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Corrections to the article by König and Smith [Acta Cryst. (2022), B78, 643–664]

are given.

In the paper by König & Smith [Acta Cryst. (2022), B78, 643–

664], a number of printing errors occurred. Two equations

suffer from a sign error at a lateral running index, namely

Equations 18 and 54. In x5.1, several typographical errors

occurred when referring to equation numbers, and in the

superscript indices of lengths h and interface lengths dIF. In

addition, the caption of Fig. 13 wrongly mentions {110} instead

of f11�22g interfaces, and the caption of Fig. 14 refers to x4.4

instead of x4.3. Such errors do not alter any analytical,

numerical or other findings of the paper. We provide all

corrections in tabular form. Apart from Equations 18 (x3.3)

and 54 (x4.1), and the caption of Fig. 14, the misprints are all

located in the text of x5.1 and its accompanying Fig. 13,

ranging from the beginning of the third paragraph (‘There are

two ways ...’) to the end of Equation (85). Table 1 lists the

original strings which were misprinted and their correct

version in the sequence as they appear in the original paper.

The authors apologize for inconveniences caused by the

misprints.
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Table 1
Corrections to text.

Version in published paper Correct version

Section 3.3
d

110�
001�IF ½i; j�� ¼

aucffiffi
8
p ð2i� 2j��1Þ ð18Þ d

110�
001�IF ½i; j�� ¼

aucffiffi
8
p ð2iþ 2j��1Þ ð18Þ

Section 4.1

d
110�
111�IF;up½i; k�� ¼ auc

ffiffi
3
8

p
i� k��

1
4

� �
ð54Þ d

110�
111�IF;up½i; k�� ¼ auc

ffiffi
3
8

p
iþ k��

1
4

� �
ð54Þ

Section 5.1

d
111� j110
IF; non5 ði; k�; k�Þ (Equation 74) d

111� j11�22
IF; non5 ði; k�; k�Þ (Equation 81)

d
111� j110
IF;5 ði; k�Þ (Equation 73) d

111� j11�22
IF;5 ði; k�Þ (Equation 80)

h111� j110ði; k�Þ (Equation 75) h111� j11�22ði; k�Þ (Equation 82)

d
111� j110
IF;5 ði; k�Þ d

111� j11�22
IF;5 ði; k�Þ

h111� j110ði; k�Þ h111� j11�22ði; k�Þ

Fig. 13, caption: f110g interfaces Fig. 13, caption: f11�22g interfaces

jd
111� j110
IF ði; k�; k�Þ � Xj jd

111� j11�22
IF ði; k�; k�Þ �Xj

Equation 74 Equation 81
Section 5.2

Fig. 14, caption: in Section 4.4 Fig. 14, caption: in Section 4.3
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Setting out from our recent publication [König & Smith (2021). Acta Cryst. B77,

861], we extend our analytic description of the regular cross sections of

zincblende- and diamond-structure nanowires (NWires) by introducing cross

section morphing to arbitrary convex shapes featuring linear interfaces as

encountered in experiment. To this end, we provide add-on terms to the existing

number series with their respective running indices for zinc-blende- (zb-) and

diamond-structure NWire cross sections. Such add-on terms to all variables yield

the required flexibility for cross section morphing, with main variables presented

by the number of NWire atoms NWire(dWire[i]), bonds between NWire atoms

Nbnd(dWire[i]) and interface bonds NIF(dWire[i]). Other basic geometric variables,

such as the specific length of interface facets, as well as widths, heights and total

area of the cross section, are given as well. The cross sections refer to the six

high-symmetry zb NWires with low-index faceting frequently occurring in the

bottom-up and top-down approaches of NWire processing. The fundamental

insights into NWire structures revealed here offer a universal gauge and thus

enable major advancements in data interpretation and the understanding of all

zb- and diamond-structure-based NWires with arbitrary convex cross sections.

We corroborate this statement with an exact description of irregular Si NWire

cross sections and irregular InGaAs/GaAs core-shell NWire cross sections,

where a radially changing unit-cell parameter can be included.

1. Introduction

In recent publications, we derived (König & Smith, 2019) and

improved (König & Smith, 2021) the analytical description of

six regular zb-NWire cross sections relevant to experiment

(Weber & Mikolajick, 2017); see Fig. 1. To this end, we

described the number of atoms, the number of bonds between

such atoms and the number of interface bonds for an NWire

slab with a thickness of the periodic unit cell (UC) along its

growth axis with its interface length, height, width and NWire

cross section area. An analytical structural description of the

NWire cross section down to the individual bond and atom is a

powerful tool for interpreting or predicting (König et al., 2021)

any experimental data as a function of NWire cross section

size, shape and orientation of its growth axis and interfaces.

Here, we aim to extend this analytic description for zb- and

diamond-structure NWires to arbitrarily convex cross sections

featuring linear interfaces, thereby allowing one to fit the

analytics of such cross sections to any irregular convex shape

encountered in experiment.

Section 2 provides the necessary background information

on the nomenclature on how to interpret the cross section
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images per NWire type, and a brief assignment of primary and

secondary parameters to structure-driven phenomena.

Section 3 contains the number series of all six different NWire

cross sections, as shown in Fig. 1 for uniaxial morphing (C2

symmetry). In Section 4, we introduce triaxial morphing to all

four hexagonal cross sections (C3 symmetry) with three

independent run indices, allowing for a vast range of cross

section shapes. Combining the morphing algorithm in both

sections, virtually any crystalline zb-NWire with convex cross

section geometry can be described. In Section 5, we show

examples of applying the number series and derived

secondary parameters to experimental data from the literature

for each, irregular Si and core-shell III–V NWires. Appendices

A, B and C derive characteristic lengths and areas for cross

sections with [110], ½11�22� and [111] growth vectors, respec-

tively. As this work builds upon our previous publications, we

refer the reader to König (2016) and König & Smith (2021) for

the background information on chosen cross sections, inter-

face energetics, bond densities and further details regarding

the basics of associated analytic number theory.

2. General remarks on analytic number series,
structural boundary conditions and nomenclature

Table 1 lists the primary and secondary parameters calculated

by number series.

All parameters are calculated over an NWire slab

presenting the thickness of the UC auc in the growth direction

as per König & Smith (2021) to achieve periodicity (Table 2).

In addition, Table 2 lists the amount of atoms and bonds per

column (i.e. per atom or bond visible) as a function of NWire

axis orientation for a top view onto the cross section, thereby

allowing atoms and bonds to be counted. Respective images

are provided for all NWire cross section types presented here.
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Table 2
Slab thickness dslab of NWire cross sections as a function of the growth
axis orientation given in UC lengths auc per growth orientation to achieve
periodicity. Numbers of atoms and of bonds per column as described per
feature seen in cross section top view are given to enable the counting of
atoms and NWire-internal bonds.

dslab
Atoms Bonds

Growth axis [auc] Per column, in top view

001 1 1 1 per / and \
110

ffiffiffi
2
p

2 2 per / and \, 4 per |
111

ffiffiffi
3
p

2 1 per atom column,
1 between atom columns

112
ffiffiffi
6
p

1 2 per =n, 1 per — and –†

Note: (†) bond symbols must be turned by 90� to align with the graphs in Figs. 2 and 10.

Table 1
Primary (top) and secondary (bottom) variables calculated by the
analytic description of zb-NWire cross sections as per König & Smith
(2021).

Formula sign (unit) Parameter description

*NWire Number of NWire atoms
*Nbnd Number of internal NWire bonds
*NIF Number of NWire interface bonds
dIF (nm) Interface length
*Nabc-IF Number of NWire bonds, interface {abc}
dabc-IF (nm) Interface length, orientation {abc}
A (nm2) Cross section area

Nbnd/NWire Bonds per atom within zb-NWire
NIF/Nbnd Interface bonds per internal NWire bond
NIF/NWire Interface bonds per NWire atom
Nabc-IF/Ndef-IF Interface bond ratio between facet

Note: (*) numbers refer to an NWire slab of 1 UC thickness along the growth vector; see
König & Smith (2021) for details.

Table 3
List of NWire shape indices – cross section, growth direction and side
interfaces (where necessary) – added to all parameters as a superscript.

Superscript
Growth
axis

Nominal
cross section

Side
interfaces†

001� ut 001 Square
110� ut 110 Rectangular
110� 110 Hexagon
112� 112 Hexagon
111� |110 111 Hexagon 110
111� |112 111 Hexagon 112

Note: (†) only when required to distinguish cross sections.

Figure 1
Examples of regular cross sections of zb-NWires as described analytically in König & Smith (2019, 2021). (a) Square cross section with a [001] growth
vector and {001} interfaces, (b) rectangular cross section with a [110] growth vector and two {111} plus two {001} interfaces, (c) hexagonal cross section
with a [110] growth vector and four {110} plus two {111} interfaces, (d) hexagonal cross section with a [112] growth vector and two {111} plus four {131}
interfaces, (e) hexagonal cross section with a [111] growth vector and six {110} interfaces, and (f) hexagonal cross section with a [111] growth vector and
six {112} interfaces. Colour code of the interface atoms: red has one interface bond each, blue has two interface bonds each and green has three interface
bonds each.



The periodicity in the growth direction and the assumption

that the length of the NWire lWire exceeds its diameter dWire

allows for a highly accurate description of parameters, though,

as per mathematical definition, they are correct only for

lWire=dWire !1.

On a par with König & Smith (2021), the indexing of NWire

cross section type is given as a superscript with its shape and

growth direction; see Table 3.

With Nbnd=NWire, we obtain a gauge for the response to

internal stress, e.g. by dopant species. The ability of embedding

materials or ligands to exert stress (Schuppler et al., 1994;

Boyd & Wilson, 1987) onto NWires or vice versa can be

described with NIF=Nbnd. The impact of a highly polar surface

termination on the zb-NWire electronic structure observed as

interface-related electronic phenomena (Zahn et al., 1992;

Campbell et al., 1996; He et al., 2009; König et al., 2014, 2018,

2019, 2021) is assessed by the ratio NIF=NWire. The ratio

Nabc
IF =N

def
IF can be useful for detecting facet-specific interface

defects. For Si, interface-specific dangling bond (DB) defects

exist, namely, the Pb0 centre at {001} interfaces and the Pb1

centre at {111} interfaces (Helms & Poindexter, 1994; Keunen

et al., 2011). These DB defects occur in a ratio which reflects

N001
IF =N111

IF and can be detected by electron paramagnetic

resonance (EPR) (Stesmans et al., 2008). For Si-NWires, the

ratio Nabc
IF =N

def
IF is therefore a valuable tool for identifying

cross sections of the NWires treated in Sections 3.2, 4.1 and

4.2. We illustrate the results on tetrahedral C, Si and Ge

NWires (all diamond structure). NWire atoms without inter-

face bonds are shown in grey. Atoms with interface bonds are

colour-coded: species with one/two/three interface bonds are

red/blue/green; see Fig. 1 for an example. The analytical

number series introduced below also hold for zb-NWires due

to straightforward symmetry arguments (König & Smith,

2021). Material properties resulting from differences in the

base cell – A–B for zb-structures versus A–A for diamond

structures – are not considered here. This constraint has no

impact on the applicability of the analytics of our work, unless

the atomic sequence mentioned above is of primary interest

when comparing two solids.

The nominal number series describing the high-symmetry

NWire cross sections follow a run index i which defines the

nominal size of the cross section. Morphing of cross sections is

introduced by a second class of run indices j1; j2 (j; k1; k2 or

k1; k2; k3) for C2 symmetry uniaxial (C3 symmetry triaxial)

morphing, defining the shape – or more precisely, its deviation

from the respective high-symmetry cross section. For quan-

drangle cross sections treated in Sections 3.1 and 3.2, one

index j is sufficient to describe the symmetry deviations

elaborated here, as is straightforward to see by turning cross

sections by 90�. For the four remaining more complex hexa-

gonal cross sections, we introduce two running indices j1; j2 to

allow for independent morphing from the top and bottom

interfaces. Generally, we have j ¼ j1 ¼ j2 ¼ 0 for the nominal

shape of the cross section. The morphing indices then span the

range of j ¼ i; i� 1; . . . ; 0;�1; . . . ;�i; . . . ! �1 for

quadrangle cross sections, and – with one exception (see

Section 3.5) – of j ¼ i� 1; . . . ; 1; 0; . . . � ði� 1Þ for hexa-

gonal cross sections, the positive limit of the latter occurring

due to their interface planes intersecting at finite distance for

i<1 (as opposed to parallel interfaces for quadrangle cross

sections). An example of cross section morphing is shown in

Fig. 2. These limits to lateral run indices for hexagonal cross

sections are also valid in triaxial morphing with lateral run

indices j; k1; k2 or k1; k2; k3 (Sections 4 and 5.1), again with

one exception (Sections 4.3 and 5.2).

