research papers
A correction has been published for this article. To view the correction, click here.
Synthesis and structure of two novel trans-platinum complexes
aEuropean XFEL GmbH, Holzkoppel 4, Schenefeld, Hamburg 22869, Germany, and bCRISMAT, CNRS, ENSICAEN, Université de Caen Normandie, Caen, France
*Correspondence e-mail: doriana.vinci@xfel.eu
Here for the first time the synthesis and characterization of two new trans-platinum complexes, trans-[PtCl2{HN=C(OH)C6H5}2] (compound 1) and trans-[PtCl4(NH3){HN=C(OH)tBu}] (compound 2) [with tBu = C(CH3)3] are described. The structures have been characterized using nuclear magnetic resonance spectroscopy and X-ray single-crystal diffraction. In compound 1 the platinum cation, at the inversion center, is in the expected square-planar coordination geometry. It is coordinated to two chloride anions, trans to each other, and two nitrogen atoms from the benzamide ligands. The van der Waals interactions between the molecules produce extended two-dimensional layers that are linked into a three-dimensional structure through π⋯π intermolecular interactions. In compound 2 the platinum cation is octahedrally coordinated by four chloride anions and two nitrogen atoms from the pivalamide and ammine ligands, in trans configuration. The molecular packing is governed by intermolecular hydrogen bonds and van der Waals interactions.
1. Introduction
Platinum-based drugs have been used for chemotherapeutic treatment of cancer since 1965, when Rosenberg's group discovered the cytotoxic activity of cisplatin Pt(NH3)2Cl2 (Rosenberg et al., 1965). In 1970, cisplatin was approved for application in testicular and ovarian cancer by the US Food and Drug Administration and in several European countries (Wiltshaw, 1979). It is prescribed also for the treatment of a wide array of other tumors such us head-and-neck, esophagus, stomach, colon, bladder, cervix, pancreas, liver, kidney and prostate cancers. Although cisplatin has been used for more than 40 years, the severe side effects and the drug resistance of many cancer types have been the major limitations for its clinical application (Lippert, 1999; Giaccone, 2000; Oberoi et al., 2013). Cisplatin resistance may be associated with reduced drug uptake, enhanced efflux, intracellular detoxification by glutathione, increased DNA repair, decreased mismatch repair, defective apoptosis, modulation of signaling pathways or the presence of quiescent non-cycling cells (Steward, 2007; Rabik & Dolan, 2007; Kuo et al., 2007; Boulikas et al., 2007; Heffeter et al., 2008; Reedijk, 2011). In the last 45 years, although a great effort has been made for synthesizing platinum compounds with reduced side effects and propensity to induce drug resistance (Jakupec et al., 2003), none of them has reached worldwide clinical application. Only five complexes (carboplatin, oxaliplatin, nedaplatin, heptaplatin, lobaplatin) have been registered for clinical treatment with regional approval (cisplatin, carboplatin and oxaliplatin are FDA-approved, nedaplatin in Japan and lobaplatin in China). According to early structure–property relationship studies, only platinum compounds with cis-configuration exhibit antitumor activity (Kelland, 2007). In recent decades, however, it has been observed also that many trans-platinum(II) complexes exhibit anticancer activity comparable with the cis-isomer and cisplatin (Farrell et al., 1992; Montero et al., 1999; Kasparkova et al., 2003a,b). The promising biological activity of trans-platinum(II) complexes encouraged us to synthesize and characterize a novel trans-platinum(II) complex with a benzamide ligand, namely trans-{PtCl2[HN=C(OH)C6H5]2}. Derivatives of benzamide are known to possess cytotoxic activity (Vernhet et al., 1997; Rauko et al., 2001; Zhang et al., 2022) and such a ligand is interesting also owing to the occurrence of a hydroxyl group which can serve as a hydrogen-bond donor or acceptor.
Although the platinum drugs currently used for cancer treatment consist of platinum cations with IV complexes arises from their greater inertness to ligands substitution compared with PtII counterparts, a feature that allows chemical modification of the ligands without breaking the metal–ligand bond. The slow exchange rate of ligands coordinated to PtIV plays an increasingly important role for the development of new nanotechnology for delivering platinum drugs to cancer cells (Dhar et al., 2011; Min et al., 2010). The presence of two extra coordination sites can also be used in combination with other drugs, or for modifying biological targets other than DNA in the cell. In addition, platinum(IV) complexes are stable in the oxidizing extracellular environment and they can easily reach the platinum(II) inside the cell (Wong & Giandomenico, 1999). The increasing interest for PtIV species prompted us to extend our investigation to a platinum(IV) complex, trans-[PtCl4(NH3){HN=C(OH)tBu}]. The bulky substituent (tertiary butyl group) in the amide ligand could potentiate the cellular uptake of the complex via passive diffusion through the cell membrane, because of the greater affinity for lipophilic environments, while the hydroxyl group would preserve the water solubility.
+2, in recent years platinum(IV) species have also been investigated. The interest in Pt2. Experimental
2.1. trans-[PtCl2{HN=C(OH)C6H5}2] synthesis
Compound 1 was prepared by protonation of the K2{trans-[PtIICl2(H2NC(=O)C6H5)2]} salt: the reactant (0.6 g, 1 mmol) was dissolved in ice-cold water and treated with an excess of hydrochloric acid (10 ml, 6 M). The yellow precipitate separated from the solution was collected by filtration of the mother liquor, washed with ice cold water and dried in a stream of dry air. Compound 1 was isolated, crystallized in chloroform giving yellow lamellar crystals (Fig. 1) and then characterized using NMR spectroscopy and X-ray diffraction.
2.2. trans-[PtCl4(NH3){HN=C(OH)tBu}] synthesis
The trans-[PtIICl2(NH3)(NCtBu)] precursor [0.1780 g, 0.49 mmol, Mr (molecular weight) = 366 g mol−1] was suspended in chloroform (30 ml) and Cl2 (2 ml), and stirred at 293 K for 30 min. The resulting solution was taken to dryness under reduced pressure, giving a yellow precipitate of trans-[PtIVCl4(NH3)(NCtBu)]. The obtained complex was treated with KOH, then neutralized with HCl. The complex was isolated, crystallized in a mixture of chloroform/pentane, and characterized by NMR spectroscopy followed by X-ray diffraction.
