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The Hirshfeld atom-based X-ray constrained wavefunction fitting (HA-XCW)

procedure is tested for its reproducibility, and the information content of the

fitted wavefunction is critically assessed. Fourteen different �-oxalic acid

dihydrate data sets are used for this purpose, and the first joint fitting to 12 of

these data sets is reported. There are systematic features in the electron density

obtained from all data sets which agree with higher level benchmark

calculations, but there are also many other strong systematic features which

disagree with the reference calculations, most notably those associated with the

electron density near the nuclei. To enhance reproducibility, three new protocols

are described and tested to address the halting problem of XCW fitting, namely:

an empirical power-function method, which is useful for estimating the accuracy

of the structure factor uncertainties; an asymptotic extrapolation method based

on ideas from density functional theory; and a ‘conservative method’ whereby

the smallest value of the regularization parameter is chosen from a series of data

sets, or subsets.

1. Introduction

There has recently been much interest in the technique of

X-ray constrained (or restrained) wavefunction (XCW) fitting

(Jayatilaka, 1998; Jayatilaka & Grimwood, 2001), but doubts

have been raised about the accuracy, reproducibility and the

meaning of the electron densities obtained from such experi-

mental wavefunctions (Landeros-Rivera et al., 2021; Macetti et

al., 2021; Kleemiss et al., 2021; Grabowsky et al., 2020; Ernst et

al., 2020; Genoni et al., 2017). To address these concerns, and

in preparation for this paper, we have therefore first reviewed

the status of the XCW method, in Davidson et al. (2022). That

review presents missing equations and missing implementa-

tion details for the widely used Hirshfeld atom X-ray

constrained wavefunction (HA-XCW) method, which is also

used here.

In this paper, the focus is on the original problem of testing

the reproducibility of electron density features obtained from

a HA-XCW procedure. We do this by applying the HA-XCW

procedure to X-ray diffraction data from different experi-

ments, that is, experiments conducted on different hardware

and with different analysis protocols but using similar samples

of the same compound under conditions of the same

temperature and pressure. By comparing the electron densi-

ties obtained by fitting to these different data sets, the effects

of errors due to different experimental set-ups can be quan-

tified, and the current limits of reproducibilty can be

established.
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We have chosen �-oxalic acid dihydrate in this study

because 14 different data sets are available in the literature

and because one of these data sets was used about 20 years ago

by Grimwood & Jayatilaka (2001) when they reconstructed for

the first time an experimental wavefunction for any molecular

crystal (hereafter we refer to that paper as GJ2001). �-Oxalic

acid dihydrate has been used for similar purposes in assessing

the reproducibility of structural and atomic displacement

parameters obtained from X-ray diffraction experiments

(Coppens et al., 1984; Sanjuan-Szklarz et al., 2020).

There are good reasons to suspect that the XCW procedure

may not yield experimentally reproducible features in the

electron density. For example, even in the early GJ2001 work,

there were doubts about whether enhanced electron density

features around the two symmetry-equivalent hydrogen

atoms, shown in Fig. 1, were reproducible. At the time, it was

suggested that these features were due to the use of an

incorrect hydrogen atom position taken from an independent

atom model (IAM) refinement of only the high angle reflec-

tion data (Grimwood, 2002). In fact, later work on the

ammonia crystal (Bytheway et al., 2002; Capelli et al., 2014)

confirmed that small differences in the atomic positions and

atomic displacement parameters (ADPs) do indeed strongly

affect the electron densities obtained from an XCW fit; in fact,

even after a HAR calculation, the experimental and theore-

tical structure factor magnitudes agreed well within one

standard deviation, so there was actually no need to perform

an XCW calculation (Bytheway et al., 2002; Capelli et al.,

2014). Since the issue of the hydrogen atom position in

�-oxalic acid dihydrate has never been addressed properly, we

address it here.

Directly related to the question of reproducibility is what

we have called ‘the halting problem’ in part I (Davidson et al.,

2022) – that is, the problem of deciding what level of agree-

ment should be achieved between the calculated and observed

X-ray data before the fitting can be terminated. Properly

addressing the halting problem requires a way to accurately

characterize the errors in the estimated standard uncertainties

(the so-called �s) associated with the measured structure

factor magnitudes. Errors in the �s can be determined,

statistically, if the X-ray diffraction experiment is repeated on

the same sample under the same conditions, using different

equipment; or by using a completely different technique that

measures the same quantities. This is rarely done in practice.

Therefore, unsurprisingly, the halting problem remains

unsolved, but all the known attempts have been reviewed in

part I (Davidson et al., 2022).

It is worth clarifying that the halting problem does not arise

in a least-squares refinement to model parameters, unlike in,

e.g. a Hirshfeld atom refinement (HAR; Jayatilaka & Dittrich,

2008). However, in the XCW procedure there are usually

many more parameters than data, so there is a possibility of

‘overfitting’ the model. In fact, in principle, with a sufficiently

flexible basis set, an XCW should be capable of exactly

reproducing the experimental data. In practice, however,

convergence problems are observed if too good a fit is

attempted, so that the lack of convergence is a good indicator

of an attempt of overfitting the data. Lack of convergence

(defined in some arbitrary way) is the most popular way to

terminate the XCW procedure, but it remains an assumption.

In this paper, we suggest and test three new protocols for

dealing with the halting problem, which we outline in the next

section.

The aims of this paper, namely to investigate the reprodu-

cibility of features in the fitted electron densities and, by

implication, the halting problem, coincide with those of a

project of D. Jayatilaka supported by the IUCr Commission on

Charge, Spin, and Momentum Densities (now IUCr

Commission on Quantum Crystallography). That project was

never completed in a satisfactory way (Dacombe, 2013). The

present work, all previous investigations of the halting

problem, and the work of Landeros-Rivera et al. (2021)

represent contributions to that project.

2. Three new procedures to address the halting
problem

The functional minimized in XCW fitting (Jayatilaka, 1998)

which determines the experimental wavefunction � is

J½�; �� ¼ EQM½�� � �ðGoF2
½�� ��Þ; ð1Þ

where EQM[�] is the variational energy and GoF is the

goodness of fit agreement statistic between the calculated and

observed experimental data [which we have previously called

�2, incorrectly, see part I (Davidson et al., 2022)]. � is a

Lagrange multiplier parameter associated with the penalty

function, the term in the parentheses. In practice, the value of

� is manually adjusted so as to achieve �, the desired value of

GoF2. It is the choice of the final value of the desired �
(achieved via a particular value of �) where the fitting is

terminated that defines the halting problem. In what follows,

we refer to �opt as a value of � estimated by any method to halt
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Figure 1
The change in the electron density of �-oxalic acid dihydrate due to the
X-ray constrained fitting procedure. Static electron density difference
map between the constrained and the unconstrained Hartree–Fock
wavefunctions. Copyright IUCr, from Grimwood & Jayatilaka (2001).
Contours are in increments of 0.1 e Å�3, dashed lines are a decrease
while solid lines are an increase.



the XCW fitting process. More details about the meaning and

derivation of any of the parameters used in XCW fitting are

given in part I (Davidson et al., 2022).

2.1. The power function extrapolation procedure

We observed that log-log plots of GoF2 versus � from the

XCW procedure on experimental data were linear, indicating

that a good fit could be obtained by utilizing a power function

form for GoF2:

GoF2
ð�Þ ¼ A�B: ð2Þ

The quality of these fits (see xS.1) is remarkable, especially

when one considers that for B < 0 (which is required in order

to reproduce the observed monotonically decreasing curves)

the power function goes to infinity as ��!0. It is also

remarkable because, as � goes to infinity, the power function

goes to zero, something which is clearly not true based on a

perusal of the actual data. The remarkable fit is significant

because, by contrast, an assumed exponential form did not fit

the data nearly as well, see for example Fig. S4 in the

supporting information.

Alternatively, a [1/1]-Padé approximant

GoF2
ð�Þ ¼

aþ b�

1þ c�
ð3Þ

would more accurately reflect the behaviour of the GoF2(�)

function at high and low � values. The fit does indeed fit the

data remarkably well as shown in Fig. S5 in the supporting

information. However, in part I (Davidson et al., 2022), we

showed that GoF2 is an even function, but both the power

function fit and [1/1]-Padé approximant are not inherently

even functions. If � is simply squared to produce an even

function [i.e. GoF2(�2)], neither function now fits the data well.

Despite this, both the Padé approximant and the power

function fit the data extraordinarily well. In this paper, we only

pursue the power function fit, but the Padé approximant fit

certainly warrants further investigation in a future study.

Concerning the power function, we observed that the A

parameter is not clearly normally distributed (see Fig. S6 in

the supporting information), suggesting that it may be a scale

dependent quantity. Indeed, from a theoretical perspective, if

we define a ‘corrected’ GoF2 by

GoF2
corrð�Þ ¼

GoF2
ð�Þ

A
; ð4Þ

then plots of GoF2
corr versus � become very similar across fits

for different data sets of the same compound. Indeed, they are

mathematically required to intersect at GoF2
corrð1Þ ¼ 1 where

GoF2 = A, so that scaling all the standard uncertainties (�s) by

(A)1/2 would mean that at � = 1 all the different experiments

have a common variance relative to the experimental data.

Based on this, the first termination method we propose to

investigate is the one where � is chosen to be this common

intersection point; that is, we test terminating the fitting

procedure at the value of � equal to

�opt � �pow ¼ 1; where GoF2
¼ A: ð5Þ

The value of � = 1 has an added significance: at � = 1, the

effective force of the constraint due to the quantum

mechanical energy is the same as that due to the minimization

of the GoF2 term, that is

@J

@c��i

¼ 0¼)� ¼
@E0QM

@c��i

"
@GoF2

@c��i

#�1

ð6Þ

with c�i being the molecular orbital coefficients. Thus, when � =

1 the magnitudes of these two derivatives, or effective forces,

are the same, so the information coming from the quantum

mechanical constraint and the least-squares fitting may be said

to be similar. This argument is not a very strong one, because

the units of these effective forces are different.

