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1,3-di(tert-butyl)cyclopentadienyl pentaphosphaferrocene (Cp00FeP5) crystal-

lizes as polytypes, where adjacent layers are related by either a c- or an n-

glide reflection. In the simplest possible polytypes only one kind of glide

reflections is realized, leading to overall Pca21 or Pna21 symmetry respectively.

Crystals isolated from the same crystallization experiment feature a varying

degree of stacking disorder. One-dimensional diffuse scattering of a crystal with

particularly strong disorder was modelled with closed-form expressions derived

from a growth model. A range of interaction of s = 2 was necessary to

satisfactorily describe the observed diffraction intensities. The crystal can be

described as a disordered analogue of an allotwin, that is an intergrowth of the

Pca21 or Pna21 polytypes with a distinct preference for the former.

1. Introduction

Disordered modular structures can be seen as a generalized

form of crystalline matter where the arrangement of the

individual (ordered) modules (layers, rods, bricks) is ambig-

uous and governed by probabilities. The case of layer struc-

tures with stacking disorder is well understood, since it can be

described with simple growth models. In such models, the

orientation of a layer depends on the orientation of a finite

number s � 1 [the range of interaction (Treacy et al., 1991) or

reichweite (Kakinoki & Komura, 1954)] of prior layers. In this

context, the term ‘growth’ is to be understood formally with

respect to the model, not the growth of a given crystal. The

stacking arrangement of the crystal may also have been

formed during a phase transition or by ageing.

The diffuse scattering caused by layer structures following a

growth model has been intensely investigated [see e.g. Treacy

et al. (1991) or Welberry (2010) and references therein].

Perhaps surprisingly, the function series used to calculate

diffuse scattering are distinctly better behaved than the

corresponding series of periodic structures, which typically do

not converge at any point.

In particular, owing to pointwise exponential convergence,

often only few layers have to be taken into account to

adequately simulate diffuse scattering. In a sense, after these

few layers, the ‘average’ structure, a weighted overlay of all

the stacking possibilities, is obtained. This is the principle

implemented in general programs such as DIFFaX (Treacy et

al., 1991).

However, in many common cases, instead of infinite series

also closed-form expressions can be derived [see e.g. Jagod-

zinski (1949) and Kakinoki & Komura (1954)]. On the one
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hand, these are less general, as they are limited to special

cases. On the other hand, they might be computationally more

favourable and show no convergence problems in the highly

correlated case. Moreover, they can be analytically differ-

entiated for use in least-squares optimization problems.

Above all, closed-form expressions may provide more insight

into the shape of the diffraction peaks or the reason for

homometry.

Recently, we described crystallization experiments of the

ferrocene analogue Cp00Fe(�5-P5), where one cyclopentadienyl

(Cp, �5-C5H5
�) ring has been formally replaced by Cp0 0 =

�5-tBu2C5H3
�, the 1,3-di-tert-butyl substituted analogue of Cp

and the second Cp ring has been formally replaced by an

aromatic �5-P5
� ring. Different crystals extracted from the

same sample featured different degrees of disorder (Pere-

sypkina et al., 2022). One of the crystals featured especially

pronounced diffuse scattering with reflections indicating two

different polytypes. Here, the diffuse scattering will be

explained qualitatively and modelled quantitatively with

growth model-derived closed-form expressions.

2. Experimental

2.1. Diffraction

Diffraction intensities from crystals of Cp00FeP5 prepared

according to Fleischmann et al. (2015) were collected at the

P24 beamline of the PETRA III synchrotron, DESY

(Germany) at 20 K (Peresypkina et al., 2022). For all crystals,

the structure was refined in the Pca21 space group with more

or less disorder of the Cp00FeP5 molecule about the y = 1
4

pseudo-reflection plane. For the crystal described below, the

occupation of the two orientations was refined to 72.3:27.7 (3).

The minor component was ignored for the modelling of the

diffuse scattering. For further data collection and refinement

details as well as atomic coordinates, see Peresypkina et al.

(2022). Atomic form factors where approximated using the

polynomial coefficients tabulated in Brown et al. (2006).

Reciprocal space sections were calculated using the

CrysAlisPro software (Rigaku Oxford Diffraction, 2021).

One-dimensional profiles were then extracted by summing up

over 20 pixels perpendicular to the rod. The centres of the

rods were determined visually.

3. Results and discussion

3.1. Stacking arrangements

The possible stacking arrangements have already been

discussed in Peresypkina et al. (2022) and will be briefly

recapitulated here. The structure is composed of ordered

monoclinic/rectangular layers with p1a1 symmetry and one

molecule located on the general position (Figs. 1 and 2). The

translation lattice (henceforth simply lattice) of the layers is

spanned by (a, b). The width of the layer is defined by the

length of the c0 vector perpendicular to the layer plane.

