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The paper describes how the calculation of diffuse scattering from atomistic

model crystals has developed over the last approximately 50 years. Not only has

the quality of observed diffuse X-ray scattering data improved immensely with

the advent of electronic area detectors and synchrotron radiation but the

enormous increase in computer power has enabled patterns, of comparable

quality to the observations, to be calculated from a Monte Carlo model.

1. Introduction

In view of Hans-Beat Bürgi’s interest in molecular crystals,

their atomic displacement parameters, different kinds of

disorder and diffuse scattering and computer simulation [see

for example, Bürgi & Dunitz (1970), Capelli et al. (2000),

Birkedal et al. (2003), Burgi et al. (2005), Nemkevich et al.

(2010) and Michels-Clark et al. (2013)], we have chosen as our

contribution to this special issue an account of our own

journey through this fascinating field, beginning in the 1970s

when photographic film was used to record diffuse scattering

through to the present day where measurements using area

detectors and synchrotron radiation are quite routine.

It is now well accepted that computer simulation of a model

crystal provides a general method by which diffuse scattering

of all kinds and from all types of materials can be interpreted

and analysed. What it has been possible to achieve at any
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Figure 1
Moore’s Law. The plot shows the evolution of computer power per cost in
MIPS per $1000 (1997 dollars). Since 1980 there has been an increase by a
factor of approximately 105.
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point in time has depended strongly on the power of available

computers. During the last 40 years (since about 1980) there

has been an increase in computational power by a factor of

approximately 105. Fig. 1 shows a plot of the evolution of

computer power per cost in MIPS/$1000 (1997 dollars) (Note:

1 MIP = 106 instructions per second).

It is interesting to note that in 1980 when the first work

described here was published the IBM PC, the Commodore 64

and the Macintosh 128 had not yet emerged. By present day

standards computing was in a primitive state. Having said that

it is salutary to realise that the Voyager I & II spacecrafts were

launched in 1977 and their computers are still functioning in

outer space today.

Computers have played a major role at all stages of our

journey through the field of diffuse scattering and disorder.

Computers are involved in three different aspects of the field:

(1) Data acquisition, data processing and equipment

control.

(2) Model building and simulation.

(3) Calculation of diffuse scattering patterns from a model.

In the sections that follow we chart the progress that has

been made by showing examples of what has been achieved at

various stages. We begin with a study published in 1980

(Welberry & Jones, 1980) and move towards our most quan-

titative study to date that was published in 2014. Finally we

discuss the recently published ultrafast method for calculating

diffuse scattering from an atomistic model (Paddison, 2019)

which promises to revolutionise the way in which studies may

be carried out in the future.

2. Use of optical transforms

The original idea of Sir Lawrence Bragg of exploiting the

analogy between optical diffraction and X-ray diffraction in

solving structural problems received its greatest stimulus from

the work of the Manchester School of Research under

Professor H. Lipson in the early 1950’s (Chaudhuri, 1976).

With their background of experience, optical transform

methods subsequently evolved as a useful aid in the elucida-

tion of structures from X-ray diffraction patterns (Harburn et

al., 1975).

In this section a brief account is given of a study of disorder

in 2,3-dichloro-6,7-dimethylanthracene (DCLDME) in which

optical transforms were used (Welberry & Jones, 1980). Fig. 2

shows a comparison of observed and calculated diffraction

patterns for the h0l section of DCLDME. The observed X-ray

pattern was recorded on X-ray film and digitised using a film

scanner/writer [an Optronics P-1700 Photomation system

(Harburn et al., 1974)] using a grid size of 100 mm. The same

device was also used for rewriting the final reciprocal-lattice

image after removal of the Weissenberg distortion. This is

shown in Fig. 2(b).

The same Photomation system device was used to plot on

film a model of the disordered crystal structure. The Photo-

mation is basically used as an accurate small-scale plotter.

Data points may be written on a 12.5 mm (= 1 raster) grid over

the area of the film (maximum width is 120 mm). The chosen

scale for the plots was 10 raster units to 1 Å and this provides

the following specifications for the plotted representation of

the crystal structure. Since one raster unit (12.5 mm) repre-

sents 0.1 Å, positional coordinates are plotted to an accuracy

of�0.05 Å. The total size of the plot that is conveniently fitted

on the 120 mm film is about 9000 raster units representing a

linear dimension of �900 Å or 100 9 Å cells. With �10 000

unit cells, reasonable representations of statistical parameters

could be achieved. The optical diffraction pattern from the

model crystal of DCLDME is shown in Fig. 2(c).

From this study it was possible to estimate the magnitude of

the correlation between the orientation of neighbouring

molecules within the close-packed molecular ab planes as well

as between neighbouring planes along c.

