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*Correspondence e-mail: hans-beat.buergi@unibe.ch, alessandro.genoni@univ-lorraine.fr

X-ray constrained/restrained wavefunctions (XCWs/XRWs) result from a

combination of theory and experiment and are therefore affected by

experimental errors and model uncertainties. The present XCW/XRW

procedure does not take this into account, thus limiting the meaning and

significance of the obtained wavefunctions.

1. Introduction

In 1998, Jayatilaka (1998) presented the X-ray constrained

wavefunction (XCW) fitting approach, a method that

combines quantum chemistry and X-ray diffraction to produce

what the author called an experimental wavefunction. The

intention is to find a wavefunction �opt and the corresponding

electron density �opt, (i) that is as close as possible to the

crystal density �cryst, i.e. explains the observed structure factor

amplitudes to within a weighted mean square deviation �
between experiment and model and (ii) that simultaneously

minimizes the quantum mechanical energy of the investigated

system.

At present, XCW fitting (Jayatilaka, 1998; Jayatilaka &

Grimwood, 2001; Grimwood & Jayatilaka, 2001; Bytheway,

Grimwood & Jayatilaka, 2002; Bytheway, Grimwood, Figgis et

al., 2002; Grimwood et al., 2003) is the last in a series of steps

to model �cryst. The procedure usually begins with Indepen-

dent Atom Modelling (IAM, with tabulated spherical atomic

densities and form factors). It may be followed by interpreting

the diffraction data with more refined descriptions of the

atomic and bonding electron densities, such as multipole

models (MMs) (Stewart, 1976; Hansen & Coppens, 1978) or

quantum mechanical Hirshfeld atom refinements (HARs)

(Jayatilaka & Dittrich, 2008; Capelli et al., 2014; Kleemiss et al.,

2021). They are usually based on Hartree–Fock (HF) or

density functional theory (DFT) calculations, with or without

consideration of the environment of the structural fragment

that may also be treated quantum mechanically (Jayatilaka &

Dittrich, 2008; Wieduwilt et al., 2021; Ruth et al., 2022). HAR

at correlated levels has also been attempted (Wieduwilt et al.,

2020). At the last stage, the XCW procedure tries to extract

information not included in the preceding steps, typically the

polarization due to the crystal environment (Ernst et al., 2020)

as well as correlation (Genoni et al., 2017) and relativistic

effects (Bučinský et al., 2016).

The XCW procedure thus attempts to extract the last little

bit of information from a diffraction experiment. In other
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words, it tries to improve an already quite detailed model of

the electron density, whose R factor is typically as low as 1–

3%. The likelihood that this information is of similar magni-

tude as the systematic and random errors in the diffraction

data and inadequacies of the quantum chemical model is thus

not negligible and creates some unresolved problems

concerning the meaning of the results obtained from XCW

fitting. Some of these problems, not all of which have been

addressed explicitly, are discussed below.

2. A summary of the X-ray constrained/restrained
wavefunction approach

As mentioned in the introduction, the XCW fitting approach

aims to determine a wavefunction that minimizes the quantum

mechanical energy of the considered system and simulta-

neously maximizes the agreement between experimental and

calculated structure factor amplitudes (Jayatilaka, 1998;

Jayatilaka & Grimwood, 2001; Grimwood & Jayatilaka, 2001;

Bytheway et al., 2002; Bytheway, Grimwood, Figgis et al., 2002;

Grimwood et al., 2003; Jayatilaka, 2012). The problem is

mathematically equivalent to finding the wavefunction that

minimizes the energy under the constraint

GoF 2
¼ � ð1Þ;

where GoF2 is the squared goodness-of-fit given by the

following expression:

