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The X-ray constrained wavefunction (XCW) procedure for obtaining an

experimentally reconstructed wavefunction from X-ray diffraction data is

reviewed. The two-center probability distribution model used to perform

nuclear-position averaging in the original paper [Grimwood & Jayatilaka (2001).

Acta Cryst. A57, 87–100] is carefully distinguished from the newer one-center

probability distribution model. In the one-center model, Hirshfeld atoms are

used, and the Hirshfeld atom based X-ray constrained wavefunction

(HA-XCW) procedure is described for the first time, as well as its efficient

implementation. In this context, the definition of the related X-ray wavefunction

refinement (XWR) method is refined. The key halting problem for the XCW

method – the procedure by which one determines when overfitting has occurred

– is named and work on it reviewed.

1. Introduction

Twenty years ago, Grimwood & Jayatilaka (2001) recon-

structed for the first time an electronic wavefunction for the

molecular crystal of �-oxalic acid dihydrate with the help of an

X-ray diffraction experiment. This wavefunction minimized

the quantum mechanical Hartree–Fock energy, and at the

same time was adjusted to fit X-ray diffraction data to a

desired level according to a chosen agreement statistic. Such

wavefunctions have become known as X-ray constrained or

restrained wavefunctions (XCWs), and they represent one of

the central concepts of quantum crystallography (QCr)

(Grabowsky et al., 2017; Genoni et al., 2018; Grabowsky et al.,

2020; Macchi, 2020; Genoni & Macchi, 2020).

The XCW method has recently received renewed interest

(Landeros-Rivera et al., 2021; Macetti et al., 2021; Kleemiss et

al., 2021; Grabowsky et al., 2020; Ernst et al., 2020; Genoni et

al., 2017), especially since the development of the Hirshfeld

atom refinement (HAR) method (Jayatilaka & Dittrich, 2008;

Capelli et al., 2014; Woińska et al., 2016). This is because HAR,

also a development in the QCr field, better-known than the

XCW method, is capable of obtaining hydrogen atom posi-

tions and ADPs in agreement with independent neutron

diffraction experiments in a ‘fairly automatic and standard

way’ (Woińska et al., 2016). HAR is particularly significant for

molecular biology because hydrogen atoms play such a crucial

role in that field, evidenced by the fact that billion-dollar

spallation neutron sources have been commissioned in part to

detect these atoms (Henderson et al., 2015; Hall-Wilton &

Theroine, 2014). In this regard, it is worth mentioning that

there have already been recent attempts to extend HAR for

use in such macromolecular systems (Malaspina et al., 2019;

Bergmann et al., 2020; Chodkiewicz et al., 2022).
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Given the recent interest, we think that a review of the

status of the XCW method is appropriate, especially since the

most popular version of it – the Hirshfeld atom X-ray

constrained wavefunction (HA-XCW) method – has never

been fully described in the literature. The HA-XCW proce-

dure involves some technical steps which, if not properly

implemented, would make it very impractical. Furthermore,

the inception of the HAR method necessitates clarification of

the X-ray wavefunction refinement (XWR) method, which

involves the simultaneous refinement of both structural

(HAR) and electronic (XCW) parameters in the model

wavefunction (Woińska et al., 2017). Therefore, after a reca-

pitulation of the purpose of the XCW procedure, the review

will concentrate on these newer issues in x2. Section 3 will

present the equations for the HA-XCW method, clarifying the

relationship to the earlier methods. After the Summary and

Conclusion in x4, some reminiscences by one of us (DJ)

concerning Hans-Beat Bürgi are presented.

2. Review and status of the X-ray constrained
wavefunction (XCW) method

There are two main reasons why one might want to obtain an

XCW (Jayatilaka & Grimwood, 2001):

(1) Reliability and accuracy. To have a model of a diffrac-

tion experiment which explicitly incorporates quantum-

mechanical knowledge through the use of a model wave-

function whose parameters are variationally determined, and

which is, in-principle, systematically improvable both by

adding functional flexibility to the wavefunction and by adding

more experimental data; and

(2) Data compression. To have a single model capable of

describing several different kinds of experiments simulta-

neously (e.g. diffraction and spectroscopy), with the same set

of parameters.

The second point might be viewed as a corollary of the first,

since wavefunction-based models are in some sense ‘universal’

from a quantum mechanical point of view: it is hard to see how

one could develop a conceptually better approach.

2.1. What is being measured?

This paper concerns fitting various models for the X-ray

diffraction experiment, so we should begin by explaining what

the measured quantities are, and why these are so important

for determining a wavefunction.

In X-ray diffraction, the experimental quantities of interest

are the intensities of the Bragg spots, which nowadays are

mostly obtained as digital images. These images comprise the

raw data. After extracting the cell orientation and shape, these

spots are labelled by a triple of integers (Miller indices)

representing the scattering vector positions qr on the reci-

procal lattice (the scattering vector is the difference between

the direction of the wavevectors for the scattered and incident

X-ray beams). The boundaries of these spots on the detector

image are delineated, and the raw intensities of the spots

extracted from the images, in some unit system. After this,

several (hopefully small) corrections may be applied, e.g. for

absorption, extinction, inelastic (phonon) scattering, and for

differing X-ray scattering path lengths within the crystalline

sample. An angular geometrical factor correction is also

applied, as well as any other instrument-specific corrections,

e.g. those related to a lack of incident X-ray beam constancy

and perhaps angle of incidence on the detector. What is left

after these corrections is an estimate of the (elastic) Bragg

intensities of the X-ray diffraction spots, which, for an ideally

mosaic crystal in the weak-scattering limit (sometimes also

called the first Born approximation limit) will be proportional

to jh�celliðqrÞj
2, the square of the magnitude of the Fourier

transform of the average electron density in the unit cell, each

diffraction spot corresponding to a particular Fourier

component qr. The square root of these corrected intensities

are the measured quantities, the structure factor magnitudes,

conventionally written

��Fobs
r j / jh�celliðqrÞ

��: ð1Þ

The expectation value symbol h i represents the averaging

process, discussed in more detail below. Important for any

measurement process, is that each of the measured quantities

are associated with an estimated standard uncertainties

(ESUs), conventionally written �obs
r . These ESUs are obtained

not only by repeated measurement of the same reflection from

the sample oriented in different geometric configurations with

respect to the X-ray beam, but also by propagation of errors

according to different models related to the mentioned

experimental corrections. Many of these steps have been

succinctly described by Kabsch (2010).

The point of explaining this whole process is to note that the

X-ray diffraction experiment is a complex one, and the

quantities which are measured are subject to many theoretical

assumptions and manipulations. Or, as Einstein said very

elegantly in a conversation with Heisenberg (as translated by

Joos et al. (2013) on p. 107):

‘Only the theory decides about what can be observed . . . on

[the] entire long path from a process up to our conscious

perception we need to know how Nature is working in order to

claim that we have observed anything at all.’

Thus, due to the long path associated with these complex

manipulations, it is clear that the experimental errors asso-

ciated with the experimental structure factor magnitudes are

difficult to quantify. It should be noted that it is rare for an

X-ray diffraction experiment to involve averaging data over

multiple samples; that is, the term experiment is used in the

usual sense, as a process applied to a single sample, applied

over a limited time span. Note that it is not our intention to

claim (neither do we think it was Einstein’s) that somehow,

theory is more important than experiment. Nor is there a

claim that experiment is somehow theoretical in nature –

experiments are fundamentally different from theory. Rather,

the intention is to say that experiment and theory are much

more intertwined than is often stated.
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2.2. Why use X-ray diffraction data?

The main reason why the Fourier components of the elec-

tron density are of interest is that, according to the Hohenberg

& Kohn (1964) theorem, the ground-state electronic energy of

a system is a universal functional of the electron density

(under certain conditions), usually written E = F[�]1. There-

fore, the three-dimensional ground-state electron density �0 is

all that is needed to define the exact ground-state electronic

wavefunction �0 of a system (Dreizler & Gross, 1990).

Although not often mentioned, the Hohenberg–Kohn

theorem ensures that the ground-state wavefunction is directly

reconstructable from experiment, since the electron density is

experimentally reconstructable2.

2.3. How is fit defined?

Since we are concerned with fitting to experimental data, we

now explain how fit is defined, and some related issues.

The quantity used to assess the agreement between the

experiment and any model is conventionally the (square of

the) goodness of fit statistic, defined by

GoF2
¼ ðNrefl � NparamÞ

�1
XNrefl

r¼1

�jFcalc
r j � jF

obs
r j

�obs
r

� �2

: ð2Þ

Here jFcalc
r j is the modelled or calculated X-ray structure

factor magnitude for a reflection r. � is an overall scale factor,

determined by least-squares minimising the GoF2 (sometimes

simultaneously with other least-squares refined parameters, as

discussed further below, when we describe HAR in x2.5 and

XWR in x2.8). The scale factor is necessary because the

experimental structure factor magnitudes are not measured on

an absolute scale3. Nrefl is the number of X-ray measured

reflections; while Nparam is the number of parameters in the

least-squares structure model, i.e. the number of symmetry-

unique atomic (nuclei) coordinates and atomic displacement

parameters, which we usually call NpADP, plus one for the �
scale parameter. That is

Nparam ¼ NpADP þ Nmisc: ð3Þ

where Nmisc is at least equal to one (for the scale parameter)

but may also count any additional least-squares refined

parameters associated with phenomenological corrections that

may have been used, as we have discussed e.g. extinction

parameters. Important for later considerations, the GoF2

depends not only on the experimental measurements, but also

on the associated ESUs, the �obs
r values; and of course, also on

the number of parameters Nparam in the model4.

In this paper, we use GoF2 defined in terms of structure

factor magnitudes even though it is common to use the square

of the structure factor magnitudes instead; generalising all our

results in this paper to use the square of the structure factor

magnitudes is not difficult (Kleemiss et al., 2021). GoF2 is often

defined in terms of squared structure factor magnitudes

because these are more directly related to the measured

intensities, and an important consideration for us in this paper

is that estimation of the associated �obs
r values is more

straightforward in this case. Nevertheless, there remain several

advantages to using the structure factor magnitudes in the

field of electron density reconstruction.5

2.4. Wavefunctions from averaged electron densities

A wavefunction is generally used to describe a microscopic

quantum system, so its use for a macroscopic entity such as a

molecular crystal with finite temperature and entropy

deserves more comment than was given in the initial publi-

cation (Jayatilaka & Grimwood, 2001).

The quantities which are observed in the X-ray diffraction

experiment are the intensities of the Bragg reflections. Under

idealized conditions (at low temperature, with a small crystal

which does not absorb the X-rays, no dynamical re-diffraction,

and with a crystal composed of crystallites which are only

slightly orientationally disordered) these intensities are

related to the square of the magnitude of the structure factors,

the Fourier transform of the average electron density in an

ideal unit cell. The word average means both time-averaging

over the motions of the atoms in the unit cell, and also a space-

averaging of identical atoms in different mean positions in

different unit cells (Bürgi, 1989; Trueblood et al., 1996). The
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1 A functional is simply a function of a continuous function rather than a scalar
variable, and by convention the square braces distinguish a functional from a
function.
2 There is an amusing explanation of the Hohenberg–Kohn theorem due to
E. Bright Wilson, as related by Löwdin (1986): ‘ . . . if one knows �, one knows
also the total number of electrons . . . the cusps of � will further indicate the
locations of the nuclei, and the shape of the cusps will give the atomic numbers
of the nuclei involved. Hence, one can construct the N-electron Schrödinger
equation for fixed nuclei, and the solution determines all the electronic
properties including the ground-state energy. This gives undoubtedly an
explicit recipe for the Hohenberg–Kohn functional . . . . For some reason, the
Bright-Wilson interpretation does not seem to be popular among the
practitioners . . . .’
3 It might be argued that the experimental structure factor magnitudes should
be scaled to be on an absolute scale to facilitate comparison with the
calculated values. However, by crystallographic convention the attitude is to
avoid modifying the experimental data as far as possible, so the scale factor � is
usually applied to the magnitude of the calculated structure factor.