Given the n th layer, the (n + 1)st layer can appear in one of

two positions, which is generated from the n th layer by

application of a glide reflections with the intrinsic translations

c0 or b/2 + c0. These two operations will be called the c- and n-

glide for convenience and are indicated using the corre-

sponding graphical symbols in Fig. 2. The c-glide plane is

located at x = 0 and the n-glide plane at x = 1
4.

According to these rules, the origin of the n th layer can

appear either at nc0 or at a/2 + b/2 + nc0. Thus, every polytype

can be described by a family of integers ð�nÞn2Z with �n = 0, 1.

The origin of the n th layer then is �n(a + b)/2 + nc0. If two

adjacent layers n and n + 1 are related by a c-glide then �n+1 =

�n, if they are related by a n-glide then �n+1 = 1 � �n.

3.2. MDO polytypes

In the context of OD theory, which describes polytypes that

are locally equivalent, polytypes of a maximum degree of

order (MDO) play a special role. The MDO polytypes of a

family cannot be decomposed into fragments of simpler
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Acta Cryst. (2022). B78, 734–744 Berthold Stöger et al. � One-dimensional diffuse scattering of Cp0 0FeP5 735

Figure 1
The Pca21 structure of Cp0 0FeP5 viewed down [010]. Fe (dark orange), P
(bright orange) and C (grey) atoms are represented by ellipsoids drawn at
the 50% probability level, H atoms by white spheres of arbitrary radius.
Dotted curves mark the interface between layers.

Figure 2
A single layer of Cp0 0FeP5 molecules projected on the layer plane (001).
The a-glide planes of the p1a1 layer group are indicated by the
conventional symbols (Hahn & Aroyo, 2016) in black. Potential glide
planes relating the layer to the next one are given in red. The symbols in
this case are to be read with respect to the (a, b, 2c0) basis. H atoms are
omitted for clarity.



polytypes, i.e. polytypes of only a subset of n-tuples of adjacent

layers (Dornberger-Schiff, 1982). MDO polytypes can be

considered as the ‘alphabet’ of an OD polytype family: all

polytypes can be decomposed into fragments of MDO poly-

types. Moreover, in the majority of cases, ordered polytypes

belong to the MDO class.

Cp00FeP5 forms non-OD polytypes because pairs of adjacent

layers related by c- or n-glides are not equivalent. However,

the MDO concept is just as useful in this case. Here, there are

two MDO polytypes: Pca21 [all adjacent layers related by c-

glides, (�n) = . . . , 0, 0, 0, 0, . . . ] and Pna21 [all adjacent layers

related by n-glides, (�n) = . . . , 0, 1, 0, 1, . . . ]. In both cases c =

2c0. The two MDO polytypes are shown in Fig. 3. Note that the

21 screw rotations are at different positions with respect to the

layers.

3.3. Qualitative interpretation of the diffraction pattern

Fig. 4 shows the diffraction pattern of the crystal under

investigation. On rods h + k even only sharp reflections are

observed, whereas on rods h + k odd, distinct diffuse scattering

is apparent. The positions of all maxima are in agreement with

a lattice spanned by (a, b, 2c0), which corresponds to either of

the two MDO polytypes. Qualitatively, the polytypes can be

differentiated by the systematic absences of the c[100] or n[100]

glide reflections, respectively. For 0kl reflections where k is

odd (for k even, both glide reflections feature the same

reflection conditions), strong reflections l odd suggest the

Pca21 polytype. Additional weak reflections l even prove a

non-negligible contribution of Pna21 fragments [Fig. 4(a)].

Thus, it appears that the crystal is built of both polytypes. An

intergrowth of two or more distinct polytypes is called an

allotwin (Nespolo et al., 1999). However, in contrast to the

crystal described here, the domains of an allotwin are

macroscopic.

Additional extremely weak reflections are observed at half-

integral k values, which are due to superstructure formation in

the [010] direction for the Pca21 polytype as described in

Peresypkina et al. (2022). These reflections are significantly

more pronounced for pure Pca21 crystals. But even there the

modulation is minute. For the disordered crystal described

here, these reflections can be neglected without hesitation.
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Figure 3
The (a) Pca21 and (b) Pna21 MDO polytypes of Cp0 0FeP5 projected on the
layer plane (001). Symmetry elements are indicated by the conventional
symbols (Hahn & Aroyo, 2016). H atoms are omitted for clarity.

Figure 4
Sections through reciprocal space of a disordered Cp0 0FeP5 crystal with
(a) h = 0 and (b) h = 1.



3.4. Quantitative interpretation of the diffraction pattern

In the following, positions in reciprocal space will be

expressed with respect to the reciprocal basis ða�; b�; c�0Þ =

ða=jaj2; b=jbj2; c0=jc0j
2
Þ. The coordinates are given as hk� to

emphasize that diffraction intensities can only appear at

integral h and k owing to the layer lattices, but diffuse scat-

tering may appear along rods parallel to c�0 at arbitrary real �
values, in the case of disordered layer arrangements.