Although the Photomation was a sophisticated instrument

relying on an optical encoder and accurate stepper motors to

achieve its precise raster grid it required only a modest mini-

computer to control it. Model coordinates were obtained on a

separate mini computer (mostly a PDP-11) and transferred via

magnetic tape. The models themselves were produced using

simple programs that used growth disorder models involving

both occupancy and displacement variables. These stochastic

models (as their name suggests) were grown sequentially and

were very fast and computationally undemanding [see

Welberry & Galbraith (1973) and Welberry et al. (1980)]. They
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Figure 2
Comparison of the diffraction patterns for the b-axis projection of the
crystal structure of 2,3-dichloro-6,7-dimethylanthracene: (a) average
structure drawing, (b) X-ray pattern and (c) optical pattern.



did not involve any iterative process as, for example, did

Monte Carlo simulation.

3. Diffuse scattering studies circa 1990–2010

By 1990 a number of things had changed: the replacement of

film by electronic detectors for recording diffuse X-ray scat-

tering; the development of more sophisticated ways of

building models of the disordered crystal; and the move away

from optical transforms to direct calculation of the model

diffraction patterns.

3.1. Measuring diffuse X-ray patterns

The recent development of position-sensitive counters (1D

linear or even 2D area detectors) offered the possibility of

replacing the use of film for recording diffuse scattering and

allowing routine high-quality measurements to be made in the

ordinary laboratory, using conventional X-ray generating

equipment. These new counters gave only a limited advantage

for measuring Bragg intensities (since advantage is gained

only when several peaks are simultaneously incident on the

detector), but they were ideally suited to the measurement of

continuous diffuse distributions where all regions of the

detector could be usefully utilized the whole time. Fig. 3(a)

shows the system built in our laboratory which utilizes the

curved PSD manufactured by STOE (Wölfel, 1983). Fig. 3(b)

shows an example of the high-quality diffuse scattering data

that could be obtained with this instrument.

The open geometry of this system allowed easy access for a

cryostream to be used for low-temperature studies. The

collimation and beamstop system were designed to bring the

incident X-rays to within a few millimetres of the sample,

thereby virtually eliminating problems with air-scattering. See

Osborn & Welberry (1990) for further details.

3.2. Construction of model crystals

Computers continued to evolve rapidly allowing models to

make use of more sophisticated methods of simulation. The

growth disorder models used earlier were now largely

replaced by Monte Carlo simulation which involved many

cycles of iteration to arrive at a disordered distribution close

to an equilibrium structure. The quality of the observed

patterns was such that it became necessary to consider how

large a model crystal was needed to allow the calculation of a

pattern of comparable quality. Two main criteria needed to be

satisfied. The size of the model crystal needed to be large

enough so that the resolution in real space allowed sharp

diffuse features in the observed patterns to be satisfactorily

captured. Here the linear dimension of the model crystal was a

factor. Any correlations in the structure of a length greater

than half the crystal size could not be captured. In addition the

variations of intensity due to statistical fluctuations of the

disordered patterns needed to be sufficiently small. This is

proportional to N1/2, where N (= Nx � Ny � Nz) is the total

number of unit cells in the structure. Three-dimensional

models could now be used but computer memory sizes were

still very small by modern standards. One megabyte of RAM

was still a pipe dream. A crystal size of 32 � 32 � 32 unit cells

was adopted as a rule-of-thumb guide to simulation size. Fig. 4

shows example calculations for a simple disordered crystal. It

is seen that the calculation made with the full 32 � 32 � 32

unit cells in Fig. 4(d) shows smooth and clearly defined diffuse

peaks while the calculations made with smaller sizes do not.
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Figure 3
(a) The position-sensitive detector (PSD) system used to record X-ray
data from about 1990. (b) An example diffraction pattern recorded on the
PSD system. The 0kl section of Bemb2 (1,3-dibromo-2,5-diethyl-4,6-
dimethylbenzene) recorded at 100 K.

Figure 4
Different quality diffraction patterns calculated from a model of the Tl
correlations in TlSbOGeO4 (Welberry & Mayo, 1998). (a) The three types
of correlation vectors. (b) Pattern calculated from a single 10 � 10 � 10
sample taken from a larger crystal. (c) The best pattern obtainable from a
crystal of 10 � 10 � 10 unit cells. (d) The best pattern obtainable from a
crystal of 32 � 32 � 32 unit cells.



3.3. Calculation of diffraction patterns

Optical transforms continued to be used through the 1980s

and it was not until about 1990 that it became feasible for the

first time to compute the diffraction patterns directly from the

model disordered structures. A computed diffraction pattern

would offer a number of advantages over the optical method.