4 Note that in all previous works by one of us (DJ), GoF2 was called the �2,
which is incorrect. The difference between what we used to call �2 and the
correct definition, namely �2 = (Nrefl � Nparam)GoF2 , involves only a scale
factor, see equation (2), but this distinction is important if one wishes to avoid
confusion when referring to the statistical literature, or if one wants to use
statistical tests. From this point, we use the correct terminology, even when
referring to our own and others’ previous work, and we encourage the use of
the correct terminology henceforth.
5 Thus, as Watkin (2008) says, use of the squared structure factor magnitudes
‘involves the minimal tinkering with the [experimental] data’. Yet, in the same
paper Watkin still defends the use of structure factor magnitudes to define
GoF2 since maximum likelihood optimisation methods, such as the least-
squares method, are unaffected by non-linear transformations in those same
structure factor magnitudes; and also because the use of structure factor
magnitudes (as opposed to the squared structure factor magnitudes) lessens
the effect of outliers, which may be of more importance for high-resolution X-
ray diffraction experiments. Besides, as we show in Appendix B, GoF2 defined
in terms of the structure factor magnitudes is closely related to the integrated
difference in average electron density in the unit cell; and in Appendix C, also
somewhat closely related to the constraint term used by Zhao & Parr (1993) in
their method to obtain the Kohn–Sham wavefunction of density functional
theory. For these reasons we persist in using the GoF2 in terms of the structure
factor magnitudes themselves, making use of an appropriate procedure to
estimate the associated �obs

r values. In any case, the use of squared structure
factor magnitudes to define the GoF2 in the HAR and XCW procedures has
never been reported, and its use should be investigated in future work.



importance of the X-ray diffraction experiment is that it

leverages the scattering from the translational repetition of

many unit cells to get accurate averaged atomic and subatomic

information on the electron density – information that may

not be as accurate if one only examines a single region using

microscopic techniques. The wavefunctions defined from such

diffraction data must therefore incorporate this averaging

process in some phenomenological way, as now described.

In this work, we employ a fixed-nucleus localized molecular

wavefunction convolved with an infinitely repeated lattice

function to represent the wavefunction for a molecular crystal.

The static or fixed-atom electron density from this wave-

function � is calculated according to quantum mechanics by

integrating its square |�|2 over all but one electron spatial

coordinate. Since it is impossible to obtain exact wavefunc-

tions for large molecules (Kohn, 1999), it is common to expand

the static wavefunction in terms of products of one-electron

orbitals, which are themselves expanded in a set of basis set

functions which are centred on the positions of the nuclei

(Boys, 1950). Thus, as a consequence of the squared nature of

the electron density and the use of basis functions with a

centre (in contrast to plane wave basis functions which have

no fixed centre), the quantum mechanical electron density is

required to have the form of a product of basis functions on

two centres.

The expansion of the electron density as products of basis

functions on up to two distinct centres is important because if

one wants to develop a model for the position-averaged

electron density in the ideal unit cell, then one must account

for the displacement of these atom pairs (and the basis func-

tions which are centred on them) from their averaged posi-

tions over all unit cells. This is achieved with the so-called two-

centre probability distribution functions (TCPDFs) (Scher-

inger, 1972b; Willis & Pryor, 1975). It is only when this

macroscopic unit-cell averaging process is accounted for in

some phenomenological way that we can speak of an under-

lying wavefunction (which we intend to fit to the data) that

describes the crystal.

It is worth comparing the formally more correct TCPDF

position-averaging process to what is preferred in standard

crystallography. In standard crystallography, the electron

density is not regarded as coming from a complicated multi-

atom multi-centre wavefunction; it is rather regarded as being

composed of asum position-unchanging, and position-uncor-

related, atomic electron densities. Clearly, in this ‘independent

atom’ model (IAM), the average electron density does not

depend on TCPDFs: since motion on the two centres is

uncorrelated, only one-centre probability distribution func-

tions (OCPDFs) are needed. These OCPDFs are assumed to

be three-dimensional Gaussian distributions, characterised by

a matrix of atomic displacement parameters (ADPs) (True-

blood et al., 1996). Thus, in standard crystallography, a nuclear

position is introduced at which an assumed fixed-shape or

static atomic electron density is placed, and this fixed-shape

electron distribution is ‘convolved’ with the OCPDF described

by the ADPs to produce an averaged atomic density suppo-

sedly seen by the scattering X-ray beam (Einstein, 1907, 2005;

Bürgi & Capelli, 2000). This atomically-averaged electron

distribution is then summed over all atoms to produce an

approximation to the averaged total electron density in the

unit cell. This averaged unit-cell electron density, being ulti-

mately a function of atomic positions and ADPs, is least-

squares refined with respect to these parameters (and an

overall scale factor) to fit the X-ray diffraction structure factor

magnitudes, which under ideal conditions are essentially the

square-root of the Fourier transform of the unit-cell electron

density. These kinds of one-center models for the electron

density are well known and standardised (Giacovazzo et al.,

1992; Dunitz, 1995).

In order to relate the OCPDF formalism of standard X-ray

crystallography, in the original XCW procedure several

models were considered to express the TCPDFs in terms of

one-center probability distributions. These were the approx-

imations of Stewart (1969), Coppens et al. (1971), and, for

Gaussian basis functions, the approximation of Tanaka (1988).

With such approximations in hand, the two-center probability

can be written in terms of the one-center ADPs, and the

XCWs in the original Grimwood & Jayatilaka (2001) work are

more properly called TCPDF-XCWs.

2.5. Hirshfeld atom refinement (HAR) and its significance

The complexities of the TCPDF models inherent in the

original XCW approach motivated Jayatilaka & Dittrich

(2008) to develop a new one-centre model called Hirshfeld

atom refinement (HAR). In HAR, the electron density is

obtained from a quantum mechanical model based on esti-

mates of the nuclear positions and further partitioned into

aspherical atomic density pieces according to Hirshfeld’s

stockholder partitioning (Hirshfeld, 1977a,b). These asphe-

rical atomic pieces are then convolved with the usual OCPDFs

and summed over all atoms to give, as in the standard crys-

tallographical approach, the averaged unit-cell electron

density which is, again, least-squares refinable in terms of

parameters describing the atomic positions and ADPs.

One difference in HAR compared to the standard IAM is

that the shape of the electron density, as well as the atomic

partitioning, depends on the position of each atom. Therefore,

the wavefunction must be recalculated every time the

geometry changes during the refinement process (Capelli et

al., 2014). This is not needed in the IAM because for a

superposition of fixed-shape atomic densities, a position

change only results in a phase change on the Fourier trans-

formation.

The importance of HAR is that it produces atomic coor-

dinates including hydrogen atom positions and anisotropic

ADPs in agreement with those from independent neutron

diffraction experiments in a fairly automatic and standard way

(Woińska et al., 2017). HAR thus provides the best estimates

of the nuclear positions presently available from X-ray data,

and this provides strong but indirect evidence that the electron

densities associated with the theoretical wavefunctions whose

nuclear positions are experimentally determined are reliable.
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2.6. The effect of HAR positions and ADPs on the electron
density

In the XCW procedure, the positions of the nuclei in the

fragment wavefunction �, and the values of the ADPs, are

fixed by some specified predetermined procedure. Therefore,

in the XCW fitting procedure it is important to state how these

positions and ADPs are chosen.

The importance of using HAR positions and ADPs in

producing electron densities was illustrated in section 2 of

Capelli et al. (2014), where it was found that, if such positions

and ADPs were used for the ammonia crystal, then the model

structure factor magnitudes agreed with the measured ones

within the experimentally ESUs. In other words, if HAR

positions and ADPs are used for ammonia, then no new

information concerning the electron density can be obtained

from the X-ray diffraction experiment. In contrast, if multi-

pole-model refined atom positions and ADPs were used, then

the unfitted wavefunctions did not produce agreement

between the experimental and calculated structure factor

magnitudes within the experimental errors; and further XCW

fitting yielded features in the electron density that differed

from those calculated with ab initio wavefunctions (Bytheway

et al., 2002). Importantly, this conclusion holds only if one

believes the experimental errors are correctly estimated, a

matter which is reviewed in more detail below.

Clearly, the HAR positions and ADPs produce better

electron densities than those produced from the multipole

model (Fugel et al., 2018). Therefore, the use of fixed HAR

positions and ADPs with a further fitting of the electronic

parameters in the wavefunction via XCW has been recom-

mended by Grabowsky et al. (2012) and Woińska et al. (2017),

and that this procedure be called X-ray wavefunction refine-

ment (XWR). Note that the XCW procedure used by these

authors made use of a TCPDF position-averaging model, the

same as was used by Grimwood & Jayatilaka (2001) There-

fore, the recommended XWR procedure was somewhat

inconsistent since it requires an OCPDF model, HAR, to

obtain the atomic positions and ADPs, but a TCPDF model to

refine the electronic wavefunction.

2.7. The Hirshfeld atom X-ray constrained wavefunction
(HA-XCW)

The OCPDF model of atomic displacement (and position

averaging, or thermal smearing) based on Hirshfeld atoms, as

used in the structure factor formalism inside HAR since 2008,

can also be transferred to XCW fitting. This produces an

OCPDF XCW; and since it makes use of the HA model of

thermal smearing inside the structure factor formula we term

it HA-XCW to distinguish it from the XWR protocol and from

earlier TCPDF XCW versions. To be clear: the HA-XCW

model implies a one-center averaging procedure (but not all

one-center averaging models are necessarily Hirshfeld atom

based models). The HA-XCW procedure itself has been

available for nearly a decade via the software Tonto (Jayati-

laka & Grimwood, 2003), but remarkably, has never been

documented in the literature!

There has only been one study by Bučinský et al. (2019)

where the impact of the TCPDF approach based on Stewart,

Coppens and Tanaka on the structure factor magnitudes was

compared to the impact of using the Hirshfeld atom OCPDF

model. There, it was shown that the calculated structure factor

magnitudes are indeed systematically different between the

TCPDF and OCPDF approaches, but it was not investigated

how this, in turn, impacts the electron density from the fitted

XCW itself.

2.8. Clarification of the X-ray wavefunction refinement
(XWR) procedure

Technically, the use of a HA-based OCPDF smearing model

is independent of how one chooses the (fixed) atomic coor-

dinates and ADP values in an XCW fitting procedure.

Therefore, for simplicity, clarity and consistency, we recom-

mend from now on to use the same position-averaging or

thermal-smearing model in both the least-squares refinement

of the positions and ADPs, as well as in the XCW fitting

procedure. Concerning XWR then we therefore recommend

that HAR be used to obtain the geometric and ADP para-

meters, and that HA-XCW fitting be used with these HAR

parameters. That is, we recommend to define a new consistent

Hirshfeld-atom X-ray wavefunction refinement model by the

mnemonic

XWR � XWRðHAÞ ¼ HARþHA-XCW:

Should different position-averaging methods be used in the

XWR procedure, these can always be specified by the parti-

cular method, in the following brackets, or by explicit

description. For example, in Grabowsky et al. (2012), a HAR +

TCPDF(Tanaka)-XCW method was used to produce experi-

mental wavefunctions, where there the HAR pertains to how

the geometric and ADP parameters were obtained, and the

prefix [TCPDF(Tanaka)] of the XCW part specifies how the

thermal smearing was performed in the XCW part.