2.2. Modified Tozer–Ingamells–Handy (TIH) asymptotic
extrapolation procedure

A second method of obtaining an optimal value of � to stop

the fitting process may be adapted from the work of Zhao &

Parr (1993) and Tozer et al. (1996), who exhibit methods to

obtain the Kohn–Sham wavefunction from theoretical elec-

tron densities defined on a set of grid points in real space. As

was shown in part I (Davidson et al., 2022), the constraint term

C defined in equation (4) of the paper by Zhao & Parr (1993)

used to obtain the constrained-fitted wavefunction is exactly

the same as our GoF2 term, if the values of the �s are

appropriately interpreted. Therefore, the XCW procedure

used by us differs only in the fact that we choose to obtain

constrained-fitted wavefunctions using structure factor

magnitudes, which are essentially electron density values

defined on a grid in reciprocal space, rather than real space.

As a matter of fact, Tozer et al. (1996) have shown that the

convergence problems observed by Zhao & Parr (1993) when

attempting to obtain the Kohn–Sham wavefunction from

theoretical electron densities are due to incompleteness in the

basis sets used to obtain the constrained-fitted wavefunctions.

In the XCW method, we have also observed the same

convergence problems. Hence, since our XCW method is

essentially the same as theirs, and since we also use a finite

basis set, our convergence problems must at least in part be

due to basis-set incompleteness. However, in addition, the

structure factor magnitudes that we fit to in the XCW proce-

dure are subject to experimental errors, and while these errors

are conceptually no different to the errors which are present in

the electron density grids used by Zhao & Parr (1993) and

(Tozer et al., 1996), these errors are likely much larger.

Therefore, we expect that these experimental errors will

exacerbate any convergence problems (this is confirmed in

x4.1.1 with a simple test).

Zhao & Parr (1993) used the fact that their constraint term

C [which corresponds to our GoF2(�)] is an even-function

asymptotic expansion in � to extrapolate the total energy and

kinetic energy. In part I (Davidson et al., 2022), we likewise

showed that GoF2(�) is also an even function of �. On the

other hand, Tozer et al. (1996) argued that their expansion

lacked a constant term representing the error term. Therefore,
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following the latter authors, we also assume an asymptotic

form

GoF2
ð�Þ ¼ Dþ E��2

þ F��4
þ . . . ð7Þ

where the term D represents the error term. Like Tozer et al.

(1996), we now desire to choose an optimum value of � = �opt

which is not so large that the constant error term D dominates,

i.e. we want

D<E��2 or �<�upper �

���� E

D

����
1=2

; ð8Þ

and not so small that the smaller, higher-order asymptotic

term dominates, i.e. we want

F��4 <E��2 or �>�lower �

���� F

E

����
1=2

: ð9Þ

The optimum value of � is thus determined when these two

terms are equal, i.e. when E = �2D = F/�2, or more specifically

when

�opt � �TIH ¼

���� F

D

����
1=4

: ð10Þ

If �lower < � < �upper then we say that we are in the asymptotic

region of the GoF2(�) curve. We should expect the coefficients

|D|, |E| and |F| form a monotonically decreasing sequence, and

this is what we indeed observe. However, in all cases �lower >

�upper, which means we are not strictly in the asymptotic

region.

We have also observed that the value of F may be negative,

which is unusual for an asymptotic form. Tozer et al. (1996)

have also seen such negative values, and say that ‘it is not

surprising that [F] has become negative, because for this

smaller range of three � values, more terms in the [asymptotic]

series . . . should be used’ and those authors use only the first

(basis set error) condition, equation (8), which in our opinion

is a tacit acknowledgement that this term is more important.

We also do the same. In any case, the objective here is to

extract the ‘best’ value for E which avoids overfitting, which in

this case means ensuring that the D term is not dominant.

We have determined the terms D, E, and F by fitting to

either the last 3 (�TIH3) or the last 6 (�TIH6) data points in the

GoF2 versus � plots to check if the two GoF2 values deter-

mined in these two ways are similar enough, say within a few

standard deviations of the least squares error in the TIH6 fit to

the data (there are no errors in the TIH3 method since these

parameters are exactly determined by three data points). That

is, a strong difference in the GoF2 values obtained from these

different fits would be another indication of problems with the

asymptotic expansion itself. We always fit to the data points

corresponding to the largest values of � where convergence

was possible because these are the points closest to the

asymptote. These choices are subjective.

2.3. A conservative method to halt fits when using multiple
data sets

We do not have any reason why the power function method

and the asymptotic expansion method described in the

previous two subsections should produce similar halting points

for a general system. Indeed, the two proposed methods for

estimating �opt are incompatible: the asymptotic method relies

on the fact that GoF2(�) is an even function of �, whereas the

power function method is not even, and as mentioned, does

not have the correct asymptotic behaviour at �!1, or at � =

0.

Therefore, we suggest a third method to solve the halting

problem, which is, however, only applicable if multiple data

sets are available as in this study, or if multiple subsets can be

produced in a meaningful way. We term it the ‘conservative

halting method’ for �opt because it consists in using the

minimum of all �opt values,

�min
pen ¼ mini

�
�penðoxaiÞ

�
; ð11Þ

and

�min
TIH6 ¼ mini

�
�TIH6ðoxaiÞ

�
: ð12Þ

�pen is the penultimate value of � before convergence ceases.

oxai refers to any of the 14 different oxalic acid data sets. �TIH6

was introduced in the previous subsection.

For a general application, the method described in this

subsection suggests to break up a given data set into different

subsets, determine �min
opt for each subset, and then use the

above formulae. The reflections in each subset could be

selected from the set of repeated measurements for a given

reflection, for example, in a kind of bootstrap procedure

(Efron & Tibshirani, 1994; Vetterling et al., 2002). This idea is

quite similar to the one used in the protein Rfree method

(Brünger, 1992). It is also similar to suggestions by Sanjuan-

Szklarz et al. (2020) and Landeros-Rivera et al. (2021), to

break data sets into low and high resolution parts. These

approaches are not investigated further in this paper but may

be of use in the future.

3. Methods and experimental data

3.1. The Zobel (1996) data

We used the data of oxalic acid from GJ2001, which were

taken from the appendix of the PhD thesis of Grimwood

(2002). The description in the thesis is a little better than that

from the original paper, and it states:

‘The structure factor data were supplied privately by

Zobel (1996), and were taken at 15 K using 0.71069 Å radia-

tion. This set is different to the one they deposited to the IUCr

(Zobel et al., 1992) . . . The experimental errors for the newer

data are on average 1.4 times smaller than for the published

data. However, the newer data is only a subset of the

published data in terms of the number of reflections’.

In the GJ2001 paper, only low-angle reflections with sin�/� <

0.71 Å were used, and weak intensity reflections with |F| < 2�
were removed. For this paper, for consistency with the other
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data sets, we further pruned reflections by rejecting weak

reflections with |F| < 4�, leaving a total of 560 reflections.

Genoni et al. (2017) showed that weak high order reflections

hamper the extraction of the electron correlation effects from

the stucture factors. Like GJ2001, we refined the hydrogen

atoms using isotropic ADPs.

The IAM geometry present in the crystallographic infor-

mation file (CIF) from Zobel et al. (1992) was used to initiate

the HAR (Capelli et al., 2014; Jayatilaka & Dittrich, 2008) in

this paper. The CIF was obtained from the Cambridge

Structural Database (CSD). Whereas we use the HAR-

derived positions and ADPs for the XCW fitting in this study,

GJ2001 used the IAM geometry in their XCW fittings. These

positions and ADPs were refined from the high angle part of

the original Zobel et al. (1992) data. In his PhD thesis,

Grimwood reports that the reason for this was because these

gave structure factors in better agreement with the experi-

mental values than when using the multipole-model-refined

parameters on the high-angle part of the data set, when using a

Hartree–Fock wavefunction.

3.2. The Kamiński et al. (2014) data

The 13 data sets of Kamiński et al. (2014) on �-oxalic acid

were all collected at 100 K on three different experimental set-

ups:

(i) Data sets oxa1-oxa7, and oxa11-oxa12 were collected on

a multi-layer optics Bruker AXS instrument.

(ii) Data sets oxa8-oxa10 were collected with a Bruker AXS

instrument with single monochromator optics.

(iii) Data set oxa13 was collected with a KUMA instrument.

The CIFs and F 2 structure factors are available as

supporting information on the IUCrJ webpage where the

original publication appears. According to Wozniak (2021),

these data sets are not to be regarded as of the usual charge

density quality, but were collected to calibrate new instru-

ments over several years. Nevertheless, such a large set of

repeated measurements of the same crystal type over many

machines and many years is rare, so these data are valuable,

and have been widely used for assessment purposes (Kamiński

et al., 2014; Sanjuan-Szklarz et al., 2020).

Further comments on these data are as follows

(i) Resolution. The resolution of these data sets was above

1.13 Å�1 except for data sets oxa10 (1.00 Å�1), and oxa11

(1.03 Å�1).

(ii) Completeness. All the data sets had completeness equal

to or greater than 95% except for data sets oxa4 (91%), oxa8

(89%) and oxa10 (85%).

(iii) Internal agreement. The internal agreement factors Rint

were equal or less than 2.60% except for data sets oxa2

(4.87%), oxa5 (3.83%) and oxa9 (4.61%).

For further details, consult Table 1 in Kamiński et al. (2014).

3.3. Choice of system for model wavefunction

The asymmetric unit of the crystal consists of only half an

oxalic acid plus one water molecule [Fig. 2(b)]. However, we

chose a cluster of molecules comprising a central oxalic acid

moiety with the closest six surrounding water molecules, as

shown in Fig. 2(a). Note that this model system is larger than

any of those used in the GJ2001 work to ensure that crystal

field effects on the central moiety are properly accounted for

here and to be consistent with the work of Sanjuan-Szklarz et

al. (2020). Point charges and dipoles surrounding this cluster

were not considered initially (see x5).