GoF2
¼

1

Nrefl � Npar

XNrefl

r¼1

ðjFexp
r j � �jF

calc
r ð�ÞjÞ

2

ð�exp
r Þ

2
; ð2Þ

jFcalc
r ð�Þj is the r-th structure factor amplitude calculated from

a model electron density �(�); jFexp
r j is the r-th observed

structure factor amplitude with �exp
r as its estimated standard

uncertainty; � is a scale factor that puts the calculated struc-

ture factor amplitudes on the same scale as the experimental

ones; Nrefl is the number of experimental observations, and

Npar the number of parameters. Furthermore, as indicated by

Jayatilaka and collaborators in the seminal papers on the

technique, in principle � should be set equal to 1.0 (Jayatilaka,

1998; Jayatilaka & Grimwood, 2001; Grimwood & Jayatilaka,

2001; Bytheway, Grimwood & Jayatilaka, 2002; Bytheway,

Grimwood, Figgis et al., 2002; Grimwood et al., 2003). This

implies that the objective of XCW fitting is the determination

of an ‘experimental wavefunction’ that reproduces – on

average – the experimental structure factor amplitudes to

within one standard deviation of the experimental measure-

ments.

To minimize the energy of the system under the constraint

expressed by relation (1), the following functional has been

introduced:

Jð�Þ ¼ EQMð�Þ þ �
�

GoF2
ð�Þ ��

�
: ð3Þ

The first term on the right-hand side is the quantum

mechanical energy of the system [i.e. EQMð�Þ = h�jĤHj�i, with

ĤH as the Hamiltonian operator], and � is a Lagrange multi-

plier that has the dimension of an energy. To achieve the aim

of XCW fitting, functional J must be made stationary with

respect to both the wavefunction � and the Lagrange multi-

plier �. However, in the current implementation of the XCW

technique, the second stationary condition (i.e. the one with

respect to �) is never considered and, for this reason, the

functional that is really minimized is the following one:

Jð�Þ ¼ EQMð�Þ þ �GoF 2
ð�Þ: ð4Þ

This implies that the present XCW method simply attempts to

determine the wavefunction that minimizes the energy of the

system under examination and that reproduces as much as

possible the measured X-ray diffraction data. � thus loses its

original meaning of Lagrange multiplier; instead, it can be

considered as the weight of the experimental data in the

computations and simply becomes an external parameter that

is gradually changed during the XCW procedure (see below).

The term �GoF2(�) in equation (4) is a restraint in the

crystallographic sense and the method should better be called

X-ray restrained wavefunction (XRW) approach (Jayatilaka,

2012; Grabowsky et al., 2017; Ernst et al., 2020; Macetti et al.,

2021) or X-ray regularization procedure (Davidson et al.,

2022a). For the sake of completeness, it is mentioned here that

one of the present authors has very recently proposed to

reformulate the Jayatilaka technique by explicitly considering

the stationary condition of functional (3) with respect to �
(Genoni, 2022). Only in that case does � regain its meaning as

a Lagrange multiplier, and the approach can then be called

X-ray constrained wavefunction (XCW) method.

In this work, we focus on the original and current version of

the Jayatilaka strategy, but refer to it as X-ray restrained

wavefunction (XRW) technique. Furthermore, although

multi-determinant versions of this method have already been

developed (Genoni, 2017; Casati et al., 2017; Genoni et al.,

2018, 2019), for simplicity and without losing generality, we

limit our discussion to the original and most used version of

the Jayatilaka strategy, namely the case in which the wave-

function to be determined has the analytical form of a single

Slater determinant.

For the single Slater determinant wavefunction ansatz, it is

possible to show (Jayatilaka, 1998; Jayatilaka & Grimwood,

2001; Grimwood et al., 2003) that finding the wavefunction

which minimizes functional (4) corresponds to determining

the molecular orbitals {’i} that satisfy the following modified

Hartree–Fock equations (for a 2N-electron closed-shell

system):

�
F̂F þ �v̂vXRW

�
’i ¼ �i ’i ð5Þ:

