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Corrections to the article by König & Smith [Acta Cryst. (2022), B78, 665–677]

are given.

In the article of König & Smith (2022), Miller indices of interface facet orientations were

incorrect. The cross section with [0001] growth vector denoted to have six {1000} inter-

faces actually has six {112}0 interfaces, and the cross section with [1100] growth vector

denoted to have two {0001} plus four {0021} interfaces actually has two 000{1} plus four

00{11} interfaces. In addition, we marked the permutative parts of the Miller indices in

braces, leaving the unchanged indices outside these brackets for better readability of

wurtzite crystal orientation as per the corrected notation above. As a result, indices at

variables, as well as figure captions and vector schemes in the graphs of the Appendix

sections (Figs. 12 and 13), were corrected. Since such corrections occurred in numerous

locations, we decided to amend the entire manuscript (see supporting information) so

that readers do not have to flip back and forth between a correction table and the original

work. The actual maths, all number series and resulting quotients Nbnd/NWire, NIF/NWire

and NIF/Nbnd were correct and thus are fully valid in the original work.

References

König, D. & Smith, S. C. (2022). Acta Cryst. B78, 665–677.

https://doi.org/10.1107/S2052520625000873
https://journals.iucr.org/b
https://scripts.iucr.org/cgi-bin/full_search?words=nanowires&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=wurtzite&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=cross%20section&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=analytic%20description&Action=Search
mailto:solidstatedirk@gmail.com
http://doi.org/10.1107/S2052520625000873
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=me6317&bbid=BB1
http://crossmark.crossref.org/dialog/?doi=10.1107/S2052520625000873&domain=pdf&date_stamp=2022-07-15


research papers

Acta Cryst. (2022). B78, 665–677 https://doi.org/10.1107/S2052520622004954 665

Received 13 December 2021

Accepted 9 May 2022

Edited by J. Lipkowski, Polish Academy of

Sciences, Poland

Keywords: nanowires; wurtzite; cross section;

analytic description.

Analytical description of nanowires III: regular
cross sections for wurtzite structures

Dirk Königa,b,c* and Sean C. Smitha,d

aIntegrated Materials Design Lab (IMDL), Research School of Physics and Engineering, The Australian National University,

ACT 2601, Australia, bInstitute of Semiconductor Electronics (IHT), RWTH Aachen University, 52074 Aachen, Germany,
cIntegrated Materials Design Centre (IMDC), University of New South Wales, NSW 2052, Australia, and dDepartment of

Applied Mathematics, Research School of Physics and Engineering, The Australian National University, ACT 2601,

Australia. *Correspondence e-mail: solidstatedirk@gmail.com

Setting out from König & Smith [Acta Cryst. (2019), B75, 788–802; Acta Cryst.

(2021), B77, 861], we present an analytic description of nominal wurtzite-

structure nanowire (NWire) cross sections, focusing on the underlying

geometric–crystallographic description and on the associated number theory.

For NWires with diameter dWire[i], we predict the number of NWire atoms

NWire[i], the bonds between these Nbnd[i] and NWire interface bonds NIF[i] for a

slab of unit-cell length, along with basic geometric variables, such as the specific

length of interface facets, as well as widths, heights and total area of the cross

section. These areas, the ratios of internal bonds per NWire atom, of internal-to-

interface bonds and of interface bonds per NWire atom present fundamental

tools to interpret any spectroscopic data which depend on the diameter and

cross section shape of NWires. Our work paves the way for a fourth publication

which – in analogy to König & Smith [Acta Cryst. (2022). B78, 643–664] – will

provide adaptive number series to allow for arbitrary morphing of nominal

w-structure NWire cross sections treated herein.

1. Introduction

Recently, we described the cross sections of zincblende (zb)

and diamond-structure NWires of regular shape (König &

Smith, 2019, 2021), extending such analytic crystallographic

tools to convex cross sections of arbitrary shape, including

irregular multi-core-shell zb-NWires (König & Smith, 2022).

In this work, we introduce a description of regular wurtzite

(w-) structure NWire cross sections by an analytic number

series in analogy to the above-mentioned publications. While

our previous works on regular zb- and diamond-structure

NWire cross sections contained a considerable amount of

experimental data from the literature to demonstrate the

application of such analytic number series, we focus here more

on the underlying crystallographic geometry and number

theory. The reason for not including experimental data from

the literature in our present work is twofold: first, and in

contrast to zb-/diamond-structure NWires, there is little

published experimental work (if any) which describes fully

regular w-NWire cross sections in enough detail (i.e. with

sufficient spatial resolution) to match them with analytic

number series. Several literature sources exist for irregular-

shaped w-NWire cross sections, consisting of CdS, CdSe (Duan

& Lieber, 2000), GaN (Kuykendall et al., 2004), GaAs (Zardo

et al., 2009; Harmand et al., 2018), core-shell GaAs-SiGe (de

Matteis et al., 2020), InAs (Caroff et al., 2009), InP (Gao et al.,

2014) and Si (Wang et al., 2021). Second, we received several

requests to explain the underlying crystallographic geometry

and number theory used to arrive at the equations we pub-
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lished previously. Therefore, we elaborate on these two topics

to explain our method. Such explanations can also be applied

to the zb- and diamond-structure NWire cross sections with

[111] and ½11�22� growth vectors we published recently, with

some minor modifications in offset areas and lengths.

We describe three w-NWire cross sections which were

shown to exist in experiment as per the references above,

namely, w-NWires growing along the [0001] vector with f1�1100g

interfaces, w-NWires growing along the [0001] vector with

{1000} interfaces and w-NWires growing along the ½1�1100�

vector with {0001} and {0021} interfaces. Examples of these

NWire cross sections are shown in Fig. 1.

We proceed as follows: Section 2 gives a brief introduction

to the wurtzite structure, then providing crystallographic data

and the variables of interest with their indices. The number

series for generating such variables are presented in Section 3.

For each cross section, we introduce an even and an odd

version in analogy to our work on regular cross sections for zb-

NWires (König & Smith, 2019, 2021), accounting for different

symmetry centres of the NWire to match corresponding cross

section images with atomic resolution. We discuss the appli-

cation of these variables in Section 4 and sum up our findings

in Section 5. The Appendices consist of three parts, providing

additional input on geometric details for cross sections of

w-NWires growing along the [0001] vector (Appendix A), for

the cross section of w-NWires growing along the ½1�1100� vector

(Appendix B) and for the derivation of all even number series

of the NWire cross section with a [0001] growth vector and

f1�1100g interfaces as an example (Appendix C).

2. General remarks on analytical number series,
structural boundary conditions and nomenclature

Apart from several polar II–VI and III–V semiconductors

possessing w-structure symmetry, Si-NWires were observed to

expose w-structure symmetry under local stress in de Matteis

et al. (2020) or when grown by specific bimetallic catalysts

(Wang et al., 2021). Both material groups share the same

crystal symmetry (space group P63mc) apart from their

primitive basis which is A–B (Ga–N) or A–A (Si–Si)

(Hammond, 2001). The w-unit cell (w-UC) is shown in Fig. 2.

Defect-free crystalline NWires have a one-dimensional

periodicity along their growth axis, enabling their cross section

to be described by a disk with a thickness dslab ¼ 1 UC in the

respective growth direction. For the two cross sections with a

[0001] growth vector, this thickness is given by jcj ¼ cuc (see

Fig. 2). For the remaining cross section with a ½1�1100� growth

vector, we obtain ja�j
ffiffiffi
3
p
¼ auc

ffiffiffi
3
p
¼ dslab; see side views of the

cross sections in Figs. 7 and 8. The number of atoms per atom

column and the number of bonds within and between these

naturally depend on dslab and the growth vector. We listed

both parameters along with dslab in Table 1, with a diagrammed

version for the bonds to allow for an easy interpretation of the
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Figure 1
Examples of NWire cross sections with w-structure treated in our work, shown for a binary compound such as GaN: (a) [0001] growth vector and six
f1�1100g interfaces, (b) [0001] growth vector and six {1000} interfaces, and (c) ½1�1100� growth vector, {0001} interfaces at the top and bottom, plus four {0021}
side interfaces. These cross sections have experimental counterparts and are thus relevant to structural analysis.

Table 2
The parameter list for each NWire cross section; all parameters are
calculated per NWire slab.

Parameter Description

NWire No. of atoms forming NWire
Nbnd No. of bonds within NWire
NIF No. of interface (IF) bonds of NWire
Nabc�IF No. of bonds per IF type fabcg
dabc�IF Length of IF with orientation fabcg
w Maximum width of NWire cross section
h Maximum height of NWire cross section
A Cross section area

Table 1
Slab thickness dslab of NWire cross sections as a function of growth-axis
orientation given in unit-cell (UC) lengths per growth orientation to
achieve periodicity; numbers of atoms and of bonds per column as
described per feature seen in cross section top view are given to enable
the counting of atoms and NWire-internal bonds.

Growth
axis dslab

Atoms per column
in top view Bonds in top view

0001 1 cuc 2 1 per column, 2 per —, = and \

1�1100
ffiffiffi
3
p

auc 1 2 per =n, 1 per — and –†

† Bond symbols must be turned by 90� to align with the graphs in Figs. 6, 7 and 13
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respective cross sections for geometrical analysis and number

theory in Section 3.

Next, we introduce the variables we describe analytically

per NWire cross section. The first group of variables describes

the atoms or bonds (internal, interfacial) constituting the

NWire slab. The second group contains all variables which

provide spatial information, such as width, height, interface

lengths and cross section area (Table 2).

Finally, we need a clear nomenclature for the respective

growth vector and interface orientations to distinguish the

above variables. Such indices are given in Table 3.

Although all NWire cross sections in our work have a

hexagonal shape, their direct comparison per NWire size is

most appropriately done by calculating their diameter,

assuming a circular shape of the cross section via

d circ
Wire½i� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

�
� A½i�

r
: ð1Þ

Values of d circ
Wire will become relevant in Section 4.

3. Analytical number series of nanowire cross sections

As we demonstrated in our previous work concerning zb-

NWire cross sections (König & Smith, 2019, 2021) with

experimental data (Yi et al., 2011), it is a great advantage to

have two different descriptions per cross section, each

featuring a distinct symmetry centre. To this end, we introduce

an even and an odd version for each cross section in analogy to

our work mentioned above, accounting for different symmetry

centres of the NWire to match corresponding cross section

images with atomic resolution. Both the even and odd versions

for each cross section are covered in the same section below.

For brevity, we keep the description to a minimum and only

add information where essential.

3.1. NWires growing along the [0001] direction with a
hexagonal cross section and six f1�1100g interfaces

Additional information on the geometric details of the

wurtzite structure for calculating offsets in characteristic

lengths and areas of this cross section is given in Appendix A.
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Table 3
List of NWire shape indices [cross section, growth direction and side
interfaces (where necessary)] added to all parameters as a superscript.

Superscript Growth axis Cross section shape Side interfaces†

0001� j1000 0001 Hexagon 1000
0001� j1�1100 0001 Hexagon 1�1100
1�1100� 1�1100 Hexagon

† Only when required to distinguish cross sections.

Figure 2
Periodic unit cell (UC) of a wurtzite solid with lattice vectors a1, a2 and a3,
viz. auc = ja�j, and c, viz. cuc ¼ jcj, space group P63mc (wurtzite) covered
in this work, such as gallium nitride (w-GaN). The orange (Ga) and grey–
blue (N) atoms framed in dark green show the primitive UC. The full
w-UC is formed by including atoms shaded in light grey (Ga) and dark
grey (N), and is outlined in bright green. All atoms at the lateral periodic
boundaries, i.e. for all a� 6¼ 0 and c ¼ constant, were shown to facilitate
UC visualization. The NGa3 (left) and GaN3 (right) tetrahedra
interlinked within a couple of corrugated atomic planes are shown by
magenta lines.

Figure 3
(a) Definition of the characteristic lengths for the w-structured NWires
growing along the [0001] axis with a hexagonal cross section and six
f1�1100g interfaces, which are shown by translucent black lines. The six
isoceles triangles located at the six corners of the cross section present the
offset area and offsets of interface lengths which are all constant for all
cross sections of this type, applying to even and odd series alike. (b)–(e)
Top and side views of the first four members, even series: (b) X12 (i = 1),
(c) X48 (i = 2), (d) X108 (i = 3) and (e) X192 (i = 4). The colours of the
internal atoms are orange for Ga and grey–blue for N. Red atoms have
one interface bond.
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We start with the even series of this NWire cross section. A

detailed numerical derivation of Equations 2–8 below is given

in Appendix C as an example.

N0001� j1�1100
Wire;even ½i� ¼ 12i2 ð2Þ

N0001� j1�1100
bnd;even ½i� ¼ 6ið4i� 1Þ ð3Þ

N0001� j1�1100
IF;even ½i� ¼ 12i ð4Þ

d0001� j1�1100
IF;even ½i� ¼ auc i�

1

3

� �
ð5Þ

w0001� j1�1100
even ½i� ¼ 2auc i�

1

3

� �

¼ 2d0001� j1�1100
IF;even ½i�

ð6Þ

h0001� j1�1100
even ½i� ¼ auc

ffiffiffi
3
p

i�
1

3

� �
ð7Þ

A0001� j1�1100
even ½i� ¼

ffiffiffi
3
p

2
aucð Þ

2
ið3i� 2Þ þ

1

3

� �
: ð8Þ

The definition of interface boundaries for the calculation of

characteristic lengths and the cross section area is shown in

Fig. 3, together with top and side views of the cross sections for

the first four members of the even number series.