3.4. Wavefunction methods

All HAR and XCW fittings were based on Restricted

Hartree–Fock (RHF) wavefunctions. The effect of electron

correlation was assessed with DFT calculations using B3LYP

and PBE0 functionals [see e.g. Parr & Yang (1994)] and with

coupled-cluster calculations including singles and doubles

excitations (CCSD) (Helgaker et al., 2014), but without the

frozen core approximation. All DFT and coupled-cluster

calculations were single point based on the fixed HAR

geometry of the oxa11 data set.

3.5. Basis sets

Results in this paper are based on the Karlsruhe def2-SVP

basis set functions (Weigend & Ahlrichs, 2005), known to be

sufficient to provide HAR parameters in good agreement with

those from neutron diffraction experiments (Fugel et al.,

2018). Cartesian Gaussian basis functions were used

throughout. We did not use a triple-zeta basis set in order to

limit the fitting flexibility, and thus mitigate the danger of

overfitting.

3.6. Software

Reference DFT and CCSD calculations were performed

using the Gaussian09 program (Frisch, 2009).

HAR and HA-XCW procedures were performed using the

Tonto software package (Jayatilaka & Grimwood, 2003).

After the last step of HAR and equivalently at the unper-
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Figure 2
Structures obtained by the combined HAR on 12 Kamiński et al. (2014)
data sets as detailed in x4.2.4. (a) The model system for �-oxalic acid used
to construct the wavefunction comprising a complete central oxalic acid
moiety surrounded by six water molecules. The ADPs are plotted at the
50% probability contour level. (b) Subset of (a): ORTEP plot of the
symmetry unique atoms using the 99% probability contour level.



turbed � = 0 step at the outset of XCW fitting, a HF single-

point wavefunction (via MOs) was saved, for which Tonto

calculated electron density grid files. The same was done at

each � step during the fitting procedure.

For the DFT and CCSD calculations, formatted checkpoint

(FChk) files from Gaussian09 were produced and Tonto was

used to read in and generate electron density grid files. In the

case of CCSD, natural orbitals were calculated in Tonto for

this purpose.

Contour plots were generated with the program gnuplot

version 5.2 (Williams et al., 2019) using a script written by the

Tonto program (Jayatilaka & Grimwood, 2003).

Plots of the oxalic acid system with ADPs were made using

the CrystalExplorer 21 software (Spackman et al., 2021).

3.7. Contour plots

Electron densities are represented as (positive) number

densities, throughout.

Plots represent the differences of static electron densities at

a chosen maximum or optimum �-value minus the electron

density from the unfitted wavefunction (� = 0, no physical

effect beyond the HF ansatz), i.e. they show the change from

the unfitted wavefunction due to the constraint. The differ-

ence between contour levels is always 0.025 e Å�3. In all plots

for this paper, blue indicates a positive contour value, a rela-

tive increase in the number of electrons, while lilac represents

a negative contour value, a relative decrease in the number of

electrons.

To understand the effect of electron correlation in isolation,

contour plots of the CCSD or DFT electron densities relative

to (subtracting) the corresponding HF electron densities are

shown at the fixed geometry from the oxa11 HAR calculation.

(The geometric changes between different HARs are too

small to affect the resulting CCSD and DFT calculations used

in the qualitative comparisons that we used these data for). In

the case of CCSD, we used the relaxed density matrix form-

alism (Frisch, 2009).

3.8. Details of HAR

|F|2 reflection data was reduced to |F| data by setting |F| =

(|F|2)1/2 and at the same time �(|F|) was set to the larger of the

two values of [|F|2 � �(|F|2)]1/2
� (|F|2)1/2. HAR included all |F|

> 4�(|F|). Extinction was not modelled. The weighting scheme

used in HAR in Tonto is 1/�(|F|). A scale factor was calculated

by least squares by minimizing GoF2 separately and after the

refinement of the positions and ADPs in each HAR cycle, i.e.

the scale is not optimized at the same time as all the other

parameters. The reason is that the scale needs to be refined

even in the XCW procedure for the molecular orbital para-

meters, which is not a least-squares process.

The geometrical and ADP parameters in the CIFs were

used as starting parameters for HAR. Note that in our HAR

CIFs, more than an asymmetric unit of atoms is provided

[Fig. 2(a)], and this corresponds to the system used to calculate

the wavefunction �. Moreover, we use the convention that the

first symmetry-unique atoms listed in the CIF are those which

are actually refined. (Recall that some atoms in the system, e.g.

extra water molecules, are used only as ‘buffer’ atoms to

provide a good approximation to the crystalline environment,

and they are not refined but defined by symmetry from those

earlier in the list). Residual density maps for these HARs are

shown in Fig. S19.

The resulting geometry and ADPs for a simultaneous HAR

on all Kamiński et al. (2014) data sets is shown in Fig. 2(b). A

single model was refined from 12 of the Kamiński et al. (2014)

data sets. Data set oxa2 was excluded from the joint fitting

because its figures of merit (Table S6) and difference density

distribution (Fig. S13) showed it to be an outlier. For the other

12 data sets, each set of reflections was assigned to a different

group, and a scale factor for each group was least-squares

refined. The optimum scale factors were all close to unity and

are reported in xS.8 of the supporting information. A new

procedure was implemented in Tonto to calculate the residual

electron density from the single calculated structure factor set

and the 12 experimental data sets for the joint refinement. The

corresponding residual density maps are shown in Fig. S20.

The CIF of this joint refinement has also been deposited with

the Cambridge Structural Database and can be obtained

under CCDC-2144303 from https://www.ccdc.cam.ac.uk/struc-

tures/.

3.9. Outlier data from HAR

Our experience is that the GoF2 value and the convergence

characteristics of the XCW procedure are dominated by only a

handful of outliers. The quantile-quantile (Q-Q) plots (see the

supporting information, Figs. S8 and S9) show that the data

are not normally distributed, and have ‘fat tails’. The distri-

butions are also sometimes highly skewed. One then has to

decide whether these differences are due to insufficiencies of

the model, or errors in the experiment. In the former case,

there would be important information in the experiment

which is not being modelled.

We take the view that the errors are more likely in the

experiment than in the model. One reason is that the HAR

model produces positions and ADPs in agreement with

independent results from neutron diffraction, even for

hydrogen atoms (Woińska et al., 2016). Therefore, the model is

accurate and reliable enough to reproduce coordinates, ADPs

and the static electron density distribution. More indirectly,

the quantum chemical models have been tested against a huge

range and variety of experimental data, see Goerigk et al.

(2017) for one example. By contrast, we have few data

allowing corresponding independent experimental verification

for non-synchrotron X-ray diffraction experiments, such as the

data at hand here. Besides, it is well known that outliers occur

far more frequently in experiments than is predicted by the

normal distribution, due to the fact that the rate of conver-

gence of the experimental distribution to a normal distribution

varies greatly according to how far away the data are from the

mean – the convergence is much slower further away from the

mean (Sherman, 1971). Therefore, outliers are expected in the

experimental data.
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To mitigate the effects of outliers, our approach is therefore

to only remove a few of the very worst reflections from all data

sets, after performing an initial HAR as described above.

Outlier reflections r were decided based on the value of

ðjFobs
r j � jF

calc
r jÞ=�ðjF

obs
r jÞ, removing only a handful while

trying to maintain a symmetric distribution.

ðjFobs
r j � jF

calc
r jÞ=�ðjF

obs
r jÞ values of the removed outliers are

reported in the supporting information in xS.11 in Table S4.

After removal of the outliers, the ADPs of the hydrogen

atoms in several of the data sets became far less ‘flat’, as

discussed below.

Table 1 gives HAR agreement statistics before and after

outlier removal. As expected, some GoF2 values change

drastically. Before, outlier removal data set oxa11 had the

lowest R1 value, data set oxa13 had the lowest wR2 value, while

data set oxa2 had the lowest GoF2 value. After removal, data

set oxa2 still had the lowest GoF2 value of 0.994. Data set

oxa11 had the lowest R1 and the lowest wR2 values.

The number of reflections removed from each data set can

be seen in Table 1. Before removal of outliers, the ADPs of the

hydroxyl H atoms obtained with data sets oxa2-oxa4, oxa6-

oxa8, and oxa11 were unreasonably flat. No hydroxyl H atoms

were unreasonably flat after removal. The removal also caused

subtle changes to the hydroxyl O—H bond lengths: most

changes were 0.005 Å or smaller; however, data sets oxa5,

oxa7, oxa8, oxa10 and oxa13 all had decreases between 0.010–

0.015 Å; data set oxa11 exhibited an increase of 0.014 Å. For

the Zobel data, when hydrogen atoms were refined aniso-

tropically (as mentioned, they were not in the later studies)

then the ADP for the hydrogen-bonded H atom became non-

positive definite.

3.10. HAR results for the Kamiński et al. (2014) data

Abrahams-Keve (or Q-Q) plots are shown for each data set

in Figs. S8–S9 in xS.9 of the supporting information. Most of

these show the typical non-Gaussian fat tails and outliers, even

after removal of the handful of the worst ones. Particularly

bad tails are observed on the data sets oxa1, oxa3, oxa5-oxa7,

and oxa11-oxa12. Perhaps more important is a clearly skewed

distribution (not including extreme outliers) in data sets oxa1,

oxa3, oxa4, oxa6!, oxa11, and oxa12! (with exclamation marks

indicating particularly strong effects). Some of the data sets

have very large outliers which seem to be associated with some

systematic effects.

The ADPs of the asymmetric unit atoms from the combined

refinement of all the data sets (except data set oxa2) are shown

in Fig. 2(b). The hydrogen ADPs are positive definite and not

obviously wrong. Plots obtained from each outlier-pruned

data set are separately shown in Figs. S10–S11 in xS.10 of the

supporting information.

