
research papers

Acta Cryst. (2022). B78, 247–252 https://doi.org/10.1107/S205252062200227X 247

Received 14 November 2021

Accepted 26 February 2022

Edited by M. de Boissieu, SIMaP, France

Keywords: quasicrystal; approximant; high-

dimensional crystal; oxide; thin film.

A four-dimensional model for the Ba–Ti–O
dodecagonal quasicrystal

Tsunetomo Yamada*

Faculty of Science, Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo

125-8585, Japan. *Correspondence e-mail: tsunetomo.yamada@rs.tus.ac.jp

A four-dimensional (4D) model is presented of the first oxide dodecagonal

quasicrystal found in a Ba–Ti–O ultra-thin film on a Pt(111) single-crystal

substrate. The 4D model, with a 4D dodecagonal lattice constant ad = 8.39 Å,

was derived by considering a tile decoration model of dodecagonal Niizeki–

Gähler tiling composed of squares, triangles and 30� rhombuses. The model

consists of four kinds of occupation domain, and 4D positional vectors defining

the shape of each occupation domain are given. Moreover, the atomic

arrangement of two Ba–Ti–O periodic approximants, the sigma-phase approxi-

mant and a 25.6 Å approximant were derived from the 4D model by the

introduction of linear phason strains.

1. Introduction

Quasicrystals (QCs) are long-range-ordered solids that exhibit

self-similar diffraction patterns incompatible with transla-

tional symmetry (Shechtman et al., 1984; Levine & Steinhardt,

1984). The first dodecagonal quasicrystal (DDQC) was found

in small particles of an Ni–Cr alloy (Ishimasa et al., 1985).

DDQCs have since been observed not only in alloys but also

in various systems, including liquid crystals, cylindrical poly-

mers, colloids and nanoparticles [see, for example, Ishimasa

(2011), Dotera (2011), and references therein].

The first oxide QC was reported recently by Förster et al.

(2013) in a Ba–Ti–O ultra-thin film on a Pt(111) single-crystal

substrate. The oxide QC was identified as a DDQC by

observation of a 12-fold pattern in low-energy electron

diffraction (LEED) images. In addition, the arrangement of

protrusions observed in scanning tunneling microscopy (STM)

images corresponds to dodecagonal Niizeki–Gähler tiling

(NGT), which is composed of three tiles, i.e. a triangle, square

and 30� rhombus (hereafter rhombus) (Niizeki & Mitani,

1987; Gähler, 1988), with an edge length of 6.85 Å. Atomic

positions determined based on the STM images were statically

analyzed and compared with the NGT by Schenk et al.

(2019b). A second DDQC was more recently observed in an

Sr–Ti–O ultra-thin film on a Pt(111) substrate (Schenk et al.,

2017). The oxide DDQCs form on a periodic threefold sub-

strate; therefore, the formation and propagation mechanism of

the quasiperiodic long-range order are of significant interest.

However, knowledge of the atomic structure of the DDQCs is

crucial to understand the mechanism.

A tile decoration model of the Ba–Ti–O DDQC was

proposed and investigated in detail by Cockayne et al. (2016).

This model consists of three decorated tiles in the NGT, which

leads to a stoichiometry of Ba0.37TiO1.55. The stability of the

atomic structure was also investigated with hypothetical

approximants (APs) to the DDQC using density functional
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theory (DFT) calculations, where the DFT-relaxed structures

retained the ideal tile geometries. In addition, a simulated

STM image based on the relaxed atomic structure of a

hypothetical AP reproduced the experimental image, which

indicates that the protrusions observed in the STM images are

Ba atoms.

In higher-dimensional descriptions of DDQCs, the quasi-

periodic atomic structure can be obtained as a three-dimen-

sional (3D) section of a five-dimensional (5D) periodic

structure that consists of so-called occupation domains (ODs).

The OD has a two-dimensional (2D) shape defined in the 2D

complementary space called the perpendicular space E?,

which is perpendicular to the 3D real space, called the parallel

space, Ek [see, for example, Yamamoto (1996), Janssen et al.