We now list the odd series of the cross sections with a [0001]

growth vector and f1�1100g interfaces.

N0001� j1�1100
Wire;odd ½i� ¼ ð12iþ 4Þðiþ 1Þ ð9Þ

N0001� j1�1100
bnd;odd ½i� ¼ 2ð12iþ 1Þðiþ 1Þ ð10Þ

N0001� j1�1100
IF;odd ½i� ¼ 4ð3iþ 2Þ: ð11Þ

From Equation 11, we see that N0001� j1�1100
IF;odd ½i� =

N0001� j1�1100
IF;even ½i� þ 8, accounting for the elongated form of the

odd series cross sections.

d0001� j1�1100
IF;tb;odd ½i� ¼ auc i�

1

3

� �

¼ d0001� j1�1100
IF;even ½i�

ð12Þ

d0001� j1�1100
IF;side;odd ½i� ¼ auc iþ

2

3

� �

¼ d0001� j1�1100
IF;tb;odd ½iþ 1�

ð13Þ

w0001� j1�1100
odd ½i� ¼ 2auc iþ

1

6

� �

¼ w0001� j1�1100
even iþ

1

2

� � ð14Þ

h0001� j1�1100
odd ½i� ¼ auc

ffiffiffi
3
p

iþ
2

3

� �
¼ h0001� j1�1100

even ½iþ 1�

ð15Þ

A0001� j1�1100
odd ½i� ¼

ffiffiffi
3
p

2
aucð Þ

2
ið3iþ 2Þ ð16Þ

The first four members of the odd number series are shown in

Fig. 4.

3.2. NWires growing along the [0001] direction with a
hexagonal cross section and six {1000} interfaces

This cross section is more straightforward in that it does not

have any offsets in characteristic lengths or cross section area.

As before, we start with the even series of this cross section.

N0001� j1000
Wire;even ½i� ¼ 12ið3i� 1Þ ð17Þ

N0001� j1000
bnd;even ½i� ¼ 36ið2i� 1Þ ð18Þ

N0001� j1000
IF;even ½i� ¼ 24i ð19Þ

d0001� j1000
IF;even ½i� ¼ auc

ffiffiffi
3
p

i�
1

3

� �
ð20Þ

w0001� j1000
even ½i� ¼ 2auc

ffiffiffi
3
p

i�
1

3

� �
¼ 2d0001� j1000

IF;even ½i�

ð21Þ

h0001� j1000
even ½i� ¼ aucð3i� 1Þ ð22Þ

A0001� j1000
even ½i� ¼

ffiffiffi
3
p

2
aucð Þ

2 3i� 1ð Þ
2

ð23Þ

The first four members of the even number series are shown in

Fig. 5.

We now list the odd series of the cross sections with a [0001]

growth vector and f1000g interfaces.
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Figure 4
Top and side views of the first four members of w-structured NWires
growing along the [0001] axis with a hexagonal cross section and six
f1�1100g interfaces, odd series: (a) X32 (i = 1), (b) X84 (i = 2), (c) X160 (i = 3)
and (d) X260 (i = 4). For atom colours, see Fig. 3.
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N0001� j1000
Wire;odd ½i� ¼ 36 iþ

1

2

� �2

�5 ð24Þ

N0001� j1000
bnd;odd ½i� ¼ 12ið6iþ 5Þ ð25Þ

N0001� j1000
IF;odd ½i� ¼ 8ð3iþ 2Þ

¼ N0001� j1000
IF;even ½i� þ 16

ð26Þ

d0001� j1000
IF;tb;odd ½i� ¼ auc

ffiffiffi
3
p

i�
1

3

� �
¼ d0001� j1000

IF;even ½i�

ð27Þ

d0001� j1000
IF;side;odd ½i� ¼ auc

ffiffiffi
3
p

iþ
2

3

� �
¼ d0001� j1000

IF;even ½iþ 1�

ð28Þ

w0001� j1000
odd ½i� ¼ 2auc

ffiffiffi
3
p

iþ
1

6

� �

¼ w0001� j1000
even iþ

1

2

� � ð29Þ

h0001� j1000
odd ½i� ¼ aucð3iþ 2Þ

¼ h0001� j1000
even ½iþ 1�

ð30Þ

A0001� j1000
odd ½i� ¼

ffiffiffi
3
p

2
aucð Þ

2 3ið3iþ 2Þ ð31Þ

The first four members of the odd number series are shown in

Fig. 6.

3.3. NWires growing along the ½1�1100� direction with a
hexagonal cross section and four {0021} plus two {0001}
interfaces

This cross section reveals the congruence between zb- and

w-structures when seen along specific lattice vectors: the in-

plane atomic arrangement, as seen along the ½11�22� growth

vector for the zb-structure, and along the ½1�1100� growth vector

for w-structures, become indistinguishable. We encourage the

reader to compare the top views of the NWire cross sections in

Figs. 7 and 8 with those in Figs. 6 and 7 of König & Smith

(2019, 2021). From the side view of the cross sections in Figs. 7

and 8, and the mentioned figures in König & Smith (2019,

2021), it becomes apparent that the sequence of atomic planes

is ABABAB for the w-structure, while it is ABCABC for the

zb-structure. Since these atomic planes run orthogonal to the

cross section plane, such differences in the sequencing of

atomic planes have no effect, resulting in identical projections

of the w- and zb-structures with ½1�1100� and ½11�22� growth

vectors, respectively. As a result, all number series for this w-

NWire cross section are identical to the zb-NWire cross

section with a ½11�22� growth vector and two {111} plus four

f1�331g interfaces in König & Smith (2019, 2021), apart from

structure-specific gauge factors for characteristic lengths and

the area of the cross section.

As was the case in Section 3.2, no offsets in characteristic

lengths or cross section area exist. Derivations for increments

in specific lengths and cross section area can be found in

Appendix B. Despite the tangled lattice vectors for growth

and interface orientations, such derivations are more straight-

forward as compared to both cross sections for w-NWires with

a [0001] growth vector. We start again with the even series of

this cross section.
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Figure 5
Cross section and side view of w-structured NWires with a [0001] growth
axis, hexagonal cross section and {1000}-oriented interfaces, even series:
(a) X24 (i = 1), (b) X120 (i = 2), (c) X288 (i = 3) and (d) X528 (i = 4). We
skipped the assignment of interface lengths, width, and the height of this
cross section type as these can be seen in a straightforward manner. Red
atoms have one interface bond and blue atoms have two interface bonds.

Figure 6
Cross section and side view of w-structured NWires with a [0001] growth
axis, hexagonal cross section and {1000}-oriented interfaces, odd series:
(a) X76 (i = 1), (b) X220 (i = 2), (c) X436 (i = 3) and (d) X724 (i = 4). For atom
colours, see Fig. 5.
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N1�1100�
Wire;even½i� ¼ 4ið3iþ 1Þ ð32Þ

N1�1100�
bnd;even½i� ¼ 2ð12i2 � 1Þ ð33Þ

N1�1100�
IF; tot;even½i� ¼ 4ð4iþ 1Þ ð34Þ

N1�1100�
0021�IF;even½i�

N1�1100�
0001�IF;even½i�

¼
4ð3iþ 2Þ

4ði� 1Þ

¼
3iþ 2

i� 1

ð35Þ

The first line in Equation 35 shows the explicit results per

interface orientation, while the second line provides the

simplified ratio.

d1�1100�
0021�IF;even½i� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aucð Þ

2
þ cucð Þ

2

2

s
i ð36Þ

d1�1100�
0001�IF;even½i� ¼ auc i�

1

2

� �
ð37Þ

w1�1100�
even ½i� ¼

auc

2
ð4i� 1Þ ð38Þ

h1�1100�
even ½i� ¼ cuc i ð39Þ

A1�1100�
even ½i� ¼

auc cuc

2
ið3i� 1Þ ð40Þ

The definition of interface boundaries for the calculation of

characteristic lengths and the cross section area, and the

assignment of interface atoms to the respective interface plane

are shown in Fig. 7, together with top and side views of cross

sections for the first four members of the even number series.

We now list the odd series of the cross sections with a ½1�1100�

growth vector and four {0021} plus two {0001} interfaces.

N1�1100�
Wire;odd½i� ¼ 12iðiþ 2Þ þ 10 ð41Þ

N1�1100�
bnd;odd ½i� ¼ 2ð6iþ 1Þð2iþ 3Þ þ 5 ð42Þ

N1�1100�
IF; tot;odd½i� ¼ 2ð8iþ 9Þ ¼ N1�1100�

IF; tot;even½i� þ 14 ð43Þ

N1�1100�
0021�IF;odd½i�

N1�1100�
0001�IF;odd½i�

¼
4ð3iþ 5Þ

2ð2i� 1Þ

¼
N1�1100�

0021�IF;even½i� þ 12

N1�1100�
0001�IF;even½i� þ 2

¼
2ð3iþ 5Þ

2i� 1

ð44Þ

The first line in Equation 44 shows the explicit results per

interface orientation, while the last line provides the simplified

ratio.
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Figure 7
(a) Definition of characteristic lengths for the w-structured NWires
growing along the ½1�1100� axis with a hexagonal cross section and two
{1000} interfaces at the top and bottom, plus four side interfaces with a
{0021} orientation, shown along with the assignment of the interface
atoms to the respective interface plane. Top and side views of the first
four members, even series: (b) X16 (i = 1), (c) X56 (i = 2), (d) X120 (i = 3)
and (e) X208 (i = 4). For atom colours, see Fig. 5.

Figure 8
Cross section and side view of w-structured NWires growing along the
½1�1100� axis with a hexagonal cross section and two {0001} interfaces at the
top and bottom, plus four side interfaces with a {0021} orientation, odd
series: (a) X46 (i = 1), (b) X106 (i = 2), (c) X190 (i = 3) and (d) X298 (i = 4).
For atom colours, see Fig. 5.
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d1�1100�
0021�IF;odd½i� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aucð Þ

2
þ cucð Þ

2
q

2
ðiþ 1Þ

¼ d1�1100�
0021�IF;even½iþ 1�

ð45Þ

d1�1100�
0001�IF;odd½i� ¼ auc i ¼ d1�1100�

0001�IF;even iþ
1

2

� �
ð46Þ

w1�1100�
odd ½i� ¼ aucð2iþ 1Þ ð47Þ

¼ w1�1100�
even iþ

3

4

� �
ð48Þ

h1�1100�
odd ½i� ¼ cucðiþ 1Þ ¼ h1�1100�

even ½iþ 1� ð49Þ

A1�1100�
odd ½i� ¼

auccuc

2
ð3iþ 1Þðiþ 1Þ ð50Þ

The first four members of the odd number series are shown in

Fig. 8.

4. Usage of number series ratios on nanowire cross
sections

The primary parameters of interest are the number of atoms

within the NWire cross section, NWire½i�, the number of bonds

between such atoms, Nbnd½i�, and the total number of interface

bonds, NIF½i�. The width, height and interface lengths of NWire

cross sections serve mostly as a metric pointer to pick the right

run index i for arriving at the correct description of the above

variables in accord with experimental data (images with

atomic resolution). The cross section areas allow the calcula-

tion of the areal densities of the electric or thermal currents,

which allows for a direct comparison between different NWire

sizes and crystallographic orientations. From the three

primary parameters we listed above, we can form the ratios

Nbnd½i�=NWire½i�, NIF½i�=Nbnd½i� and NIF½i�=NWire½i�, all of which

can be compared to each other by their respective d circ
Wire½i�.

Several research groups (Shtrikman et al., 2009; Zardo et al.,

2009; Dubrovskii & Sibirev, 2008) obtained NWire diameters

in the range dcirc
Wire = 20–40 nm as an upper size limit for the

wurtzite structure, below which it is (meta-)stable, converting

to the zincblende structure for bigger diameters. Therefore, we

limit the plotting of dcirc
Wire to a maximum of 40 nm which allows

the data for ultrasmall diameters to be assessed in more detail.

We start with the ratio Nbnd=NWire, which describes the

number of NWire-internal bonds per NWire atom. This ratio

converges to Nbnd½i�=NWire½i� ! 2 for i ! 1, as becomes

evident from Fig. 1; each atom has four bonds, whereby each

bond is shared with a first next-neighbour (1-nn) atom; 4/2 = 2

if the w-structure is infinite (and thus no bonds are ‘lost’ to any

interfaces). The ratio Nbnd=NWire is a good gauge of the

internal stress of an NWire, e.g. to counteract external forces

from a substrate or shell, or for the resistance to integrate

foreign atoms such as dopants onto lattice sites. In an inverse

manner, Nbnd=NWire can serve as a precise guide for predicting

stress propagation and a transfer of the crystallographic

structure onto NWire shells as a consequence, such as for w-Si

grown around zb-InP NWires (Algra et al., 2011). The ratio

Nbnd=NWire as a function of d circ
Wire is shown for w-GaN NWires

as an example in Fig. 9, whereby we used the unit-cell para-

meters a = 3.1891 Å and c = 5.1855 Å (Adachi, 2004).