HAR on the data sets produces R1 values between 1.2–2.1%

which means at worst a 98% agreement with experimental

structure factors. This means we are fitting in the absolute limit

of information contents of the data with the XCW procedure

after HAR is performed.

3.11. Details of HA-XCW

XCW fittings were performed using successively larger

values of � as described below. At the first step at � = 0, the

XCW was started from the molecular orbitals (MOs) of the

previous HAR. After this, the procedure continues using the

MOs from the previously converged step. Direct inversion of

the iterative subspace (DIIS) extrapolation was used (Pulay,

1980, 1982) keeping up to eight previous sets of MO vectors,

and the procedure saving from the first iteration. If an MO

vector with smaller gradient was not found by the DIIS

procedure, it resets keeping the MOs with the lowest error.

Density matrix damping and level shifting was used to stabilize

oscillations for the first 3 iterations, with a damping factor of

0.5 (that is, keeping 50% of the density matrix from the

previous iteration), and a level shift of 0.3 atomic units (au).

Convergence was achieved when the DIIS error vector

magnitude was less than 0.001 au which in every case resulted

in successive energies being within 0.00001 au of each other or

less. A calculation was deemed not to converge if it took more

than 100 cycles of the above process.

3.12. HA-XCW k scan protocols to obtain kmax

The purpose of this protocol is to obtain reasonable XCWs

for a given � in the most economical way. The intent is to

ensure that the XCW changes smoothly from the unfitted

wavefunction to the constrained wavefunction, minimizing the
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Table 1
Refinement figures of merit for HAR using a RHF/def2-SVP wavefunc-
tion for the Kamiński (2014) data sets, before and after removal (A.R.) of
outlier reflections.

The removed reflections are listed in Table S4.

Data
set GoF2 R1 wR2

No. of
reflections
removed

GoF2

A.R.
R1

A.R.
wR2

A.R.

oxa1 2.494 0.0171 0.0485 11 1.769 0.0161 0.0430
oxa2 1.158 0.0209 0.0436 2 0.994 0.0205 0.0422
oxa3 2.671 0.0153 0.0453 9 1.496 0.0143 0.0390
oxa4 1.426 0.0171 0.0418 3 1.215 0.0167 0.0402
oxa5 2.940 0.0196 0.0521 11 2.012 0.0184 0.0472
oxa6 2.210 0.0158 0.0426 11 1.591 0.0153 0.0385
oxa7 2.090 0.0162 0.0441 7 1.544 0.0150 0.0387
oxa8 1.274 0.0202 0.0455 3 1.223 0.0198 0.0446
oxa9 1.439 0.0209 0.0510 4 1.391 0.0208 0.0502
oxa10 1.320 0.0191 0.0449 3 1.256 0.0187 0.0438
oxa11 3.681 0.0138 0.0469 20 2.128 0.0124 0.0375
oxa12 2.230 0.0159 0.0438 11 1.762 0.0154 0.0406
oxa13 1.418 0.0172 0.0397 5 1.311 0.0163 0.0382

Table 2
�max values achievable after the standard uncertainties �obs

112 with jFobs
112 j =

1613.70 and �obs
11�1 with jFobs

11�1j ¼ 3397:43 are artificially scaled by factor �.

Using � = 0.01 already failed to converge in the first iteration (� = 0.01).

Scale factor � � �112 � �11�1 �max

1.00 3.340 17.580 0.19
0.10 0.334 1.758 0.13
0.05 0.167 0.879 0.09
0.01 0.033 0.176 –



possibility of spurious solutions which might be found if one

used any larger value of � directly from � = 0. This � scan

procedure ensures a continuous set of XCWs �(�).

To find �max, the basic idea is to start with a small value, and

then to quickly increase that value by factors of 10 until

convergence fails, then backtrack to the previous largest value

and increase more slowly in linear increments. In more detail,

start with � = 10�n, with n = 4. Then n was decreased in unit

steps until convergence failed at nfail. Every XCW procedure

was started with the density matrix from the previously

converged step. At this point, the procedure was restarted

using the last value of � that converged, � ¼ 10�ðnfailþ1Þ, and

then increased linearly in these step sizes [10�ðnfailþ1Þ], until

convergence fails at � ¼ k10�ðnfailþ1Þ ¼ �max. The penultimate

converging value �pen ¼ ðk� 1Þ10�ðnfailþ1Þ was used to

generate contour plots.

3.13. HA-XCW k scan protocols to obtain kopt

To get a series of � values for the power function and

asymptotic extrapolation procedures for the halting problem,

the following procedure was used

(i) For the Zobel data set, � was increased from zero in

increments of 0.01.

(ii) For the Kamiński et al. (2014) data sets, � was increased

from zero in increments of 0.02, 0.1, or 0.2 for � in the ranges

0 � � � 1.2, 1.2 � � � 2, and 2 � � � 4, respectively.

4. Results

4.1. HA-XCW for the Zobel data

4.1.1. The dependence of XCW fitting on standard uncer-
tainties. To test the sensitivity of the XCW fitting procedure to

incorrect or too small standard uncertainties (�) values, we

fitted to the Zobel (1996) data set, but adjusted the � values on

the two intense reflections (1 1 2) and (1 1�1) by scaling them

by a factor � between 1 and 0.01 and investigated the value of

�max in each case. The intent of this procedure is to artificially

produce what we referred to as incompatible measurements in

part I (Davidson et al., 2022). The results

are included in Table 2. As the �� values

decrease, so too does the value of �max,

indicating that failure to converge occurs

at lower penalty values. Indeed, using a

scale factor of 0.01, no convergence could

be achieved anymore for any value of �.

We conclude that the XCW fitting proce-

dure depends on the � values provided, as

adjusting the values of only two out of

over 560 reflections affects the conver-

gence behaviour.

4.1.2. Agreement statistics. Table 3

shows the GoF2 agreement statistic at the

� values for the different halting proce-

dures. � = 0 refers to the HAR. The result

from GJ2001 is shown under the heading

IAM TCPDF XCW.

HAR produces a GoF2 value of 3.5, very similar to the GoF2

of 3.4 from GJ2001 after fitting. In the original work, various

molecular clusters were considered, up to and including four

water molecules, and the GoF2 value before constraining the

orbitals were all in excess of GoF2 = 15.2. Using the same

reflections as in the original work (582 reflections), GoF2 = 9.0

before fitting. The system used in this work involves six water

molecules, representing an extra two molecules in the

periphery, but it is unlikely that these additional molecules

could explain such a large discrepancy. The improvement in

the GoF2 value is probably due instead to the optimized

atomic positions and ADPs from HAR.

For all the final XCWs for which the halting procedures

worked (see next subsection) a reduction of the GoF2 from 3.5

to less than 2 was obtained. This corresponds to a 30%

reduction of the �-normalized deviations from the experi-

mental structure factor magnitudes, indicating that there is

some information in the experimental data which is not

modelled by HAR alone.

4.1.3. Halting procedures. Fig. 3 shows the GoF2 as a

function of � plot, as well as the fitted power function of

equation (2), with values of A = 1.344 (6) and B = �0.159 (1).
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Figure 3
GoF2 versus � for a HA-XCW using a RHF/def2-SVP wavefunction for
the Zobel (1996) data set, with a fitted power function A�B, with A =
1.344 (6), and B = �0.159 (1).

Table 3
GoF2 agreement statistics for different XCW termination models, and for the IAM TCPDF result
from GJ2001.

Note that GJ2001 used a model with only four surrounding water molecules, whereas this work involves
six; see x3.3 for more details. Parameters for the different halting methods are also given, including
halting values � = �opt; power function parameters A, and B; and asymptotic expansion coefficients D, E,
and F; see x2 for details. Missing values indicate that it was not possible to converge the XCW to the
halting value. Errors in the parameters are determined by the least-squares method in cases where there
are more data than parameters.

Model � GoF2 A B D E F

IAM TCPDF XCW
�max 0.30 3.4 – – – – –
HA-XCW
� (HAR) 0.00 3.5 – – – – –
�pow 1.00 – 1.344 (6) �0.159 (1) – – –
�TIH3 0.03 2.36 – – 1.64 0.0013 0.000067
�TIH6 0.08 2.02 – – 1.53 (1) 0.0094 (6) �0.000066 (8)
�pen 0.18 1.75 – – – – –
�max 0.19 1.74 – – – – –



The plot and the errors in these parameters show that this

function fits very well, although some of the GoF2 values are

slightly underestimated at small � and slightly overestimated

as � increases. This behaviour is reminiscent of the observa-

tion of Genoni (2013) regarding an inflection point in the

GoF2 versus � curve. It was not possible to reach the halting

point �pow = 1 at GoF2 = A = 1.344.

The 3- and 6-point TIH methods were also used to estimate

�opt. The corresponding fitting parameters are also given in

Table 3. We observe that |D| > |E| > |F| but for the TIH6

method, the value of F is negative, and we establish that the

curve is not in the asymptotic region. Therefore, we use the

value �TIH = �upper to halt the XCW procedure for the reasons

given in x2.2. Although the values from the 3- and 6-point fits

are not consistent to each other within the error bars, the

values of �opt and the corresponding GoF2 values are similar,

but they are not at all close to � = 1, the termination point for

the power-function method.

4.1.4. Effect of the constraint on the electron density. Fig. 4

shows maps of the constrained minus the unconstrained

electron density, for three different �opt values. Lilac regions

depict a loss of electron density caused by the fitting process,

e.g. in the centre of the C—C bond, whereas blue areas depict

a build-up of electron density upon fitting, e.g. around the non-

hydrogen atomic cores. The features in all three plots are

essentially the same, but become more exaggerated (by at

most one contour level) in Figs 4(a) to 4(d). Some features

become more delocalized as � increases (e.g. the depletion on

the hydroxyl oxygen atom). From here on we only present

plots for � = �TIH6, because the key features are present and

the conservative value of � leaves the refinements less likely to

be affected by overfitting.