2.9. Are properties derived from XCWs reproducible and
reliable?

Both TCPDF and HA-XCWs have been used to produce

properties such as in-crystal dipole moments, polarisabilities,

and refractive indices (Whitten et al., 2006; Jayatilaka et al.,

2009), or in-crystal hyperpolarisabilities and second-order

optical susceptibilities (Hickstein et al., 2013). Furthermore,

chemical bonding descriptors were produced, such as the

electron localization function (ELF) (Grimwood et al., 2003),

the electron localizability indicator (ELI) (Grabowsky et al.,

2010), the delocalisation index (Grabowsky et al., 2011), and

Roby-Gould bond indices (Grabowsky et al., 2012). The

properties from these XCWs compared favourably with purely

theoretical calculations, and agreed with chemical expecta-

tions.

XCWs have also been obtained from structure factors

generated from theoretical ab initio wavefunctions, with the

aim of understanding to what extent (magnitude, accuracy)

electron correlation, polarization by the crystal field and
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relativistic effects could be retrieved from the structure factors

(Bučinský et al., 2016; Genoni et al., 2017; Ernst et al., 2020;

Podhorský et al., 2021; Macetti et al., 2021). For example,

Genoni et al. (2017) demonstrated that electron correlation

effects in the valence region of the electron density could be

recovered, provided high-resolution data was downweighted,

whereas Bučinský et al. (2016) quantified relativistic effects in

the electron density, and under what conditions such effects

might be detected experimentally.

Despite all this work, it is still not clear whether XCWs

produce electronic properties or bonding descriptors which

are experimentally reproducible (in the sense of those prop-

erties being robust when the same or very similar XCW

analyses are applied to different experimental data on the

same system). Indeed, there are reasons to suspect that at

present the XCW procedure may not yield experimentally

reproducible features in the electron density—notwith-

standing that the XCW has been fitted to electron density

structure factor magnitudes. For example, in the case of the

ammonia crystal already mentioned, it was confirmed that

small differences in the atomic positions and ADPs do indeed

strongly affect the electron densities obtained from an XCW

fit (Bytheway et al., 2002; Capelli et al., 2014). Yet even though

the structure factor magnitudes from a HAR agree better with

the experimental data even before any XCW fitting procedure

in this case, it is not clear the electron densities produced from

XCW after HAR are accurate or reasonable in general.

In this regard Kleemiss et al. (2021) found differences in the

electron density distributions for the epoxysuccinyl amide

molecule that, upon a full XWR(HA) fitting, showed quali-

tatively different features to those obtained using other

methods; in fact, the XWR(HA) features were three times as

large as those in reference calculations (though, in this case, it

was known that the sample suffered from radiation damage

during the measurement). For high-quality data of urea and

xylitol, on the other hand, the fitted wavefunctions agreed

favourably with theoretical reference calculations (Ernst et al.,

2020; Malaspina et al., 2021).

Very recently, Landeros-Rivera et al. (2021) investigated the

XCW procedure and concluded that XCW is very sensitive to

the manipulation of crystallographic data, by which they mean

the effect of using different well-established experimental

methods to estimate the errors in the data. These authors

mainly examined the effect on agreement statistics between

the calculated and observed experimental data. However, in

the one case where properties were investigated (for SO2), the

integrated atomic charges, the delocalisation bond index, and

the Laplacian of the electron density obtained with different

error estimates compared well. For example, the delocalisa-

tion indices were stable to about 3%, the atomic charges were

stable to 4%; and the images of the Laplacian contours from

the different error-model and resolution-model treatments

were, overall, very difficult to distinguish from each other by

eye. It was only when critical points of the Laplacian were

investigated, that differences could be seen.

Therefore, in a new study [hereafter referred to as part II

(Davidson et al., 2022)] we have reinvestigated the oxalic acid

dihydrate data used in the very first XCW fitting paper on a

molecular compound (Grimwood & Jayatilaka, 2001) with the

HA-XCW fitting procedure – and extended it by 13 further

X-ray diffraction data sets measured at the same temperature.

Indeed, some systematic features are stable and reproducible

throughout all data sets as well as in a joint consensus fitting of

all data sets simultaneously. However, only some of these

features can be ascribed to physical effects such as the above-

discussed electron correlation and polarization effects. Others

represent recurring systematic errors in the measurements or

the XCW model.

2.10. Strategy for finding the XCW

Let us recall the strategy for finding an X-ray constrained

wavefunction.

The strategy for finding the fitted wavefunction � is to

minimise its quantum mechanical energy EQM[�] in the usual

way, but also to simultaneously subject the wavefunction to a

constraint or condition expressing a desired agreement

between the experimental and modelled or calculated data. (It

should be realised that, according to the variational theorem,

minimising the variational energy expression EQM[�] gives a

wavefunction which best approximates the exact wavefunction

in a least-squares sense). Thus, the strategy for finding the

XCW implies a fundamental tension between two require-

ments: on the one hand, minimising an energy expression, and,

on the other, minimising the agreement statistic.

Why adopt such an abstruse procedure to determine the

fitted wavefunction?

(i) The main reason is that, in general, there may not be

enough data to determine all the parameters in even a simple

electronic wavefunction. Thus, the variational energy expres-

sion supplies the missing information needed to determine all

the wavefunction parameters

(ii) Equally important, though, is the fact that the experi-

mental data are inherently subject to errors, and quantum

mechanical information may be used to mitigate these errors.

The word mitigate used here is subjective, since it presumes

that the experimental errors are larger than any of those

introduced by incorporating information from the quantum

mechanical method. It is clearly preferable to address these

uncertainties in a purely experimental way – if measurement is

the main concern. However, one may be less interested in the

measured quantities, or it may not be impossible to do a better

measurement. Then, one may be interested in obtaining the

best estimate for a property given all the information at hand,

both experimental and theoretical.

2.11. Lagrange method for finding the XCW

To obtain the wavefunction according to the above meth-

odology, we use Lagrange’s method of undetermined multi-

pliers, see e.g. Arfken et al. (2013). According to this method,

we define a Lagrangian functional6

J½�; �� ¼ EQM½�� � �
�
GoF2

½�� ��
�

ð4Þ
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as a sum of the quantum mechanical energy, EQM[�], and a

Lagrange multiplier � multiplying the constraint expression,

involving the difference between the GoF2 [see equation (2)]

and the desired value for this statistic, �. It is not very

important what the specific form of the agreement statistic is –

different forms may well have different advantages – but as we

have said, in crystallographic least-squares refinement it is

common to use the goodness of fit defined in equation (2).

Lagrange’s method now requires making J stationary with

respect to variations in the wavefunction �, and with respect

to variations in the Lagrange multiplier �. At the optimum

point where J is stationary we obtain the value of the Lagrange

multiplier � = �opt and the fitted wavefunction �opt ¼ ��¼�opt
.

The fitted wavefunction then determines the desired value �
of the goodness of fit statistic GoF2. Explicitly, the stationary

conditions are

�J½�; ��

��

�����¼�opt
�¼�opt

¼ 0 ð5Þ

and
@J½�; ��

@�

�����¼�opt
�¼�opt

¼ 0 ¼) GoF2
�
�opt

�
�� ¼ 0: ð6Þ

The second condition (6) simply returns the constraint

condition expressing the desired agreement between the

observed and calculated data. GoF2[�] is a function of the

structure factor magnitudes jFcalc
r j, see equation (2), which are

in turn calculated from the electron density obtained from the

wavefunction �. Hence GoF2[�opt] may also be regarded a

function of �opt,

GoF2
ð�optÞ ¼ GoF2

½��¼�opt
� ¼ GoF2

½�opt�: ð7Þ

However, at the stationary point of J the agreement statistic

GoF2[�opt] equals � through equation (6), since it is the value

of � that determines �opt through this same equation. On the

other hand, the first condition, equation (5), is harder to

evaluate because it takes different forms depending on the

specific kind of wavefunction which is used. We evaluate it for

the case of single determinant wavefunctions later on in x3.3,

using the Hirshfeld atom and other TCPDF methods to obtain

the calculated structure factors. Since J and EQM are nearly the

same except for the constraint condition, equation (5) yields

very equations very similar to those from a ‘normal’ varia-

tional calculation for the adopted ab initio wavefunction �.

2.12. The XCW as a function of the Lagrange multiplier and
desired fit

To further explore the meaning of the above equations, first

consider the case � = 0. In this case, the second term in

equation (4) is zero, and the wavefunction returned by making

J stationary, ��=0 = �QM, which is simply the usual (calculated)

ab initio wavefunction �QM. On the other hand, for � > 0, a

bias or penalty is added to J. The effect of this penalty term is

to change the magnitude of J, so that in the limit �!1 the

magnitude of the second term on the right hand side of

equation (4) dominates the value of J. Therefore, making J

stationary in the limit � ! 1 returns a wavefunction ��=1

which is very similar to (but not the same as!) a least-squares

fit.

In summary, the Lagrange multiplier � in the XCW method

allows a smooth interpolation between a calculated or purely

theoretical wavefunction, and a fitted or experimental wave-

function. At intermediate values of 0 < � < 1, the wave-

function returned by minimising J is a chimera between the

calculated and experimental wavefunctions. Hence, the

wavefunctions �� smoothly connect the quantum mechanical

wavefunction �QM = �� = 0 with the wavefunction

�opt ¼ ��¼�opt
in the sense of differential geometry. This is

very important because there are, in principle, an infinity of

wavefunctions which might reproduce the GoF2 to a desired

level of agreement; and out of all these, the quantum

mechanical method provides the missing information to select

the one with the lowest variational energy. This is illustrated in

Fig. 1.

The above discussion suggests how one may solve the

Lagrange equations in practice: one simply chooses increas-

ingly larger values of � until the desired value � of the GoF2

statistic is achieved; at this point we will have found �opt.

When one reads papers on the XCW method, it may seem

that the value � and the optimum value of the Lagrange

multiplier �opt have all disappeared. They have not! It is only

convention that in most practical applications, the distinction

between � and �opt, and between GoF2[�opt] = � is blurred,

because the solution method involves exploring different

values of �, and all these quantities are determined all at once.

There is another point to make: in principle, with an infi-

nitely flexible basis set, it would be possible to exactly

reproduce the experimental data (perhaps it would be better

to say interpolate the data). This clearly shows that the XCW

fitting is not a least-squares procedure, a point which we return

to later. Therefore, for any XCW, it is important to note the

basis set which has been used.

2.13. XCW from a least-squares perspective

From a least-squares perspective the XCW procedure can

be viewed as a refinement with a large number of restraints –

the restraints being represented in a complicated way by the

EQM[�] term in J. This should be familiar to crystallographers

who are used to introducing missing information through the

use of restraints e.g. restraints on bond lengths, so that they are

not too far from a certain empirically established target value;

or restraints on the coordinates of certain atoms so that they

remain in a plane. Here, it is important to emphasize that the

information being introduced by the use of the quantum

mechanical energy expression EQM[�] is much more funda-

mental and general in nature than any empirical constraint;

and this information is, in principle, also systematically

improvable to the true value (according to theory, at least) by

using better energy expressions or wavefunctions. The

procedure of using better wavefunctions has been well
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established by the quantum chemists (Goerigk et al., 2017).

Put simply: quantum chemistry works.

The notion of using crystallographic restraints raises the

vexed question of the number of independent parameters in

the least-squares model. Indeed, as we have said, at � = 0 the

XCW procedure determines all the electronic wavefunction

parameters without the need of any experimental data (we

ignore the positional, ADP and scale factor parameters for

now). And, as � approaches infinity, only the least-squares

term dominates the expression for J. In the large-� limit then,

the maximum number of parameters which can be determined

by least-squares is equal to the number of reflection data Nrefl

(assuming this is less than the number of parameters in the

wavefunction, N�
param, which is almost always the case, see

section 3.4). This means that, from a least-squares perspective,

the effective number of independent parameters Nparam(�)

determined by the XCW procedure must depend on the value

of �, with Nparam(0) = 0 and Nparamð1Þ � N�
param � Nrefl. If it

were possible to determine values for Nparam(�) at inter-

mediate values of � such that 0 < � <1 then this value could

be substituted into the equation (2) for GoF2, and we would

expect that at a certain point �opt this GoF2 value would

display a minimum value, where one could be reassured that

the XCW procedure would display a maximum benefit for the

number of independent parameters, i.e. we would not have a

situation of overfitting or interpolation. Various methods can

indeed be devised to estimate the effective independent

number of parameters, say by eigenvalue filtering, see

Diamond (1966) for the use of this method in a crystal-

lographic context, but these have not been tried yet.