For example, in the optical method atomic scattering factors

could only be represented fairly crudely by the use of

different-sized apertures, the accuracy of positioning of the

atoms was also rather limited (by the resolution of the film-

writing device) and furthermore intensities were only

obtained on an arbitrary scale. But perhaps the most impor-

tant limitation of the optical method was that it was strictly

limited to two dimensions (2D), and all that could be obtained

from a 3D simulation was a 2D projection of a relatively thin

slice of the 3D structure. A further constraint in carrying out

these calculations was that the sampling in reciprocal space

needed to be of a comparable resolution to that obtained in

the PSD X-ray measurements (see x3.1). It was estimate that

the resolution was such that a typical 2D section of data

contained �45 000 independent data points.

3.4. Development of the program Diffuse

The total complex scattered amplitude from a crystal can be

written as a simple sum of plane waves:

AðkÞ ¼
XN

m¼1

Fm expðk � RmÞ ð1Þ;

where

Fm ¼
XNm

n¼1

fn expðk � rnÞ ð2Þ

is the structure factor of the mth unit cell. k � Rm is the position

vector of the mth cell, rn is the location of the nth atom in the

mth cell, fn is the atomic scattering factor of the atom n, k is

the diffraction wave vector, Nm is the number of atoms in cell

m and N is the number of unit cells in the crystal.

There are two obvious approaches that can be used to

obtain the diffuse intensity of a simulated crystal using digital

computers: compute the sum in equation (1) directly for each

reciprocal coordinate desired, or use fast Fourier transform

(FFT) techniques. The FFT is simply an algorithm that can be

used to calculate discrete Fourier transforms quickly. In order

to use the FFT all atoms in the crystal must fall on a uniform

grid. The unit cells define a natural grid but only atoms on the

corners of the cells would actually lie directly on it. In order to

include all atoms in the cell, the basic crystal lattice must be

subdivided further to bring each atom site as close as possible

to a grid point. If each unit cell is divided into a 32 � 32 grid

then placement of the atoms will be accurate to about 3% of

the unit-cell dimension. This level of accuracy is only

comparable to that provided by the film-writing device used in

the optical transform method.

Consideration was given to the possibility of using FFT but

although some advantage in speed could theoretically be

obtained, the method required far more memory than

computers of that era could typically provide. Consequently a

direct method of computation using equation (1) was adopted.

This led to the development of the computer program called

Diffuse (Butler & Welberry, 1992). Direct Fourier summation

over the atoms in the simulated crystal proved to be the most

general and straightforward method of computation.

Factoring the atomic scattering factors from the summations

and careful design of the computational procedure provided

the extra speed necessary to make this method viable. For

example, instead of computing the large number of complex

exponentials that are involved throughout the calculation, the

values were first computed and stored in memory and then

subsequently retrieved from a look-up table when required.

Even with all these efforts to speed up the calculation it was

found that in 1992 transforms comparable to those obtained

optically required approximately 10 to 50 h using a

VAXstation 3100 computer. Tests on a vector processing

Fujitsu VP100 supercomputer showed the code to be easily

vectorized and a speed improvement over the VAXstation

3100 of a factor of 100 was obtained.

It was found that averaging the intensities from a number of

small regions or, ‘LOTS’, inside the larger simulation

produced superior results to those obtained by making a single

calculation from the whole simulation. It is only necessary that

the size of the ‘LOTS’ is larger than the extent of the corre-

lations. Fig. 5 shows schematically how the ‘LOTS’ may be

chosen randomly from the whole simulation. The quality of

the calculated pattern increases with the number of ‘LOTS’

used until all the unit cells have been used at least once on

average. [Note the program Discus (Proffen & Neder, 1997)

uses the same system of ‘LOTS’.]

Diffuse has continued to be used in many studies since that

time. The speed has increased enormously with the advent of

multi-processor machines and has even been adapted to be

used with very fast GPUs (graphics processing units). It has

been shown (Gutmann, 2010) that the computations can be

accelerated by at least one order of magnitude using modern

consumer graphics cards.
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Figure 5
Demonstrating the use of ‘LOTS’ in sampling the crystal volume in
calculations of diffuse scattering using the program Diffuse (Butler &
Welberry, 1992). Note cyclic boundary conditions are used. (a) and (b)
illustrate the use of two differently sized LOTS.



4. Example of a 1D perturbed regular lattice

In this section a brief summary is given of a 1D growth

disorder model that used Gaussian displacement variables to

produce a 1D paracrystal (Welberry et al., 1980). This model

was subsequently used in section 4.3 of Welberry (2004) to

interpret the diffuse scattering in a urea inclusion compound.

In urea inclusion compounds, the urea molecules form a

hydrogen-bonded network containing hexagonal channels

that run along the c-direction. The channels can accommodate

various kinds of long-chain molecules, of which dibromo-

decane (DBD) is an interesting example. The DBD molecules

pack end-to-end in an individual channel to form a pseudo-1D

crystal, the repeat distance of which is not commensurate with

the crystallographic repeat of the urea framework. The

vertical diffuse bands in Fig. 6(a) arise from these chains of

molecules. Each band is virtually uniform in intensity, because

there are no correlations linking one channel with the next. It

is seen that the first diffuse band is narrow, but higher-order

ones get progressively broader.