2.3. X-ray single crystal determination
Reflections were collected on a Bruker AXS X8 APEX CCD diffractometer equipped with a four-circle Kappa goniometer and a 4K CCD detector (Mo Kα radiation). Data reduction and unit-cell were carried out with the SAINT package (Bruker, 2003). The reflections were indexed, integrated and corrected for and absorption effects with the program SADABS (Sheldrick, 2010). All calculations and molecular graphics were carried out using SIR92 (Altomare et al., 1993), PARST97 (Nardelli, 1995), WinGX (Farrugia, 1999), CRYSTALS (Carruthers et al., 2003), MERCURY (Macrae et al., 2020) and ORTEP-3 for Windows packages (Farrugia, 2012). Details of the experiment and crystal data are given in Table 1. Selected bond lengths and angles are listed in Table 2.
|
The unit-cell parameters were calculated from all reflections. Anisotropic displacement parameters (ADPs) for hydrogen and all non-hydrogen atoms were refined isotropically and anisotropically, respectively. The P21 for compounds 1 and 2, respectively, and the models were refined using full-matrix least-squares.
was solved using in space groups and2.3.1. Compound 1
The difference Fourier synthesis shows one maximum at the midpoint of two oxygen positions with the ). The hydrogen atoms were located by Fourier difference except for the hydrogen atoms located on oxygen sites which were placed at calculated positions. All hydrogen atoms were refined isotropically.
resulting in grossly anisotropic displacement parameters corresponding to a `cigar-shaped' ellipsoid. The disorder is refined using the so-called split-atom model strategy. The two partial atoms are refined independently, even with the sum of their site occupancies constrained to unity (Fig. 22.3.2. Compound 2
The a) involves the methyl in the tertiary butyl group [–C(CH3)3] and the oxygen atom in the amide moiety (NCO). The split-atom model has been used to model the disorder (Fig. 3). Since the hydrogen atoms bound to the split oxygen atoms have not been found by Fourier difference, they were added manually and refined isotropically. In the second complex (b) in the of compound 2 shows an electron density symmetrically distributed around a a local plane through the N2 and C2 atoms of the pivaloamide group. The disorder was modeled by splitting the C1 carbon atom and the tertiary butyl group (Fig. 4).
includes two disordered complexes: the disorder of the first complex (3. Results and discussion
3.1. NMR spectroscopy
3.1.1. Compound 1: platinum(II)
The H1-NMR spectrum was recorded on a Bruker Avance DPX 300 MHz WB instrument at 295 K in acetone-d6. 1H chemical shifts were referenced to TMS by using the residual protic peak of acetone-d6 as internal reference. The 1H-NMR spectrum (Fig. 5) shows two broad signals at ∼11.08 ppm and ∼8.31 ppm assigned to the OH and NH protons in the amide ligand, respectively, and three aromatic proton contributions at 7.96 ppm, 7.68 ppm and 7.58 ppm from the ortho, para and meta protons, respectively.
3.1.2. Compound 2: platinum(IV)
1H-NMR spectrum was collected at 295 K in CDCl3. 1H chemical shifts were referenced to TMS by using the residual protic peak of CDCl3 as internal reference. The 1H-NMR spectrum (Fig. 6) contains a sharp signal at ∼1.33 δ and a broad signal at ∼4.63 δ assigned to the tert-butyl group and NH3 protons, respectively, in good agreement with a previous work on a trans-PtIII complex with similar ligands {δ[tert-butyl] ∼1.20, δ[NH3] ∼5.00 in Vinci & Chateigner (2022)}. Moreover, two single proton resonances at ∼6.90 δ and 10.25 δ can be assigned to the NH and OH groups in the amide moiety. It is worth noting that the shape of the hydroxyl proton peak depends upon the nature of R [–C(CH3)3 in compound 2 or —C6H5 in compound 1]: the signal is sharp for the tBu derivative and broader for the phenyl group. This feature may be explained by the chemical exchange process involving the hydroxyl proton and water impurities. The exchange rate is expected to increase with the acidity of the hydroxyl proton.
3.2. X-ray crystal structures
3.2.1. Compound 1: platinum(II)
The trans-[PtCl2{HN=C(OH)C6H5}2] complex. The structure is composed of one platinum cation, coordinated by two chloride anions and two benzamide ligands. The central platinum atom lies on the crystallographic inversion center in a slightly distorted square planar coordination geometry (Fig. 7). This distortion is due to the differences in the metal–ligand bond lengths as reported for analogous complexes (Fabijańska et al., 2015). The N1, C1, C2 and O1 ligand atoms are coplanar as expected owing to the sp2 of the N1 and C1 atoms linked with a double bond. The Pt—N bond distance length, 2.0072 (18) Å, agrees with previously reported values for trans-complexes with similar ligands [Pt—N from the literature: 2.01 (2)–2.067 (4) Å; Fabijańska et al., 2015; Grabner & Bukovec, 2015; Cini et al., 1999]. The lengths of the C1—N1, C1—O1 and C1—O2 bonds [1.274 (3), 1.325 (6) and 1.327 (7) Å, respectively] are shorter than those found for the corresponding single bonds, but larger than double bonds [from literature: C(sp3)—N(sp3) = 1.469 (14) Å, C(sp2)=N(sp2) = 1.279 (8) Å, C(sp3)—OH = 1.426 (11) Å, C(sp2)=O = 1.210 (8) Å; Allen et al., 1987]. This means that a double bond is delocalized over the N—C—O moiety. The same behavior has already been reported for N-coordinated amidato (Erxleben et al., 1994) and iminoether ligands (Casas et al., 1991). The length of the platinum–chloride bond, 2.3084 (6) Å, is nearly the same as found in complexes with the same trans influence. For example, in trans-Pt(3-af)2Cl2 [where 3-af = 3-aminoflavone (3-amino-2-phenylchromen-4-one, C15H11NO2) the Pt—Cl bond is 2.298 (1) Å; in trans-[PtCl2(dmso)L] [where L = 3-(pyridin-2-ylmethyl)oxazolidin-2-one], the Pt—Cl bonds are 2.2965 (9) and 2.3025 (8) Å, whereas in trans-[PtCl2{HN=C(OH)C(CH3)3}2] an average value of 2.299 (3) Å is observed (Fabijańska et al., 2015; Van Beusichem & Farrell, 1992; Cini et al., 1999). The Pt1—N1—C1 angle is ∼137 (2)°, which is well above the expected values (120°), in agreement with the values observed for trans-[PtCl2{HN=C(OH)C(CH3)3}2] and trans-[PtCl2{HN=C(OMe)tBu}2] complexes (Cini et al., 1999). The benzamide plane and the platinum coordination plane, PtN2Cl2, make a dihedral angle of 20.86°. This orientation optimizes the intramolecular hydrogen bond interaction within the molecule.
comprises half a molecule of theThe hydroxyl group points toward the chloride ligand resulting in an intramolecular hydrogen bond that stabilizes the complex (Fig. 7).
The molecular crystal packing is mainly governed by π⋯π stacking interactions and van der Waals intermolecular forces, involving the benzene ring of adjacent molecules with an intermolecular distance of ∼3.62 Å (Sinnokrot & Sherrill, 2006). The van der Waals intermolecular interactions involve hydrogen of the benzene ring and oxygen atom of the hydroxyl group [C7⋯O1A 3.280 (3) Å, H31⋯O2 2.613 (1) Å, C3—H31⋯O2 146.03 (8)°], resulting in the crystal packing shown in Fig. 8.