As Nbnd=NWire decreases for shrinking diameters dcirc
Wire, the

ability of the NWire to counterbalance external stress – or to

exert crystallographic information on a shell material –

increases. This statement originates from the number of bonds

per NWire atom Nbnd=NWire which can tolerate stress. Lower

values of dcirc
Wire decrease Nbnd=NWire, thus increasing the stress

per NWire-internal bond. Thereby, a build-up of counter-

stress occurs until a certain stress limit of the NWire is

exceeded, leading to structural defects, such as stacking faults

and grain boundaries, eventually rendering the NWire poly-

crystalline. Experimental evidence for the above argument

exists on a general basis for Si-NWires and Si nanocrystals,

where the incorporation of foreign atoms onto lattice sites

becomes increasingly unlikely for shrinking dcirc
Wire (Stegner et
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Figure 10
Ratio of interface bonds to NWire-internal bonds NIF=Nbnd shown for all
three NWire cross sections as a function of the NWire diameter dcirc

Wire. We
chose the unit-cell parameters of GaN; see text for details.

Figure 9
Ratio of NWire-internal bonds to NWire atoms Nbnd=NWire shown for all
three NWire cross sections as a function of the NWire diameter dcirc

Wire. We
chose the lattice parameters of GaN; see text for details.
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al., 2009; Björk et al., 2009), with a hard limit of Nbnd=NWire =

1.94 � 0.01 for both NWires and nanocrystals (König & Smith,

2021). This process is called self-purification (Dalpian &

Chelikowsky, 2006, 2008).

From Fig. 9 we see that NWires with a [0001] growth vector

and f1�1100g interfaces behave differently. The values of

Nbnd=NWire are significantly lower when compared to the other

two w-NWire types, which have very similar values of

Nbnd=NWire over dcirc
Wire. From that observation, we can establish

two hypotheses when considering NWires with similar dcirc
Wire

values. One, NWires with a [0001] growth vector and f1�1100g

interfaces should be more vulnerable to external stress, or – in

reverse – are less likely to imprint their crystallographic

information onto an epitaxial shell material. Two, any incor-

poration of foreign atoms onto lattice sites in NWires with a

[0001] growth vector and f1�1100g interfaces will be more likely

compared to the other two NWire types. From a higher ratio of

Nbnd=NWire, we can also deduce that we obtain a smaller

minimum dcirc
Wire below which the NWires with a [0001] growth

vector and f1�1100g interfaces would suffer from significant

structural defect densities and eventually significant amor-

phization. As for structural arguments, NWires with a [0001]

growth vector and f1�1100g interfaces should be the most stable

NWire type.

The ratio of interface bonds to NWire-internal bonds

NIF=Nbnd is a structural parameter similar to the ratio

Nbnd=NWire, though here the key information is the inclusion of

the interface as the coupling means between the NWire and its

environment. Therefore, NIF=Nbnd presents a gauge for the

static and dynamic stress transfer over the interface. Naturally,

NIF=Nbnd declines for increasing dcirc
Wire, eventually converging

to Nbnd½i�=NWire½i� ! 0 for i!1. We can obtain the respective

gradient by which NIF=Nbnd decreases for sufficiently large i

from the respective equations for NIF and Nbnd, namely, their

leading terms in powers of i. Ordered by gradient, we get

N0001� j1000
bnd ½i�=N0001� j1000

Wire ½i�= 1
3i
�1, N0001� j1�1100

bnd ½i�=N0001� j1�1100
Wire ½i�=

1
2i
�1 and N1�1100�

bnd ½i�=N1�1100�
Wire ½i� = 2

3i
�1. As becomes apparent

from Fig. 10, such gradients do not appear to play a major role

for dcirc
Wire � 40 nm. For metastable crystallographic systems

such as NWires, a threshold for NIF=Nbnd exists below which

structural defects start to occur at or in the vicinity of inter-

faces which represent the weakest link in the crystallographic

construct. From Fig. 10, we see that NIF=Nbnd of the cross

section with a [0001] growth vector and f1�1100g interfaces has

lower values as compared to the two other NWire types. One

origin of this finding follows straight from the higher number

of internal bonds per NWire atom Nbnd=NWire, leaving less

bonds available to the interface. Another contribution arises

from the lower number of interface bonds per f1�1100g interface

N0001� j1�1100
IF , followed by the value of {1000} interfaces

N0001� j1000
IF , and eventually by the {0021}-dominated interface

bond densities N1�1100�
IF; tot . With the lowest NIF=Nbnd values for

NWires with a [0001] growth vector and f1�1100g interfaces, such

NWires are more likely to possess interface defects: more

internal bonds exist per interface bond to counteract stress

between the NWire and its environment. A few minor features

exist in Fig. 10. From Equations 4, 11, 19 and 26, it follows that

N0001� j1000
IF ! N0001� j1�1100

IF for i and consequently dcirc
Wire !1,

since NIF differs only by a constant given by the 12 corner

atoms with two interface bonds each of the cross section with a

[0001] growth vector and {1000} interfaces. The values of

NIF=Nbnd are furthermore important for phonon propagation

and reflection, a feature important for nanoscopic thermal

transport relevant for heat dissipation (Vázquez et al., 2009),

thermoelectrics (Dubi & Ventra, 2011) or hot carrier photo-

voltaics (König et al., 2020).

The last ratio we look at is the number of interface bonds

per NWire atom, NIF=NWire. This ratio describes the number of

electronic ‘delivery channels’ per NWire atom, and thus the

structural ability (versus quantum-chemical ability) of the

NWire to acquire or deliver electronic charge from or to its

environment, respectively, by charge transfer. Such transfers

occur via interface dipoles (Campbell et al., 1996), the pillow

effect (Otero et al., 2017) or the NESSIAS effect (König et al.,

2021). Fig. 11 shows the values of all cross sections as a

function of dcirc
Wire.

The cross section with a [1000] growth vector and f1�1100g

interfaces yields the lowest values of NIF=NWire per dcirc
Wire. The

values for the remaining two cross sections are virtually

identical for ultrathin NWires with dcirc
Wire � 3 nm. Then,

NIF=NWire of the cross section with a ½0001� growth vector and

{1000} interfaces gets smaller, reaching ca. 90% of the value

obtained for the cross section with a ½1�1100� growth vector and

two {0001} plus four {0021} interfaces for dcirc
Wire = 30–40 nm.

This finding indicates that the interface presents less of a

bottleneck to charge transfer for the latter NWire class. We

can thus expect a charge transfer which affects NWire atoms

being located further towards the centre of the cross section of

such NWires, and consequently a larger NWire diameter up to

which the NESSIAS effect occurs at full scale.

5. Conclusions

We have deduced analytical number series for w-structured

NWires as a function of diameter and interface faceting,
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Figure 11
Ratio of interface bonds to NWire atoms NIF=NWire shown for all three
NWire cross sections as a function of the NWire diameter dcirc

Wire. We chose
the unit-cell parameters of GaN; see text for details.
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featuring regular hexagonal cross sections with a [0001]

growth vector and six f1�1100g interfaces, regular hexagonal

cross sections with a [0001] growth vector and six {1000}

interfaces, and nonregular hexagonal cross sections with a

½1�1100� growth vector and two {0001} plus four {0021} interfaces.

All cross sections are presented in an even and an odd scheme

to facilitate matching to different symmetry centres encoun-

tered experimentally. The calculated parameters are the

number of NWire atoms NWire½i�, the number of bonds

between such atoms Nbnd½i� and the number of NWire inter-

face bonds NIF½i�, the interface lengths dIF½i�, the cross section

widths w½i�, the heights h½i� and the total cross section areas

A½i�. All expressions are linked to NWire spherical diameters

dWire½i� to enable a direct parameter comparison between

different morphologies.

Geometrical details of the derivation of increments and

offsets for area and interface lengths, as well as heights and

width, of all cross sections are provided in the Appendix

sections to facilitate a retracing of the number series, com-

plemented by a complete derivation of all even number series

for cross sections with a [0001] growth vector and six f1�1100g

interfaces.

From the three atomistic parameters NWire, Nbnd and NIF,

three ratios were shown to yield valuable structural informa-

tion for w-NWires, extending to electronic applications. The

ratio Nbnd=NWire is useful to gauge the internal stress of

NWires, which is key in the evaluation of self-purification and

dopant segregation as encountered in impurity doping, and

the general stress response of NWires to an external force.

Both NIF=Nbnd and Nbnd=NWire can be applied to optical

spectroscopy methods, such as FT–IR, Raman, photo-

luminescence or electroluminescence, to interpret and

deconvolute spectra into NWire-immanent (internal) and

matrix/shell (external) components. The ratio NIF=NWire

describes the electronic interaction of NWires with the

embedding matrix or ligands to gauge the impact of interface

dipoles or interface charge transfer on the NC electronic

structure.

As noted for our work on zb- and diamond-structured

NWire cross sections, the analytic description of w-NWire

cross sections provides a major advance in experimental data

interpretation and the understanding of III–V, II–VI and

group IV-based w-NWires. In more detail, the number series

allows for a deconvolution of the experimental data into

environment-exerted, interface-related and NC-internal

phenomena. The predictive power of our method could render

it an essential tool in the prediction of NWire cross sections

and in tuning the processing conditions for tailoring NWires

towards desired shapes and interface properties.

We plan to publish a fourth article shortly which will

introduce cross-section morphing into arbitrary convex shapes

of the w-NWire cross sections introduced herein, again in

analogy to our works on zb-/diamond-structure NWires

(König & Smith, 2022). To this end, experimental data can be

interpreted with high accuracy as, to the best of our knowledge

with respect to the current state of the art, no data on

w-structure NWires with regular cross sections have been

published.

APPENDIX A
Geometric details for NWire cross sections with a
[0001] growth vector

The cross sections of NWires growing along the c = [0001]

vector naturally spare c from the geometrical analysis which

proceeds via the in-plane lattice vectors of the cross section a1,

a2 and a3 (see Fig. 2).

We start the analysis with the w-UC projection into the

{0001} plane defining the NWire cross sections (see Fig. 12),

introducing the lattice constant a ¼ ja�j in the process. From

Fig. 12 we see immediately that the side length of this UC

projection is also the increment sIF;11100 in f1�1100g interface

length. The unit area we use for describing the cross section

area A is represented by a six-membered Ga3N3 ring, shown

in grey–green in Fig. 12. Both hexagons are regular and thus

similar, thereby simplifying the analysis considerably. Regular

hexagons are composed of six equilateral triangles with the

area A�, which is another property we put to good use. From

the atomic arrangement of the w-structure in the {0001} plane,

we see that the distance of two parallel sides of six-membered

ring describing A is identical to the side length of the regular

hexagon given by the w-UC projection onto the {0001} plane.

This relationship translates into twice the height of the equi-

lateral triangles. The height of an equilateral triangle is given

from Pythagoras’ theorem as h� ¼
1
2

ffiffiffi
3
p

s , with s being the

side length of the equilateral triangle with the area A�, as well
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Figure 12
Geometric relations for the wurtzite lattice structure along the c = [0001]
growth vector. The unit cell in the {0001} plane is shown in yellow and its
relevant lattice vectors a1, a2 and a3 are shown in blue. The unit area A
(grey–green) for the {0001} plane is defined by the area of a six-
membered ring, consisting of six equilateral triangles A� = 1

6 A (red).
The distance increments required for calculating the lengths of the {1000}
and f1�1100g interfaces are shown by sIF;11100 and sIF;1000, respectively, with
local atomic bonds shown. As an auxiliary parameter, we show the height
h� and its relevant fractions of the congruent equilateral triangles. All
length parameters other than the lattice vectors are shown in purple.
Grey lines show the f1�1100g interfaces, which require some additional
derivations in terms of fractional h� and a fractional area A. = 1

3 A�. A
scheme of relevant lattice vectors within the {0001} plane is shown on the
upper left, with c being orthogonal to the {0001} plane; indices shown in
grey present alternative combinations of lattice vectors.
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as the side length of the six-membered hexagonal ring. From

the above considerations, we see immediately that h� = a/2,

and hence s ¼ a=
ffiffiffi
3
p

. With s as the side length and h� as the

height of the equilateral triangle, we get its area

A� ¼
1
2 s h� ¼ a2 1

4
ffiffi
3
p . From this result, it follows instantly

that the unit area is A ¼ a2 3
2
ffiffi
3
p . For cross sections with

f1�1100g interfaces, there are six offset areas A. occurring at

every corner; see Figs. 3 and 12. Its calculation is once again

straightforward by virtue of the hexagonal symmetry,

rendering any of three symmetry axes of the equilateral

triangles parallel to the vector class of s and thus sIF;11100. It

follows from straightforward symmetry arguments of equi-

lateral triangles that the area of any of the three isoceles

triangles emerging by said areal decomposition is

A. ¼
1
3 A� ¼ a2 1

12
ffiffi
3
p . Since we have six corners with an offset

area A. each, the total offset area for NWire cross sections

with f1�1100g interfaces is A0001� j1�1100
offset ¼ a2 1

2
ffiffi
3
p ¼ 1

3 A . The

offset length of the f1�1100g interfaces becomes apparent when

looking at the isoceles triangle manifesting A., amounting to

s0001� j1�1100
offset ¼ 2 2

3 h� ¼
2
3 a. The offset length for the width of

cross sections with f1�1100g interfaces follows straight from

symmetry arguments (see Fig. 12) as w0001� j1�1100
offset ¼ 2 1

3 h� = 1
3 a.