More interesting is the comparison with the original plot in

GJ2001, reproduced in Fig. 1. Importantly, the strong increase

in electron density around the hydrogen atom (by several

contours of 0.1 e Å�3) has almost completely disappeared in

all of the HA-XCW plots; there is now only a very small and

delocalized increase of 0.025 e Å�3.

As stated in the introduction, the strong buildup of charge

on the hydrogen atom might be due to a wrong O—H bond

length, since this was obtained from an IAM refinement. The

O—H bond length obtained from the CIF of Zobel et al.

(1992) was 0.94 Å. However, the bond length and ADPs used

by GJ2001 were not reported; as these were from an IAM

refinement, it is almost certain that the bond length was

shorter than the HAR value used here, which was 1.12 Å, i.e.

significantly longer. The relatively large HAR value makes

sense, since this hydrogen atom is part of a strong hydrogen

bond with d(O	 	 	O) = 2.484 Å. Therefore, the strong stret-

ched feature near the oxalic acid hydrogen atom in Fig. 1 may

be explained as a simple correction to a ‘wrong’ geometry, not

any new many-body physics.

4.2. HA-XCW for the Kamiński et al. (2014) data

Tables S5–S17 in xS.12 of the supporting information

present the collected GoF2 versus � data points for each of the

13 data sets by Kamiński et al. (2014). Figs. S1 and S2 present

the corresponding power function fits, for the GoF2 and

GoF2
corr versus � plots. Table S1 presents the A, B, D, E and F

parameters for the power function and asymptotic fitting

methods to decide the halting point. Some more discussion

about the obtained magnitudes of these parameters in given in

the supporting information in xS.1 and xS.2.

4.2.1. Comparison of the halting procedures. The halting

values of � at the penultimate value before convergence
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Figure 4
Comparison of changes in electron density due to the XCW procedure for
the Zobel (1996) data set. The plots presented are at (a) �opt = �TIH3

[�TIH3 = 0.03], (b) �opt = �TIH6 [�TIH6 = 0.08], (d) � = �max [�max = 0.19],
and (c) one step before at � = �pen [�pen = 0.18]. Units are in e Å�3 , each
contour indicates a change of 0.025 e Å�3.

Table 4
�opt values (�pen, �TIH3 and �TIH6) used to halt the HA-XCW procedure,
and the corresponding GoF2 values.

‘All’ represents values for the simultaneous refinement of all Kaminski et al.
data sets except oxa2. ‘Allmin’ is the same but using data fitted up to � =
mini[�pen(oxai)] = 0.28.

Data set �pen GoF2(�pen) �TIH3 GoF2(�TIH3) �TIH6 GoF2(�TIH6)

oxa1 0.74 1.263 0.20 1.411 0.21 1.401
oxa2 2.00 0.835 0.39 0.890 0.36 0.894
oxa3 1.18 1.060 0.41 1.146 0.32 1.171
oxa4 1.20 0.921 0.32 0.999 0.30 1.002
oxa5 1.18 1.415 0.36 1.549 0.30 1.572
oxa6 0.78 1.059 0.24 1.189 0.24 1.189
oxa7 0.74 1.075 0.22 1.193 0.20 1.204
oxa8 1.20 0.978 0.29 1.052 0.28 1.056
oxa9 2.00 1.153 0.40 1.240 0.38 1.243
oxa10 1.16 0.959 0.26 1.060 0.30 1.051
oxa11 0.28 1.390 0.10 1.582 0.09 1.582
oxa12 1.20 1.265 0.36 1.395 0.33 1.402
oxa13 1.40 0.981 0.39 1.074 0.36 1.082
All 1.16 1.395 0.25 1.516 0.23 1.523
Allmin 0.28 1.509 – – – –



ceases �pen and values associated with the TIH extrapolations

are given in Table 4. Values of �TIH3 and �TIH6 and the GoF2

corresponding to these values are very close to each other

indicating that the asymptotic expansions are consistent with

each other, and it does not much matter which method (3- or

6-point) is used. We observe that the GoF2 values are very

similar, differing by at most 2.2% in data set oxa3. The TIH6

method might be more preferable because it has associated

error estimates that could be used to indicate a failure of

reliability (if the errors are large). Values of �TIH3 and �TIH6

could always be reached in all of the data sets.

It is interesting to note that there is a strong correlation

between the A parameter in the power function fitting and the

asymptotic extrapolation D parameter (see Fig. 5 for a plot

between the A parameter and the 6-point D parameter) the

former of which was argued to represent the error in the �s,

while the latter was argued to represent the basis-set and

experimental error. The Pearson correlation coefficients

between A and the 3- and 6-point D values are 0.97 in both

cases.

The value of A is not well correlated with �TIH3 or �TIH6; the

correlation coefficients are, respectively, �0.10 and �0.19.

However, A is remarkably well correlated with the corre-

sponding GoF2(�TIH3) and GoF2(�TIH6) values; the corre-

sponding correlation coefficients are greater than 0.92 in both

cases. If A is a measure of the errors in the �s and hence a

measure of the errors in the experiment, this lends support to

the fact that the GoF2 values at the TIH halting values also

incorporate this same information concerning the errors in the

experiment, which is very encouraging.

Note that beyond small values, �opt is rather variable

compared to the corresponding GoF2(�opt) values, due to the

power functions form of the relationship between them. For

example, the slope of the power function A�B at � = 1 is easily

evaluated to be AB, which has a small value of about �0.1 in

most cases, and it is even smaller for larger values of �.

4.2.2. Effect of different halting procedures on fitted
electron density. Fig. 6 shows the effect of the XCW fitting

process on the electron density for � = �TIH6 for all data sets

except oxa2 (i.e. it shows the electron density fitted at � =

�TIH6 minus the electron density at � = 0). Data set oxa2 is

presented separately in Fig. S13, because it has distinctly

different characteristics. Similar plots at other �opt halting

values are available in xS.15 of the supporting information,

Figs. S14–S18. There, the plots from the different �opt values

are shown side-by-side to facilitate verification of the discus-

sion in the next paragraphs.

We observe from these plots that the effect of XCW fitting

on the electron density depends on both the data set and on

the halting procedure used, however, to different extents as

will be discussed now. The 3- or 6-point asymptotic methods

are essentially the same, as is expected since the corre-

sponding GoF2 values for halting these procedures is the same.

The features from the power function halting procedure maps

are qualitatively similar to those obtained from the asymptotic

method for each data set and the changes are bigger than

between �TIH3 and �TIH6 since the power function halting

point at � = 1 involves a significantly larger penalty. The

method of fitting to �pen yields halting values roughly

around � = 1 (although oxa9 is exceptional) and so the elec-

tron density difference maps from this �pen method exhibit

features qualitatively more similar to those from the power

function method than from the asymptotic extrapolation

method.

In summary, whereas the effect based on the data set shows

qualitatively different features (discussed in the next subsec-

tion), the effect based on the halting procedure shows always

the same qualitative features, but quantitatively more or less

pronounced. The features are less pronounced with smaller �
values, and more exaggerated with higher � values, as

expected. Therefore, if only qualitative features are of interest,

this means that for any regular example we can still fit to �max

as has always been done.

The differences in the features of the electron density in the

valence regions amount to only a few contours – essentially a

few multiples of 1/40th e Å�3. This is a substantially better

agreement than was observed in GJ2001 and papers from that

era, which is an important objective measure of the

improvement in both the theoretical models and experimental

data since that time. These improvements in the contour maps

are of course consistent with the improvements in the HAR

agreement statistics in Table 1.

4.2.3. Qualitative analysis of features due to HA-XCW
fitting. Since the features due to the XCW fitting halting

process are qualitatively identical, only differing in the

magnitude of the contour levels, further comparisons
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Figure 5
Plot between the A parameters from the power function fitting procedure
and the corresponding D parameter from the 6-point asymptotic
extrapolation procedure. These parameters have a Pearson correlation
coefficient of 0.97. The line of best fit is D = 0.98 (8)A � 0.03 (8).



are based only on an analysis of Fig. 6 from the more

conservative, and theoretically more sound, asymptotic halting

procedure.

In an attempt to objectively find qualitative similarities

between any features, we divided the plot space into bond

regions between the atoms, core regions near the nuclei, inner

valence regions, and outer valence regions away from bond

regions. Within these regions we tried to identify features

(judged by the number, or shape, of the contours) to classify

the qualitative changes. These features are described below,

and cross-referenced to ideal or model visual examples given

in Fig. 7. The features are:

(i) A decrease in the ‘lone pair’ feature in the outer valence

region of the oxygen atom in the hydroxyl unit, denoted by

‘-lp’ [Fig. 7(a)];

(ii) An ‘elephant ears’ – depletion of the lone pairs – feature

in the outer valence on the carbonyl oxygen atom, denoted by

‘ee’ [Fig. 7(b)];

(iii) A polarization in the electron density in the core away

from the bonded atom B; this could also be called a decrease
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Figure 6
Difference in electron density due to the XCW fitting procedure on the Kamiński et al. (2014) data sets at � = �TIH6 for all data sets except oxa2. Units are
in e Å�3, difference between contour levels is 0.025 e Å�3. Lilac is a reduction of electron density, blue is an increase upon fitting.



or pink colour towards the bonded atom, denoted by !B

[Fig. 7(c)];

(iv) A crescent-shaped decrease in electron density in the

inner valence region, centred on the bisector of the smaller

(obtuse) C—O—H bond angle, and corresponding to a kind of

partial shell structure, denoted by? CH [Fig. 7(d)]; and finally

(v) An increase in electron density in the outer-valence

region of a given atom, away from any bond [Fig. 7(e)], or

inside the bond [Fig. 7(f)], denoted by +. Likewise, a decrease

is denoted by �.

Table 5 quantifies the appearance of these features for each

data set, making use of the shorthand symbols associated with

these features, listed above.