(2007) and Steurer & Deloudi (2009)]. The 5D structure has

two lattice constants, ad and c, and the atomic structure has a

period along the c axis. The first 5D model was derived for a

stable Ta–Te DDQC, which consists of fractal ODs (Yama-

moto, 2004). The Ba–Ti–O DDQC was formed with mono-

layer thickness (Zollner et al., 2020a); therefore, we regard its

atomic structure as a 2D structure. In such a case, the atomic

structure is obtained as a 2D section of a four-dimensional

(4D) structure in a 4D subspace orthogonal to the c axis. The

higher-dimensional description allows atomic coordinates in

the QC structure to be described with finite structural para-

meters, including 4D coordinates of the ODs and atomic

displacement parameters in Ek and E?; therefore, the con-

struction of the 4D model is crucial to analyze the atomic

structure of DDQCs. Here, we derive a 4D model for the Ba–

Ti–O DDQC based on the tile decoration model of Cockayne

et al. (2016).

2. A simple layer of Niizeki–Gähler tiling

In this section, we briefly describe a simple 4D model which

places atoms at face-centre positions of the NGT (Gähler,

1988). The coordinate system used in this study is based on

that described in the literature (Yamamoto, 1996). The unit

vectors of the 4D dodecagonal lattice di (i = 1,2,3,4) are

written using unit vectors in 2D Ek, a1, a2, and 2D E?, a4, a5, as

di ¼
X4

j¼1

Qijaj ð1Þ

with

Qij ¼
2ad

61=2

c�1 s�1 c�5 s�5

c0 s0 c0 s0

c3 s3 c15 s15

c4 s4 c20 s20

2
664

3
775; ð2Þ

where ad is the lattice constant of the 4D dodecagonal lattice,

and cn and sn are cosðn�=6Þ and sinðn�=6Þ, respectively. The

projection of the di onto Ek and E? is shown in Fig. 1. A 4D

positional vector x = (x,y,z,u) is represented by using the di,

and the perpendicular-space component of the x is repre-

sented by subscript ? (the parallel-space component is

represented by the subscript k). The coordinates in Ek and E?

are given by ~QQkX and ~QQ?X , respectively, where ~QQk and ~QQ?
are the upper and lower 2� 4 part of the transposed matrix of

Q in equation (2), respectively, and X is a transposed matrix of

(x,y,z,u).

Hereafter, we consider the 4D model with a lattice constant

of the 4D dodecagonal lattice ad equal to 8.39 Å. This lattice

constant corresponds to the edge length of the tile elements

given by 2ad/61/2, which is equal to 6.85 Å and corresponds to

the observed edge length in the STM images of the Ba–Ti–O

DQC (Förster et al., 2013).

The vertex positions of the NGT are obtained from an OD

that is denoted as Ca in the literature (Gähler, 1988). The

shape of Ca is shown in Fig. 1(b). Ca is situated at the vertex

position of the 4D dodecagonal lattice with site symmetry

12mm, provided that a plane group of the resulting tiling of

p12mm is assumed. The asymmetric part of Ca is defined as a

triangle where the vertices are represented by 4D positional

vectors (0, 0, 0, 0), (�31/2, 31/2, 0, 0)?/3 and (0, 1, 0, 0)? in a unit

of 2ad/61/2.

Fig. 2 shows a simple representation of the NGT at the

vertex, edge-centre and face-centre positions. The OD in

Fig. 2(a) generates the vertices of the tiling, which corresponds

to Ca. Ca is subdivided into four parts which are assigned to a1,

a2, a3 and a4, so that they distinguish four local configurations

present in the tiling, as shown in Fig. 2(f). They distinguish the

vertex positions as following; (1) a vertex position derived by

OD a1 shares five triangles and two rhombuses; (2) a vertex

position by OD a2 shares four triangles, one square and one

rhombus; (3) a vertex position by OD a3 shares three triangles

and two squares; and (4) a vertex position by OD a4 shares

two triangles, one square and one rhombus. The areas of the

asymmetric part of ODs a1–4 are [9 � 5(3)1/2]/36, [7(3)1/2
�

12]/18, [21 � 11(3)1/2]/36 and [2(3)1/2
� 3]/18; therefore, the

frequencies of each local environment are determined as

approximately 9.81, 7.18, 56.22 and 26.79%, respectively. Here,

the area of each OD is divided by ad
2.

