic parameters.

This technique has been demonstrated for olivines (Thomas,
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Table 1
Calculation of analytical fractional coordinates of the six oxygen anions coordinating the titanium ion in CaTiO3 located at 0,12,0.

Atom

Numerical fractional coordinates Cartesian coordinates Analytical fractional coordinates

x y z xC yC zC x y z

Ti (4b) 0 0.5 0 0.0000 2.7140 0.0000 0 1
2 0

O a (8f) �0.2113 0.7891 0.0375 �1.1349 4.2832 0.2860 �x(O2) + 1
2 y(O2) + 1

2 z(O2)
O b (8f) 0.2113 0.2109 �0.0375 1.1349 1.1448 �0.2860 x(O2) � 1

2 �y(O2) + 1
2 �z(O2)

O c (8f) �0.2887 0.2891 0.0375 �1.5506 1.5692 0.2860 x(O2) � 1 y(O2) z(O2)
O d (8f) 0.2887 0.7109 �0.0375 1.5506 3.8588 �0.2860 �x(O2) + 1 �y(O2) + 1 �z(O2)
O e (4c) �0.0708 0.5170 �0.25 �0.3803 2.8063 �1.9067 �x(O1) �y(O1) + 1 �1

4

O f (4c) 0.0708 0.4830 0.25 0.3803 2.6217 1.9067 x(O1) y(O1) 1
4

Figure 5
Screenshot of the Pbnm worksheet, which contains the reference data for
CaTiO3 at 296 K (Yashima & Ali, 2009). No refinement has taken place,
since the entries in the ‘Refined data’ and ‘Reference data’ boxes are
identical.

Table 2
The three vectors defining the PCRO with mid-point 0,12,0 in space group Pbnm.

Cartesian components Nearest pseudocubic axes

Stalk PCRO vector X Y Z Pseudocubic Orthorhombic

O b O a a1 a(2x(O2) � 1) � 2by(O2) � 2cz(O2) xPC �0�110�
O d O c a2 �2a(x(O2) � 1) �b(2y(O2) � 1) �2cz(O2) yPC [110]
O f O e a3 2ax(O1) b(2y(O1) � 1) c/2 zPC [001]



2017), coesite (Reifenberg & Thomas, 2018) and quartz

(Fricke & Thomas, 2021).

The requirements of ease and flexibility of use together with

a reversible transformation suggest that the Microsoft Excel

Solver environment is appropriate for applying the method. In

this connection, an Excel datafile already programmed is

provided in the supporting information. This consists of eight

worksheets for the different space groups. A screenshot of the

worksheet for Pbnm with B ions in 4b positions is given in

Fig. 5.

The user enters the crystallographic data in the ‘Refined

data’ box in blocks K3:K5 (light-green background), N4:N8

and N10:N11 (mustard background), whereupon all the

structural parameters are automatically calculated by Excel.

The computational core of the spreadsheet is in blocks R9:T11

(deep-blue background) and U9:W11 (dark-green back-

ground). The formulas in these cells correspond to the entries

in Table 2 and the pseudocubic axes in Cartesian coordinates,

respectively. Values of all the structural parameters relating to

octahedral distortion and tilting (light-blue background) can

be seen as ways of describing the numerical values in these two

blocks in a structurally meaningful way.

The purpose of the ‘Reference data’ box is threefold. First,

it acts as a repository for the source, reference data (cells with

orange background). Secondly, the dependent structural

parameters can be calculated for this reference data by

clicking on the button in cell C15.2 Thirdly, both reference

data and dependent structural parameters can be used as

constraints in structural refinements, which apply to the cells

in the ‘Refined data’ box.

The different types of structural parameters, all with light-

blue background, are summarized as follows.

a) PCRO parameters a1, a2, a3, �23, �31, �12 are calculated as

the lengths and intersectional angles of the vectors a1, a2, a3 in

block R9:T11. For example, �23 ¼ arccos a2 � a3=a2a3ð Þ.

Aggregate distortion parameters � and � [equations (2) and

(3)] are calculated in block P13:P16, the latter quoted in both

degrees and radians.

b) Pseudocubic angle �PC is calculated as the angle between

pseudocubic axes aPC and bPC in cell P11:

�PC ¼ arccosðaPC � bPC=aPCbPCÞ.

c) Inclination angles �1, �2, �3 of the octahedral stalks are

quoted in block X9:X11. These describe the relationship of the

two sets of vectors in blocks R9:T11 and U9:W11 to one

another. With respect to vector a1 in block R9:T9 and its

nearest pseudocubic axis vector aPC in block U9:W9, the

following applies:

a1 ¼

a1X

a1Y

a1Z

0
@

1
A;

aPC ¼

aPC;X

aPC;Y

aPC;Z

0
@

1
A:

The subscripts X;Y;Z here denote the Cartesian X;Y and Z

components, respectively. It follows that

�1 ¼ arccosða1 � aPC=a1aPCÞ

¼ arccos
��

a1XaPC;X þ a1Y aPC;Y þ a1ZaPC;Z

�
=a1aPC

�
ð4Þ

Substitution of

aPC ¼

2:2697

�3:1385

�0:5720

0
@

1
A

and

aPC ¼

5:3709

�5:4280

0:0000

0
@

1
A

leads to �1 = 12.16�. Angles �2 and �3 are derived from the

corresponding pairs (a2,bPC) as well as (a3,cPC), respectively.

d) The method of calculation of angles of tilt �a and �c in

the a�a�cþ tilt system of space group Pbnm is shown in Fig. 6.

These angles constitute an alternative to the inclination angles

for relating the two sets of vectors in blocks R9:T11 and

U9:W11 to each other. Since tilt angles are to be calculated for

distorted octahedra, the method evaluates the projections of

oxygen atoms O a, O b, O c and O d in the planes perpendi-

cular to pseudocubic axes aPC, bPC and cPC. These four atoms

also define PCRO vectors a1 and a2: vector a3 does not influ-

ence the calculated tilt angles.

A tilt of type a� around aPC is the angle between vector

(O c0-O d0) and its projection in the xy plane. Similarly, an a�

tilt around bPC is the angle between vector (O a0-O b0) and its

projection in the xy plane. Calculated values are shown in cells

Y9 and Y10 in Fig. 5, with the mean value in cell Y11 (8.53�,

8.51� and 8.52�, respectively). The observed difference of 0.02�

in calculated values results from an interplay of the deviation

of �PC from 90� and the octahedral distortions.

The in-phase cþ tilting causes the projections of the a1 and

a2 octahedral vectors in the xy plane to be rotated away from

pseudocubic axes xPC and yPC (Fig. 6). The two resulting tilt

angles are given in cells Y12 and Y13 (8.82� and 8.87�), with

the mean value in Y14 (8.84�).

The algorithms for calculating these tilt angles are described

in xS3 of the supporting information, where reference is also

made to their implementation in the Excel file in the

supporting information.

e) Unit-cell volume VUC, polyhedral volumes VB, VA and

volume ratio VA /VB are calculated in blocks P3:P4 and P6:P7.

VUC = a � b	 c and

VB ¼
1

6

a1x a1y a1z

a2x a2y a2z

a3x a3y a3z

������

������
:

The latter calculation method is facilitated by the centro-

symmetry of the octahedron. Volume ratio VA /VB follows
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2 This activates a VBA macro, which calculates the values of structural
parameters for the cells with a pink background. Although not included in the
supporting information, the author is willing to supply an xlsm file containing
VBA codes on request.



from these parameters as [(VUC/Z) � VB]/VB and VA as

VB VA=VBð Þ.

f) Parameters gA and gB are likewise extracted from the

core computational data (blocks R9:T11 and U9:W11) and

defined in x2.6.

g) Parameters L and ���� (block N18:19 with brown back-

ground) relate to the A ion positions and are independent of

the anionic network. They are defined in x2.7.

2.4. Example Solver refinements

Initial insight into use of the Solver is gained here by

addressing an issue relevant to the historical development of

perovskite structural chemistry: the ability of different space

groups to accommodate regular octahedra. A comparison is

also made between tilt angles calculated as in point d) of x2.3

and the values yielded by commonly used approximations.

The five degrees of freedom required to define the regular

octahedral form (see x2.2.1) result in the constraints a) a2 = a1;

b) a3 = a2; c) �23 = 90�; d) �31 = �23; and e) �12 = �31. Since there

are eight d.o.f. in total, two further constraints may be applied

in the refinement. For example, it may be stipulated that the

unit cell and the octahedral volumes remain unchanged: f)

VUC = VUC,reference and g) VB = VB,reference. The coding of these

constraints in the Solver in shown in Fig. 7(a), whereby

constraints f) and g) also refer to cells $H$3 and $H$4 in Fig. 5.

The end-point of this tightly defined refinement is shown in

Fig. 7(b): a cubic PCRO of side length 3.9014 Å is generated,

corresponding to a regular octahedron with perpendicular

stalks. The values of the other structural parameters described

in x2.3 appear in the cells with a light-blue background.

The crystal structures obtained by applying the same

refinement conditions to reference structures in all the space

groups are given in Table 3. The Solver constraints for the

respective space groups are pre-programmed in the Excel file

in the supporting information.

