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Corrections to the article by Konig & Smith [Acta Cryst. (2022), B78, 665-677]
are given.

In the article of Konig & Smith (2022), Miller indices of interface facet orientations were
incorrect. The cross section with [0001] growth vector denoted to have six {1000} inter-
faces actually has six {112}0 interfaces, and the cross section with [1100] growth vector
denoted to have two {0001} plus four {0021} interfaces actually has two 000{1} plus four
00{11} interfaces. In addition, we marked the permutative parts of the Miller indices in
braces, leaving the unchanged indices outside these brackets for better readability of
wurtzite crystal orientation as per the corrected notation above. As a result, indices at
variables, as well as figure captions and vector schemes in the graphs of the Appendix
sections (Figs. 12 and 13), were corrected. Since such corrections occurred in numerous
locations, we decided to amend the entire manuscript (see supporting information) so
that readers do not have to flip back and forth between a correction table and the original
work. The actual maths, all number series and resulting quotients Nyna/Nwire» N1e/Nwire
and Nyp/Nynq were correct and thus are fully valid in the original work.

References
Konig, D. & Smith, S. C. (2022). Acta Cryst. B78, 665-677.

290  nhttps://doi.org/10.1107/52052520625000873 Acta Cryst. (2025). B81, 290


https://doi.org/10.1107/S2052520625000873
https://journals.iucr.org/b
https://scripts.iucr.org/cgi-bin/full_search?words=nanowires&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=wurtzite&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=cross%20section&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=analytic%20description&Action=Search
mailto:solidstatedirk@gmail.com
http://doi.org/10.1107/S2052520625000873
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=me6317&bbid=BB1
http://crossmark.crossref.org/dialog/?doi=10.1107/S2052520625000873&domain=pdf&date_stamp=2022-07-15

research papers

STRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS

Acta Cryst

ISSN 2052-5206

Received 13 December 2021
Accepted 9 May 2022

Edited by J. Lipkowski, Polish Academy of

Sciences, Poland

Keywords: nanowires; wurtzite; cross section;
analytic description.

WWWWW

Grwth = (0001)

Grwth = (0001)

IF orient = {1100} 2838393939393 IF orient = {1000}
i=6(cven) 3TN i= 6 (even)
399999393 93999393 Pt e
— 72bonds TSNS Ni = 144 bonds
_289V3 2 3999999939393 93 939893 V3, 2
A TT(a ) A =289—=(au)

WHRBVRVRVRVRRRRRS
8939393339393 33 339383
WV
3939388829333 83 93
WWWWWWWL
3933333939393

Nyee = 430 atoms
Nong = 811 bonds
N = 98 bonds

A

Grwth = (1700)

IF orient, b = {0001}
IF orient, sides = {0021} - X
i=5(odd) 99D = g e

OPEN @& ACCESS

Published under a CC BY 4.0 licence

Analytical description of nanowires Ill: regular
cross sections for wurtzite structures Q/
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Setting out from Konig & Smith [Acta Cryst. (2619),"B75, 788-802; Acta Cryst.
(2021), B77, 861], we present an analytic deSepiption of nominal wurtzite-
structure nanowire (NWire) cross sectfOnsy focusing on the underlying
geometric—crystallographic description the associated number theory.
For NWires with diameter dw;.[i], We“predict the number of NWire atoms
Nwire[i], the bonds between these Ng and NWire interface bonds Nyg[i] for a
slab of unit-cell length, along with ©48ic geometric variables, such as the specific
length of interface facets, as %as widths, heights and total area of the cross
section. These areas, the rati \ internal bonds per NWire atom, of internal-to-
interface bonds and of 'zhce bonds per NWire atom present fundamental
tools to interpret any ‘spéctroscopic data which depend on the diameter and
cross section shape @Wires. Our work paves the way for a fourth publication
which - in analo@) onig & Smith [Acta Cryst. (2022). B78, 643-664] — will
provide adaptiye Aumber series to allow for arbitrary morphing of nominal
w-structur ire cross sections treated herein.

1. Int@.l\ction

, we described the cross sections of zincblende (zb)
iamond-structure NWires of regular shape (Konig &

ith, 2019, 2021), extending such analytic crystallographic
tools to convex cross sections of arbitrary shape, including
irregular multi-core-shell zb-NWires (Konig & Smith, 2022).
In this work, we introduce a description of regular wurtzite
(w-) structure NWire cross sections by an analytic number
series in analogy to the above-mentioned publications. While
our previous works on regular zb- and diamond-structure
NWire cross sections contained a considerable amount of
experimental data from the literature to demonstrate the
application of such analytic number series, we focus here more
on the underlying crystallographic geometry and number
theory. The reason for not including experimental data from
the literature in our present work is twofold: first, and in
contrast to zb-/diamond-structure NWires, there is little
published experimental work (if any) which describes fully
regular w-NWire cross sections in enough detail (i.e. with
sufficient spatial resolution) to match them with analytic
number series. Several literature sources exist for irregular-
shaped w-NWire cross sections, consisting of CdS, CdSe (Duan
& Lieber, 2000), GaN (Kuykendall et al., 2004), GaAs (Zardo
et al., 2009; Harmand et al., 2018), core-shell GaAs-SiGe (de
Matteis et al., 2020), InAs (Caroff et al., 2009), InP (Gao et al.,
2014) and Si (Wang et al., 2021). Second, we received several
requests to explain the underlying crystallographic geometry
and number theory used to arrive at the equations we pub-
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Table 1

Slab thickness dy),, of NWire cross sections as a function of growth-axis
orientation given in unit-cell (UC) lengths per growth orientation to
achieve periodicity; numbers of atoms and of bonds per column as
described per feature seen in cross section top view are given to enable
the counting of atoms and NWire-internal bonds.

Growth Atoms per column

axis dgan in top view Bonds in top view

0001 1cye 2 1 per column, 2 per —, / and \
1100 \/gauc 1 2 per X, 1 per — and —¥

F Bond symbols must be turned by 90° to align with the graphs in Figs. 6, 7 and 13

lished previously. Therefore, we elaborate on these two topics
to explain our method. Such explanations can also be applied
to the zb- and diamond-structure NWire cross sections with
[111] and [112] growth vectors we published recently, with
some minor modifications in offset areas and lengths.

We describe three w-NWire cross sections which were
shown to exist in experiment as per the references above,
namely, w-NWires growing along the [0001] vector with {1100}
interfaces, w-NWires growing along the [0001] vector with
{1000} interfaces and w-NWires growing along the [1100]
vector with {0001} and {0021} interfaces. Examples of these
NWire cross sections are shown in Fig. 1.

We proceed as follows: Section 2 gives a brief introduction
to the wurtzite structure, then providing crystallographic data
and the variables of interest with their indices. The number
series for generating such variables are presented in Section 3.
For each cross section, we introduce an even and an odd
version in analogy to our work on regular cross sections for £
NWires (Konig & Smith, 2019, 2021), accounting for djffézent
symmetry centres of the NWire to match correspongi ross
section images with atomic resolution. We discu; appli-
cation of these variables in Section 4 and sum 1 findings
in Section 5. The Appendices consist of thr s, providing
additional input on geometric details Cross sections of
w-NWires growing along the [0001] ve Appendix A), for
the cross section of w-NWires growj long the [1100] vector
(Appendix B) and for the deriva@ all even number series

Figure 1

Table 2
The parameter list for each NWire cross section; all parameters are
calculated per NWire slab.

Parameter Description

Nyire No. of atoms forming NWire

Ning No. of bonds within NWire

Nie No. of interface (IF) bonds of NWire

N peip No. of bonds per IF type {abc,

dypeir Length of IF with orientati bc}

w Maximum width of NWire crosg’section
h Maximum height of NY# ss section
A Cross section area %

N3

of the NWire cross section with a [ Owgrowth vector and
{1100} interfaces as an example ndix C).

2. General remarks o a@ical number series,
structural boundary @itions and nomenclature
Apart from severgt po¥r II-VI and III-V semiconductors

possessing w-str symmetry, Si-NWires were observed to
expose w-strystuie symmetry under local stress in de Matteis

et al. (2020 hen grown by specific bimetallic catalysts
(Wang et .,”2021). Both material groups share the same
cryst mmetry (space group P6smc) apart from their

prifyitiy€ basis which is A-B (Ga-N) or A-A (Si-Si)
mond, 2001). The w-unit cell (w-UC) is shown in Fig. 2.
efect-free crystalline NWires have a one-dimensional
periodicity along their growth axis, enabling their cross section
to be described by a disk with a thickness d,;, = 1 UC in the
respective growth direction. For the two cross sections with a
[0001] growth vector, this thickness is given by |¢| = ¢, (see
Fig. 2). For the remaining cross section with a [1100] growth
vector, we obtain [a,|v/3 = a,.v/3 = dy,; see side views of the
cross sections in Figs. 7 and 8. The number of atoms per atom
column and the number of bonds within and between these
naturally depend on d,, and the growth vector. We listed
both parameters along with d,,, in Table 1, with a diagrammed
version for the bonds to allow for an easy interpretation of the

Examples of NWire cross sections with w-structure treated in our work, shown for a binary compound such as GaN: (a) [0001] growth vector and six
{1100} interfaces, (b) [0001] growth vector and six {1000} interfaces, and (c¢) [1100] growth vector, {0001} interfaces at the top and bottom, plus four {0021}
side interfaces. These cross sections have experimental counterparts and are thus relevant to structural analysis.
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Table 3
List of NWire shape indices [cross section, growth direction and side
interfaces (where necessary)] added to all parameters as a superscript.

Superscript Growth axis Cross section shape Side interfacest
0001 — O|1000 0001 Hexagon 1000

0001 — O[1100 0001 Hexagon 1100

1100 - O 1100 Hexagon

+ Only when required to distinguish cross sections.

respective cross sections for geometrical analysis and number
theory in Section 3.

Next, we introduce the variables we describe analytically
per NWire cross section. The first group of variables describes
the atoms or bonds (internal, interfacial) constituting the
NWire slab. The second group contains all variables which
provide spatial information, such as width, height, interface
lengths and cross section area (Table 2).

Finally, we need a clear nomenclature for the respective
growth vector and interface orientations to distinguish the
above variables. Such indices are given in Table 3.

Although all NWire cross sections in our work have a
hexagonal shape, their direct comparison per NWire size is
most appropriately done by calculating their diameter,
assuming a circular shape of the cross section via

4
dyieelil = /= x A[l. ¢9)
b4
Values of dgre, will become relevant in Section 4. Q
3. Analytical number series of nanowire cro ions
As we demonstrated in our previous work 5\ ning zb-
2021) with

NWire cross sections (Konig & SmithQ~

Figure 2

Periodic unit cell (UC) of a wurtzite solid with lattice vectors ay, a, and a3,
viz. a,, = |a,|, and ¢, viz. ¢, = |¢|, space group P6;mc (wurtzite) covered
in this work, such as gallium nitride (w-GaN). The orange (Ga) and grey—
blue (N) atoms framed in dark green show the primitive UC. The full
w-UC is formed by including atoms shaded in light grey (Ga) and dark
grey (N), and is outlined in bright green. All atoms at the lateral periodic
boundaries, i.e. for all a, # 0 and ¢ = constant, were shown to facilitate
UC visualization. The NGa; (left) and GaNj; (right) tetrahedra
interlinked within a couple of corrugated atomic planes are shown by
magenta lines.

1 32

.ba'
| T 32
rfzgi: 71
R o '”*

R EE

»") #
&%

(d)

Figure 3

(a) Definition of the characteristic lengths for the w-structured NWires
growing along the [0001] axis with a hexagonal cross section and six
{1100} interfaces, which are shown by translucent black lines. The six
isoceles triangles located at the six corners of the cross section present the
offset area and offsets of interface lengths which are all constant for all
cross sections of this type, applying to even and odd series alike. (b)—(e)
Top and side views of the first four members, even series: (b) Xy, (i = 1),
(c) Xyg (i =2), (d) Xq08 (i = 3) and (e) Xj9, (i = 4). The colours of the
internal atoms are orange for Ga and grey-blue for N. Red atoms have
one interface bond.

experimental data (Yi ef al., 2011), it is a great advantage to
have two different descriptions per cross section, each
featuring a distinct symmetry centre. To this end, we introduce
an even and an odd version for each cross section in analogy to
our work mentioned above, accounting for different symmetry
centres of the NWire to match corresponding cross section
images with atomic resolution. Both the even and odd versions
for each cross section are covered in the same section below.
For brevity, we keep the description to a minimum and only
add information where essential.