For this paracrystal model used to interpret the DBD-urea

pattern the diffracted intensity consists of two parts: a Bragg

intensity that comes from the average structure and a diffuse

component that comes from the differences from the average.

IðkÞBragg ¼ exp
�
� k2�2

�X
l

expðiklÞ

IðkÞDiffuse ¼ exp
�
� k2�2

�

�
X1
P¼1

�
�2k2

�P

P

�
1� r2P

�
�
1þ r2P � 2rP cosðkÞ

� ð3Þ

Here, �2 is the variance of variables away from their average

positions and r is the correlation between the displacements of

nearest neighbouring sites. The diffuse scattering term

I(k)Diffuse is plotted in Figs. 6(b) and 6(c). It is seen that the

expression for the intensity is the sum of a series of terms in

increasing P. For Fig. 6(b) only the first 10 terms were used

while for Fig. 6(c) all terms significantly more than zero were

used. In some cases more than 100 terms were required. It

should be noted that when �2 is small only the first term in the

P series is significant and the shape of the diffuse peak is

identical to that of an occupancy model.

This result will be referred to in x6 of the paper.

5. Modelling diffuse scattering circa 2010–2020

By 2014 when the study described in this section was published

a great deal had changed from the early beginnings of our

attempts to model diffuse scattering in molecular crystals

described in x2. The advent of synchrotron radiation and ever

improving area detectors means that fully three-dimensional

diffuse scattering data can now be collected routinely for even

quite small samples. Even more significant have been the

advances in the computational resources that have become

available. Not only are computational speeds � 105 faster but

the amount of memory available has increased enormously

too. The VAXstation 3100 computer mentioned in x3.4 had a

maximum memory capability of 32 Mbytes whereas the laptop

on which this paper is being written has 16 Gbytes of memory.

By collecting data using synchrotrons (Weber et al., 2001;

Welberry et al., 2003), more reciprocal space can be mapped,

both in terms of the maximum scattering vector that can be

obtained and in the number of reciprocal space sections that

can be obtained. In particular, use of an area detector means

that whole volumes of reciprocal space can be mapped, and

then any desired section obtained if required (Estermann &

Steurer, 1998).

Coupled with greater computing power, this allows

constructions of 3D models representing the 3D short-range

ordered structure. This greatly improves modelling of highly

anisotropic features. Simulations can be run for many thou-

sands of Monte Carlo (MC) cycles, more thoroughly evalu-

ating the efficacy of the model interactions, and the

interactions themselves can be more representative, with more

atom–atom interactions incorporated into the model.

Monte Carlo simulation has become the standard method of

modelling, particularly for molecular crystals. This has led to

the development of a standard simulation program ZMC

(Goossens et al., 2011) which allows an MC model to be set up
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Figure 6
(a) The 0kl diffraction pattern of dibromodecane/urea inclusion
compound showing a sequence of progressively broader diffuse planes
of scattering due to the dibromodecane molecules which form pseudo 1D
crystals within the urea channels. Calculated peak profiles of 1D
paracrystalline model: (b) Using only the first 10 terms in the summation
over P in equation (3); (c) using all non-zero terms.



starting from a knowledge of the average structure and then

used to produce an equilibrium structure with the Metropolis

MC algorithm (Metropolis et al., 1953) and finally produce a

calculated diffraction pattern.

5.1. Defining the model

5.1.1. Z-matrices. ZMC uses as its basis the idea that the

interacting objects are molecules. Each molecule can be

described using a z-matrix (an approach commonly used in ab

initio molecular orbital calculations). This defines each atomic

position in terms of an intramolecular coordinate set, i.e. in

terms of bond lengths, bond angles and dihedral angles.

Holding most of these values fixed but allowing a selected few

to vary provides a mechanism for allowing molecules to show

internal flexibility, while keeping other fragments of the

molecule as rigid units. The molecule is then placed into its

position within the model crystal by external variables which

indicate which unit cell it is to go in; Cartesian coordinates x, y

and z to define the position of the origin of the z-matrix; and a

quaternion to define the orientation of the molecule.

5.1.2. Molecular energy. Once defined and positioned,

molecules can have an internal energy dependent on the

values of the internal degrees of freedom relative to their

‘equilibrium’ positions, and an external energy dependent on

the molecule’s position and orientation (and therefore

conformation) relative to its neighbours. Hence, the basis of

ZMC is a forward Monte Carlo algorithm in which Hooke’s

law springs connect the molecules, and potentials are placed

on selected internal degrees of freedom, usually torsional

twists, within the molecule. This allows the molecules to

interact with each other but also allows variations in molecular

conformation to interact with molecular orientation and

position. By allowing these interactions to manifest them-

selves through the MC algorithm a correlation structure arises

in the model crystal. The final model is evaluated by calcu-

lating its diffuse scattering diffraction pattern using Diffuse

(see x3.4) and comparing that with the observed scattering.