For the hexagonal cross sections, we originally developed an

even and an odd series to account for minor deviations from

the high-symmetry cross sections in experiment (König &

Smith, 2021). The differences between parameters from odd

versus even series are outrun by far with the modifications due

to morphing. As a consequence, we introduce morphing here

only to the even series of all hexagonal cross sections. While
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Figure 2
Example of the axial-symmetric morphing shown with the members of the even series of regular hexagonal zb-NWire cross sections with a [112] growth
vector and two {111} interfaces at the top and bottom, plus four {131} side interfaces; see König & Smith (2021) and Sections 3.4 and 4.2 for details. (a)
Nominal shapes for run indices i = 1 (X16), growing to i = 5 (X320). From the nominal shape and any value of i (here for i = 5), lateral number series are
introduced to morph the nominal cross section. (b) Two lateral run indices j1 and j2 are introduced to allow for independent morphing in the h111i
direction from the top and bottom interfaces [(111) and (111), respectively], maintaining symmetry along the vertical axis; the nominal cross section
occurs for j1 = j2 = 0, as shown by white ‘ghost atoms’ for j > 0, and by the nominal (111) interface illustrated by yellow atoms for j < 0. (c) Morphing along
three directions with run indices j = �2 [expansive morphing, shifting (111) interface], k1 = 3 [reductive morphing, shifting (311) interface] and k2 = �4
[expansive morphing, shifting (131) interface].



adequate number series modifications can also be derived for

the odd series of all hexagonal cross sections, their descrip-

tions of NWire cross sections are covered by morphing the

even series onto experimental data. An example is the cross

sections of Si NWires with a [110] growth axis and {001} plus

{111} interfaces; see Fig. 1(c) herein and the experimental data

published by Yi et al. (2011). This cross section was treated in

König & Smith (2019) with even and odd cross section

calculus. With the morphing introduced in Section 3.3 and, in

particular, in Section 4.1, we can simply use the even series and

morph it exactly onto the experimental image.

3. Morphing cross sections along one symmetry axis

Terms describing the high-symmetry cross section (i.e.

j ¼ j1 ¼ j2 ¼ 0) are identical with the respective Equations in

König & Smith (2021). Such terms are printed here in grey to

distinguish them from terms due to morphing which are

printed in black.

3.1. Nanowires growing along the [001] direction with
square cross section and four {001} interfaces

As mentioned briefly in the Introduction, run indices for this

cross section are limited to i � 1 and �1< j< i.

N001�ut
Wire ½i; j� ¼ 8 iþ 1ð Þ

2
� 8jðiþ 1Þ

¼ 8ðiþ 1Þ ði� jþ 1Þ
ð1Þ

N001�ut
bnd ½i; j� ¼ 4iþ 3ð Þ

2
� 4jð4iþ 3Þ

¼ ð4iþ 3Þð4½i� j� þ 3Þ
ð2Þ

N001�ut
IF ½i; j� ¼ 2 8iþ 7ð Þ � 8j

¼ 2ð4½2i� j� þ 7Þ
ð3Þ

d 001�ut
001�IF½i; j� ¼ aucðiþ

3

4
� jÞ ð4Þ

The square shape of the cross section results in

w½i; j� � h½i; j� � d 001�ut
001�IF½i; j�.

A 001�ut
½i; j� ¼ ðaucÞ

2

"
iþ

3

4

� �2

� j iþ
3

4

� �#

¼ ðaucÞ
2 iþ

3

4

� �
i� jþ

3

4

� � ð5Þ

Fig. 3 shows morphing examples of the square NWire cross

sections with growth along the [001] direction and four {001}

interfaces.

3.2. Nanowires growing along the [110] direction with a
rectangular cross section and two {001} plus two {110}
interfaces

As mentioned briefly in the Introduction, run indices for this

cross section are limited to i � 1 and �1< j< i.

N110�ut
Wire ½i; j� ¼ 8ðiþ 1Þ iþ

3

2

� �
� 8j iþ

3

2

� �

¼ 8 iþ
3

2

� �
ði� jþ 1Þ

ð6Þ

N110�ut
bnd ½i; j� ¼ 4ð2iþ 1Þð2iþ 3Þ �4jð4iþ 5Þ ð7Þ

N110�ut
IF ½i; j� ¼ 8ð2i�jþ3Þ ð8Þ

Since we morph the cross section along the {110} interfaces,

N110�ut
001�IF½i� ¼ 8ðiþ 3Þ does not change with j. However,

N110�ut
110�IF½i; j� ¼ 8ði�jÞ ð9Þ

is a function of j by which the ratio of interface bonds between

facets becomes

N110�ut
110�IF½i�

N110�ut
001�IF½i�

¼
8ði�jÞ

8ðiþ 3Þ
¼

i�j

iþ 3
: ð10Þ

The centre expression shows both number series in their

explicit form, while the expression on the right presents the

simplified result of their ratio.

As was the case for N110�ut
001�IF½i�, the length of the {001}

interface remains unchanged;

d 110�ut
001�IF½i� ¼ auc

iþ 1ffiffiffi
2
p

� �
: ð11Þ
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Figure 3
Cross section of the zb-/diamond-structure NWires growing along the
[001] axis with a square cross section and four {001} interfaces for run
index i = 3 and (a) expansive morphing with index j = �3, and (b)
reductive morphing with index j = 2. The latter morphing is not
considered useful since a 90� rotation yields to expansive morphing at
a lower run index i, thereby restricting j to negative integers (here: i = 1
and j = �2). Yellow atoms show the outer limit of the nominal cross
section (i = 3 and j = 0) in part (a) and white atoms in part (b) present
‘ghost atoms’ to fill up the nominal cross section. Interior atoms are grey,
atoms with two interface bonds are blue and atoms with three interface
bonds are green.



The width of the rectangular cross section follows in a

straightforward manner from w½i� � d 110�ut
001�IF½i�. Morphing has

an impact on the length of the {110} interfaces, resulting in

d 110�ut
110�IF½i; j� ¼ auc

�
i�jþ

3

4

�
ð12Þ

The height of the rectangular cross section follows in a

straightforward manner from h½i; j� � d 110�ut
110�IF½i; j�.

The total cross section area is given by

A110�ut
½i; j� ¼ ðaucÞ

2 ðiþ 1Þð4½i�j� þ 3Þ

4
ffiffiffi
2
p ð13Þ

The cross section of this NWire type is shown in Fig. 4.

3.3. Nanowires growing along the [110] direction with a
hexagonal cross section and four {111} plus two {001}
interfaces

The remaining four NWire types to be investigated all have

a hexagonal cross section which has a more complex geometry.

As mentioned briefly in the Introduction, run indices for these

cross sections are limited to i � 1 and �ði� 1Þ � j � i� 1,

except for the cross section with an exclusive {110} interface

and a [111] growth axis; see Section 3.5.

For the number of atoms forming the NWire cross section,

we get

N110�
Wire ½i; j1; j2� ¼ 12i2

þ 4ði� 1Þðiþ 1Þ

� 2ðj1 þ i� 1Þðj1 þ iþ 1Þ

� 2ðj2 þ i� 1Þðj2 þ iþ 1Þ

¼ 16 i2
�

1

4

� �
� 2

h
ðj1 þ iÞ

2
þ ðj2 þ iÞ

2
� 2

i
:

ð14Þ

The number of bonds between these atoms is described by

N110�
bnd ½i; j1; j2� ¼ 8i 3i� 1ð Þ þ 8ði� 1Þðiþ 1Þ

� 4ðj1 þ i� 1Þðj1 þ iþ 1Þ

� 4ðj2 þ i� 1Þðj2 þ iþ 1Þ

¼ 4½ð2i� 1Þð4iþ 1Þ � 1�

� 4½ðj1 þ iÞ
2
þ ðj2 þ iÞ

2
� 2�:

ð15Þ

The number of interface bonds over all facets is given by

N110�
IF ½i� ¼ 16i 6¼ f ðjÞ: ð16Þ

Since the number of {111} facet bonds being added or

removed equals the number of {001} facet bonds being

removed or added per change in j1 or j2, such contributions

cancel each other out; see Equation 17 below. For a graphical

verification, we refer the reader to Fig. 5, or to Fig. 4 in König

& Smith (2021).

The ratio of interface bonds per facet orientation is given by

N110�
111�IF½i; j�

N110�
001�IF½i; j�

¼
4ð2i� j1 � j2Þ

4ð2iþ j1 þ j2Þ
¼

2i� j1 � j2

2iþ j1 þ j2

: ð17Þ

The lengths of the {001} and {111} facets depend only on one

lateral run index j�; � 2 1; 2, which affects the respective facet.

For the {001} facet, a scaled offset of 1 exists for the two

irregular triangular areas in the apexes:

d110�
001�IF½i; j�� ¼

aucffiffiffi
8
p ð2i� 2j��1Þ: ð18Þ

For the {111} facet, a scaled offset of�1/4 exists due to the two

irregular triangular areas in the apexes:

d110�
111�IF½i; j�� ¼ auc

ffiffiffi
3

8

r �
i�j��

1

4

�
ð19Þ

Due to morphing along the vertical symmetry axis of the cross

sections, w110� ½i� 6¼ f ðjÞ and thus stays unchanged. The scaled

offset due to the two isosceles triangles at the side apexes of
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Figure 4
Cross section of the zb-/diamond-structure NWires growing along the
[110] axis with a rectangular cross section and two {001} interfaces at the
top and bottom, and two {110} interfaces at the sides, for run index i = 3,
showing (a) expansive morphing with morphing index j = �6 and (b)
reductive morphing with j = 2. Yellow atoms show the outer limit of the
nominal cross section (i = 3 and j = 0) in part (a), white atoms in part (b)
present ‘ghost atoms’ to fill up the nominal cross section. Interior atoms
are grey, atoms with one interface bond are red, atoms with two interface
bonds are blue and atoms with three interface bonds are green. Due to
two different interface orientations, j > 0 is useful to calculate expansive
morphing in the horizontal direction (i.e. parallel to the {001} interfaces)
by picking an appropriate i to match d110�ut

001�IF½i� and then reducing the
vertical extension by j > 0.



the cross section is
ffiffiffi
2
p
=8 which is added to the nominal

increment of
ffiffiffi
2
p
ði� 1=2Þ:

w110� ½i� ¼ auc

ffiffiffi
2
p

i�
3

8

� �
: ð20Þ

Obviously, the height of the cross section does change with

j1; j2 in steps of 	 auc=2 per j! j
 1, resulting in

h110� ½i; j1; j2� ¼ auc i�
j1

2
�

j2

2
�

1

4

� �

¼
auc

2
2i� j1 � j2�

1

2

� �
:

ð21Þ

The total cross section area is described by

A110�
½i; j1; j2� ¼

ðaucÞ
2ffiffiffi

8
p

"
ði� 1Þ 3iþ

7

6

� �
þ 1þ 4

1

16
þ 2

1

32

� �

þ 2ði� 1Þ
1

2
iþ

1

12

� �

� ðiþ j1 � 1Þ
1

2
½iþ j1� þ

1

12

� �

� ðiþ j2 � 1Þ
1

2
½iþ j2� þ

1

12

� �#

¼
ðaucÞ

2ffiffiffi
8
p

"
ði� 1Þ 4iþ

4

3

� �
þ 1þ

5

16

� ðiþ j1 � 1Þ
1

2
½iþ j1� þ

1

12

� �

� ðiþ j2 � 1Þ
1

2
½iþ j2� þ

1

12

� �#
:

ð22Þ

The prefactor a2
uc=

ffiffiffi
8
p

presents the area of one X6 ring, seen

along the h110i lattice vector, which is straightforward to

derive from four such rings filling the zb-UC cross section

when cut along the {110} plane, covering an area of
ffiffiffi
2
p

a2
uc; see

Appendix A. The offset areas concern the isosceles triangles at

the {001} facets with an area of a2
uc

ffiffiffi
2
p
=16, and the irregular

triangles at the {111} facets with a2
uc

ffiffiffi
2
p
=64, both of which can

be found when considering an X6 ring seen along the h110i

lattice vector, using geometrical arguments. The total offset

area 4/16+2/32 presents the four scalene triangles at the two

lower and upper apexes of the cross section, plus the two

isosceles triangles occurring at the left- and rightmost apexes

of the cross section1, see Figs. 5 and 16, Appendix A and Fig. 4

in König & Smith (2021).