We begin the derivation of relevant characteristic lengths

for the cross section with {1000} interfaces with the increment

of {1000} interface length sIF;1000, which corresponds to the

distance of two parallel sides of the w-UC projected onto the

{0001} plane. This length is equivalent to twice the height of

the six equilateral triangles composing the w-UC projected

onto the {0001} plane, hence sIF;1000 ¼ 2a
ffiffi
3
p

2 ¼ a
ffiffiffi
3
p

. With no

offset areas or lengths existing for cross sections with {1000}

interfaces, our geometrical analysis for NWire cross sections

with a [0001] growth vector is complete.

APPENDIX B
Geometric details for NWire cross sections with a
½1�1100� growth vector and two {0001} plus four {0021}
interfaces

Counterintuitively, the geometric details of the cross section

for NWires growing along the [1�1100] vector with f1�1100g

interfaces is simpler yet compared to the geometric deriva-

tions above. Fig. 13 shows a small portion of the cross section

in the top graph, complemented by the lattice structure turned

by 90� to expose the connection to the symmetry considera-

tions carried out above for the NWire cross sections with a

[0001] growth vector. The layout of this NWire cross section is

defined by two lattice vectors, namely, a3 and c lying in the

f1�1100g plane. An alternative description for a3 is given by a3 =

�a1 � a2, cf. Fig. 2; such indices are shown in grey in Fig. 13.

Comparing the cross sections shown in Fig. 7 with Fig. 13, we

see immediately that the increment of the {0001} interface

length is equal to the increment of the {1000} interface length,

viz. sIF;0001 = ja3j ¼ sIF;1000 = a. From a comparison of Fig. 7

with Fig. 13, we see that the increment in width is equal to

sIF;0001. The increment for the {0021} interface lengths follows

in a straightforward manner from Pythagoras’ theorem and

half the length of each in-plane lattice vector as

sIF;0021 ¼
1
2

ffiffiffiffiffiffiffiffi
a2c2
p

, describing the diagonal of a rectangular unit

area which in turn defines the unit area for this cross section,

namely, Aut = 1
4 ac. Finally, the increment in height is given by

the value of the [0001] lattice vector c, describing twice the

distance between two adjacent corrugated atomic planes in

the c direction.

APPENDIX C
Derivation of the number series explained with respect
to the NWire cross sections with a [0001] growth
vector and six f1�1100g interfaces, even series

We start with the variables which show a quadratic depen-

dence on the run index i and thus the NWire diameter dcirc
Wire,

listing their evolution with i in tabular form from which we

derive their number series. Variables with linear dependence

on i, such as specific lengths, are straightforward to derive and

a description is provided at the end of this section. We start

with the number series describing the amount of NWire-

internal atoms NWire½i�.

From Table 4 we see that dNWire/di increases by 24 for each

i ! i + 1, and that an offset of �12 exists for dNWire/di,

whereby we obtain
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Figure 13
Geometric relations for the wurtzite lattice structure along the ½1�1100�
growth vector. The lower graph shows the same lattice arrangement
turned 90� clockwise around the horizonal axis of ½00�110� orientation, with
grey atoms and bonds added to facilitate comparison with Fig. 12. Lattice
vectors are shown in blue, whereby only a3 and c are relevant in the
f1�1100g plane. For {0021} interfaces, a3 can be alternatively described by a
combination of a1 and a2, again shown in grey underneath the orthogonal
vector of the respective interface on the left side of the top graph.
Orthogonal vectors which are not part of the {0021} interface class are
shown by grey arrows and respective indices in smaller grey print.
Distance increments for the {0021} interfaces sIF,0021 and the {0001}
interfaces sIF,0001 are shown in purple. The unit area for this cross section
Aut is shown as a hatched grey–green rectangle.
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dNWire

di
¼ 24i� 12: ð51Þ

These findings can be easily verified by examining the fourth

column in Table 4, where dNWire/di ½i ¼ 2� ¼ 36, dNWire/

di ½i ¼ 3� ¼ 60, etc. In order to obtain an analytic description

of NWire½i�, we have to sum up all dNWire/di, resulting in the

Riemann sum (Zeidler et al., 2004)

NWire½i� ¼
Xi

k

dNWire½k�

dk
: ð52Þ

Equation 52 presents an integration over discrete points. As

such, there may be an integration constant coming into exis-

tence as discussed below. The summation itself can be

expressed in a sum formula as per the exponent of i:

Xi

k¼1

24k� 12 V 12iðiþ 1Þ � 12i ¼ 12i2: ð53Þ

In Equation 53, we made use of the relationship (Zeidler et al.,

2004)

Xi

k¼1

k ¼
iðiþ 1Þ

2
: ð54Þ

The solution for i0 is trivial, as the constant offset in dNWire/di

is just multiplied by i in accord with an integration of a

constant; see Equation 53. When solving Equation 53, we

obtain NWire½i ¼ 1� = 12, NWire½i ¼ 2� = 48, NWire½i ¼ 3� = 108,

NWire½i ¼ 4� = 192, NWire½i ¼ 5� = 300, NWire½i ¼ 6� = 432, etc.

We see that Equation 53 has a zero integration constant and

thus already presents the final solution of NWire½i� as per

Equation 2.

Finding the number of NWire-internal bonds Nbnd½i� is not

quite as straightforward; we follow the same scheme as used

for NWire½i�. There is one bond and two atoms per atom

column, cf. Table 1, yielding the first summand in the total sum

of the internal NWire bonds as 1
2 NWire½i�. We then continue by

listing the bonds per atom row, including the vertical bonds to

the next smaller atom row once we have left the interface. The

latter values are the small numbers at the left round bracket,

i.e. 4 for i = 2, 6 for i = 3, 8 for i = 4, etc. Then we take the bonds

of each atom row plus its bonds to the next smaller atom row

until we reach the atom row at the centre. These numbers of

internal bonds increase by an increment of three when moving

towards the centre of the cross section and are listed

within the round brackets per cross section in

Table 5. Since we have two bonds between each

atom column, we multiply the above values by 2,

yielding the term ( . . . ) � 2. The bonds in the centre

of the cross section are counted only once (so are not

multiplied by 2 as all off-centre values) to arrive at

exactly all bonds between atom columns for one half

of the cross section, being described by the term

[ . . . ]. This term is then multiplied by two to cover

the entire cross section, apart from the bonds per

atom column being presented by the first summand

as described above. Table 5 presents the scheme

together with the total value of Nbnd½i�, plus its first-

and second-order difference quotient.

While we here follow the same scheme as for

NWire½i�, we choose a slightly different way of

calculating Nbnd½i� from Table 5 which does not rely

as much on the intuitive discovery of dNbnd½i�/di,

albeit being less concise.

We note from Table 5 that d2Nbnd½i�/di2 ¼ 48, from

which it follows by discrete integration that dNbnd½i�/

di ¼ 48iþ C, with C being the integration constant
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Table 4
NWire½i� presented by atoms per atom row of the respective NWire cross
section per run index i. The second column shows the atoms per atom row
of the respective NWire cross section per run index i – cf. Figs. 3(b) to 3(d)
for i = 1 to 4, and Fig. 3(a) for i = 6. The third column contains the sum of
all atoms per NWire cross section NWire½i�, the fourth column its first-
order difference quotient and the fifth column its second-order difference
quotient.

i Atoms per row NWire½i� dNWire½i�/di d2NWire½i�/di2

1 2½3� 2� 12
36

2 2½ð5þ 7Þ � 2� 48 24
60

3 2½ð7þ 9þ 11Þ � 2� 108 24
84

4 2½ð9þ 11þ 13þ 15Þ � 2� 192 24
108

5 2½ð11þ 13þ 15þ 17þ 19Þ � 2� 300 24
132

6 2½ð13þ 15þ 17þ 19þ 21þ 23Þ � 2� 432 . . .
. . .

. . . . . . . . .

Table 5
Nbnd½i� presented by bonds per atom row of the respective NWire cross section per
run index i. The second column shows the bonds per atom row of the respective
NWire cross section per run index i – cf. Figs. 3(b) to 3(d) for i = 1 to 4, and to Fig. 3(a)
for i = 6. The first summand refers to one bond per atom column and is thus =
1
2 NWire½i�, cf. Table 1. The last summand at the closing square bracket accounts for
half of the bonds in the centre of the respective cross section. These bonds are
multiplied by two, as are the bonds in the term ( . . . ) � 2, the latter presenting the
total number of bonds between atom columns of one half of the cross section apart
from its centre. The third column contains the sum of all internal bonds per NWire
Nbnd½i�, the fourth column its first-order difference quotient and the fifth column its
second-order difference quotient.

i Bonds per atom row Nbnd½i� dNbnd½i�/di d2Nbnd½i�/di2

1 6þ 2½2� 2þ 2� 18
66

2 24þ 2½ð4þ 9Þ � 2þ 4� 84 48
114

3 54þ 2½ð6þ 12þ 15Þ � 2þ 6� 198 48
162

4 96þ 2½ð8þ 15þ 18þ 21Þ � 2þ 8� 360 48
210

5 150þ 2½ð10þ 18þ 21þ 24þ 27Þ � 2þ 10� 570 48
258

6 216þ 2½ð12þ 21þ 24þ 27þ 30þ 33Þ � 2þ 12� 828 . . .
. . .

. . . . . . . . .
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as discussed above for NWire½i�. For now, we ignore C and

convert dNbnd½i�/di directly via Equation 54 to

Nbnd½i� ¼ 24iðiþ 1Þ: ð55Þ

When calculating Nbnd½i� with Equation 55, we see that there is

a difference to the full solution in Table 5, accounting for the

integration constant C. The difference of row three in Table 5

to Equation 55 is �Nbnd½i ¼ 1� = 18� 48 =�30, �Nbnd½i ¼ 2�=

84� 144 =�60, �Nbnd½i ¼ 3�= 198� 288 =�90, �Nbnd½i ¼ 4�=

360 � 480 = �120, or generally �Nbnd½i� ¼ �30i ¼ C. This

solution must be added to Equation 55 to arrive at the exact

solution given by Equation 3, viz.

Nbnd½i� ¼ 24iðiþ 1Þ þ C

¼ 24iðiþ 1Þ � 30i

¼ 6ið4i� 1Þ:

ð56Þ

The third property with a quadratic dependence on i is the

cross section area A½i�. To this end, we describe A½i� by the

number of areas rendered by hexagonal rings of the w-lattice

structure when seen along the [0001] growth vector, hence in

units of A . All nonhexagonal areas, such as the bigger

isoceles triangles at the interfaces and the six small isoceles

triangles at the six corners which we count as an offset area

(being constant 8 i), can be converted into units of A ; see

Appendix A for details. Table 6 shows the relevant develop-

ment of A½i� with its first- and second-order difference

quotient.

We integrate d2A½i�/di2, yielding dA½i�/di ¼ 6i� 5. This

result comes about by the first value of d2A½i�/di2 occurring for

i = 2. We therefore obtain a correct solution for i = 2 under the

constraint of the integration term 6i if we introduce an inte-

gration constant of C = �5, as is evident from dA½i ¼ 2�/

di ¼ 6 	 2� 5 ¼ 7, dA½i ¼ 3�/di ¼ 6 	 3� 5 ¼ 13, dA½i ¼ 4�/

di ¼ 6 	 4� 5 ¼ 19, etc. Once again, we make use of

Equation 54, obtaining

A½i� ¼ A ½3iðiþ 1Þ � 5i� þ Aoffset

¼ A ið3i� 2Þ þ
1

3

� �
:

ð57Þ

With A derived in Appendix A, we arrive at Equation 8 in

Section 3.1.

The remaining variables – NIF½i�, dIF½i�, h½i� and w½i� – show a

linear dependence on i. Due to the hexagonal symmetry, we

consider only one interface and multiply its result by six. We

see from Fig. 3 that all interface atoms have one interface

bond. These atoms increase by two for each increment of i,

namely, by one atom column which contains two atoms, cf.