Let Fn(hk�), h; k 2 Z, � 2 R be the structure factor of the

n th layer. Layers n even are translationally equivalent and

therefore their structure factor only differs in phase from

F0(hk�). In contrast, layers n odd are reflected at [100] and

thus will be expressed with respect to F�0 ðhk�Þ ¼ F0ðhk�Þ. For

brevity, henceforth the argument hk� of F0 and F�0 will be

omitted. The structure factor of the n th layer is given by:

Fnðhk�Þ ¼
F0 expf2�i½�nðhþ kÞ=2þ n��g if n even

F�0 expf2�i½�nðhþ kÞ=2þ n��g if n odd

�
ð1Þ

The overall diffraction intensity of a structure can be written

as

Iðhk�Þ / jFðhk�Þj2; ð2Þ

¼ Fðhk�ÞF�ðhk�Þ; ð3Þ

¼
X
n12Z

X
n22Z

Fn1
F�n2
; ð4Þ

¼
X
n2Z

X
�n2Z

FnF�nþ�n; ð5Þ

where an asterisk indicates the complex conjugate and �n

designates the distance between layers. By separating into

even and odd �n and substituting equation (1):

Iðhk�Þ / ðF0F�0 þ F�0 F��0 Þ

�

�X
n2Z

X
�neven

expf2�i½ð�n � �nþ�nÞðhþ kÞ=2þ�n��g
�

þ ðF0F��0 þ F�0 F�0 Þ

�

�X
n2Z

X
�nodd

expf2�i½ð�n � �nþ�nÞðhþ kÞ=2þ�n��g
�
:

ð6Þ

For h + k even, (�n � �n+1)(h + k)/2 is integral and therefore

I(hk�) is independent of (�n). Thus, all polytypes produce the

same intensity distribution on rods h + k even. In particular, by

application of the Dirichlet kernel, one can show that inten-

sities appear only for integral and half-integral �:

Iðhk�Þ /½ðF0F�0 þ F�0 F��0 Þ

þ expð2�i�ÞðF0F��0 þ F�0 F�0 Þ�
X
l2Z

�ð�� l=2Þ: ð7Þ

The term expð2�i�Þ is 1 and�1 for integral and half-integral �,

respectively. These reflections are called family reflections,

since they are identical for all members of the polytype family.

For h + k odd, the intensities differ according to the poly-

type and reflections on these rods are therefore called char-

acteristic reflections. Let P�n be the probability that �n =

�n+�n. For the MDO polytypes P�n = 1 (Pca21) and P�n =

[(�1)�n + 1]/2 = . . . 0, 1, 0, 1 . . . (Pna21), respectively. For �n

= �n+�n the term (�n � �n+�n)(h + k)/2 is 0, whereas for �n =

�n+�n it is half-integer. Equation (6) thus becomes:

Iðhk�Þ / ðF0F�0 þ F�0 F��0 Þ
X

�n even

ð2P�n � 1Þ expð2�i�n�Þ

" #

þ ðF0F��0 þ F�0 F�0 Þ
X

�n odd

ð2P�n � 1Þ expð2�i�n�Þ

" #
ð8Þ

¼ ðF0F�0 þ F�0 F��0 Þ
X

�n even

c�n expð2�i�n�Þ

" #

þ ðF0F��0 þ F�0 F�0 Þ
X

�n odd

c�n expð2�i�n�Þ

" #
; ð9Þ

where 2P�n � 1 is written as c�n, the correlation of the vari-

ables �n and �n+�n.

3.5. The special case of the h = 0 plane

Qualitatively, the diffuse scattering is best understood for

the h = 0 plane. As noted above, the Pca21 and Pna21 MDO

polytypes can be immediately distinguished by reflections on

the k odd rods. The former features sharp reflections at inte-

gral, the latter at half-integral � values.

Quantitatively, the situation is likewise simpler, because

F(0k�) = F�(0k�) and equation (9) simplifies to

Iðhk�Þ / 2jF0j
2
X
�n2Z

c�n expð2�i�n�Þ

" #
: ð10Þ

In the simplest growth model, the probability of a c-glide

relating adjacent layers is given by P (and conversely the

probability of an n-glide by 1 � P). However, such a simple

model cannot explain the existence of both, the Pca21 and

Pna21 reflections. In fact, these models produce on rods h + k

odd streaks of the form

Iðhk�Þ / jF0ðhk�Þj2dcð�Þ; ð11Þ

where c = 2P � 1 and dc stands for the family of functions

dcð�Þ ¼
1� c2

1� 2c cosð2��Þ þ c2
: ð12Þ

These functions are well known and generally describe the

shape of nearest-neighbour (s = 1) models with the nearest-

neighbour correlation c (Welberry, 2010; Stöger et al., 2021).