3.4. Nanowires growing along the [11�22] direction with
hexagonal cross section and four {�1131} plus two {111}
interfaces

For the number of atoms forming the NWire cross section,

we get

N11�22�
Wire ½i; j1; j2� ¼ 4ið3iþ 1Þ

þ 2iði� 1Þ � 2ðiþ j1Þðiþ j1 � 1Þ

þ 2iði� 1Þ � 2ðiþ j2Þðiþ j2 � 1Þ

¼ ð4iÞ2 � 2
h
ðiþ j1Þðiþ j1 � 1Þ

þ ðiþ j2Þðiþ j2 � 1Þ
i

ð23Þ

The number of bonds between these atoms is described by

N11�22�
bnd ½i; j1; j2� ¼ 2ð12i2 � 1Þ þ 4ði� 1Þð2i� 1Þ

� ½4ðiþ j1Þ � 2�½iþ j1 � 1�

� ½4ðiþ j2Þ � 2�½iþ j2 � 1�

¼ ð4i� 1Þð8i� 1Þ þ 1

� ½4ðiþ j1Þ � 2�½iþ j1 � 1�

� ½4ðiþ j2Þ � 2�½iþ j2 � 1�

ð24Þ

The number of interface bonds over all facets is given by

N11�22�
IF ½i; j1; j2� ¼ 16 iþ

1

4

� �
� 4ðj1 þ j2Þ

¼ 4ð4iþ 1� j1 � j2Þ:

ð25Þ

The assignment of interface bonds to the {111} and {1�331} facets

is shown in Fig. 10(b). With this assignment of interface atoms

to {111} and {1�331} facets, we obtain the ratio of interface bonds

per facet orientation as
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Figure 5
Cross section of the zb-/diamond-structure NWire growing along the
[110] axis with a hexagonal cross section and four {111} plus two {001}
interfaces for run index i = 6, shown with axial-symmetric morphing
which is expansive on top with index j1 = �3, and reductive at the bottom
with index j2 = 4. Translucent lines show the outer limit of the cross
section and respective facet lengths. Observe the irregular triangular
areas at the apexes of the cross section which are a constant offset to the
total cross section area, its width and facet lengths. For atom colours, refer
to Fig. 4. For a detailed geometrical derivation of characteristic lengths
and areas, refer to Appendix A.

1 We also note here that the offset area was corrected again with respect to
König & Smith (2021). This correction amounts to a mere 0.0644ðaucÞ

2, which
translates to ca. 1.95 Å2 for semiconductors such as Si or GaAs, and hence
should have no practical relevance in experiment.



N11�22�
1331�IF½i; j1; j2�

N11�22�
111�IF½i; j1; j2�

¼
4ð3iþ 2Þ � 6j1 � 6j2

4ði� 1Þ þ 2j1 þ 2j2

¼
2ð3iþ 2 � 3j1 � 3j2Þ

2ði� 1Þ þ j1 þ j2

:

ð26Þ

Equation 26 shows the explicit number series in the top line,

while the bottom line is the compacted version for the ratio of

interface bonds. The following facet lengths depend only on

one lateral run index j�; � 2 1; 2, which is assigned to the facet

of interest:

d11�22�
111�IF½i; j�� ¼

aucffiffiffi
8
p ð2i� 1Þ þ

aucffiffiffi
8
p 2j�

¼
aucffiffiffi

2
p iþ j� �

1

2

� � ð27Þ

and

d11�22�
1331�IF½i; j�� ¼ auc

ffiffiffiffiffi
11

24

r
ði� j�Þ: ð28Þ

For the f1�331g facets, the smallest unit is the diagonal of the

congruent rectangular areas constituting the cross section

area. These rectangles have a horizontal scaled length of 1=
ffiffiffi
8
p

(see Equation 29) and a vertical scaled length of 1=
ffiffiffi
3
p

(see

Equation 30), yielding
ffiffiffiffiffiffiffiffiffiffiffiffi
11=24
p

for the scaled diagonal of the

rectangle. Due to morphing along the vertical symmetry axis

of the cross sections, w11�22� ½i� 6¼ f ðjÞ and thus stays

unchanged:

w11�22�
½i� ¼

aucffiffiffi
8
p ð4i� 1Þ: ð29Þ

The height of the cross section obviously changes with

morphing, following

h11�22�
½i; j1; j2� ¼

2aucffiffiffi
3
p i�

1

2
j1 �

1

2
j2

� �
¼

aucffiffiffi
3
p 2i� j1 � j2ð Þ:

ð30Þ

The length auc=
ffiffiffi
3
p

presents a third of the diagonal connecting

two opposite corners in h111i direction through the zb-UC,

whereby the (111) vector is orthonormal to the f11�22g plane;

ð111Þ ? f11�22g. This length is equivalent to the longer side of

the rectangle which presents the unit area of NWires growing

along the h11�22i vector class, accounting for the increment in

h11�22� in Equation 30; see Fig. 2. The total cross section area is

described by

A11�22�
½i; j1; j2� ¼

ðaucÞ
2ffiffiffiffiffi

24
p

h
2ið3i� 1Þ þ 2iði� 1Þ

� ðj1 þ iÞðj1 þ i� 1Þ

� ðj2 þ iÞðj2 þ i� 1Þ
i

¼
ðaucÞ

2ffiffiffiffiffi
24
p

h
4ið2i� 1Þ

� ðj1 þ iÞðj1 þ i� 1Þ

� ðj2 þ iÞðj2 þ i� 1Þ
i
:

ð31Þ

The scaled coefficient of 1=
ffiffiffiffiffi
24
p

describes the rectangular unit

area of the cross section as discussed above, following from

1=
ffiffiffi
8
p
� 1=

ffiffiffi
3
p
¼ 1=

ffiffiffiffiffi
24
p

. Facets cut the outermost rectangles

along their diagonal, rendering their triangular area 1=ð2
ffiffiffiffiffi
24
p
Þ.

For an illustration of the morphed hexagonal cross section

with {111} top and bottom interfaces plus {11�33} side interfaces,

refer to Figs. 2 and 10. For a detailed geometrical derivation of

characteristic lengths and areas, see Appendix B.

3.5. Nanowires growing along the [111] direction with a
hexagonal cross section and six {110} interfaces

The smoother geometry of this cross section allows us to use

lateral run indices of �i � j � i for morphing.

For the number of atoms forming the NWire cross section,

we get

N111� j110
Wire ½i; j1; j2� ¼ 6iðiþ 1Þ þ 2þ 2iðiþ 1Þ

� ðiþ j1Þðiþ j1 þ 1Þ

� ðiþ j2Þðiþ j2 þ 1Þ

¼ 8 iþ
1

2

� �2

�ðiþ j1Þðiþ j1 þ 1Þ

� ðiþ j2Þðiþ j2 þ 1Þ:

ð32Þ

The number of bonds between these atoms is described by

N111� j110
bnd ½i; j1; j2� ¼ 6ið2iþ 1Þ þ 1þ 4i iþ

1

2

� �

� 2 ðiþ j1Þ iþ j1 þ
1

2

� �
þ ðiþ j2Þ iþ j2 þ

1

2

� �� �

¼ 16 iþ
1

4

� �2

� 2 ðiþ j1Þ iþ j1 þ
1

2

� �
þ ðiþ j2Þ iþ j2 þ

1

2

� �� �
:

ð33Þ

The number of interface bonds over all facets is given by

N111� j110
IF ½i; j1; j2� ¼ 6 2iþ 1ð Þ � 2ðj1 þ j2Þ: ð34Þ

The facet lengths depending on the respective j�; � 2 1; 2, are

d111� j110
IF�tb ½i; j�� ¼

aucffiffiffi
6
p ðiþ j�Þ ð35Þ

for the top and bottom facets, and

d111� j110
IF�side ½i; j�� ¼

aucffiffiffi
6
p ði� j�Þ ð36Þ

for the side facets. The scaled coefficient 1/
ffiffiffi
6
p

refers to the

side length of the equilateral triangles which form the unit

area unit on a {111} plane defining the cross section. This

coefficient follows from a {111} plane cut through the zb-UC

along its corner points, resulting in an equilateral triangle of

scaled side length
ffiffiffi
2
p

, containing an area equivalent to 12

small equilateral triangles (6 equilateral + 6 isosceles with

same area = 12) with a scaled side length of 1/
ffiffiffi
6
p

.

The width of the cross section is not a function of j and thus

stays unchanged:
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w111� j110
½i� ¼

aucffiffiffi
6
p 2i: ð37Þ

The height of the cross section depends on j1 and j2 as it is

parallel to the symmetry axis along which axial-symmetric

morphing occurs:

h111� j110
½i; j1; j2� ¼

aucffiffiffi
2
p i�

1

2
j1 �

1

2
j2

� �
: ð38Þ

The total cross section area is described by

A111� j110½i; j1; j2�

¼ ðaucÞ
2 1

12

ffiffiffi
3

4

r
½6i2
þ 2i2

� ðiþ j1Þ
2
� ðiþ j2Þ

2
�

¼ ðaucÞ
2

ffiffiffi
3
p

24
½8i2
� ðiþ j1Þ

2
� ðiþ j2Þ

2
�

ð39Þ

The scaled coefficient of
ffiffiffi
3
p

/24 describes the area per equi-

lateral triangle as the unit area of the cross section and follows

directly from our discussion of facet lengths above. Fig. 6

shows the cross section of this NWire type.

3.6. Nanowires growing along the [111] direction with a
hexagonal cross section and six {11�22} interfaces

This cross section returns to the nominal limitation of

lateral (morphing) run indices, i.e. �ði� 1Þ � j� � i� 1 with

� 2 1; 2. For the number of atoms forming the NWire cross

section, we get

N111� j11�22
Wire ½i; j1; j2� ¼ 6ið3iþ 1Þ þ 2þ 2ði� 1Þð3iþ 4Þ

� ðiþ j1 � 1Þ½3ðiþ j1Þ þ 4�

� ðiþ j2 � 1Þ½3ðiþ j2Þ þ 4�

¼ 2ð2i� 1Þð6iþ 5Þ þ 4

� ðiþ j1 � 1Þ½3ðiþ j1Þ þ 4�

� ðiþ j2 � 1Þ½3ðiþ j2Þ þ 4�:

ð40Þ

The number of bonds between these atoms is described by

N111� j11�22
bnd ½i; j1; j2� ¼ ð6iÞ2 þ 1þ 12ðiþ 1Þði� 1Þ

� 6ðiþ j1 � 1Þðiþ j1 þ 1Þ

� 6ðiþ j2 � 1Þðiþ j2 þ 1Þ

¼ 6
h

8i2
�

11

6
�
	
½iþ j1�

2
� 1



�
	
½iþ j2�

2
� 1


i
ð41Þ

The number of interface bonds over all facets is given by

N111� j11�22
IF ½i; j1; j2� ¼ 6 4iþ 1ð Þ � 4ðj1 þ j2Þ: ð42Þ

The facet lengths of top and bottom interfaces depend on the

respective j�; � 2 1; 2:

d111� j11�22
IF;even;tb ½i; j�� ¼ auc

1ffiffiffi
2
p ðiþ j�Þ: ð43Þ

The facet length of side interfaces is

d111� j11�22
IF;even;side½i; j�� ¼ auc

1ffiffiffi
2
p ði� j�Þ: ð44Þ

Since the width of this hexagonal cross section is not a func-

tion of j�, it remains unchanged:

w111� j11�22
½i� ¼ auc

ffiffiffi
2
p

i 6¼ f ½j�:� ð45Þ

For the height of the cross section, we get

h111� j11�22
½i; j1; j2� ¼

3 aucffiffiffi
6
p i�

1

2
j1 �

1

2
j2

� �
: ð46Þ

The cross section plane has the same orientation as in

Section 3.5, with the facet orientation rotated by 60�

({110}! f11�22g). This rotation swaps the scaled coefficients of

facet lengths and cross section width on one side and cross

section height on the other side when compared to Section 3.5

(see discussion there).

The total cross section area has the same scaled coefficient

of
ffiffiffi
3
p
=24 as in Equation 39 due to the same orientation of the

NWire cross section (same growth vector) and thus the same

small equilateral triangles as the unit area:
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Figure 6
Axial-symmetric morphing of the zb-/diamond-structure NWires growing
along the [111] axis with a hexagonal cross section and six {110} interfaces.
The nominal cross section for i = 8 is shown by white ‘ghost atoms’ at the
top interface and by the yellow atoms in the lower half of the cross
section. Reductive morphing with j1 = 2 was applied to the top interface,
while morphing to maximum expansion with j2 = �i = �8 was applied to
the bottom interface. For atom colours, refer to Fig. 4. For a detailed
geometrical derivation of characteristic lengths and areas, refer to
Appendix C.



A111� j11�22
½i; j1; j2� ¼ ðaucÞ

2

ffiffiffi
3
p

24

"
18i2
þ 6

	
i2
� 1



� 3ðiþ j1 � 1Þðiþ j1 þ 1Þ

� 3ðiþ j2 � 1Þðiþ j2 þ 1Þ

#

¼ ðaucÞ
2

ffiffiffi
3
p

8

"
8i2
� 2�

	
½iþ j1�

2
� 1




�
	
½iþ j2�

2
� 1


#
:

ð47Þ

The outermost area elements at the facets form isosceles

triangles (Fig. 7), which have the same area as their equilateral

counterparts mentioned above; see also the related discussion

in Section 3.5 and the geometrical derivation explained in

Appendix C. The cross section of this NWire type is shown in

Fig. 7.

4. Morphing cross sections along three symmetry axes

Such morphings naturally lend themselves to cross sections

with hexagonal symmetry. We therefore do not consider

square cross sections with h001i normal vectors on growth

plane and facets, as well as rectangular cross sections with

h110i growth vector and {001} and {110} facets.

Depending on the symmetry of the hexagonal cross section,

we have to introduce different lateral number series per facet

orientation, with run indices j as used in Section 3, and run

indices k1; k2 for the other two morphing directions, with a

different facet orientation {abc} for both run indices k1 and k2.