For space group P42/nmc, the obtaining of regular octa-

hedra in tilt system a+a+c� is at variance with the conclusion of

Howard & Stokes (1998). A resolution of this discrepancy is

thought likely to depend on the observed interdependence of

the coordinates of atoms O2 and O3 in the refined structure

(Table 3), which implies a refinement into higher symmetry or

pseudo-symmetry than P42/nmc.

The values of tilt angles below the dividing line in Table 3

serve to compare the values calculated by the method given in

x2.3 and approximations for tilt angles used by other authors.

Following an initial analytical treatment of perovskite tilt
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Figure 7
(a) Solver settings for generating regular octahedra in space group Pbnm
with unchanged unit cell and octahedral volumes. (b) Results of the
refinement.

Figure 6
Tilted octahedra and basal parallelogram planes, e.g. PQRS, of AX12

polyhedra (in yellow) viewed along the orthorhombic z axis in space
group Pbnm. The + and – signs in black denote z heights of the octahedral
vertices relative to the z = 0 plane of the diagram. These are due to a�

tilting. Green dashed lines show the directions of pseudocubic axes xPC

and yPC, the reference directions for the a� tilting. Red dotted lines
represent the perpendicular planes to the green dashed lines, which are
projected as lines in the xy plane. Red circles lie above the red dotted
lines at the same z height as the octahedral vertices O a to O d. They are
denoted by O a0 to O d0 and result from the four projections (O a!O a0),
(O b ! O b0), (O c ! O c0) and (O d ! O d0). cþ tilting causes the
octahedra to be rotated about the orthorhombic z axis (or equivalently,
the zPC axis). The relevant tilt angles, �c,1 and �c,2, are shaded orange.
(Vectors p and q are defined in x2.6.)



angles by Megaw (1973), a more developed treatment

according to space group was given by Kennedy, Prodjo-

santoso et al. (1999) as follows. The four parameterizations a)

to d) here correspond to headers a) to d) in the row ‘Method’

in Table 3.

a) Pbnm (B ions in 4a): O2:
�

1
4� u; 1

4þ v;w
�
.

�a ¼ arctan
�
4 � 2

1
2 � w

�
; �c ¼ arctan

�
2½uþ v�

�
.

b) Cmcm: O1:
�

1
4þ u1; 0; 0

�
; O2: 0; 1

4� v2;w2

� �
; O3:

1
4þ u3;

1
4þ v3;

1
4

� �
.

�b ¼ arctan 2 u3 þ w2

� �� �
; �c ¼ arctan

�
2½u1 þ v2�

�
.

c) I4/mcm: O:
�

1
4þ u; 3

4þ u; 0
�
. �c ¼ arctanð4uÞ.

Mountstevens et al. (2003) augmented this set with a result

for space group Imma, which upon resetting in Ibmm, is as

follows:

d) Ibmm: O2: ð14 ;
1
4 ;wÞ. �a ¼ arctan

�
4 � 2

1
2 � w

�
.

This expression is equivalent to Pbnm with u = v = 0.

In general, the agreement between values generated in this

work and approximations a) to d) above is satisfactory for the

in-phase tilts, �c. Antiphase angles �a for space groups Pbnm

and Ibmm show poorer agreement. In order to investigate

whether this is a systematic discrepancy, the structural data of

Kennedy, Prodjosantoso et al. (1999) for CaTiO3 (Pbnm) at

1273 K were fed into the Excel program, yielding the following

two sets of tilt values and inclination angles �3: �a = 6.53�;

�a,refined = 6.59�; �3 = 8.92�; �3,refined = 9.24�. These are to be

compared with the tilt values given by the Kennedy approx-

imation: �a = 9.19�; �a,refined = 9.24�. These results and those in

the Pbnm (B: 4a) and Ibmm columns of Table 3 lead to the

following two conclusions: (1) The �a angles calculated by the

method of x2.3 are systematically lower than those generated

by the Kennedy approximation; (2) The Kennedy approx-

imation generates exact values of inclination angle for refined

structures with regular octahedra, i.e. �3,refined, and not tilt

angle �a as defined in this work.

In the case of Cmcm, good agreement for �a between x2.3

and Kennedy, Prodjosantoso et al. (1999) is obtained for

regular octahedra in the refined structure, but not for the

distorted octahedra in the unrefined structure.

A rationalization for the smaller values of �a generated by

the method of x2.3 is that the inclination angle �3 of a regular

octahedron will always be larger than an angle within a plane

of projection perpendicular to a pseudocubic axis (Fig. 6). The

former angle is generated by the approximations of Kennedy,

Prodjosantoso et al. (1999) and the latter angle by the method

of x2.3.

2.5. PCRO parameters, inclination angles and tilt systems
with numbers of degrees-of-freedom by space group

Whether regular octahedra can be formed in a particular

space group depends on whether the octahedra have sufficient

degrees of freedom (d.o.f.). The number of d.o.f. defining the

octahedral anionic network is N(UC) + N(X), of which N(tilt)

are used to define independent tilt angles. In P42/nmc with

irregular octahedra, the tilt system is aþbþc�, i.e. N(tilt) = 3.

For regular octahedra, this is reduced to aþaþc� with N(tilt) =

2. The parameter denoting the remaining d.o.f. available to

construct the octahedra, N(PCRO), is equal to N(UC) + N(X)

� N(tilt) (Table 4). In space groups Pbnm and Cmcm,

N(PCRO) values equal to six signify a capacity to form regular

octahedra independently of the values of the two tilt angles.

Although N(PCRO) is less than 6 in Ibmm, I4/mcm, P4/mbm
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Table 3
Summary of Solver refinements by space group corresponding to structures with regular octahedra.

The octahedral and unit-cell volumes are identical to those in the reference structures.

Space group Pbnm (B: 4b) Pbnm (B: 4a) Cmcm Ibmm P4/mbm P42/nmc I4/mcm R�33c

Reference system CaTiO3 LaCr0.7Ni0.3O3 NaNbO3

at 848 K
BaPbO3

at 300 K
NaNbO3

at 888 K
CaMnO3 CaTiO3

at 1523 K
La(Cr0.2Ni0.8)O3

Reference ICSD 162908 173471 192404 154038 280100 670342 162919 173475
a1(refined) (Å) 3.9014 3.9535 3.9495 4.3480 3.9500 3.8074 3.9025 3.8952
a (Å) 5.33816 5.46101 7.85139 6.08315 5.56480 7.52285 5.47004 5.42241
b (Å) 5.44997 5.57887 7.85672 6.14899
c (Å) 7.64264 7.73997 7.89355 8.60287 3.94998 7.43089 7.80495 13.49346
x(O1) 0.07274 0.57385 0.27596 0.05216 0 0.03909 0 0.55170
y(O1) 0.48876 0.49521 0 0 0 �x(O1) 0 0
z(O1) 1

4
1
4 0 1

4
1
2

1
4

1
4

1
4

x(O2) 0.70974 0.23308 0 1
4 0.22810 1

4 0.21650
y(O2) 0.28863 0.26621 0.22407 1

4 0.72810 0.00306 0.71650
z(O2) 0.03637 0.03692 0.00921 �0.02608 0 0.96043 0
x(O3) 0.25921 1

4

y(O3) 0.25096 y(O2)
z(O3) 1

4 �z(O2) + 1
2

Method x2.3 x2.3 a) x2.3 b) x2.3 d) x2.3 x2.3 c) x2.3
�a (�) 8.52 8.47 11.91 6.37 8.72 7.13 5.90
�a,refined (�) 8.29 8.33 11.80 5.92 8.39 8.89 5.90
�b (�) 2.11 4.15 6.02
�b,refined (�) 2.12 2.11 8.89
�c (�) 8.84 4.90 4.90 5.38 5.38 5.01 9.34 7.63 7.63
�c,refined (�) 8.96 3.79 3.79 5.92 5.92 5.01 0.70 7.63 7.63
�3 (�) 10.97 7.87
�3,refined (�) 11.80 8.39



and R�33c, this does not preclude the formation of regular

octahedra, since the space group symmetry itself provides

partial regularity: in Ibmm: a1 = a2 and �23 = �31; in I4/mcm and

P4/mbm: a1 = a2 with �23 = �31 = �12 = 90�; in R�33c: a1 = a2 = a3

with �23 = �31 = �12. In space group P42/nmc, the N(PCRO)

value of less than 6 signifies that the two tilt angles in the

refined structure will be interdependent.

The final two rows in Table 4 relate to the d.o.f. assigned to

A and B cations. The structures associated with the A cations

are discussed in x2.7, after the primary structures associated

with the parameter N(tilt) have been considered in the

following sub-section.

2.6. Additional anionic network parameters related to
octahedral tilting

Since octahedral tilting per se is a secondary structural

feature relative to the BX6 octahedra, the primary structures

resulting from this tilting necessarily concern the coordination

of the A ions. It has long been customary to assume AX8

polyhedra in GdFeO3-type perovskites such as CaTiO3 in

space group Pbnm (Liu & Liebermann, 1993). Mitchell &

Liferovich (2004), adopting the perspective of coordination

chemistry, reported an increase in coordination number from 8

to 9 with x in the solid solution series Ca1–xNaxTi1–xTaxO3.