For c approaching 1 and �1, dc(�) converges to a Dirac comb

at integral and half-integral �, respectively. With decreasing |c|,

the peaks become successively broader and at c = 0, dc(�) is

constant. However, according to this model, in no case peaks

are observed simultaneously for integral and half-integral �,

which is in contradiction with the observed intensities (Fig. 5).

Thus, a range of interaction s � 2 is required. In an s = 2

two-neighbour growth model, the state of the previous step is

considered as in the Markov chain:
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The parameter A gives the probability that a c-glide follows a

c-glide and B that an n-glide follows an n-glide. For example,

A = 1, B < 1 and A < 1, B = 1 represent the Pca21 and Pna21

polytypes, respectively and A = B = 0 is the ordered non-MDO

polytype . . . cncn . . . . For A = 1 � B, the model degenerates

to the single-neighbour model P = A = 1� B described above.

Henceforth, degenerate Markov chains A = 1 or B = 1 as

well as the ordered A = B = 0 model will be disregarded. Then,

it is easy to show that the chain converges to an equilibrium

state where the probability of c- and n-glides is

PrðcÞ ¼
1� B

2� ðAþ BÞ
ð14Þ

and

PrðnÞ ¼
1� A

2� ðAþ BÞ
: ð15Þ

To calculate the diffuse scattering of a given model, the

probabilities P�n ¼ Prð�n ¼ �nþ�nÞ have to be calculated [see

equation (9)]. Since �n can adopt two values, the number of

states is doubled to four:

The state c0 means a c-glide after �n = 0, etc. The n th state of

the Markov chain will be described by the row-vector

�n ¼ ½Prðc0Þ;Prðn0Þ;Prðn1Þ; Prðc1Þ�: ð17Þ

According to equations (14) and (15), the initial state of the

chain is

�0 ¼
1� B

2� ðAþ BÞ
;

1� A

2� ðAþ BÞ
; 0; 0

� �
: ð18Þ

The transition probability matrix P, which gives the progres-

sion of the chain according to �nþ1 ¼ �nP is

P ¼

A 1� A 0 0

0 0 B 1� B

1� B B 0 0

0 0 1� A A

0
BB@

1
CCA: ð19Þ

Therefrom, the diffuse scattering on rods h + k odd can be

calculated as

Iðhk�Þ / jF0ðhk�Þj2
1þ R

2
dc1
ð�Þ þ

1� R

2
dc2
ð�Þ

� �
ð20Þ

where

c1 ¼
A� BþQ1=2

2
ð21Þ

c2 ¼
A� B�Q1=2

2
ð22Þ

R ¼
A� B

Q1=2
ð23Þ

Q ¼ ðA� BÞ
2
þ 4ðAþ B� 1Þ: ð24Þ

For derivation see Appendices A1 and A2 and also Kakinoki

& Komura (1954).

Two cases can be distinguished. For large A or B (white

region in Fig. 6), Q is positive and (Q)1/2 is real. Equation (20)

can then be understood as a linear combination of the diffuse

scattering of two independent nearest-neighbour models with

the correlations c1 and c2. Although the values of the two
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Figure 6
Sign of Q depending on A and B: white ’+’, blue ‘�’ and black 0.

Figure 5
(01�)* rod showing distinct peaks at integer and half-integer �.



correlations and the weighting of the two terms is not imme-

diately obvious, a qualitative analysis confirms the expecta-

tions: for large A and small B, sharp diffraction spots are

observed at integral �, corresponding to the Pca21 MDO

polytype [red curve in Fig. 7(a)]. With increasing B, additional

reflections slowly appear at half-integral �, corresponding to

the Pna21 polytype (black and blue curve). Ultimately, for A =

B the diffraction pattern corresponds to that of a mix of Pca21

and Pna21 polytypes with equal volume weights and peaks

enlarged along c*.

With small A and B (blue region in Fig. 6), Q is negative and

therefore (Q)1/2 and R are purely imaginary. The case is shown

in Fig. 7(b) for small A. For large B ‘reflections’ of the Pna21

polytype are observed (green curve). With decreasing B, these

reflections split (black and blue curve). Ultimately, when B

approaches A (red curve), reflections are observed at uneven

fourths of �, which corresponds to the . . . cncn . . . non-MDO

polytype with c = 4c0, leading to the doubling of the cell

parameter c with respect to the experimentally observed

polytypes. Reflections at integral and half-integral values are

not observed, because this particular polytype features Pna21

symmetry.

The problem of the imaginary value of (Q)1/2 in the case of

Q < 0 can by solved by a purely real form of equation (23),

given in Appendix A2. It might be more appropriate for

calculations, but since the diffraction pattern from the crystal

does not suggest this case, it is not discussed any further.

For Q approaching 0 (black line in Fig. 6), the denominator

of R goes to 0 and R diverges. However, in that case c1 = c2 =

c = (A � B)/2 and R can be set to an arbitrary value (such as

R = 0) to get

Iðhk�Þ / jF0ðhk�Þj2dcð�Þ ð25Þ

which is the diffraction pattern of a nearest-neighbour model

with correlation c = (A � B)/2 [see equation (11)].