F̂F is the usual Fock operator used in quantum chemistry, while

the XRW operator v̂vXRW is
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v̂vXRW ¼
XNrefl

r¼1

Kr

h
Re
�

Fcalc
r

�
ÎIr;R þ Im

�
Fcalc

r

�
ÎIr;C

i
ð6Þ

with

Fcalc
r ¼ 2

XN

i¼1

h’i

��ÎIr

��’ii ¼ 2

"XN

i¼1

h’i

��ÎIr;R

��’ii þ i
XN

i¼1

h’i

��ÎIr;Cj’ii

#

ð7Þ

and

Kr ¼
2�

Nrefl � Npar

�
��Fcalc

r

��� ��Fexp
r

��
ð�exp

r Þ
2
��Fcalc

r

�� : ð8Þ

ÎIr;R and ÎIr;C in equation (7) are the real and imaginary parts,

respectively, of the one-electron scattering operator

ÎIr ¼
XNm

k¼1

exp
h

i2�ðRkrþ rkÞ � ðBhrÞ

i
¼ ÎIr;R þ i ÎIr;C; ð9Þ

where Nm is the number of symmetry-unique positions in the

unit-cell, {Rk, rk} are the roto-translations associated with the

unit-cell symmetry operations (Rk and rk being a rotation

matrix and a translation vector, respectively), B is the reci-

procal lattice matrix, and hr is the vector of Miller indices

associated with the r-th reflection.

Note that the term v̂vXRW can be seen as a perturbation with

weight � to the traditional Fock operator F̂F of quantum

chemistry. However, v̂vXRW depends on the experimentally

determined structure factor amplitudes. Given that experi-

mental measurements are subject to random measurement

errors, v̂vXRW is subject to random error too and will differ

somewhat for different X-ray experiments performed on the

same system under the same experimental conditions. In other

words, �v̂vXRW not only accounts for shortcomings of the model

of the electron density but is also characterized by a random

component.

The interpretation of �v̂vXRW as a perturbation operator can

be traced back to a pioneering idea by Weiss from the 1960s

(Weiss, 1966). He envisaged the possibility of correcting the

deficiencies of the Hartree–Fock model by recovering effects

of electron correlation from the experimental X-ray diffrac-

tion data. More recently, the relation between Weiss’ original

ideas and the XRW approach has been highlighted by Macchi

(2022) in a review on origins, state of the art and perspectives

of quantum crystallography.

Expressing the molecular orbitals {’i} in equations (5) and

(7) in terms of a set of basis functions (as it is usually done in

quantum chemistry), the modified Hartree–Fock equations

expressed by relation (5) straightforwardly transform to

modified Roothaan–Hall matrix equations:

Fþ �v½ �C ¼ SCE; ð10Þ

with F as the typical Fock matrix of quantum chemistry

calculations, C as the matrix whose columns contain

the coefficients that expand the molecular orbitals {’i} in the

chosen basis, E as the diagonal matrix of the orbital energies,

and v as the matrix associated with the operator v̂vXRW,

which obviously has the same dimensions as the Fock matrix

and is weighted by the external multiplier �.

In the current version of the XRW approach, equations (10)

are solved self-consistently for different values of � by

following a ‘trial and error’ procedure. This means that the

molecular orbitals obtained through the computation with �(i)

at the i-th step are used as guess for the calculation with �(i+1) =

�(i) + ��. The procedure is usually iterated, but without a clear

and definitive criterion to stop. Several different halting

criteria have been proposed over the years. For a review see

Davidson et al. (2022a); for two recent proposals see Davidson

et al. (2022b). For reasons that will be discussed in x3, none

of these seems convincing. The consequence is that although

the XRW process should be halted at GoF2
� 1.0, the

final value of GoF2 often remains greater than the desired

value or, under some circumstances, the calculations may go

on beyond the desired limit to a final GoF2 value that is lower

than 1.0.

The present version of the XRW procedure assumes that

the nuclear positions and the atomic displacement parameters

are known (to within their uncertainties). As also mentioned

in the Introduction, these parameters may be obtained with

the help of HAR (Capelli et al., 2014) since structural para-

meters resulting from Hirshfeld atom refinements of X-ray

diffraction data are almost as accurate as those obtained

through neutron diffraction experiments (Woińska et al.,

2016). HAR also provides a starting point for the

XRW procedure in the form of the final HAR wavefunction �
and, consequently, of the final electron density �, which

hereafter will be called �ref and �ref, respectively, with a

corresponding squared goodness-of-fit [GoF2]ref. Note,

however, that, given accurate atomic positions and ADPs,

the quantities �ref, �ref and [GoF2]ref might also be obtained

from a level of theory and a basis set different from

those used for the Hirshfeld atom refinement. No problem

so far.