Mitchell (2002b) states generally that coordination numbers of

8, 9, 10 and 12 are possible, and calculates as an example the

volume of uncoordinated space in SrZrO3 (I4/mcm) as 8.7%.

This is the difference between VA, the volume assigned to

AX12 polyhedra from volume filling with BX6 octahedra, and

the volume of a more appropriate AX8 polyhedron, V AX8ð Þ.

From a functional viewpoint, the AX8 polyhedra in tilted

perovskites provide scaffolding to support the eight octahe-

dral faces of the full AX12 polyhedra. In Pbnm, the inner AX8

polyhedron is formed by the top and bottom parallelogram

AX12 faces and four vertical struts (Fig. 8).

It is now appropriate to interpret Fig. 6 in terms of the effect

of octahedral tilting on A-ion coordination. The c+ tilting

causes parallelograms PQRS to be formed instead of rectan-

gles, with a concomitant reduction in area A(PQRS). The a�

tilting, by comparison, leads to equal and opposite displace-

ments of vertices P, Q, R and S along z (denoted by + and �).

The volume contributions made by plane PQRS and the other

five faces of the AX8 polyhedron to V AX8ð Þ are not affected

by this tilting, since changes brought about by the equal and

opposite displacements relative to the centre-of-symmetry at

[0,0,0] cancel one another out.3 The mirror plane through A,

B, C and D in all space groups with c+ tilting means that the

horizontal positions, in this case the x and y coordinates of the

bottom and top parallelograms in Fig. 8, are identical. It

follows that the formula V(AX8) = A(PQRS)(c/2) could be

used, since the centres of both parallelograms are separated by

c/2 in all space groups with in-phase c-axis tilting apart from

P4/mbm, where the separation is c. In space groups P42/nmc

and I4/mcm, to which anti-phase, c� tilting applies, the same

formula is valid, since the mean cross-section ? z is A PQRSð Þ.
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Table 4
Summary of inclination angles, PCRO parameters and degrees of freedom by space group.

Space group Pbnm Cmcm Ibmm
I4/mcm and
P4/mbm P42/nmc R�33c Pm�33m

3-axis in equation (1) z – z z z – –
Inclination angles �1 6¼ 0 �1 6¼ 0 �1 ¼ �2 6¼ 0 �1 6¼ 0 �1 6¼ 0 �1 ¼ �2 ¼ �3 6¼ 0 �1 ¼ �2 ¼ �3 ¼ 0

�2 6¼ 0 �2 6¼ 0 �2 6¼ 0 �2 6¼ 0
�3 6¼ 0 �3 6¼ 0 �3 6¼ 0 �3 ¼ 0 �3 6¼ 0

PCRO parameter equalities a1 ¼ a3 a1 ¼ a2 a1 ¼ a2 ¼ a3 a1 ¼ a2 ¼ a3

�23 ¼ �12 �23 ¼ �31 ¼ �12 ¼ 90� �23 ¼ �31 ¼ �12 �23 ¼ �31 ¼ �12 ¼ 90�

Tilt system a�a�cþ a0b�cþ a�a�c0 a0a0c� and a0a0cþ aþbþc� or aþaþc� a�a�a� a0a0a0

N(UC) 3 3 3 2 2 2 1
N(X) 5 5 2 1 5 1 0
N(tilt) 2 2 1 1 2 1 0
N(PCRO) 6 6 4 2 5 2 1

N(A) 2 2 1 0 0 0 0
N(B) 0 0 0 0 0 0 0

Figure 8
AX8 and AX12 polyhedra in space group Pbnm. The two opposite, yellow
parallelogram faces are joined by vertical blue struts to form AX8

polyhedra. The eight green faces are shared with BX6 octahedra.

3 Polyhedral volume = 1
3

P
i

Aihi. Ai is area of face; hi is perpendicular distance
from face to common apex inside polyhedron.



Since the c
 component of the tilting is solely responsible

for the reduction in A(PQRS) and V(AX8), the converse

applies that A(PQRS) quantifies the extent of this tilting.

Without c
 tilting, A(PQRS) would be equal to one quarter of

the unit cell cross-sectional area, i.e. (ab)/4 in crystal systems

with perpendicular x and y axes. A dimensionless coefficient

�A to quantify the amount of c
 tilting may therefore be

defined as follows.

�A ¼
AðPQRSÞ

ðabÞ=4
ð5Þ

Although the b� tilting about the xPC and yPC axes in Pbnm,

more generally the a
b
 tilting component when applied to all

space groups, does not affect V AX8ð Þ, it does affect VB. For a

given perovskite compound with unit-cell cross-section ab, this

tilting allows larger VB values than would otherwise have been

the case. The greater the degree of tilting, the larger the VB

value. A dimensionless coefficient �B to quantify this is given

by relating VB to the volume of an upright, untilted octahe-

dron of equal basal area in xy projection, VB;ref. The in-plane

components of vectors p and q in Fig. 6 define the waist of this

octahedron of perpendicular height c/2. These depend in turn

on PCRO vectors a1 and a2.

p ¼
1

2

a2x þ a1x

a2y þ a1y

0

0
@

1
A

and

q ¼
1

2

a2x � a1x

a2y � a1y

0

0
@

1
A:

�B ¼
VB

VB;ref

ð6Þ

In the presence of a
b
 tilting, �B > 1. VB is calculated as

one-sixth of the volume of the PCRO and VB,ref as twice the

volume of a right pyramid of height c=4 with parallelogram

base of area

px py

qx qy

����
����;

i.e.

1

3
�

c

2

px py

qx qy

����
����:

Analytical expressions for �A and �B are quoted in Table 5.

The form of �B is similar for all space groups, and �A can

generally be traced back to simple expressions involving

fractional coordinates. Particularly significant are the fixed,

limiting values of �A ¼ 1 and �B ¼ 1 in space groups Ibmm

and I4/mcm, respectively. These govern the sequence of phase

transitions in series with increasing VA volume (see x3.1). The

corresponding derivations are in xS4 of the supporting infor-

mation, along with diagrams of the c
 and a
b
 tilt patterns

determining �A and �B, respectively. These parameters are

also calculated in the Excel datafile in the supporting infor-

mation.

Since c
 tilting reduces V AX8ð Þ and therefore VA, whereas

a
b
 tilting increases VB, use of VA/VB as an indicator of the

overall degree of tilting is vindicated. By using parameters �A

and �B to quantify the tilting, which are simply calculated, the

difficulties of defining and calculating tilt angles unequivocally

can be circumvented. As may be inferred from the complexity

of Fig. 6 and the comparison of calculated tilt angles in the

lower part of Table 3, this could be seen as an advantage.

2.7. A cation positions

In earlier work on the parameterization of centrosymmetric

perovskites (Thomas, 1998), difficulties were experienced in

fixing the positions of the A ions by reference to their coor-

dinating X ions in the AX12 polyhedra. However, subsequent

work by Magyari-Köpe et al. (2001, 2002) demonstrated that

their positions could be treated as a function of the VA /VB

ratio.

The essential objective is to quantify the small displace-

ments from geometrically regular positions [0, 0] and [1
2,

1
2] in

the relevant plane of projection (Fig. 9). The parameterization

applied here is limited to a transformation to polar coordi-
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Table 5
Analytical expressions for structural parameters �A and �B to quantify c
 and a
b
 tilting.

Space group N(tilt) �A �B

Pbnm (B in 4b) 2 (1 � [3 � 4x(O2)][4y(O2) � 1])

4ða3 � a1 	 a2Þ 	

�
c
��� a2x þ a1x a2y þ a1y

a2x � a1x a2y � a1y

���
��1

Pbnm (B in 4a) 2 ([1 + [4x(O2) � 1][4y(O2) � 1]) As for Pbnm (B in 4b)
Cmcm 2 16x(O1)y(O2) As for Pbnm (B in 4b)

Ibmm 1 1 As for Pbnm (B in 4b)
P4/mbm, I4/mcm 1 8x(O2)(1� 2x(O2)) 1
P42/nmc 3 2a,2b: 4(�3

2 + 2y(O3))(1
2+ 2y(O2)) As for Pbnm (B in 4b)

4d: 4(5
2 � 2y(O3))(1

2 � 2y(O2))
R�33c 1 4x(O)(1 � x(O)) –



nates L and � in Pbnm [Fig. 9(a)], whereby L is twice the

displacement of an individual ion. In space group Cmcm, two

independent lengths, L1 and L2, apply [Fig. 9(b)]. These

displacements are either along one axis or non-existent in the

other space groups.

3. Analysis of structures at variable temperature and
chemical composition

The structural parameters defined in x2 are used here to

characterize the sequences of phase transitions observed with

increasing temperature and varying chemical composition in

centrosymmetric perovskites. Li et al. (2004) identified the

following commonly occurring sequence with increasing

temperature or mean A ion radius: Pbnm! Ibmm! I4/mcm

! Pm�33m. This applies to Sr1�xBaxHfO3 and Sr1–xBaxZrO3

perovskites (Kennedy et al., 2001), as well as to the systems

Sr1–xBaxSnO3 and Ca1–xSrxSnO3 (Mountstevens et al., 2003).