3.1. NWires growing along the [0001] direction with a
hexagonal cross section and six {1100} interfaces

Additional information on the geometric details of the
wurtzite structure for calculating offsets in characteristic
lengths and areas of this cross section is given in Appendix A.

Acta Cryst. (2022). B78, 665—-677
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We start with the even series of this NWire cross section. A
detailed numerical derivation of Equations 2-8 below is given
in Appendix C as an example.

Nuean 1l = 127 @
Novatoan ™[] = 6i(4i = 1) 3)
Nipewe? "l = 12i @
i 1

AL = 0 (i 3) )

2O = 20, (i)
3 ©)

) d(l)gm—ouioo [l]

i 1

A O = 0, /31 ) g

o = Laylici-o+3
The definition of interface boundaries for the calculation of
characteristic lengths and the cross section area is shown in
Fig. 3, together with top and side views of the cross sections for
the first four members of the even number series.

We now list the odd series of the cross sections with a [0@

growth vector and {1100} interfaces. s

2>
NSO — 2127 +1) @ (10)

Nogol- OO — (12 4 4)(i + 1)

Figure 4

Top and side views of the first four members of w-structured NWires
growing along the [0001] axis with a hexagonal cross section and six
{1100} interfaces, odd series: (a) X3, (i = 1), (b) Xg4 (i =2), (¢) X160 (i =3)
and (d) X6 (i = 4). For atom colours, see Fig. 3.

OO — 4(3i 4 2). (11)

From _Equation 11, we see that N?Sf’j;jo'ﬁo“[i]
N?S?;V‘e?'“‘m[i] + 8, accounting for the elongated form of the

odd series cross sections.
d0001fo|1ioo a4 o1
IF, tb,0dd [l=a,(i— 3
0001—O)|1100
—d —Ol [l]

IF,even

(12)

_ , Q;v
O — g (i +5) v "
\/

- di’ﬁfﬁ,&% 1

ngtél—ouioo[i] _ 2au¥“+ é)
;Moom—ouioo i +1
@ even 2

\/
;@&Qimm —ai(i+3) (15)
Q~ _ 0001—0\1i00[l-+1]
‘ heven
\:’J

(14)

; 3
AMOI=Ottioop; _ */7_ (a,.) i(3i +2) (16)

&he first four members of the odd number series are shown in

Fig. 4.

3.2. NWires growing along the [0001] direction with a
hexagonal cross section and six {1000} interfaces

This cross section is more straightforward in that it does not
have any offsets in characteristic lengths or cross section area.
As before, we start with the even series of this cross section.

Nire o 1] = 12i(3i — 1) (17)
N O] = 36i(2i — 1) (18)
Nitever "[i] = 24i (19)
1

AR een ] = a,V/3 (i - 5) (20)

WO = 20,031
3 (21)

= 2y
hven O[] = a, (3i — 1) (22)
3

A Ol = % (@, Gi = 1)° (23)
The first four members of the even number series are shown in

Fig. 5.
We now list the odd series of the cross sections with a [0001]
growth vector and {1000} interfaces.
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Figure 5

Cross section and side view of w-structured NWires with a [0001] growth
axis, hexagonal cross section and {1000}-oriented interfaces, even series:
(@) Xa4 (i = 1), (b) Xiz0 (i = 2), () Xags (i = 3) and (d) Xsps (i = 4). We
skipped the assignment of interface lengths, width, and the height of this
cross section type as these can be seen in a straightforward manner. Red
atoms have one interface bond and blue atoms have two interface bonds.

1 2
Ny Q1% = 36 (i + 5) -5 (24)
Niogl o &1 = 12i(6i + 5) (25)

Niroad” 1] = 8(3i +2)
— NOOOl—OllOOO[l-] 116

IF,even

d"01-Ol000 ﬁ( 1 6\
il = a, i—=
IF, tb,0dd 3 @7
L
AP0 _ @4_ %)
IF,side,odd & 3 (28)
o®1-Ol1000p; 4 1]

&
W%Qgﬁ =2a,/3 (i + %)

(29)
C) — w0001—<:>|1000 i +1
even 2
hoga 0"l = 4, (3i +2)
— hoom{}uooo[i +1] (30)
3
Agad "l = f(aw)z 3i(3i +2) (31)

T2
The first four members of the odd number series are shown in
Fig. 6.

3.3. NWires growing along the [1100] direction with a
hexagonal cross section and four {0021} plus two {0001}
interfaces

This cross section reveals the congruence between zb- and
w-structures when seen along specific lattice vectors: the in-
plane atomic arrangement, as seen along the [112] growth
vector for the zb-structure, and along the [1100] growth vector
for w-structures, become indistinguishable. We encourage the
reader to compare the top views of the NWire cross se in
Figs. 7 and 8 with those in Figs. 6 and 7 of Konj ith
(2019, 2021). From the side view of the cross secti n Figs. 7
and 8, and the mentioned figures in Konig &\&mith (2019,
2021), it becomes apparent that the sequen Kf/atomic planes
is ABABAB for the w-structure, while 'tYﬂBCABC for the
zb-structure. Since these atomic plan orthogonal to the
cross section plane, such differen in the sequencing of
atomic planes have no effect, r ing in identical projections
of the w- and zb-structures [1100] and [112] growth
vectors, respectively. As a It, all number series for this w-
NWire cross sectio \Videntical to the zb-NWire cross
section with a [1 _ngdwth vector and two {111} plus four
{131} interfaces &nig & Smith (2019, 2021), apart from
structure-spe auge factors for characteristic lengths and
the area of Toss section.

As hée case in Section 3.2, no offsets in characteristic
leng &JIOSS section area exist. Derivations for increments
i §2>1ﬁc lengths and cross section area can be found in
}A$pendix B. Despite the tangled lattice vectors for growth
and interface orientations, such derivations are more straight-
forward as compared to both cross sections for w-NWires with
a [0001] growth vector. We start again with the even series of
this cross section.

Figure 6

Cross section and side view of w-structured NWires with a [0001] growth
axis, hexagonal cross section and {1000}-oriented interfaces, odd series:
(@) X6 (i=1), (b) Xa20 (i = 2), (¢) X436 (i = 3) and (d) X724 (i = 4). For atom
colours, see Fig. 5.

Acta Cryst. (2022). B78, 665—-677
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dogor-r {0001} interface

Figure 7
(a) Definition of characteristic lengths for the w-structured NW
growing along the [1100] axis with a hexagonal cross section
{1000} interfaces at the top and bottom, plus four side int

{0021} orientation, shown along with the assignment ¢) interface
atoms to the respective interface plane. Top and side of the first

four members, even series: (b) X6 (i = 1), (¢) Xi@ d) Xz (i =3)

with a

and (e) X0z (i = 4). For atom colours, see Fig. 5.

N Q1 = 4@) (32)

N eolilE 212 — 1) 33)

G

=1

NSl = 44i + 1) (34)

285

C}@é%i’:ﬁievm[i] _4(3i+2)

Nooir - Revenli] 4= 1) (35)
?‘ C3i42
i1

The first line in Equation 35 shows the explicit results per
interface orientation, while the second line provides the
simplified ratio.

100— - }(auc)2+ cuc)2 ,
d(l)(l)g?fg,even [l] = + L (36)

ARl = (1) @)
Wi Ol = 2 @i — 1) (38)
B Ol = cyei (39)
ALl = 254 Gi — 1) (40)

The definition of interface boundaries for the cal ign of
characteristic lengths and the cross section d the
assignment of interface atoms to the respectiv i?l%ace plane
are shown in Fig. 7, together with top and_si &’fews of cross
sections for the first four members of th number series.
We now list the odd series of the ¢ §Actions with a [1100]
growth vector and four {0021} plus &70001} interfaces.

N Q] = 124 2) + 10 (41)
Néiﬁ?;ﬁ%}z(%+ DQi+3)+5 (42)

NIOOTN="28i +9) = NI O [l +14  (43)

IF, tot,even

ROOZ?:%,odd[i] _ 43i +5)
NI0O 1] 2Qi—1)

%\% 0001—IF,od
A _ Nopt Revenll] +12 (44)
Q Noooy R evenli] +2

2(3i +5)

To2i—1

The first line in Equation 44 shows the explicit results per
interface orientation, while the last line provides the simplified
ratio.

i %

4 33
4 143838388
8333388333338 8
$ 9 3 233838338884 é’n
3“3 < é% $3 3 é\
s s 199999999 ﬂrfa
iz L ¢ 3 P!
b 883333338
aildl A
(c) (d)
Figure 8

Cross section and side view of w-structured NWires growing along the
[1100] axis with a hexagonal cross section and two {0001} interfaces at the
top and bottom, plus four side interfaces with a {0021} orientation, odd
series: (@) Xas (i = 1), (b) Xios (i = 2), (c) Xi9o (i = 3) and (d) Xaos (i = 4).
For atom colours, see Fig. 5.
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Figure 9 Wre

Ratio of NWire-internal bonds to NWire atoms N4/ Ny, shown for all
three NWire cross sections as a function of the NWire diameter dyj;... We
chose the lattice parameters of GaN; see text for details.

V(@) +Hew)’

dlioo-Q

0021 —1F.0aal ] = > (i+1) (45)
= dogg) P evenli + 1]
00 - i 1
A Rl =i = B R i3] )
wha Olil = a,,(2i + 1) (47)
1100—O | 3
= weven 1+ Z (48)

R-O[] = ¢, (i + 1) = B0 O[i 4 1] \®9)

i a,.C
AL Ol = —TEGI+ 1+ &g~
The first four members of the odd numbem&ies are shown in

Fig. 8. Q/Q

4. Usage of number series@ on nanowire Cross
sections

(50)

The primary parameter erest are the number of atoms
within the NWire cragssettion, Ny, [i], the number of bonds
between such ato Vi.alil, and the total number of interface
bonds, Nyp[i]. THe width, height and interface lengths of NWire
cross sections setwt mostly as a metric pointer to pick the right
run index i rriving at the correct description of the above
variables in accord with experimental data (images with
atomic resolution). The cross section areas allow the calcula-
tion of the areal densities of the electric or thermal currents,
which allows for a direct comparison between different NWire
sizes and crystallographic orientations. From the three
primary parameters we listed above, we can form the ratios
Nonalill/Nyirelil, Niglil/Nonalil and Nigli]/ Ny [i], all of WhiCh
can be compared to each other by their respective dyic,[i].

Several research groups (Shtrikman et al., 2009; Zardo et al.,
2009; Dubrovskii & Sibirev, 2008) obtained NWire diameters
in the range dirt, = 20-40 nm as an upper size limit for the
wurtzite structure, below which it is (meta-)stable, converting
to the zincblende structure for bigger diameters. Therefore, we
limit the plotting of %, to a maximum of 40 nm which allows
the data for ultrasmall diameters to be assessed in more detail.
We start with the ratio N,,;/Nywi., Which describes the
number of NWire-internal bonds per NWire atom. This ratio
converges to Ny.q[il/Nwili] = 2 for i — o0, as bec
evident from Fig. 1; each atom has four bonds, whereby e
bond is shared with a first next-neighbour (1-nn) at =2
if the w-structure is infinite (and thus no bonds are to any
interfaces). The ratio N, /Ny, 1S a goo \@nge of the
internal stress of an NWire, e.g. to count ? ternal forces
from a substrate or shell, or for the resijtance to integrate
foreign atoms such as dopants onto la?e sites. In an inverse
manner, N,/ Ny;. can serve as cise guide for predicting
stress propagation and a tran@of the crystallographic
structure onto NWire shells onsequence, such as for w-Si
grown around zb-InP Eﬁ es' (Algra et al., 2011). The ratio
Nona/Nwire as a functioh of dgr, is shown for w-GaN NWires
as an example in gwhereby we used the unit-cell para-
meters a = 3.18 nd ¢ = 5.1855 A (Adachi, 2004).