Table 1, arriving at NIF½i� ¼ 6 	 2i ¼ 12i, as presented by

Equation 4 in Section 3.1. For dIF½i�, we use its increment

sIF;1100 over i and its offset value soffset ¼
2
3 sIF;1100; see

Appendix A for details. We see from Fig. 3 that the number of

sIF;11100 required to describe dIF½i� is always i � 1 plus soffset,

resulting in dIF½i ¼ 1� ¼ 2
3 sIF;11100, and generally in dIF =

sIF;11100 ði�
1
3Þ = a(i � 1

3) (see Equation 5 and Section 3.1). The

width of the cross section w½i� is given by the distance between

two of its opposite corners and has an offset of

woffset ¼ 2 1
3 h4 ¼

1
3 a (see Fig. 12 and Appendix A). For i = 1,

we have w[i = 1] = 2h4 þ woffset. With every subsequent

increment in i, we add 4h4 to w½i�. We thus arrive at w[i] =

h4(4i � 2) + woffset = a
2 ð4i� 2þ 2

3Þ, which can be further

simplified into w½i� ¼ a
2 ð4i� 4

3Þ ¼ 2aði� 1
3Þ, arriving at

Equation 6 in Section 3.1. The height of the cross section,

which is the distance between two parallel interfaces, starts

with the distance between two opposite corners of the hexa-

gonal ring, as is obvious from Fig. 3(b), h½i ¼ 1� ¼ a 2
3

ffiffiffi
3
p

; see

also Appendix A for details. With every subsequent increment

in i, such a hexagonal ring plus one adjacent bond is added,

amounting to a
ffiffiffi
3
p

, which is equivalent to the increment of the

{1000} interfaces sIF;1000 (see Fig. 12). We thus arrive at h[i] =

a
ffiffiffi
3
p
½ði� 1Þ þ 2

3� = a
ffiffiffi
3
p
ði� 1

3Þ, as presented by Equation 7 in

Section 3.1.
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Setting out from König & Smith [Acta Cryst. (2019), B75, 788–802; Acta Cryst.

(2021), B77, 861], we present an analytic description of nominal wurtzite-

structure nanowire (NWire) cross sections, focusing on the underlying geo-

metric–crystallographic description and on the associated number theory. For

NWires with diameter dWire[i], we predict the number of NWire atoms NWire[i],

the bonds between these Nbnd[i] and NWire interface bonds NIF[i] for a slab of

unit-cell length, along with basic geometric variables, such as the specific length

of interface facets, as well as widths, heights and total area of the cross section.

These areas, the ratios of internal bonds per NWire atom, of internal-to-inter-

face bonds and of interface bonds per NWire atom present fundamental tools to

interpret any spectroscopic data which depend on the diameter and cross section

shape of NWires. Our work paves the way for a fourth publication which – in

analogy to König & Smith [Acta Cryst. (2022). B78, 643–664] – will provide

adaptive number series to allow for arbitrary morphing of nominal

w-structure NWire cross sections treated herein.

1. Introduction

Recently, we described the cross sections of zincblende (zb)

and diamond-structure NWires of regular shape (König &

Smith, 2019, 2021), extending such analytic crystallographic

tools to convex cross sections of arbitrary shape, including

irregular multi-core-shell zb-NWires (König & Smith, 2022).

In this work, we introduce a description of regular wurtzite

(w-) structure NWire cross sections by an analytic number

series in analogy to the above-mentioned publications. While

our previous works on regular zb- and diamond-structure

NWire cross sections contained a considerable amount of

experimental data from the literature to demonstrate the

application of such analytic number series, we focus here more

on the underlying crystallographic geometry and number

theory. The reason for not including experimental data from

the literature in our present work is twofold: first, and in

contrast to zb-/diamond-structure NWires, there is little

published experimental work (if any) which describes fully

regular w-NWire cross sections in enough detail (i.e. with

sufficient spatial resolution) to match them with analytic

number series. Several literature sources exist for irregular-

shaped w-NWire cross sections, consisting of CdS, CdSe (Duan

& Lieber, 2000), GaN (Kuykendall et al., 2004), GaAs (Zardo

et al., 2009; Harmand et al., 2018), core-shell GaAs-SiGe (de

Matteis et al., 2020), InAs (Caroff et al., 2009), InP (Gao et al.,

2014) and Si (Wang et al., 2021). Second, we received several

requests to explain the underlying crystallographic geometry

and number theory used to arrive at the equations we pub-
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lished previously. Therefore, we elaborate on these two topics

to explain our method. Such explanations can also be applied

to the zb- and diamond-structure NWire cross sections with

[111] and ½11�2� growth vectors we published recently, with

some minor modifications in offset areas and lengths.

We describe three w-NWire cross sections which were

shown to exist in experiment as per the references above,

namely, w-NWires growing along the [0001] vector with f1�10g0

interfaces, w-NWires growing along the [0001] vector with

f11�2g0 interfaces and w-NWires growing along the ½1�100�

vector with 000{1} and 00{11} interfaces. The classes of inter-

face planes are given in full extension, whereby the combi-

natorial part of the interface class is printed in curly brackets

describes the interface class, and the remaining Miller indices

are listed to facilitate the orientation in the Wurtzite lattice

geometry. Due to the complex form, indices at variables just

have the Miller indices without any brackets (cf. Table 3).

Examples of these NWire cross sections are shown in Fig. 1.

We proceed as follows: Section 2 gives a brief introduction

to the wurtzite structure, then providing crystallographic data

and the variables of interest with their indices. The number

series for generating such variables are presented in Section 3.

For each cross section, we introduce an even and an odd

version in analogy to our work on regular cross sections for zb-

NWires (König & Smith, 2019, 2021), accounting for different

symmetry centres of the NWire to match corresponding cross

section images with atomic resolution. We discuss the appli-

cation of these variables in Section 4 and sum up our findings

in Section 5. The Appendices consist of three parts, providing

additional input on geometric details for cross sections of

w-NWires growing along the [0001] vector (Appendix A), for

the cross section of w-NWires growing along the ½1�100� vector

(Appendix B) and for the derivation of all even number series

of the NWire cross section with a [0001] growth vector and

f1�10g0 interfaces as an example (Appendix C).

2. General remarks on analytical number series, struc-

tural boundary conditions and nomenclature

Apart from several polar II–VI and III–V semiconductors

possessing w-structure symmetry, Si-NWires were observed to

expose w-structure symmetry under local stress in de Matteis

et al. (2020) or when grown by specific bimetallic catalysts

(Wang et al., 2021). Both material groups share the same

crystal symmetry (space group P63mc) apart from their

primitive basis which is A–B (Ga–N) or A–A (Si–Si)

(Hammond, 2001). The w-unit cell (w-UC) is shown in Fig. 2.

Defect-free crystalline NWires have a one-dimensional

periodicity along their growth axis, enabling their cross section

to be described by a disk with a thickness dslab ¼ 1 UC in the

respective growth direction. For the two cross sections with a

[0001] growth vector, this thickness is given by jcj ¼ cuc (see

Fig. 2). For the remaining cross section with a ½1�100� growth
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Figure 1
Examples of NWire cross sections with w-structure treated in our work, shown for a binary compound such as GaN: (a) [0001] growth vector and six
f1�10g0 interfaces, (b) [0001] growth vector and six f11�2g0 interfaces, and (c) ½1�100� growth vector, 000{1} interfaces at the top and bottom, plus four 00f11g
side interfaces. These cross sections have experimental counterparts and are thus relevant to structural analysis.

Table 1
Slab thickness dslab of NWire cross sections as a function of growth-axis
orientation given in unit-cell (UC) lengths per growth orientation to
achieve periodicity; numbers of atoms and of bonds per column as
described per feature seen in cross section top view are given to enable
the counting of atoms and NWire-internal bonds.

Growth
axis dslab

Atoms per column
in top view Bonds in top view

0001 1 cuc 2 1 per column, 2 per —, = and \
1�100

ffiffiffi
3
p

auc 1 2 per =n, 1 per — and –†

† Bond symbols must be turned by 90� to align with the graphs in Figs. 6, 7 and 13

Table 2
The parameter list for each NWire cross section; all parameters are
calculated per NWire slab.

Parameter Description

NWire No. of atoms forming NWire
Nbnd No. of bonds within NWire

NIF No. of interface (IF) bonds of NWire
Nabc� IF No. of bonds per IF type fabcg
dabc� IF Length of IF with orientation fabcg
w Maximum width of NWire cross section
h Maximum height of NWire cross section
A Cross section area



vector, we obtain ja�j
ffiffiffi
3
p
¼ auc

ffiffiffi
3
p
¼ dslab; see side views of

the cross sections in Figs. 7 and 8. The number of atoms per

atom column and the number of bonds within and between

these naturally depend on dslab and the growth vector. We

listed both parameters along with dslab in Table 1, with a

diagrammed version for the bonds to allow for an easy inter-

pretation of the respective cross sections for geometrical

analysis and number theory in Section 3.

Next, we introduce the variables we describe analytically

per NWire cross section. The first group of variables describes

the atoms or bonds (internal, interfacial) constituting the

NWire slab. The second group contains all variables which

provide spatial information, such as width, height, interface

lengths and cross section area (Table 2).

Finally, we need a clear nomenclature for the respective

growth vector and interface orientations to distinguish the

above variables. Such indices are given in Table 3.

Although all NWire cross sections in our work have a

hexagonal shape, their direct comparison per NWire size is

most appropriately done by calculating their diameter,

assuming a circular shape of the cross section via

d circ
Wire½i� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

�
� A½i�

r

: ð1Þ

Values of d circ
Wire will become relevant in Section 4.

3. Analytical number series of nanowire cross sections

As we demonstrated in our previous work concerning zb-

NWire cross sections (König & Smith, 2019, 2021) with

experimental data (Yi et al., 2011), it is a great advantage to

have two different descriptions per cross section, each

featuring a distinct symmetry centre. To this end, we introduce

an even and an odd version for each cross section in analogy to

our work mentioned above, accounting for different symmetry

centres of the NWire to match corresponding cross section

images with atomic resolution. Both the even and odd versions

for each cross section are covered in the same section below.
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Figure 2
Periodic unit cell (UC) of a wurtzite solid with lattice vectors a1, a2 and a3,
viz. auc = ja�j, and c, viz. cuc ¼ jcj, space group P63mc (wurtzite) covered
in this work, such as gallium nitride (w-GaN). The orange (Ga) and grey–
blue (N) atoms framed in dark green show the primitive UC. The full
w-UC is formed by including atoms shaded in light grey (Ga) and dark
grey (N), and is outlined in bright green. All atoms at the lateral periodic
boundaries, i.e. for all a� 6¼ 0 and c ¼ constant, were shown to facilitate
UC visualization. The NGa3 (left) and GaN3 (right) tetrahedra inter-
linked within a couple of corrugated atomic planes are shown by magenta
lines.

Table 3
List of NWire shape indices [cross section, growth direction and side
interfaces (where necessary)] added to all parameters as a superscript.

Superscript Growth axis Cross section shape Side interfaces†

0001 � j11�20 0001 Hexagon f11�2g0
0001 � j1�100 0001 Hexagon f1�10g0

1�100 � 1�100 Hexagon

† Only when required to distinguish cross sections.

Figure 3
(a) Definition of the characteristic lengths for the w-structured NWires
growing along the [0001] axis with a hexagonal cross section and six
f1�10g0 interfaces, which are shown by translucent black lines. The six
isoceles triangles located at the six corners of the cross section present the
offset area and offsets of interface lengths which are all constant for all
cross sections of this type, applying to even and odd series alike. (b)–(e)
Top and side views of the first four members, even series: (b) X12 (i = 1),
(c) X48 (i = 2), (d) X108 (i = 3) and (e) X192 (i = 4). The colours of the
internal atoms are orange for Ga and grey–blue for N. Red atoms have
one interface bond.



For brevity, we keep the description to a minimum and only

add information where essential.

3.1. NWires growing along the [0001] direction with a

hexagonal cross section and six f110g0 interfaces

Additional information on the geometric details of the

wurtzite structure for calculating offsets in characteristic

lengths and areas of this cross section is given in Appendix A.

We start with the even series of this NWire cross section. A

detailed numerical derivation of Equations 2–8 below is given

in Appendix C as an example.

N
0001� j1�100
Wire;even ½i� ¼ 12i2 ð2Þ

N
0001� j1�100
bnd;even ½i� ¼ 6ið4i � 1Þ ð3Þ

N
0001� j1�100
IF;even ½i� ¼ 12i ð4Þ

d
0001� j1�100
IF;even ½i� ¼ auc i �

1

3

� �

ð5Þ

w0001� j1�100
even ½i� ¼ 2auc i �

1

3

� �

¼ 2d
0001� j1�100
IF;even ½i�

ð6Þ

h0001� j1�100
even ½i� ¼ auc

ffiffiffi
3
p

i �
1

3

� �

ð7Þ

A0001� j1�100
even ½i� ¼

ffiffiffi
3
p

2
aucð Þ

2
ið3i � 2Þ þ

1

3

� �

: ð8Þ

The definition of interface boundaries for the calculation of

characteristic lengths and the cross section area is shown in

Fig. 3, together with top and side views of the cross sections for

the first four members of the even number series.

We now list the odd series of the cross sections with a [0001]

growth vector and f1�10g0 interfaces.