The subsequent XRW procedure modifies �ref (and �ref) to

�opt (and �opt) until one obtains the best fitting of the

experimental crystal density �exp or, equivalently, the best

fitting of its Fourier transforms Fexp
r . In other words, the XRW

method tries to extract information from the measured

structure factor amplitudes jFexp
r j that is not already contained

in jFref
r ð�refÞj, such as polarization, electron correlation and

relativistic effects. An XRW fitting adjusts – at least in prin-

ciple – all molecular orbital coefficients. However, for a 2N-

electron closed shell system described by a single Slater

determinant, there are N � (Nbf � N) independent para-

meters to be determined (with Nbf as the number of basis

functions used in the calculation). This number is usually

about an order of magnitude larger than the number of

observations Nrefl. It is therefore important to choose the �
value or, alternatively, the target value for GoF2 in such a

way that the procedure produces the best approximation �opt

to �cryst, with �opt as little contaminated as possible by
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imponderables of the diffraction experiment or the quantum

mechanical method used, i.e. systematic and random

error.1 The problem of choosing � has been termed the halting

problem. For reasons given in x3, it is our opinion that no

tried-and-tested, convincing solution of this problem has been

presented so far.

3. Some difficulties

To gain more insight into the XRW fitting process, a few cases

with specific assumptions about jFexp
r j, jF

ref
r ð�refÞj and �exp

r are

analyzed. Some of these assumptions are unrealistic but

provide a reference for gaining insights into the fitting

procedure applied to more realistic cases.

(A) First of all, let us assume the unrealistic case with:

(i) jFexp
r j = jF

cryst
r þ�FRE

r j, where �FRE
r is the random error

in jFexp
r j;

(ii) Fref
r = Fcryst

r ;

(iii) �exp
r are trustworthy and normally distributed estimates

of the random errors of jFexp
r j;

In this case, GoF2 (�ref) = 1 and it is trustworthy. Therefore,

no further fitting is indicated.

(B) Making the same assumptions as in case (A) except that

the uncertainties �exp
r unknowingly underestimate the random

errors �FRE
r of jFexp

r

��.
In this situation, GOF2 (�ref) > 1 and further fitting is

indicated. However, any such fitting would lead to wave-

functions �� and thus to structure factor amplitudes Fcalc;�
r

which include contributions from both Fcryst
r and �FRE

r . In

other words: for any non-zero value of �, the XRW procedure

merely fits experimental noise! For different experiments of

the same substance under the same conditions, the random

errors will be distributed differently and, consequently, the fit

will look different. Underestimating �exp
r is not uncommon in

actual experiments. Note that this conclusion would not hold

if, under the given assumptions, v̂vXRW = 0. However, this seems

unlikely and has certainly not been shown to be the case.

(C) Another artificial case assumes that

(i) Fexp
r

�� �� ¼ Fcryst
r

�� �� (i.e. no random errors are included);

(ii) �exp
r ¼ 1 for all reflections;

(iii) �ref is based on a quantum mechanical model with a

basis set that is insufficiently flexible to reproduce �cryst.

This situation corresponds to the case of theoretically

generated structure factor amplitudes and the fitting leads to

jFcalc
r j = jF�

r j and jFexp
r j = jFcryst

r j = jF�
r þ�F�r j, where �F�

r is

the part of Fexp
r that cannot be modelled with ��. Given the

shortcomings of the basis set, jFexp
r j � �jF

�
r ð��Þj 6¼ 0; GoF2

ð��Þ 6¼ 0 as well, but its expectation value is unknown because

it depends on the unknown limitations of the model used.

GoF2
ð��Þ is expected to decrease with increasing the number

of basis functions (and thus the number of parameters that can

be optimized).