The energy of the crystal is considered to be the sum of

intra- and intermolecular contributions. The intermolecular

contribution to the crystal’s energy comes from

Einter ¼
X

cv

Fi

�
di � d0ið1þ "iÞ

�2
; ð4Þ

where di is the length of vector i connecting atoms on adjacent

molecules, d0i is its equilibrium length and Fi is its force

constant. The sum is over all contact vectors (cv). "i is the size-

effect term, which allows that the equilibrium length required

for the calculation may not be the average length as deter-

mined from Bragg scattering.

The intramolecular energy can be modelled using contact

vectors as for intermolecular motions and by putting poten-

tials on the internal degrees of freedom themselves.

Eintra ¼
X
mol

�X
i

Gið�’iÞ
2
þ
X

jk

Gið�’j�’jk

�
; ð5Þ

where the Gi are the force constants for internal degrees of

freedom, i and �’i are their deviations from the equilibrium

value. The Gjk are the interaction constants for interactions

between the internal degrees of freedom.

5.1.3. Contact vectors. Energy calculation requires defini-

tion of the intermolecular contacts. These ought to comprise

all inter-molecular (and non-bonded intra-molecular) atom–

atom contacts in the system. In practice all possible atom–

atom contacts up to some cut-off length may be used, but even

then this would result in too many spring constants, Fi, to be

used as adjustable parameters in the model. With the advent

and availability of increasingly fast computing it has recently

become viable to include such springs on all interatomic atom–

atom vectors shorter than a conveniently chosen upper limit,

e.g. 4 Å.

If many interactions are to be used in the modelling the

force constants, Fi, cannot be used as the parameters to be

varied in fitting the calculated diffraction pattern to the

observation. Rather, adjustable parameters that define the

force constants are required. One possibility is to define the

spring constants using the slopes of atom–atom potentials such

as the Buckingham potential

�ðrÞ ¼ Ajk exp
�
� Bjkr

�
�

Cjk

r6
; ð6Þ

where Ajk, Bjk and Cjk are constants that depend on which

types of atoms are interacting (Filippini & Gavezotti, 1993).

The values for the force constants in the model, as a function

of equilibrium separation, d0i, can be determined from the

derivative of equation (6). Compared to previous methods this

allows the use of many more interatomic springs but far fewer

adjustable parameters.

An alternative to equation (6) is the empirical formula

Fi ¼ A exp �B di0
� Rjk

� �� �
þ C; ð7Þ

where Rjk is the sum of the van der Waals radii of the two

atoms [taken from Bondi (1964)], d0i is the average length of

the contact vector and A, B and C are empirically determined

constants. The values of A, B and C used in the simulations

described here were A = 11, B = 0.4 and C = �8 since similar

values have previously been refined using data from a range of

molecular crystal systems (Chan et al., 2010; Chan & Goossens,

2012; Hudspeth et al., 2014).

5.1.4. Disorder in p-chloro-N-(p-chloro-benzylidene)-
aniline. By combining the use of large 3D models (64 � 64

� 64 unit cells) with long MC simulations (� 5000 MC cycles)

very high quality diffraction patterns can be obtained and the

calculated intensity, Icalc, can be compared with the observed

intensity, Iobs, on a pixel-by-pixel basis, excising only those

pixels that an MC model of the short-range order cannot be

expected to calculate (experimental artefacts and background,

and the Bragg peaks themselves, for example). This allows an

R factor to be calculated and minimised using the iterative

automated algorithm first described by Welberry et al. (1998).

The original descriptions of the average structure of ClCl

(see Scheme I) were published by Bernstein & Schmidt (1972)

and Bernstein & Izak (1976). These studies showed that the
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molecular site in the structure was occupied by a disordered

mixture of two different orientations of the molecule related

by a 180	 rotation about the long axis of the molecule so that

the C atoms of the phenyl rings could not be clearly resolved.

Fig. 7 shows the results of automatic refinement of the

structure using diffuse scattering as described in this section. It

should be noted that the calculated patterns shown on the

bottom two rows are of the diffuse scattering only since the

average lattice was subtracted during the calculation using

Diffuse. It is seen that the large crystal size coupled with the

long MC simulations has produced long wavelength correla-

tions in the structure that give TDS peaks around the Bragg

positions that resemble the Bragg peaks in the observed data

shown in the top row of patterns.