As N,,q/N creases for shrinking diameters dSi , the
ability of ire to counterbalance external stress — or to
exert ographic information on a shell material —

incr s~¥This statement originates from the number of bonds
e& ire atom N, /Ny Which can tolerate stress. Lower
%lues of d§rc. decrease N,,/Nwi., thus increasing the stress
r NWire-internal bond. Thereby, a build-up of counter-
stress occurs until a certain stress limit of the NWire is
exceeded, leading to structural defects, such as stacking faults
and grain boundaries, eventually rendering the NWire poly-
crystalline. Experimental evidence for the above argument
exists on a general basis for Si-NWires and Si nanocrystals,
where the incorporation of foreign atoms onto lattice sites
becomes increasingly unlikely for shrinking d$i, (Stegner et

10°7 o Growth:  [0001]  [0001]  [1700]
. IF: {1700} {1000} {0021},{0001}
o %e even/odd = / © e |/ o e/ o
] 9 o
o L
10 ; - ;Eg@o
z 23
(O]
1
o
o
S, 1074
Zz
Z‘-_‘-
10° . - .
T dinom) 10
Figure 10

Ratio of interface bonds to NWire-internal bonds Nip/Ny,q shown for all
three NWire cross sections as a function of the NWire diameter dy;... We
chose the unit-cell parameters of GaN; see text for details.
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al., 2009; Bjork et al., 2009), with a hard limit of N,/ Ny, =
1.94 + 0.01 for both NWires and nanocrystals (Konig & Smith,
2021). This process is called self-purification (Dalpian &
Chelikowsky, 2006, 2008).

From Fig. 9 we see that NWires with a [0001] growth vector
and {1100} interfaces behave differently. The values of
Nyna/Nwire are significantly lower when compared to the other
two w-NWire types, which have very similar values of
Nina/Nwire OVer dSi . From that observation, we can establish
two hypotheses when considering NWires with similar dgr,
values. One, NWires with a [0001] growth vector and {1100}
interfaces should be more vulnerable to external stress, or — in
reverse — are less likely to imprint their crystallographic
information onto an epitaxial shell material. Two, any incor-
poration of foreign atoms onto lattice sites in NWires with a
[0001] growth vector and {1100} interfaces will be more likely
compared to the other two NWire types. From a higher ratio of
Nipa/Nwire» We can also deduce that we obtain a smaller
minimum d$i¢, below which the NWires with a [0001] growth
vector and {1100} interfaces would suffer from significant
structural defect densities and eventually significant amor-
phization. As for structural arguments, NWires with a [0001]
growth vector and {1100} interfaces should be the most stable
NWire type.

The ratio of interface bonds to NWire-internal bonds
Nig/Ny,q 1s a structural parameter similar to the ratio
Nina/Nwire» though here the key information is the inclusion of
the interface as the coupling means between the NWire and its
environment. Therefore, Niz/N,,q presents a gauge for the

circ

for di°. < 40 nm. For metastable crystallographic systems
such as NWires, a threshold for Nz/N, 4 exists below which
structural defects start to occur at or in the vicinity of inter-
faces which represent the weakest link in the crystallographic
construct. From Fig. 10, we see that Nj/N, 4 of the cross
section with a [0001] growth vector and {1100} interfaces has
lower values as compared to the two other NWire types. One
origin of this finding follows straight from the higher pumber

of internal bonds per NWire atom N,,/Ny;., leatifigr less
bonds available to the interface. Another contriki¥ion arises
from the lower number of interface bonds per 1 interface
NQROTOMI0 = followed by the value of {1 interfaces

IF
N{’F“‘”*O'“"’“, and eventually by the {0021 -G& inated interface
bond densities Njt'e,O. With the lowesh Vi /Ny, values for
NWires with a [0001] growth vector em&HOO} interfaces, such

NWires are more likely to posse terface defects: more
bond to counteract stress

internal bonds exist per inte
between the NWire and its environment. A few minor features

exist in Fig. 10. From qu@ns 4,11, 19 and 26, it follows that
N?SOI_O”OOO — N?EOI‘O% or i and consequently d$irs. — 00,
since Ny differs y a constant given by the 12 corner
atoms with two i O&ﬁce bonds each of the cross section with a
[0001] growt tor and {1000} interfaces. The values of
Nip/Nppa @ thermore important for phonon propagation
and reflection, a feature important for nanoscopic thermal
tran eregelevant for heat dissipation (Vazquez et al., 2009),
t ectrics (Dubi & Ventra, 2011) or hot carrier photo-
aics (Konig et al., 2020).
The last ratio we look at is the number of interface bonds

static and dynamic stress transfer over the interface. Natural‘@Qper NWire atom, Ny /Ny;,.. This ratio describes the number of

Nig/Ny,q declines for increasing dy;.., eventually convergin

t0 Npnalil/ Nwireli] = 0 for i — o0o. We can obtain the re %e
gradient by which Nz/N,,, decreases for sufficient ge i
from the respective equations for N and N, g, @ y, their
leading terms in powers of i. Ordered by % , we get
NOI=OH000 7/ AOOL-Of1000 7 _ L, N0 =O[11007 Wir1e—c>|uoo[l.]:
mes apparent

1 qu 1100 E)Vire 1100—O 2bmli
i and Ny “li]/Nwie ~l = 5.
play a major role

2

s
from Fig. 10, such gradients do not apf‘g
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Figure 11

Ratio of interface bonds to NWire atoms Nip/Ny;,. shown for all three
NWire cross sections as a function of the NWire diameter dy;,.. We chose
the unit-cell parameters of GaN; see text for details.

electronic ‘delivery channels’ per NWire atom, and thus the
structural ability (versus quantum-chemical ability) of the
NWire to acquire or deliver electronic charge from or to its
environment, respectively, by charge transfer. Such transfers
occur via interface dipoles (Campbell et al., 1996), the pillow
effect (Otero et al., 2017) or the NESSIAS effect (Konig et al.,
2021). Fig. 11 shows the values of all cross sections as a
function of dSre,.

The cross section with a [1000] growth vector and {1100}
interfaces yields the lowest values of Nyz/Ny;., per dr.. The
values for the remaining two cross sections are virtually
identical for ultrathin NWires with d$, < 3nm. Then,
Nir/Nywire of the cross section with a [0001] growth vector and
{1000} interfaces gets smaller, reaching ca. 90% of the value
obtained for the cross section with a [1i00] growth vector and
two {0001} plus four {0021} interfaces for d$irc, = 3040 nm.
This finding indicates that the interface presents less of a
bottleneck to charge transfer for the latter NWire class. We
can thus expect a charge transfer which affects NWire atoms
being located further towards the centre of the cross section of
such NWires, and consequently a larger NWire diameter up to
which the NESSIAS effect occurs at full scale.

5. Conclusions

We have deduced analytical number series for w-structured
NWires as a function of diameter and interface faceting,
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featuring regular hexagonal cross sections with a [0001]
growth vector and six {1100} interfaces, regular hexagonal
cross sections with a [0001] growth vector and six {1000}
interfaces, and nonregular hexagonal cross sections with a
[1100] growth vector and two {0001} plus four {0021} interfaces.
All cross sections are presented in an even and an odd scheme
to facilitate matching to different symmetry centres encoun-
tered experimentally. The calculated parameters are the
number of NWire atoms Ny.[i], the number of bonds
between such atoms N, 4[i] and the number of NWire inter-
face bonds Nyg[i], the interface lengths dg[i], the cross section
widths w[i], the heights A[i] and the total cross section areas
Ali]. All expressions are linked to NWire spherical diameters
dwieli] to enable a direct parameter comparison between
different morphologies.

Geometrical details of the derivation of increments and
offsets for area and interface lengths, as well as heights and
width, of all cross sections are provided in the Appendix
sections to facilitate a retracing of the number series, com-
plemented by a complete derivation of all even number series
for cross sections with a [0001] growth vector and six {1100}
interfaces.

From the three atomistic parameters Ny, Nppg and Nyg,
three ratios were shown to yield valuable structural informa-
tion for w-NWires, extending to electronic applications. The
ratio N,q/Nwi. 1S useful to gauge the internal stress of
NWires, which is key in the evaluation of self-purification and
dopant segregation as encountered in impurity doping, and

Both N/N,,s and N.,,/Nw,. can be applied to optical

spectroscopy methods, such as FT-IR, Raman, photo-
luminescence or electroluminescence, to interpret and
deconvolute spectra into NWire-immanent (internal) and
matrix/shell (external) components. The ratio Nig/Nyjie
describes the electronic interaction of NWires with the
embedding matrix or ligands to gauge the impact of interface
dipoles or interface charge transfer on the NC electronic
structure. g{

As noted for our work on zb- and diamond-structlred
NWire cross sections, the analytic description
cross sections provides a major advance in exp
interpretation and the understanding of M-V, II-VI and
group IV-based w-NWires. In more deta@e number series
allows for a deconvolution of the gexpe¥imental data into
environment-exerted, interface-r and NC-internal
phenomena. The predictive powger of bur method could render
it an essential tool in the pre n of NWire cross sections
and in tuning the process%onditions for tailoring NWires
towards desired shapes % terface properties.

We plan to puth fourth article shortly which will
introduce cross-se M orphing into arbitrary convex shapes
of the w-NWi )gss sections introduced herein, again in
analogy to Q‘works on zb-/diamond-structure NWires
(Konig & Smith, 2022). To this end, experimental data can be
interpr; ith high accuracy as, to the best of our knowledge
wit@ect to the current state of the art, no data on
w,ﬂr} ture NWires with regular cross sections have been

the general stress response of NWires to an external force. Qub shed.

0110]
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U/

&

Geometric relations f; &urtzite lattice structure along the ¢ = [0001]
growth vector. Th 1l in the {0001} plane is shown in yellow and its
relevant lattice vegtord a;, a, and a; are shown in blue. The unit area AO
(grey—green) the {0001} plane is defined by the area of a six-
membered ring¢consisting of six equilateral triangles A, =1 A~ (red).
The distance increments required for calculating the lengths of the {1000}
and {1100} interfaces are shown by s 1199 and syg jg99, TESpectively, with
local atomic bonds shown. As an auxiliary parameter, we show the height
h, and its relevant fractions of the congruent equilateral triangles. All
length parameters other than the lattice vectors are shown in purple.
Grey lines show the {1100} interfaces, which require some additional
derivations in terms of fractional &, and a fractional area A, =1 A,. A
scheme of relevant lattice vectors w1thm the {0001} plane is shown on the
upper left, with ¢ being orthogonal to the {0001} plane; indices shown in
grey present alternative combinations of lattice vectors.

Figure 12

APPENDIX A
Geometric details for NWire cross sections with a
[0001] growth vector

The cross sections of NWires growing along the ¢ = [0001]
vector naturally spare ¢ from the geometrical analysis which
proceeds via the in-plane lattice vectors of the cross section ay,
a, and a; (see Fig. 2).

We start the analysis with the w-UC projection into the
{0001} plane defining the NWire cross sections (see Fig. 12),
introducing the lattice constant a = |a,| in the process. From
Fig. 12 we see immediately that the side length of this UC
projection is also the increment sy 14y in {1100} interface
length. The unit area we use for describing the cross section
area A is represented by a six-membered Ga;Nj; ring, shown
in grey—green in Fig. 12. Both hexagons are regular and thus
similar, thereby simplifying the analysis considerably. Regular
hexagons are composed of six equilateral triangles with the
area A ,, which is another property we put to good use. From
the atomic arrangement of the w-structure in the {0001} plane,
we see that the distance of two parallel sides of six-membered
ring describing A is identical to the side length of the regular
hexagon given by the w-UC projection onto the {0001} plane.
This relationship translates into twice the height of the equi-
lateral triangles. The height of an equilateral triangle is given
from Pythagoras’ theorem as h, = %\/5 Sc» With s being the
side length of the equilateral triangle with the area A ,, as well

Acta Cryst. (2022). B78, 665—-677

673

Kénig and Smith + Analytical description of nanowires IlI



research papers

as the side length of the six-membered hexagonal ring. From
the above considerations, we see immediately that h, = a/2,
and hence s = a/ V3. With 5 as the side length and /1, as the
height of the equilateral triangle, we get its area
Ay =3sphy =a® ﬁg' From this result, it follows instantly
that the unit area is A = a’ ﬁg For cross sections with
{1100} interfaces, there are six offset areas A, occurring at
every corner; see Figs. 3 and 12. Its calculation is once again
straightforward by virtue of the hexagonal symmetry,
rendering any of three symmetry axes of the equilateral
triangles parallel to the vector class of s and thus s j190. It
follows from straightforward symmetry arguments of equi-
lateral triangles that the area of any of the three isoceles
triangles emerging by said areal decomposition is
A, =1 A, = a5 Since we have six corners with an offset
area A, each, the total offset area for NWire cross sections
with {1100} interfaces is AL @’ ==3Aq The
offset length of the {1100} interfaces becomes apparent when
looking at the isoceles triangle manifesting A _, amounting to
o O — 92 =24, The offset length for the width of
cross sections with {1100} interfaces follows straight from
symmetry arguments (see Fig. 12) as whpe, O % =21h, =1a.