3.6. Interesting special cases: homometry

The case Q = 0 is particularly interesting, because it shows

that diffuse scattering can be inherently homometric, which

means that different structures produce identical diffraction

patterns. Indeed, for |c| < (2)1/2
� 1 the two-neighbour growth

model A = 1 � (1 � c2)/2 and B = 1 � (1 + c)2/2 (with Q = 0),

produces the same diffraction pattern as the nearest-neigh-

bour model A0 = (1 + c)/2 and B = 1� A = (1� c)/2. However,

these parameters correspond to different stacking arrange-

ments. Fig. 8 shows such pairs of parameters of homometric

structures.

This kind of homometry is well known (Welberry, 2010) and

has to be taken into account when determining the parameters

of the growth model. In fact, homometry or quasi-homometry

may lead to local minima and therefore a local search may not

be sufficient.

3.7. Estimation of the parameters A and B from a h = 0 rod

As noted above, the crystal under investigation appears to

contain the Pca21 and Pna21 MDO polytypes with a distinct
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Figure 8
Parameters A and B of models with a diffraction pattern corresponding to
a nearest-neighbour model. Red line: actual nearest-neighbour model
(A = 1 � B); blue line: Q = 0 [B = A + 2(2)1/2(1 � A)1/2

� 2]. Pairs of
circles with the same colours indicate example pairs of homometric
structures.

Figure 7
Simulation of the (01�)* rod for (a) A = 0.95 and (b) A = 0.05 and selected
values of B.



preference for the former. Thus, quantitatively one would

expect probabilities A > B > 1
2.

To derive A and B, a rod h = 0, k odd was chosen where the

diffraction intensities were strong and the peak maxima were

consistent with the integrated diffraction intensities. The

(01�)* rod was the optimal rod in that regard.

The high-quality diffraction data obtained with the high-

flux non-divergent synchrotron beam and a noiseless direct

photon-counting detector at the P24 beamline (DESY,

Hamburg) operated in shutterless mode allowed very narrow

scans (0.1� 2�). Thus, little experimental broadening is

expected, which makes it possible to reliably reconstruct and

quantify the diffuse scattering.

The experimental peak broadening was approximated by a

Gaussian distribution, whose variance �2 was determined by

least squares refinement against the sharp family reflections

(02l) (Fig. 9).

Intensities of the (01�)* rod were calculated using the

analytical expression equation (20) and numerically convo-

luted with the Gaussian peak broadening. The scale factor was

determined by linear regression after each calculation.

The origin (� = 0) and the length |c�0 | in pixels as well as A

and B were determined using a combination of global search

with local searches according to the multi-coordinate search

(MCS) approach (Huyer & Neunmaier, 1999) (Fig. 10)

implemented in custom routines. The minimized function was

the square of the difference between measured and calculated

intensities with unit weight:

Rp ¼

P
ðIobs � IcalcÞ

2P
I2

calc

ð26Þ

Since each rod is calculated in ms times on a standard

computing hardware, the search ended in a short time with a

final residual of Rp = 1.2 %. Only one ‘basket entry’ (Huyer &

Neunmaier, 1999) was obtained, which means that the func-

tion had only a single local minimum. Thus, homometry was

not a problem in this case.

The refined values are summarized in Table 1, left row. As

predicted, c-glides induce c-glides (83.1% probability) and n-

glides induce n-glides (61.1% probability). In that sense, as we

had expected, the crystal can be considered as a disordered

equivalent of an allotwin. In contrast to the crystal under

investigation, though, an allotwin is composed of macroscopic

domains, i.e. A and B are very close to 1.

Since the c-glide induces the n-glide with lower probability

than the n-glide induces the c-glide (16.9% versus 38.9%), the

Pca21 fragments prevail in agreement with the experimentally

observed systematic absences and relative weight of the

disordered components in structure refinements.

3.8. The general case of planes h 6¼ 0

The h 6¼ 0 planes are more difficult to interpret quantita-

tively, because the characteristic reflections produced by both

MDO polytypes overlap. The simplification F(0k�) = F�(0k�)

does not apply and the general equation (9) has to be used.

The intensity distribution for rods h + k odd then calculates as

Iðhk�Þ /
F0F�0 þ F�0 F��0

2

1þ R

2
dðc1Þ

2 ð2�Þ þ
1þ R

2
dðc2Þ

2 ð2�Þ

� �

þ
F0F��0 þ F�0 F�0

2

1þ R

2
d0c1
ð�Þ þ

1þ R

2
d0c2
ð�Þ

� �
ð27Þ

where c1, c2 and R are defined as in the h = 0 case and d0c
represents the family of shape functions
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Figure 9
Measured intensities of the (02�)* rod and calculated profile using Gauss
functions with � = 2.96646 pixels.