This is the case in Sections 4.1 and 4.2.

As in Section 3, lateral run indices – j; k1; k2; k3 – are

positive for reductive morphing (cutting into the nominal

cross section) and negative for expansive morphing (extending

the nominal cross section), with the nominal cross section

presented if all lateral run indices are zero. Under the

condition that all lateral run indices are equal, i.e. j ¼ k1 ¼ k2,

or k1 ¼ k2 ¼ k3, all cross sections will assume a triangular or

quasi-triangular shape on maximum expansive morphing, as

well as on maximum reductive morphing; see Fig. 8(a).

Other, more irregular, shapes can be described in an arbi-

trary fashion, under the constraint that all facets or singular

points where facets meet do not penetrate the nominal

hexagonal cross section. As a result, all facets not being

directly morphed via a lateral run index have a minimum

length or at least a point where adjacent (directly morphed)

facets meet. These minimum lengths or singular points are all

located on the respective borders (facets) of the nominal cross

section considered. By preventing the penetration of such

minimum facet lengths or singular points into the nominal

cross section, we prevent the lateral number series from

overlapping with each other, erasing the facet between the two

associated morphing sections in the process. Thereby, we

obtain a minimum facet length or a common point between

two neighbouring morphed facets for maximum reductive

morphing. A minimum facet length refers to cross sections

morphed in Sections 4.1, 4.2 and 4.4, and a common point

between two neighbouring facets refers to morphing in

Section 4.3. While such overlap can be dealt with in number

theory and crystallography, we point out that – besides its
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Figure 7
Axial-symmetric morphing of the zb-/diamond-structure NWires growing
along the [111] axis with a hexagonal cross section and six {112} interfaces.
The nominal cross section for i = 5 is shown by white ‘ghost atoms’ at the
top interface and by the yellow atoms in the lower half of the cross
section. Maximum reductive morphing with j1 = 4 was applied to the top
interface, while morphing to maximum expansion with j2 = �(i �1) = �4
was applied to the bottom interface. For atom colours, refer to Fig. 4. For
a detailed geometrical derivation of characteristic lengths and areas, refer
to Appendix C.

Figure 8
(a) Principle of exploiting the recursive (or fractal) symmetry properties
of equilateral triangles to explain the coverage of arbitrary cross section
shapes. Triangles represent the maximum expansive morphing for the
respective nominal run index i. (b) Fitting the corresponding hexagon
into these triangles shows the morphing range and size overlap, whereby
the corresponding i values of cross sections shown differ by 2 or 3,
depending on cross section type; see subsequent Figures in this section.
Other cross sections between those shown – i.e. for all i values – have
been omitted for clarity.



complexity – such a description of NWire cross sections is not

beneficial since the free choice of the nominal run index i per

cross section and subsequent morphing within these

constraints covers virtually any convex NWire shape

encountered in experiment. Apart from Section 4.3, where we

introduce slightly different limits on run indices to prevent an

overlap, such limitations are as follows. All lateral run indices

have a minimum value of j ¼ k1 ¼ k2 ¼ �ði� 1Þ, resulting in

maximum expansive morphing; see Figs. 9(a), 10(a) and 12(a).

Run index doublets are limited to j + k1 = j + k2 = k1 + k2 = i�

1 in Sections 4.1 and 4.2, and to k1 + k2 = k2 + k3 = k3 + k1 = i �

1 in Section 4.4. The cross section treated in Section 4.3 has a

limit on run index doublets of k1 + k2 = k2 + k3 = k3 + k1 = i,

because its high symmetry and atom interconnectivity at the

corner points allows for facets not being directly morphed to

be reduced to singular points on the boundary of the regular

cross section (versus minimum facet length for all other three

cases). The basic principle of 3-axes morphing and related

implications for overlap in size and form of cross sections is

depicted in Fig. 8.

All number series reflect the variables we presented in

Section 3, with additional series for facet lengths, NWire

widths and heights, which depend on lateral (morphing) run

indices. These are required in particular for finding the right

indices to fit experimental values, such as facet lengths, heights

or widths of NWire cross sections; see Section 5. As mentioned

before in Section 3, the contribution of the nominal cross

section to the respective number series is printed in grey to

facilitate the decomposition into contributions per run index.

For the same reason, most number series will be shown

uncompacted, followed by their shortest form.

4.1. 3-Axes morphing of nanowires growing along the [110]
direction and four {111} plus two {001} interfaces

For the number of atoms in the NWire cross section, we

obtain

N110�
Wire ½i; j; k1; k2� ¼ 12i2 þ 2ði� 1Þðiþ 1Þ

� 2ðiþ j� 1Þðiþ jþ 1Þ

þ 2½i2
� ðiþ k1Þ

2
� þ 2½i2

� ðiþ k2Þ
2
�

¼ 18i2
� 2

h
ðiþ jÞ

2
þ ðiþ k1Þ

2

þ ðiþ k2Þ
2
i
:

ð48Þ

The number of bonds between these NWire atoms are

described by

N110�
bnd ½i; j; k1; k2� ¼ 8ið3i� 1Þ þ 4ði� 1Þðiþ 1Þ

� 4ðiþ j� 1Þðiþ jþ 1Þ

þ 2ði� 1Þð2iþ 1Þ

� 2ðiþ k1 � 1Þð2½iþ k1� þ 1Þ

þ 2ði� 1Þð2iþ 1Þ

� 2ðiþ k2 � 1Þð2½iþ k2� þ 1Þ

¼ 4ð3i� 2Þð3iþ 1Þ � 4
	
½iþ j�2 � 1



� 2

h
ðiþ k1 � 1Þð2½iþ k1� þ 1Þ

þ ðiþ k2 � 1Þð2½iþ k2� þ 1Þ
i
:

ð49Þ

The total number of interface bonds of the NWire cross

section amounts to

N110�
IF ½i; k1; k2� ¼ 16i� 4ðk1 þ k2Þ

¼ 4ð4i� k1 � k2Þ 6¼ f ½j�:
ð50Þ

As was the case with axial-symmetric morphing (see Equation

16), the number of {111} facet bonds being added/removed

equals the number of {001} facet bonds being removed/added

per change in j; k1 or j; k2, whereby N110�
IF ½i; k1; k2� becomes

independent of j.

The ratio of facet bonds at {111} to {001} interfaces is given

by
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Figure 9
(a) Cross section of the regular hexagon with a [110] growth axis, {001} top and bottom interfaces, and {111} side interfaces, run index i = 6 and maximum
extensive morphing (j = k1 = k2 = �5); regular cross section (j = k1 = k2 = 0) is shown by translucent yellow lines and nominal interfaces in morphing
directions are shown by yellow atoms. For atom colours, refer to Fig. 4. A smaller cross section [i = 3, even series; see König & Smith (2021)] is shown by
purple atoms and the corresponding maximum expansive morphing by cyan atoms. Translucent lines were added to show the respective spatial limits. (b)
Morphed cross section with i = 6, j = �3, k1 = �1 and k2 = �4. Interface lengths and associated labels are shown by translucent green lines, defining the
area covered by the NWire cross section; see also Fig. 16 for outer triangular and offset sub-areas. (c) Morphed cross section with i = 6, j = 1, k1 = 4 and
k2 = �4. White spheres present ‘ghost atoms’ to show nominal cross section. For a detailed geometrical derivation of characteristic lengths and areas,
refer to Appendix A.



N110�
111�IF½i; j� 6¼ f ½k1; k2�

N110�
001�IF½i; j; k1; k2�

¼
4ð2i� jÞ

4ð2iþ j� k1 � k2Þ

¼
2i� j

2iþ j� k1 � k2

; ð51Þ

whereby the top row in Equation 51 show the explicit number

series per interface orientation and the lower row presents

their ratio. The length of the top f001g facet is given by

d110�
001�IF;top½i; k1; k2� ¼

aucffiffiffi
8
p ð2½i� k1 � k2��1Þ; ð52Þ

whereby the analogy of �k1 � k2 to �2j in clearly visible; see

Equation 18. The length of the bottom {001} facet is given by

d110�
001�IF;bot½i; j� ¼

aucffiffiffi
8
p ð2½iþ j��1Þ; ð53Þ

being equivalent to Equation 18.

The length of the two upper {111} facets depends only on

the respective k�; � 2 1; 2:

d110�
111�IF;up½i; k�� ¼ auc

ffiffiffi
3

8

r
i� k��

1

4

� �
: ð54Þ

In Equation 54, we add or remove one X6 ring per change in

k�, as is the case for j in Equation 19, underlining the high

symmetry of the NWire cross section. The length of the two

lower {111} facets depends on the respective k� and j, the latter

limiting such facets from below:

d110�
111�IF;lw½i; j; k�� ¼ auc

ffiffiffi
3

8

r
i� j� k��

1

4

� �
: ð55Þ

These facet lengths are shown in Fig. 9(b).

Due to d110�
001�IF;bot½i; j� � w110� ½i; k1; k2�, the width of the

cross section depends on k1; k2 only, which is a direct conse-

quence of the morphing limits discussed at the beginning of

Section 4:

w110�
½i; k1; k2� 6¼ f ½j� ¼ auc

ffiffiffi
2
p

i�
3

8
�

1

4
k1 �

1

4
k2

� �
: ð56Þ

For the same reason, the height of the cross section depends

only on j:

h110�
½i; j� 6¼ f ½k1; k2� ¼ auc i�

1

4
�

j

2

� �

¼
auc

2
2i�

1

2
� j

� �
:

ð57Þ

The total area of the cross section naturally depends on all

running indices:

A110�
½i; j; k1; k2�

¼
ðaucÞ

2ffiffiffi
8
p

"
ði� 1Þ 3iþ

7

6

� �
þ 1

þ 4
1

16
þ 2

1

32

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

offset areas

þði� 1Þ
1

2
iþ

1

12

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

max: ext: morphing with j

þ 2
1

2
ði� 1Þ iþ

1

2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

max: ext: morphing with k1;k2

� ðiþ j� 1Þ
1

2
½iþ j� þ

1

12

� �

�
1

2
½iþ k1 � 1� iþ k1 þ

1

2

� �
þ ½iþ k2 � 1� iþ k2 þ

1

2

� �� �#

¼
ðaucÞ

2ffiffiffi
8
p

"
ði� 1Þ

9

2
iþ

7

4

� �
þ

21

16

� ðiþ j� 1Þ
1

2
½iþ j� þ

1

12

� �

�
1

2
½iþ k1 � 1� iþ k1 þ

1

2

� �
þ ½iþ k2 � 1� iþ k2 þ

1

2

� �� �#
:

ð58Þ

The underbrace in line 2 of Equation 58 indicates the offset

area which is composed of four scalene and two isosceles

triangles at the corner points of the cross section; see

Appendix A and Fig. 16 for their derivation2. The underbraces

in line 3 of Equation 58 denote the contribution to maximum

extensive morphing per class of lateral run indices j and k1; k2,

from which the respective area is subtracted when

j; k1; k2 > � ði� 1Þ. Fig. 9 shows crystallographical details of

this cross section and a couple of examples of triaxial

morphing.

4.2. 3-Axes morphing of nanowires growing along the [11�22]
direction with four {�1131} plus two {111} interfaces

For the number of atoms in the NWire cross section, we

obtain

N11�22�
Wire ½i; j; k1; k2� ¼ 4ið3iþ 1Þ þ 2ði� 1Þð3iþ 4Þ

� 2ðiþ jÞðiþ j� 1Þ

� 2ðiþ k1 þ 2Þðiþ k1 � 1Þ

� 2ðiþ k2 þ 2Þðiþ k2 � 1Þ

¼ 2ð3i� 1Þð3iþ 2Þ � 4

� 2ðiþ jÞðiþ j� 1Þ

� 2
h
ðiþ k1 þ 2Þðiþ k1 � 1Þ

þ ðiþ k2 þ 2Þðiþ k2 � 1Þ
i
:

ð59Þ

The number of bonds between these NWire atoms are

described by
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2 We also note here that the offset area was corrected again with respect to
König & Smith (2021). This correction amounts to a mere 0.0644ðaucÞ

2 which
translates to ca. 1.95 Å2 for semiconductors such as Si or GaAs, and hence
should have no practical relevance in experiment.