Identification of the intermediate Ibmm phase was significant,

as it had previously been regarded as rare (Kennedy et al.,

2001). The temperature range of stabilization of this phase is

highly variable, with values greater than 570 K in BaPbO3 (Fu

et al., 2007), of 140 K in SrRuO3 (Kennedy et al., 2002), 90 K in

SrHfO3 (Li et al., 2004) and less than 20 K in SrRhO3

(Kennedy et al., 2004). It is characterized by a fixed value of

parameter �A equal to one (Table 5).

A second sequence was identified by Ahtee & Darlington

(1980) for NaTaO3: Pbmn! Cmcm! P4=mbm! Pm�33m,

with further structural work by Kennedy, Prodjosantoso et al.

(1999) reporting transition temperature ranges of 738–753 K,

823–863 K and 883–913 K. More recently, Mitchell et al. (2014)

reported the same series of phase symmetries for the mineral

lueshite, NaNbO3.

Both sequences are characterized by an increasing VA /VB

ratio with T or x, which may be attributed either to a larger

volume expansion coefficient of VA relative to VB or to a

compositionally induced expansion of the A-site volume

relative to the B site. The term ‘A-ion perturbation’ may be

applied in both cases, since a change in the A-site geometry is

the dominant driving force causing the whole structure to

respond.

A solid solution series with a rising VA /VB ratio brought

about by reducing VB has been established by Yang (2008) for
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Figure 9
A cation positions in space groups (a) Pbnm and (b) Cmcm in 2D
projection. Green circles: height +1

4; brown circles: height �1
4. A network

with dashed lines is shown in (a).

Table 6
Structural parameters for two solid solutions spanning space group Ibmm at room temperature.

Composition ICSD Space group �A �B VA (Å3) VB (Å3) VA/VB � �

SrSnO3 190602 Pbnm 0.9847 (1) 1.0313 (3) 54.181 (5) 11.454 (4) 4.730 (2) 0.0023 (4) 0.0104 (8)
Sr0.8Ba0.2SnO3 190611 Pbnm 0.9935 (2) 1.0236 (3) 55.10 (6) 11.42 (1) 4.824 (2) 0.0052 (7) 0.0195 (9)
Sr0.6Ba0.4SnO3 190610 Ibmm 1 1.0147 (2) 56.02 (7) 11.40 (2) 4.913 (1) 0.0004 (3) 0.0091 (8)
Sr0.4Ba0.6SnO3 190609 I4/mcm 0.9960 (1) 1 56.9 (1) 11.43 (2) 4.9758 (6) 0.0000 (4) 0
Sr0.2Ba0.8SnO3 190608 Pm�33m 1 1 57.52 (8) 11.50 (2) 5 0 0
BaSnO3 190601 Pm�33m 1 1 58.071 (4) 11.6142 (8) 5 0 0

SrHfO3 89383 Pbnm 0.9856 (6) 1.034 (1) 55.64 (2) 11.79 (2) 4.719 (8) 0.003 (2) 0.013 (1)
Sr0.8Ba0.2HfO3 55746 Pbnm 0.996 (2) 1.029 (4) 57.16 (6) 11.89 (6) 4.81 (3) 0.033 (6) 0.058 (9)
Sr0.6Ba0.4HfO3 55747 Ibmm 1 1.026 (1) 57.97 (1) 11.96 (1) 4.848 (7) 0.0058 (5) 0.039 (3)
Sr0.4Ba0.6HfO3 55748 I4/mcm 0.98755 1 58.88 (1) 11.95 (1) 4.926 (5) 0.0013 (2) 0
Sr0.2Ba0.8HfO3 55749 Pm�33m 1 1 59.7948 (9) 11.9590 (2) 5 0 0
BaHfO3 – Pm�33m 1 1 60.2909 (4) 12.0582 (1) 5 0 0



LaCr1–xNixO3 at room temperature. Upon increasing x from 0

to 0.7, a Pbnm ! R�33c phase transition is observed. In this

case, a B-ion perturbation is being applied.

3.1. x- and T-series with A-ion perturbations

3.1.1. SrxBa1–xSnO3 and SrxBa1–xHfO3. Table 6 contains

structural parameters calculated from the refinements of

Mountstevens et al. (2003) for the solid solution series

SrxBa1–xSnO3 and of Li et al. (2004) for the SrxBa1–xHfO3

series.

On reading Table 6 from top to bottom, values of VA

confirm that the increasing mean A-ion radius is the principal

driving force for the structural changes in both systems. VA

rises by 7.2% between x = 0 and x = 1 in the tin-containing and

by 8.4% in the hafnium-containing series. Furthermore, the

larger ionic radius of Hf4+ compared to Sn4+ in sixfold coor-

dination [0.71 cf. 0.69 Å; Shannon (1976)] causes the VA value

at a given Sr:Ba ratio to be systematically larger in the system

with hafnium as B ion. By comparison, the volume of the B

site increases by 1.4% between x = 0 and x = 1 in the tin-

containing series compared system compared to 2.3% in the

hafnium series. The following ranges of the VA /VB parameter
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Figure 10
Characterization of phase transitions in terms of tilt-related parameters �A and �B: (a) SrxBa1–xSnO3, (b) SrxBa1–xHfO3, (c) BaPbO3, (d) CaTiO3. Circles
denote experimentally determined points, which are joined by straight lines. Arrows signify limited flexibility in the positions of the phase transitions.

Table 7
Focus on the Cmcm phases of NaTaO3 and NaNbO3 with comparative data for neighbouring Pbnm and P4/mbm phases.

Compound ICSD Temperature (K) VA/VB �A1 �A2 �B Reference

Pbnm
NaTaO3 150430 293 4.74 (2) 0.988 (2) 1.032 (3) Mitchell & Liferovich (2004)
NaNbO3 192400 293 4.802 (5) 0.9868 (6) 1.0206 (6) Mitchell et al. (2014)
Cmcm
NaTaO3 280099 803 4.899 (2) 0.987 (3) 0.994 (3) 1.0076 (2) Darlington & Knight (1999)
NaTaO3 241445 778 4.891 (2) 1.002 (2) 0.977 (2) 1.0076 (2) Knight & Kennedy (2015)
NaTaO3† 239691 783 4.889 (3) 0.991 (5) 0.989 (5) 1.0087 (3) Arulnesan et al. (2016)
NaNbO3 192404 848 4.928 (3) 1.051 (3) 0.933 (3) 1.0041 (4) Mitchell et al. (2014)
NaNbO3 192405 873 4.940 (2) 1.063 (3) 0.924 (3) 1.0033 (3) Mitchell et al. (2014)
P4/mbm
NaTaO3 88377 843 4.945 (1) 0.9907 (2) Kennedy, Prodjosantoso et al. (1999)
NaNbO3 192406 898 4.9687 (7) 0.9948 (1) 1 Mitchell et al. (2014)

† Doped with 1 mol% K.



span the Ibmm phase in the two systems: 4.824 < VA /VB <

4.976 and 4.81 < VA /VB < 4.926.

The variation of parameters �A and �B with x reveals the

mechanisms behind the Pbnm! Ibmm and Ibmm! I4/mcm

phase transitions in these series [Figs. 10(a) and 10(b)].

Reading these two diagrams from left to right, the Pbnm!

Ibmm transition is triggered by �A reaching the limiting value

of 1 whilst �B is still > 1. The range of stability of the Ibmm

phase is determined by the x value at which �B becomes equal

to 1, whereupon a phase transition to I4/mcm takes place. The

diagrams suggest that the approach of �A to 1 takes place

continuously at the Pbnm–Ibmm boundary. By comparison,

the Ibmm–I4/mcm boundary is characterized by a discontin-

uous step in �B down to 1. Also characteristic of the

latter boundary is a fall in �A to a value less than 1.

This may be understood by considering that �A and �B can

only both be equal to one in the aristotype Pm�33m phase.

However, at the start of the range of stability of the I4/mcm

phase, VA /VB has not reached the limiting value of 5. The

transition from I4/mcm to Pm�33m takes place as soon as VA has

increased sufficiently for this VA /VB limit to be reached.

3.1.2. BaPbO3. The above rationalization can be transferred

without modification to series where temperature is respon-

sible for an increasing VA volume. For example, the Ibmm

phase is stabilized over a wide temperature range in BaPbO3

perovskites, these being of technological relevance due to

superconductivity in the Ba-Pb-Bi-O system. Following earlier

structural refinements by Moussa et al. (2001) and Ivanov et al.