Bond regions. In all data sets, there is a decrease in the

C—C bond density (except in oxa11), mostly an increase in

the C—O bond density (except in oxa5, oxa8 and oxa11), and

an increase in the C O bond density (except in oxa10). The

behaviour in the O—H bond is less clear, with a clear increase

in the bond density in 8 of the 13 cases.

Core regions. Across all data sets, there is a consistent

increase in the electron density very close to the centre of the

C atom, and the same is true for the O atom in the O—H bond.

For the O atom in the C O bond, in all cases there is a

decrease in the core region polarized towards the C atom

(except oxa8). For the H atoms, the behaviour is less clear:

there is generally no change (eight cases), with an increase in

two cases, and a decrease in three cases.

Inner valence regions. For the C atom, there is no clear

consistent behaviour: there is a weak decrease in four cases, a

weak increase in five cases, and no change in four cases. The

behaviour is difficult to quantify, since there are varying

directional polarizations associated with this effect, which is

reminiscent of a shell or crescent-like structure. For the O

atom in the O—H moiety, there is a generally crescent-shaped

decrease in electron density in all cases, but again, in some

cases the feature is nearly absent or highly degenerated from

the ideal form used for classification. For the O atom in C O,

the situation is much more clear: there is always an increase in

the inner valence region in all cases, but the associated shape is

somewhat variable and lopsided.
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Table 5
Effect on the electron density in the midpoint of the bond, the core, the inner-valence and outer-valence regions of the specified atoms due to the HA-
XCW fitting process at � = �TIH6 for each of the Kamiński et al. (2014) data sets.

Symbol + (�) indicates an increase (decrease) in electron density relative to the unfitted wavefunction;!A indicates a decrease in electron density towards atom
A in the core region; 0 indicates the change was less than 0.025 e Å�3;?AB indicates a crescent-shaped decrease in electron density centred on the atom, towards
atoms A and B; and ee indicates elephant ears a decrease parallel to the oxygen atom; and -lp indicates a decrease in the lone pair of an atom. See Fig. 7 for model
examples of these features. ‘All’ refers to the HA-XCW simultaneously fitting all data sets; and B3LYP, PBE0 and CCSD indicate results for the corresponding
theoretical wavefunctions.

Bond region Core region Inner valence region Outer valence region

Data C—C C—O C O O—H C O in OH O in C O H C O in OH O in C O C O in OH O in C O

oxa1 � + + + + + ! C 0 + ? CH + + -lp ee
oxa3 � + + + + + ! C 0 � ? CH + + -lp ee
oxa4 � + + + + + ! C � + ? CH + + -lp ee
oxa5 � � + � + + ! C + � ? CH + 0 0 ee
oxa6 � + + + + + ! C 0 + ? CH + + -lp ee
oxa7 � + + + + + ! C 0 0 ? CH + + -lp ee
oxa8 � � + 0 + + + 0 0 ? CH + + 0 ee
oxa9 � + + � + + ! C 0 � ? CH + 0 + ee
oxa10 � + 0 � + + ! C � + ? CH + + -lp ee
oxa11 0 0 + + + + ! C 0 0 ? CH + 0 -lp ee
oxa12 � + + + + + ! C + � ? CH + + -lp ee
oxa13 � + + + + + ! C 0 0 ? CH + + -lp ee
All � + + + + + ! C 0 � ? CH + + -lp ee
B3LYP � � � � � � � + + + + + -lp ee
PBE0 � � � � � � � + + + + + -lp ee
CCSD � � � � � + + + + + + + -lp ee

Figure 7
Model examples for key features which appear exclusively in regions of
the HA-XCW electron density due to the fitting process (red boxes), and
which were used to identify similarities and differences in the electron
density difference maps. (a) The reduction in lone pair electrons on the
hydroxyl oxygen atom (-lp), (b) the elephant ears feature (ee) on the
carbonyl oxygen atom, associated with the two lone pairs, (c) the strong
decrease in electron density towards the bonded atom C (!C) in the
core region, (d) the crescent-shaped decrease in the inner valence
electron density in the bisector of the obtuse part of the /COH,
perpendicular to the line joining the C and H atoms (?CH), (e) a build
up in electron density in the outer-valence region of the atom C (+C)
away from the bonds, and (f) a build up in electron density in the bonding
region between the C atom and the carbonyl O atom (+C O).



Outer valence regions. For the C atom, there is an increase

in the valence electron density upon fitting on the non-bonded

side in ten cases, the remaining three cases showing no change.

For the O atom in OH, there is a depression in the lone pair in

the outer region in nine cases (the exceptions are for oxa5,

oxa8 and oxa9, though in the last cases there is a very weak

depression). For the O atom in the C O group, there is a very

clear pair of elephant-ears-shaped depletions for all the cases,

but the shape is neither symmetric or uniformly asymmetric.

In summary, the only clearly consistent features observed in

the electron density over all data sets after fitting are:

(i) A decrease in the electron density of the C—C bond

(except for oxa11, but it appears in the � = �pen plot, i.e. at a

higher � value);

(ii) In the core region, an increase in the electron density on

the carbon atoms;

(iii) In the inner-valence region, a crescent-shaped decrease

in the electron density in the hydroxyl oxygen atom; and

(iv) In the outer valence region, a decrease in the electron

density in the carbonyl oxygen atom lone pairs, the so-called

elephant ears structure, and an increase in electron density

around the carbon atoms;

The water molecule is not discussed in the tables. For the

water molecule in the hydrogen bond (the one whose electron

density is constrained, see x3.8), there is a consistent increase

in electron density towards the core of the oxygen atom, and a

decrease in the lone pair on the oxygen atom in all data sets.

4.2.4. Simultaneous HA-XCW fitting of all Kamiński et al.
(2014) data sets. To gather a consensus between all the data

sets, we performed a HAR and then a HA-XCW fitting, i.e. a

full X-ray wavefunction refinement procedure based exclu-

sively on Hirshfeld atoms [called XWR(HA), see part I

(Davidson et al., 2022)], on all data sets but oxa2 simulta-

neously. Each data set was given its own separately least-

squares optimized scale factor. The GoF2 versus � plot

behaves as expected and is included in Fig. S3. A power

function fit yielded fitted parameters A = 1.4053 (6) and B =

�0.0554 (3), while asymptotic model fits produced 3-point

parameters of D = 1.346, E = 0.084 and F =�0.026 and 6-point

parameters of D = 1.350 (4), E = 0.073 (9) and F = �0.018 (6).

These values are reported with those from the individual data

sets in Tables 4 and S1 in the ‘All’ row. There is little of note

about a comparison of all fitting parameters, other than that

they are distinctly not the average of the parameters of the

individual refinements.

If A represents a scaling associated with the �s, as argued in

x2, then one might expect that this value is dominated by the

largest individual value of A in the combined data set; and

indeed, the value for A in oxa5 is 1.43, compared to 1.41 when

refining all data sets simultaneously. A somewhat similar

alternative explanation might be that the �s from the indivi-

dual data sets are underestimated, and when combined toge-

ther the A value for the combined data set is larger. The latter

is a more conservative hypothesis than the former because it

does not posit that the A value from the combined refinement

is due to the largest of the individually refined A values.

Hans-Beat Bürgi tribute

Acta Cryst. (2022). B78, 397–415 M. L. Davidson et al. � X-ray constrained wavefunctions. Part II 409

Figure 8
Plot between the individual A parameters from the power function fitting
procedure (see Table S1) and the GoF2 values for these individual data
sets when they are used in the joint refinement. These parameters have a
Pearson correlation coefficient of 0.68, which increased to 0.91 with the
removal of the outlier at (0.93, 1.80). Without the outlier the line of best
fit, shown in green, is GoF2 = 1.9 (3)A � 0.7 (3).

Figure 9
Difference in electron density due to the XCW fitting procedure
simultaneously on all the Kamiński et el. (2014) data sets (except oxa2).
Units are in e Å�3. (a) At � = �min = 0.28, the smallest value of �pen across
all refinements except oxa2. (b) At � = �TIH6 = 0.24, (c) at � = �pow = 1,
and (d) at � = �pen = 1.16.



Further evidence that the A parameters from the fittings

against the individual data sets may represent an overall

scaling factor related to the errors in the standard uncertain-

ties (�s) can be tested by plotting those individual A values

against the GoF2 values for these individual data sets when

they are used in the joint refinement. In Fig. 8, we show the

result at � = �TIH6. The graph is linear with one strong outlier

at (0.93, 1.80) from the oxa4 data set. Removing this improves

the Pearson correlation coefficient from 0.68 to 0.91. From this

we conclude that in 11 out of 12 cases, the A parameter from

the power function extrapolation method appears to provide a

reasonable estimate of the scaling factor in the �s. We could

not find any obvious reason why oxa4 was an outlier.

In any case, if the A value is associated with a uniform

scaling of the �s, then a larger value implies that the �s were

underestimated, which in turn implies a larger value of GoF2

than necessary (for a given �) if the (presumed) correct �s had

been used. With this in mind, we observe that in the simul-

taneous refinement it was possible to fit values up to �pen =

1.16, which is in excess of what was possible for the individual

refinements of data sets oxa1, oxa6, oxa7, and oxa11, which

had �max values of 0.74, 0.78, 0.74 and 0.28, respectively.

Therefore, effectively, more values from these data sets are

‘included’ in the simultaneous XCW procedure at �pen = 1.16

than was possible for the corresponding XCW procedure on

these individual data sets, so that one might expect overfitting

to these particular data sets in the simultaneous fit. For this

reason, we suggest a conservative solution to the halting

problem as introduced in x2.3.

We find that �min
pen = �penðoxa11Þ = 0.28, and that �min

TIH6 =

�TIH6ðoxa11Þ = 0.09. The former value is similar to the �TIH6

value from the simultaneous refinement, which was 0.23, and

of course, the features exhibited in the plots at �min [see

Fig. 9(a)] and �TIH6 [see Fig. 9(b)] are almost identical.