We begin the derivation of relevant characteristic lengths
for the cross section with {1000} interfaces with the increment

of {1000} interface length sy g0, Which corresponds to the

[0021],

[1100] [2201]
[0007] 100211 ()é
2
90°

Figure 13 _
Geometric relationf forthe wurtzite lattice structure along the [1100]
growth vector. The er graph shows the same lattice arrangement
turned 90° clockWise around the horizonal axis of [0010] orientation, with
grey atoms and bpnds added to facilitate comparison with Fig. 12. Lattice
vectors are shown in blue, whereby only a; and ¢ are relevant in the
{1100} plane. For {0021} interfaces, a; can be alternatively described by a
combination of a; and a,, again shown in grey underneath the orthogonal
vector of the respective interface on the left side of the top graph.
Orthogonal vectors which are not part of the {0021} interface class are
shown by grey arrows and respective indices in smaller grey print.
Distance increments for the {0021} interfaces sirgp; and the {0001}
interfaces syggoo1 are shown in purple. The unit area for this cross section
Ap is shown as a hatched grey—green rectangle.

distance of two parallel sides of the w-UC projected onto the
{0001} plane. This length is equivalent to twice the height of
the six equilateral triangles composing the w-UC projected
onto the {0001} plane, hence sz 1499 = 2[1“/75 = a+/3. With no
offset areas or lengths existing for cross sections with {1000}
interfaces, our geometrical analysis for NWire cross sections

with a [0001] growth vector is complete.
APPENDIX B @

Geometric details for NWire cross sections \@ a
[1100] growth vector and two {0001} plus @T {0021}

interfaces \\/
Counterintuitively, the geometric detail the cross section
for NWires growing along the [11 U}i'ector with {1100}
interfaces is simpler yet compared &t‘ﬁe geometric deriva-
tions above. Fig. 13 shows a sm, rtion of the cross section
in the top graph, complemented By the lattice structure turned
by 90° to expose the connéefion to the symmetry considera-
tions carried out abov Whe NWire cross sections with a
[0001] growth vecto ayout of this NWire cross section is
defined by two la ectors, namely, a; and ¢ lying in the
{1100} plane. A rnative description for as is given by a; =
—a; — ap, ¢f. Ni2~2; such indices are shown in grey in Fig. 13.
Comparir%e cross sections shown in Fig. 7 with Fig. 13, we
see im igtely that the increment of the {0001} interface
len h&qual to the increment of the {1000} interface length,
viz.&,—mm = |a3] = syp,1000 = a. From a comparison of Fig. 7

ith Fig. 13, we see that the increment in width is equal to
F.0001- The increment for the {0021} interface lengths follows
in a straightforward manner from Pythagoras’ theorem and
half the length of each in-plane lattice vector as
Sir.001 = 3 v @*c?, describing the diagonal of a rectangular unit
area which in turn defines the unit area for this cross section,
namely, Ay = Jac. Finally, the increment in height is given by
the value of the [0001] lattice vector c, describing twice the
distance between two adjacent corrugated atomic planes in
the ¢ direction.

APPENDIX C

Derivation of the number series explained with respect
to the NWire cross sections with a [0001] growth
vector and six {1100} interfaces, even series

We start with the variables which show a quadratic depen-
dence on the run index i and thus the NWire diameter d3r,,
listing their evolution with i in tabular form from which we
derive their number series. Variables with linear dependence
on i, such as specific lengths, are straightforward to derive and
a description is provided at the end of this section. We start
with the number series describing the amount of NWire-
internal atoms Ny, [i].

From Table 4 we see that dNy,,./di increases by 24 for each
i — i+ 1, and that an offset of —12 exists for dNy;./di,
whereby we obtain
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Table 4

Nyir[i] presented by atoms per atom row of the respective NWire cross
section per run index i. The second column shows the atoms per atom row
of the respective NWire cross section per run index i — cf. Figs. 3(b) to 3(d)
for i =1 to 4, and Fig. 3(a) for i = 6. The third column contains the sum of
all atoms per NWire cross section Ny,.[i], the fourth column its first-
order difference quotient and the fifth column its second-order difference
quotient.

i Atoms per row Nyireli] dNyiro[i/di - d2 Ny [i)/di?

1 2[3 x 2] 12
36

2 2A5+7) x 2] 48 24
60

3 2A(7+9411) x 2] 108 24
84

4 2[(9+ 11+ 13 +15) x 2] 192 24
108

5 AL+ 13+15+17+19) x2] 300 24
132

6 2[(13415+17 +19 +21 +23) x 2] 432

dN, Wire
di

=24i — 12. (51)

These findings can be easily verified by examining the fourth
column in Table 4, where dNy;./di[i =2] =36, dNy;./
di[i = 3] = 60, etc. In order to obtain an analytic description
of Nyylil, we have to sum up all dNy,,./di, resulting in the
Riemann sum (Zeidler et al., 2004)

NWire [l] = Xl: dNWire [k] .

dk (52)
k

O

Table 5

run index i. The second column shows the bonds per t
NWire cross section per run index i — cf. Figs. 3(b) to 3
for i = 6. The first summand refers to one bond

half of the bonds in the centre of the respec
multiplied by two, as are the bonds in the

total number of bonds between atom co
Nynalil, the fourth column its first-
second-order difference quotie?bL

Ninali] presented by bonds per atom row of the respectlv@@ cross section per
row of the respective

=1to 4, and to Fig. 3(a)
tom column and is thus =
1 Nyirelil, of. Table 1. The last summand at the@jng square bracket accounts for
cross section. These bonds are

..) X 2, the latter presenting the
s of one half of the cross section apart
from its centre. The third column con@? the sum of all internal bonds per NWire
fference quotient and the fifth column its [

Equation 52 presents an integration over discrete points. As
such, there may be an integration constant coming into exis-
tence as discussed below. The summation itself can be
expressed in a sum formula as per the exponent of i:

D 24k —12 ~ 12i( 1) —12i = 127, (53)

k=1

In Equation 53, we made use of the relationship (Zeidler et al.,

2004)
i Lo \/
ii+1) @
k= : 54
;:l 5 ?. (54)

The solution for i® is trivial, as the consta t@t in dNy;,/di
is just multiplied by i in accord wit ntegration of a
constant; see Equation 53. When so Equation 53, we
obtain Ny;.l[i = 1] = 12, Ny li = 8, Nwireli = 3] = 108,
Nyireli = 4] = 192, Ny, [i = 5] 2 , Nwireli = 6] = 432, etc.
We see that Equation 53 ha ro integration constant and
thus already presents the\ﬁ} solution of Ny,.[i] as per
Equation 2.

Finding the numb% Wire-internal bonds N, 4[i] is not
quite as stralghtf we follow the same scheme as used
for Nyieli] s one bond and two atoms per atom
column, cf Vyleldmg the first summand in the total sum
of the 1nt NWire bonds as 1 Ny;..[i]. We then continue by
hstm {%{) nds per atom row, including the vertical bonds to

t'smaller atom row once we have left the interface. The

ter values are the small numbers at the left round bracket,
wend for i =2, 6 for i =3, 8 for i = 4, etc. Then we take the bonds
each atom row plus its bonds to the next smaller atom row
until we reach the atom row at the centre. These numbers of
internal bonds increase by an increment of three when moving
towards the centre of the cross section and are listed
within the round brackets per cross section in
Table 5. Since we have two bonds between each
atom column, we multiply the above values by 2,
yielding the term (...) x 2. The bonds in the centre
of the cross section are counted only once (so are not
multiplied by 2 as all off-centre values) to arrive at
exactly all bonds between atom columns for one half
of the cross section, being described by the term
..]- This term is then multiplied by two to cover

the entire cross section, apart from the bonds per
atom column being presented by the first summand

i Bonds per/ipirow Nopali]  dNgailidi - &Ny [i)/di2

1 6 +@ +2] 18
66

2 +9) x 2 +4] 84 48
114

3 54? 206 +12+15) x 2+ 6] 198 48
162

4 96 +2[(8 + 15 + 18 4+ 21) x 2 + 8] 360 48
210

5 150 +2[(10 + 18 +21 + 24 +27) x 2+ 10] 570 48
258

6 216 +2[(12+21 +24+27+30+33) x 2+ 12] 828

as described above. Table 5 presents the scheme
together with the total value of N, 4[], plus its first-
and second-order difference quotient.

While we here follow the same scheme as for
Nwielil, we choose a slightly different way of
calculating N, 4[f] from Table 5 which does not rely
as much on the intuitive discovery of dN,4[i]/di,
albeit being less concise.

We note from Table 5 that d>N, ,[i]/di* = 48, from
which it follows by discrete integration that dN, 4[i]/
di = 48i + C, with C being the integration constant
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Table 6

Ali] and its difference quotients presented in units of A~. See Appendix
A for the definition of A, and Figs. 3(b) to 3(d) fori=1to 4, and Fig. 3(a)
for i = 6. The second column shows the detailed scheme and its
components are (from left to right): Aq per row of hexagonal areas for
one half of the cross section, apart from the centre row, multiplied by two
(which includes the other half up to the centre row), A of the centre
row, A of the isoceles triangles at the six interfaces and A of the offset
area due to the six small isoceles triangles at the six corners; see Fig. 12 for
details. The third column contains the sum of all unit areas A~ of A[i], the
fourth column its first-order difference quotient and the fifth column its
second-order difference quotient.

i All[AQ] — All] dA[i)di PA[Yd?
1 (0) x2+1+6(0/6) + 1/3 11
2 @) x2+3+6(1/6) +1/3 81 ’ 6
3 B+4) x2+54+6(2/6) +1/3 214 : 6
4 4+54+6)x2+7+6(3/6) + 1/3 401 . 6
5 (5+6+7+8) x2+9+6(4/6) + 1/3 651 » 6
31

6 (64+7+8+9+10)x2+11+6(5/6) + 1/3 961

as discussed above for Ny;.[i]]. For now, we ignore C and
convert dN, ,[{]/di directly via Equation 54 to

Ny ili] = 24i(i + 1). (55)

When calculating N, 4[i] with Equation 55, we see that there is
a difference to the full solution in Table 5, accounting for the
integration constant C. The difference of row three in Table 5
to Equation 55is AN, 4[i = 1] =18 —48 = =30, AN, 4[i =2]=
84 — 144 = —60, AN, 4[i = 3]=198 — 288 = —90, AN, 4li = 4
360 — 480 = —120, or generally AN, 4[i] = —30i =
solution must be added to Equation 55 to arrive at th @
solution given by Equation 3, viz.
A((/ (56)

The third property with a quadrati g{ndence on i is the
cross section area A[i]. To this e descrlbe Ali] by the
number of areas rendered by nal rings of the w-lattice
structure when seen along 1] growth vector, hence in
units of An. All nonh al areas, such as the bigger
isoceles triangles at t&faces and the six small isoceles
triangles at the six s which we count as an offset area
(being constant ¥V n be converted into units of A; see
Appendix A fo?stails. Table 6 shows the relevant develop-
ment of A[i] with its first- and second-order difference
quotient.

We integrate d?A[i]/d?, yielding dA[i}/di = 6i — 5. This
result comes about by the first value of d>A[i]/di® occurring for
i = 2. We therefore obtain a correct solution for i = 2 under the

constraint of the integration term 6i if we introduce an inte-
gration constant of C = —5, as is evident from dA[i = 2]/

Npalil =24ii+ 1)+ C
= 24i(i + 1) — 30i
= 6i(4i —1).

di=6-2—-5=7dA[i=3)/di = 6-3—-5=13, dA[i = 4]/
di =6-4—5=19, etc. Once again, we make use of
Equation 54, obtaining

Ali] = Ag[3iGi+ 1) —5i] + A
s 1
= AO|:Z(3l —-2) + 3i|.