(2001) in the monoclinic space group C2/m on cooling and at

room temperature, respectively, Fu et al. (2005) interpreted

this monoclinic distortion as probably due to twinning. They

also provided four structural refinements in Ibmm at room

temperature and at 4.2 K. Upon heating, Fu et al. (2007)

reported phase changes to tetragonal I4/mcm and thereafter

to Pm3m at approximate temperatures of 573 and 673 K

respectively. Fig. 10(c) is generated from experimental points

calculated from the structural refinements of Fu et al. (2005,

2007). The absence of Pbnm symmetry in BaPbO3 can be

ascribed to the VA /VB ratio remaining above 4.8320 (8) over

the temperature range from 4.2 K to 773 K, this being higher

than the threshold values of 4.81 and 4.824 noted in x3.1.1 for

Ibmm symmetry. This interpretation is supported by the

stabilization of the strontium compound SrPbO3 in Pbnm (Fu

& Ijdo, 1995). The calculated VA /VB value here is significantly

lower, at 4.418 (2).

Despite the absence of a Pbnm phase in BaPbO3, Fig. 10(c)

shows that the Ibmm! I4/mcm transition is also governed by

discontinuous jumps in �B to 1 and �A to less than 1, as in

Figs. 10(a) and 10(b). The approach to the aristotype phase

follows the same principles as noted earlier.

3.1.3. CaTiO3. The mineral perovskite, CaTiO3, has not

been observed in space group Ibmm, although it exists in

Pbnm at room temperature (Sasaki et al., 1987) and at

temperatures up to 1373 K (Liu & Liebermann, 1993).

Redfern (1996) paved out the sequence of phase transitions at

yet higher temperatures through I4/mcm to and Pm�33m aris-

totype, reporting transition temperatures of 1373–1423 K and

at �1523 K. Although Kennedy, Howard & Chakoumakos

(1999) subsequently raised the possibility of an orthorhombic

Cmcm structure being stabilized at around 1380 K, this was

refuted by Ali & Yashima (2005), who later generated the

nineteen structural refinements upon which the experimental

points of Fig. 10(d) are based (Yashima & Ali, 2009). It is

logical that no intermediate phase of symmetry Ibmm is

formed with increasing temperature, since �A remains signif-

icantly below one over the whole Pbnm range. This means that

the degree of AO8 expansion induced thermally is smaller

than the compositionally induced AO8-expansion analysed in

x3.1.1. Stabilization of the Pbnm phase is curtailed by �B

falling to 1 at the Pbnm–I4/mcm boundary. After the
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Figure 11
Simulations of MgSiO3 and YAlO3 in terms of �A and �B. (a) MgSiO3 with
regular octahedra up to p = 125 GPa; (b) comparison of YAlO3 with
regular and distorted octahedra up to p = 8 GPa; (c) Extrapolation of
YAlO3 with regular and distorted octahedra up to p = 52 GPa. Dashed
lines indicate pressures for which structural data are quoted in Table 10.



temperature of this phase transition has been reached, the

overall expansion of the unit cell allows the volumetric

requirements of the TiO6 octahedron to be satisfied without

a� tilting in space group I4=mcm. The remaining tilting allows

further comparatively greater AO8 expansion with increasing

temperature up to the temperature of the phase transition to

Pm�33m.

In all four series upon which Fig. 10 is based, the changes in

tilt systems taking place at the phase transitions, these being

critical events, are largely determined by the systematic

changes in tilt angles taking place over wide compositional or

temperature ranges. Parameters �A and �B are ideally suited

for encapsulating these changes.

3.1.4. NaTaO3 and NaNbO3. These compounds provide an

experimental basis for assembling the factors governing

stabilization of the Cmcm phase, and more widely, the

progression from Pbnm to Pm�33m via Cmcm and P4/mbm

instead of Ibmm and I4/mcm. I4/mcm and P4/mbm structures

are very similar, the only difference being anti-phase or in-

phase c axis tilting, respectively. Furthermore, structural

parameters VA /VB, �A and �B cannot discriminate between

these two structures. It is therefore appropriate to regard

Cmcm and Imma, in the first instance, as alternative precursor

phases to a generic phase of symmetry I4/mcm or P4/mbm.

An analysis of the phases of Cmcm symmetry in terms of

VA /VB, �A and �B within these two compounds is given in

Table 7.

The definitive characteristic of the Cmcm phase is the

proximity of �B values to one in Table 7. This parameter has

much larger values in the Ibmm phase, with �B values greater

than 1.03 observed [see Table 6 and Figs. 10(a), 10(b) and

10(c)]. This difference is due to there being only one tilt of

type a
b
 in Cmcm, compared to two in Ibmm (see xS4 of the

supporting information). Values of �B close to one confirm

Cmcm as a precursor to an I4/mcm or P4/mbm phase, in which

�B is exactly equal to one. The existence of Cmcm symmetry in

CaTiO3 at �1380 K, as proposed by Kennedy, Howard &

Chakoumakos (1999), is indeed possible, since �B is close to

one at this temperature.

Also to be noted in Table 7 is the splitting of �A values made

possible by there being two symmetry-independent A sites in

Cmcm. Geometry simply requires a mean value h�Ai = (�A1 +

�A2)/2 of less than one. This splitting is considerably more

marked in NaNbO3. The ability for the lower �A value to be

significantly less than one could go some way towards ratio-

nalizing the phase coexistence of Pbnm and Cmcm phases at

room temperature observed in NaTaO3 by Knight & Kennedy

(2015). A further contributory factor towards stabilization of

Cmcm in 1 mol% K-doped samples of NaTaO3 at room

temperature (Arulnesan et al., 2016) could be preferential

occupation of the sites with higher �A value by the larger

potassium ions, i.e. a partial ordering.

It is speculated that the proximity of �B to one in Cmcm is

conducive to a to a higher temperature phase transition to

P4/mbm, whereas the sudden fall in �B within Ibmm or Pbnm

phases observed in Figs. 10(a)–10(d) favours a transition to

I4/mcm.

3.2. X-series with B-ion perturbations

Calculated structural parameters for the LaCr1–xNixO3 solid

solution series (Yang, 2008) are given in Table 8.

Unlike the structures perturbed by A ions, the variation in

�A and �B parameters is small and also unsystematic for

structures in space group Pbnm. There is no tendency of either

parameter to approach one. The expected cross-correlations

between parameter pairs �A$ �c and �B$ �a are observed

within the Pbnm phase field: the greater the magnitude of the

deviations of �A and �B from one, the larger the h�ci and h�ai

angles. The �a tilt angle falls to 4.64� and the mean tilt angle

(h�ai + h�ci)/2 to 5.50� in Pbnm just before the phase transi-

tion, with �a rising to 5.97� in the R�33c phase at x = 0.7. A

gradual reduction in �a to 5.72� is observed up to x = 1, this

still being a stable rhombohedral phase far from a transition to

the cubic aristotype. The gradual fall in VB with x is consistent

with the smaller ionic radius of Ni3+ compared to Cr3+

(Shannon, 1976) and is responsible for the systematic increase

in VA /VB with x, which peaks at 4.841 in Pbnm before the

phase transition to R�33c and falls to 4.809 thereafter. The

Pbnm! R�33c transition is examined further in x4.4.

4. Modelling the structural variation of Pbmn
perovskites with increasing pressure

The structures adopted by perovskites under increasing

hydrostatic pressure rest on the different compressibilities of

the AX12 and BX6 polyhedra (Angel et al., 2005), such that the

volume ratio VA /VB may either increase or decrease. In
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Table 8
Structural data relevant to the Pbnm! R�33c transition at x � 0.7 in LaCr1–xNixO3.

Composition ICSD Space group �A �B h�ci (�) h�ai (�) (h�ai + h�ci)/2 (�) VA (Å3) VB (Å3) VA/VB

x = 0 173469 Pbnm 0.9925 (1) 1.0355 (7) 5.02 (3) 8.5 (2) 6.78 (8) 48.38 (1) 10.182 (7) 4.751 (4)
x = 0.3 173471 Pbnm 0.9836 (4) 1.0278 (9) 8.67 (5) 5.4 (2) 7.05 (8) 48.28 (1) 10.178 (9) 4.744 (5)
x = 0.6 173472 Pbnm 0.9900 (1) 1.0301 (8) 6.13 (4) 6.5 (2) 6.32 (10) 48.388 (9) 10.152 (8) 4.766 (5)
x = 0.7 173473 Pbnm 0.9983 (3) 1.0254 (5) 6.36 (3) 4.64 (9) 5.50 (5) 48.204 (9) 9.956 (6) 4.841 (3)
x = 0.7 173474 R�33c 0.9891 (1) 5.97 (3) 47.453 (5) 9.867 (4) 4.809 (2)
x = 0.8 173475 R�33c 0.9893 (2) 5.90 (5) 47.414 (7) 9.850 (5) 4.814 (3)
x = 0.9 173476 R�33c 0.9897 (1) 5.79 (3) 47.29 (1) 9.810 (4) 4.820 (2)
x = 1 173477 R�33c 0.9900 (1) 5.72 (3) 46.778 (3) 9.696 (2) 4.825 (1)



general, experimental difficulties limit the pressure range over

which full structure refinements can be obtained, a common

practice being to report the variation of unit-cell parameters

over a wider pressure range by means of the third-order

Birch–Murnaghan equation of state [equation (7)].