For this kind of problem, a way to find an optimal � has

been proposed, albeit based on electron densities rather than

on their Fourier transforms, the structure factors (Tozer et al.,

1996). Equations analogous to equations (10) are solved by

combining �ref with three different values of � and extracting

an optimal � from the three results. One of the procedures

proposed in Davidson et al. (2022b), although inspired by

Tozer et al. (1996), is different. It updates �ref at each fitting

step until a halting point is reached. It has not been shown that

the two procedures are equivalent, i.e. lead to the same result.

In any case, the important point is that the choice of �ref

affects the GoF2 independently of �exp
r and in an unpredictable

way.

(D) For a more realistic case of XRW fitting, it is assumed

that:

(i) Fexp
r

�� �� ¼ Fcryst
r þ�FRE

r

�� ��;
(ii) Fref

r 6¼ Fcryst
r ;

(iii) �ref is based on a quantum mechanical model with a

basis set that is likely to be insufficiently flexible to reproduce

�cryst;

(iv) the �exp
r are trustworthy and normally distributed esti-

mates of the random errors of jFexp
r j.

In this case, the fitting leads to jFcalc
r j ¼ jF

�
r j and��Fexp

r j ¼ jF
cryst
r þ�FRE

r j ¼ jF
�
r þ�F�

r j, in analogy to case (C).

However, in contrast to that situation, the modifications of Fref
r

in F�r correct not only for inadequacies of �ref, but also absorb

into the model parts of �FRE
r , i.e. some of the experimental

noise, similarly to case (B). The two contributions are of

unknown magnitudes and thus F�
r has an undefined uncer-

tainty on two accounts. Conversely �F�
r accounts for those

parts of Fcryst
r and �FRE

r that could not be absorbed into F�
r . It

is thus unclear again to know the expectation value of GoF2

and �.

(E) The most realistic case in XRW fitting makes the same

assumptions as in (D) except that:

(i) jFexp
r j ¼ jF

cryst
r þ�FSE

r þ�FRE
r j, where �FSE

r repre-

sents a systematic error of jFexp
r j due to inadequacies of the

processing of the primary data, e.g. the frames from the

diffraction experiment;

(ii) the �exp
r values are not trustworthy estimates of the

random errors of jFexp
r j because they are too small, too large or

show an unusual (non-normal) distribution.

In this situation, the fitting leads to jFcalc
r j ¼ jF

�
r j and

jFexp
r j ¼ jF

cryst
r þ�FSE

r þ�FRE
r j ¼ jF

�
r þ�F�r j, in analogy to

cases (C) and (D). However, unlike (C) and (D), the calcu-

lated F�r correct not only for inadequacies of �ref, but also

absorb into the model parts of �FSE
r þ�FRE

r , i.e. some of the
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difference between an estimate and the true value of a quantity due to
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lographic nomenclature/statdes/terms.html). In the case of structure factors,
such contributions may arise from two sources. On the one hand, from an
inadequate model of the diffraction experiment needed to relate the raw
intensity observations to what is commonly called the observed structure
factor amplitude, jFexp

r j. The symbol jFexp
r j is somewhat misleading as it does

not represent a direct experimental estimate, but rather a derived quantity
that depends on assumptions and on estimates or measurements of factors
affecting the measurement process (background, X-ray absorption, X-ray
beam polarization, extinction, etc.). If such factors are insufficiently accounted
for, the derived quantity jFexp

r j will be unreliable to an unknown degree. On
the other hand, an inadequate model of the electron density distribution, e.g.
an insufficiently flexible basis used in the quantum mechanical calculation, can
also cause systematic differences between Fexp

r

�� �� and Fcalc
r

�� ��.



systematic and random errors. The three contributions are

again of unknown magnitudes and thus F�
r has undefined

meaning and uncertainty. Conversely �F�
r accounts for those

parts of Fcryst
r , �FSE

r and �FRE
r that could not be absorbed into

F�r . If, in addition, the quality of the �exp
r values is unknown,

estimating the expectation values of GoF2 and � is further

aggravated.