Therefore, the �TIH6 halting point is indeed also a conservative

one, compared to �pow = 1. (Note that the power function fit

using points only up to � = �min = 0.28 yields parameters A =

1.417 (4) and B = �0.052 (1) which are very similar to those

using all data up to �pen, which might have been guessed since

the power function furnishes such a good fit; so the power-

function halting value is very robustly estimated). On the

other hand, the �TIH6(oxa11) = 0.09 is quite different to the

conservative estimate �pen(oxa11) = 0.28, nearly a third of it.

Nevertheless, if we look at the corresponding GoF2(0.28) and

GoF2(0.10) values from the simultaneous refinement, they are,

respectively 1.509 and 1.60 � 0.02, where an estimate of the

error in the second value is obtained using the difference of

this GoF2(TIH6) value with the corresponding GoF2(TIH3)

value. These values are relatively close, and both are close to

the GoF2(�TIH6) = GoF2(0.23) = 1.523.

The effect on the electron density due to this XCW fitting

procedure at different selected values of � is shown in Fig. S12.

Clearly, the largest changes in the electron density occur in the

first four figures, as might be expected as the power function

decay of the GoF2 statistic (which measures the agreement of

the calculated and observed structure factor magnitudes which

are electron densities in reciprocal space) also displays the

most rapid change when � is small. This also supports the

earlier decision to consider the more conservative

� = �TIH6 halting point when discussing qualitative features in

x4.2.3.

The effect of the XCW procedure on the electron density is

shown for � = �TIH6 [Fig. 9(b)], � = �pow [Fig. 9(c)] and �pen

[Fig. 9(d)]. The plots produced at the two higher values (�pow

and �pen) are almost identical. As expected, the effect of the

XCW procedure is smaller (i.e. fewer features, features smaller

in magnitude) for �TIH6 compared to the plots at the higher

value of �. Specific examples include a reduction in the

asymmetry in the elephant ears (one contour of difference

versus two contours of difference), and the delocalization of

the loss of electron density in the C—C bond region (localized

versus delocalized).

Overall, features become more prominent when � increases,

as expected, and we do not have a statistical criterion to judge

which of the � values gives rise to the physically most mean-

ingful electron density. Importantly, it is worth noting that the

features from the simultaneous refinement are the average of

those found from the individual refinements, as can be verified

from the qualitative analysis (Table 5) in the row marked ‘All’.

This means that the features in Fig. 9 can be considered to be

the consistent features that are due to systematic effects

(systematic physical effects or systematic error) captured by

the XCW fitting procedure beyond noise.

4.2.5. Comparison of HA-XCW results with high-level
theoretical calculations. The effect of electron correlation on

the electron density of oxalic acid surrounded by six water

molecules is seen in Fig. 10, where the electron density from a

Hartree–Fock calculation is subtracted from the ones calcu-

lated by the B3LYP, and PBE0 density functional theory

calculations, and from a CCSD calculation. There is very little

difference between the different theoretical models: the

CCSD calculation has one fewer contour level in the C—C

bond region, two fewer contours around the C atoms in the

outer valence region, and one more contour in the outer

valence of the O atom of the hydroxyl group.

Boyd & Wang (1989) have seen similar features on the

carbonyl group in formaldahyde, compared to the carbonyl

groups shown in Fig. 10. For example, the strong negative

regions in the inner core of the C and O atoms are the same, as

is a kind of trefoil structure in the inner valence region of the

C atom. Boyd & Wang (1989) explained the blue positive
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Figure 10
The change in the electron density due to electron correlation; modelled
as the difference between a theoretical model wavefunction and HF/def2-
SVP electron density at the HAR geometry from oxa11 data set. (a) is
B3LYP, (b) is PBE0 and (c) is CCSD.



electron density features in the inner valence region on the O

atoms as being due to a transfer of electron density to the

electronegative atom, correcting a well known deficiency of

the Hartree–Fock model, which tends to overestimate the

ionic contribution in polar bonds (because it gives equal

weight to covalent and ionic valence bond structures).

Assuming that charge-transfer effects, and polarization

effects of the crystal field, are adequately modelled by the six-

water cluster around the oxalic acid unit, it is expected that the

features in Fig. 10 should be comparable to those from the

consensus XCW procedure seen in Fig. 9. The features in the

theoretical densities are compared with those in the experi-

mental ones in Table 5 in the rows with headings B3LYP, PBE0

and CCSD. Since the B3LYP, PBE0 and CCSD plots are so

similar, we use the CCSD plot as a reference map to compare

to the consensus plots. Also, since the �min and �TIH6 plots are

so similar, and likewise for the �pow and �pen plots, i.e. they are

pairwise the same, in the following we compare only the �min

XCW plot, Fig. 9(a), with the CCSD map.

We observe several consistencies in the features; the

following features are qualitatively the same but differ in the

number of contour lines: there are two more contours in the

C—C bond region, two more contours in the outer valence

region] of the O atom on the hydroxyl group, one less contour

in the more depleted of the lone pairs (or elephant ears) of the

outer valence region of the O atom on the carbonyl group, two

more contours in the outer valence region of the C atom [as in

Fig. 7(e)] (and, as mentioned above, even more in the DFT

calculations).

The buildup of charge in the inner valence region of the O

atoms is interesting in line of the work of Boyd & Wang

(1989): the XCW map is clearly producing the same feature,

i.e. the experimental data appears to be correcting the over-

estimation of the ionicity in the Hartree–Fock model.

We also observe some inconsistencies: the trefoil structure

on the C atoms which was clear in the theoretical maps is much

less well defined, if not absent, in the XCW plots. Likewise, the

depletion of charge in the middle of the carbonyl bond, and

the O—H bond seen in the theoretical maps is completely

absent in the XCW plots.

Also interesting for this work is the significant build-up of

electrons on the hydrogen-bonded hydrogen atom, which was

completely absent in the consensus plot. Although this feature

was also seen in the original GJ2001 work (Fig. 1), and was one

of the motivations for this work, we established in x4.1.4 that it

resulted from a poor choice of the hydrogen atom coordinates.

This build-up at the H atom is consistently present in the

theoretical electron densities but missing in the individual and

consensus XCW plots (see Table 5). However, recall that the

scale is four times finer than in the GJ2001 paper.

5. Discussion: possible reasons for discrepancies
between experimental and theoretical densities

The differences in the qualitative features between the

consensus XCW map and the theoretical maps in the previous

section might be due to several reasons, but can be classified as

either errors in the theoretical model used to perform XCW

fitting or the experimental data. Some of the reasons were

already discussed at the point they were relevant, but for

completeness we mention them again here.

On the theoretical side, the following factors are of concern.

(i) Use of the Hartree–Fock wavefunction ansatz. The

Hartree–Fock model used in this study is known to have

defects, e.g. the overestimation of ionic bonding effects in

polar bonds, as discussed in x4.2.5. Therefore, it might not be

the best starting point for an XCW fitting.

(ii) Use of a one-centre probability density function

(OCPDF) model. The work of Bučinský et al. (2019) indicates

that the use of a OCPDF model has a large effect, albeit for

systems involving heavy atoms where such effects are

exacerbated. It is therefore important to establish whether

such effects are also important for light-atom systems, such as

�-oxalic acid dihydrate considered here.

(iii) Insufficient treatment of crystal effect. The model we

have used is fragment-based and non-periodic, so the effects

of a (nearly) infinite crystal field are not correctly modelled.

We tested the effect of not modelling the crystal field properly

by introducing point charges representing atomic charges and

atomic dipoles on all atoms of all molecules with any one atom

within 8 Å of our six-water cluster. Atomic charges and

dipoles were calculated self-consistently from the symmetry-

unique asymmetric unit atoms in the central moiety using

Hirshfeld’s method, and the charges were updated
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Figure 11
Change in the electron density from the usual RHF ansatz for various
procedures due to: (a) the inclusion of point charges reproducing the
Hirshfeld atom charges and dipoles, placed on all atoms on all molecules
with one atom within a radius of 8 Å of the six-water cluster moiety [Point
charges were calculated and updated self-consistently from the atoms in
the central moiety during the SCF cycles.]; (b) the inclusion of correlation
effects via the CCSD calculation [reproduced Fig. 10(c)]; (c) the XCW
fitting procedure on all data sets at �min [reproduced Fig. 9(d)]; (d) the
XCW fitting procedure on all data sets at �min, with point charges
included [as in (a)].



self-consistently during the self-consistent field procedure

used to solve the constrained restricted Hartree–Fock

equations (Jayatilaka & Dittrich, 2008; Wieduwilt et al.,

2021).

The change in the electron density due to the addition of

these point charges (at the consensus HAR geometry) is

shown in Fig. 11(a). A similar figure using charges which were

not self-consistently updated was indistinguishable from this

figure, and is not presented. We observe that the change in the

electron RHF wavefunction is non-negligible: there are three

contours-worth of a dipolar-like depletion in electron density

on the O atom in the hydrogen bonded water molecule, a

feature which seems to be more perpendicular to the plane of

the water molecule since it is not seen in other water mole-

cules which are more in the plot plane. There are a further

three contours-worth of an increase in electron density on the

hydroxyl O atom toward the hydrogen-bonded H atom, and a

similar sharper feature behind it. These features are located in

the core or inner valence region, so they would require rela-

tively higher resolution data to discern. Nevertheless, this

indicates that there are indeed effects not properly modelled,

without cluster charges, even with six water molecules

surrounding the oxalic acid moiety. Features on the H atoms

on the outer water molecules are understandable since they

are close to the point charges representing the missing closest

molecules, but the electron density on these molecules is not

used to calculate the structure factors. Nevertheless, it seems

that the point charges around these water molecules (repre-

senting oxalic acid molecules) are sufficient to affect the

closest hydrogen bonded water molecule, and also the O atom

of the hydroxyl group in the central oxalic acid moiety via a

through-bond effect.