N11�22�
bnd ½i; j; k1; k2� ¼ 2ð12i2

� 1Þ þ 2ði� 1Þð2i� 1Þ

þ 2ði� 1Þð4iþ 7Þ

� 2ðiþ j� 1Þ
�
2ðiþ jÞ � 1



� ðiþ k1 � 1Þ

�
4ðiþ k1Þ þ 7



� ðiþ k2 � 1Þ

�
4ðiþ k2Þ þ 7



¼ 2ð18i2

� 7Þ

� 2ðiþ j� 1Þ
�
2ðiþ jÞ � 1



� ðiþ k1 � 1Þ

�
4ðiþ k1Þ þ 7



� ðiþ k2 � 1Þ

�
4ðiþ k2Þ þ 7



:

ð60Þ

The total number of interface bonds of the NWire cross

section amounts to

N11�22�
IF ½i; j; k1; k2� ¼ 16 iþ

1

4

� �
� 4j� 2k1 � 2k2

¼ 4ð4iþ 1Þ � 2ð2jþ ½k1 þ k2�Þ:

ð61Þ

The assignment of interface bonds to the {111} and {1�331} facets

is shown in Fig. 10(b). With this assignment of interface atoms

to {111} and {1�331} facets, we obtain

N11�22�
1331�IF½i; j� 6¼ f ½k1; k2�

N11�22�
111�IF½i; j; k1; k2�

¼
4ð3iþ 2Þ � 6j

4ði� 1Þ þ 2j� 2k1 � 2k2

¼
2ð3iþ 2Þ � 3j

2ði� 1Þ þ j� k1 � k2

ð62Þ

for the respective explicit number series in the top row and for

the more compact form describing the ratio of interface bonds

only. There are four different facet lengths which have to be

used with their respective run indices j and k�, � 2 1; 2, as

required for the facet of interest:

d11�22�
111�IF;top½i; k1; k2� ¼

aucffiffiffi
2
p i�

1

2
� k1 � k2

� �
; ð63Þ

d11�22�
111�IF;bot½i; j� ¼

aucffiffiffi
2
p i�

1

2
þ j

� �
; ð64Þ

d11�22�
1331�IF;top½i; k�� ¼ auc

ffiffiffiffiffi
11

24

r
ðiþ k�Þ; ð65Þ

d11�22�
1331�IF;bot½i; j; k�� ¼ auc

ffiffiffiffiffi
11

24

r
ði� j� k�Þ: ð66Þ

For an illustration of facet lengths, we refer to Fig. 10.

As discussed in Section 4.1 around Equation 56, the width

of the cross section depends on k1; k2 only:

w11�22�
½i; k1; k2� ¼

aucffiffiffi
8
p ð4i� 1� k1 � k2Þ: ð67Þ

For the same reason, the height of the cross section depends

only on j:

h11�22�
½i; j� ¼

aucffiffiffi
3
p ð2i� jÞ: ð68Þ

The total cross section area is presented by

A11�22�
½i; j; k1; k2� ¼

ðaucÞ
2ffiffiffiffiffi

24
p

"
2ið3i� 1Þ

þiði� 1Þ|fflfflfflfflffl{zfflfflfflfflffl}
max: ext: morphing with j

þ 2ði� 1Þðiþ 1Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
max: ext: morphing with k1;k2

� ðjþ iÞðjþ i� 1Þ

� ðiþ k1 � 1Þðiþ k1 þ 1Þ

� ðiþ k2 � 1Þðiþ k2 þ 1Þ

#

¼
ðaucÞ

2ffiffiffiffiffi
24
p

"
ð3i� 2Þð3iþ 1Þ

� ðj1 þ iÞðj1 þ i� 1Þ � ðiþ k1Þ
2

� ðiþ k2Þ
2
þ 2

#
:

ð69Þ
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Figure 10
(a) Cross sections of regular hexagon with run index i = 5, a [112] growth axis, {111} top and bottom interfaces, and {131} side interfaces. The maximum
expansive morphing shown corresponds to morph indices j = k1 = k2 =�4. For atom colours, refer to Fig. 4. A smaller cross section [i = 3, even series, see
König & Smith (2021)] is shown by purple atoms and the corresponding maximum expansive morphing by cyan atoms. (b) Cross section with i = 5, j = 0,
k1 = �2 and k2 = �4, with magenta lines assigning interface bonds to respective facets, and green arrows and labels showing interface lengths. For an
example of reductive 3-axes morphing, refer to Fig. 2(c). For a detailed geometrical derivation of characteristic lengths and areas, refer to Appendix B.



As for Equation 58, we have assigned the contribution to

maximum extensive morphing per class of lateral run indices j

and k1; k2 from which the respective area is subtracted when

j; k1; k2 > � ði� 1Þ, before converting Equation 69 to its

shortest form. For an illustration of irregular 3-axes morphing

of this cross section, refer to Fig. 10.

4.3. 3-Axes morphing of nanowires growing along the [111]
direction with a hexagonal cross section and six {110}
interfaces

This cross section has a higher symmetry, as opposed to the

two previous cases in Sections 4.1 and 4.2. All three morphing

areas are identical and subject to their respective run index,

which becomes apparent if we look at their interface orien-

tations, which are identical to each other. As a result, we

introduce just one class of run indices k1; k2; k3. We also point

out that the morphing areas are identical to those depending

on j in Section 3.5. The difference occurs by the morphing of

opposite areas (referring to a C2 symmetry), while here we

morph three equal areas – subject to identical run indices

k�; � ¼ 1; 2; 3 – when rotated by 120� (C3 symmetry). As there

is no overlap in morphing regions for one k� ¼ i under the

constraint that the other two k indices are �0 [see Fig. 11(c)],

and the ultimate corner point of the extensive morphing

occurs for k� ¼ �i [see Fig. 11(a)], we can extend the k� all the

way to 
i. Still, the indices k1; k2 and k3 are restricted over

½�i;þi� along k� þ k� � i, where ½�; �� are cyclic permuta-

tions of the run indices, viz. ½1; 2�; ½2; 3�; ½3; 1�. Thereby, we

avoid the morphing of the three triangular areas running into

each other. As examples, if i = 9 and k1 = 9, we have�i� k2 +

k3 � 0; if i = 9 and k2 = 7, we have �i � k3 + k1 � 2, etc.

For the number of atoms in the NWire cross section, we

obtain

N111� j110
Wire ½i; k1; k2; k3� ¼ 6iðiþ 1Þ þ 2þ 3iðiþ 1Þ

� ðiþ k1Þðiþ k1 þ 1Þ

� ðiþ k2Þðiþ k2 þ 1Þ

� ðiþ k3Þðiþ k3 þ 1Þ

¼ 9iðiþ 1Þ þ 2

�
X3

�¼1

ðiþ k�Þðiþ k� þ 1Þ:

ð70Þ

The final form of Equation 70 summarizes the terms which

depend on k� into a sum for brevity; we will use this short form

in all subsequent equations where applicable. The number of

bonds between these NWire atoms is described by

N111� j110
bnd ½i; k1; k2; k3� ¼ 6ið2iþ 1Þ þ 1þ 6i iþ

1

2

� �

� 2
X3

�¼1

ðiþ k�Þ iþ k� þ
1

2

� �
¼ 9ið2iþ 1Þ þ 1

� 2
X3

�¼1

ðiþ k�Þ iþ k� þ
1

2

� �
:

ð71Þ

The total number of interface bonds of the NWire cross

section amounts to

N111� j110
IF ½i� ¼ 6 2iþ 1ð Þ � 2

X3

�¼1

k�: ð72Þ

There are two types of interface lengths. One represents the

facets normal to the morphing vector given by atomic planes

being added or subtracted, and depends only on the respective

k�:

d111� j110
IF;5 ½i; k�� ¼

aucffiffiffi
6
p ðiþ k�Þ: ð73Þ
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Figure 11
(a) Cross sections of a regular hexagon with run index i = 9, a [111] growth axis and six {110} interfaces. The maximum expansive morphing shown
corresponds to morph indices k1 = k2 = k3 = �9. For atom colours, refer to Fig. 4. A smaller cross section [i = 5, even series, see König & Smith (2021)] is
shown by purple atoms and the corresponding maximum expansive morphing by cyan atoms. (b) Cross section showing expansive morphing, with i = 9,
k1 = 0, k2 =�9 and k3 =�5. (c) Cross section showing reductive morphing, with i = 9, k1 = 9, k2 =�9 and k3 =�5. For a detailed geometrical derivation of
characteristic lengths and areas, refer to Appendix C.



Another interface length exists for facets which are modified

in their length by the two adjacent morphing regions:

d111� j110
IF; non5 ½i; k�; k�� ¼

aucffiffiffi
6
p ði� k� � k�Þ: ð74Þ

Due to the C3 symmetry of the hexagonal cross section, its

height can be calculated along all three morphing vectors:

h111� j110
½i; k�� ¼

aucffiffiffi
8
p ð2i� k�Þ: ð75Þ

The calculation of the cross section width does not appear to

be useful. It would require a discrimination to depart from the

nominal width when k�; k� < �i=2, adding an increment of

�auc=
ffiffiffi
6
p

1
2 ½k� þ k��, which is somewhat cumbersome in

handling experimental data. We therefore rely onto the height

of the cross section as per Equation 75, which should be

sufficient to assign run indices to an experimental image.

The total cross section area is presented by

A111� j110
½i; k1; k2; k3� ¼ ðaucÞ

2

ffiffiffi
3
p

24

"
6i2

þ i2
þ i2
þ i2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

max: ext: morphing with k1;k2;k3

�
X3

�¼1

ðiþ k�Þ
2

#

¼ ðaucÞ
2

ffiffiffi
3
p

24
9i2
�
X3

�¼1

ðiþ k�Þ
2

" #
:

ð76Þ

The maximum external morphing per k� assigned in the top

row of Equation 76 is straightforward to see in Fig. 11(a),

where the three equilateral triangles cover half of the nominal

cross section consisting of six of such triangles. Morphing

examples are shown in Figs. 11(b) and 11(c).

4.4. 3-Axes morphing of nanowires growing along the [111]
direction with a hexagonal cross section and six {11�22}
interfaces

This cross section reverts back to the restrictions on the run

indices�ði� 1Þ � k1; k2; k3 � i� 1 we had for cross sections

in Sections 4.1 and 4.2, together with the restriction

k� þ k� � i� 1, where ½�; �� are cyclic permutations of the

run indices; see beginning of Section 4. The symmetry

considerations given in Section 4.3 also apply to this cross

section which has exclusive {11�22} facet orientations.

For the number of atoms in the NWire cross section, we

obtain

N111� j11�22
Wire ½i; k1; k2; k3� ¼ 6ið3iþ 1Þ þ 2

þ 3ði� 1Þð3iþ 4Þ

�
X3

�¼1

ðiþ k� � 1Þ½3ðiþ k�Þ þ 4�

¼ 9ð3i� 2Þðiþ 1Þ þ 8

�
X3

�¼1

ðiþ k� � 1Þ½3ðiþ k�Þ þ 4�:

ð77Þ

The number of bonds between these NWire atoms are

described by

N111� j11�22
bnd ½i; k1; k2; k3� ¼ ð6iÞ

2
þ 1þ 18ði2

� 1Þ

� 6
X3

�¼1

�
ðiþ k�Þ

2
� 1



¼ 54i2 � 17

� 6
X3

�¼1

�
ðiþ k�Þ

2
� 1



:

ð78Þ

The total number of interface bonds of the NWire cross

section amounts to
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Figure 12
(a) Cross sections of a regular hexagon with run index i = 5, a [111] growth axis and six {112} interfaces. The maximum expansive morphing shown
corresponds to morph indices k1 = k2 = k3 =�4. The two black atoms are located in the centre of the cross section in the same lateral position, i.e. on top
of each other. For other atom colours, we refer to Fig. 4. A smaller cross section [i = 3, even series, see König & Smith (2021)] is shown by magenta atoms
and the corresponding maximum expansive morphing by cyan atoms. (b) Cross section showing expansive morphing, with i = 5, k1 = �2, k2 = 0 and k3 =
�4. (c) Cross section showing reductive morphing, with i = 5, k1 = �1, k2 = 2 and k3 = �4. For a detailed geometrical derivation of characteristic lengths
and areas, refer to Appendix C.



N111� j11�22
IF ½i; k1; k2; k3� ¼ 6 4iþ 1ð Þ � 4

X3

�¼1

k�: ð79Þ

By analogy to Equations 73 and 74, we have two types of facet

lengths with their respective lateral run indices, namely, the

facets normal to the morphing vector given by atomic planes

being added or subtracted

d111� j11�22
IF;5 ½i; k�� ¼ auc

1ffiffiffi
2
p ðiþ k�Þ; ð80Þ

and for facets which are modified in their length by the two

adjacent morphing regions:

d111� j11�22
IF; non5 ½i; k�; k�� ¼ auc

1ffiffiffi
2
p ði� k� � k�Þ: ð81Þ

As was the case in Section 4.3, the C3 symmetry of the hexa-

gonal cross section allows for its height to be calculated along

all three morphing vectors:

h111� j11�22½i; k�� ¼
3 aucffiffiffi

6
p i�

1

2
k�

� �
: ð82Þ

The total cross section area is presented by

A111� j11�22
½i; k1; k2; k3� ¼ ðaucÞ

2

ffiffiffi
3
p

24

h
18i2

þ 3ði2
� 1Þ þ 3ði2

� 1Þ þ 3ði2
� 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

max: ext: morphing with k1;k2;k3

� 3
X3

�¼1

�
ðiþ k�Þ

2
� 1

�i

¼ ðaucÞ
2

ffiffiffi
3
p

24

h
9ð3i2
� 1Þ

� 3
X3

�¼1

�
ðiþ k�Þ

2
� 1

�i
:

ð83Þ

The maximum external morphing per k� assigned in the top

row of Equation 83 is straightforward to see in Fig. 12(a),

where the three axial-symmetric trapezoids fold back onto the

nominal cross section, which consists of six such trapezoids,

whereby the two central atoms shown in black in Fig. 12(a) are

not covered in the folding process. Morphing examples are

shown in Figs. 12(b) and 12(c).