Figure 10
Measured and simulated intensities of the (01�)* rod.

Table 1
Results of the simulation of the (01�)* and (21�)* rods.

c1, c2, R, Pr(c) and Pr(n) were derived from A and B and not explicitly refined.

Parameter (01�)* (21�)*

Rp 0.012 0.025
A 0.831 0.848
B 0.611 0.721
c1 0.784 0.820
c2 �0.564 �0.693
R 0.421 0.305
Pr(c) 0.697 0.647
Pr(n) 0.303 0.352
Centre (pixels) 521.39 520.56
|c0| (pixels) 29.63 29.61



d0cðxÞ ¼
2ðc� c3Þ cosð2�xÞ

1� 2c2 cosð2�2xÞ þ c4
: ð28Þ

For derivation see Appendix A3.

The shape functions of the first term are weighted by the

average of the auto-correlations F0F�0 and F�0 F��0 . Note that

here, the correlations c1 and c2 enter as their squares and the

argument of the shape function d is 2� instead of �. This is

reasonable, because the term considers only layer pairs

distanced by an even number �n of layers.

The shape functions of the second term are weighted by the

average cross-correlations F0F��0 and F�0 F�0 . This average is

real, but may be negative. However, the sum of auto- and

cross-correlations is F0F�0 þ F�0 F��0 þ F0F��0 þ F�0 F�0 =

jF0 þ F�0 j
2
� 0, which ultimately prevents negative intensities.

Owing to the two different terms in equation (27), the peaks

can adopt a distinctly skewed shape.

To exemplify equation (27), Fig. 11(a) gives the sum of auto-

correlations F0F�0 þ F�0 F��0 , the sum of the cross-correlations

F0F��0 þ F�0 F�0 and the intensity of a (21�)* rod for the para-

meters A = 0.85 and B = 0.75.

Fig. 11(b) plots the profiles of the reflections of

equation (27) under the assumption of constant and equal F0

and F�0 and the dissection into the two contributing terms.

The result of a MCS refinement using equation (27) is

shown in Fig. 12 and summarized in Table 1. The fit is still

reasonable, though slightly worse than in the (01�)* case.

3.9. Significance of refinements

Comparing the refinements on the (01�)* and (21�)* rods,

the A values agree well. However, a distinctly higher B value

was derived from the (21�)* rod. Indeed, since the contribu-

tion corresponding to the Pna21 MDO polytype is distinctly
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Figure 11
Calculated (21�)* rod for A = 0.85, B = 0.75. (a) Overall intensity I(21�)
and the F0F�0 þ F�0 F��0 and F0F��0 þ F�0 F�0 factors. (b) The F0F�0 þ F�0 F��0

and F0F��0 þ F�0 F�0 terms of equation (27) if F0 and F�0 were constant and
equal. The sum of the two terms is also shown.

Figure 12
Measured and simulated intensities of the (21�)* rod.

Figure 13
(01�)* (21�)* Rp values depending on A and B for the (a) (01�)* and (b)
(21�)* rods with the final metric parameters (centre and |c0| in pixels) as
given in Table 1. Rp values are encoded by colours on a logarithmic scale.



less pronounced (R > 0), the B parameter is defined worse

than the A parameter. This can be seen by plotting the loss

function against the A and B parameters with fixed metric

parameters. The minimum lies in a valley that is much steeper

in A than in B direction.

The difference in the B value cannot however be explained

by imprecision alone, since the valleys are located at distinctly

different positions (Fig. 13), systematically shifted toward the

larger B values for the (21�)* rod.

The stability of A and the higher B for h 6¼ 0 is confirmed by

additional refinements against the (03�)* an (23�)* rods

(Table 2). These refinements are less reliable, because the

intensities on these rods are significantly weaker and the

contribution of B is even less significant.

For k = 5 rods, the extracted intensities are too inconsistent

with the structure factors for reasonable refinements. Likewise

for h = 1 rods with even k contribution of B to the shape was

too small for a meaningful determination of this value.

One source of error might be inadequate intensity extrac-

tion. Indeed, the relative peak heights sometimes disagree

with the integrated Ihkl values. However, we suppose that the

biggest error is due to neglecting desymmetrization. A layer

can appear in three unique environments with respect to the

two neighbours: cc, nn and cn (= nc). However, structural data

only exists for the cc (corresponding to the Pca21 MDO

polytype) case. For improved simulations, one would either

have to grow crystals featuring the other layer contacts or

resort to theoretical structure optimizations.

For the (01�)* rod this error seems to be minimized. In fact,

the FF�* + F*F� cross-correlation term does not appear in the

analytical expressions, since in projection along [100] both

orientations are identical. We suppose that also the desym-

metrization is less pronounced in the [100] projection, leading

to a more reliable estimation of B. Moreover, in that case, the

values of A and B are derived from distinct ‘reflections’,

whereas for h 6¼ 0, they are ‘encoded’ in the same reflections.