The results for two differing models for the interactions and

molecular degrees of freedom in ClCl are shown in Fig. 7. The

top row shows the observed data for three reciprocal sections,

and the corresponding calculated diffuse scattering for the two

Models is shown in the next two rows. Model 2 allows the

molecule extra internal flexibility by decoupling the halves of

the molecule, and bonding them together relatively weakly
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Figure 7
Observed and calculated diffraction patterns for two different models of p-chloro-N-(p-chloro-benzylidene)aniline. R factors are derived from a pixel-
by-pixel goodness-of-fit and show that Model 2, which allows for increased molecular flexibility, is substantially better. Images reproduced from
Goossens & Welberry (2014) with permission.



using Hooke’s law contact vectors rather than covalent

intramolecular bonds – effectively, treating the two halves of

the molecule as separate molecules – and this is clearly crucial

in improving the fit, as shown by the R factors. It is seen that

viewed down the c axis the two models give almost identical

agreement but viewed down a and b Model 2 is much the

better.

Fig. 8(a) shows difference plots, (Iobs � Icalc), for the two

models. The top half of each figure corresponds to Model 1

and the lower half to Model 2. It is interesting that for the hk0

section, although the R factors are almost equally good, the

small remaining differences have quite distinct distributions

implying that the data contains some remaining information

that the modelling has not yet accounted for. The same is true

but to an even greater extent for the other two sections (0kl)

and (h0l).

Fig. 8(b) shows a scatterplot of atoms from molecules in a

single one of the two molecular orientations, showing how the

diffuse analysis can separate out the overlapping molecules.

Here the atomic displacement parameters are all nicely

shaped and even the somewhat anisotropic shape of the

terminal Cl groups has been captured.

6. Calculating diffuse scattering using Scatty

The calculated diffuse scattering patterns shown in earlier

sections of this paper used the program Diffuse described in

x3.4. Recently Paddison wrote a paper entitled ‘Ultrafast

calculation of diffuse scattering from atomistic models’

(Paddison, 2019). This describes a new method of calculating

diffuse scattering patterns from atomistic models and claims

that the algorithms described can accelerate the calculations

by a factor of at least 102. These claims have been substan-

tiated by the results of three different examples described in

the paper but also by a number of subsequent publications in

which other authors have used the software, e.g. Roth et al.

(2021) and Morgan et al. (2021). Such a large increase in speed

would make the refinement of atomistic models to fit large

volumes of diffuse scattering for molecular crystals much more

practical. However there is one caveat: namely, that the speed

of the calculation is reduced when atomic displacements are

involved.

In this section we present the results of some calculations in

which the performance of Scatty is compared with results

previously obtained using Diffuse for an example (Thomas et

al., 2007) which has been chosen because the diffuse scattering

was shown to be due to some particularly large atomic

displacements away from their equilibrium positions.

6.1. The Scatty program

Scatty uses the Fast Fourier Transform (FFT) algorithm

(Cooley & Tukey, 1965) and also uses a fast method based on

sampling theory to reduce high-frequency noise in the calcu-

lations. The program has been made freely available

(Paddison, 2019).

In the original publication of Diffuse (Butler & Welberry,

1992), the use of FFT was considered and it was estimated

from a simple analysis that it would be ten times faster than

direct Fourier summation. However the possibility of using

FFT was rejected because of the computer memory require-

ments which exceeded what was available in computers of the

time. Now, however, typical computer memories are measured

in Gbytes rather than the Mbytes that were current in 1992.

Paddison shows that the structure factor for the model

crystal can be expressed in the form,

FðGÞ ¼
X
�;i

½Uk;�;iðGÞ þ Ak;�;iðGÞ
c�;ib�;i expðiG � r�Þ; ð8Þ

where Uk;�;iðGÞ and Ak;�;iðGÞ are Fourier transforms for which

the FFT algorithm can be used:

Uk;�;iðGÞ ¼
X

R

expðiG � uR;�;iÞ expðik � RÞ; ð9Þ

Ak;�;iðGÞ ¼
X

R

ak;�;i expðiG � uR;�;iÞ expðik � RÞ: ð10Þ

See Paddison (2019) for full details.

This FFT-based approach used in Scatty is exact for systems

in which the disorder is compositional, magnetic or in which

any atomic displacements are drawn from a discrete set of

values. On the other hand, if the atomic displacements can

take a continuous range of values, the structure factor given by

equation (8) cannot be directly evaluated by the FFT because

both equations (9) and (10) contain factors of expðiG � uR;�;iÞ.

This problem can be addressed by expanding

expðiG � uR;�;iÞ as a Taylor series in the same way as was done

for the exponential in the 1D example of equation (3).
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Figure 8
(a) Comparison of the difference maps (Iobs � Icalc) for the two models of
ClCl. Top half corresponds to Model 1 and bottom half corresponds to
Model 2. (b) A scatterplot of all the atomic positions in a typical
simulation superimposed on a single unit cell. Reproduced from
Goossens & Welberry (2014) with permission.



expðiG � uR;�;iÞ ¼
X1
n¼0

in

n!