3.2.2. Compound 2: platinum(IV)
The IV atom has an octahedral coordination geometry with four chloride ligands and two nitrogen atoms (with sp2 and sp3 for amide and ammine ligands, respectively) in trans configuration (Fig. 9). The bond distances between platinum and ligands (Pt—N and Pt—Cl distances in Table 2) are in good agreement with values found previously for compound 1 and in the literature for platinum(III) and platinum(II) complexes (Vinci & Chateigner, 2022; Fabijańska et al., 2015; Grabner & Bukovec, 2015; Cini et al., 1999; Van Beusichem & Farrell, 1992). In the amide ligand, the C—N and C—O distances average 1.20 (7) Å and 1.13 (1) Å, respectively, due to the double bond delocalization over the N—C—O moiety as observed also for compound 1. The C6—N4—Pt2, Pt1—N2—C11 and Pt1—N2—C10 angles are 132.7 (5)°, 140.2 (5)° and 141.3 (4)°, respectively, similar to the angle found for compound 1. The larger angle is probably due to intramolecular hydrogen bonds involving the hydroxyl hydrogen and the chloride ligand (Fig. 10). The bond angles within the coordination sphere deviate significantly from the ideal value of 90°. For instance, in compound 2 with the atom labeled Pt2 (Fig. 9), two angles are particularly large [93.67 (19)° and 93.60 (17)°] for N4—Pt2—Cl5 and N4—Pt2—Cl8 angles, respectively) and two are particularly small [87.57 (16)° and 86.60 (19)°] for N3—Pt2—Cl6 and N3—Pt2—Cl8 angles, respectively). This feature is due to the hydrogen bond interactions between the hydroxyl group and the chloride ligands. The same behavior has been observed in the second in the unit cell.
features two enantiomers in the cell [Flack parameter = 0.47 (1)]. The PtThe molecular packaging (Fig. 11) is governed by hydrogen bonds and van der Waals interactions (Table 3). The intermolecular hydrogen bonds are observed between amide and chloride ligands. The intermolecular van der Waals interactions occur between the tert-butyl groups and the chloride ligands.
|
4. Conclusions
For compound 1 we observed that the protonation of K2{trans-[PtCl2(H2NC(=O)C6H5)2]} salt in ice-cold water, treated with an excess of hydrochloric acid, gives the new trans-[PtCl2{HN=C(OH)C6H5}2] complex stable at room temperature. Spectroscopic studies indicate that the benzamide ligand is present in compound 1. The X-ray structural determination confirmed that the central platinum(II) atom is four-coordinated via two nitrogen atoms of the benzamide ligands and two chloride anions. The dihedral angle between PtCl2N2 and the benzene ring plane is 21 (1)°. The framework is governed by π⋯π and van der Waals intermolecular interactions.
Compound 2 was prepared by neutralization with HCl of a trans-[PtCl4(NH3)(NCtBu)] solution in KOH. As expected, the X-ray structure contains a platinum(IV) atom six-coordinated by an ammine, four chloride and a pivalamide ligands with trans configuration. NMR spectroscopy confirmed the presence of the pivalamide ligand and the octahedral geometry.
A common feature between these two structures is the occurrence of intramolecular hydrogen bonds between the hydroxyl group and the chloride ligand. The next step in this work is the evaluation of the cytotoxic effect of these new platinum compounds against human and murine cancer cell lines, as well as the toxicity towards healthy cells and these effects will be compared with those of other cisplatin compounds.
Supporting information
https://doi.org/10.1107/S205252062300327X/yv5009sup1.cif
contains datablocks global, 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S205252062300327X/yv50091sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S205252062300327X/yv50092sup3.hkl
Data collection: COLLECT (Nonius, 2001) for (1); COLLECT (Nonius, 2001). for (2). For both structures, cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: CrysAlis, (Oxford Diffraction, 2002); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).C14H14Cl2N2O2Pt | Z = 1 |
Mr = 508.27 | F(000) = 240 |
Triclinic, P1 | Dx = 2.189 Mg m−3 |
a = 4.1881 (1) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.4591 (2) Å | Cell parameters from 7402 reflections |
c = 10.1852 (2) Å | θ = 4.1–39.5° |
α = 102.793 (1)° | µ = 9.45 mm−1 |
β = 91.304 (1)° | T = 293 K |
γ = 100.914 (1)° | Prism, orange |