Something should also be said about the notion of over-

fitting in a least-squares context. The key quantities of interest

in a least-squares procedure are that there is no bias in the

estimated parameters (i.e. that the difference between the

estimated and expected values of the parameters is zero), and

that the variance of the prediction parameters is minimised

(this is the ‘least’ part of the least-squares process). The notion

of overfitting is related to large values of the variances, due to

having too many parameters in the model, because the least-

squares equations are ill-conditioned. What Hoerl & Kennard

(1970) and Marquardt (1970) noticed [see also Marquardt &

Snee (1975) for a more accessible discussion] is that if ‘extra

information’ is introduced to increase the bias, then the least-

squares error can be reduced. Indeed, the least-squares error

is exactly the sum of the variance and the square of the bias.

This is the famous variance-bias trade-off. In a sense it is

obvious: as we said, at � = 0 all the parameters is the model are

determined: there are no independent least-squares para-

meters in this case. This is nevertheless important because,

often an unbiased estimate with large error is less useful than a

biased estimate that has a smaller error. It all depends on how

small the error estimate is!

2.14. XCW fitting is a regularisation procedure

We have mentioned that the number of parameters needed

to describe an XCW will often exceed the number of experi-

mental data which are measured, so that the XCW procedure

is not a least-squares procedure. It is, in fact, a regularisation

procedure (Weese, 1993; Mueller & Siltanen, 2012) closer to

inference of the best possible values for the model parameters

(based on appropriate prior information) than a measurement

process. In fact, the XCW procedure is closely related to

Bayesian maximum-likelihood reconstruction methods, which

are described by Ward & Ahlquist (2018, p. 9) as follows:

‘Rather than consider the data as random and the parameters

as fixed, the principle of maximum likelihood treats the

observed data as fixed and . . . the parameters [as] random

variables.’

The italics in the quote above are ours, and highlight the

fact that from a Bayesian viewpoint, data are just one source

of information (along with prior information) to produce

inferred or updated results. Bayesian methods allow a

straightforward way to obtain credibility intervals of inferred

quantities, the analogue of confidence intervals from classical

statistics – albeit with much more computation required to

obtain them (Carlin & Louis, 2008; Turkman et al., 2019).

However, let us reiterate: Bayesian estimates for quantities do

not constitute a measurement. The intention is quite different,

because we are in a regime of inference – not the scientifically

accepted standard of measurement relative to a fixed model

where all sources of error are reduced or eliminated to

insignificant levels.

We also point out that the XCW procedure is closely related

to the procedure of ridge regression and cross validation,

especially the jack-knife or leave-one-out methods which,

interestingly, permit a determination of the Lagrange multi-

plier parameter � via analytical rather than bootstrap data-

resampling procedure (Golub et al., 1979; Gruber, 2017; Dixon

& Ward, 2018). These ridge regression methods are interesting

because they lie in-between least-squares methods and a full

Bayesian analysis: the well-known Brünger (1992) Rfree

procedure of macromolecular crystallography is just one such

example of these bootstrap methods.

To avoid a potential confusion we mention that in the

mathematical literature a Lagrange multiplier (here below, 	)

is usually applied to the regularising expression (in this case

EQM[�]) rather than the GoF2 term, thus leading to the idea of

making stationary the expression

J0½�� ¼ GoF2
½�� þ 	EQM½��: ð8Þ

We have not written the regularisation procedure in the above

standard form because there would be no solution in the case

that the Lagrange multiplier 	 would be zero, due to the fact

that the least-squares equations are ill posed, as already

mentioned. However, as soon as 	 takes on an infinitesimally

small value, making J0 stationary becomes well defined, and it

is easy to see that an infinitesimal value of 	 corresponds to

minimising J0 in the limit �!1. We chose the nonstandard

way to represent the XCW regularisation procedure in the

expectation that one would be using very good, well-tested

wavefunctions so that relatively small values of � are required

(though it is hard to quantify this). That is, we expect to be

operating in a regime where the theoretical models are only
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perturbed by a small amount to reach an optimum agreement

(according to a well-defined halting procedure) with the

experimental data.

2.15. Constraint or restraint?

Originally, the term constraint was associated with the way

these wavefunctions were derived. However, it was soon

realised (Jayatilaka, 2012; Grabowsky et al., 2017; Ernst et al.,

2020) that in crystallography it is standard to instead use the

word restraint. However, further research shows that the term

restraint is not commonly used outside crystallography and

molecular dynamics. Even in the well-known text by Dunitz

(1995, p. 212) we find the statement ‘Instead of exact

constraints, more elastic ones may be imposed – e.g. that bond

distances . . . are permitted to deviate from standard values by

not too much . . . This way of adding constraints is equivalent

to adding a set of further observational equations, and the

order of the matrix of normal equations [for the least-squares

parameters] is thereby neither increased or reduced. The

method of conditional or slack least-squares refinement is

applicable when . . . [and so on]’

The italics in the above quote are ours, and indicate that the

word constraint is used in connection with ‘elastic’, ‘slack’ and

‘conditional’; but in other fields ‘flexible’ or ‘soft’ are also

often used together with the word constraint. In classical

mechanics one has a closely related notion of nonholonomic

constraints (Goldstein et al., 2002). The word restraint does

not even appear in the original reference by Waser (1963),

though he does refer extensively to Lagrange’s method (of

constrained minimisation) associated with subsidiary condi-

tions. Likewise, Giacovazzo et al. (1992, p. 106–107) (who also

uses the term ‘soft, flexible constraints’ to describe restraints)

also makes clear that the difference between constraints and

restraints is only in the method of solving the least-squares

equations.

Given this, in this paper we use the original term X-ray

constrained wavefunction (XCW) not only to draw a direct

connection to Jayatilaka (1998) and Grimwood & Jayatilaka

(2001), but also because it emphasizes the importance of

achieving the correct and desired value of the goodness of fit

�, which is the object of the constraint. Our preference,

however, is that the term regularisation be used in the context

of XCW as much as possible.

2.16. The XCW and the Kohn–Sham wavefunction

Without going into too many details, the Kohn & Sham

(1965) DFT theory posits that there exists a single determi-

nant wavefunction �KS which minimises the kinetic energy

and simultaneously yields the exact ground state electron

density �0. Levy formally implemented this idea by introdu-

cing a continuous Lagrange multiplier function veffðrÞ to find

�KS (Levy, 1979; Parr & Yang, 1994). According to Lagrange’s

method then, we need to construct Levy’s functional

L½�� ¼ T½�� �

Z
veffðrÞ

�
�ðrÞ � �0ðrÞ

�
dr; ð9Þ

where T is the kinetic energy of the determinant, and the term

following represents the constraint. Lagrange’s method

requires us to find the stationary point of L to find �KS. Using

the calculus of variations the stationary conditions with

respect to variation of L[�] with respect to Lagrange multi-

plier veffðrÞ then leads to the constraint equation (Parr & Yang,

1994)

�ðrÞ � �0ðrÞ ¼ 0: ð10Þ

On the other hand, variation with respect to the orbitals

comprising � then lead to the Kohn–Sham equations for the

Kohn–Sham orbitals (Parr & Yang, 1994),h 1

2
r2 þ veffðrÞ

i

0

i ðrÞ ¼ �i

0
i ðrÞ: ð11Þ

The term veffðrÞ is the identified as the famous Kohn–Sham

effective potential, which is approximated in all DFT methods.

Notice that Levy’s derivation of the Kohn–Sham DFT

equations is essentially the same as that in XCW method. For

example, making the XCW Lagrangian J stationary with

respect to Lagrange multiplier � gave back the constraint

condition (6), analogous to equation (10), while making the

variation of L with respect to the wavefunction gives the

constrained variational equation (5). In addition, in x3.10 we

show that, for a molecule-based procrystal determinant, the

XCW obeys orbital equations in a basis set just like the Kohn–

Sham equations.

In fact, the XCW procedure can be expressed in a similar

way to Levy’s formulation of the Kohn–Sham equations if we

define the XCW as the wavefunction that makes

J½�� ¼ min
GoF2½��¼�

h� jĤHj� i ð12Þ
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Figure 1
The X-ray constrained wavefunction �opt ¼ ��¼�opt

which makes the
Lagrangian expression J in equation (4) stationary at the value of the
Lagrange multiplier � = �opt (whose value yields a desired value of
goodness-of-fit between the calculated and experimental data, � =
GoF2[�opt]) is smoothly connected to the ab initio quantum mechanical
wavefunction �QM = ��=0 at � = 0. Without such a connection (shown by
the blue pathway) there could be many possible wavefunctions,
represented by the orange balloon, which could yield the desired level
of fit �. In practice, one usually drops the ‘opt’ subscript, and the desired
� is simply called GoF2.



stationary. Now, the only difference compared to Levy’s

formulation is the full Hamiltonian operator ĤH is used for the

energy, rather than the kinetic energy operator T̂T. And rather

than find the wavefunctions �KS which yield a given exact �0,

the XCW method finds the �opt which gives a desired good-

ness-of-fit statistic such that GoF2[�opt] = �, see x2.12 and

Fig. 1.

2.17. The XCW and the Zhao–Parr method

Important for our work is that Zhao & Parr (1993) have

implemented the Levy constrained-search approach for the

Kohn–Sham wavefunction. That is, Zhao and Parr have

described how to extract the Kohn–Sham wavefunction from

an arbitrary input density �0.

The Zhao–Parr (ZP) equations for the Kohn–Sham orbitals

minimize the functional

ZP½�� ¼ T½�� þ
�

2
C½��; ð13Þ

where

C½�� ¼

Z Z �
�ðrÞ � �0ðrÞ

��
�ðr0Þ � �0ðr

0Þ
�

jr � r0j
drdr0; ð14Þ

where �0 is supposed to be the exact ground-state electron

density. However, unlike the Kohn–Sham–Levy method which

yields the effective potential, in the ZP method the constraint

term C is associated with a single Lagrange multiplier �, and

the Kohn–Sham equations are obtained in the limit � ! 1
(the factor of 1

2 in the equation above is only aesthetic).

According to ZP, this method works – by which they mean that

making the ZP[�] functional stationary yields the orbitals

comprising the Kohn–Sham determinant wavefunction with

electron density �0. The similarity between this variational

procedure and that used in the XCW method is now even

more clear compared to Levy’s formulation of the Kohn–

Sham equations (described in the previous section) since

rather than an effective potential vr
eff there is now only a single

Lagrange multiplier �.

There are, however, some minor differences. Zhao and Parr

take their exact electron densities �0 on a grid of points in real

space, from highly energy-accurate (but nevertheless

approximate) reference ab initio wavefunction calculations.

On the other hand, in the XCW method, a grid of points in

reciprocal space is used, see equation (1). Also unlike the

XCW method, the errors in the electron density �0 were

assumed by Zhao and Parr to be negligible, and so they were

aiming to constrain C = 0 in their procedure, which would be

analogous to obtaining � = 0 in the XCW procedure.

However, the goal of XCW is not � = 0 since this would imply

reproducing the experimental data more accurately than the

measured errors — see equation (2) and the more detailed

discussion in x2.21.