The ODs in Figs. 2(b)–2(e) generate the edge-centre and

face-centre of each triangle, the face-centre of each square and

the face-centre of each rhombus, respectively. The OD in

Fig. 2(c) is subdivided into three parts, which are assigned to

c1, c2 and c3 so that they distinguish three local configurations
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Figure 1
Projection of the unit vectors of the 4D dodecagonal lattice, di (i =
1,2,3,4), onto (a) Ek and (b) E?. The grey area represents the OD for
NGT, i.e. Ca in the literature (Gähler, 1988).



present in the tiling, as shown in Fig. 2(g). They distinguish the

triangles as following; (1) a triangle with a face-centre position

derived by OD c1 shares no edge with other triangles; (2) a

triangle with a face-centre position derived by OD c2 shares

one edge with another triangle; and (3) a triangle with a face-

centre position derived by OD c3 shares two edges with two

other triangles. The areas of the asymmetric part of ODs c1, c2

and c3 are [9 � 5(3)1/2]/36, [2(3)1/2
� 3]/6 and [9 � 5(3)1/2]/36;

therefore, the frequencies of each triangle are determined as

approximately 9.81, 80.38 and 9.81%, respectively. Here, the

area of each OD is divided by ad
2. The positions derived from

the ODs in Figs. 2(a)–(d) are represented by the same colour

in Fig. 2(h), and the Wyckoff positions, site symmetry, coor-

dinates and ODs are summarized in Table 1, based on the

Wyckoff positions of 5D dodecagonal space groups (Yama-

moto, 2021). The 4D positional vectors that define the asym-

metric part of ODs a–e are listed in Table 2. The ODs a–e can

be derived from their asymmetric parts by applying the

symmetry operations of their respective site-symmetry group.

3. 4D model of Ba–Ti–O DDQC

To derive a 4D model of the Ba–Ti–O DDQC, we take into

account the tile model proposed by Cockayne et al. (2016), as

shown in Fig. 3(a). The model has the following features. First,

the Ba atoms are situated at each vertex position. Second, the

Ti atoms are located at the face-centres of each triangle, four

positions in each square and two positions in each rhombus.

Third, the O atoms are located at four positions in each square

and two positions in each rhombus. The O atoms are located at

three positions of each triangle; however, the position is

dependent on the local environment of the triangle. When two

triangles are neighbouring and sharing an edge, the O-atom

positions near the edge in each triangle merge into one at a

position close to the sharing edge (Cockayne et al., 2016).

Considering the tile model, the 4D model is constructed

using the ODs presented in Fig. 2. First, the vertex position

occupied by Ba is generated from the OD in Fig. 2(a) at

(0,0,0,0), and the face centre of each triangle occupied by Ti is

generated from the OD in Fig. 2(d) at (0,2,0,1)/3 and its

equivalent positions (6a). Second, the two positions occupied

by Ti and the other two positions by O in each rhombus are

generated from the OD in Fig. 2(e). To generate these posi-

tions, the OD must be shifted from (1,0,0,1)/2 by

�(x1,0,0,�u1)k for Ti and by �(x2,0,0,�u2)k for O along Ek.

Third, the four positions occupied by Ti in each square are

generated from the OD in Fig. 2(d). This OD must be shifted

from (0,1,1,0)/2 by�(0,y3,0,0)k and by�(0,0,z3,0)k to generate

the four positions. Similarly, another four positions occupied

by O in each square are obtained by shifting the OD in

Fig. 2(d) by�(0,y4,z4,0)k and by�(0,y4,�z4,0)k from (0,1,1,0)/2.