P ¼
3KT

2

h�V0

V

�7=3

�

�V0

V

�5=3in
1þ

3

4

�
K00 � 4

�h�V0

V

�2=3

�1
io

ð7Þ

Here, coefficient KT is the bulk modulus and K00 is its deri-

vative with respect to pressure. V0 represents the reference

unit-cell volume. The appropriate notation to use for the

variation of cell parameters a, b, c with pressure would be Ka0,

K0a0, a0 etc., whereby cubes a3; b3; c3 will have been used for

the Birch–Murnaghan fitting. It is also common to quote linear

compressibilities �a, �b, �c, whereby �a ¼ ð@=@PÞða=a0ÞT, etc.,

these generally holding over a limited pressure range. By

setting K00 values equal to 4, the term in curly brackets is equal

to one, giving rise to the second-order Birch–Murnaghan

equation.

The primary motivation for studying perovskites under

pressure has been to simulate MgSiO3 perovskite in the lower

mantle, for which a phase transition to a post-perovskite phase

at pressures > 125 GPa and a temperature of 2700 K has been

proposed (Murakami et al., 2004). This system is simulated by

assuming regular octahedra in the following sub-section.

4.1. Simulation of MgSiO3 under pressures of up to 125 GPa

It may be assumed that MgSiO3 remains in space group

Pbnm at all pressures up to �125 GPa. Accordingly, the 12

sets of a, b, c unit-cell parameters reported by Vanpeteghem et

al. (2006) at pressures up to 10 GPa were used to derive the

following Birch–Murnaghan constants to second order for the
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Table 10
Crystallographic and structural parameters generated in the simulations of MgSiO3 and YAlO3.

Compound MgSiO3 MgSiO3 YAlO3 YAlO3 YAlO3 YAlO3

Pressure (GPa) 109 125 8 8 31.5 31.5
Octahedra Regular Regular Regular Distorted Regular Distorted
a (Å) 4.3649 4.3278 5.1285 5.1285 5.0308 5.0308
b (Å) 4.5592 4.5263 5.2443 5.2443 5.0751 5.0751
c (Å) 6.3151 6.2628 7.2899 7.2899 7.1349 7.1349
x(O1) 0.1067 0.1083 0.0756 0.0810 0.0470 0.0604
y(O1) 0.4780 0.4775 0.4925 0.4810 0.4965 0.4934
x(O2) 0.6936 0.6933 0.7241 0.7054 0.7309 0.7241
y(O2) 0.3017 0.3019 0.2748 0.2940 0.2687 0.2758
z(O2) 0.0533 0.0542 0.0378 0.0420 0.0235 0.0295

�PC (�) 92.49 92.57 91.28 91.28 90.50 90.50
VA (Å3) 25.439 24.816 40.386 40.127 37.772 37.651
VB (Å3) 5.979 5.855 8.630 8.889 7.769 7.890
VA / VB 4.255 4.239 4.680 4.514 4.862 4.772
�x (�) 16.89 17.05 10.27 13.64 6.88 8.90
�y (�) 16.89 17.05 10.27 13.71 6.88 8.91
�z (�) 16.79 17.03 12.06 13.19 7.58 9.72
h�ci (�) 12.19 12.24 5.79 10.05 4.32 5.90
h�ai (�) 12.05 12.25 8.55 9.48 5.36 6.72
�A 0.9534 0.9529 0.9898 0.9686 0.9943 0.9893
�B 1.0910 1.0939 1.0457 1.0549 1.0177 1.0285
a1 (Å) 3.2981 3.2750 3.7272 3.7845 3.5989 3.6193
a2 (Å) 3.2981 3.2750 3.7272 3.7647 3.5989 3.6138
a3 (Å) 3.2981 3.2750 3.7272 3.7437 3.5989 3.6194
�23 (�) 90 90 90 90.61 90 89.85
�31 (�) 90 90 90 89.46 90 89.75
�12 (�) 90 90 90 89.69 90 89.71
�PC 0 0 0 0.0037 0 0.0007
�PC 0 0 0 0.012 0 0.004

Table 9
Validation of Birch–Murnaghan (B-M) constants for use at pressures of up to to �125 GPa†.

Method/calculation type p (GPa) a (Å) b (Å) c (Å) Vuc (Å3)

Murakami XRD 109 4.325 4.579 6.308 124.9
Murakami MD 109 4.403 4.574 6.410 129.1
Extrapolated B-M 109 4.365 4.559 6.315 125.7
Fiquet synchrotron XRD 40.66 – – – 143.26
Extrapolated B-M 40.71 4.571 4.743 6.606 143.22

† Vuc: unit-cell volume.



unit-cell volume and a and c unit-cell parameters: KT =

252.90 GPa; V0 = 162.52 Å3; KT;a = 232.11 GPa; V0;a =

109.08 Å3; KT;c = 240.78 GPa; V0;c = 328.33 Å3.

The assumption was made that these constants could

extended to 125 GPa, thereby yielding theoretical a, b and c

unit-cell parameters over this whole range. This process was

validated by comparing the values obtained

(‘Extrapolated B-M’) with values quoted by Murakami et al.

(2004) and Fiquet et al. (2000). Acceptable agreement is found

in Table 9.

200 equally spaced pressures were taken within the range

up to 125 GPa and a, b, c values calculated from the above

Birch–Murnaghan constants. Values of x(O1), y(O1), x(O2),

y(O2) and z(O2) were allowed to vary within the core Excel

Solver functionality for space group Pbnm (Fig. 7), so as to

generate regular octahedra. The resulting variation of para-

meters �A and �B with pressure is shown in Fig. 11(a).

Parameter �A decreases from 0.9576 at 0 GPa to 0.9529 at

125 GPa, which indicates an increase in cþ tilting. By

comparison, �B increases from 1.0649 at 0 GPa to 1.0939 at

125 GPa, indicating an increase in a� tilting. The effect of

pressure is to drive the structure ever further into the Pbnm

phase field. It is likely that the imminent phase transition to

post-perovskite at 125 GPa is triggered by the strong O� � �O

repulsions that will be associated with this degree of octahe-

dral tilting.

4.2. Simulation of YAlO3 at pressures up to 52 GPa

Ross et al. (2004) elucidated the response of the perovskite

compound YAlO3 at pressures up to 8 GPa by providing eight

structural refinements of a synthetic single crystal. A decrease

in octahedral tilting with pressure was found, which was

ascribed to the AlO6 octahedral compressibility being greater

than that of the YO12 site. It follows that an approach towards

cubic symmetry will occur, similar to the T-series with A ion

perturbation in x3.1. The Birch–Murnaghan constants to third

order quoted by Ross et al. (2004) were used to generate unit-

cell parameters at different pressures, as in x4.1. Two alter-

native simulations were carried out for pressures up to 8 GPa,

the first assuming regular octahedra as in x4.1, and the second

exploiting the octahedral distortions reported by Ross et al.

(2004) from an analysis of their structural refinements. For this

purpose, the linear, decreasing trends in the three different

Al—O bond lengths with increasing pressure observed by

them were translated into linear relationships for PCRO

parameters a1 to a3. In addition, linear relationships for PCRO

angle parameters �23, �31 and �12 were derived [equations (8)].

a1 ðÅÞ ¼ 3:8421� 0:007137 ½pðGPaÞ�

a2 ðÅÞ ¼ 3:8161� 0:006407 ½pðGPaÞ�

a3 ðÅÞ ¼ 3:7915� 0:005836 ½pðGPaÞ�

�23 ð
�
Þ ¼ 90:893� 0:034905 ½pðGPaÞ�

�31 ð
�
Þ ¼ 89:382þ 0:010050 ½pðGPaÞ�

�12 ð
�
Þ ¼ 89:878� 0:019462 ½pðGPaÞ�

ð8Þ

Solver-based refinements in Pbnm were carried out at equally

spaced pressure values, the spacing determined by covering

the pressure range from 0 to 60 GPa with 200 values. Para-

meters x(O1), y(O1), x(O2), y(O2) and z(O2) were allowed to

vary in refinements with end-point determined by the

minimum deviation from conditions (8). The deviation was

observed to range between 0.001 and 0.050%.