�
G � uR;�;i

�n
ð11Þ

The FFT can only be applied to a specified order of approx-

imation. As the order of expansion increases the number of

individual FFT calculations and the amount of computer

memory required increase rapidly. In the program Scatty this

expansion level is set by a parameter EXPANSION_ORDER.

6.2. Diffuse scattering in pentachloronitrobenzene

In this section we present the results of some calculations in

which the performance of Scatty is compared with results

previously obtained using Diffuse (Thomas et al., 2007). This

example has been chosen as the diffuse scattering it exhibits

was shown to be due to some particularly large atomic

displacements away from their equilibrium positions, as

determined by Bragg scattering. This disorder has been

described by Thomas et al. (2007).

Fig. 9(a) shows a plot of the average structure of penta-

chloronitrobenzene (C6Cl5NO2, PCNB) viewed down [001]

and Fig. 9(b) shows the view down [100]. The structure

consists of molecular layers in which all the molecular planes

lie normal to [001] and molecules in each layer are arranged

on a triangular grid. The substituent groups of the molecules

in the next layer along [001] are in close contact with three of

the six substituent groups in the first layer. Similarly the

substituent groups of the molecules in the layer below are in

close contact with the other three substituent groups in the

first layer. In the average structure each of the six substituent

sites in every molecule contains 1
6NO2 and 5

6Cl.

Figs. 10(a) and 10(b) show the diffuse X-ray scattering

patterns for the hk0 and 0kl sections, respectively. These data

were used to establish a model of the disordered structure

using automatic fitting of a Monte Carlo model.

The computer model of the disorder in PCNB that was

established by Thomas et al. (2007) showed that the orienta-

tion of the molecules in each molecular site was, to a good

approximation, quite random and it was concluded that the

strong diffuse scattering was largely due to displacements

induced by size-effect relaxations resulting from the different

sizes of the substituent groups. The size of the model crystal

used was 48 � 48 � 48 unit cells with three molecules per cell.

This was large enough to give calculated diffraction patterns of

a comparable quality to the observed patterns. The final

diffraction patterns for the hk0 and 0kl sections calculated

using Diffuse after 1000 MC cycles are shown in Figs. 10(c) and

10(d).

Fig. 9(c) shows scatterplots for all the atoms of two neigh-

bouring molecules from all unit cells in the structure super-

posed in one unit cell. The three plots are segregated into pairs

of neighbours that have close contacts between Cl� � �Cl,

Cl� � �NO2 and NO2� � �NO2, respectively. It is seen that, while

for the Cl–Cl contact the planes of the two molecules lie fairly

parallel to the (001) plane, for the NO2� � �NO2 contact the

planes are tilted to significantly increase the average

NO2� � �NO2 distance. The graph in Fig. 9(c) shows the distri-

bution of actual distances between N� � �N, N� � �Cl and Cl� � �Cl.

The distances involved in the interaction are summarised in

Table 1.

6.3. Diffraction patterns of PCNB computed with Scatty

The final atomic coordinates output from the MC simula-

tion of PCNB were used as input to the program Scatty. This

was quite straightforward. The calculations were made on a

MacBook Pro computer with a 2.9 GHz Intel Core i7

processor and 16 GBytes of memory.
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Figure 9
The average structure of PCNB: (a) view down [001] and (b) view down
[100]. Each of the six substituent sites in every molecule contains 1

6NO2

and 5
6Cl. (c) Scatterplots showing molecules in neighbouring layers along

½001
. The three plots show the atom positions segregated according to
whether the nearest contact involves a Cl� � �Cl, Cl� � �NO2 or NO2 contact.
The graph shows the distibution of the actual distances between N� � �C,
N� � �Cl and Cl� � �Cl.



Because of the large atomic displacements that were

present in the PCNB model, diffraction patterns for the hk0

and 0kl sections were computed with a range of different

values of the EXPANSION_ORDER parameter. Since the

computation time increases with the order number, first

examples used a small expansion number and this was

gradually increased. For the hk0 section it was found that it

was necessary to go to a value of 9 before the resulting pattern

became at all comparable to the pattern obtained with Diffuse.

The Scatty pattern is shown in Fig. 10(e). Even so, the pattern

rapidly deteriorates outside the Q-range shown, an indication

that level 9 is the bare minimum that is required. At this level

of calculation the number of products in the Taylor expansion

of displacements was 219, the amount of memory required was

45 Gbytes and the total time for the calculation was 18.5 min.

(see Table 2). This compares with a time of 34 min for the

comparable Diffuse calculation [Fig. 10(c)].

The situation turned out to be not as good for the hk0

section. This appears to be due to the fact that it is in this

section that the large size-effect displacements feature most

prominently. Fig. 10(f) shows the computed pattern for this

section using level 9 expansion. Here it is seen that close to the

horizontal (b�) axis the pattern looks quite good but along c�

the error in the calculation pattern becomes increasingly bad.