The positions occupied by O in each triangle are generated

from either OD c1, c2 or c3 in Fig. 2(c) shifted from (0,2,0,1)/3.

The shifts of OD c1 are�(0,y5,0,u5)k, (0,y6,0,u6)k and (0,�y7,0,u7)k,

those of OD c2 are �(0,1,0,2)k=6, (0,y6,0,u6)k and (0,�y7,0,u7)k,
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Figure 2
NGT with edge-centre and face-centre atoms. The ODs of the (a) vertex,
(b) edge-centre, (c) face-centre of a triangle, (d) face-centre of a square
and (e) face-centre of a rhombus. The divisions assigned by 1–4 in part (a)
generate vertices in the same local configuration in part (f), and the
divisions assigned by 1–3 in part (c) generate triangles in the same local
configuration in part (g). The rates in parts (f) and (g) are the frequencies
of each local configuration. The positions derived from the ODs in parts
(a)–(d) are represented by the same colour in part (h).

Table 1
Atomic positions of the 4D model for the simple NGT in Fig. 2, with the
Wyckoff positions (W. S.), site symmetry and coordinates, and the OD in
Fig. 2 is listed in the fourth column.

W. S. Site symmetry Coordinates OD

1a 12mm (0,0,0,0) a
6a mm2 (0,1,0,0)/2 b
4b 3m (0,2,0,1)/3 c
3a mm4 (0,1,1,0)/2 d
6b mm2 (1,0,0,1)/2 e



and those of OD c3 are (0, 2, 0, 1)/3 by �(0, 1, 0, 2)k=6, (0, 2, 0,

1)k=6 and (0,�y7, 0, u7)k. The coordinates of the ODs in the 4D

model are summarized in Table 3.

The positions obtained by OD c2 and c3 shifted by�(0, 1, 0,

2)k=6 are generated at the edge centre of the triangle at (0, 1,

0, 0)/2 + (0, 1, 0, 2)?=6 because (0, 1, 0, 2)k=6 is equivalent to

(0, 1, 0, 2)/6 � (0, 1, 0, 2)?=6. Similarly, the positions obtained

by OD c3 shifted by (0, 2, 0, 1)k=6 are generated on the edge-

centre of the triangle at (0, 2, 0, 1)/2 � (0, 2, 0, 1)?=6.

Therefore, these positions should be half-occupied by O with

an occupation probability of 1/2. When the occupational

probability of the other sites is 1, the 4D model leads to a

Ba:Ti:O ratio of 2(3)1/2:6 + 2(3)1/2:6 + 5(3)1/2, which is in good

agreement with the stoichiometry of Ba0.37TiO1.55 (Cockayne

et al., 2016). The atomic arrangement of the Ba–Ti–O DDQC

obtained from the 4D model is presented in Fig. 3(b), in which

the atomic arrangement was generated with the following

parameters: x1 = u1 = 1/4, x2 = u2 = 1/8, y3 = z3 = 3/8, y4 = z4 = 1/

4 and y5 = y6/2 = y7 = u5/2 = u6 = u7 = 1/8.

Point density of the QC is calculated from the ODs and the

unit-cell volume of the higher-dimensional structure. In the 4D

model of the DDQCs, the unit-cell volume is given by det|Qij|,

where Qij is the 4� 4 matrix in equation (2). The point density

is then given by � = V?/det|Qij|, where V? is the sum of the

area of the ODs (Yamamoto, 1996). Because the point density

of Ba in the 4D model equals 31/2/ad
2, the number densities for

Ba, Ti and O are approximately 2.46 � 10�2, 6.72 � 10�2 and

10.4 � 10�2 Å�2, respectively. According to the STM obser-

vation, the areal density of the protrusions for the Ba–Ti–O

DDQC is 3.2 � 10�2 Å�2 (Yuhara et al., 2020). This density is

rather close to the point density of the Ba in the 4D model.
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Figure 3
Atomic structure of the Ba–Ti–O DDQC. (a) Decoration of square,
triangle and rhombus tiles proposed by Cockayne et al. (2016). (b)
Atomic arrangement obtained from the 4D model. Circles drawn in lime,
red and blue indicate Ti, O and Ba atoms, respectively. A dodecagon
characteristic of the NGT is highlighted by the translucent blue colour.