4. Conclusion and outlook

Having high-quality diffraction data for single crystals of

Cp00FeP5 obtained with high-flux synchrotron radiation at the

P24 beamline (DESY, Hamburg), we attempted to describe

the shape of the experimentally observed one-dimensional

diffuse scattering with closed-form expression derived from a

growth model with range of interaction s = 2 and explain the

average disorder in the structure (Peresypkina et al., 2022).

Thus, a direct relation between the stacking-fault probabilities

of both MDO polytypes and the form of the diffraction

maxima could be drawn.

Closed-form expressions allow for very fast calculations of

diffuse scattering, which we used for respective refinements.

The fact that tens of thousands of rods can be calculated in

seconds enabled a global search. This is crucial in the case of

diffuse scattering, since homometry may lead to multiple local

minima. Moreover, closed-form expressions directly explain

the shape and position of peaks in the diffuse scattering and

allow a direct derivation of homometric pairs of disordered

stacking arrangements.

However, such an approach is not general. Currently,

deriving the expressions for diffuse scattering intensity is

tedious and error-prone. In the future this might be auto-

matized by symbolic algebra, since the theory of Markov

chains is well understood. Even for the title compound, owing

to the different orientations of the even and odd numbered

layers, the general expressions are rather unwieldy. These

complications disappeared, when only considering the (0k�)*

plane. Effectively, this means looking at a projection along

[100], for which the orientation with respect to [100] vanishes.

Then, the diffuse scattering can be described as the sum of two

nearest-neighbour models. In the general case (h 6¼ 0),

however, the expressions become less intuitive. With an

increasing range of interaction or number of orientations, the

mathematical expressions will become more and more

cumbersome. A fundamental complexity limit is due to tha

fact that, in general, only roots of polynomials up to degree

four can be expressed by radicals. Thus, for more complex

problems, only numerical solutions can be given.

The imperfect fit is most likely due to ignoring desymme-

trization effects. We will show such a case in an upcoming

publication of a different molecule, where two kinds of poly-

types could be grown and thus desymmetrization could be

taken into account. When considering different environments,

Markov chains with yet more states have to be used.

APPENDIX A
A1. Correlations of the s = 2 model

Given an initial state �0, the n th state �n is calculated by

�n ¼ �0Pn. To calculate Pn, the matrix P is diagonalized, i.e.

expressed as QDQ�1, where D is a diagonal matrix (Kakinoki

& Komura, 1965). This reduces the problem to calculating

Pn ¼ QDnQ�1, which is trivial, since the n th power of a

diagonal matrix is obtained by taking the n th power of the

diagonal elements. Matrix diagonalization is an eigenvector

and eigenvalue problem. For P of equation (19) we obtain (as

one possible solution)

D ¼

1 0 0 0

0 AþB�1 0 0

0 0 ½�ðQÞ1=2
þA�B�=2 0

0 0 0 ½ðQÞ1=2
þA�B�=2

0
BB@

1
CCA
ð29Þ

and
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Table 2
Comparison of the refined A and B values.

Parameter (01�)* (03�) (21�)* (23�)*

Rp 0.012 0.019 0.025 0.020
A 0.831 0.842 0.848 0.850
B 0.611 0.561 0.721 0.752



Q¼

1 1 �1 �1

1 � 1�B
1�A

ðQÞ1=2B�AðB�2ÞþBðBþ2Þ�2

ð1�AÞððQÞ1=2
�AþBÞ

ðQÞ1=2BþAðB�2Þ�BðBþ2Þþ2

ð1�AÞð�ðQÞ1=2
�AþBÞ

1 � 1�B
1�A

�ðQÞ1=2
�A�B

2ð1�AÞ
ðQÞ1=2

�A�B
2ð1�AÞ

1 1 1 1

0
BB@

1
CCA;
ð30Þ

where

Q ¼ ðA� BÞ2 þ 4ðAþ B� 1Þ: ð31Þ

Given the probabilities of c- and n-glides according to equa-

tions (14) and (15), the initial state of the chain is

�0 ¼

�
1� B

2� ðAþ BÞ
;

1� A

2� ðAþ BÞ
; 0; 0

�
ð32Þ

and n th state is

�n ¼

�
1� B

2� ðAþ BÞ
;

1� A

2� ðAþ BÞ
; 0; 0

�
QDnQ�1: ð33Þ

However, we are not interested in the full state only the sum of

the states for which � = 0, 1, that is P�n ¼ �nð1Þ þ �nð2Þ. By

substitution of equations [(29) and (30)] into equation (33),

one obtains:

P�n ¼
1

2
þ

1þ R

4
ðc1Þ

j�nj
þ

1� R

4
ðc2Þ

j�nj; ð34Þ

where

c1 ¼
A� Bþ ðQÞ

1=2

2
; ð35Þ

c2 ¼
A� B� ðQÞ

1=2

2
; ð36Þ

R ¼
A2 � B2

Qð Þ1=2
½2� ðAþ BÞ�

: ð37Þ

Thus, in general convergence to the equilibrium state

limn!1 P�2n ¼
1
2 is given by the sum of two power series.