If we assume the crystal field effects in Fig. 11(a) are

additive onto those representing the effects due to electron

correlation, say as represented by the CCSD wavefunction,

shown again in Fig. 11(b) for ease of comparison, then the net

effect would be to reduce the number of contours on the

hydrogen-bonded H atom and to reduce the depletion in the

middle of the hydroxyl bond, bringing the CCSD plot into

better agreement with the XCW model at �min
pen = 0.28, shown

again in Fig. 11(c). The very small asymmetric crystal-field

effect on the carbonyl oxygen atom due to the addition of the

point charges seems too small to explain the asymmetry in the

elephant ears of the XCW plots.

So far, we have only considered a Hartree–Fock wave-

function without surrounding point charges mainly to estab-

lish if the crystal field effects and electron correlation effects

could be incorporated via the experimental structure factors.

We were curious to test what effect using these point charges

in the XCW model would have. The results at �min = 0.28 are

presented in Fig. 11(d). (We did not redo the individual or

consensus XCWs again to get �TIH3 and �TIH6 values). On the

central oxalic acid moiety, we see hardly any discernible

changes in the same regions as Fig. 11(a). The greatest

difference between the XCWs with and without charges is

exhibited in the most distant water molecules [top and bottom

water molecules in Figs. 11(c) and 11(d)], and they do seem to

be roughly the addition of features in Figs. 11(a) and 11(b). In

any case, these molecules are not used when calculating

structure factors. Thus, based on these plots, the crystal field

effect seems to be overwhelmed by the use of the experi-

mental data, regardless of the inclusion of point charges in the

wavefunction model.

(iv) Failure of the XCW model to deal with high resolution

data. It is known that, when using theoretical structure factor

data, the XCW procedure completely fails to reproduce

features in the core region even with data resolved to 2.5 Å�1,

much higher than in this experiment (Podhorský et al., 2021).

Indeed, the features in the core and inner valence regions of

the atoms between the XCW and theoretical maps were

mostly completely different, indicating that the resolution

problem plays a decisive role for these regions in this study,

too.

On the experimental side, the following concerns are raised.

(i) Data resolution and accuracy. This issue concerns the

fact that, on the one hand, any experiment has finite resolution

(see also previous point), and, on the other hand, that the high

angle reflections are much weaker in intensity and therefore

harder to observe, i.e. are associated with larger relative error.

Any errors in these high angle reflections will manifest in a

lack of resolution of sharp features in the map. Indeed some

sharp features are systematically entirely missing compared to

the theoretical maps (see core region entries in Table 5).

(ii) Systematic experimental errors. There may also be a

range of other experimental effects which we only briefly

mention, including but not limited to: systematic errors in the

experimental data coming from absorption corrections; inap-

propriate merging of experimental data; artificial strength-

ening of weak reflections and weakening of strong reflections

due to dynamical effects, i.e. rescattering of X-rays; and

thermal diffuse scattering, which affects the background

assumed for the X-ray reflections. Normally, these effects are

not treated in a very exhaustive way, and it is clear that, given

the ‘fickle’ visual agreement between the XCW plots, and the

level of effort expended on the theoretical analyses, it

becomes urgent to reinvestigate the treatment of the experi-

mental data, especially in view of the improvements in

detector technology.

6. Summary and conclusions

In order to assess the reproducibility of different features in

the electron density reconstructed from experimental X-ray

diffraction structure factor magnitudes, in this paper, we have

applied the Hirshfeld-atom X-ray constrained wavefunction

(HA-XCW) procedure to the historically important �-oxalic

acid dihydrate system, using the same data as was used in

Grimwood & Jayatilaka (2001), and also using thirteen data

sets from Kamiński et al. (2014). In the case of the latter, more

modern data, we have reported the first constrained wave-

function simultaneously fitted to multiple data sets.

Since the XCW procedure is a not a least-squares procedure

but a reconstruction or regularization method, in order to
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assess the reliability of our results, we have also developed

three new protocols to address the so-called halting problem

— namely, the problem of deciding the level of agreement

between the model-calculated and experimental structure

factor magnitudes at which to stop the fitting procedure. The

three protocols for addressing the halting problem were: the

‘power function method’; the ‘asymptotic exrapolation

procedure (TIH)’; and the ‘conservative method’.

The halting problem

The power function method is based on the surprising

empirical observation that the goodness-of-fit GoF2 as a

function of the Lagrange multiplier � (which determines the

desired level of fit in the XCW model) could be well repre-

sented by a power function. Although theoretical arguments

show that the scale parameter A associated with the power

function fit may be associated with a measure of the accuracy

of the estimated standard uncertainties in measurements,

there is little justification for the termination point from this

procedure (� = 1) unless the scale and units of the GoF2 term

are clarified.

The asymptotic extrapolation procedure is a modification of

one used in density functional theory developed by Tozer et al.

(1996) (we also refer to this as the TIH method) and as such, it

is theoretically well justified. Notwithstanding that it yields

termination points for the fitting procedure which are practi-

cally achievable, it is disappointing that application to our data

does not clearly satisfy the asymptotic conditions on which it is

based. Encouraging, however, is that the D parameter in this

method, which is theoretically associated with errors in the

measurement, is remarkably highly correlated with the A scale

parameter in the power function method, with a correlation

coefficient of 0.97, obtained using the Kamiński et al. (2014)

data sets; and even the scale factor relating these two quan-

tities is nearly unity [0.98 (8)]. Except for one outlier, the A

values are also well correlated with the GoF2 values from each

individual data set in the joint refinement (at the TIH6 halting

point).

The third conservative method emerged from considerations

to avoid overfitting with the availability of multiple data sets,

or possibly a single data set split into several subsets. In this

case, the fitting process is stopped at the largest (or worst

value) of the GoF2 obtained from any of the individual (sub)

data sets.

Reproducibility of changes in the electron density features

due to fitting

For �-oxalic acid using the Kamiński et al. (2014) data sets,

we find that the reconstructed electron-density from any of the

halting problem protocols (including the method to halt at the

best possible GoF2 before convergence ceases) are very

similar to each other. In the valence electron regions differ-

ences only amount to about 0.025 e Å�3. For this system, and

for electron density features, this means that fitting to the

best possible GoF2 before convergence ceases as normally

done is justified. However, for other features such as

bond critical points which are more sensitive to the model

(Landeros-Rivera et al., 2021) or in cases where it is known

that overfitting occurs this may not be the case so

that the halting protocols introduced here could be reinves-

tigated.

Regarding the specific features in the change of the electron

density compared to previous work and high-level quantum

mechanical calculations, we found that:

(i) The strong build-up in charge on the H atom in the

strong hydrogen bond of oxalic acid seen in the original paper

(Grimwood & Jayatilaka, 2001) was indeed due to the use of

an incorrect and too-short O—H bond length; when using

HAR geometric and atomic displacement parameters, this

feature completely disappeared.

(ii) High-level calculations on a six-water cluster moiety

nevertheless showed a small enhancement of the electron

density on the hydrogen-bonded H atom (see Fig. 10),

consistent with a correction to the over-estimation of ionicity,

so that fitting to the experimental data appears to correct a

known problem associated with the Hartree–Fock model

wavefunctions.

(iii) An estimate of the crystal field effects from a point

charge model surrounding the six-water cluster of molecules

found a depletion of electron density on the hydrogen-bonded

H atom and an increase in electron density in the corre-

sponding O—H bond; but this was still not enough to bring the

high-level calculations into agreement with the electron

densities from the fitted XCW wavefunction.

In relation to other qualitative features in the changes in the

electron density due to the XCW fitting process, we found

that:

(i) The features in the electron density from the XCW

fitting of the simultaneous refinement of all data sets is a

consensus of the features of those from the individual

refinements.

(ii) The electron density differences being modelled by the

XCW are very small in the valence region, amounting to a few

multiples of 0.025 e Å�3, which is consistent with the fact that

the theoretical and experimental data agree before fitting to

no worse than 2% difference, and on average within 1.5 esti-

mated standard uncertainties; that is, the XCW procedure is

fitting at the limits of experimental detectability.

(iii) Notwithstanding the previous point, some consistent

systematic effects were modelled across all 14 data sets: a

consistent decrease in the bonding density in the C—C bond, a

depletion of charge on the lone pair of the O atom in the

hydroxyl group, a decrease in the lone pairs on the O atom in

the carbonyl group, and an increase in the electron density in

the outer valence region of the C atoms.

(iv) The increase in the electron density in the outer valence

region of the C atom clearly present in the high-level theo-

retical calculations is much less defined in the XCW plots; the

depletion of electron density in the middle of both the O—H

bond and the carbonyl bond all present in the theoretical

calculations are completely absent in the XCW plots; and the

strong depletion in electron density in the core of the C atom

in the theoretical calculations is an increase in electron density

in the XCW plots. These effects point to unmodelled

systematic features and errors in the data or the procedure,

which must be studied in more detail in future investigations.
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(v) There are a plethora of other features in the plots from

the high level quantum mechanical calculations, mostly in the

small regions near the core of the atoms (which would require

high resolution to see) or in low electron density regions

(which would not produce a strong scattering signal).

Overall conclusions

One clear shortcoming of this work is the lack of robust

techniques for estimating errors associated with parameters

and properties derived from the XCW regularization-fitting

procedure (Bürgi & Genoni, 2022). Indeed, it is for this reason

we have been careful to describe the methods developed here

as ‘protocols’, which, although well defined, clearly require

further verification and fine-tuning.

On the other hand, notwithstanding that there have been

very significant improvements in the quality and accuracy of

the experimental data (as judged from the system studied

here, and the fact that the theoretical HAR electron density

already agrees extremely well with the experimental data even

before XCW fitting) the presence of unmodelled or incor-

rectly modelled systematic features in the electron density

derived from the XCW is a now pressing concern that should

spur a review of data-treatment protocols – especially those

concerned with accuracy and error estimation. If not, we fear

that there will be very little experimental information in the

X-ray data for the XCW procedure to fit to! This would be a

pity so soon after the proclamation by Coppens (2005) that the

X-ray charge density field has ‘come of age’.
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