Table 2
4D positional vectors x that define the asymmetric part of the ODs in
Fig. 2, with the vectors presented in units of 2ad/61/2.

Vectors that define the asymmetric part of the OD in Fig. 2(a)
(OD a1)
x1 = (0, 0, 0, 0)?
x2 = (0, 31/2

� 1, 0, 0)?/2
x3 = (3 � 2(3)1/2, 2(3)1/2

� 3, 0, 0)?/3
(OD a2)
x1 = (31/2

� 2, 2 � 31/2, 0, 0)?
x2 = (3 � 2(3)1/2, 2(3)1/2

� 3, 0, 0)?/3
x3 = (0, 31/2

� 1, 0, 0)?/2
(OD a3)
x1 = (0, 1, 0, 0)?
x2 = (31/2

� 2, 2 � 31/2, 0, 0)?
x3 = (31/2

� 3, 3 � 31/2, 0, 0)?/3
x4 = (0, 31/2

� 1, 0, 0)?/2
(OD a4)
x1 = (0, 1, 0, 0)?
x2 = (�31/2, 31/2, 0, 0)?/3
x3 = (31/2

� 3, 3 � 31/2, 0, 0)?/3

Vectors that define the asymmetric part of the OD in Fig. 2(b)
(OD b)
x1 = (0, 1, 0, 0)?/2
x2 = (�31/2, 31/2, 0, 0)?/3
x3 = (0, 1, 0, 0)?
x4 = (0, 0, 0, �1)?
x5 = (�31/2, 0, 0, �31/2)?/3
x6 = (�1, 0, 0, 0)?

Vectors that define the asymmetric part of the OD in Fig. 2(c)
(OD c1)
x1 = (0, 2, 0, 1)?/3
x2 = (31/2

� 2, 2 � 31/2, 31/2
� 2, 0)?

x3 = (1 � 31/2, 31/2
� 1, 1 � 31/2, 0)?/2

(OD c2)
x1 = (31/2

� 2, 2 � 31/2, 0, 0)?
x2 = (31/2

� 3, 3 � 31/2, 0, 0)?/3
x3 = (0, 1, 0, 0)?
x4 = (31/2

� 2, 2 � 31/2, 31/2
� 2, 0)?

x5 = (31/2, 6 � 31/2, 31/2, 3 � 31/2)?/3
x6 = (1 � 31/2, 31/2

� 1, 1 � 31/2, 0)?/2
(OD c3)
x1 = (0, 1, 0, 0)?
x2 = (31/2, 6 � 31/2, 31/2, 3 � 31/2)?/3
x3 = (1 � 31/2, 31/2

� 1, 1 � 31/2, 0)?/2

Vectors that define the asymmetric part of the OD in Fig. 2(d)
(OD d)
x1 = (0, 1, 1, 0)?/2
x2 = (0, 0, 0, �1)?
x3 = (�31/2, 0, 0, �31/2)?/3

Vectors that define the asymmetric part of the OD in Fig. 2(e)
(OD e)
x1 = (1, 0, 0, 1)?/2
x2 = (2 � 31/2, 31/2

� 2, 2 � 31/2, 31/2
� 1)?