N
0001� j1�100
Wire;odd ½i� ¼ ð12iþ 4Þðiþ 1Þ ð9Þ

N
0001� j1�100
bnd;odd ½i� ¼ 2ð12i þ 1Þðiþ 1Þ ð10Þ

N
0001� j1�100
IF;odd ½i� ¼ 4ð3iþ 2Þ: ð11Þ

From Equation 11, we see that N
0001� j1�100
IF;odd ½i� =

N
0001� j1�100
IF;even ½i� þ 8, accounting for the elongated form of the

odd series cross sections.

d
0001� j1�100
IF;tb;odd ½i� ¼ auc i �

1

3

� �

¼ d
0001� j1�100
IF;even ½i�

ð12Þ

d
0001� j1�100
IF;side;odd ½i� ¼ auc iþ

2

3

� �

¼ d
0001� j1�100
IF;tb;odd ½iþ 1�

ð13Þ

w
0001� j1�100
odd ½i� ¼ 2auc iþ

1

6

� �

¼ w0001� j1�100
even iþ

1

2

� � ð14Þ

h
0001� j1�100
odd ½i� ¼ auc

ffiffiffi
3
p

iþ
2

3

� �

¼ h0001� j1�100
even ½iþ 1�

ð15Þ

A
0001� j1�100
odd ½i� ¼

ffiffiffi
3
p

2
aucð Þ

2
ið3iþ 2Þ ð16Þ

The first four members of the odd number series are shown in

Fig. 4.

3.2. NWires growing along the [0001] direction with a

hexagonal cross section and six f112g0 interfaces

This cross section is more straightforward in that it does not

have any offsets in characteristic lengths or cross section area.

As before, we start with the even series of this cross section.

N
0001� j11�20
Wire;even ½i� ¼ 12ið3i � 1Þ ð17Þ

N
0001� j11�20
bnd;even ½i� ¼ 36ið2i � 1Þ ð18Þ

N
0001� j11�20
IF;even ½i� ¼ 24i ð19Þ

d
0001� j11�20
IF;even ½i� ¼ auc

ffiffiffi
3
p

i �
1

3

� �

ð20Þ

w0001� j11�20
even ½i� ¼ 2auc

ffiffiffi
3
p

i �
1

3

� �

¼ 2d
0001� j1000
IF;even ½i�

ð21Þ

h0001� j11�20
even ½i� ¼ aucð3i � 1Þ ð22Þ

A0001� j11�20
even ½i� ¼

ffiffiffi
3
p

2
aucð Þ

2
3i � 1ð Þ

2
ð23Þ
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Figure 4
Top and side views of the first four members of w-structured NWires
growing along the [0001] axis with a hexagonal cross section and six
f1�10g0 interfaces, odd series: (a) X32 (i = 1), (b) X84 (i = 2), (c) X160 (i = 3)
and (d) X260 (i = 4). For atom colours, see Fig. 3.



The first four members of the even number series are shown in

Fig. 5.

We now list the odd series of the cross sections with a [0001]

growth vector and f11�2g0 interfaces.

N
0001� j11�20
Wire;odd ½i� ¼ 36 iþ

1

2

� �2

� 5 ð24Þ

N
0001� j11�20
bnd;odd ½i� ¼ 12ið6iþ 5Þ ð25Þ

N
0001� j11�20
IF;odd ½i� ¼ 8ð3iþ 2Þ

¼ N
0001� j1000
IF;even ½i� þ 16

ð26Þ

d
0001� j11�20
IF;tb;odd ½i� ¼ auc

ffiffiffi
3
p

i �
1

3

� �

¼ d
0001� j1000
IF;even ½i�

ð27Þ

d
0001� j11�20
IF;side;odd ½i� ¼ auc

ffiffiffi
3
p

iþ
2

3

� �

¼ d
0001� j1000
IF;even ½iþ 1�

ð28Þ

w
0001� j11�20
odd ½i� ¼ 2auc

ffiffiffi
3
p

iþ
1

6

� �

¼ w0001� j1000
even iþ

1

2

� � ð29Þ

h
0001� j11�20
odd ½i� ¼ aucð3iþ 2Þ

¼ h0001� j1000
even ½iþ 1�

ð30Þ

A
0001� j11�20
odd ½i� ¼

ffiffiffi
3
p

2
aucð Þ

2
3ið3iþ 2Þ ð31Þ

The first four members of the odd number series are shown in

Fig. 6.

3.3. NWires growing along the ½1100� direction with a hexa-

gonal cross section and four 00f11g plus two 000f1g interfaces

This cross section reveals the congruence between zb- and

w-structures when seen along specific lattice vectors: the in-

plane atomic arrangement, as seen along the ½11�2� growth

vector for the zb-structure, and along the ½1�100� growth vector

for w-structures, become indistinguishable. We encourage the

reader to compare the top views of the NWire cross sections in

Figs. 7 and 8 with those in Figs. 6 and 7 of König & Smith

(2019, 2021). From the side view of the cross sections in Figs. 7

and 8, and the mentioned figures in König & Smith (2019,

2021), it becomes apparent that the sequence of atomic planes

is the same for both structures, resulting in identical projec-

tions of the w- and zb-structures with ½1�100� and ½11�2� growth

vectors, respectively. As a result, all number series for this w-

NWire cross section are identical to the zb-NWire cross

section with a ½11�2� growth vector and two {111} plus four

f1�31g interfaces in König & Smith (2019, 2021), apart from

structure-specific gauge factors for characteristic lengths and

the area of the cross section.

As was the case in Section 3.2, no offsets in characteristic

lengths or cross section area exist. Derivations for increments

in specific lengths and cross section area can be found in

Appendix B. Despite the tangled lattice vectors for growth

and interface orientations, such derivations are more straight-

forward as compared to both cross sections for w-NWires with

a [0001] growth vector. We start again with the even series of

this cross section.

N1�100�
Wire;even½i� ¼ 4ið3i þ 1Þ ð32Þ

N1�100�
bnd;even½i� ¼ 2ð12i2 � 1Þ ð33Þ
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Figure 5
Cross section and side view of w-structured NWires with a [0001] growth
axis, hexagonal cross section and f11�2g0-oriented interfaces, even series:
(a) X24 (i = 1), (b) X120 (i = 2), (c) X288 (i = 3) and (d) X528 (i = 4). We
skipped the assignment of interface lengths, width, and the height of this
cross section type as these can be seen in a straightforward manner. Red
atoms have one interface bond and blue atoms have two interface bonds.

Figure 6
Cross section and side view of w-structured NWires with a [0001] growth
axis, hexagonal cross section and f11�2g0-oriented interfaces, odd series:
(a) X76 (i = 1), (b) X220 (i = 2), (c) X436 (i = 3) and (d) X724 (i = 4). For
atom colours, see Fig. 5.



N1�100�
IF; tot;even½i� ¼ 4ð4iþ 1Þ ð34Þ

N1�100�
0011� IF;even½i�

N1�100�
0001� IF;even½i�

¼
4ð3iþ 2Þ

4ði � 1Þ

¼
3iþ 2

i � 1

ð35Þ

The first line in Equation 35 shows the explicit results per

interface orientation, while the second line provides the

simplified ratio.

d1�100�
0011� IF;even½i� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aucð Þ
2
þ cucð Þ

2

2

s

i ð36Þ

d1�100�
0001� IF;even½i� ¼ auc i �

1

2

� �

ð37Þ

w1�100�
even ½i� ¼

auc

2
ð4i � 1Þ ð38Þ

h1�100�
even ½i� ¼ cuc i ð39Þ

A1�100�
even ½i� ¼

auc cuc

2
ið3i � 1Þ ð40Þ

The definition of interface boundaries for the calculation of

characteristic lengths and the cross section area, and the

assignment of interface atoms to the respective interface plane

are shown in Fig. 7, together with top and side views of cross

sections for the first four members of the even number series.

We now list the odd series of the cross sections with a ½1�100�

growth vector and four 00f11g plus two 000f1g interfaces.

N1�100�
Wire;odd½i� ¼ 12iðiþ 2Þ þ 10 ð41Þ

N1�100�
bnd;odd ½i� ¼ 2ð6iþ 1Þð2i þ 3Þ þ 5 ð42Þ

N1�100�
IF; tot;odd½i� ¼ 2ð8iþ 9Þ ¼ N1�100�

IF; tot;even½i� þ 14 ð43Þ

N1�100�
0011� IF;odd½i�

N1�100�
0001� IF;odd½i�

¼
4ð3iþ 5Þ

2ð2i � 1Þ

¼
N1�100�

0011� IF;even½i� þ 12

N1�100�
0001� IF;even½i� þ 2

¼
2ð3iþ 5Þ

2i � 1

ð44Þ

The first line in Equation 44 shows the explicit results per

interface orientation, while the last line provides the simplified

ratio.
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Figure 7
(a) Definition of characteristic lengths for the w-structured NWires
growing along the ½1�100� axis with a hexagonal cross section and two
000f1g interfaces at the top and bottom, plus four side interfaces with a
00f11g orientation, shown along with the assignment of the interface
atoms to the respective interface plane. Top and side views of the first
four members, even series: (b) X16 (i = 1), (c) X56 (i = 2), (d) X120 (i = 3)
and (e) X208 (i = 4). For atom colours, see Fig. 5.

Figure 8
Cross section and side view of w-structured NWires growing along the
½1�100� axis with a hexagonal cross section and two 000{1} interfaces at the
top and bottom, plus four side interfaces with a 00{11} orientation, odd
series: (a) X46 (i = 1), (b) X106 (i = 2), (c) X190 (i = 3) and (d) X298 (i = 4).
For atom colours, see Fig. 5.



d1�100�
0011� IF;odd½i� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aucð Þ
2
þ cucð Þ

2

q

2
ðiþ 1Þ

¼ d1�100�
0011� IF;even½iþ 1�

ð45Þ

d1�100�
0001� IF;odd½i� ¼ auc i ¼ d1�100�

0001� IF;even iþ
1

2

� �

ð46Þ

w1�100�
odd ½i� ¼ aucð2iþ 1Þ ð47Þ

¼ w1�100�
even iþ

3

4

� �

ð48Þ

h1�100�
odd ½i� ¼ cucðiþ 1Þ ¼ h1�100�

even ½iþ 1� ð49Þ

A1�100�
odd ½i� ¼

auccuc

2
ð3iþ 1Þðiþ 1Þ ð50Þ

The first four members of the odd number series are shown in

Fig. 8.

4. Usage of number series ratios on nanowire cross

sections

The primary parameters of interest are the number of atoms

within the NWire cross section, NWire½i�, the number of bonds

between such atoms, Nbnd½i�, and the total number of interface

bonds, NIF½i�. The width, height and interface lengths of NWire

cross sections serve mostly as a metric pointer to pick the right

run index i for arriving at the correct description of the above

variables in accord with experimental data (images with

atomic resolution). The cross section areas allow the calcula-

tion of the areal densities of the electric or thermal currents,

which allows for a direct comparison between different NWire

sizes and crystallographic orientations. From the three

primary parameters we listed above, we can form the ratios

Nbnd½i�=NWire½i�, NIF½i�=Nbnd½i� and NIF½i�=NWire½i�, all of which

can be compared to each other by their respective d circ
Wire½i�.

Several research groups (Shtrikman et al., 2009; Zardo et al.,

2009; Dubrovskii & Sibirev, 2008) obtained NWire diameters

in the range dcirc
Wire = 20–40 nm as an upper size limit for the

wurtzite structure, below which it is (meta-)stable, converting

to the zincblende structure for bigger diameters. Therefore, we

limit the plotting of dcirc
Wire to a maximum of 40 nm which allows

the data for ultrasmall diameters to be assessed in more detail.

We start with the ratio Nbnd=NWire, which describes the

number of NWire-internal bonds per NWire atom. This ratio

converges to Nbnd½i�=NWire½i� ! 2 for i ! 1, as becomes

evident from Fig. 1; each atom has four bonds, whereby each

bond is shared with a first next-neighbour (1-nn) atom; 4/2 = 2

if the w-structure is infinite (and thus no bonds are ‘lost’ to any

interfaces). The ratio Nbnd=NWire is a good gauge of the

internal stress of an NWire, e.g. to counteract external forces

from a substrate or shell, or for the resistance to integrate

foreign atoms such as dopants onto lattice sites. In an inverse

manner, Nbnd=NWire can serve as a precise guide for predicting

stress propagation and a transfer of the crystallographic

structure onto NWire shells as a consequence, such as for w-Si

grown around zb-InP NWires (Algra et al., 2011). The

ratio Nbnd=NWire as a function of d circ
Wire is shown for w-GaN

NWires as an example in Fig. 9, whereby we used the

unit-cell parameters a = 3.1891 Å and c = 5.1855 Å (Adachi,

2004).

As Nbnd=NWire decreases for shrinking diameters dcirc
Wire, the

ability of the NWire to counterbalance external stress – or to

exert crystallographic information on a shell material –

increases. This statement originates from the number of bonds

per NWire atom Nbnd=NWire which can tolerate stress. Lower

values of dcirc
Wire decrease Nbnd=NWire, thus increasing the stress

per NWire-internal bond. Thereby, a build-up of counter-

stress occurs until a certain stress limit of the NWire is

exceeded, leading to structural defects, such as stacking faults

and grain boundaries, eventually rendering the NWire poly-

crystalline. Experimental evidence for the above argument
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Figure 9
Ratio of NWire-internal bonds to NWire atoms Nbnd=NWire shown for all
three NWire cross sections as a function of the NWire diameter dcirc

Wire. We
chose the lattice parameters of GaN; see text for details.