In a recent paper, Davidson et al. (2022a) consider the XRW

fitting approach as a regularization problem, i.e. the process

of adding information in order to solve an ill-posed problem

or to prevent overfitting [here we use the term ‘regularization’

as defined in https://en.wikipedia.org/wiki/Regular-

ization_(mathematics)]. In the present case there are two ways

of looking at this problem: either as adding experimental

information to a quantum chemical model that is insufficient

to determine �cryst on its own, or as adding theoretical

quantum mechanical information to a model of the experi-

ment that is usually strongly underdetermined because the

number of coefficients in the wavefunction exceeds the

number of observed structure factor amplitudes by far. In both

cases the question arises as to how much extra information is

required to get an optimal result, i.e. what is the optimal

magnitude of � and how should an optimal mix of calculated

and experimental information be defined anyway? This is an

alternative formulation of what has been called the halting

problem (Davidson et al., 2022a,b). If one can reasonably

assume that the model of equation (4) is sufficiently flexible to

determine �cryst and that the �exp
r values are truthful estimates

of the experimental uncertainties, one might choose a value of

� that results in GoF2 = 1. However, these conditions are

rarely fulfilled implying that the choice of an appropriate final

value for GoF2 remains an open problem in the XRW scheme.

In both ways of looking at the problem, systematic and

random errors also introduce uncertainty in the wavefunction,

�opt, not only in the choice of � or of the final GoF2 value.

Since the goal of the exercise is to find an ‘experimental’ X-ray

restrained wavefunction and thus an experimental electron

density function �opt, an additional question arises: what are

the uncertainties in �op or �opt? Which parts of �opt are reliable

and which are not? The present XRW fitting algorithm

provides no information on this question. In contrast, least-

squares modelling of the crystal electron density �opt through

more traditional methods (e.g. multipole models) determines a

set of parameters, their standard uncertainties, and mutual

correlations. There are statistical criteria for judging the

significance of introducing additional parameters into the

model, such as Hamilton’s R factor ratio test (Hamilton, 1965).

Such criteria help preventing overfitting by the model. The

uncertainty of �opt can be estimated through propagation of

error or analogous procedures. None of these options are

available in the present XRW algorithm. Note that the

problem raised in this paragraph would also affect the refor-

mulation of the Jayatilaka approach recently envisaged by one

of the present authors (Genoni, 2022), although, in that case, if

convergence is achieved, one can obtain the desired value �
of statistical agreement between observed and calculated

structure factor amplitudes.

In summary, there are several difficulties with the outcome

of an XRW fitting and the meaning of an X-ray restrained

wavefunction:

(i) an X-ray restrained wavefunction models random error

to an unknown degree, while the more traditional least-

squares optimization determines expectation values of para-

meters together with their uncertainties. XRW fitting with its

quantum mechanical minimization condition determines

parameters too, but not necessarily their expectation values

and without uncertainty.

(ii) an X-ray restrained wavefunction models systematic

errors in the structure factors or inadequacies of the atomic

basis set to an unknown degree (as does a least-squares

procedure), thereby obscuring the statistical meaning of GoF2.

(iii) no procedure is available at present to quantify, at least

approximately, the relative and absolute magnitudes of

random and systematic errors, and of basis-set inadequacies in

the optimized density �opt.

(iv) another non-negligible drawback associated with both

the XRW and XCW approaches has been alluded to before: it

is the problem of correctly defining GoF2 and its expectation

value. Even among developers of the XRW/XCW approach, it

is still unclear today which value to assign to Npar in equation

(2). In some circumstances, it is simply set equal to the number

of adjustable parameters used in the ‘wavefunction refine-

ment’ (such as � when it is manually adjusted in the XRW

calculations); in other cases, for example when the XRW

computation follows a Hirshfeld atom refinement, Npar

includes the number of atomic positions and ADPs deter-

mined through the preliminary structural refinement; finally,

in one of the seminal papers of the X-ray restrained wave-

function approach (Grimwood et al., 2003), it is pointed out

that Npar should vary as a function of �, approaching the

number of molecular orbital coefficients when � becomes

large [which in most practical applications would lead to a

negative value in the denominator of the first factor on the

right-hand side of equation (2)]. This uncertainty in the defi-

nition of Npar further aggravates establishing the final and

desired value of GoF2 and, consequently, determining the

correct value of �.