V = 385.48 (2) Å3 | 0.36 × 0.06 × 0.02 mm |
Bruker AXS X8 APEX CCD diffractometer | 3466 reflections with I > 2.0σ(I) |
Graphite monochromator | Rint = 0.032 |
ω/2θ scans | θmax = 39.9°, θmin = 2.1° |
Absorption correction: multi-scan SADABS | h = −6→7 |
Tmin = 0.03, Tmax = 0.05 | k = −16→16 |
17097 measured reflections | l = −16→18 |
4472 independent reflections |
Refinement on F | Primary atom site location: other |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.021 | |
S = 1.09 | (Δ/σ)max = 0.001 |
3134 reflections | Δρmax = 0.61 e Å−3 |
107 parameters | Δρmin = −0.52 e Å−3 |
16 restraints |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.4874 (2) | 1.17763 (7) | 0.19493 (6) | 0.0550 | |
O1 | 0.669 (9) | 0.6672 (8) | 0.0157 (19) | 0.0731 | 0.60 (7) |
O2 | 0.812 (11) | 0.687 (3) | −0.0020 (8) | 0.0598 | 0.40 (7) |
N1 | 0.7347 (5) | 0.9066 (2) | 0.1212 (2) | 0.0443 | |
C1 | 0.8032 (6) | 0.7799 (3) | 0.1157 (2) | 0.0426 | |
C2 | 0.9654 (6) | 0.7386 (3) | 0.2280 (2) | 0.0402 | |
C3 | 0.9921 (8) | 0.5922 (3) | 0.2159 (3) | 0.0523 | |
C4 | 1.1403 (9) | 0.5511 (3) | 0.3202 (3) | 0.0620 | |
C5 | 1.2598 (8) | 0.6541 (4) | 0.4367 (3) | 0.0595 | |
C6 | 1.2382 (8) | 0.8006 (4) | 0.4493 (3) | 0.0571 | |
C7 | 1.0896 (7) | 0.8427 (3) | 0.3451 (3) | 0.0492 | |
Pt1 | 0.5000 | 1.0000 | 0.0000 | 0.0356 | |
H31 | 0.9061 | 0.5208 | 0.1379 | 0.0633* | |
H41 | 1.1503 | 0.4513 | 0.3121 | 0.0743* | |
H51 | 1.3542 | 0.6248 | 0.5068 | 0.0720* | |
H61 | 1.3271 | 0.8724 | 0.5275 | 0.0681* | |
H71 | 1.0811 | 0.9436 | 0.3531 | 0.0589* | |
H11 | 0.8254 | 0.9700 | 0.1925 | 0.0542* | |
H12 | 0.5643 | 0.6933 | −0.0408 | 0.1209* | 0.5960 |
H21 | 0.7889 | 0.7247 | −0.0661 | 0.0821* | 0.4040 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0794 (4) | 0.0499 (3) | 0.0350 (2) | 0.0254 (3) | −0.0079 (2) | −0.0015 (2) |
O1 | 0.116 (11) | 0.042 (2) | 0.052 (4) | 0.006 (3) | −0.026 (5) | 0.0037 (19) |
O2 | 0.109 (13) | 0.041 (5) | 0.034 (3) | 0.032 (6) | −0.004 (4) | 0.003 (2) |
N1 | 0.0539 (11) | 0.0412 (9) | 0.0361 (8) | 0.0141 (8) | −0.0073 (8) | 0.0027 (7) |
C1 | 0.0507 (12) | 0.0380 (10) | 0.0377 (10) | 0.0071 (9) | 0.0002 (8) | 0.0076 (8) |
C2 | 0.0463 (11) | 0.0382 (10) | 0.037 (1) | 0.0093 (8) | 0.0050 (8) | 0.0107 (8) |
C3 | 0.0715 (17) | 0.0392 (11) | 0.0477 (12) | 0.0156 (11) | 0.0022 (11) | 0.0091 (9) |
C4 | 0.083 (2) | 0.0492 (14) | 0.0635 (17) | 0.0285 (14) | 0.0042 (15) | 0.0207 (13) |
C5 | 0.0694 (18) | 0.0634 (17) | 0.0550 (15) | 0.0237 (14) | −0.0007 (13) | 0.0248 (13) |
C6 | 0.0687 (17) | 0.0559 (15) | 0.0467 (13) | 0.0138 (13) | −0.0099 (12) | 0.0118 (11) |
C7 | 0.0637 (15) | 0.0410 (11) | 0.0433 (11) | 0.0142 (10) | −0.0053 (10) | 0.0081 (9) |
Pt1 | 0.03862 (6) | 0.03513 (6) | 0.03130 (5) | 0.00815 (4) | −0.00222 (4) | 0.00360 (4) |
Cl1—Pt1 | 2.3084 (6) | C2—C7 | 1.386 (3) |
O1—C1 | 1.325 (6) | C3—C4 | 1.382 (4) |
O1—H12 | 0.823 | C3—H31 | 0.935 |
O2—C1 | 1.327 (7) | C4—C5 | 1.373 (5) |
O2—H21 | 0.823 | C4—H41 | 0.938 |
N1—C1 | 1.274 (3) | C5—C6 | 1.384 (4) |
N1—Pt1 | 2.007 (2) | C5—H51 | 0.927 |
N1—H11 | 0.859 | C6—C7 | 1.387 (4) |
C1—C2 | 1.478 (3) | C6—H61 | 0.941 |
C2—C3 | 1.389 (3) | C7—H71 | 0.947 |
C1—O1—H12 | 112.1 | C3—C4—H41 | 119.3 |
C1—O2—H21 | 112.1 | C5—C4—H41 | 120.3 |
C1—N1—Pt1 | 136.41 (17) | C4—C5—C6 | 120.1 (3) |
C1—N1—H11 | 111.5 | C4—C5—H51 | 119.6 |
Pt1—N1—H11 | 111.9 | C6—C5—H51 | 120.4 |
O2—C1—O1 | 27.7 (5) | C5—C6—C7 | 119.9 (3) |
O2—C1—N1 | 120.9 (6) | C5—C6—H61 | 120.4 |
O1—C1—N1 | 119.3 (6) | C7—C6—H61 | 119.6 |
O2—C1—C2 | 112.5 (6) | C6—C7—C2 | 120.1 (2) |
O1—C1—C2 | 114.8 (4) | C6—C7—H71 | 119.6 |
N1—C1—C2 | 124.5 (2) | C2—C7—H71 | 120.3 |
C1—C2—C3 | 119.2 (2) | N1—Pt1—N1i | 179.994 |
C1—C2—C7 | 121.4 (2) | N1—Pt1—Cl1i | 95.95 (6) |
C3—C2—C7 | 119.4 (2) | N1i—Pt1—Cl1i | 84.05 (6) |
C2—C3—C4 | 120.1 (3) | N1—Pt1—Cl1 | 84.05 (6) |
C2—C3—H31 | 120.1 | N1i—Pt1—Cl1 | 95.95 (6) |
C4—C3—H31 | 119.8 | Cl1i—Pt1—Cl1 | 179.995 |
C3—C4—C5 | 120.4 (3) |
Symmetry code: (i) −x+1, −y+2, −z. |
C5H14Cl4N2OPt | Z = 4 |
Mr = 455.08 | F(000) = 848.008 |
Monoclinic, P21 | Dx = 2.325 Mg m−3 |
Hall symbol: P 2yb | Mo Kα radiation, λ = 0.71073 Å |
a = 6.0583 (2) Å | Cell parameters from 9512 reflections |
b = 12.1949 (4) Å | θ = 4.2–36.3° |
c = 17.7364 (5) Å | µ = 11.59 mm−1 |
β = 97.302 (2)° | T = 293 K |
V = 1299.74 (7) Å3 | Lamellar, yellow |