2.18. Convergence problems with the Zhao–Parr method

Zhao et al. (1994) (ZMP) have noticed convergence

problems in their method when � became very large. They

described this as ‘tedious’, and did not really understand it,

calling it a ‘critical phenomenon’. Nevertheless, they were able

to obtain results by using an extrapolation procedure to large

values of �, employing the fact that C(�) = C[��] is an even

function in �, and second, employing an asymptotic expansion

in (even) powers of ��2. In Appendix A, we demonstrate that

the GoF2(�) function in the XCW procedure is also an even

function of �, while in Appendix B it is shown that the GoF2

used in the XCW fitting procedure is essentially equal to the

square of the difference between the calculated and experi-

mental electron density integrated over the unit cell. Based on

these results, in Appendix C, we show that the constraint

function C of Zhao and Parr is the same as our GoF2, except

with a different weighting in reciprocal space. In summary: like

C, the GoF2 may be loosely regarded as an energy term.

Tozer et al. (1996, 1997) (TIH) later argued and established

convincingly that the convergence problems observed by ZP

were due to the fact that the basis sets used to obtain the

Kohn–Sham orbitals were incomplete, and they proposed to

introduce a constant error term in the asymptotic expansion

used to extrapolate to �!1.

We mention that what TIH describe as basis set errors in

their method could equally well be associated with inaccuracy

in the reference electron densities �0 used by these authors. It

is hard to say. Note that, for ab initio wavefunction methods,

the errors in these accurate electron density values are likely

very large in absolute terms at the nuclear positions due to the

use of basis functions with incorrect cusp behaviour; while

they are likely quite incorrect in percentage terms in the low-

density regions of the wavefunction, for the same reason. We

mention these possible inaccuracies because, in the XCW

method, the experimental structure factor magnitudes are

subject to experimental errors which are very similar in nature

to the basis-set incompleteness errors in the just-mentioned

reference electron densities �0 used by Zhao & Parr: in both

the ZP and XCW procedures there is a mismatch between the

the flexibility of the basis set, i.e. basis-set completeness or

equivalently, the closeness of the reference �0 (or structure

factor magnitude) data values to numerical values which are

fittable by the (incomplete) set of basis functions used.

2.19. Convergence of the XCW method

Given our analysis above, it should not be very surprising

that, like the ZMP and TIH approaches, the XCW method

also displays convergence problems as the Lagrange multiplier

� becomes larger. Apart from the comments already made, we

can understand these also as a consequence of the fact that the

stationary equations which are to be solved become increas-

ingly like an ill-conditioned least-squares fit where there are

too many variables and not enough data. As such, there will be

many eigenvalues in the matrices associated with these

methods whose magnitudes are close to zero. This is a least-

squares explanation of the critical phenomenon of Zhao and

Parr.
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2.20. Incompatible measurements

Although convergence problems are inherent to the XCW

procedure itself, they may be exacerbated by specific features

in the experimental data. To see this, suppose that there are

experimentally measured reflections which are near each

other in reciprocal space but whose associated estimated

standard uncertainties (�obs
r ) are unreasonably small. We may

call this the problem of conflicting or incompatible measure-

ment. For this case, it may be impossible to obtain a GoF2

below a certain magnitude without a sufficiently flexible basis

set to represent the sharp change in the (reciprocal space)

electron density that this situation demands; and trying to do

so will certainly lead to convergence problems [in part II

(Davidson et al., 2022) we demonstrate this fact].

As a matter of fact, Henn (2016) and Landeros-Rivera et al.

(2021) have argued that, more often than not, the �s are

underestimated, leading to values for GoF2 which are unrea-

listically large. On the other hand, there are also many cases

known for which an unfitted wavefunction has a GoF2 value

smaller than one, suggesting that the �obs
r are overestimated

[see, for example, Grabowsky et al. (2011), and the supporting

information of Grabowsky et al. (2010)]. From the literature

then, it seems safe to conclude only that the �s are not always

well estimated, and hence neither is the value of GoF2.

2.21. The XCW halting problem

Given an adequate model for �, and given experimental

data with uncorrelated and random errors only, we expect to

terminate the XCW fitting procedure with a value of � = �opt

at which

GoF2
ð�optÞ ¼ � ¼ 1: ð15Þ

The meaning of equation (15) is then that the averaged

squared differences between observed and calculated struc-

ture factor magnitudes are, on average, within one estimated

standard deviations �obs
r . Naturally, if the �s are well esti-

mated, the properties derived from an XCW when � = 1 are

reliable (Jayatilaka, 1998; Jayatilaka & Grimwood, 2001;

Grimwood & Jayatilaka, 2001). (Although the value of � is

important, indeed critical to the XCW process, it is only a

means to constraining GoF2 to a desired value of �, and it is �
which is most directly related to the experimental measure-

ments and other kinds of refinements, and which should

always be mentioned in XCW fitting calculations). On the

other hand, if the �obs
r are not well estimated, say as a rough

approximation they are all in error by a uniform scale factor

(A)1/2, then this could be re-cast as an equivalent functional

J[�, �0] with the well estimated value of the �obs
r , instead

applying the scaled factor to �0 = �/A. Of course, to make these

functionals truly equivalent, � must also change, but this is

merely to highlight the relationship between the values of �,

the �obs
r and �. It also emphasizes the fact that the value of �

is critical.

We denote the problem of choosing the desired value of �
at which the XCW procedure should be terminated as the

halting problem. The name is chosen because, in practice, one

chooses increasingly larger values of � until a desired value of

GoF2 is obtained; the halting problem here is supposed to

evoke the idea of Turing’s halting problem (Lucas, 2021).

However, unlike Turing’s halting problem, our halting

problem can never have an unambiguous solution because it

falls in the realm of statistical inference, which is always

subjective.

2.22. Attempts to solve the halting problem

The XCW halting problem remains unsolved, despite

several efforts, which we now summarise.

(i) A pragmatic solution to the halting problem was

proposed by Whitten et al. (2006). They suggested ‘ . . . to

pursue fitting until the weighted residual [wR1] (or [wR2])

approaches that obtained in a parallel multipole refinement of

the same X-ray structure factors; see also Jayatilaka et al.

(2009). Even so, in some cases these authors still found it

difficult to obtain convergence, possibly because the multi-

pole-refined geometries and anisotropic displacement para-

meters (ADPs) were not optimal, as discussed already.

(ii) The statistical procedure known mainly in protein

crystallography as Rfree was also suggested as a solution

[Lecomte (2003), private communication], but it has proved

inconclusive [see for example the supporting information to

Grabowsky et al. (2012) and Woińska et al. (2017)].

(iii) Bytheway et al. (2002) proposed a method to estimate

errors in the experimental �s by adding Gaussian noise to the

experimental structure factor magnitudes. Based on the

behaviour of various topological properties as a function of

GoF2 for these artificially noisy data sets, specifically where

plots of these property values versus � intersect with the same

plots using un-noised experimental data, a scaling factor was

found for the �s; and using these scaled �s, the fit was

terminated when GoF2
scaled was reached. Unfortunately, when

this method was examined for urea and alloxan, it failed

(Grimwood et al., 2003).

(iv) Hudák et al. (2010) terminated the XCW procedure for

the smallest � value for which the change in the wR1 or wR2

was less than a certain limit, which they set to 0.04%, without

any justification.

(v) Genoni (2013) proposed, using his X-ray constrained

extremely localized molecular orbital (XC-ELMO) wave-

function method, that the constrained fitting should be

terminated based on several criteria involving ensuring either

GoF2 < 1, and both the relative change in GoF2 versus � and in

the relative change in the total electronic energy being less

than pre-decided thresholds.

(vi) Recently, Genoni et al. (2019) have empirically

observed that the GoF2 versus � plot tends to have a change in

curvature. They proposed that the fitting should be terminated

at this inflection point. This method is somewhat similar in

spirit to the L-curve method of inverse problem theory

(Mueller & Siltanen, 2012).

(vii) In part II (Davidson et al., 2022), we have tested three

new ways of terminating the fit. Although interesting rela-
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tionships for a scale of the error in the �s arise, the problem is

still not conclusively solved.

Currently, most XCW fittings are simply terminated at the

ultimate or penultimate value of � before convergence ceases,

where lack of convergence is defined arbitrarily by more than

a certain number of iterations for the self-consistent-field

(SCF) process including the direct inversion of iterative

subspace (DIIS) extrapolation method (Pulay, 1980, 1982).

The assumption behind this fit until it fails method is that the

quantum mechanical energy expression, EQM, will prevent

overfitting, because if the desired � is too small (i.e. �
becomes too large and the fitted wavefunction �� too

different from �QM) it will be impossible to solve the XCW

equations.

3. Practical formulation of the Hirshfeld-atom based
X-ray constrained wavefunction method (HA-XCWs)

3.1. The X-ray constrained wavefunction

The X-ray constrained wavefunction (XCW) � used by

Grimwood & Jayatilaka (2001) comprises a Hartree product

of isolated-molecule determinant wavefunctions �k,

� ¼
Y1
k¼1

�k: ð16Þ

This is a molecule-based procrystal approximation or model

for the periodic crystal wavefunction � (Grimwood et al.,

2003). It is a generalisation of the promolecule approximation

defined by Spackman & Maslen (1986) which forms the basis

of the IAM. In both these models, the electron density turns

out to be a sum of electron densities �k from the individual

fragment wavefunctions �k.
7

In principle, each of the �k may have a complicated form,

but the simplest is to use a single determinant. In this case,

space-group symmetry dictates that each �k is related by

spatial and translation symmetry operator to a single unique

reference determinant

� � �1 ¼ ðNe!Þ
�1=2 det 
1
2 . . .
Ne

��� ���: ð17Þ


i are spin orbitals which are most often expanded as a linear

combination of Gaussian basis functions.8

3.2. Technical points concerning the XCW method

Three important but technical points must now be

mentioned here.

(i) First, the number of atoms comprising the reference

molecular wavefunction � may sometimes be larger than

necessary, in order to better model the effect of the crystalline

environment on the asymmetric unit atoms whose electron

density is needed to calculate the X-ray structure factors. That

is � from � comprises more than the electron density �asym
cell

comprising the asymmetric unit of periodically repeating cell.

In this case, even though the (normalised) wavefunction for

this enlarged fragment is quantum mechanically valid, there is

no molecule-based procrystal wavefunction � of the form of

equation (16), since this would entail that the enlarged

environments mutually overlap. If the purpose of the wave-

function is to model the electron density or other properties in

the crystal, then some means of extracting the electron density,

or density matrix, of the symmetry-unique molecular fragment

from its enlarged environment is necessary. Such means using

a basis-function partitioning were developed in Jayatilaka &

Grimwood (2001). Likewise, the atom-based HAR method

provides an obvious way to extract the symmetry-unique

electron density from this extended molecular fragment. In

any case, the actual symmetry-unique atoms comprising the

asymmetric unit used to calculate the model structure factors

must be identified. A convenient and recommended way to do

this is to assume that in the reported CIF, the asymmetric unit

atoms are those symmetry-unique atoms which occur earliest

in the list.

(ii) Second, rather than use a molecule-based procrystal

wavefunction, one might want to use a fully periodic wave-

function, since such a wavefunction incorporates long-range

electrostatic crystal field effects. This was achieved by Wall

(2016) and Ruth et al. (2022) for HAR-like refinement. In

general, such infinite-periodic quantum mechanical methods

are more time-consuming to compute owing to the necessity to

perform Ewald sums. In addition, it is often the case that such

methods usually employ pseudopotentials to remove the core

electrons from the model; but in this case, those core electrons

comprise bulk of the X-ray diffraction signal. Finally, such

periodic wavefunctions by design do not deal with surface

effects, which are also long-range.