Figure 10
Ratio of interface bonds to NWire-internal bonds NIF=Nbnd shown for all
three NWire cross sections as a function of the NWire diameter dcirc

Wire. We
chose the unit-cell parameters of GaN; see text for details.



exists on a general basis for Si-NWires and Si nanocrystals,

where the incorporation of foreign atoms onto lattice sites

becomes increasingly unlikely for shrinking dcirc
Wire (Stegner et

al., 2009; Björk et al., 2009), with a hard limit of Nbnd=NWire =

1.94 � 0.01 for both NWires and nanocrystals (König & Smith,

2021). This process is called self-purification (Dalpian &

Chelikowsky, 2006, 2008).

From Fig. 9 we see that NWires with a [0001] growth vector

and f1�10g0 interfaces behave differently. The values of

Nbnd=NWire are significantly lower when compared to the other

two w-NWire types, which have very similar values of

Nbnd=NWire over dcirc
Wire. From that observation, we can establish

two hypotheses when considering NWires with similar dcirc
Wire

values. One, NWires with a [0001] growth vector and f1�10g0

interfaces should be more vulnerable to external stress, or – in

reverse – are less likely to imprint their crystallographic

information onto an epitaxial shell material. Two, any incor-

poration of foreign atoms onto lattice sites in NWires with a

[0001] growth vector and f1�10g0 interfaces will be more likely

compared to the other two NWire types. From a higher ratio of

Nbnd=NWire, we can also deduce that we obtain a smaller

minimum dcirc
Wire below which the NWires with a [0001] growth

vector and f1�10g0 interfaces would suffer from significant

structural defect densities and eventually significant amor-

phization. As for structural arguments, NWires with a [0001]

growth vector and f1�10g0 interfaces should be the most stable

NWire type.

The ratio of interface bonds to NWire-internal bonds

NIF=Nbnd is a structural parameter similar to the ratio

Nbnd=NWire, though here the key information is the inclusion

of the interface as the coupling means between the NWire and

its environment. Therefore, NIF=Nbnd presents a gauge for

the static and dynamic stress transfer over the interface.

Naturally, NIF=Nbnd declines for increasing dcirc
Wire, eventually

converging to Nbnd½i�=NWire½i� ! 0 for i!1. We can obtain

the respective gradient by which NIF=Nbnd decreases for

sufficiently large i from the respective equations for NIF and

Nbnd, namely, their leading terms in powers of i. Ordered by

gradient, we get N
0001� j11�20
bnd ½i�=N

0001� j11�20
Wire ½i� = 1

3
i� 1,

N
0001� j1�100
bnd ½i�=N

0001� j1�100
Wire ½i� = 1

2
i� 1 and N1�100�

bnd ½i�=N1�100�
Wire ½i� =

2
3
i� 1. As becomes apparent from Fig. 10, such gradients do not

appear to play a major role for dcirc
Wire � 40 nm. For metastable

crystallographic systems such as NWires, a threshold for

NIF=Nbnd exists below which structural defects start to occur at

or in the vicinity of interfaces which represent the weakest link

in the crystallographic construct. From Fig. 10, we see that

NIF=Nbnd of the cross section with a [0001] growth vector and

f1�10g0 interfaces has lower values as compared to the two

other NWire types. One origin of this finding follows straight

from the higher number of internal bonds per NWire atom

Nbnd=NWire, leaving less bonds available to the interface.

Another contribution arises from the lower number of inter-

face bonds per f1�10g0 interface N
0001� j1�100
IF , followed by the

value of f11�2g0 interfaces N
0001� j11�20
IF , and eventually by the

00f11g-dominated interface bond densities N1�100�
IF; tot . With the

lowest NIF=Nbnd values for NWires with a [0001] growth vector

and f1�10g0 interfaces, such NWires are more likely to possess

interface defects: more internal bonds exist per interface bond

to counteract stress between the NWire and its environment.

A few minor features exist in Fig. 10. From Equations 4, 11, 19

and 26, it follows that N
0001� j11�20
IF ! N

0001� j1�100
IF for i and

consequently dcirc
Wire !1, since NIF differs only by a constant

given by the 12 corner atoms with two interface bonds each of

the cross section with a [0001] growth vector and f11�2g0

interfaces. The values of NIF=Nbnd are furthermore important

for phonon propagation and reflection, a feature important for

nanoscopic thermal transport relevant for heat dissipation

(Vázquez et al., 2009), thermoelectrics (Dubi & Ventra, 2011)

or hot carrier photovoltaics (König et al., 2020).

The last ratio we look at is the number of interface bonds

per NWire atom, NIF=NWire. This ratio describes the number

of electronic ‘delivery channels’ per NWire atom, and thus the

structural ability (versus quantum-chemical ability) of the

NWire to acquire or deliver electronic charge from or to its

environment, respectively, by charge transfer. Such transfers

occur via interface dipoles (Campbell et al., 1996), the pillow

effect (Otero et al., 2017) or the NESSIAS effect (König et al.,

2021). Fig. 11 shows the values of all cross sections as a

function of dcirc
Wire.

The cross section with a [1000] growth vector and f1�10g0

interfaces yields the lowest values of NIF=NWire per dcirc
Wire. The

values for the remaining two cross sections are virtually

identical for ultrathin NWires with dcirc
Wire � 3 nm. Then,

NIF=NWire of the cross section with a [0001] growth vector and

f11�2g0 interfaces gets smaller, reaching ca. 90% of the value

obtained for the cross section with a ½1�100� growth vector and

two 000{1} plus four 00{11} interfaces for dcirc
Wire = 30–40 nm.

This finding indicates that the interface presents less of a

bottleneck to charge transfer for the latter NWire class. We

can thus expect a charge transfer which affects NWire atoms

being located further towards the centre of the cross section of

such NWires, and consequently a larger NWire diameter up to

which the NESSIAS effect occurs at full scale.
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Figure 11
Ratio of interface bonds to NWire atoms NIF=NWire shown for all three
NWire cross sections as a function of the NWire diameter dcirc

Wire. We chose
the unit-cell parameters of GaN; see text for details.



5. Conclusions

We have deduced analytical number series for w-structured

NWires as a function of diameter and interface faceting,

featuring regular hexagonal cross sections with a [0001]

growth vector and six f1�10g0 interfaces, regular hexagonal

cross sections with a [0001] growth vector and six f11�2g0

interfaces, and nonregular hexagonal cross sections with a

½1�100� growth vector and two 000{1} plus four 00{11} interfaces.

All cross sections are presented in an even and an odd scheme

to facilitate matching to different symmetry centres encoun-

tered experimentally. The calculated parameters are the

number of NWire atoms NWire½i�, the number of bonds

between such atoms Nbnd½i� and the number of NWire inter-

face bonds NIF½i�, the interface lengths dIF½i�, the cross section

widths w½i�, the heights h½i� and the total cross section areas

A½i�. All expressions are linked to NWire spherical diameters

dWire½i� to enable a direct parameter comparison between

different morphologies.

Geometrical details of the derivation of increments and

offsets for area and interface lengths, as well as heights and

width, of all cross sections are provided in the Appendix

sections to facilitate a retracing of the number series, com-

plemented by a complete derivation of all even number series

for cross sections with a [0001] growth vector and six f1�10g0

interfaces.

From the three atomistic parameters NWire, Nbnd and NIF,

three ratios were shown to yield valuable structural informa-

tion for w-NWires, extending to electronic applications. The

ratio Nbnd=NWire is useful to gauge the internal stress of

NWires, which is key in the evaluation of self-purification and

dopant segregation as encountered in impurity doping, and

the general stress response of NWires to an external force.

Both NIF=Nbnd and Nbnd=NWire can be applied to optical

spectroscopy methods, such as FT–IR, Raman, photo-

luminescence or electroluminescence, to interpret and

deconvolute spectra into NWire-immanent (internal) and

matrix/shell (external) components. The ratio NIF=NWire

describes the electronic interaction of NWires with the

embedding matrix or ligands to gauge the impact of interface

dipoles or interface charge transfer on the NC electronic

structure.

As noted for our work on zb- and diamond-structured

NWire cross sections, the analytic description of w-NWire

cross sections provides a major advance in experimental data

interpretation and the understanding of III–V, II–VI and

group IV-based w-NWires. In more detail, the number series

allows for a deconvolution of the experimental data into

environment-exerted, interface-related and NC-internal

phenomena. The predictive power of our method could render

it an essential tool in the prediction of NWire cross sections

and in tuning the processing conditions for tailoring NWires

towards desired shapes and interface properties.

We plan to publish a fourth article shortly which will

introduce cross-section morphing into arbitrary convex shapes

of the w-NWire cross sections introduced herein, again in

analogy to our works on zb-/diamond-structure NWires

(König & Smith, 2022). To this end, experimental data can be

interpreted with high accuracy as, to the best of our knowledge

with respect to the current state of the art, no data on

w-structure NWires with regular cross sections have been

published.

APPENDIX A

Geometric details for NWire cross sections with a [0001]

growth vector

The cross sections of NWires growing along the c = [0001]

vector naturally spare c from the geometrical analysis which

proceeds via the in-plane lattice vectors of the cross section a1,

a2 and a3 (see Fig. 2).

We start the analysis with the w-UC projection into the

{0001} plane defining the NWire cross sections (see Fig. 12),

introducing the lattice constant a ¼ ja�j in the process. From

Fig. 12 we see immediately that the side length of this UC

projection is also the increment sIF;1100 in f1�10g0 interface

length. The unit area we use for describing the cross section

area A is represented by a six-membered Ga3N3 ring, shown

in grey–green in Fig. 12. Both hexagons are regular and thus

similar, thereby simplifying the analysis considerably. Regular

hexagons are composed of six equilateral triangles with the

area A�, which is another property we put to good use. From

the atomic arrangement of the w-structure in the {0001} plane,

we see that the distance of two parallel sides of six-membered

ring describing A is identical to the side length of the regular
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Figure 12
Geometric relations for the wurtzite lattice structure along the c = [0001]
growth vector. The unit cell in the {0001} plane is shown in yellow and its
relevant lattice vectors a1, a2 and a3 are shown in blue. The unit area A
(grey–green) for the {0001} plane is defined by the area of a six-
membered ring, consisting of six equilateral triangles A� = 1

6
A (red).

The distance increments required for calculating the lengths of the f11�2g0
and f1�10g0 interfaces are shown by sIF;1100 and sIF;1120, respectively, with
local atomic bonds shown. As an auxiliary parameter, we show the height
h� and its relevant fractions of the congruent equilateral triangles. All
length parameters other than the lattice vectors are shown in purple.
Grey lines show the f1�10g0 interfaces, which require some additional
derivations in terms of fractional h� and a fractional area A. = 1

3
A�. A

scheme of relevant lattice vectors within the {0001} plane is shown on the
upper left, with c being orthogonal to the {0001} plane.



hexagon given by the w-UC projection onto the {0001} plane.

This relationship translates into twice the height of the equi-

lateral triangles. The height of an equilateral triangle is given

from Pythagoras’ theorem as h� ¼
1
2

ffiffiffi
3
p

s , with s being the

side length of the equilateral triangle with the area A�, as well

as the side length of the six-membered hexagonal ring. From

the above considerations, we see immediately that h� = a/2,

and hence s ¼ a=
ffiffiffi
3
p

. With s as the side length and h� as

the height of the equilateral triangle, we get its area

A� ¼
1
2

s h� ¼ a2 1

4
ffiffi
3
p . From this result, it follows instantly

that the unit area is A ¼ a2 3

2
ffiffi
3
p . For cross sections with

f1�10g0 interfaces, there are six offset areas A. occurring at

every corner; see Figs. 3 and 12. Its calculation is once again

straightforward by virtue of the hexagonal symmetry,

rendering any of three symmetry axes of the equilateral

triangles parallel to the vector class of s and thus sIF;1100. It

follows from straightforward symmetry arguments of equi-

lateral triangles that the area of any of the three isoceles

triangles emerging by said areal decomposition is

A. ¼
1
3

A� ¼ a2 1

12
ffiffi
3
p . Since we have six corners with an offset

area A. each, the total offset area for NWire cross sections

with f1�10g0 interfaces is A
0001� j1�100
offset ¼ a2 1

2
ffiffi
3
p ¼ 1

3
A . The

offset length of the f1�10g0 interfaces becomes apparent when

looking at the isoceles triangle manifesting A., amounting to

s
0001� j1�100
offset ¼ 2 2

3
h� ¼

2
3

a. The offset length for the width of

cross sections with f1�10g0 interfaces follows straight from

symmetry arguments (see Fig. 12) as w
0001� j1�100
offset ¼ 2 1

3
h� =

1
3

a.

We begin the derivation of relevant characteristic lengths

for the cross section with f11�2g0 interfaces with the increment

of f11�2g0 interface length sIF;1120, which corresponds to the

distance of two parallel sides of the w-UC projected onto the

{0001} plane. This length is equivalent to twice the height of

the six equilateral triangles composing the w-UC projected

onto the {0001} plane, hence sIF;1120 ¼ 2a
ffiffi
3
p

2
¼ a

ffiffiffi
3
p

. With no

offset areas or lengths existing for cross sections with f11�2g0

interfaces, our geometrical analysis for NWire cross sections

with a [0001] growth vector is complete.