Bruker AXS X8 APEX CCD diffractometer | 5194 reflections with I > 2.0σ(I) |
Graphite monochromator | Rint = 0.049 |
ω/2θ scans | θmax = 36.3°, θmin = 3.5° |
Absorption correction: multi-scan SADABS | h = −10→3 |
Tmin = 1.00, Tmax = 1.00 | k = −20→20 |
32159 measured reflections | l = −29→29 |
6519 independent reflections |
Refinement on F | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.029 | Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.968 0.427E-01 0.672 |
wR(F2) = 0.031 | (Δ/σ)max = 0.008 |
S = 1.03 | Δρmax = 2.07 e Å−3 |
5204 reflections | Δρmin = −1.13 e Å−3 |
319 parameters | Absolute structure: Parsons, Flack & Wagner (2013), 0 Friedel Pairs |
209 restraints | Absolute structure parameter: 0.47 (1) |
Primary atom site location: Other |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl6 | 0.4509 (3) | 0.6162 (2) | −0.00744 (10) | 0.0420 | |
Cl7 | −0.0049 (3) | 0.4855 (2) | −0.06676 (10) | 0.0435 | |
Cl8 | 0.5883 (3) | 0.4232 (2) | 0.11958 (11) | 0.0480 | |
C6 | 0.1131 (11) | 0.5401 (5) | 0.1710 (2) | 0.0418 | |
C7 | 0.0216 (8) | 0.6276 (4) | 0.2174 (2) | 0.0434 | |
N1 | −0.8144 (15) | 0.6668 (7) | −0.1954 (4) | 0.0545 | |
Cl2 | −0.4005 (6) | 0.7321 (3) | −0.2721 (2) | 0.0867 | |
N3 | 0.4606 (10) | 0.3752 (5) | −0.0466 (3) | 0.0370 | |
N4 | 0.1227 (9) | 0.5461 (5) | 0.0995 (3) | 0.0339 | |
Cl1 | −0.9599 (5) | 0.4749 (3) | −0.2975 (2) | 0.0823 | |
Pt2 | 0.28636 (3) | 0.45696 (16) | 0.028055 (11) | 0.0272 | |
Cl3 | −0.8990 (6) | 0.7261 (4) | −0.36172 (18) | 0.0959 | |
Cl4 | −0.4606 (5) | 0.4848 (3) | −0.20833 (13) | 0.0749 | |
Cl5 | 0.1251 (3) | 0.2928 (2) | 0.05842 (12) | 0.0482 | |
O21 | 0.151 (6) | 0.4469 (12) | 0.2085 (8) | 0.0485 | 0.47 (7) |
O20 | 0.225 (6) | 0.4641 (18) | 0.2132 (4) | 0.0523 | 0.53 (7) |
Pt1 | −0.68097 (4) | 0.60491 (16) | −0.286338 (12) | 0.0358 | |
C50 | −0.665 (2) | 0.3765 (13) | −0.5395 (8) | 0.0938 | 0.673 (11) |
C30 | −0.390 (3) | 0.5191 (12) | −0.5469 (8) | 0.0991 | 0.673 (11) |
C10 | −0.5822 (12) | 0.5245 (6) | −0.4404 (4) | 0.0726 | 0.685 (11) |
O10 | −0.776 (2) | 0.5724 (13) | −0.4736 (6) | 0.0962 | 0.685 (11) |
C40 | −0.297 (3) | 0.3816 (12) | −0.4568 (7) | 0.0948 | 0.673 (11) |
N2 | −0.5425 (12) | 0.5410 (7) | −0.3753 (4) | 0.0559 | |
O11 | −0.636 (5) | 0.3742 (12) | −0.3862 (10) | 0.0885 | 0.315 (11) |
C41 | −0.393 (5) | 0.3336 (13) | −0.4992 (9) | 0.0913 | 0.327 (11) |
C31 | −0.299 (4) | 0.520 (2) | −0.4966 (9) | 0.0833 | 0.327 (11) |
C11 | −0.5640 (17) | 0.4682 (7) | −0.4170 (5) | 0.0733 | 0.315 (11) |
C2 | −0.4915 (14) | 0.4460 (7) | −0.4948 (4) | 0.0785 | |
C51 | −0.665 (3) | 0.472 (2) | −0.5602 (7) | 0.0859 | 0.327 (11) |
C120 | 0.2298 (15) | 0.6876 (13) | 0.2587 (11) | 0.0611 | 0.69 (5) |
C121 | 0.220 (2) | 0.7083 (19) | 0.2392 (19) | 0.0506 | 0.31 (5) |
C90 | −0.121 (3) | 0.7110 (11) | 0.1662 (4) | 0.0455 | 0.69 (5) |
C91 | −0.172 (4) | 0.691 (2) | 0.1702 (8) | 0.0426 | 0.31 (5) |
C80 | −0.120 (3) | 0.5790 (7) | 0.2758 (9) | 0.0536 | 0.69 (5) |
C81 | −0.062 (6) | 0.5803 (8) | 0.2897 (12) | 0.0493 | 0.31 (5) |
H501 | −0.7105 | 0.3194 | −0.5075 | 0.1400* | 0.673 (11) |
H502 | −0.7909 | 0.4208 | −0.5579 | 0.1400* | 0.673 (11) |
H503 | −0.6050 | 0.3440 | −0.5817 | 0.1400* | 0.673 (11) |
H301 | −0.2322 | 0.5063 | −0.5423 | 0.1490* | 0.673 (11) |
H302 | −0.4185 | 0.5937 | −0.5341 | 0.1490* | 0.673 (11) |
H303 | −0.4554 | 0.5042 | −0.5981 | 0.1490* | 0.673 (11) |
H401 | −0.1844 | 0.4319 | −0.4343 | 0.1419* | 0.673 (11) |
H402 | −0.2368 | 0.3357 | −0.4936 | 0.1419* | 0.673 (11) |
H403 | −0.3479 | 0.3361 | −0.4176 | 0.1420* | 0.673 (11) |
H411 | −0.3954 | 0.2975 | −0.4359 | 0.1370* | 0.327 (11) |
H412 | −0.5153 | 0.2860 | −0.5473 | 0.1370* | 0.327 (11) |
H413 | −0.2080 | 0.3488 | −0.5157 | 0.1370* | 0.327 (11) |
H311 | −0.3232 | 0.5663 | −0.5405 | 0.1250* | 0.327 (11) |
H312 | −0.1677 | 0.4760 | −0.4991 | 0.1250* | 0.327 (11) |
H313 | −0.2797 | 0.5636 | −0.4514 | 0.1250* | 0.327 (11) |
H511 | −0.7025 | 0.5487 | −0.5595 | 0.1290* | 0.327 (11) |
H512 | −0.6074 | 0.4549 | −0.6069 | 0.1290* | 0.327 (11) |
H513 | −0.7957 | 0.4287 | −0.5564 | 0.1290* | 0.327 (11) |
H1201 | 0.1832 | 0.7471 | 0.2884 | 0.0910* | 0.69 (5) |
H1202 | 0.3202 | 0.7154 | 0.2219 | 0.0909* | 0.69 (5) |
H1203 | 0.3153 | 0.6370 | 0.2918 | 0.0909* | 0.69 (5) |