With Ay derived in Appendix A, we arrive at Equation 8 in
Section 3.1.

The remaining variables — Ng[i], dig[i], A[{] and w[i] - sh(%/
linear dependence on i. Due to the hexagonal sym e
consider only one interface and multiply its result . We
see from Fig. 3 that all interface atoms have one{interface
bond. These atoms increase by two for each 1 ment of i,
namely, by one atom column which cont iny/two atoms, cf.
Table 1, arriving at Ny[i] =6-2i= s presented by
Equation 4 in Section 3.1. For dg[i] %‘use 1ts increment
Sip1100 Over I and its offset y Soffset = 3 SIF.11005 S€€
Appendix A for details. We se;%(:}s ig. 3 that the number of

offset

(57)

Str.1100 Tequired to describe ilris always i — 1 plus S g
resulting in dp[i = 1] j00» and generally in dip =
Ste.a100 (0 — %) = a(i — &quation 5 and Section 3.1). The
width of the cross se [{] is given by the distance between
two of its op corners and has an offset of
Wotset = 23h, (see Fig. 12 and Appendix A). Fori=1,
we have w 2h, + Woge- With every subsequent
incremen %We add 4h, to w[i]. We thus arrive at w[i] =
ha(4i + Wottser = 5(4i — 2+§), which can be further
sim into w[i] =%(4i —3) =2a(i—1), arriving at
énon 6 in Section 3.1. The height of the cross section,
h is the distance between two parallel interfaces, starts
h the distance between two opposite corners of the hexa-
gonal ring, as is obvious from Fig. 3(b), h[i = 1] = a3 2./3; see
also Appendix A for details. With every subsequent increment
in i, such a hexagonal ring plus one adjacent bond is added,
amounting to a+/3, which is equivalent to the increment of the
{1000} interfaces sy ;o (see Fig. 12). We thus arrive at h[i] =
av/3[(i — 1) + 3 = av/3(i — ), as presented by Equation 7 in
Section 3.1.
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Setting out from Konig & Smith [Acta Cryst. (2019), B75, 788-802; Acta Cryst.
(2021), B77, 861], we present an analytic description of nominal wurtzite-
structure nanowire (NWire) cross sections, focusing on the underlying geo-
metric—crystallographic description and on the associated number theory. For
NWires with diameter dv;.[i], we predict the number of NWire atoms Nwy;.o[i],
the bonds between these Ny, 4[i] and NWire interface bonds Nyg[i] for a slab of
unit-cell length, along with basic geometric variables, such as the specific length
of interface facets, as well as widths, heights and total area of the cross section.
These areas, the ratios of internal bonds per NWire atom, of internal-to-inter-
face bonds and of interface bonds per NWire atom present fundamental tools to
interpret any spectroscopic data which depend on the diameter and cross section
shape of NWires. Our work paves the way for a fourth publication which — in
analogy to Konig & Smith [Acta Cryst. (2022). B78, 643-664] — will provide
adaptive number series to allow for arbitrary morphing of nominal
w-structure NWire cross sections treated herein.

1. Introduction

Recently, we described the cross sections of zincblende (zb)
and diamond-structure NWires of regular shape (Konig &
Smith, 2019, 2021), extending such analytic crystallographic
tools to convex cross sections of arbitrary shape, including
irregular multi-core-shell zb-NWires (Konig & Smith, 2022).
In this work, we introduce a description of regular wurtzite
(w-) structure NWire cross sections by an analytic number
series in analogy to the above-mentioned publications. While
our previous works on regular zb- and diamond-structure
NWire cross sections contained a considerable amount of
experimental data from the literature to demonstrate the
application of such analytic number series, we focus here more
on the underlying crystallographic geometry and number
theory. The reason for not including experimental data from
the literature in our present work is twofold: first, and in
contrast to zb-/diamond-structure NWires, there is little
published experimental work (if any) which describes fully
regular w-NWire cross sections in enough detail (i.e. with
sufficient spatial resolution) to match them with analytic
number series. Several literature sources exist for irregular-
shaped w-NWire cross sections, consisting of CdS, CdSe (Duan
& Lieber, 2000), GaN (Kuykendall et al., 2004), GaAs (Zardo
et al., 2009; Harmand et al., 2018), core-shell GaAs-SiGe (de
Matteis et al., 2020), InAs (Caroff et al., 2009), InP (Gao et al.,
2014) and Si (Wang et al., 2021). Second, we received several
requests to explain the underlying crystallographic geometry
and number theory used to arrive at the equations we pub-
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Table 1

Slab thickness dyap of NWire cross sections as a function of growth-axis
orientation given in unit-cell (UC) lengths per growth orientation to
achieve periodicity; numbers of atoms and of bonds per column as
described per feature seen in cross section top view are given to enable
the counting of atoms and NWire-internal bonds.

Growth Atoms per column

axis dglan in top view Bonds in top view

0001 1cye 2 1 per column, 2 per —, / and \
1100 VBa,e 1 2 per X, 1 per — and —t

f Bond symbols must be turned by 90° to align with the graphs in Figs. 6, 7 and 13

lished previously. Therefore, we elaborate on these two topics
to explain our method. Such explanations can also be applied
to the zb- and diamond-structure NWire cross sections with
[111] and [112] growth vectors we published recently, with
some minor modifications in offset areas and lengths.

We describe three w-NWire cross sections which were
shown to exist in experiment as per the references above,
namely, w-NWires growing along the [0001] vector with {110}0
interfaces, w-NWires growing along the [0001] vector with
{112}0 interfaces and w-NWires growing along the [1100]
vector with 000{1} and 00{11} interfaces. The classes of inter-
face planes are given in full extension, whereby the combi-
natorial part of the interface class is printed in curly brackets
describes the interface class, and the remaining Miller indices
are listed to facilitate the orientation in the Wurtzite lattice
geometry. Due to the complex form, indices at variables just
have the Miller indices without any brackets (cf. Table 3).
Examples of these NWire cross sections are shown in Fig. 1.

We proceed as follows: Section 2 gives a brief introduction
to the wurtzite structure, then providing crystallographic data
and the variables of interest with their indices. The number
series for generating such variables are presented in Section 3.
For each cross section, we introduce an even and an odd
version in analogy to our work on regular cross sections for zb-
NWires (Konig & Smith, 2019, 2021), accounting for different
symmetry centres of the NWire to match corresponding cross
section images with atomic resolution. We discuss the appli-

Table 2
The parameter list for each NWire cross section; all parameters are
calculated per NWire slab.

Parameter Description

Nwire No. of atoms forming NWire

Nbnd No. of bonds within NWire

Nip No. of interface (IF) bonds of NWire
Nape—1F No. of bonds per IF type {abc}

dape_1F Length of IF with orientation {abc}

w Maximum width of NWire cross section
h Maximum height of NWire cross section
A Cross section area

cation of these variables in Section 4 and sum up our findings
in Section 5. The Appendices consist of three parts, providing
additional input on geometric details for cross sections of
w-NWires growing along the [0001] vector (Appendix A), for
the cross section of w-NWires growing along the [1100] vector
(Appendix B) and for the derivation of all even number series
of the NWire cross section with a [0001] growth vector and
{110}0 interfaces as an example (Appendix C).

2. General remarks on analytical number series, struc-
tural boundary conditions and nomenclature

Apart from several polar II-VI and III-V semiconductors
possessing w-structure symmetry, Si-NWires were observed to
expose w-structure symmetry under local stress in de Matteis
et al. (2020) or when grown by specific bimetallic catalysts
(Wang et al., 2021). Both material groups share the same
crystal symmetry (space group P6smc) apart from their
primitive basis which is A-B (Ga-N) or A-A (Si-Si)
(Hammond, 2001). The w-unit cell (w-UC) is shown in Fig. 2.

Defect-free crystalline NWires have a one-dimensional
periodicity along their growth axis, enabling their cross section
to be described by a disk with a thickness d,, = 1 UC in the
respective growth direction. For the two cross sections with a
[0001] growth vector, this thickness is given by |e| = ¢y (see
Fig. 2). For the remaining cross section with a [1100] growth

o oo @ 29 9 p p a
° /00/0 ; 98 93 29 29 09 N
29 09 29 o 29 09 290
& 9 ; 23 99 03 23 090 » “
3 29 09 23 29 09 - “8
28 99 923 99 29 90 e | | )
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Figure 1

Examples of NWire cross sections with w-structure treated in our work, shown for a binary compound such as GaN: (a) [0001] growth vector and six
{110}0 interfaces, (b) [0001] growth vector and six {112}0 interfaces, and (c¢) [1100] growth vector, 000{1} interfaces at the top and bottom, plus four 00{11}
side interfaces. These cross sections have experimental counterparts and are thus relevant to structural analysis.
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Table 3
List of NWire shape indices [cross section, growth direction and side
interfaces (where necessary)] added to all parameters as a superscript.

Superscript Growth axis Cross section shape Side interfacest
0001 —QI1120 0001 Hexagon {112)0

0001 — O[1100 0001 Hexagon {11030

1100 - O 1100 Hexagon

+ Only when required to distinguish cross sections.

vector, we obtain |a,|v/3 = ducv/3 = dyap; see side views of
the cross sections in Figs. 7 and 8. The number of atoms per
atom column and the number of bonds within and between
these naturally depend on dg,, and the growth vector. We
listed both parameters along with dg,, in Table 1, with a
diagrammed version for the bonds to allow for an easy inter-
pretation of the respective cross sections for geometrical
analysis and number theory in Section 3.

Next, we introduce the variables we describe analytically
per NWire cross section. The first group of variables describes
the atoms or bonds (internal, interfacial) constituting the
NWire slab. The second group contains all variables which
provide spatial information, such as width, height, interface
lengths and cross section area (Table 2).

Finally, we need a clear nomenclature for the respective
growth vector and interface orientations to distinguish the
above variables. Such indices are given in Table 3.

Although all NWire cross sections in our work have a
hexagonal shape, their direct comparison per NWire size is
most appropriately done by calculating their diameter,
assuming a circular shape of the cross section via

Figure 2

Periodic unit cell (UC) of a wurtzite solid with lattice vectors ay, a, and as,
viz. aye = |a,|, and ¢, viz. ¢, = |¢|, space group P6smc (wurtzite) covered
in this work, such as gallium nitride (w-GaN). The orange (Ga) and grey—
blue (N) atoms framed in dark green show the primitive UC. The full
w-UC is formed by including atoms shaded in light grey (Ga) and dark
grey (N), and is outlined in bright green. All atoms at the lateral periodic
boundaries, i.e. for all a, # 0 and ¢ = constant, were shown to facilitate
UC visualization. The NGaj (left) and GaN; (right) tetrahedra inter-
linked within a couple of corrugated atomic planes are shown by magenta
lines.

Figure 3

(a) Definition of the characteristic lengths for the w-structured NWires
growing along the [0001] axis with a hexagonal cross section and six
{110}0 interfaces, which are shown by translucent black lines. The six
isoceles triangles located at the six corners of the cross section present the
offset area and offsets of interface lengths which are all constant for all
cross sections of this type, applying to even and odd series alike. (b)—(e)
Top and side views of the first four members, even series: (b) Xy, (i = 1),
(c) Xyg (i = 2), (d) Xq08 (i =3) and (e) X9, (i = 4). The colours of the
internal atoms are orange for Ga and grey-blue for N. Red atoms have
one interface bond.

4 x Ali]. @)

Sl =\~

Values of d&}{fe will become relevant in Section 4.

3. Analytical number series of nanowire cross sections

As we demonstrated in our previous work concerning zb-
NWire cross sections (Konig & Smith, 2019, 2021) with
experimental data (Yi ef al., 2011), it is a great advantage to
have two different descriptions per cross section, each
featuring a distinct symmetry centre. To this end, we introduce
an even and an odd version for each cross section in analogy to
our work mentioned above, accounting for different symmetry
centres of the NWire to match corresponding cross section
images with atomic resolution. Both the even and odd versions
for each cross section are covered in the same section below.
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For brevity, we keep the description to a minimum and only
add information where essential.

3.1. NWires growing along the [0001] direction with a
hexagonal cross section and six {110}0 interfaces

Additional information on the geometric details of the
wurtzite structure for calculating offsets in characteristic
lengths and areas of this cross section is given in Appendix A.

We start with the even series of this NWire cross section. A
detailed numerical derivation of Equations 2-8 below is given
in Appendix C as an example.