APPENDIX B

Geometric details for NWire cross sections with a ½1�100�

growth vector and two 000{1} plus four 00{11} interfaces

Counterintuitively, the geometric details of this cross section

are simpler yet compared to the geometric derivations above.

Fig. 13 shows a small portion of the cross section in the top

graph, complemented by the lattice structure turned by 90� to

expose the connection to the symmetry considerations carried

out above for the NWire cross sections with a [0001] growth

vector. The layout of this NWire cross section is defined by two

lattice vectors, namely, a3 and c spanning the f1�10g0 plane.

Comparing the cross sections shown in Fig. 7 with Fig. 13, we

see immediately that the increment of the 000{1} interface

length is equal to the increment of the f11�2g0 interface length,

viz. sIF;0001 = ja3j ¼ sIF;1120 = a. From a comparison of Fig. 7

with Fig. 13, we see that the increment in width is equal to

sIF;0001. The increment for the 00{11} interface lengths follows

in a straightforward manner from Pythagoras’ theorem and

half the length of each in-plane lattice vector as

sIF;0011 ¼
1
2

ffiffiffiffiffiffiffiffi
a2c2
p

, describing the diagonal of a rectangular unit

area which in turn defines the unit area for this cross section,

namely, Aut = 1
4

ac. Finally, the increment in height is given by

the value of the [0001] lattice vector c, describing twice the

distance between two adjacent corrugated atomic planes in

the c direction.

APPENDIX C

Derivation of the number series explained with respect to the

NWire cross sections with a [0001] growth vector and six

f1�10g0 interfaces, even series

We start with the variables which show a quadratic depen-

dence on the run index i and thus the NWire diameter dcirc
Wire,

listing their evolution with i in tabular form from which we

derive their number series. Variables with linear dependence

on i, such as specific lengths, are straightforward to derive and

a description is provided at the end of this section. We start

with the number series describing the amount of NWire-

internal atoms NWire½i�.
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Figure 13
Geometric relations for the wurtzite lattice structure along the ½1�100�
growth vector. The lower graph shows the same lattice arrangement
turned 90� clockwise around the horizonal axis class of h0010i orienta-
tion, with grey atoms and bonds added to facilitate comparison with
Fig. 12. Lattice vectors are shown in blue, whereby only a3 and c are
relevant in the f1�100g plane. A scheme of relevant lattice vectors within
the f1�100g plane is shown on the upper left, with c and a3 being ortho-
gonal to the f1�100g plane. Distance increments for the 00{11} interfaces
sIF,0021 and the 000{1} interfaces sIF,0001 are shown in purple. The unit area
for this cross section Aut is shown as a hatched grey–green rectangle.



From Table 4 we see that dNWire/di increases by 24 for each

i ! i + 1, and that an offset of � 12 exists for dNWire/di,

whereby we obtain

dNWire

di
¼ 24i � 12: ð51Þ

These findings can be easily verified by examining the fourth

column in Table 4, where dNWire/di ½i ¼ 2� ¼ 36, dNWire/

di ½i ¼ 3� ¼ 60, etc. In order to obtain an analytic description

of NWire½i�, we have to sum up all dNWire/di, resulting in the

Riemann sum (Zeidler et al., 2004)

NWire½i� ¼
Xi

k

dNWire½k�

dk
: ð52Þ

Equation 52 presents an integration over discrete points. As

such, there may be an integration constant coming into exis-

tence as discussed below. The summation itself can be

expressed in a sum formula as per the exponent of i:

Xi

k¼1

24k � 12 V 12iði þ 1Þ � 12i ¼ 12i2: ð53Þ

In Equation 53, we made use of the relationship (Zeidler et al.,

2004)

Xi

k¼1

k ¼
iðiþ 1Þ

2
: ð54Þ

The solution for i0 is trivial, as the constant offset in dNWire/di

is just multiplied by i in accord with an integration of a

constant; see Equation 53. When solving Equation 53, we

obtain NWire½i ¼ 1� = 12, NWire½i ¼ 2� = 48, NWire½i ¼ 3� = 108,

NWire½i ¼ 4� = 192, NWire½i ¼ 5� = 300, NWire½i ¼ 6� = 432, etc.

We see that Equation 53 has a zero integration constant and

thus already presents the final solution of NWire½i� as per

Equation 2.

Finding the number of NWire-internal bonds Nbnd½i� is not

quite as straightforward; we follow the same scheme as used

for NWire½i�. There is one bond and two atoms per atom

column, cf. Table 1, yielding the first summand in the total sum

of the internal NWire bonds as 1
2

NWire½i�. We then continue by

listing the bonds per atom row, including the vertical bonds to

the next smaller atom row once we have left the interface. The

latter values are the small numbers at the left round bracket,

i.e. 4 for i = 2, 6 for i = 3, 8 for i = 4, etc. Then we take the bonds

of each atom row plus its bonds to the next smaller atom row

until we reach the atom row at the centre. These numbers of

internal bonds increase by an increment of three when moving

towards the centre of the cross section and are listed within the

round brackets per cross section in Table 5. Since we

have two bonds between each atom column, we

multiply the above values by 2, yielding the term

( . . . )� 2. The bonds in the centre of the cross section

are counted only once (so are not multiplied by 2 as all

off-centre values) to arrive at exactly all bonds

between atom columns for one half of the cross

section, being described by the term [ . . . ]. This term

is then multiplied by two to cover the entire cross

section, apart from the bonds per atom column being

presented by the first summand as described above.

Table 5 presents the scheme together with the total

value of Nbnd½i�, plus its first- and second-order

difference quotient.

While we here follow the same scheme as for

NWire½i�, we choose a slightly different way of calcu-

lating Nbnd½i� from Table 5 which does not rely as

much on the intuitive discovery of dNbnd½i�/di, albeit

being less concise.

We note from Table 5 that d2Nbnd½i�/di2 ¼ 48, from

which it follows by discrete integration that dNbnd½i�/

di ¼ 48iþ C, with C being the integration constant as
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Table 4
NWire½i� presented by atoms per atom row of the respective NWire cross
section per run index i. The second column shows the atoms per atom row
of the respective NWire cross section per run index i – cf. Figs. 3(b) to 3(d)
for i = 1 to 4, and Fig. 3(a) for i = 6. The third column contains the sum of
all atoms per NWire cross section NWire½i�, the fourth column its first-
order difference quotient and the fifth column its second-order difference
quotient.

i Atoms per row NWire½i� dNWire½i�/di d2NWire½i�/di2

1 2½3� 2� 12
36

2 2½ð5þ 7Þ � 2� 48 24

60
3 2½ð7þ 9þ 11Þ � 2� 108 24

84
4 2½ð9þ 11þ 13þ 15Þ � 2� 192 24

108
5 2½ð11þ 13þ 15þ 17þ 19Þ � 2� 300 24

132

6 2½ð13þ 15þ 17þ 19þ 21þ 23Þ � 2� 432 . . .
. . .

. . . . . . . . .

Table 5
Nbnd½i� presented by bonds per atom row of the respective NWire cross section per
run index i. The second column shows the bonds per atom row of the respective
NWire cross section per run index i – cf. Figs. 3(b) to 3(d) for i = 1 to 4, and to
Fig. 3(a) for i = 6. The first summand refers to one bond per atom column and is
thus = 1

2
NWire½i�, cf. Table 1. The last summand at the closing square bracket

accounts for half of the bonds in the centre of the respective cross section. These
bonds are multiplied by two, as are the bonds in the term ( . . . ) � 2, the latter
presenting the total number of bonds between atom columns of one half of the
cross section apart from its centre. The third column contains the sum of all internal
bonds per NWire Nbnd½i�, the fourth column its first-order difference quotient and
the fifth column its second-order difference quotient.

i Bonds per atom row Nbnd½i� dNbnd½i�/di d2Nbnd½i�/di2

1 6þ 2½2� 2þ 2� 18
66

2 24þ 2½ð4þ 9Þ � 2þ 4� 84 48
114

3 54þ 2½ð6þ 12þ 15Þ � 2þ 6� 198 48
162

4 96þ 2½ð8þ 15þ 18þ 21Þ � 2þ 8� 360 48

210
5 150þ 2½ð10þ 18þ 21þ 24þ 27Þ � 2þ 10� 570 48

258
6 216þ 2½ð12þ 21þ 24þ 27þ 30þ 33Þ � 2þ 12� 828 . . .

. . .
. . . . . . . . .



discussed above for NWire½i�. For now, we ignore C and convert

dNbnd½i�/di directly via Equation 54 to

Nbnd½i� ¼ 24iðiþ 1Þ: ð55Þ

When calculating Nbnd½i� with Equation 55, we see that there is

a difference to the full solution in Table 5, accounting for the

integration constant C. The difference of row three in Table 5

to Equation 55 is �Nbnd½i ¼ 1� = 18 � 48 = � 30,

�Nbnd½i ¼ 2� = 84 � 144 = � 60, �Nbnd½i ¼ 3� = 198 � 288 =

� 90, �Nbnd½i ¼ 4� = 360 � 480 = � 120, or generally

�Nbnd½i� ¼ � 30i ¼ C. This solution must be added to Equa-

tion 55 to arrive at the exact solution given by Equation 3, viz.

Nbnd½i� ¼ 24iði þ 1Þ þ C

¼ 24iði þ 1Þ � 30i

¼ 6ið4i � 1Þ:

ð56Þ

The third property with a quadratic dependence on i is the

cross section area A½i�. To this end, we describe A½i� by the

number of areas rendered by hexagonal rings of the w-lattice

structure when seen along the [0001] growth vector, hence in

units of A . All nonhexagonal areas, such as the bigger

isoceles triangles at the interfaces and the six small isoceles

triangles at the six corners which we count as an offset area

(being constant 8 i), can be converted into units of A ; see

Appendix A for details. Table 6 shows the relevant develop-

ment of A½i� with its first- and second-order difference

quotient.

We integrate d2A½i�/di2, yielding dA½i�/di ¼ 6i � 5. This

result comes about by the first value of d2A½i�/di2 occurring for

i = 2. We therefore obtain a correct solution for i = 2 under the

constraint of the integration term 6i if we introduce an inte-

gration constant of C = � 5, as is evident from dA½i ¼ 2�/

di ¼ 6 � 2 � 5 ¼ 7, dA½i ¼ 3�/di ¼ 6 � 3 � 5 ¼ 13, dA½i ¼ 4�/

di ¼ 6 � 4 � 5 ¼ 19, etc. Once again, we make use of Equa-

tion 54, obtaining

A½i� ¼ A ½3iðiþ 1Þ � 5i� þ Aoffset

¼ A ið3i � 2Þ þ
1

3

� �

:
ð57Þ

With A derived in Appendix A, we arrive at Equation 8 in

Section 3.1.

The remaining variables – NIF½i�, dIF½i�, h½i� and w½i� – show a

linear dependence on i. Due to the hexagonal symmetry, we

consider only one interface and multiply its result by six. We

see from Fig. 3 that all interface atoms have one interface

bond. These atoms increase by two for each increment of i,

namely, by one atom column which contains two atoms, cf.

Table 1, arriving at NIF½i� ¼ 6 � 2i ¼ 12i, as presented by

Equation 4 in Section 3.1. For dIF½i�, we use its increment

sIF;1100 over i and its offset value soffset ¼
2
3

sIF;1100; see

Appendix A for details. We see from Fig. 3 that the number of

sIF;1100 required to describe dIF½i� is always i � 1 plus soffset,

resulting in dIF½i ¼ 1� ¼ 2
3

sIF;1100, and generally in dIF =

sIF;1100 ði �
1
3
Þ = a(i � 1

3
) (see Equation 5 and Section 3.1). The

width of the cross section w½i� is given by the distance between

two of its opposite corners and has an offset of

woffset ¼ 2 1
3

h4 ¼
1
3

a (see Fig. 12 and Appendix A). For i = 1,

we have w[i = 1] = 2h4 þ woffset. With every subsequent

increment in i, we add 4h4 to w½i�. We thus arrive at w[i] =

h4(4i � 2) + woffset = a
2
ð4i � 2þ 2

3
Þ, which can be further

simplified into w½i� ¼ a
2
ð4i � 4

3
Þ ¼ 2aði � 1

3
Þ, arriving at Equa-

tion 6 in Section 3.1. The height of the cross section, which is

the distance between two parallel interfaces, starts with the

distance between two opposite corners of the hexagonal ring,

as is obvious from Fig. 3(b), h½i ¼ 1� ¼ a 2
3

ffiffiffi
3
p

; see also

Appendix A for details. With every subsequent increment in i,

such a hexagonal ring plus one adjacent bond is added,

amounting to a
ffiffiffi
3
p

, which is equivalent to the increment of the

f11�2g0 interfaces sIF;1120 (see Fig. 12). We thus arrive at h[i] =

a
ffiffiffi
3
p
½ði � 1Þ þ 2

3
� = a

ffiffiffi
3
p
ði � 1

3
Þ, as presented by Equation 7 in

Section 3.1.
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