The correlation c�n = 2P�n � 1 is:

c�n ¼
1þ R

2
ðc1Þ

j�nj
þ

1� R

2
ðc2Þ

j�nj: ð38Þ

Note that if Q is negative, (Q)1/2 and R are purely imaginary.

However, in that case 1 + R and 1 � R are complex conjugate,

as c1 and c2 are. Thus, c�n is the sum of two complex conju-

gates and therefore real, as expected.

A2. Diffuse scattering for h = 0

Substituting of equation (38) into equation (10, one obtains:

Iðhk�Þ / ðF0F�0þF�0 F��0 Þ

"
ð1þRÞ

� X
�n2Z

ðc1Þ
j�nj expð2�i�n�Þ

�

þ ð1� RÞ

� X
�n2Z

ðc2Þ
j�nj expð2�i�n�Þ

�#
: ð39Þ

¼ ðF0F�0 þ F�0 F��0 Þ ð1þ RÞdc1
ð�Þ þ ð1� RÞdc2

ð�Þ
	 


: ð40Þ

The equivalence of the sums over �n and the shape functions

dc1
and dc2

have for example been derived in Stöger et al.

(2021).

For negative Q, the terms in equation (40) are complex.

Since both terms are complex conjugate, resulting in a positive

real intensity, as expected. By using the identities

c1 þ c2 ¼ A� B; ð41Þ

c1c2 ¼ 1� ðAþ BÞ; ð42Þ

ðc1Þ
2
þ ðc2Þ

2
¼ ðA� BÞ2 þ 2ðAþ B� 1Þ; ð43Þ

ðc1Þ
2c2 þ c1ðc2Þ

2
¼ �ðA� BÞðAþ B� 1Þ: ð44Þ

Equation (40) can also be written using only real terms as

Iðhk�Þ/ ðF0F�0 þ F�0 F��0 Þ½�4ðA� 1ÞðB�1ÞðAþ BÞ�

�

"
C
n

1þ2
	
ðA�BÞC cosð2��Þ�ðAþB�1Þ cosð2�2�Þ




þ ðA� BÞ
2
þ C2

o#�1

ð45Þ

where C = A + B � 2. In the Q < 0 case, this can not generally

be interpreted in terms of contributions by the Pca21 and

Pna21 polytypes. One exception is A = B, in which case

equation (45) becomes

Iðhk�Þ / ðF0F�0 þ F�0 F��0 Þ

�
1� c

1� 2c cosð2�2�Þ þ c2
ð46Þ

¼ ðF0F�0 þ F�0 F��0 Þdcð2�Þ ð47Þ

where c = 2A � 1 = 2B � 1.

A3. Diffuse scattering for h 6¼ 0

Substituting of equation (38) into equation (9), one obtains:

Iðhk�Þ /
F0F�0 þ F�0 F��0

2

(X
n2Z

h
ð1þRÞðc1Þ

j2nj
þ ð1�RÞðc2Þ

j2nj
i

� expð2�i2n�Þ

)
þ

F0F��0 þ F�0 F�0
2

�

(X
n2Z

h
c1ð1þ RÞðc1Þ

j2nj
þ c2ð1� RÞðc2Þ

j2nj
i

� expð2�i�Þ expð2�i2n�Þ

)
ð48Þ

¼
F0F�0 þ F�0 F��0

2

h
ð1þRÞdðc1Þ

2 ð2�Þþð1�RÞdðc2Þ
2 ð2�Þ

i
þ

F0F��0 þ F�0 F�0
2

h
ð1þRÞd0

ðc1Þ
2 ð2�Þþð1�RÞd0

ðc2Þ
2ð2�Þ

i
ð49Þ
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Here, d0c is a family of shape functions that can be derived in

analogy to dc:

d0cð�Þ ¼
X
n2Z

cj2nþ1j exp½2�ið2nþ 1Þ�� ð50Þ

¼2<

�
c expð2�ilÞ

X
n�0

ðc2
Þ

n expð2�i2�Þn
�

ð51Þ

¼ 2<

�
c expð2�ilÞ

1

1� c expð2�i2�Þ

�
ð52Þ

¼ 2<

�
c expð2�ilÞ

1� c2 expð2�i2�Þ

1� 2c2 cosð2�2�Þ þ c4

�
ð53Þ

¼ 2<

�
c expð2�ilÞ � c3 expð�2�i�Þ

1� 2c2 cosð2�2�Þ þ c4

�
ð54Þ

¼
2ðc� c3Þ cosð2��Þ

1� 2c2 cosð2�2�Þ þ c4
ð55Þ

where < represents the real part.
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