5. Application examples

5.1. Si NWires

Si NWires have been shown to grow as monolithic crystals

along the [111] axis with atomically flat f11�22g interfaces when

aluminium (Al) is used as a seed catalyst (Moutanabbir et al.,

2011). Such NWire cross sections are shown in Fig. 13. We

picked two examples from this reference to show the usage

and results derived by the morphing algorithms from experi-

mental input. Table 4 shows all parameters and results of the

cross sections shown in Figs. 13(b) and 13(c), respectively.

Due to several run indices present, the fitting onto the exact

cross section shape requires an iterative process which is well

suited to a computer code. Such a code could be added to

existing visual software for gauging NWire cross sections – a

task we illustrate here in a stepwise fashion as a principal

guide. As unit-cell parameter for Si, we use auc = 0.54309 nm

(Böer, 1990).

There are two ways to start an iteration for obtaining the

run indices. The first is to start with one d111� j110
IF; non5 ði; k�; k�Þ

(Equation 74) and its two adjacent d111� j110
IF;5 ði; k�Þ (Equation

73), rearranging for the three run indices such as i; k1; k2. This

approach may be more appealing to the experimentalist, and

is illustrated on a core-shell NWire in Section 5.2. The more

direct starting point for the iteration is given by using

h111� j110ði; k�Þ (Equation 75) and the d111� j110
IF;5 ði; k�Þ, which is

at one end of h111� j110ði; k�Þ, rearranging only for the two run

indices involved.

With the measured height and interface lengths h and a, as

listed for Fig. 13(b) in Table 4, we get

ðIÞ :

ffiffiffi
6
p

3 auc

h ¼ i�
1

2
k3

ðIIÞ :

ffiffiffi
2
p

auc

a ¼ iþ k3
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Table 4
Structural parameters and calculated results for hexagonal cross sections
with a [111] growth axis and {112} interfaces, as shown in Figs. 13(b) and
13(c). The slab thickness of NWire cross sections is dslab = auc

ffiffiffi
3
p

.
Measured lengths are shown with tolerances.

Measured parameter (nm) See Fig. 13(b) See Fig. 13(c)

a 40.8 
 1.0 33.2 
 1.0
b 64.1 
 1.0 59.2 
 1.0
c 41.9 
 1.0 33.4 
 1.0
d 64.9 
 1.0 60.0 
 1.0
e 39.8 
 1.0 32.1 
 1.0
f 65.8 
 1.0 60.5 
 1.0
h 92.2 
 1.0 79.8 
 1.0

Calculated parameter

i 127 109
k1 �23 �25
k2 �19 �22
k3 �22 �23

NWire/dslab 335796 255450
Nbnd/dslab 669937 509449
NIF/dslab 3310 2902
A110� (nm2) 7130 5422

Nbnd/NWire 1.995 1.994
NIF/NWire 9.857 � 10�3 1.136 � 10�2

NIF/Nbnd 4.941 � 10�3 5.696 � 10�3



ðI � IIÞ :

ffiffiffi
6
p

3 auc

h �

ffiffiffi
2
p

auc

a ¼ �
3

2
k3; ð84Þ

yielding k3 ¼ �24 . . . � 22 and i = 127. The tolerance range

for k1; k2 and k3 originates from the tolerance in length

measurement which is in the range 
1 nm; see Fig. 13 and

Table 4. Such tolerance ranges translate into ranges for k� and

i which serve to minimize the difference to the respective

calculated length jd111� j110
IF ði; k�; k�Þ � Xj; see Equation 85

below and Equation 86 in Section 5.2. With i known, we can

proceed with Equation 84(II) to get a start range for the other

two k�, yielding k2(i = 127, c) =�19 . . . � 17 and k1(i = 127, e)

= �24 . . . � 22. Next, we rearrange Equation 74 for its run

indices, viz.

i� k� � k� ¼

ffiffiffi
2
p

auc

X; X ¼ ½b; d; f� : ð85Þ

Equation 85 provides us with a sum of k� þ k� ¼
P

k, which

we can match under consideration of the range of k� and k�.

For d111� j110
IF; non5 ði; k1; k2Þ ¼ f ðX ¼ dÞ, we get

P
k = �43 . . .

�41 = k1 + k2. This range allows for k1 ¼ �23 . . . � 26 and

k2 =�17 . . . �19. Moving on to d111� j110
IF; non5 ði; k2; k3Þ = f(X = b),

we obtain
P

k = �43 . . . �41 = k2 + k3. This range allows for

k2 ¼ �17 . . . � 19 and k3 ¼ �22 . . . � 24, with the valid

doublets of ½k2; k3� = [�17;�24], [�18;�23], [�19;�22],

[�18;�24], [�19;�23] and [�19;�24]. Arriving at the last

interface length d111� j110
IF; non5 ði; k3; k1Þ ¼ f ðX ¼ fÞ, we get

P
k =

�45 . . . �43 = k3 + k1, allowing for k3 ¼ �22 . . . � 23 and

k1 = �22 . . . �23, yielding ½k3; k1� = [�23;�22], [�22;�23],

[�22;�22]. It becomes apparent that with ongoing iteration

over an increasing number of interface lengths d111� j110
IF; , the

k� indices get narrowed down towards one integer value. We

can narrow down the range for the k� further by reconsidering

Equation 84(I) with i = 127 and k3 ¼ �22 . . . � 20 to match

the experimental value h [Fig. 13(b) and Table 4]. This is best

achieved using h111� j110ði ¼ 127; k3 = �22) = 91.8 nm,

leaving just 0.4 nm to match the measured value of h. With k3

= �22, we can iterate again, obtaining k2 = �19 and k1 =

�23 
 1 = �23, whereby we chose the centre of the k1 range

to arrive at a minimum deviation from the measured length

parameters of the NWire cross section. An iterative computer

code would modify k1; k2 and k3 around their initial values

such that the sum of the absolute deviation values of all the

NWire length parameters from their measured counterparts

jd111� j110
IF ði; k�; k�Þ � Xj is minimized as the criterion to

arrive at the best structural fit of the number series; see
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Figure 14
Core-shell GaAs–In0.2Ga0.8As zb-NWire with a [111] growth axis and {110} interfaces [Balaghi et al. (2019); reproduced with kind permission of Springer
Nature, copyright 2019]. (a) Original elemental distribution in NWire cross section obtained by energy-dispersive X-ray spectroscopy. (b) Transmission
electron micropscopy image of the NWire region around the internal interface between GaAs and In0.2Ga0.8As, as shown by the yellow square in part (a).
The interface is monocrystalline and assumed to be atomically flat. (c) Core-shell NWire cross section with interfaces illustrated and labelled for
crystallographic analysis as per number series in Section 4.4.

Figure 13
Cross sections of Si NWires growing along the [111] axis and {110} interfaces from Moutanabbir et al. (2011). (a) Reprinted with permission from
Moutanabbir et al. (2011), copyright American Chemical Society 2011. Examples of (a) for gauging with number series are shown enlarged in parts (b)
and (c); see Table 4 for the parameters of the respective NWire cross section.



Equation 86 in Section 5.2. The indices [i, k1, k2, k3] = [127,

�23, �19, �22] can then be used in Equations 77 to 83 to

calculate the structural results. These are shown in Table 4,

together with the results for the cross section in Fig. 13(c).

The flexibility of the above algorithms in describing the

NWire cross section could also be very useful for NWire

shapes changing by post-growth extrinsic means. As an

example, an atomic rearrangement at Si NWires due to high

current densities inducing local heating (Bahrami et al., 2021)

can be tracked and linked to the surface energies of respective

facets. Tracking such changes over time with our crystal-

lographic description and the energy intake by local heating

should allow the atomic surface diffusion process to be

described in much detail. Such findings can be key to NWire

design on demand.

5.2. Core-shell III–V zb-NWires with different unit-cell
parameters auc

III–V NWires are often found to grow along the [111] axis

which requires the least energy and have hexagonal cross

sections (Joyce et al., 2011; Treu et al., 2015). Here we will

focus on core-shell GaAs–In0.2Ga0.8As zb-NWires grown by

solid-state molecular beam epitaxy (MBE) along the [111] axis

with {110} interfaces, using visual and crystallographic data

from Balaghi et al. (2019). Fig. 14 shows the NWire cross

section with crystallographic details and the assignment of

variables to respective interface lengths and one UC height of

the NWire cross section.

Below, we will show how we can derive structural results

using Equations 70 to 76 in Section 4.3 to match all interface

lengths to their measured value (Table 5), taking the different

unit-cell parameters for core and shell of NWire, acore
uc and

ashell
uc , into account. The resulting run indices allow us to obtain

the main variables N111� j110
Wire , N111� j110

bnd , N111� j110
IF and

A111� j110 for the core and total NWire cross sections, here-

after denoted as NWire, Nbnd, NIF and A, respectively, to keep

the prsentation of variables as simple as possible. The same

simplification goes for all d111� j110
IF and h111� j110

IF , hereafter

denoted as dIF and h, respectively. From these data, we can

derive the main variables of the shell by simple differential/

additive calculations. The calculation of run indices for the

core and shell of the NWire cross section require additional

indexing of the run indices to avoid confusion: run indices

using the unit-cell parameter of the NWire core acore
uc will be

icore; kcore
1 ; kcore

2 ; kcore
3 , and run indices using the unit-cell para-

meter of the NWire shell ashell
uc will be ishell; kshell

1 ; kshell
2 ; kshell

3 .

We set out with the cross section of the NWire core (Fig. 14)

and use the lengths of three adjacent interfaces as a starting

point, thereby illustrating the second method briefly men-

tioned in Section 5.1 of how to find the run indices icore, kcore
1 ,

kcore
2 , kcore

3 NWire cross sections.

The convergence criterion (CC) we use for obtaining the

run indices which describe the NWire cross section with

minimum deviation is given by the sum of absolute deviations

of the calculated dIF; non5, dIF;5 and hði; k�Þ – see Equations 73

to 75 in Section 4.3 – from their respective measured values a

to f plus h1 to h3 for the NWire core, and A to F plus H1 to H3

for the NWire shell; see Fig. 14(c):

CC ¼
X

i�;k�� ;k
�
�;�

dIF i�; k�� ; k��
	 


��
�� ��

þ
X

i�;k�� ;��

h i�; k��ð Þ � �
�� ��! 0;

with � ¼ A; ... ;F
a; ... ;f

� 

;� ¼ H1;H2;H3

h1 ;h2 ;h3

h i
; and � ¼ shell

core

� 

ð86Þ

Please observe that below we will work with only one height

per cross section to keep the explanation of the fitting

procedure concise and Fig. 14(c) readable; the inclusion of all

three heights into a computer code featuring Equation 86 is

straightforward. As a starting point for all cross sections, we

set k�1 ¼ k�2 ¼ k�3 = 0 (presenting the nominal regular shape of

the NWire cross section) and run an iteration scheme with

Equation 86 in compound with Equation 87, using i� as a run

index to arrive at an educated guess from where to start the

fitting procedure.

Our search criterion features a length of an interface which

depends on three run indices, dIF; non5½i
core; kcore

� ; kcore
� �, plus its

adjacent interface lengths dIF;5½i
core; kcore

� � and dIF;5½i
core; kcore

� �.

We start with choosing �core = 1 and �core = 2 to obtain the

following convergencies: dIF; non5½i
core; kcore

1 ; kcore
2 � ! d,
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Table 5
Parameters for hexagonal core-shell NWire cross section as per Fig. 14(c).
The slab thickness of NWire cross sections is dslab = auc

ffiffiffi
3
p

. Data for the
In0.2Ga0.8As cross section of the NWire core are listed in column 3 where
necessary to explain calculated parameters. Measured lengths are shown
with tolerances. See text for more details.