x3 = (31/2, 0, 0, 31/2)?/3



Yuhara et al. (2020) recently reported the number densities

of Ba, Ti and O for the Ba–Ti–O DQC, which were deter-

mined to be (8 � 3) � 10�2, (4 � 2) � 10�2 and (3 � 1) �

10�2 Å�2, respectively. A similar result was obtained by the

same group in a more recent study where the Ba–Ti–O

DDQCs formed from three different precursor Ba–O thin

films were investigated (Li et al., 2021). However, the

experimental atomic density was inconsistent with the 4D

model for, inter alia, the following reasons: first, the reported

atomic density of O is significantly lower than the atomic

density of O expected from the 4D model, and second, the

reported atomic density of Ba is significantly higher than the

atomic density of Ba expected from the 4D model. The first is

explained by the presence of an oxygen defect results from

low oxygen partial pressure during the annealing of the ultra-

thin film. The second cannot be explained and remains an

open question. To explain the large deviation between the

experimental and expected atomic densities, the atomic

occupation probability must be refined, together with the

positions of each OD of the 4D model in the structure

refinement using the SXRD intensities. According to the

SXRD experiment on the Ba–Ti–O DQC (Schenk et al.,

2019a), only ten independent reflections were observed, which

is insufficient for the structure refinement. Therefore, the

structural perfection of the Ba–Ti–O DDQC must be

improved in order to increase the number of observed

reflections in the SXRD experiment, and this is a current

research task in progress.

4. Approximants

APs are important crystals for understanding the atomic

structure of the QCs (Elser & Henley, 1985). The atomic

structure of an AP is derived from a higher-dimensional

structure of a QC by the introduction of an appropriate linear

phason strain, and the AP exhibits a local structure similar to

the QC [see, for example, Yamamoto (1996), Quiquandon et

al. (1999), and references therein]. The formation of several

long-range ordered structures with large unit cells has been

found to date in Ba–Ti–O ultra-thin films (Förster et al., 2012).

Two types of APs in the (Ba,Sr)–Ti–O ultra-thin films were

reported recently, and these consist of three of the NGT tile

elements, i.e. square, triangle and rhombus. The first is the

sigma-phase approximant, which corresponds to an Archi-

medean tiling (32.4.3.4) composed of squares and triangles,

and it was identified in a Ba–Ti–O ultra-thin film on Pt(111)

and Ru(0001) (Roy et al., 2016; Förster et al., 2016; Zollner et

al., 2020b). The second has a complex structure composed of

squares, triangles and rhombuses with a large unit cell (a =

25.1, b = 37.7 Å and � = 95.1�), and it was identified in an Sr–

Ti–O ultra-thin film (Schenk et al., 2017). Here, we present two

of the simplest APs derived from the 4D model by the

introduction of linear phason strain.
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Figure 4
Atomic structure of the Ba–Ti–O APs derived from the 4D model. (a)
The sigma-phase approximant. (b) The hypothetical AP with a unit-cell
parameter of 25.6 Å. Circles drawn in lime, red and blue indicate Ti, O
and Ba atoms, respectively. The thin black square indicates the unit cell.
A dodecagon characteristic to the NGT is highlighted by the translucent
blue colour.

Table 3
Occupation domain (OD), atom, coordinates and occupancy (occ.) of the
4D model structure.

OD Atom Coordinates Occ.

a1–4 Ba (0, 0, 0, 0) 1
c1–3 Ti (0, 2, 0, 1)/3 1
e Ti (1, 0, 0, 1)/2 + (x1, 0, 0, �u1)k 1
e Ti (1, 0, 0, 1)/2 � (x1, 0, 0, �u1)k 1
e O (1, 0, 0, 1)/2 + (x2, 0, 0, �u2)k 1
e O (1, 0, 0, 1)/2 � (x2, 0, 0, �u2)k 1
d Ti (0, 1, 1, 0)/2 + (0, y3, 0, 0)k 1
d Ti (0, 1, 1, 0)/2 � (0, y3, 0, 0)k 1
d Ti (0, 1, 1, 0)/2 + (0, 0, z3, 0)k 1
d Ti (0, 1, 1, 0)/2 � (0, 0, z3, 0)k 1
d O (0, 1, 1, 0)/2 + (0, y4, z4, 0)k 1
d O (0, 1, 1, 0)/2 � (0, y4, z4, 0)k 1
d O (0, 1, 1, 0)/2 + (0, y4, �z4, 0)k 1
d O (0, 1, 1, 0)/2 � (0, y4, �z4, 0)k 1
c1 O (0, 2, 0, 1)/3 � (0, y5, 0, u5)k 1
c1 O (0, 2, 0, 1)/3 + (0, y6, 0, u6)k 1
c1 O (0, 2, 0, 1)/3 + (0, �y7, 0, u7)k 1
c2 O (0, 2, 0, 1)/3 � (0, 1, 0, 2)k/6 1/2
c2 O (0, 2, 0, 1)/3 + (0, y6, 0, u6)k 1
c2 O (0, 2, 0, 1)/3 + (0, �y7, 0, u7)k 1
c3 O (0, 2, 0, 1)/3 � (0, 1, 0, 2)k/6 1/2
c3 O (0, 2, 0, 1)/3 + (0, 2, 0, 1)k/6 1/2
c3 O (0, 2, 0, 1)/3 + (0, �y7, 0, u7)k 1