Mool = 127 @
Noool O] = 6i(4i — 1) 3)
NGO — 12 )
_y1icos o1
d?lgf);ve?“mo[l] = Oy <l - g) (5)
0001—O)|1100¢ » o1
Weven [l] - 2auc L= g (6)
= 24
- 1
hlen Ol = a3 (i - 5) ()

0001—O){11007 ; V3 2 1
Aeven Ol [l] - T(auc) |:l(3l - 2) + 3:| (8)
The definition of interface boundaries for the calculation of
characteristic lengths and the cross section area is shown in
Fig. 3, together with top and side views of the cross sections for
the first four members of the even number series.

(c)

Figure 4

Top and side views of the first four members of w-structured NWires
growing along the [0001] axis with a hexagonal cross section and six
{110}0 interfaces, odd series: (a) X3, (i = 1), (b) Xg4 (i =2), (¢) Xig0 (i =3)
and (d) Xy60 (i = 4). For atom colours, see Fig. 3.

We now list the odd series of the cross sections with a [0001]
growth vector and {110}0 interfaces.

NOWL-OIIO) — (12 4 4)(i + 1) ©)
NIO-ONI0R] = 2(12i 4 1) + 1) (10)
NQOLOMOL] — 434 4-2). (11)

From Equation 11, we see that N?S?;C;iomoo[i]

N?g?;v_egmm[i] + 8, accounting for the elongated form of the

odd series cross sections.

7 1
0001—O11007 7 .
le,tb,ndd [[] = a, <l - 3)

(12)
_ doom—ouioo[i]
— YIF,even
AP0 = a(1+)
,side, o uc 3 (13)
=d?§f)th%”00[i+l]
- 1
wgggl—ouloo[i] = 2a,, (i + 8)
(14)
— 000101100 ,-_,_1
even 2
— 1 - : 2
O = a5+ 5)
3 (15)
_ hooorOHIOO[i +1]
A0 3 i
A olioor;) — f(auc)z i(3i +2) (16)

2
The first four members of the odd number series are shown in
Fig. 4.

3.2. NWires growing along the [0001] direction with a
hexagonal cross section and six {112}0 interfaces

This cross section is more straightforward in that it does not
have any offsets in characteristic lengths or cross section area.
As before, we start with the even series of this cross section.

N OM0) — 12i(3i — 1) (17)
N0 — 36i(2i — 1) (18)
NGO — 24 (19)

5 1
ditees i = 4,3 (i ‘§> (20)

5 1
ng(e)i—O\llZO[i] = 2auc«/§<i - g) (21)

= 2o
ROOL-OMDN) — g (3i — 1) (22)

5 3

AND-OIN0[] = f(aucf@i -1y (23)

2
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The first four members of the even number series are shown in
Fig. 5.

We now list the odd series of the cross sections with a [0001]
growth vector and {112}0 interfaces.

— 1 2
Nyow Q1] = 36 (i + E) -5 (24)
NGO = 12i(6i + 5) (25)
Niioad™ "1 = 8Gi +2) 6)
= Nitewr 1+ 16
5 1
doom—omzo = auc\/g(i _ _)
IF,tb,odd [ ] 3 (27)
_ dOOOPOHOOO[i]
— "“IF,even
diias 'l = 4,3 (z‘ + %)
,side,o uc 3 (28)
= dipever 1 +1]
5 1
wg(()l(t)ilfo\mo[i] _ Zauc \/3(1 + 6)
(29)
— w0 4]
2
Hoaa 0"l = 4, (3i +2) 0)
— hoom—ouooo[l- + 1]
o, V3
Agaa Ml = = (a,) 3i(3i + 2) (31)

2
The first four members of the odd number series are shown in
Fig. 6.

@

\

Figure 5

Cross section and side view of w-structured NWires with a [0001] growth
axis, hexagonal cross section and {112}0-oriented interfaces, even series:
(@) Xo4 (i = 1), (b) Xizo (i = 2), (c) Xogg (i = 3) and (d) Xsp5 (i = 4). We
skipped the assignment of interface lengths, width, and the height of this
cross section type as these can be seen in a straightforward manner. Red
atoms have one interface bond and blue atoms have two interface bonds.
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Figure 6

Cross section and side view of w-structured NWires with a [0001] growth
axis, hexagonal cross section and {112}0-oriented interfaces, odd series:
(@) X6 (i = 1), (b) Xa20 (i = 2), (¢) Xuze (i = 3) and (d) X724 (i = 4). For
atom colours, see Fig. 5.

3.3. NWires growing along the [1100] direction with a hexa-
gonal cross section and four 00{11} plus two 000{1} interfaces

This cross section reveals the congruence between zb- and
w-structures when seen along specific lattice vectors: the in-
plane atomic arrangement, as seen along the [112] growth
vector for the zb-structure, and along the [1100] growth vector
for w-structures, become indistinguishable. We encourage the
reader to compare the top views of the NWire cross sections in
Figs. 7 and 8 with those in Figs. 6 and 7 of Konig & Smith
(2019, 2021). From the side view of the cross sections in Figs. 7
and 8, and the mentioned figures in Konig & Smith (2019,
2021), it becomes apparent that the sequence of atomic planes
is the same for both structures, resulting in identical projec-
tions of the w- and zb-structures with [1100] and [112] growth
vectors, respectively. As a result, all number series for this w-
NWire cross section are identical to the zb-NWire cross
section with a [112] growth vector and two {111} plus four
{131} interfaces in Konig & Smith (2019, 2021), apart from
structure-specific gauge factors for characteristic lengths and
the area of the cross section.

As was the case in Section 3.2, no offsets in characteristic
lengths or cross section area exist. Derivations for increments
in specific lengths and cross section area can be found in
Appendix B. Despite the tangled lattice vectors for growth
and interface orientations, such derivations are more straight-
forward as compared to both cross sections for w-NWires with
a [0001] growth vector. We start again with the even series of
this cross section.
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Figure 7

(a) Definition of characteristic lengths for the w-structured NWires
growing along the [1100] axis with a hexagonal cross section and two
000{1} interfaces at the top and bottom, plus four side interfaces with a
00{11} orientation, shown along with the assignment of the interface
atoms to the respective interface plane. Top and side views of the first
four members, even series: (b) X6 (i = 1), (¢) Xs6 (i = 2), (d) Xi20 (i = 3)
and (e) X0 (i = 4). For atom colours, see Fig. 5.

N0 il = 4(4i + 1) (34)

Noptt— R eveald]  4(3i +2)

Nogiy Revenlil 4= 1) (35)
342
i1

The first line in Equation 35 shows the explicit results per
interface orientation, while the second line provides the
simplified ratio.

100— . (auc)2+(cuc)2 .
D ol = e F) 30

100— . o1
ARl = (i) 7

Wit Olil = 2= (4i - 1) (39)
Biain Ol = €y (39)

1 a,.C
Aly-op =t

S i3 = 1) (40)

The definition of interface boundaries for the calculation of
characteristic lengths and the cross section area, and the
assignment of interface atoms to the respective interface plane
are shown in Fig. 7, together with top and side views of cross
sections for the first four members of the even number series.
We now list the odd series of the cross sections with a [1100]
growth vector and four 00{11} plus two 000{1} interfaces.

NHO-O [i] = 12i(i + 2) 4 10 (41)
NSO = 2(6i + 1)(2i 4 3) + 5 (42)

N0 [ =2@8i +9) = NIUO [i]+14  (43)

IF, tot,even

Né;??:g,odd[i] _ 4(3i+5)

Noggt - Roaalil  22i=1)
N R el + 12 44)
N R vl +2
_26i+5)

2i—1

The first line in Equation 44 shows the explicit results per
interface orientation, while the last line provides the simplified
ratio.

:
%

Cross section and side view of w-structured NWires growing along the
[1100] axis with a hexagonal cross section and two 000{1} interfaces at the
top and bottom, plus four side interfaces with a 00{11} orientation, odd
series: (a) Xus (i = 1), (b) Xi06 (i = 2), () X190 (i = 3) and (d) Xaog (i = 4).
For atom colours, see Fig. 5.
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Figure 9

Ratio of NWire-internal bonds to NWire atoms Nyna/Nwire shown for all
three NWire cross sections as a function of the NWire diameter d5.... We

chose the lattice parameters of GaN; see text for details. e
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The first four members of the odd number series are shown in
Fig. 8.

4. Usage of number series ratios on nanowire cross
sections

The primary parameters of interest are the number of atoms
within the NWire cross section, Nwir[i], the number of bonds
between such atoms, Nyyq[i], and the total number of interface
bonds, Nig[i]. The width, height and interface lengths of NWire
cross sections serve mostly as a metric pointer to pick the right
run index i for arriving at the correct description of the above
variables in accord with experimental data (images with
atomic resolution). The cross section areas allow the calcula-
tion of the areal densities of the electric or thermal currents,
which allows for a direct comparison between different NWire
sizes and crystallographic orientations. From the three
primary parameters we listed above, we can form the ratios
Nonalil/Nwire[i], Nielil/ Nonalil and Nig[i]/ Nwire[i], all of which

circ

can be compared to each other by their respective dyir.[i].

Several research groups (Shtrikman et al., 2009; Zardo et al.,
2009; Dubrovskii & Sibirev, 2008) obtained NWire diameters
in the range d%{,ricre = 20-40 nm as an upper size limit for the
wurtzite structure, below which it is (meta-)stable, converting
to the zincblende structure for bigger diameters. Therefore, we
limit the plotting of d$r¢ . to a maximum of 40 nm which allows
the data for ultrasmall diameters to be assessed in more detail.

We start with the ratio Nynq/Nwire, Which describes the
number of NWire-internal bonds per NWire atom. This ratio
converges to Npnalil/Nwire[]] = 2 for i — 00, as becomes
evident from Fig. 1; each atom has four bonds, whereby each
bond is shared with a first next-neighbour (1-nn) atom; 4/2 =2
if the w-structure is infinite (and thus no bonds are ‘lost’ to any
interfaces). The ratio Npnq/Nwire 1S a good gauge of the
internal stress of an NWire, e.g. to counteract external forces
from a substrate or shell, or for the resistance to integrate
foreign atoms such as dopants onto lattice sites. In an inverse
manner, Npnq/Nwire can serve as a precise guide for predicting
stress propagation and a transfer of the crystallographic
structure onto NWire shells as a consequence, such as for w-Si
grown around zb-InP NWires (Algra et al., 2011). The
ratio Npna/Nwire as a function of d&i,rifc is shown for w-GaN
NWires as an example in Fig. 9, whereby we used the
unit-cell parameters a = 3.1891 A and ¢ = 5.1855 A (Adachi,
2004).

As Npna/Nwire decreases for shrinking diameters d%{,rfre, the
ability of the NWire to counterbalance external stress — or to
exert crystallographic information on a shell material —
increases. This statement originates from the number of bonds
per NWire atom Npnq/Nwire Which can tolerate stress. Lower
values of dﬁ,i\,rfre decrease Npna/Nwire, thus increasing the stress
per NWire-internal bond. Thereby, a build-up of counter-
stress occurs until a certain stress limit of the NWire is
exceeded, leading to structural defects, such as stacking faults
and grain boundaries, eventually rendering the NWire poly-
crystalline. Experimental evidence for the above argument

10°7 o Growth:  [0001]  [0001]  [1700]
. IF: {17030 {112)0 00{11},000{1}
a e evenfodd = / o e [ o & [ o
] O o,
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Figure 10

Ratio of interface bonds to NWire-internal bonds Nig/Npna shown for all
three NWire cross sections as a function of the NWire diameter dy;... We
chose the unit-cell parameters of GaN; see text for details.
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exists on a general basis for Si-NWires and Si nanocrystals,
where the incorporation of foreign atoms onto lattice sites
becomes increasingly unlikely for shrinking df;}icre (Stegner et
al., 2009; Bjork et al., 2009), with a hard limit of Nyng/Nwire =
1.94 &£ 0.01 for both NWires and nanocrystals (Konig & Smith,
2021). This process is called self-purification (Dalpian &
Chelikowsky, 2006, 2008).