H1211 | 0.1649 | 0.7830 | 0.2336 | 0.0770* | 0.31 (5) |
H1212 | 0.3330 | 0.6962 | 0.2058 | 0.0770* | 0.31 (5) |
H1213 | 0.2821 | 0.6950 | 0.2916 | 0.0770* | 0.31 (5) |
H901 | −0.1621 | 0.7704 | 0.1970 | 0.0679* | 0.69 (5) |
H902 | −0.0355 | 0.7387 | 0.1284 | 0.0680* | 0.69 (5) |
H903 | −0.2531 | 0.6759 | 0.1418 | 0.0679* | 0.69 (5) |
H911 | −0.2501 | 0.7333 | 0.2038 | 0.0649* | 0.31 (5) |
H912 | −0.1127 | 0.7383 | 0.1346 | 0.0650* | 0.31 (5) |
H913 | −0.2727 | 0.6393 | 0.1431 | 0.0650* | 0.31 (5) |
H801 | −0.1799 | 0.6376 | 0.3034 | 0.0800* | 0.69 (5) |
H802 | −0.0282 | 0.5326 | 0.3107 | 0.0800* | 0.69 (5) |
H803 | −0.2410 | 0.5362 | 0.2502 | 0.0800* | 0.69 (5) |
H811 | −0.0513 | 0.6356 | 0.3285 | 0.0740* | 0.31 (5) |
H812 | 0.0295 | 0.5187 | 0.3075 | 0.0740* | 0.31 (5) |
H813 | −0.2139 | 0.5566 | 0.2782 | 0.0740* | 0.31 (5) |
H31 | 0.6040 | 0.3930 | −0.0387 | 0.0561* | |
H32 | 0.4453 | 0.3027 | −0.0415 | 0.0561* | |
H33 | 0.4071 | 0.3934 | −0.0937 | 0.0560* | |
H11 | −0.9530 | 0.6879 | −0.2102 | 0.0820* | |
H12 | −0.7340 | 0.7238 | −0.1765 | 0.0821* | |
H13 | −0.8138 | 0.6147 | −0.1602 | 0.0821* | |
H41 | 0.0481 | 0.6002 | 0.0781 | 0.0409* | |
H21 | −0.3968 | 0.5528 | −0.3659 | 0.0841* | 0.6603 |
H22 | −0.3968 | 0.5532 | −0.3660 | 0.0840* | 0.3438 |
H211 | 0.2153 | 0.3934 | 0.1894 | 0.0720* | 0.47 (7) |
H201 | 0.3691 | 0.4459 | 0.1942 | 0.0799* | 0.53 (7) |
H101 | −0.8182 | 0.6233 | −0.4363 | 0.1145* | 0.685 (11) |
H111 | −0.7432 | 0.4071 | −0.3569 | 0.1068* | 0.315 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl6 | 0.0540 (9) | 0.0269 (6) | 0.0469 (8) | −0.0116 (6) | 0.0136 (7) | −0.0004 (6) |
Cl7 | 0.0347 (7) | 0.0544 (10) | 0.0406 (7) | −0.0013 (6) | 0.0015 (6) | 0.0026 (6) |
Cl8 | 0.0361 (7) | 0.0584 (10) | 0.0487 (9) | 0.0048 (7) | 0.0021 (6) | 0.0099 (8) |
C6 | 0.050 (3) | 0.042 (3) | 0.036 (2) | 0.009 (2) | 0.013 (2) | 0.003 (2) |
C7 | 0.041 (3) | 0.054 (3) | 0.035 (2) | 0.005 (2) | 0.005 (2) | −0.010 (2) |
N1 | 0.074 (5) | 0.049 (4) | 0.046 (3) | 0.004 (3) | 0.030 (3) | −0.004 (3) |
Cl2 | 0.0908 (19) | 0.0780 (18) | 0.101 (2) | −0.0402 (16) | 0.0513 (17) | −0.0372 (17) |
N3 | 0.045 (3) | 0.030 (2) | 0.040 (3) | −0.002 (2) | 0.020 (2) | −0.006 (2) |
N4 | 0.032 (2) | 0.035 (2) | 0.036 (2) | 0.0044 (19) | 0.0090 (19) | −0.003 (2) |
Cl1 | 0.0615 (13) | 0.084 (2) | 0.105 (2) | −0.0292 (14) | 0.0255 (13) | −0.0172 (17) |
Pt2 | 0.02760 (7) | 0.02382 (6) | 0.03147 (8) | −0.00072 (8) | 0.00928 (6) | −0.00026 (8) |
Cl3 | 0.105 (2) | 0.117 (3) | 0.0722 (17) | 0.065 (2) | 0.0371 (16) | 0.0476 (18) |
Cl4 | 0.0705 (13) | 0.115 (3) | 0.0418 (9) | 0.0419 (15) | 0.0183 (9) | 0.0226 (12) |
Cl5 | 0.0560 (10) | 0.0303 (7) | 0.0638 (11) | −0.0096 (6) | 0.0293 (8) | 0.0020 (7) |
O21 | 0.056 (8) | 0.054 (6) | 0.040 (5) | 0.010 (6) | 0.021 (5) | 0.012 (5) |
O20 | 0.063 (8) | 0.050 (6) | 0.048 (5) | 0.019 (6) | 0.023 (4) | 0.011 (5) |
Pt1 | 0.03948 (11) | 0.04067 (12) | 0.02912 (9) | 0.00033 (9) | 0.01137 (8) | 0.00150 (9) |
C50 | 0.097 (8) | 0.111 (10) | 0.070 (7) | 0.008 (8) | 0.000 (7) | −0.031 (8) |
C30 | 0.106 (9) | 0.112 (10) | 0.080 (8) | 0.005 (9) | 0.013 (7) | −0.013 (8) |
C10 | 0.082 (6) | 0.091 (6) | 0.045 (4) | 0.016 (5) | 0.010 (4) | −0.017 (5) |
O10 | 0.100 (7) | 0.119 (9) | 0.064 (6) | 0.028 (7) | −0.011 (6) | −0.015 (6) |
C40 | 0.100 (8) | 0.113 (10) | 0.070 (8) | 0.016 (8) | 0.004 (7) | −0.016 (8) |
N2 | 0.052 (3) | 0.075 (5) | 0.043 (3) | 0.002 (3) | 0.016 (3) | −0.015 (3) |
O11 | 0.102 (11) | 0.091 (10) | 0.077 (10) | 0.003 (10) | 0.026 (9) | −0.015 (9) |
C41 | 0.102 (10) | 0.102 (10) | 0.070 (9) | 0.012 (9) | 0.010 (9) | −0.019 (10) |
C31 | 0.090 (9) | 0.107 (10) | 0.055 (9) | 0.009 (8) | 0.018 (9) | −0.029 (9) |
C11 | 0.080 (7) | 0.087 (7) | 0.056 (6) | 0.003 (7) | 0.021 (6) | −0.024 (6) |
C2 | 0.085 (5) | 0.101 (6) | 0.051 (3) | 0.011 (5) | 0.014 (3) | −0.029 (4) |
C51 | 0.091 (10) | 0.107 (11) | 0.059 (8) | 0.008 (10) | 0.004 (8) | −0.027 (9) |
C120 | 0.062 (6) | 0.070 (7) | 0.049 (6) | −0.006 (6) | −0.004 (5) | −0.007 (6) |
C121 | 0.047 (8) | 0.058 (8) | 0.043 (8) | 0.002 (7) | −0.012 (7) | −0.015 (8) |
C90 | 0.048 (5) | 0.043 (5) | 0.046 (5) | 0.008 (5) | 0.006 (4) | 0.002 (4) |
C91 | 0.040 (8) | 0.050 (8) | 0.039 (8) | 0.003 (7) | 0.007 (6) | −0.003 (7) |
C80 | 0.052 (6) | 0.076 (7) | 0.034 (4) | 0.008 (5) | 0.007 (4) | −0.008 (4) |