(iii) Alternatively, other methods may be used to account

for the crystal field such as a self-consistent cluster of point

charges and point dipoles based on Hirshfeld atoms (Capelli et

al., 2014); localized-orbital periodic wavefunctions have been

suggested (Shukla et al., 1996) and used (Jayatilaka, 1998); and

a cluster of extremely-localized molecular orbitals (ELMOs)

embedding a central moiety (Wieduwilt et al., 2021), this last

being similar in spirit to that described in the first point in this

list.

3.3. Procedure for obtaining a single-determinant XCW

The procedure for obtaining the molecular orbitals in the

XCW wavefunction � is a practical implementation of an idea

due to Henderson & Zimmerman (1976). It involves mini-

mising the quantity

Hans-Beat Bürgi tribute

Acta Cryst. (2022). B78, 312–332 M. L. Davidson et al. � X-ray constrained wavefunctions. Part I 323

7 It is worth mentioning that an analogous promolecule or procrystal model
(as used to obtain the electron density in the crystals) is also used to calculate
the nuclear probability density functions from the atomic displacement
parameters: in the Einstein–Debye model, the nuclear wavefunctions are
assumed to be a Hartree product of atom centred harmonic nuclear
wavefunctions (Debye, 1913; Born, 1942). So there is a precedent for this idea.
8 Thus, the molecular wavefunctions �k, even though normalised, are not
orthogonal to each other. Although � is normalised, it would not remain so if it
were antisymmetrized with respect to electron coordinates, as required by
quantum mechanics. Therefore, using the wavefunction (16) to obtain
intermolecular properties relating to different determinants �k requires care.



J½�; �� ¼ EQM½�� �
XNe

i¼1

�i h
ij
ii � 1
� �

� �½GoF2
½�� ���

ð18Þ

with respect to the wavefunction �. In order of appearance of

these terms, they are defined as follows:

(i) EQM[�] is a variational energy computed using Hamil-

tonian ĤH,

EQM½�� ¼ h�jĤHj�i and h�j�i ¼ 1: ð19Þ

Here ĤH is the fixed-nucleus electronic Hamiltonian associated

with the symmetry-unique isolated molecule (or cluster of

molecules, as discussed in the previous section) whose wave-

function is �, written in terms of molecular spin orbitals

f
ig
Ne
i¼1, see equation (17).

(ii) The molecular spin orbitals 
i are usually expanded in a

basis set of fitting functions fg	g
Nbf
	¼1,


i ¼
XNe

i¼1

c	i g	; ð20Þ

The spin basis functions g	 are typically Gaussian functions

centred on the atomic nuclei, as already discussed. The

expansion coefficients c in the equation above are the mole-

cular spin orbital coefficients, and making J stationary with

respect to the spin orbitals implies stationary conditions with

respect to these parameters.

(iii) In order to ensure that � is normalised, see

equation (19), the spin orbitals are further subject to a

normalisation constraint, expressed in the second term in

equation (18). This constraint employs the Lagrange multi-

pliers f�ig
Ne
i¼1. The �is turn out to be the orbital eigenvalues

(Szabo & Ostlund, 2012).9 For later reference, the normal-

isation constraint can be written in terms of the molecular spin

orbital coefficients as

h
ij
ii ¼
XNbf

	;�¼1

c�	i hg	jg�i c�i ¼ cySc
� �

ii
; ð21Þ

where
S	� ¼ hg	jg�i ð22Þ

is the overlap matrix for the basis functions, and the † is a

complex-conjugate transpose (though in most cases the coef-

ficients c will be real and a transpose would suffice).

(iv) The most important parameter in equation (18) is �,

which is the Lagrangian multiplier associated with the

constraint (or penalty) when GoF2(�) achieves the desired

value of �. The value of � that gives the desired � is in

practice found by trial and error, using a protocol.

(v) It is very important to note that the number of para-

meters used to define the GoF2(�) is taken as

Nparam ¼ NpADP þ Nmisc þ 1; if �> 0: ð23Þ

That is, Nparam is equal to the number of parameters usually

refined in a crystallographic least-squares model, see x2.3, plus

in addition one more parameter for �. The rationale behind

this choice is that � counts as a kind of pseudo parameter.

However, as we explained in x2.13, this is not at all the correct

number of effective independent parameters, whose deter-

mination would count as one way to resolve the halting

problem. Our choice here is pragmatic, so that the value

obtained for GoF2 when doing an XCW at � = 0 corresponds

to that obtained from a HAR calculation. In previous work

before HAR, NpADP was effectively assumed to be equal to

zero.

The procedure for obtaining the spin orbitals is then to

obtain the derivatives of the quantity J in equation (18) with

respect to the orbital coefficients c which define �. This is the

implementation of the more general equation (5) mentioned

earlier. The resulting set of equations, derived in the next

section, will still involve the multiplier �. As we explained

before, in practice, one solves these equations by first setting �
equal to zero, and then slowly increasing it until one achieves

the desired value of �. In this way, one ensures that the

wavefunctions �� which minimise J in equation (18) form a

continuous sequence with ��=0 being the unmodified and

unfitted theoretical wavefunction.

3.4. The number of parameters in a determinant wavefunc-
tion

Levy & Goldstein (1987) have shown that the number of

independent parameters required to describe a single deter-

minant wavefunction is given by

N�
param ¼ NorbNbf ð24Þ

where Norb is the number of orbitals in the determinant; for a

restricted determinant with the same spatial orbitals with

different spins this is Ne/2, and for the unrestricted case with

different spatial orbitals for each spin it is Ne. For an example,

in part II (Davidson et al., 2022) where we consider restricted

Hartree–Fock determinant for �-oxalic acid dihydrate

comprising one oxalic unit and six surrounding water mole-

cules, with a def2-SVP basis set (Weigend & Ahlrichs, 2005),

we have Ne = 106 and Nbf = 250, so that the number of

independent orbital coefficient parameters is N�
param = 13250.

This is to be compared with the number of reflections Nrefl

which, in the thirteen oxalic acid dihydrate data sets described

by Kaminski et al. (2014), range from 1431 to 2881. It is worth

keeping in mind that this is only the simplest kind of wave-

function, and more complicated multi-determinant wave-

functions may have exponentially more independent

parameters.
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9 Note that in the standard textbooks, a matrix of Lagrange multipliers �ij is
introduced to enforce orthonormality conditions h
i|
ji � �ij = 0. For the cases
here, the energy expression EQM[�] involves a self-adjoint Hamiltonian,
which eventually leads to a Hermitian one-electron Fock matrix, see x3.10,
which automatically ensures orthogonal spin orbital solutions. Whether using
the standard approach or our Lagrangian, the Lagrange normalisation
constraint on the solution must be explicitly enforced; and this is done as a
matter of course in most eigensolver routines.



3.5. The Hirshfeld atom structure factors

In order to minimize J of equation (18), we first need an

expression for the calculated X-ray structure factor fA of

Hirshfeld atom A in terms of the wavefunction parameters, the

molecular orbital coefficients c. The required expression in

Cartesian coordinates is (Jayatilaka & Dittrich, 2008)

Fcalc
r ¼

XNasym

A¼1

s�1
A

XNsymop

ðSm;tmÞ

exp
�
iqr � tm

�
f AðS

T
mqrÞ ð25Þ

where:

(i) The first summation is over the nominated Nasym asym-

metric unit-cell atoms in the determinant wavefunction �. The

first sum should be over all atoms in the unit cell, but this is

avoided because the second summation over Nsymop symmetry

operators generates the symmetry-dependent unit-cell atoms.

Thus the second summation is over Cartesian space group

rotation and translation symmetry operators, respectively

ðSm; tmÞ. sA is a site-symmetry factor needed to avoid double-

counting of electron density contributions; it counts the

number of times atom A is mapped onto itself by the

symmetry operations.

(ii) qr is the Cartesian scattering vector for reflection r,

qr ¼ 2
A�hr: ð26Þ

A* is the reciprocal cell matrix, which is given in terms of the

real-space unit-cell matrix A by A� ¼ ðA�1
Þ

T, and the columns

of A are the a, b and c lattice vectors with respect to Cartesian

axes. hr are the Miller indices for the r-th reflection.

(iii) The averaged aspherical atomic form factor f AðS
T
mqrÞ is

the Fourier transform of the averaged aspherical electron

density for the asymmetric unit atom A, rotated to the correct

orientation by the 3 	 3 symmetry matrix Sm, and translated

to its position rA in the unit cell. It may be written in more

detail as

f AðqÞ ¼ exp
�
iq � rA

�
Tðq; UAÞ fAðqÞ; ð27Þ

where

Tðq; UA
Þ ¼ exp

	
�

1

2
qTUAq



: ð28Þ

The term f AðqÞ comprises three others, which in order are: a

complex phase factor expðiq � rAÞ associated with the position

rA of atom A in the unit cell; a temperature factor Tðq; UAÞ,

derived from the averaged nuclear atomic density (or

OCPDF), usually a 3D Gaussian function characterised by UA,

the symmetric 3 	 3 matrix of ADPs; and the static aspherical

atomic form factor fAðqÞ, which is given explicitly by the

Fourier transform

fAðqÞ ¼

Z
�Aðr � rAÞ expðiq � rÞdr; ð29Þ

where �AðrÞ is carved out of the molecular electron density

�ðrÞ from � by a weight function. The methods by which the

atomic electron densities are obtained are detailed in the

sections below for the one-centre and two-centre PDF models.

Note that, in the above equation, �A is shifted to the origin

using its position rA. The averaged aspherical form factor

f AðqÞ can be thought of as the Fourier transform of the space-

averaged static �A (at the origin) with a real-space OCPDF for

the atom A,

f AðqÞ ¼

Z
½�Aðr � rAÞ ? PDFðr; UA

Þ� expðiq � rÞdr;

ð30Þ

PDFðr; UAÞ ¼ ð2
Þ�3=2exp
h
� 1

2 rTðUAÞ
�1r
i
; ð31Þ

where ? is the convolution operation. Equation (27) follows

from the above using the convolution theorem, if the

temperature factor T is the Fourier transform of the PDF.

Note that, unlike standard crystallography which uses

dimensionless fractional coordinates, all our formulae are

presented and implemented in Cartesian coordinates because

the ab initio quantum mechanical wavefunctions are calcu-

lated in the physical 3D space. Besides, asphericity is also

characterized in Cartesian coordinates. For peculiarities of

refinements using aspherical atomic form factors see also

Midgley et al. (2021).

The electron density for the reference wavefunction � is

given in terms of a basis set of functions by

�ðrÞ ¼
XNbf

	;�¼1

g��
�
r � rA	

�
g	
�
r � rA	

�
D	�; ð32Þ

where A� and A	 are the indices of the atoms on which the

basis functions g� and g	 are centred, and where D is the

symmetric density matrix for � in terms of this basis set,

D	� ¼
XNe

i¼1

c	ic
�
�i: ð33Þ

3.6. Space-based atomic partitions for OCPDF models

In a space-based atom partitioning scheme the electron

density of an asymmetric unit atom A at its position rA (not

the origin!) is given by

�AðrÞ ¼ wAðrÞ�ðrÞ: ð34Þ

Here, wAðrÞ is a weight function that carves out the aspherical

atomic density from the total molecular quantum mechanical

electron density �ðrÞ associated with the reference determi-

nant �. There are several ways to choose this weight function,

and different methods chosen correspond to different OCPDF

approximations (Chodkiewicz et al., 2020, 2018) but every

such method must satisfy the partitioning conditionX
A

wAðrÞ ¼ 1: ð35Þ

In the Hirshfeld atom or stockholder principle space-based

partitioning scheme the weight function is defined by Hirsh-

feld (1977b)

wAðrÞ ¼
�sph

A ðr � rAÞPNasym

B¼1 �
sph
B ðr � rBÞ

: ð36Þ
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Here �sph
A ðrÞ is a spherical atomic electron density centred at

the origin. The denominator is the sum of the nominated

atoms in the asymmetric unit of the cell, a subset of the atoms

in the model wavefunction �. The spherical electron densities

can be taken from tables, but we usually use spherically-

averaged high-spin unrestricted atomic ground-state wave-

functions calculated on-the-fly. We note that Kleemiss et al.