Therefore, due to above-mentioned problems, an X-ray

restrained wavefunction loses – to an unknown degree – its

intended meaning as a representation of �opt, because it

cannot be decided whether the XRW density �� = �opt, i.e. it

cannot be decided whether or not the final electron density

distribution resulting from the XRW process corresponds to

the best possible representation of the real electron density

�cryst. For the same reasons the halting problem is ill defined.

4. Possible remedies

What can be done to alleviate these uncertainties?

(a) The data: utmost care is needed to get Fexp
r

�� �� minimally

contaminated by systematic errors. It should be clearly sepa-

rated from diffuse scattering and very carefully corrected for

the properties of the sample (absorption, extinction, etc.), the

detector (non-linear response, oblique incidence, etc.) and
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other imponderables of the experiment. Such corrections are

ideally based on physical rather than empirical models of the

factors to be accounted for. Good data, ideally coming from

more than one sample, tend to minimize effects of some

systematic errors, �FSE
r . Data should be tested for consistency

between and within samples.

(b) The �exp
r values should be trustworthy and their distri-

bution tested for consistency between and within samples.

Experiments that produce small, trustworthy �exp
r values

minimize effects of �FRE
r . Good �exp

r values help to make

GoF2 quantities more meaningful, of course provided that the

number of extra (effective) parameters coming from the XRW

fitting can be estimated. So far this is not done.

ð�jFcalc
r j � jF

exp
r jÞ=�

exp
r should be tested for outliers with

defined criteria before and after XRW fitting, e.g. with normal

probability plots.

(c) Separate analysis of experimental data should be done

for different choices of data: splitting data into parts (cross

validation; Krause et al., 2017), looking at different samples

separately, and combining all data. It is expected that such a

procedure leads to different F�r because the influence of

�FSE
r þ�FRE

r will be different. Comparisons and analysis of

different �� for the same compound could be a first step

towards characterizing experimental uncertainty.

(d) To gain a fuller picture of the influence of experimental

uncertainty, including the part coming from the atomic posi-

tional and displacement parameters, the following iterative

procedure might be used in validation experiments: the initial

XRW electron density can serve to define Hirshfeld atoms

which are used in turn for refining atomic positions and

displacement parameters. This might be followed by another

XRW fit, etc., until convergence is reached, following the spirit

of the XWR (X-ray wavefunction refinement) approach

already envisaged and proposed by Grabowsky and colla-

borators (Grabowsky et al., 2012; Woińska et al., 2017).

(e) In addition, the results should be tested by analysing the

same data starting from different models �ref (e.g. HF, DFT

and different basis sets). If the different XRW fittings give

comparable results for ��, the analysis can be considered

robust.

(f) One could also think of comparing results from alter-

native expressions for GoF2, e.g. one that includes the phases

of the structure factors:

GoF2
ð�Þ ¼

1

VðNrefl � NparÞ

XNrefl

r¼1

�
Fexp

r � �Fcalc
r ð�Þ

�2

ð�exp
r Þ

2 ð11Þ

or some function of their Fourier transform, i.e. some function

of the difference density. Since the XRW fitting comes into

play at the very end of the �cryst modelling, it can reasonably

be assumed that the phases of Fexp
r and Fcalc

r ð�Þ are the same

(in the centrosymmetric case) or very close to each other (in

the non-centrosymmetric case). This definition would be more

akin to a restraint based on the difference electron density,

provided one includes a complete set of structure factors up to

the resolution limit of the experimental data and GoF2 is

divided by the volume V of the unit cell.

(g) For many of the open problems, a better understanding

of the XRW procedure could be obtained from a well crafted

study with known, predefined Fcryst
r , �FSE

r , �FRE
r , Fexp

r and

�exp
r combined in various ways, e.g. as mentioned for cases

(A)–(E) above.
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