Beyond a certain point the errors become too large and Scatty

produces no output (grey shading). The computation time for

this section was 86 min (see Table 2).
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Table 1
The effect of size on atom–atom vectors comprising the intermolecular
contact shown in Fig. 10(c).

Vector
type

Average
structure (Å) Mean (Å) � �d % change

N� � �N 3.817 4.404 0.27 0.587 +15
N� � �Cl 3.919 4.201 0.27 0.282 +7
Cl� � �N 3.919 4.201 0.27 0.282 +7
Cl� � �Cl 4.035 3.951 0.27 �0.084 �2

Table 2
Summary of the different Scatty computations for the examples shown in
Figs. 10 and 11.

The columns show: the model crystal size; the order of the exponential
expansion; the amount of memory used; the number of products involved in
the exponential expansion; the time used in calculating the FFTs and the total
CPU usage in seconds.

Fig. Size Order GByte
No.
Prod. FFT

Total
CPU

10(e) 48 � 48 � 48 9 45.5 219 623 1109
10(f) 48 � 48 � 48 9 45.4 219 621 5190
11(a) 24 � 24 � 24 18 34.5 1329 277 6736
11(b) 24 � 24 � 24 9 5.7 219 35 417

Figure 10
Diffraction patterns for PCNB. (a) X-ray data for the hk0 section. (b)
X-ray data for the 0kl section. (c), (d) are corresponding patterns
calculated using Diffuse from a model crystal comprising (48 � 48 � 48)
unit cells. (e), (f) are corresponding patterns calculated using Scatty from
the same model crystal with the EXPANSION_ORDER parameter set to
9. Note in (f) c� is vertical and b� is horizontal.

Figure 11
Attempts to improve the calculation of the 0kl section. (a) Using a
smaller crystal (24 � 24 � 24) with EXPANSION_ORDER = 18. (b)
Using a (24 � 24 � 24) crystal with EXPANSION_ORDER = 9 but with
all c� components of the atom displacements (away from their average
positions) reduced by a factor of 1.5. Note c� is vertical and b� is
horizontal.



In fact it was found that with the current memory available

in the MacBook Pro computer, a value of

EXPANSION_ORDER = 9 was the maximum that could be

achieved using the (48 � 48 � 48) unit-cell crystal. As an

experiment therefore some calculations were carried out with

a much smaller crystal (a 24 � 24 � 24 section of the larger

crystal was used). It was then found possible to use

EXPANSION_ORDER = 18 for 0kl. The result of this

calculation is shown in Fig. 11(a). Even with this large value of

the expansion order the valid calculation does not extend to

fill the circle completely. However the diffuse blob around the

(0012) position is revealed and it is seen this is diminished in

intensity relative to that around (009) in agreement with the

observed pattern.

A second experiment was carried out in which all of the

atomic displacements in the c� direction away from their

average sites were reduced by a factor of 1.5. A calculation of

the 0kl section for this modified crystal using level 9 expansion

is shown in Fig. 11(b). Now, with the reduced displacement

magnitudes the calculated pattern extends to fill the whole

circle. Moreover the amount of memory required is much

reduced and the computation time was only 7 min. What is

noticeable, though, is that the magnitude of the intensities of

the large diffuse blobs around the (003), (006), (009), (0012),

(0015) positions do not decay towards higher Q. It is seen that

in the X-ray pattern and the Diffuse calculation that the (0012)

blob is very weak. This drop in intensity at high Q is indicative

of the magnitude of the size-effect distortion and was crucial

in the original disorder model refinement.

7. Conclusion

In this paper a brief account has been given of how our

modelling of diffuse scattering from molecular crystals has

developed over the last 40+ years. Not only has the advent of

synchrotron radiation and modern area detectors enabled the

measurement of high quality three-dimensional diffuse scat-

tering data but the accompanying exponential growth of

computational power, that has become available for proces-

sing and analysing it, has had an enormous impact.

The example described in x5.1.4 shows that the goal of

trying to make a full 3D refinement of a model for the disorder

in a molecular structure is close to being realised. As the

simulation methodology improves it might be expected that

finer and finer detail may become accessible, just as occurred

in conventional crystallography some 60–70 years ago. The

analysis of diffuse scattering thus appears to be poised to enter

a new period of expansion and exploitation, analogous to that

which occurred for Bragg scattering 60 to 70 years ago.

The exciting new method of calculating diffuse scattering

using the program Scatty will undoubtedly have a major role to

play into the future. The issues that have been raised by the

example discussed in x6.3 regarding the performance of Scatty

when large atomic displacements are present do not detract

from the overall promise of the new method. For many

systems the problems will not apply but for others it is likely

that with the possibility of faster processors, the use of parallel

processing and larger amounts of available memory the issues

will be less significant. However it is important that current

users be aware of the issue.
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