(2021) have used tabulated Clementi-Roetti atomic wave-

functions. Chodkiewicz et al. (2020) have tested several

different choices for the weight function wAðrÞ and have

concluded that the refined positions and ADPs using these

different partitions are not greatly affected by these different

choices.

Substituting equations (32) and (33) into equation (29) and

then equation (27), and then finally into the structure factor

equation (25), we obtain, after some rearrangement

Fcalc
r ¼

XNbf

	;�¼1

I�	ðqrÞD	� ¼ Tr ½IðqrÞD�; ð37Þ

where

I�	ðqrÞ ¼
XNasym

A¼1

s�1
A

XNsymop

ðSm;tmÞ

expðiqr �tmÞexp
�
iðST

mqrÞ�rA

�
TðST

mqr; UA
Þ

	

Z
wAðr�rAÞg�ðr�rA�

Þg	ðr�rA	
Þ exp

�
iðST

mqrÞ�r
�
dr

ð38Þ

The latter integrals may need to be performed numerically

(Jayatilaka & Dittrich, 2008). Midgley et al. (2021) have

presented a very similar set of equations, in fractional coor-

dinates, and without the use of symmetry operators to

generate all the atoms in the unit cell from an asymmetric unit.

Note that the above equations correct some minor errors that

are present in Jayatilaka (2012). In HAR or related proce-

dures, the positions and the ADPs which appear in I are least-

squares refined, by minimising the GoF2 (as was discussed in

x3.3), whereas in XCW, the wavefunction parameters c which

define D are obtained by minimising J. Some of this material

as well as practical guidance for using the HA-XCW proce-

dure has already been given in the book edited by Grabowsky

(2021).

3.7. Basis-function-based atomic partitions for OCPDF
models

For wavefunctions which employ one-electron basis func-

tions with a centre e.g. the popular Gaussian basis sets (Boys,

1950), the static aspherical atomic electron densities �A can

also be defined using a basis-function partitioning scheme,

�AðrÞ ¼
XNbf

	;�¼1

�A
	�ðrÞ; ð39Þ

where
�A
	�ðrÞ ¼ wA

	� g	ðr � rA	
Þg�ðr � rA�

ÞD�	: ð40Þ

We reiterate that A	 and A� are the indices of the atom nuclei

on which basis functions g	 and g� are centered, respectively.

The above equation is analogous to space-based partitioning

equation (34), but in basis function space. The analogue of the

space-based partitioning condition, equation (35), is the basis-

function partitioning rule

XNasym

A¼1

wA
	� ¼ 1: ð41Þ

In Jayatilaka & Grimwood (2001) explicit formulae for the

partition factors wA
	� were given for the McWeeny–Mulliken

partitioning (which assigns an equal portion of the electron

density to each atom in a two-center basis function product),

and for Tanaka’s Gaussian basis function partitioning scheme

(which assigns a proportion to each basis function in a two-

center basis function product according to the Gaussian

product theorem). In the latter case, the Gaussian product

theorem occurs at the uncontracted basis function level, so the

summations in the above equations should be regarded being

over uncontracted Gaussian basis functions (Szabo & Ostlund,

2012). However, there is no requirement imposed by the

above sum rule that the electron density associated to an atom

A must involve the atoms on which the basis functions g	 and

g� are centered: Vanfleteren et al. (2010) describe one inter-

esting possibility.

Although the summation over A in the equation above is

over a nominated set of asymmetric unit atoms, it could be

extended to comprise a sum over all atoms in the wavefunc-

tion � provided that partition factors wA
	� are appropriately

modified to account for double-counting. In Jayatilaka &

Grimwood (2001) such atoms were called oversampled with

respect to the asymmetric unit, and the factors which correct

for this double counting are colloquially called repetition

factors. In general however, our preference is not to work with

an oversampled set of atoms, since otherwise specifying how

the structure factors are calculated becomes a difficult task.

3.8. Basis-function-based partitioning for a TCPDF model

In a TCPDF model there is no longer any need to partition

the electron density into atomic contributions, because ADPs

are introduced for each atom on which the basis functions are

centered, at most two. So in contrast to equations (27)–(29)

and equations (39) and (40), the averaged form factor asso-

ciated with a pair of basis functions in a TCPDF approach is

given by

f	�ðqÞ ¼ expðiq � pÞ Tðq; UA	 ;UA�Þ f	�ðqÞ; ð42Þ

where

f	�ðqÞ ¼

Z
g	ðr � pÞg�ðr � pÞD�	 expðiq � rÞ dr: ð43Þ

In the above, the point

p � pðrA	
; rA�
Þ ð44Þ

is some function of the positions rA	
and rA�

on which the basis

functions g	 and g� are centered, respectively. For example, in

the McWeeny–Mulliken scheme it is simply the midpoint of

the two atoms,
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pðrA	
; rA�
Þ ¼ ðrA	

þ rA�
Þ=2: ð45Þ

Whatever scheme is used, we must have the one-center

condition

pðrA	
; rA	
Þ ¼ rA	

; ð46Þ

which implies that the basis function product on one center

reduces to the OCPDF form.

The TCPDF analogues of the OCPDF temperature factor in

equation (28) are the different kinds of two-center tempera-

ture factor models referred to in Jayatilaka & Grimwood

(2001). For example, Coppens et al. (1971) have proposed the

model

Tðq;UA	;UA� Þ ¼
1

2

"
exp

	
�

1

2
qTUA	q



þ exp

	
�

1

2
qTUA�q


#

ð47Þ

Again, for every reciprocal lattice point q we must have a one-

centre consistency condition whereby the TCPDF approx-

imation for the temperature factor reduces to the corre-

sponding OCPDF form, i.e.

Tðq; UA;UAÞ ¼ Tðq; UAÞ: ð48Þ

The formula for Fcalc
r in the TCPDF case is then the same as in

equation (37) with only a minor and obvious modification to

equation (38) to incorporate the new averaged atomic form

factor f	�ðqÞ of equation (42), leading to

I�	ðqrÞ ¼ s�1
�	

XNsymop

ðSm;tmÞ

expðiqr �tmÞ

	

Z
exp

�
iðST

mqrÞ�p
�
TðST

mqr; UA	 ;UA� Þ

	 g�ðr�pÞg	ðr�pÞexp
�
iðST

mqrÞ�r
�
dr: ð49Þ

It includes the complex phase factors expðiq�pÞ associated with

the center of the atom or two-centre bond density, and the new

one- or two-center temperature factors. The s�	 are pair site-

symmetry factors which avoid double counting electron

density contributions, and they count the number of times the

basis function product pair is mapped onto itself by the

symmetry operations [Dupuis & King (1977) have shown an

alternative method to calculate these factors]. Note that only

pairs of basis function products where at least one basis

function is centered on an asymmetric unit atom appear in

equation (49) and in addition, the point p associated with the

basis function pair should also lie within the asymmetric unit.

The latter condition ensures that the only electron density

contributions in the asymmetric unit are used to calculate the

structure factor via equation (37).

One advantage of this formalism is that analytical Fourier

transform integrals may be used, and these will be much

quicker than the numerical integrations which are required in

Hirshfeld-atom procedures.

It is worth mentioning here the interesting possibility to

investigate the refinement of the full 6 	 6 two-center ADPs

UA	A� (Scheringer, 1972b) for certain pairs of atoms with large

two-center electron density contributions [possibly with the

incorporation of additional information concerning the

behaviour of the electron density as a function of the atom

positions from derivative electron density calculations to

avoid linear dependencies (Scheringer, 1972a; Bürgi, 1989)]

with only a minor modification of the above formalism.

3.9. Discussion of the two models

In summary, the difference between the OCPDF and

TCPDF formulations is only that:

(i) In TCPDF models, the static atomic densities which

define atomic form factors are obtained from the molecular

density by partitioning it in basis-function space rather than in

real space; and that

(ii) In TCPDF models, the averaging procedure involves the

ADPs of both atom centers; and that this averaging procedure

involves a variable point p which depends in some way on the

positions of the atoms on which a pair of basis functions are

centred.

The TCPDF model is therefore more closely aligned with

the underlying quantum-mechanical model in that it does not

force the assumption of an Einsteinian atomic model (Bürgi,

1995; Bürgi & Capelli, 2000), though admittedly, the whole

concept of two centre contributions (sometimes referred to as

bonding electron density contributions) is rooted in the

unnecessary but nevertheless widely-used concept of an atom-

centred basis function. It should be noted that the bonding

electron density does not account for more than roughly 10%

of the total scattering signal, see Bytheway et al. (2007) for

more details.

3.10. The Hirshfeld atom XCW (HA-XCW) equations

The equations we require are obtained when J is a

minimum, i.e. when

@J

@c��i

¼
@

@c��i

 
EQM½�� �

XNe

i¼1

�i

�
h
ij
ii � 1

�!

� �
@

@c��i

�
GoF2

½�� ��
�
¼ 0: ð50Þ

The term in parentheses on the right hand side, E0QM, is the

quantum mechanical energy of a wavefunction constrained to

have orthonormal spin orbitals.

We take only the derivative with respect to c��i because the

derivative with respect to c�i would only yield the complex

conjugate equation. From quantum chemistry we know that

the first two terms will yield the Hartree–Fock equations,

@J

@c��i

¼ F � Sc�� �
@

@c��i

�
GoF2

½�� ��
�
¼ 0; ð51Þ

where F is the Fock or Kohn–Sham matrix in the basis set

chosen; all other terms were already defined (Szabo &

Ostlund, 2012). We only need to evaluate the derivative of the

term in the square brackets, which is just the derivative of the

GoF2 term, since GoF2
opt is an independent constant. Recalling

that
��Fcalc

r

�� ¼ �Fcalc
r ðF

calc
r Þ

�
�1=2

, from equation (2) we obtain
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@GoF2
½��

@c��i

¼
2�

Nrefl � Nparam

PNrefl

r¼1

�
�jFcalc

r j � jF
obs
r j

jFcalc
r j�

obs
r

�

	 Re

�
ðFcalc

r Þ
� @F

calc
r

@c��i

�
ð52Þ

¼
2�

Nrefl � Nparam

XNrefl

r¼1

�
�jFcalc

r j � jF
obs
r j

jFcalc
r j�

obs
r

�

	 Re
h
ðFcalc

r Þ
�
IðqrÞc

i
�i
: ð53Þ

If we define �v to be the matrix which multiplies c in the

equation above,

�v ¼
2�

Nrefl � Np

XNrefl

r¼1

�jFcalc
r j � jF

obs
r j

jFcalc
r j�

obs
r

� �
Re½ðFcalc

r Þ
�
IðqrÞ�; ð54Þ

then the final equation resulting from minimising J is

½F þ ��v�c ¼ Sc": ð55Þ

These are a set of modified self-consistent-field equations,

which for a given � can be solved in a manner very similar to

the usual Hartree–Fock or Kohn–Sham equations.

3.11. Efficient implementation of the HA-XCW equations

Equation (53), if implemented as written, will not be effi-

cient because it would have an impractical scaling with the

number of reflections and integration grid points. Fortunately,

the summations in these expressions can be reordered and

batched over atoms to give an expression with better

computational cost, albeit with greater computer memory

usage.