C81 | 0.040 (8) | 0.069 (9) | 0.041 (7) | 0.015 (7) | 0.014 (7) | −0.010 (7) |
Cl6—Pt2 | 2.3070 (15) | C40—C2 | 1.501 (9) |
Cl7—Pt2 | 2.3041 (17) | C40—H401 | 0.966 |
Cl8—Pt2 | 2.3228 (18) | C40—H402 | 0.967 |
C6—C7 | 1.497 (5) | C40—H403 | 0.968 |
C6—N4 | 1.279 (7) | N2—H21 | 0.889 |
C6—O21 | 1.322 (9) | N2—H22 | 0.889 |
C6—O20 | 1.323 (9) | N2—C11 | 1.152 (8) |
C7—C120 | 1.558 (9) | N2—H21 | 0.889 |
C7—C90 | 1.551 (8) | N2—H22 | 0.889 |
C7—C80 | 1.547 (8) | O11—C11 | 1.364 (10) |
C7—C121 | 1.561 (10) | O11—H111 | 0.970 |
C7—C91 | 1.555 (10) | C41—C2 | 1.501 (10) |
C7—C81 | 1.548 (10) | C41—H411 | 1.207 |
N1—Pt1 | 2.038 (7) | C41—H412 | 1.207 |
N1—H11 | 0.885 | C41—H413 | 1.207 |
N1—H12 | 0.889 | C31—C2 | 1.475 (10) |
N1—H13 | 0.890 | C31—H311 | 0.961 |
Cl2—Pt1 | 2.291 (3) | C31—H312 | 0.962 |
N3—Pt2 | 2.054 (5) | C31—H313 | 0.961 |
N3—H31 | 0.889 | C11—C2 | 1.525 (7) |
N3—H32 | 0.894 | C2—C51 | 1.498 (10) |
N3—H33 | 0.885 | C51—H511 | 0.961 |
N4—Pt2 | 2.022 (5) | C51—H512 | 0.962 |
N4—H41 | 0.860 | C51—H513 | 0.962 |
Cl1—Pt1 | 2.307 (3) | C120—H1201 | 0.960 |
Pt2—Cl5 | 2.3204 (16) | C120—H1202 | 0.964 |
Cl3—Pt1 | 2.295 (3) | C120—H1203 | 0.957 |
Cl4—Pt1 | 2.318 (2) | C121—H1211 | 0.970 |
O21—H211 | 0.853 | C121—H1212 | 0.973 |
O20—H201 | 0.999 | C121—H1213 | 0.973 |
Pt1—N2 | 2.035 (6) | C90—H901 | 0.959 |
C50—C2 | 1.496 (9) | C90—H902 | 0.960 |
C50—H501 | 0.960 | C90—H903 | 0.961 |
C50—H502 | 0.957 | C91—H911 | 0.960 |
C50—H503 | 0.960 | C91—H912 | 0.960 |
C30—C2 | 1.472 (9) | C91—H913 | 0.961 |
C30—H301 | 0.963 | C80—H801 | 0.961 |
C30—H302 | 0.958 | C80—H802 | 0.963 |
C30—H303 | 0.961 | C80—H803 | 0.963 |
C10—O10 | 1.373 (8) | C81—H811 | 0.960 |
C10—N2 | 1.166 (7) | C81—H812 | 0.962 |
C10—C2 | 1.512 (7) | C81—H813 | 0.963 |
O10—H101 | 0.966 | ||
C7—C6—N4 | 124.8 (4) | H401—C40—H403 | 109.9 |
C7—C6—O21 | 112.80 (10) | H402—C40—H403 | 109.6 |
N4—C6—O21 | 121.5 (6) | Pt1—N2—C10 | 141.3 (4) |
C7—C6—O20 | 112.78 (10) | Pt1—N2—H21 | 106.9 |
N4—C6—O20 | 121.1 (6) | C10—N2—H21 | 106.8 |
O21—C6—O20 | 21.6 (9) | Pt1—N2—H22 | 106.8 |
C6—C7—C120 | 105.02 (9) | C10—N2—H22 | 106.7 |
C6—C7—C90 | 111.29 (9) | H21—N2—H22 | 0.4 |
C120—C7—C90 | 108.92 (9) | Pt1—N2—C11 | 140.2 (5) |
C6—C7—C80 | 111.84 (9) | Pt1—N2—H21 | 106.9 |
C120—C7—C80 | 110.58 (9) | C11—N2—H21 | 105.9 |
C90—C7—C80 | 109.11 (9) | Pt1—N2—H22 | 106.8 |
C6—C7—C121 | 105.00 (9) | C11—N2—H22 | 106.0 |
C6—C7—C91 | 111.29 (9) | H21—N2—H22 | 0.4 |
C121—C7—C91 | 108.90 (9) | C11—O11—H111 | 97.9 |
C6—C7—C81 | 111.86 (9) | C2—C41—H411 | 103.5 |
C121—C7—C81 | 110.58 (9) | C2—C41—H412 | 105.2 |
C91—C7—C81 | 109.12 (9) | H411—C41—H412 | 113.7 |
Pt1—N1—H11 | 109.3 | C2—C41—H413 | 105.1 |
Pt1—N1—H12 | 109.6 | H411—C41—H413 | 113.9 |
H11—N1—H12 | 109.8 | H412—C41—H413 | 114.0 |
Pt1—N1—H13 | 108.9 | C2—C31—H311 | 109.8 |
H11—N1—H13 | 109.5 | C2—C31—H312 | 109.0 |
H12—N1—H13 | 109.8 | H311—C31—H312 | 109.5 |
Pt2—N3—H31 | 110.6 | C2—C31—H313 | 109.5 |
Pt2—N3—H32 | 110.3 | H311—C31—H313 | 109.6 |
H31—N3—H32 | 109.7 | H312—C31—H313 | 109.4 |
Pt2—N3—H33 | 109.2 | O11—C11—N2 | 114.05 (10) |
H31—N3—H33 | 108.7 | O11—C11—C2 | 110.83 (10) |
H32—N3—H33 | 108.3 | N2—C11—C2 | 134.04 (10) |
C6—N4—Pt2 | 132.7 (5) | C10—C2—C40 | 111.83 (9) |
C6—N4—H41 | 113.2 | C10—C2—C50 | 114.09 (9) |
Pt2—N4—H41 | 114.1 | C40—C2—C50 | 113.59 (9) |
N3—Pt2—N4 | 176.5 (3) | C10—C2—C30 | 103.35 (9) |
N3—Pt2—Cl8 | 86.60 (19) | C40—C2—C30 | 103.48 (9) |
N4—Pt2—Cl8 | 93.60 (17) | C50—C2—C30 | 109.39 (9) |
N3—Pt2—Cl6 | 87.57 (16) | C11—C2—C41 | 111.79 (9) |
N4—Pt2—Cl6 | 88.94 (18) | C11—C2—C31 | 103.36 (9) |
Cl8—Pt2—Cl6 | 90.61 (7) | C41—C2—C31 | 103.48 (9) |
N3—Pt2—Cl7 | 90.67 (19) | C11—C2—C51 | 114.12 (9) |
N4—Pt2—Cl7 | 89.14 (17) | C41—C2—C51 | 113.59 (9) |
Cl8—Pt2—Cl7 | 177.27 (8) | C31—C2—C51 | 109.39 (9) |
Cl6—Pt2—Cl7 | 89.48 (7) | C2—C51—H511 | 109.9 |
N3—Pt2—Cl5 | 89.81 (17) | C2—C51—H512 | 108.9 |
N4—Pt2—Cl5 | 93.67 (18) | H511—C51—H512 | 109.7 |
Cl8—Pt2—Cl5 | 90.13 (8) | C2—C51—H513 | 109.3 |
Cl6—Pt2—Cl5 | 177.24 (7) | H511—C51—H513 | 109.7 |
Cl7—Pt2—Cl5 | 89.65 (8) | H512—C51—H513 | 109.3 |
C6—O21—H211 | 121.0 | C7—C120—H1201 | 109.6 |
C6—O20—H201 | 111.9 | C7—C120—H1202 | 110.1 |
N1—Pt1—Cl4 | 91.0 (3) | H1201—C120—H1202 | 109.7 |
N1—Pt1—Cl1 | 87.9 (3) | C7—C120—H1203 | 109.2 |