Material GaAs In0.2Ga0.8As In0.2Ga0.8As

auc (nm) 0.56533 0.57343  

Measured
parameter (nm) +

NWire core
(a–f, h)

NWire core
(a–f, h)

NWire shell
(A–F, H)

Full
NWire

a, A 15.2 
 0.4  68.0 
 0.8  

b, B 15.2 
 0.4  69.0 
 0.8  

c, C 14.4 
 0.4  66.2 
 0.8  

d, D 15.9 
 0.4  69.4 
 0.8  

e, E 14.9 
 0.4  68.2 
 0.8  

f, F 15.5 
 0.4  69.0 
 0.8  

h, H 26.2 
 0.4  117.3 
 0.8  

Calculated parameter

i 66 65 290
k1 �1 1 �1
k2 �2 2 6
k3 1 0 �1

NWire/dslab 26794 25344 485608 512402
Nbnd/dslab 53187 50298 969053 1022240
NIF/dslab 802 3502/4304* 4304/5106*
A (nm2) 608.8 10861 11470†
Aintern

IF (nm2) 18.5

Nbnd/NWire 1.985 1.9955 1.9950
NIF/NWire (�10�3) 29.93 7.212/8.863* 8.863/9.965*
NIF/Nbnd (�10�3) 15.08 3.614/4.441* 4.210/4.995*
Acore/Afull 0.0531†

Notes: (*) bonds of the internal interface can contribute once/twice to a specific property
considered, hence are counted once/twice; see explanation in the text. (†) Excludes area
of core-shell interface Aintern

IF ; see explanation in the text.



dIF;5½i
core; kcore

1 � ! e and dIF;5½i
core; kcore

1 � ! c, with c, d and e

being the measured interface lengths listed in Table 5:

ðIÞ : i� � k�1 � k�2 ¼

ffiffiffi
6
p

a�uc

d

ðIIÞ : i� þ k�1 ¼

ffiffiffi
6
p

a�uc

e

ðIIIÞ : i� þ k�2 ¼

ffiffiffi
6
p

a�uc

c

ðI þ II þ IIIÞ : 3i� ¼

ffiffiffi
6
p

a�uc

ðdþ eþ cÞ; with � ¼ core: ð87Þ

When treating the cross section of the NWire shell, we have to

use the interface lengths presented by capital letters in

Fig. 14(c) – c, d and e change to C, D and E – and set � = shell

in Equation 87. The last line of Equation system 87 adds up

Equations (I) to (III), thereby eliminating all k�� , yielding the

search condition for a regular hexagonal cross section to make

an educated guess at a starting value for icore. The unit-cell

parameter we use is the value for GaAs, acore
uc = 0.56533 nm

(Böer, 1990), which comprises the NWire core; see Fig. 14. If i�

is located nearly halfway between two integer values, we may

run the calculations below with both adjacent i� values to see

which one has the lower CC as per Equation 86. Once we got

icore, we can run each single Equation 87 (I) to (III) for

obtaining kcore
1 and kcore

2 . We then move on to the next kcore
� and

kcore
� , namely, kcore

2 and kcore
3 , and to the next three measured

interface lengths e, f and a. The third index rotation then uses

kcore
3 and kcore

1 with the interface lengths a, b and c. As a result,

we obtain the final results for the NWire core, Ncore
Wireða

core
uc Þ,

Ncore
bnd ða

core
uc Þ, Ncore

IF ða
core
uc Þ and Acoreðacore

uc Þ. When iterating for the

NWire shell cross section, we proceed the same way, using the

adequate variables as mentioned above.

As in Section 5.1, we use the tolerance in length measure-

ment (Fig. 14 and Table 5) to provide narrow ranges for all k�

and h� around their calculated value, aiming for a minimum

CC while keeping i� constant. For the NWire core, the result of

this fitting procedure with CC ! min are the run indices

icore; kcore
1 ; kcore

2 and kcore
3 . Replacing a to e and h1 to h3 in the

above process with A to E and H1 to H3, and using ashell
uc =

0.57343 nm (Adachi, 2004) as the unit-cell parameter of the

shell material featuring In0.2Ga0.8As, we get ishell; kshell
1 ; kshell

2

and kshell
3 for the NWire shell. All these indices are shown in

Table 5, together with the measured interface length and

height of the respective cross section [Fig. 14(c)].

The run indices of the NWire core cross section can be used

directly to calculate all of its parameters discussed in

Section 4.3. Deriving the parameters of the shell and even-

tually of the entire NWire system requires some additional

calculations. After calculating icore; kcore
1 ; kcore

2 and kcore
3 with

acore
uc ¼ aucðGaAsÞ, we apply an increment to icore, viz.

icore ! icore þ 1, and use the same kcore
1 ; kcore

2 ; kcore
3 for a

calculation of Acoreðicore þ 1; kcore
1 ; kcore

2 ; kcore
3 Þ with acore

uc . We

then calculate the cross sections of the core with icore and

icore þ 1 and the same kcore
1 ; kcore

2 ; kcore
3 as obtained with acore

uc .

The transition icore ! icore þ 1 adds one atomic ML to the

cross section, accounting for the interface region between the

core and shell material as seen from the NWire core using

acore
uc :

Aintern
IF ðacore

uc Þ ¼ Acore
ðicore
þ 1; kcore

1 ; kcore
2 ; kcore

3 ; acore
uc Þ

� Acore
ðicore; kcore

1 ; kcore
2 ; kcore

3 ; acore
uc Þ:

ð88Þ

We then iterate again as per the above description for the

NWire core, but now use ashell
uc ¼ aucðIn0:2Ga0:8AsÞ, see the

third row in Table 5, obtaining ishell; kshell
1 ; kshell

2 and kshell
3 .

With this result, we again apply the increment

ishell ! ishell þ 1 and use the same kshell
1 ; kshell

2 ; kshell
3 for a

calculation of Aðishell þ 1; kshell
1 ; kshell

2 ; kshell
3 Þ with

ashell
uc ¼ aucðIn0:2Ga0:8AsÞ. This transition adds one atomic ML

to the core cross section as well, using the unit-cell parameter

of the shell material, accounting for the interface region

between the core and shell material, as seen from the NWire

shell using ashell
uc :

Aintern
IF ðashell

uc Þ ¼Acore ishell
þ 1; kshell

1 ; kshell
2 ; kshell

3 ; ashell
uc

	 

� Acore ishell; kshell

1 ; kshell
2 ; kshell

3 ; ashell
uc

	 

:
ð89Þ

With both interface areas, we can now calculate their average

value as the most accurate interface area we can obtain:

Aintern
IF ¼

Aintern
IF

	
acore

uc

�
þ Aintern

IF

�
ashell

uc

�
2

: ð90Þ

The reason we use two descriptions of the interface area is

given by the transition of the unit-cell parameters when going

from the core to the shell material. This approach can be

further exploited for an ML-wise increment in cross section

with aucð�; i�Þ for each increment in i�, which adds further

precision if a radial distribution of the unit-cell parameter is

known, such as in Fig. 3(a) in Balaghi et al. (2019), and is

further discussed in Section 5.2.1. The indices i�; k�1 ; k�2 ; k�3 and

i� þ 1; k�1 ; k�2 ; k�3 of the NWire core cross section without and

with one ML as interface region for each, acore
uc and ashell

uc , have

further use for other interim data we use to arrive at our final

results. Before we can derive Nshell
Wire, Nshell

bnd , Nshell
IF and Ashell of

the NWire shell, and Nfull
Wire, Nfull

bnd, Nfull
IF and Afull of the complete

NWire, we need to carry out another iteration scheme using

� ¼ A . . . E and � ¼ H (Equation 86) for the total NWire

cross section with ashell
uc ¼ aucðIn0:2Ga0:8AsÞ. The resulting

Ntot
Wire ashell

uc

	 

, Ntot

bnd ashell
uc

	 

and Ntot

IF ashell
uc

	 

with their respective

running indices are then used in straightforward differential

calculations.

The calculation of the number of atoms within the NWire

shell is obtained from

Nshell
Wire ¼ Ntot

Wire ashell
uc

	 

� Ncore

Wire ashell
uc

	 

; ð91Þ

thereby eliminating all atoms from the total NWire area in the

core region. The calculation of Nshell
bnd requires Ncore

bnd ashell
uc

	 

,

where we use ishell; kshell
1 ; kshell

2 and kshell
3 obtained in Equation

89. In addition, we have to substract Ncore
IF , as such bonds

belong to the interface region between the core and shell:
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Nshell
bnd ¼ Ntot

bnd ashell
uc

	 

� Ncore

bnd ashell
uc

	 

� Ncore

IF : ð92Þ

From a practical viewpoint, the calculation of Nshell
IF delivers

two values. For spectroscopic characterization techniques

where no carrier recombination is involved, such as Raman,

Fourier-transform infrared (FT–IR) or electron paramagnetic

resonance, the core-shell interface bonds Ncore
IF are considered

as dipoles whereby they get counted only once with the core

for the complete NWire, resulting in Nshell
IF ¼ Ntot

IF ashell
uc

	 

. For

spectroscopic characterization techniques where carrier

recombination is involved, such as photoluminescence or

carrier lifetime spectroscopy, the interface bonds at the core-

shell interface can acquire and trap free carriers from the core,

as well as from the shell. Hence, these bonds have an impact

on the core and shell, whereby we count Ncore
IF for Nshell

IF in

addition to including them for the core:

Nshell
IF ¼ Ncore

IF þ Ntot
IF : ð93Þ

Since the number of interface bonds does not directly depend

on acore
uc versus ashell

uc for epitaxial NWire growth, we can drop

their dependence on the unit-cell parameter in Equation 93.

The area of the NWire shell requires the area of the NWire

core and the core-shell interface region to be subtracted from

the total NWire area, viz.

Ashell
¼ Atot ashell

uc

	 

� Acore

ðacore
uc Þ � Aintern

IF : ð94Þ

The final results of the full NWire cross section – core and shell

with their respective auc – follow from the addition of results

from core and shell, namely,

Nfull
Wire ¼ Ncore

Wire þ Nshell
Wire ð95Þ

Nfull
bnd ¼ Ncore

bnd þ Nshell
bnd

Nfull
IF ¼ Ncore

IF þ Nshell
IF

Afull
¼ Acore

þ Ashell:

The area of the internal interface Aintern
IF (Equation 90) is

another final result not included in Afull, since NWire inter-

faces behave in a significantly different manner from the core

and shell regions in terms of electronic and optical properties,

such as carrier transport, recombination and interface dipoles.

The calculation of the dimensionless crystallographic para-

meters Nbnd=NWire, NIF=NWire and NIF=Nbnd, which allow for

inter-NWire comparison, are straightforward. Table 5 shows

all the measured lengths of the core-shell NWire depicted in

Fig. 14, together with selected interim results for the cross

section of the NWire core using ashell
uc listed in column 3, and all

final results.

5.2.1. Flexibility of cross section calculations for core-shell
NWires. We have briefly mentioned above that – due to i!

i+1 adding a defined ML (usually atomic ML) to the NWire

cross section – we can introduce a unit-cell parameter with a

radial dependence aucðiÞ to the entire core-shell NWire. If such

a dependence is known, e.g. for the NWire shell (Balaghi et al.,

2019), the precision of the NWire description can be further

increased. We note here that non-radial deviations of aucðiÞ,

such as local inhomogeneities, cannot be accounted for due to

the radial layer dependence of all number series with their

main run index i.

Since our analytic treatment of zb-NWire cross sections

works on the basis of smallest area segments coming along

with every atom and bond considered, the arrangement of the

core and shell to each other is flexible over a wide range. To

illustrate the implications, the NWire core does not have to be

located in the centre of the NWire shell, nor does any

restriction exist for the core and shell NWire cross sections to

be morphed independently from each other. This finding can

be verified in our above example (Fig. 14 and Table 5). It

becomes apparent from Fig. 14 that the NWire core is not

aligned with the NWire shell to share the same symmetry

centre. We can go further down this path and adapt the outer

NWire shape to a different interface orientation, as would be

the case for a core-shell NWire growing along the [111] axis,

with internal {110} and external f11�22g interfaces (Fig. 15). Such

an NWire cross section requires a partition into three sections,

of which two are treated in accord with the core and shell

sections in the above numerical example (Fig. 14). The third

section describes the outermost shape of the NWire shell,

where the change in interface orientation occurs. When

assembling the respective variable NWire, Nbnd, NIF and A for

the entire NWire, we calculate the full shell (index ‘tot’ in

above example) of the entire NWire with outer f11�22g inter-
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Figure 15
Cross section of the core-shell NWire growing along a [111] axis. The
cross section of the NWire core has {110} interfaces, is irregular (icore = 4,
k1

core = �2, k2
core = 0 and k3

core = �1) and located off-centre with respect
to the symmetry centre of the NWire shell. The NWire shell has {112}
interfaces and is regular (ishell = 12, k1

shell = k2
shell = k3

shell = 0). Arbitrary
cross section shapes as per individual morphing can be combined if the
core and shell share the same symmetry (crystal orientation) along the
growth axis. The circumference of the NWire core is highlighted by a
magenta line and the corresponding regular NWire core is shown by a
cyan line.



faces and then simply substract the core cross section with

ashell
uc , yielding the above variables for the shell with different

faceting at the inner and outer interfaces. Such core-shell

NWire descriptions can be chained to describe multi-core-

shell cross sections by repeating the calculations shown in this

section for every core-shell pair.