To get an equation which can be evaluated more quickly, we

substitute equation (38) into equation (54), and extract all

terms and summations except for the basis-function pair in the

integrand of equation (38). The result is a potential

�vðrÞ ¼
2�

Nrefl � Nparam

XNasym

A¼1

s�1
A

XNsymop

ðSm;tmÞ

XNrefl

r¼1

wAðr � rAÞ

	

 
�jFcalc

r j�jF
obs
r j

jFcalc
r j�

obs
r

!
T
�
ST

mqr; UA
�

Re
h
ðFcalc

r Þ
�expðiqr �tmÞexp

h
iðST

mqrÞ�rA exp
�
iðST

mqrÞ�r
i
ð56Þ

The matrix elements of �vðrÞ with respect to the basis func-

tions,

�v�	 ¼

Z
g�ðr � rAÞ�vðrÞg	ðr � rAÞdr; ð57Þ

then constitute the matrix �v in equation (54). To see how an

efficient implementation may be achieved from this form of

the equations, note that the integral above must in general be

evaluated numerically. Therefore, �vðrÞ must be evaluated on

a grid of points. Usually, such grids can be partitioned to be

associated with individual atoms, so that, if required, the

integral evaluation may be judiciously combined with tests

eliminating terms from basis functions whose centres are too

far away from the position of atom A, and which therefore

may be neglected. A typical example of these grids used for

integration are those defined by Becke (1988) with the atom-

based partitioning scheme of Stratmann et al. (1996). If the

sum is batched over atoms in this way, the memory require-

ments of the grid points and sums over the reflections may also

be mitigated.

It is worth noting that, in a TCPDF approach, the Gaussian

integrals in equation (54) be done analytically and efficiently,

so this problem of efficient evaluation does not arise in that

case.

4. Summary and conclusion

In this paper, we have reviewed the X-ray constrained wave-

function (XCW) method and have described and named the

halting problem as the main issue to be addressed in obtaining

reliable fitted wavefunctions. In addition, we have derived and

presented working equations for the Hirshfeld atom XCW

(HA-XCW) method, and how to implement these in an effi-

cient manner. For comparison, we have distinguished between

the older two-centre probability distribution (TCPDF)

method, and the present one-centre (OCPDF) method for

calculating the structure factors. The Hirshfeld atom (HA)

method is one example of the latter. Finally, we reviewed the

importance of using atomic positions and displacement para-

meters obtained from Hirshfeld Atom Refinement (HAR) for

the use in XCW fitting, a protocol termed X-ray Wavefunction

Refinement (XWR). For consistency and clarity, we recom-

mend always using the same method for dealing with thermal

smearing in the least-squares refinement of positions and

ADPs as well as in the wavefunction fitting procedure.

5. Reminiscences by DJ on my work with Hans-Beat
Bürgi

I first met HBB (as we call him) at the combined Asca03/

Crystal-23 international crystallographic meeting in Broome,

Western Australia. I don’t recall that we said much to each

other. My immediate impression was: here is a funny character

who looks like Fozzie Bear (doesn’t he?) – happy, with a funny

accent, sunburnt face and sandy feet, and more than a little

tipsy in the warm tropical weather of the remote Pilbara

region.

The following year I had arranged a nine month sabbatical

to Claude Lecomte’s group in Nancy, then called LCM3B I

think, where I was supposed to work on what was called the

X-ray wavefunction fitting project, and on polarised neutron

diffraction PND.

Some time late in 2004, I don’t recall the exact timing, I was

invited by HBB to Bern to give a talk to his group; and second,

I was invited to do my first X-ray experiment at the ESRF with

Silvia Capelli, HBB’s ex-PhD student. The Bern talk was

memorable. It was delivered in HBB’s small laboratory, with

many interruptions, so it went on for a full hour. I felt I had

been thoroughly grilled, but little did I know then (in what was
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to become a common signature of HBB’s modus operandi) –

out came the cups of tea (in HBB’s case, horribly sweetened)

and with biscuits – and then a further grilling of more than an

hour! This would become a common fixture of our working

relationship.

Later that year I was invited to submit an application for

beam time at the ILL, to do neutron diffraction on the gly-l-

ala crystal with Silvia. It was tremendously exciting, especially

since I’d already heard of these facilities (a nuclear reactor!)

and the PND experiment from Professor Brian Figgis, and had

been working on it with his PhD student Steve Wolff and my

own student Ann Whitten. I did not care much about the

beam-time application – I just wanted to go – and so I did not

spend much thought in it. I believe this application was the

first time that the acronym X-ray constrained wavefunction

(XCW) was used, introduced by Silvia. I recall not liking this

strange acronym, but could not fault it, so it stuck. But during

the writing phase, HBB got involved and was characteristically

unsalutary about some loose language Silvia and I had used.

After this, Mark Spackman was very quick off the mark

getting HBB to Australia on a visiting Professorship, which

extended to two years, officially. Unofficially, HBB has been a

fixture at UWA ever since (along with Bo Iversen). There are

many memories of the azure waters of Cottesloe beach where,

armed with his backpack from the 2003 Broome conference

and his trusty bus timetable, we often spent the mornings

running and swimming. The COVID times have put an end to

this. We can only hope that he returns; despite losing my job, I

have been assured I can still host him. After all, we have a

huge backlog of work, e.g. that on extracting Cartesian normal

coordinates, dating back to the very first beam-time applica-

tion I just mentioned. But this is HBB: even this contribution,

which we planned to be short, quick and easy has ballooned

out into two papers, and has led to scientific disagreements on

which, true to form, HBB wishes to have his say. We would not

have it any other way.

So this is how it all started, and I feel very happy to be

submitting this work on the XCW method, given the heritage I

have described. HBB has surely been one of my closest

collaborators and mentors over the years, on both professional

and personal levels. Finally, I am most pleased because I have

worked on this contribution with my own PhD student, Max

Davidson, and as the work with Silvia Capelli shows, this

somehow sums-up the kind of way that science should be

done.

Thank you and congratulations, HBB!

APPENDIX A
GoF2 is an even function in k

We essentially specialise the argument of Zhao & Parr (1993)

for our case here. To show that GoF2(�) is an even function of

� for the special case of a single determinant, note that the

transformation

��!� �

in equation (55), is equivalent to leaving � unchanged but

transforming

�v�!��v

in that same equation, which in turn is equivalent to leaving

�v unchanged but transforming

�obs
r �!� �

obs
r

for every reflection r in equation (56). (This is only a formal

manipulation, we are not suggesting that the ESUs are really

negative. This transformation could have equally been applied

to the numerator.) This last transformation clearly does not

change GoF2 in equation (2) because �obs
r is squared in this

equation. To summarise, the transformation ��!� � implies

that GoF2(��) = GoF2(�). This means that GoF2 is an even

function in �, as claimed.

APPENDIX B
Relationship between the GoF2 and the square of the
difference between the calculated and observed
electron densities

We define a squared distance between calculated and

experimental static electron densities in the unit-cell as

dð�calc; �obs
Þ

2
¼

Z �
ð�� ? LÞ ? PDF

�2

dr; ð58Þ

where
��ðrÞ ¼ �calcðrÞ � �obsðrÞ: ð59Þ

PDFðrÞ is a probability density function used to average the

difference in the densities via a convolution operation,

represented by the ? symbol. LðrÞ is the crystal lattice function

which copies the unit-cell electron densities throughout all

space, which is defined in terms of the Dirac �-function as

LðrÞ ¼
X

n

�ðr � AnÞ; ð60Þ

where A is the previously defined unit-cell matrix, and the sum

is over all integer triples n representing each unit cell. If the

Fourier transform is further defined by equation (35), then the

convolution and Parseval theorems (Arfken et al., 2013) lead

to

d
�
�calc; �obs

�2
¼

1

ð2
Þ3

Z ������ðqÞLðqÞPDFðqÞ

����
2

dq: ð61Þ

Substituting in the above equation the standard result that the

Fourier transform of the lattice function is

LðqÞ ¼
ð2
Þ3

V

X
r

�
�
q� 2
A�hr

�
ð62Þ

where V is the volume of the unit cell, A� is the reciprocal cell

matrix, and the sum is over all reciprocal lattice Miller indices

hr, we get

d
�
�calc; �obs

�2
¼

1

V

X
r

������ðqrÞPDFðqrÞ

����
2

: ð63Þ
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Recall that

j��ðqrÞj
2
¼
��jFcalc

r j � jF
obs
r j
��2 ð64Þ

is the square of the difference between the calculated and

observed structure factor magnitudes for a reflection r (if it is

assumed that both have the same complex phase), and

PDFðqrÞ � wr may be taken as an effective reciprocal space

weight. In fact, this weight is nothing other than the Wilson’s

factor from his famous plot, see e.g. Giacovazzo et al. (1992).

Comparing now the above equation with the definition of

GoF2 in equation (2), we see that the two are identical apart

from a prefactor if we identify the weights wr with the �obs
r

values. Note, however, that the weights are smooth functions

of q, but the measurement errors are not. Note also that the

unit-cell volume prefactor is not unimportant: it affects the

relative importance of the least-squares GoF2 term relative to

the energy-regularization term EQM. The above squared

metric scales with the number of electrons per unit-cell

volume, whereas the GoF2 term does not.

The result derived here is very similar to one which appears

in Dunitz & Seiler (1973), but was taken with slight modifi-

cation from Appendix C of Wolff (1995). The only difference

compared to this earlier work is that an averaging function is

introduced, for use in the following appendix.

APPENDIX C
Relationship between the GoF2 and the classical
Coulomb energy

There is another similarity involving the GoF2, namely one

with the classical Coulomb energy constraint term C used by

Zhao & Parr (1993). Substituting our unaveraged electron

density differences defined in the previous appendix [i.e. take

PDFðrÞ ¼ 1] into their equation (4), which is in atomic units,

we get

C ¼

Z
ð�� ? LÞðrÞ jr � r0j�1

ð�� ? LÞðr0Þdrdr0: ð65Þ

Again employing the convolution theorem with standard

results (Arfken et al., 2013), we may write

C ¼
2


V

X
r

q�2
r j��ðqrÞj

2: ð66Þ

Comparison with equations (63) and (64) shows that our GoF2

is the same as the C constraint term used by Zhao & Parr

(1993) provided that the weight factors PDFðqrÞ ¼ wr are

chosen to be wr ¼ q�2
r , the magnitude of the reciprocal vectors

qr. Thus, the GoF2 can be seen as a kind of pseudo-energy per

unit-cell volume, differing from the Coulomb energy only in

employing a different reciprocal-space weight.

The result quoted here is similar to one quoted in Coppens

(1997, section 9.3.2), and also used in chapter 8 of the thesis by

Ernst (2020). The notation differs because the fractional

crystal-axis system is used. Results in the Cartesian axis system

are derived in Wieduwilt (2018) Appendix B with comparison

in the two axis systems.
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Bučinský, L. (2010). Acta Cryst. A66, 78–92.
Jayatilaka, D. (1998). Phys. Rev. Lett. 80, 798–801.

Jayatilaka, D. (2012). In Modern Charge Density Analysis, edited by
P. Macchi & C. Gatti, ch. 6, pp. 213–257. Springer Science &
Business Media.

Jayatilaka, D. & Dittrich, B. (2008). Acta Cryst. A64, 383–393.
Jayatilaka, D. & Grimwood, D. J. (2001). Acta Cryst. A57, 76–86.
Jayatilaka, D. & Grimwood, D. J. (2003). In International Conference

on Computational Science, pp. 142–151. Springer.
Jayatilaka, D., Munshi, P., Turner, M. J. M., Howard, J. A. K. &

Spackman, M. A. (2009). Phys. Chem. Chem. Phys. 11, 7209–
7218.

Joos, E., Zeh, H. D., Kiefer, C., Giulini, D. J., Kupsch, J. & Stamatescu,
I.-O. (2013). Decoherence and the Appearance of a Classical World
in Quantum Theory. Springer Science & Business Media.

Kabsch, W. (2010). Acta Cryst. D66, 133–144.
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