From Fig. 9 we see that NWires with a [0001] growth vector
and {110}0 interfaces behave differently. The values of
Nond/Nwire are significantly lower when compared to the other
two w-NWire types, which have very similar values of
Nbnda/Nwire OVEr d%‘;,‘;e. From that observation, we can establish
two hypotheses when considering NWires with similar d§ic,
values. One, NWires with a [0001] growth vector and {110}0
interfaces should be more vulnerable to external stress, or —in
reverse — are less likely to imprint their crystallographic
information onto an epitaxial shell material. Two, any incor-
poration of foreign atoms onto lattice sites in NWires with a
[0001] growth vector and {110}0 interfaces will be more likely
compared to the other two NWire types. From a higher ratio of
Npna/Nwire, We can also deduce that we obtain a smaller
minimum d$r¢ . below which the NWires with a [0001] growth
vector and {110}0 interfaces would suffer from significant
structural defect densities and eventually significant amor-
phization. As for structural arguments, NWires with a [0001]
growth vector and {liO}O interfaces should be the most stable
NWire type.

The ratio of interface bonds to NWire-internal bonds
Nir/Npna is a structural parameter similar to the ratio
Nbnd/Nwire, though here the key information is the inclusion
of the interface as the coupling means between the NWire and
its environment. Therefore, Nir/Npnq presents a gauge for
the static and dynamic stress transfer over the interface.
Naturally, Nig/Nynq declines for increasing d%{,rl‘;e, eventually
converging to Npnali]l/Nwire[i] = 0 for i — co. We can obtain
the respective gradient by which Nig/Npng decreases for
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Figure 11

Ratio of interface bonds to NWire atoms Nir/Nwire shown for all three
NWire cross sections as a function of the NWire diameter dy;... We chose
the unit-cell parameters of GaN; see text for details.

sufficiently large i from the respective equations for Nir and
Npng, namely, their leading terms in powers of i. Ordered by
gradient, we get Noom OI20;1/ N1 =020 — 4!

N{i‘,ﬁlfo'“m[ ]/NSSSi O] — 1~ and NL109-Ofi/ N 100~ O[ ] =

!, As becomes apparent from Fig. 10, such gradients do not
appear to play a major role for d'f,{,’fm < 40 nm. For metastable
crystallographic systems such as NWires, a threshold for
N1r/Npna exists below which structural defects start to occur at
or in the vicinity of interfaces which represent the weakest link
in the crystallographic construct. From Fig. 10, we see that
Nir/Npna of the cross section with a [0001] growth vector and
{110}0 interfaces has lower values as compared to the two
other NWire types. One origin of this finding follows straight
from the higher number of internal bonds per NWire atom
Nbnd/Nwire, leaving less bonds available to the interface.
Another contribution arises from the lower number of inter-
face bonds per {110}0 interface NOOO1 Ol1io0 , followed by the
value of {112}0 interfaces NOO01 ~olfiz , and evgntually by the
00{11}-dominated interface bond densities NI];??(;O. With the
lowest Nig/Nynq values for NWires with a [0001] growth vector
and {110}0 interfaces, such NWires are more likely to possess
interface defects: more internal bonds exist per interface bond
to counteract stress between the NWire and its environment.
A few minor features exist in Fig. 10. From Equations 4, 11, 19
and 26, it follows that N?Sm oo N;’S“l ~Om% for i and
consequently d%{,ﬂie — 00, since Ny differs only by a constant
given by the 12 corner atoms with two interface bonds each of
the cross section with a [0001] growth vector and {112}0
interfaces. The values of Nig/Npng are furthermore important
for phonon propagation and reflection, a feature important for
nanoscopic thermal transport relevant for heat dissipation
(Vazquez et al., 2009), thermoelectrics (Dubi & Ventra, 2011)
or hot carrier photovoltaics (Konig et al., 2020).

The last ratio we look at is the number of interface bonds
per NWire atom, Nir/Nwir. This ratio describes the number
of electronic ‘delivery channels’ per NWire atom, and thus the
structural ability (versus quantum-chemical ability) of the
NWire to acquire or deliver electronic charge from or to its
environment, respectively, by charge transfer. Such transfers
occur via interface dipoles (Campbell et al., 1996), the pillow
effect (Otero et al., 2017) or the NESSIAS effect (Konig et al.,
2021). Fig. 11 shows the values of all cross sections as a
function of d$re .

The cross section with a [1000] growth vector and {110}0
interfaces yields the lowest values of Nig/Nwire per dﬁ{,rfre. The
values for the remaining two cross sections are virtually
identical for ultrathin NWires with dit., < 3 nm. Then,
Nir/Nwire of the cross section with a [0001] growth vector and
{112}0 interfaces gets smaller, reaching ca. 90% of the value
obtained for the cross section with a [1100] growth vector and
two 000{1} plus four 00{11} interfaces for dys, = 30-40 nm.
This finding indicates that the interface presents less of a
bottleneck to charge transfer for the latter NWire class. We
can thus expect a charge transfer which affects NWire atoms
being located further towards the centre of the cross section of
such NWires, and consequently a larger NWire diameter up to
which the NESSIAS effect occurs at full scale.

)
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5. Conclusions

We have deduced analytical number series for w-structured
NWires as a function of diameter and interface faceting,
featuring regular hexagonal cross sections with a [0001]
growth vector and six {110}0 interfaces, regular hexagonal
cross sections with a [0001] growth vector and six {112}0
interfaces, and nonregular hexagonal cross sections with a
[1100] growth vector and two 000{1} plus four 00{11} interfaces.
All cross sections are presented in an even and an odd scheme
to facilitate matching to different symmetry centres encoun-
tered experimentally. The calculated parameters are the
number of NWire atoms Nwieli], the number of bonds
between such atoms Npyg[i] and the number of NWire inter-
face bonds Nig[i], the interface lengths dg[i], the cross section
widths w[i], the heights A[i] and the total cross section areas
Ali]. All expressions are linked to NWire spherical diameters
dwire[f] to enable a direct parameter comparison between
different morphologies.

Geometrical details of the derivation of increments and
offsets for area and interface lengths, as well as heights and
width, of all cross sections are provided in the Appendix
sections to facilitate a retracing of the number series, com-
plemented by a complete derivation of all even number series
for cross sections with a [0001] growth vector and six {110}0
interfaces.

From the three atomistic parameters Nwjire, Nonga and Nyg,
three ratios were shown to yield valuable structural informa-

c [0110] Si.i00
[1120]
[1070]

[2110]
©

[1700]

Figure 12

Geometric relations for the wurtzite lattice structure along the ¢ = [0001]
growth vector. The unit cell in the {0001} plane is shown in yellow and its
relevant lattice vectors a;, a, and a3 are shown in blue. The unit area A
(grey—green) for the {0001} plane is defined by the area of a six-
membered ring, consisting of six equilateral triangles A = % Ag (red).
The distance increments required for calculating the lengths of the {112}0
and {110}0 interfaces are shown by sr 1190 and Sp.1130- Tespectively, with
local atomic bonds shown. As an auxiliary parameter, we show the height
ha and its relevant fractions of the congruent equilateral triangles. All
length parameters other than the lattice vectors are shown in purple.
Grey lines show the {110}0 interfaces, which require some additional
derivations in terms of fractional 4, and a fractional area A, = % Ap. A
scheme of relevant lattice vectors within the {0001} plane is shown on the
upper left, with ¢ being orthogonal to the {0001} plane.

tion for w-NWires, extending to electronic applications. The
ratio Npna/Nwire is useful to gauge the internal stress of
NWires, which is key in the evaluation of self-purification and
dopant segregation as encountered in impurity doping, and
the general stress response of NWires to an external force.
Both Nip/Npnga and Npna/Nwire can be applied to optical
spectroscopy methods, such as FT-IR, Raman, photo-
luminescence or electroluminescence, to interpret and
deconvolute spectra into NWire-immanent (internal) and
matrix/shell (external) components. The ratio Nig/Nwire
describes the electronic interaction of NWires with the
embedding matrix or ligands to gauge the impact of interface
dipoles or interface charge transfer on the NC electronic
structure.

As noted for our work on zb- and diamond-structured
NWire cross sections, the analytic description of w-NWire
cross sections provides a major advance in experimental data
interpretation and the understanding of III-V, II-VI and
group IV-based w-NWires. In more detail, the number series
allows for a deconvolution of the experimental data into
environment-exerted, interface-related and NC-internal
phenomena. The predictive power of our method could render
it an essential tool in the prediction of NWire cross sections
and in tuning the processing conditions for tailoring NWires
towards desired shapes and interface properties.

We plan to publish a fourth article shortly which will
introduce cross-section morphing into arbitrary convex shapes
of the w-NWire cross sections introduced herein, again in
analogy to our works on zb-/diamond-structure NWires
(Konig & Smith, 2022). To this end, experimental data can be
interpreted with high accuracy as, to the best of our knowledge
with respect to the current state of the art, no data on
w-structure NWires with regular cross sections have been
published.

APPENDIX A

Geometric details for NWire cross sections with a [0001]
growth vector

The cross sections of NWires growing along the ¢ = [0001]
vector naturally spare ¢ from the geometrical analysis which
proceeds via the in-plane lattice vectors of the cross section ay,
a, and a; (see Fig. 2).

We start the analysis with the w-UC projection into the
{0001} plane defining the NWire cross sections (see Fig. 12),
introducing the lattice constant a = |a,| in the process. From
Fig. 12 we see immediately that the side length of this UC
projection is also the increment sy 7., in {110}0 interface
length. The unit area we use for describing the cross section
area Ag is represented by a six-membered GazNj; ring, shown
in grey—green in Fig. 12. Both hexagons are regular and thus
similar, thereby simplifying the analysis considerably. Regular
hexagons are composed of six equilateral triangles with the
area A, which is another property we put to good use. From
the atomic arrangement of the w-structure in the {0001} plane,
we see that the distance of two parallel sides of six-membered
ring describing A¢ is identical to the side length of the regular
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hexagon given by the w-UC projection onto the {0001} plane.
This relationship translates into twice the height of the equi-
lateral triangles. The height of an equilateral triangle is given
from Pythagoras’ theorem as hp = %\/5 5oy With so, being the
side length of the equilateral triangle with the area A, as well
as the side length of the six-membered hexagonal ring. From
the above considerations, we see immediately that ha = a/2,
and hence s = a/ V3. With so as the side length and ha as
the height of the equilateral triangle, we get its area
Ap =31soha =a* ﬁ. From this result, it follows instantly
that the unit area 1s Ag = a’ 23? For cross sections with
{110}0 interfaces, there are six offset areas A, occurring at
every corner; see Figs. 3 and 12. Its calculation is once again
straightforward by virtue of the hexagonal symmetry,
rendering any of three symmetry axes of the equilateral
triangles parallel to the vector class of s and thus sig 1590. It
follows from straightforward symmetry arguments of equi-
lateral triangles that the area of any of the three isoceles
triangles emerging by said areal decomposition is

A, =1Ap =4’ 121—3 Since we have six corners with an offset
area A, each, the total offset area for NWire cross sections

: - . . 0001—QI1100 _ 2 1 _ 1
with {110}0 interfaces is A =a m—gAO. The

offset

(1700] [0071]
[0007] [0011]
. 90°
Figure 13

Geometric relations for the wurtzite lattice structure along the [1100]
growth vector. The lower graph shows the same lattice arrangement
turned 90° clockwise around the horizonal axis class of (0010) orienta-
tion, with grey atoms and bonds added to facilitate comparison with
Fig. 12. Lattice vectors are shown in blue, whereby only a; and ¢ are
relevant in the {1100} plane. A scheme of relevant lattice vectors within
the {1100} plane is shown on the upper left, with ¢ and a3 being ortho-
gonal to the {1100} plane. Distance increments for the 00{11} interfaces
Stroo21 and the 000{1} interfaces syr o901 are shown in purple. The unit area
for this cross section Ap is shown as a hatched grey-green rectangle.

offset length of the {110}0 interfaces becomes apparent when
looking at the isoceles triangle manifesting A., amounting to
Sot M = 22p =24, The offset length for the width of
cross sections with {110}0 interfaces follows straight from
symmetry arguments (see Fig. 12) as wg{f)f(ilet—omoo = Z%h A=
la.

’ We begin the derivation of relevant characteristic lengths
for the cross section with {1 12}0 interfaces with the increment
of {112}0 interface length Sir.1130. Which corresponds to the
distance of two parallel sides of the w-UC projected onto the
{0001} plane. This length is equivalent to twice the height of
the six equilateral triangles composing the w-UC projected
onto the {0001} plane, hence sy 1,3, = 251‘/7g = a+/3. With no
offset areas or lengths existing for cross sections with {112}0
interfaces, our geometrical analysis for NWire cross sections
with a [0001] growth vector is complete.