Fig. 4(a) shows the atomic arrangement of the Ba–Ti–O

sigma-phase approximant (plane group: p4) by the introduc-

tion of a linear phason strain represented by a 2 � 2 phason

matrix U with U11 = U22 = (31/2
� 1)/(31/2 + 1) and U12 = U21 =

0. Here, the arrangement was calculated with the parameters

used to generate Fig. 3, which results in a stoichiometry of

Ba0.33TiO1.50. The structure consists of squares and triangles

with a lattice constant equal to ad[1 + 1/31/2] ’ 13.2 Å. The

resulting atomic arrangement corresponds to the Y-rows

structure proposed by Cockayne et al. (2016). On the other

hand, the observed sigma-phase approximant (plane group:

p2, a = 13.1, b = 12.9 Å and � = 90.5�) (Roy et al., 2016) is

slightly distorted and exhibits a symmetry lower than the

derived structure. The distorted structure can be derived by

shearing the 4D model along the 2D Ek, in addition to the

phason strain.

Fig. 4(b) shows the atomic arrangement of a hypothetical

AP (plane group: pm) by the introduction of a linear phason

strain represented by a phason matrix U, with U11 = U22 = (31/2

� 2)/(31/2 + 2) and U12 = U21 = 0. The structure consists of

three tiles, i.e. triangle, square and rhombus, and the dode-

cagon characteristic to the NGT is also observed in the

structure. The stoichiometry is TiO1.62Ba0.38 and the lattice

constant is 2ad(31/2 + 2)/61/2 (� 25.6 Å). The resulting atomic

arrangement corresponds to the 25.6 Å approximant in the

literature (Cockayne et al., 2016); however, this structure has

not been found experimentally.

We note that the complex AP (a = 25.1, b = 37.7 Å and � =

95.1�) in the Sr–Ti–O ultra-thin film (Schenk et al., 2017) is

derived from a linear phason strain represented by a phason

matrix U with U11 = U22 = (31/2
� 2)/(31/2 + 2), U12 = �2(3)1/2/

{3[4(3)1/2 + 7]} and U21 = 0. The calculated lattice constant are

a = 2ad(31/2 + 2)/61/2
’ 25.6 Å, b = 2ad[9(3)1/2 + 16]1/2/61/2

’

38.5 Å and � = 95.1�, which are close to the experimental

lattice constant.

5. Summary

We have derived the 4D model for the Ba–Ti–O DDQC by

considering a tile model of the DDQC. 4D coordinates of the

asymmetric part of the ODs were also provided in the 4D

model. The atomic structure of the Ba–Ti–O DDQC results in

a Ba:Ti:O ratio of 2(3)1/2:6 + 2(3)1/2:6 + 5(3)1/2, which corre-

sponds to a stoichiometry of Ba0.37TiO1.55. In addition, the

point density of Ba atoms in the 4D model was shown to be

31/2/ad
2
� 2.46 � 10�2 Å�2, which is in good agreement with

the observed areal density of the protrusions on the STM

images.

Lastly, we have shown that the atomic arrangement of the

sigma-phase approximant and the hypothetical AP are

derived from the 4D model by the introduction of a linear

phason strain, and these structures consist of the same tile

arrangement as in the Ba–Ti–O DDQC model.
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