6. Conclusions

Building on our previous work (König & Smith, 2021), we

introduced extensions into analytical number series for zb-

and diamond-structure NWires for adapting their cross

sections to arbitrary shape (morphing), covering the following

NWire cross sections: square, h001i growth axis and interfaces;

rectangular, h110i growth axis and {110} plus {001} interfaces;

hexagonal, h110i growth axis and {001} plus {111} interfaces;

hexagonal, h11�22i growth axis and {111} plus f1�331g interfaces;

hexagonal, h111i growth axis and {110} interfaces; hexagonal,

h111i growth axis and f11�22g interfaces. Our extensions provide

the exact crystallographic description of zb-NWires with

arbitrary cross sections as encountered in experiment, and

thus are only limited in their precision by measurement

tolerances of the imaging technique used. As previously, the

results we obtain by our analytics are the number of NWire

atoms NWire, the number of bonds between such atoms Nbnd,

the number of NWire interface bonds NIF and cross section

areas A. We demonstrated that our analytic description is

applicable with the same precision to core-shell NWires with

arbitrary shape and interface orientation of the core and shell,

under the constraint that they share the same orientation of

their growth axis, and have an interfaces roughness below the

tolerance limit of the measured interface lengths. The above

results are available per core and shell section of the NWire,

and internal (core-shell) interface areas are given as well. If a

radial distribution of the unit-cell parameter can be provided,

such data can be included for all mentioned NWire cross

sections, adding further flexibility and precision to their

description. The description of core-shell NWires can easily be

applied to multiple core-shell (layered) NWires if these

comply with epitaxial growth and smooth interfaces.

The analytic description of zb- and diamond-structure

NWire cross sections with arbitrarily convex shape and

multiple radial layers (multiple core-shell structures) can

provide major advancements in experimental data inter-

pretation and understanding of III–V, II–VI and group-IV-

based NWires. The number series allow for a deconvolution of

experimental data into environment-exerted, interface-related

and NWire-internal phenomena. Our method offers an

essential tool to predict NWire cross sections and to tune

process conditions for tailoring NWires towards desired shape

and interface properties, see König & Smith (2019), König &

Smith (2021) and König (2016) for details.

APPENDIX A
Geometric details for NWire cross sections with [110]
growth vector

We start the analysis with the zb-UC projection into the {110}

plane which defines the NWire cross sections; see Fig. 16. We

then look at unit lengths to calculate the interface lengths,

width and height of the cross section. For {001} facets, this unit

length is sIF;001 ¼ auc

ffiffiffi
2
p
=2 ¼ auc=

ffiffiffi
2
p

. For the {111} facets, its

unit length sIF;111 is straightforward to obtain from the h111i

diagonal through the {110} plane of the UC, which is auc

ffiffiffi
6
p
=2.

Amounting to half of the length of this diagonal, we get

sIF;111 ¼ auc

ffiffiffi
6
p
=4. Each facet has length offsets which are

required to arrive at the correct interface length, width and

height of the cross section. For sIF;001, two identical offsets

exist, each being soffset
IF;001 ¼ 1=4 sIF;001. The total offset is thus

soffset;tot
IF;001 ¼ auc 2

ffiffiffi
2
p
=8 ¼ auc=

ffiffiffi
8
p

; see Equations 52 and 53.

For the {111} facets, two offset lengths soffset�I
IF;111 and soffset�II

IF;111

exist.

For deriving soffset�I
IF;111 , we use the h111i diagonal through the

{110} plane of the UC. When going through the {110} plane

along the h001i vector, we see that we have four equidistant

atomic MLs. These divide the h111i diagonal of the UC into

four equal parts which each fit soffset�I
IF;111 . We therefore get

soffset�I
IF;111 ¼ auc 1=4

ffiffiffi
6
p
=2 ¼ auc

ffiffiffi
6
p
=8. For deriving soffset�II

IF;111 and

the width offset woffset, we use soffset
IF;001 and the inter-ML distance

in the h001i direction, which is auc=4. We first note that we can

use the intercept theorem to obtain

woffset=ðauc=8Þ ¼ soffset
IF;001=ðauc=4Þ, hence woffset ¼ soffset

IF;001=2, and
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Figure 16
Geometric relations for the zb-structure along the [110] growth vector.
The UC in the {110} plane is shown by a dotted dark-green line. The unit
area A (grey–green) for the {110} plane is defined by the area of a six-
membered ring. The distance increments required for calculating the
lengths of the {100} and {110} interfaces are shown by sIF,111 and sIF,100,
respectively (dark yellow), together with their respective offsets soffset�I

IF;111 ,
soffset�II

IF;111 and soffset
IF;001. The offset in NWire width woffset is shown in dark

yellow as well. All offset areas are shown in orange, namely, one of the
four scalene triangles Ascale�4, and one of the two isosceles triangles
Aisosc�4. All other length parameters are shown in blue. A scheme of the
relevant lattice vectors within the {110} plane is shown on the upper left.



thus woffset ¼ auc

ffiffiffi
2
p
=16. Via the opposite corner, the total

width offset is then woffset;tot ¼ auc

ffiffiffi
2
p
=8, adding 1/8 to the�4/8

offset in Equation 563. With woffset obtained, we can calulate

soffset�II
IF;111 using Pythagoras’ theorem, viz.

soffset�II
IF;111 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwoffsetÞ

2
þ ðauc=8Þ2

q
¼ auc

ffiffiffi
6
p
=16:

The total offset for the {111} facet lengths is thus

soffset;tot
IF;111 ¼ aucð

ffiffiffi
6
p
=8þ

ffiffiffi
6
p
=16Þ ¼ auc 3

ffiffiffi
6
p
=16. Taking sIF;111

into account, we get soffset;tot
IF;111 ¼ 3=4 � sIF;111. Noting thatffiffiffi

6
p
=4 ¼

ffiffiffiffiffiffiffi
3=8
p

, we see the offset 3=4 � sIF;111 implemented in

Equations 54 and 55 by the substraction of 1/4 from the run

index i. The offset in h becomes apparent when looking at the

number of atomic MLs increasing in the h001i direction with i

as 3, 7, 11, . . . for i = 1, 2, 3, etc. The �1 ML offset to

h½i� ¼ auc � i thus accounts for the offset of �1/4 as per

Equation 57.

Next, we work out the areas which form the total cross

section. The hexagonal rings in the {110} plane are the basic

area unit of this cross section, amounting to A = ðaucÞ
2
ffiffiffi
2
p
=4 =

ðaucÞ
2=

ffiffiffi
8
p

, which is equivalent to 1/4 of the {110} plane of the

UC. Breaking down A further, we arrive at the area for the

open isosceles triangles at the {001} facets which each have an

area of 1=4 A ¼ ðaucÞ
2
ffiffiffi
2
p
=16. These two areas are required

to calculate the cross section area as a function of run indices.

There are six offset areas presented by one triangle at each

corner of the hexagon which can be calculated by using the

offset lengths derived in the previous paragraph. Two isosceles

triangles exist at the two corners between {111} facets. Their

area is straightforward to derive from Fig. 16 as Aisosc�� =

ðaucÞ
2
ðwoffset1=8Þ = ðaucÞ

2
ffiffiffi
2
p
=128. Each of the four corners

between the {001} and {111} facets has a scalene triangle as an

offset area. We can use translational, reflectory and rotational

geometry operations, as illustrated in Fig. 16, to show that

Ascale�� = ðaucÞ
2
ffiffiffi
2
p
=64. Adding up all offset areas, we get

Aoffset;tot
¼ 2Aisosc�� þ 4Ascale�� ¼ ðaucÞ

2=64 � ð
ffiffiffi
2
p
þ 4

ffiffiffi
2
p
Þ:

With the prefactor of the unit area A ¼ ðaucÞ
2 =

ffiffiffi
8
p

used in

Equation 58, we finally get

Aoffset;tot ¼
ffiffiffi
8
p
=64 � ð

ffiffiffi
2
p
þ 4

ffiffiffi
2
p
Þ ¼ 1=64 � ð4þ 16Þ ¼ 5=16:

APPENDIX B
Geometric details for NWire cross sections with [11�22]
growth vector

In contrast to the rather non-trivial h11�22i growth vector class,

the geometrical details of the f11�22g plane class cross section

are rather simple, mostly owing to the f111g top and bottom

facets. We start with the diagonal through the f111g plane of

the UC, as shown in Fig. 17, amounting to auc

ffiffiffi
3
p

. This length is

composed of three bonds which lie in the f11�22g plane, with

each being auc

ffiffiffi
3
p
=4 long, plus three bonds sticking out of the

plane at an angle of 90� � arcsinð1=
ffiffiffi
3
p
Þ = 54.73� with a

projected length in the f11�22g plane of auc

ffiffiffi
3
p
=12 each. From

these two lengths, we get the bigger length of the unit area Aut
as auc

ffiffiffi
3
p
=3 = auc=

ffiffiffi
3
p

, or alternatively via auc

ffiffiffi
3
p
ð1=4þ 1=12Þ =

auc

ffiffiffi
3
p
=3. This length presents the increment unit for the

height of the cross section; see Equation 68. The unit length of

the f111g facet along the h110i vectors is given by

sIF;111 ¼ auc=
ffiffiffi
2
p

(see Equations 63 and 64). With these two

lengths, we can calculate the unit area required to obtain the

total area of the cross section as Aut = ðaucÞ
21=

ffiffiffi
3
p
� 1=

ffiffiffi
8
p

=

ðaucÞ
2=

ffiffiffiffiffi
24
p

(see Equation 69), whereby we used sIF;111=2 =
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Figure 17
Geometric relations for the zb-structure along the [112] growth vector.
The rectangle enclosed by the dotted dark-green line presents the unit
area Aut of the {112} plane. The distance increments required for
calculating the lengths of the {100} and {110} interfaces are shown by
sIF,131 and sIF,111, respectively. A scheme of relevant lattice vectors within
the {112} plane is shown on the upper right.

Figure 18
Geometric relations for the zb-structure along the [111] growth vector.
The cross section through the UC in the {111} plane is shown by the blue
triangle. The unit area A� for the {111} plane is shown in red. The
distance increments required for calculating the lengths of the {100} and
{110} interfaces are shown by sIF,110 and sIF,112, respectively (dark-yellow
lines). Dotted green lines mimic the {111} and {112} interfaces. A scheme
of the relevant lattice vectors within the {111} plane is shown at the
bottom.

3 The offset�4/8 originates from 1/2, 3/2, 5/2, . . . double hexagonal rings, each
having a width of 2sIF;001 ¼ auc

ffiffiffi
2
p

, for i = 1, 2, 3, etc., as can be seen from the
prefactor of Equation 56.



auc=
ffiffiffi
8
p

. The length sIF;111=2 ¼ auc=
ffiffiffi
8
p

is also used as the unit

length for the width of the cross section; see Equation 67. The

diagonal of this rectangular unit area presents the unit length

of the f1�331g facets as sIF;131 ¼ auc

ffiffiffiffiffiffiffiffiffiffiffiffi
11=24
p

; see Equations 65

and 66.

APPENDIX C
Geometric details for NWire cross sections with [111]
growth vector

We start our analysis by deriving the unit area, followed by the

derivation of unit lengths for the width, height and facets per

cross section type.

The unit area used for calculating the total area of NWire

cross sections with [111] growth vector A� is given by the

equilateral triangle shown in red in Fig. 18. Its area is

straightforward to obtain by projecting the {111} plane cut

through the UC into the scheme as shown by the blue large

triangle in Fig. 18. This equilateral triangle has a side length of

auc

ffiffiffi
2
p

, which is twice as big as the unit length for the f11�22g
facets; sIF;112 ¼ auc=

ffiffiffi
2
p

. The {111} plane cut through the UC

has a total area of A ¼ ðaucÞ
2 2

ffiffiffi
3
p
=4 ¼ ðaucÞ

2
ffiffiffi
3
p
=2 and

consists of six equilateral triangles plus six isosceles triangles.

All of these triangles have the same area, as is apparent from

the thin dotted blue lines within the {111} plane of the UC in

Fig. 18 with the use of some trivial mirror-symmetry opera-

tions. We thus get the unit area of the cross section as

A� ¼ ðaucÞ
2
ffiffiffi
3
p
=2 � 1=12 ¼ ðaucÞ

2
ffiffiffi
3
p
=24, see the prefactor in

Equations 76 and 83. The side length s� of the unit area A�

follows straight from the fact that this triangle is equilateral as

well, resulting in s� ¼ auc=
ffiffiffi
6
p

. Hexagonal symmetry shows

that s� is also the unit length of the {110} facets;

sIF;110 ¼ auc=
ffiffiffi
6
p

, see the prefactor in Equations 73 and 74, and

1/3 of the increment in height for cross sections with f11�22g
facets, cf. the prefactor in Equation 82. Looking at A� from

the perspective of the f110g facets, we get the increment in

height for cross sections with f110g facets as h� =

sIF;112=2 ¼ auc=
ffiffiffi
8
p

; see the prefactor in Equation 75. This

Equation makes it clear that the transition sIF;112 ! sIF;112=2

for h� is required for cross section morphing to accommodate

height changes with k�.
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von-Kàrmàn Fellowship (award to Dirk König).

References

Adachi, S. (2004). Handbook on Physical Properties of Semiconduc-
tors, Vol 2: III–V, Compound Semiconductors. Dordrecht: Kluwer
Academic Publishers.

Bahrami, D., AlHassan, A., Davtyan, A., Zhe, R., Anjum, T.,
Herranz, J., Geelhaar, L., Novikov, D. V., Timm, R. & Pietsch, U.
(2021). Phys. Status Solidi B, 258, 2100056.

Balaghi, L., Bussone, G., Grifone, R., Hübner, R., Grenzer, J.,
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