APPENDIX B )
Geometric details for NWire cross sections with a [1100]
growth vector and two 000{1} plus four 00{11} interfaces

Counterintuitively, the geometric details of this cross section
are simpler yet compared to the geometric derivations above.
Fig. 13 shows a small portion of the cross section in the top
graph, complemented by the lattice structure turned by 90° to
expose the connection to the symmetry considerations carried
out above for the NWire cross sections with a [0001] growth
vector. The layout of this NWire cross section is defined by two
lattice vectors, namely, a; and ¢ spanning the {110}0 plane.
Comparing the cross sections shown in Fig. 7 with Fig. 13, we
see immediately that the increment of the 000{1} interface
length is equal to the increment of the {112}0 interface length,
viz. Stp.oo01 = |az| = Stp.1130 = 4- From a comparison of Fig. 7
with Fig. 13, we see that the increment in width is equal to
str.0001- The increment for the 00{11} interface lengths follows
in a straightforward manner from Pythagoras’ theorem and
half the length of each in-plane lattice vector as
SIF.0011 = %\/ a*c?, describing the diagonal of a rectangular unit
area which in turn defines the unit area for this cross section,
namely, Ap = %ac. Finally, the increment in height is given by
the value of the [0001] lattice vector ¢, describing twice the
distance between two adjacent corrugated atomic planes in
the ¢ direction.

APPENDIX C

Derivation of the number series explained with respect to the
NWire cross sections with a [0001] growth vector and six
{110}0 interfaces, even series

We start with the variables which show a quadratic depen-
dence on the run index i and thus the NWire diameter dsre..,
listing their evolution with 7 in tabular form from which we
derive their number series. Variables with linear dependence
on i, such as specific lengths, are straightforward to derive and
a description is provided at the end of this section. We start
with the number series describing the amount of NWire-
internal atoms Nwie[i].
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Table 4

Nwire[i] presented by atoms per atom row of the respective NWire cross
section per run index i. The second column shows the atoms per atom row
of the respective NWire cross section per run index i — cf. Figs. 3(b) to 3(d)
for i =1 to 4, and Fig. 3(a) for i = 6. The third column contains the sum of
all atoms per NWire cross section Nyie[i], the fourth column its first-
order difference quotient and the fifth column its second-order difference
quotient.

i Atoms per row Nwire[i] dNwirelil/di d* Nyyire[i])/di?

1 23 % 2] 12
36

2 2AG5+7) x2] 48 24
60

3 2[(7 +9 +11) x 2] 108 24
84

4 2[(9 4 11 + 13 + 15) x 2] 192 24
108

5 (11 +13+15+17+19) x 2] 300 24
132

6 2[(A34 15417 +19 + 21 +23) x 2] 432

From Table 4 we see that dNwj./di increases by 24 for each
i — i + 1, and that an offset of —12 exists for dNwi./di,
whereby we obtain
dNiw = 24i — 12. (51)
di
These findings can be easily verified by examining the fourth
column in Table 4, where dNwie/di[i =2] =36, dNwir/
di[i = 3] = 60, etc. In order to obtain an analytic description
of Nwirelf], we have to sum up all dNwj./di, resulting in the
Riemann sum (Zeidler et al., 2004)

Nl = 3 Pell] (52)
k

Table 5

Npnali] presented by bonds per atom row of the respective NWire cross section per
run index i. The second column shows the bonds per atom row of the respective
NWire cross section per run index i — ¢f. Figs. 3(b) to 3(d) for i = 1 to 4, and to
Fig. 3(a) for i = 6. The first summand refers to one bond per atom column and is
thus = %Nw“e[i], cf. Table 1. The last summand at the closing square bracket
accounts for half of the bonds in the centre of the respective cross section. These

Equation 52 presents an integration over discrete points. As
such, there may be an integration constant coming into exis-
tence as discussed below. The summation itself can be
expressed in a sum formula as per the exponent of i:

> 24k —12 ~ 12i(i +1) —12i = 127, (53)

k=1

In Equation 53, we made use of the relationship (Zeidler et al.,
2004)

;k =—i(i;1). (54)

The solution for i is trivial, as the constant offset in dNwire/di
is just multiplied by i in accord with an integration of a
constant; see Equation 53. When solving Equation 53, we
obtain Nwir[i = 1] = 12, Nwire[i = 2] = 48, Nwire[i = 3] = 108,
Nwire[i = 4] = 192, Nwire[i = 5] = 300, Nwire[i = 6] = 432, etc.
We see that Equation 53 has a zero integration constant and
thus already presents the final solution of Nwie[i] as per
Equation 2.

Finding the number of NWire-internal bonds Nyy4[i] is not
quite as straightforward; we follow the same scheme as used
for Nwire[f]. There is one bond and two atoms per atom
column, cf. Table 1, yielding the first summand in the total sum
of the internal NWire bonds as %NWire [{]. We then continue by
listing the bonds per atom row, including the vertical bonds to
the next smaller atom row once we have left the interface. The
latter values are the small numbers at the left round bracket,
i.e.4fori=2,6fori=3,8fori=4,etc. Then we take the bonds
of each atom row plus its bonds to the next smaller atom row
until we reach the atom row at the centre. These numbers of
internal bonds increase by an increment of three when moving
towards the centre of the cross section and are listed within the
round brackets per cross section in Table 5. Since we
have two bonds between each atom column, we
multiply the above values by 2, yielding the term
(...) x 2. The bonds in the centre of the cross section
are counted only once (so are not multiplied by 2 as all
off-centre values) to arrive at exactly all bonds
between atom columns for one half of the cross

bonds are multiplied by two, as are the bonds in the term (...) x 2, the latter

presenting the total number of bonds between atom columns of one half of the
cross section apart from its centre. The third column contains the sum of all internal
bonds per NWire Npngli], the fourth column its first-order difference quotient and

the fifth column its second-order difference quotient.

section, being described by the term [...]. This term
is then multiplied by two to cover the entire cross
section, apart from the bonds per atom column being
presented by the first summand as described above.

i Bonds per atom row

1 6422 x2+72] 18
66

2 24 4+2[(449) x 2 +4] 84 48
114

3 54 42[(6 + 12 + 15) x 2 + 6] 198 48
162

4 96 +2[(8 + 15 + 18 +21) x 2 48] 360 48
210

5 150 +2[(10 + 18 +21 +24 +27) x 2+ 10] 570 48
258

6 21642[(12 421 424 427 430 +33) x 2+ 12] 828

Nonali] dNpna[il/di d* Nonalil/di®

Table 5 presents the scheme together with the total
value of Nyyli], plus its first- and second-order
difference quotient.

While we here follow the same scheme as for
Nwire[f], we choose a slightly different way of calcu-
lating Nppg[i] from Table 5 which does not rely as
much on the intuitive discovery of dNpyg[i]/di, albeit
being less concise.

We note from Table 5 that d?Nyyg[i]/di® = 48, from
which it follows by discrete integration that dNp,q[i]/
di = 48i + C, with C being the integration constant as

Acta Cryst. (2022). B78, 665—-677
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Table 6

Ali] and its difference quotients presented in units of Ac. See Appendix
A for the definition of Aq, and Figs. 3(b) to 3(d) for i = 1 to 4, and
Fig. 3(a) for i = 6. The second column shows the detailed scheme and its
components are (from left to right): A per row of hexagonal areas for
one half of the cross section, apart from the centre row, multiplied by two
(which includes the other half up to the centre row), Ay of the centre
row, Aoy of the isoceles triangles at the six interfaces and Ay of the offset
area due to the six small isoceles triangles at the six corners; see Fig. 12 for
details. The third column contains the sum of all unit areas Ay of A[i], the
fourth column its first-order difference quotient and the fifth column its
second-order difference quotient.

i Alil[Ap] — Ali] dA[iJ/di d*A[i)/di?
1 (0) x 2+ 1+6(0/6) + 1/3 11
2 (2) x2+3+6(1/6) + 1/3 81 ’ 6
3 B+4) x2+546(2/6) + 1/3 214 . 6
4 4+5+6)x2+7+6(3/6) + 1/3 401 Y 6
5 (54+6+7+8) x24+9+6(4/6) + 1/3 651 » 6
31

6 (6+7+8+9+10)x2+11+6(5/6) + 1/3 961

discussed above for N [i]. For now, we ignore C and convert
dNppali]/di directly via Equation 54 to

Nylil = 24i(i + 1). (55)

When calculating Npng[i] with Equation 55, we see that there is
a difference to the full solution in Table 5, accounting for the
integration constant C. The difference of row three in Table 5
to Equation 55 is ANpyli=1] = 18 — 48 = =30,
ANpnali = 2] = 84 — 144 = —60, ANppgli = 3] = 198 — 288 =
—90, ANpyli =4] = 360 — 480 = —120, or generally
ANpnali] = —30i = C. This solution must be added to Equa-
tion 55 to arrive at the exact solution given by Equation 3, viz.

Nyoali] = 24i(i +1) +C
= 24i(i + 1) — 30i (56)
= 6i(4i — 1).

The third property with a quadratic dependence on i is the
cross section area A[i]. To this end, we describe A[i] by the
number of areas rendered by hexagonal rings of the w-lattice
structure when seen along the [0001] growth vector, hence in
units of An. All nonhexagonal areas, such as the bigger
isoceles triangles at the interfaces and the six small isoceles
triangles at the six corners which we count as an offset area
(being constant V i), can be converted into units of Any; see
Appendix A for details. Table 6 shows the relevant develop-
ment of A[/]] with its first- and second-order difference
quotient.

We integrate d?A[i)/di?, yielding dA[i]/di = 6i — 5. This
result comes about by the first value of d*A[i]/di* occurring for
i =2. We therefore obtain a correct solution for i = 2 under the
constraint of the integration term 6i if we introduce an inte-
gration constant of C = —5, as is evident from dA[i = 2]/
di=6-2—-5=7,dA[i =3)/di = 6-3—-5=13, dA[i =4]/

di = 6-4—5=19, etc. Once again, we make use of Equa-
tion 54, obtaining

A[l] = AO[3l(l + 1) - Sl] + Aoffset

o 1 (57)
= AC>|:’(3’ —-2) + §:|
With Aq derived in Appendix A, we arrive at Equation 8 in
Section 3.1.

The remaining variables — Nig[i], dig[i], A[i] and w[i] — show a
linear dependence on i. Due to the hexagonal symmetry, we
consider only one interface and multiply its result by six. We
see from Fig. 3 that all interface atoms have one interface
bond. These atoms increase by two for each increment of i,
namely, by one atom column which contains two atoms, cf.
Table 1, arriving at Ng[i{] = 6-2i = 12, as presented by
Equation 4 in Section 3.1. For dg[i], we use its increment
str1100 over i and its offset value soper = % SIF.1100; S€e
Appendix A for details. We see from Fig. 3 that the number of
str.1100 required to describe dig[i] is always i — 1 plus Sofssets
resulting in dip[i =1] = % sir1100, and generally in dip =
stF,1100 (i —3) = a(i — 3) (see Equation 5 and Section 3.1). The
width of the cross section w[i] is given by the distance between
two of its opposite corners and has an offset of
Wotfset = Z%hA = %a (see Fig. 12 and Appendix A). Fori =1,
we have w[i = 1] = 2hp 4+ Wogser- With every subsequent
increment in i, we add 4h, to w[i]. We thus arrive at w[i] =
ha(4i — 2) + Wopser = 4(4 —2+3), which can be further
simplified into w[i] = %(4i —3) = 2a(i —}), arriving at Equa-
tion 6 in Section 3.1. The height of the cross section, which is
the distance between two parallel interfaces, starts with the
distance between two opposite corners of the hexagonal ring,
as is obvious from Fig. 3(b), h[li=1] = a% 3; see also
Appendix A for details. With every subsequent increment in i,
such a hexagonal ring plus one adjacent bond is added,
amounting to a~/3, which is equivalent to the increment of the
{112}0 interfaces Sip.1130 (see Fig. 12). We thus arrive at Ali] =
av/3[(i — 1) + 2] = av/3(i — 1), as presented by Equation 7 in
Section 3.1.
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