The results of both simulations are shown in Fig. 11(b) and

in that part of Fig. 11(c) with the blue-shaded background. The

slope of both �B curves is negative, compared to the positive

slope of �B for MgSiO3. The slope of �A for the simulation with

regular octahedra is positive, compared to the negative slope

for MgSiO3. The opposite behaviour to MgSiO3 is shown by

YAlO3, which shows a gradual progression away from Pbnm

towards higher symmetry. The curve for �A for distorted

octahedra has a shallow minimum at �3.4 GPa, which is more

clearly seen in Fig. 11(c). Thereafter �A rises, as for undis-

torted octahedra.
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Table 11
Structural parameters for (La1–xNdx)GaO3 in space groups Pbnm and R�33c.

x Space group p (GPa) ICSD �A �B h�ci (�) h�ai (�) (h�ai + h�ci)/2 (�) VA (Å3) VA (Å3) VA / VB

0 Pbnm 0.0001 160233 0.9926 (2) 1.0406 (7) 4.90 (8) 8.5 (1) 6.69 (7) 48.653 (8) 10.299 (8) 4.724 (4)
Pbnm 2.038 (10) 160235 0.9939 (2) 1.0382 (7) 4.46 (7) 8.3 (1) 6.39 (7) 48.136 (7) 10.146 (7) 4.744 (4)
R�33c 2.356 (7) 160265 0.9868 (3) 6.56 (7) 48.024 (9) 10.066 (8) 4.771 (5)
R�33c 8.127 (23) 160270 0.9872 (3) 6.45 (7) 46.745 (8) 9.782 (8) 4.779 (4)

0.06 Pbnm 0.0001 160236 0.9902 (4) 1.044 (2) 5.7 (1) 9.1 (3) 7.4 (1) 48.50 (2) 10.33 (2) 4.693 (9)
Pbnm 5.30 (5) 160240 0.9947 (4) 1.042 (2) 4.2 (2) 9.1 (3) 6.6 (2) 47.18 (2) 9.98 (2) 4.73 (1)

0.12 Pbnm 0.0001 160241 0.9907 (4) 1.040 (1) 5.5 (1) 8.5 (2) 7.0 (1) 48.55 (1) 10.29 (1) 4.716 (7)
Pbnm 6.437 (7) 160243 0.9939 (3) 1.039 (1) 4.4 (1) 8.5 (2) 6.5 (1) 46.96 (1) 9.91 (1) 4.741 (6)
R�33c 8.020 (2) 160271 0.9875 (5) 6.4 (1) 46.65 (2) 9.75 (1) 4.783 (9)
R�33c 9.496 (13) 160272 0.9872 (4) 6.46 (9) 46.37 (1) 9.71 (1) 4.778 (6)

0.20 Pbnm 0.0001 160244 0.9884 (4) 1.0425 (7) 6.2 (1) 8.7 (1) 7.45 (7) 48.404 (9) 10.323 (8) 4.689 (5)
Pbnm 8.671 (7) 160248 0.9931 (3) 1.042 (1) 4.7 (1) 8.8 (2) 6.79 (9) 46.38 (1) 9.83 (1) 4.720 (6)

0.62 Pbnm 0.0001 160250 0.9807 (5) 1.049 (1) 7.9 (1) 9.1 (1) 8.52 (8) 47.72 (1) 10.35 (1) 4.611 (6)
Pbnm 9.432 160256 0.9842 (7) 1.046 (1) 7.2 (2) 8.9 (2) 8.0 (1) 45.60 (1) 9.81 (1) 4.648 (7)

1.00 Pbnm 0.0001 160257 0.9749 (5) 1.0537 (9) 9.00 (9) 9.6 (1) 9.28 (8) 47.18 (1) 10.36 (1) 4.555 (6)
Pbnm 8.292 (9) 160264 0.9762 (4) 1.0514 (8) 8.78 (7) 9.4 (1) 9.11 (7) 45.324 (9) 9.909 (9) 4.574 (5)

4 Values of KT and V0 are in good agreement with the values quoted by
Vanpeteghem et al. (2006): 253 (1) GPa and 162.51 (2) Å3.



In a computational experiment, the pressure was allowed to

rise towards 60 GPa, with unit-cell constants calculated from

the Birch–Murnaghan constants of Ross et al. (2004) for the

pressure range up to 8 GPa. Fig. 11(c) shows that the curva-

ture of both pairs of curves changes sign as the octahedra

change from regular to distorted. Since the constraints in

equations (8) only apply up to 8 GPa, it became increasingly

difficult to reach low deviations at the end-points of the

refinements. The maximum deviation amounted to 1.08%,

which was obtained at the highest pressure.

The ascending curve for �A with distorted octahedra in

Fig. 11(c) reaches zero at a pressure of �41.5 GPa. This would

be consistent with a phase transition to Ibmm [cf. Figs. 10(a)

and 10(b)]. By comparison, the �B curve is the first to reach

zero in the simulation with regular octahedra. The corre-

sponding pressure is�51.6 GPa. This would be consistent with

a phase transition to I4/mcm or P4/mbm [cf. Fig. 10(d)]. The

asymptotic approach of the �B curve to 1 for regular octahedra

gives rise to a broad pressure range in which Cmcm could be

stabilized as well as Pbnm prior to this phase transition. This

phenomenon has been observed in NaTaO3 by Knight &

Kennedy (2015) over a broad temperature range, as discussed

in x3.1.4. Assuming pattern similarity, a phase change to

P4/mbm would be anticipated at 51.6 GPa. More generally,

the simulations of YAlO3, both with and without octahedral

distortion, indicate how this distortion is expected to have a

direct effect on the sequence of phase transitions and the

pressures at which they occur.

In summary, the analysis of (p–T–X)-induced phase tran-

sitions in terms of �A and �B parameters is a stimulus to

further, targeted experimental work on the systems that have

been analysed and simulated in x3.1, x4.1 and x4.2.
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Table 12
Structural parameters for eleven structural refinements of Ardit et al. (2017) on YAl0.25Cr0.75O3.

p (GPa) �A �B h�ci (�) (x2.3) h�ai (�) (x2.3) h�ci (�) (Ardit) h�ai (�) (Ardit) VA (Å3) VB (Å3) VA/VB

0.05 (5) 0.9557 (9) 1.082 (1) 11.9 (1) 11.7 (2) 12.0 (5) 16.6 (5) 43.52 (2) 10.10 (2) 4.309 (8)
1.44 (9) 0.9604 (4) 1.0868 (7) 11.24 (6) 12.32 (9) 12.7 (5) 16.6 (5) 43.238 (9) 10.030 (8) 4.311 (4)
3.32 (9) 0.9609 (5) 1.0862 (7) 11.18 (7) 12.32 (9) 12.7 (5) 16.5 (5) 42.892 (9) 9.938 (8) 4.316 (4)
4.93 (7) 0.9603 (5) 1.0871 (7) 11.25 (7) 12.36 (9) 12.8 (5) 16.6 (5) 42.561 (9) 9.878 (8) 4.309 (4)
6.36 (8) 0.9630 (5) 1.0890 (7) 10.88 (7) 12.67 (9) 13.1 (5) 16.5 (5) 42.321 (9) 9.812 (8) 4.313 (4)
8.48 (9) 0.9630 (5) 1.0890 (8) 10.88 (7) 12.67 (9) 13.1 (5) 16.6 (5) 41.954 (9) 9.727 (8) 4.313 (5)
10.54 (9) 0.9635 (6) 1.090 (1) 10.81 (9) 12.8 (1) 13.2 (5) 16.6 (5) 41.60 (1) 9.65 (1) 4.312 (6)
12.34 (7) 0.9580 (6) 1.086 (1) 11.57 (8) 12.2 (1) 12.6 (5) 16.5 (5) 41.28 (1) 9.59 (1) 4.303 (6)
14.40 (9) 0.9569 (8) 1.085 (1) 11.7 (1) 12.1 (2) 12.4 (5) 16.6 (5) 40.97 (1) 9.52 (1) 4.302 (7)
16.45 (9) 0.956 (1) 1.084 (2) 11.9 (2) 12.0 (2) 12.4 (5) 16.5 (5) 40.65 (2) 9.45 (2) 4.30 (1)
18.86 (9) 0.959 (2) 1.087 (3) 11.4 (3) 12.6 (3) 13.0 (5) 16.5 (5) 40.30 (3) 9.36 (3) 4.30 (2)

Table 13
Summary of innovations in the current work.

Innovation Benefits

Quantification of distortion of centro-
symmetric octahedra via PCRO.

(a) Direct, concise visualization of octahedral distortion.
(b) Variation of PCRO parameters rooted in space group symmetry.
(c) New possibilities for simulating perovskite structures at extrapolated (p–T–X) conditions.
(d) Many more visualizable structural parameters cf. Thomas (1998).
(e) Upgradable to non-centrosymmetric octahedra, and so applicable to all perovskites and more widely to all

crystal structures containing octahedra.
(f) Provides summary distortion parameters � and �.

Generalized algorithms for calculating tilt
angles [�a, �b] and �c.

(a) Extension to space groups Cmcm, P42/nmc and R�33c not previously covered by analytical approximations.
(b) Ability to calculate tilt angles in structures with distorted octahedra without approximation.

Structural parameters �A and �B. (a) �A emphasizes the importance of AX8 inner polyhedra and focuses on octahedral tilting around the z (3) axis.
(b) �B focuses on tilting around the x (1) and y (2) axes.
(c) Tracking structural evolution via �A and �B allows phase transitions between Pbnm and Ibmm, Cmcm, I4/mcm

or P4/mbm to be rationalized and anticipated.
(d) Improved integration with the tilt classification of Glazer (1972), and, by implication, group-theoretical

methods.

Implementation in Excel Solver software
environment.

(a) Reversibility of transformation between crystallographic and structural parameters.
(b) The Excel file in the supporting information is a useful resource for calculating tilt angles and other parameters,

as well as for refining crystallographic parameters under structural constraints.
(c) Upgradable to other programming languages (Frontline Systems Inc., 2021).

Simulation of structural development at
increasing pressure.

The assumption of regular or idealized distorted octahedra allows the prediction of crystal structure and
associated parameters, e.g. �A, �B from unit-cell parameters alone. The potential for modelling structures and
phase transitions at high pressure is thereby increased.



4.3. Crystal structures generated in the high-pressure
simulations

A by-product of the simulations in x3.1 is the generation of

full sets of oxygen ion coordinates. Table 10 contains these

data corresponding to the conditions denoted by dashed lines

in Figs. 11(a) and 11(c). The space group is Pbmn with the B

ions in 4b positions. The full set of associated structural

parameters is also quoted below the line in the table.

In all cases, the effect of increasing pressure is to reduce VA

and VB. However, the ratio VA /VB is reduced in MgSiO3 and

increased in YAlO3. This signifies movement further into the

Pbnm phase field in the former case [Fig. 11(a)] and move-

ment away towards higher symmetry in the latter [Fig. 11(c)].

This is borne out by the changes in inclination angles �x, �x, �x,

tilt angles �a, �c and tilt-related parameters �A, �B.

4.4. Analysis of (La1–xNdx)GaO3 structures at pressures of up
to 12 GPa

Apart from the above simulations, the structural parameters

used in this work are applied to the structural refinements of

Angel et al. (2007) for this 3:3 perovskite solid solution. In

carrying out A-ion substitutional perturbations, it was found

that a phase transition from Pbnm to R�33c takes place under

pressure for x values up to 0.20, but not for x = 0.62 or x = 1.

The question arises as to whether a particular pattern of

structural evolution within the Pbnm phase is associated with

a phase transition to R�33c. Data for the Pbmn and R�33c phases

at their lowest and highest investigated pressures for a given x

value are given in Table 11.

The direct influence of the A-ion perturbations is seen in

the values of VA, which decrease downwards in the table with

increasing x for the p = 0.0001 GPa values. Since VB remains

approximately constant, a parallel trend of decreasing VA /VB

ratio with increasing x is generally observed. This is consistent

with greater stabilization within the Pbnm phase field. Pres-

sure induces the opposite trend to raising x, since the VA /VB

ratios for maximum pressures within the Pbnm phase field are

uniformly higher than at atmospheric pressure. A parallel

increase in �A and decrease in �B is observed. At lower x

values up to 0.20, which are associated with reduced Pbnm

stabilization, the increased pressure induces a phase transition

to R�33c. Angel et al. (2007) report the following approximate

pressures for this phase transition: x = 0: 2.2 GPa; x = 0.06:

5.5 GPa; x = 0.12: 7.8 GPa; x = 0.20: 12 GPa. The expected

cross-correlations between parameter pairs �A$ �c and �B$

�a are observed within the Pbnm phase field: the greater the

magnitude of the deviations of �A and �B from one, the larger

the h�ci and h�ai angles. It is proposed that the observed fall in

h�ci to �4.2–4.4� with increasing pressure is the principal

driving force for the phase transitions to R�33c. After the

transitions for x = 0 and x = 0.12, i.e. within the R�33c phase field,

the �a tilt angle is larger and approximately equal to the mean

tilt angle (h�ai + h�ci)/2 in the Pbnm field beforehand. For x =

0.62 and x = 1.00, the critical range of �c between 4.2 and 4.4�

is not reached at the pressures investigated, so that these

compounds remain stabilized in space group Pbnm.

4.5. Structural parameters for YAl0.25Cr0.75O3 with locked
octahedral tilting

Ardit et al. (2017) subsequently took up the theme of locked

octahedral tilting in orthorhombic 3:3 perovskites (A ion +3; B

ion +3) by reference to the solid solution YAl0.25Cr0.75O3 in

space group Pbnm. Although in general agreement with Zhao

et al. (2004) and Angel et al. (2005) in assuming compressibility

ratios �(AO12)/�(BO6) < 1 for a 3:3 perovskite and > 1 for a

2:4 perovskite, their compound showed a compressibility ratio

approximately equal to one (Table 12).

In spite of consistently falling VA and VB values with

increasing pressure, the VA /VB ratio remains approximately

constant, as do parameters �A, �B, h�ci and h�ai. Discrepancies

are observed between the values of the tilt angles calculated

according to x2.3 and the values quoted by Ardit et al. (2017)

without declaring the method of calculation. This is not

unexpected, as discussed in x2.4. Since values of h�ci and h�ai

calculated according to x2.3 show the expected cross-correla-

tions between parameter pairs �A$�c and �B$�a, indirect

support is given for the correctness of these calculations.

5. Discussion

The ability of the method to analyse experimental structural

data and the sequences of phase transitions between space

groups has been demonstrated in x3 and x4. By comparison

with the group-theoretical approach, it has not been necessary

to relate these explicitly to the cubic aristotype, since devia-

tions of VA /VB from the limiting value of 5 in the aristotype

provide a direct indication of how far away a given structure is

from the aristotype. Parameters VA, VB and VA /VB continue to

yield valuable insight, for example in Table 11. However, the

direct calculation of Glazer tilt angles �c and [�a, �b] and

associated derived parameters �A and �B has allowed a deeper

analysis of the structural factors leading to phase transitions

than a consideration of these volumes alone. The significance

of the generalized algorithms introduced here for the Glazer

tilt angles may be assessed by reference to Wang & Angel

(2011): ‘ . . . the decomposition of a perovskite structure

including tilted and distorted octahedra by geometric analysis

does not result in an unambiguous definition of the Glazer

(1972) tilts and the problem is more acute in perovskites with

lower space-group symmetries’. These authors noted further

that ‘unambiguous expressions for both the Glazer tilts and

their relationship to the VA /VB ratio are still to be determined

explicitly for each space group, and in a general form’. These

observations led Wang & Angel (2011) to resort to group-

theoretical methods in order to relate the amplitudes of

symmetry-adapted modes to VA /VB ratio. The current work,

by comparison, has remained strictly based on unit-cell

parameters and atomic coordinates. Although it has not

provided generalized analytical expressions for these tilt

angles, it has led to two generalized algorithms (a) for all

centrosymmetric space groups apart from R�33c and (b) for

space group R�33c (and more generally, triclinic space groups).

An analytical link between �c, [�a, �b] and VA /VB has not
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been provided, since inclination angles �1 to �3 are more

suitable for this purpose [equation (1)]. However, the linked-

cell implementation within Excel allows the empirical deri-

vation of numerical relationships between Glazer tilt angles

and VA /VB.

The methodological innovations of the current work and

their benefits are summarized in Table 13.

The question of the relative stability of alternative perovs-

kite phases has been addressed by several workers employing

quantum-mechanical methods (Zagorac et al., 2014) as well as

the semi-empirical bond-valence method. Woodward (1997b)

initiated this discussion by evaluating the ionic and covalent

bonding in perovskites and analysing the conditions of stabi-

lization of favoured tilt systems a�a�cþ, a�a�a� and a0a0a0. In

later work (Lufaso & Woodward, 2001), an algorithm was

developed to minimize the so-called global instability index

(GII) in alternative tilt systems, this being the r.m.s. deviation

between calculated bond valences and ideal cationic valences.

The bond-valence method was also the favoured approach of

Zhao et al. (2004) in rationalizing the relative compressibilities

of the AO12 and BO6 polyhedra in perovskites. It led to a clear

differentiation in behaviour between 2:4 and 3:3 perovskites,

which has remained a feature of experimentally led investi-

gations of perovskites under pressure, for example by Ardit et

al. (2017).

The potential of direct transformation of crystallographic

data into structural parameters for the analysis of sequences of

phase transitions has been demonstrated in this work. The set

of structural parameters has been extended and a baseline

provided for future investigations of non-centrosymmetric

perovskites. The intention is to promote more detailed inter-

action between experimental crystallography and modelling in

developing new materials by atomic and molecular design.

6. Related literature

The following references are cited in the supporting infor-

mation: Hahn (1995), Williams (1971).
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Mater. Sci. Forum, 378–381, 511–516.
Jena, A. K., Kulkarni, A. & Miyasaka, T. (2019). Chem. Rev. 119,

3036–3103.
Kennedy, B. J., Howard, C. J. & Chakoumakos, B. C. (1999). J. Phys.

Condens. Matter, 11, 1479–1488.
Kennedy, B. J., Howard, C. J., Thorogood, G. J. & Hester, J. R. (2001).

J. Solid State Chem. 161, 106–112.
Kennedy, B. J., Hunter, B. A. & Hester, J. R. (2002). Phys. Rev. B, 65,

224103-1.
Kennedy, B. J., Prodjosantoso, A. K. & Howard, C. J. (1999). J. Phys.

Condens. Matter, 11, 6319–6327.
Kennedy, B. J., Yamaura, K. & Takayama-Muromachi, E. (2004). J.

Phys. Chem. Solids, 65, 1065–1069.
Knight, K. S. (2009). Can. Mineral. 47, 381–400.
Knight, K. S. & Kennedy, B. J. (2015). Solid State Sci. 43, 15–21.
Li, L., Kennedy, B. J., Kubota, Y., Kato, K. & Garrett, R. F. (2004). J.

Mater. Chem. 14, 263–273.
Liu, X. & Liebermann, R. C. (1993). Phys. Chem. Miner. 20, 171–175.
Lufaso, M. W. & Woodward, P. M. (2001). Acta Cryst. B57, 725–738.
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