Cl4—Pt1—Cl1 | 88.68 (14) | H1201—C120—H1203 | 108.9 |
N1—Pt1—Cl3 | 88.0 (3) | H1202—C120—H1203 | 109.4 |
Cl4—Pt1—Cl3 | 178.93 (14) | C7—C121—H1211 | 109.0 |
Cl1—Pt1—Cl3 | 91.81 (16) | C7—C121—H1212 | 109.5 |
N1—Pt1—Cl2 | 91.4 (3) | H1211—C121—H1212 | 109.8 |
Cl4—Pt1—Cl2 | 89.97 (15) | C7—C121—H1213 | 109.0 |
Cl1—Pt1—Cl2 | 178.47 (16) | H1211—C121—H1213 | 109.8 |
Cl3—Pt1—Cl2 | 89.53 (17) | H1212—C121—H1213 | 109.7 |
N1—Pt1—N2 | 178.6 (3) | C7—C90—H901 | 109.1 |
Cl4—Pt1—N2 | 87.6 (2) | C7—C90—H902 | 109.3 |
Cl1—Pt1—N2 | 92.3 (2) | H901—C90—H902 | 109.5 |
Cl3—Pt1—N2 | 93.3 (2) | C7—C90—H903 | 110.0 |
Cl2—Pt1—N2 | 88.4 (2) | H901—C90—H903 | 109.4 |
C2—C50—H501 | 109.4 | H902—C90—H903 | 109.5 |
C2—C50—H502 | 109.7 | C7—C91—H911 | 109.4 |
H501—C50—H502 | 109.6 | C7—C91—H912 | 109.6 |
C2—C50—H503 | 109.7 | H911—C91—H912 | 109.7 |
H501—C50—H503 | 109.0 | C7—C91—H913 | 109.6 |
H502—C50—H503 | 109.4 | H911—C91—H913 | 109.3 |
C2—C30—H301 | 109.8 | H912—C91—H913 | 109.4 |
C2—C30—H302 | 109.0 | C7—C80—H801 | 109.5 |
H301—C30—H302 | 109.9 | C7—C80—H802 | 109.2 |
C2—C30—H303 | 108.9 | H801—C80—H802 | 109.5 |
H301—C30—H303 | 109.5 | C7—C80—H803 | 110.2 |
H302—C30—H303 | 109.7 | H801—C80—H803 | 109.3 |
O10—C10—N2 | 114.09 (10) | H802—C80—H803 | 109.1 |
O10—C10—C2 | 110.83 (10) | C7—C81—H811 | 109.5 |
N2—C10—C2 | 134.04 (10) | C7—C81—H812 | 109.2 |
C10—O10—H101 | 105.5 | H811—C81—H812 | 109.3 |
C2—C40—H401 | 109.1 | C7—C81—H813 | 110.0 |
C2—C40—H402 | 110.0 | H811—C81—H813 | 109.6 |
H401—C40—H402 | 109.7 | H812—C81—H813 | 109.3 |
C2—C40—H403 | 108.7 |
Acknowledgements
The authors thank the University of Bari, Italy, and gratefully acknowledge Professor F. P. Intini for the technical support during the NMR data collection. Open access funding enabled and organized by Projekt DEAL.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Camalli, M., Burla, M. C. & Polidori, G. (1993). Acta Cryst. A49, c55. CrossRef Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487–1487. Web of Science CrossRef CAS IUCr Journals Google Scholar
Boulikas, T., Pantos, A., Bellis, E. & Christofis, P. (2007). Cancer Ther. 5, 537–583. Google Scholar
Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Casas, J. M., Chisholm, M. H., Sicilia, M. V. & Streib, W. E. (1991). Polyhedron, 10, 1573–1578. CSD CrossRef CAS Web of Science Google Scholar
Cini, R., Cavaglioni, A., Intini, F. P., Fanizzi, F. P., Pacifico, C. & Natile, G. (1999). Polyhedron, 18, 1863–1868. Web of Science CSD CrossRef CAS Google Scholar
Dhar, S., Kolishetti, N., Lippard, S. J. & Farokhzad, O. C. (2011). Proc. Natl Acad. Sci. USA, 108, 1850–1855. Web of Science CrossRef CAS PubMed Google Scholar
Erxleben, A., Mutikainen, I. & Lippert, R. (1994). J. Chem. Soc. Dalton Trans. pp. 3667–3675 CrossRef Web of Science Google Scholar
Fabijańska, M., Studzian, K., Szmigiero, L., Rybarczyk-Pirek, A. J., Pfitzner, A., Cebula-Obrzut, B., Smolewski, P., Zyner, E. & Ochocki, J. (2015). Dalton Trans. 44, 938–947. Web of Science PubMed Google Scholar
Farrell, N., Kelland, L. R., Roberts, J. D. & Van Beusichem, M. (1992). Cancer Res. 52, 5065–5072. PubMed CAS Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Giaccone, G. (2000). Drugs, 59, 9–17. Web of Science CrossRef PubMed CAS Google Scholar
Grabner, S. & Bukovec, P. (2015). Acta Chim. Slov. 62, 389–393. Web of Science CrossRef CAS PubMed Google Scholar
Heffeter, P., Jungwirth, U., Jakupec, M., Hartinger, C., Galanski, M., Elbling, L., Micksche, M., Keppler, B. & Berger, W. (2008). Drug Resist. Updat. 11, 1–16. Web of Science CrossRef PubMed CAS Google Scholar
Jakupec, M. A., Galanski, M. & Keppler, B. K. (2003). Rev. Physiol. Biochem. Pharmacol. 146, 1–54. Web of Science CrossRef PubMed CAS Google Scholar
Kasparkova, J., Marini, V., Najajreh, Y., Gibson, D. & Brabec, V. (2003b). Biochemistry, 42, 6321–6332. Web of Science CrossRef PubMed CAS Google Scholar
Kasparkova, J., Novakova, O., Farrell, N. & Brabec, V. (2003a). Biochemistry, 42, 792–800. Web of Science CrossRef PubMed CAS Google Scholar
Kelland, L. R. (2007). Nat. Rev. Cancer, 7, 573–584. Web of Science CrossRef PubMed CAS Google Scholar
Kuo, M. T., Chen, H. H., Song, I. S., Savaraj, N. & Ishikawa, T. (2007). Cancer Metastasis Rev. 26, 71–83. Web of Science CrossRef PubMed CAS Google Scholar
Lippert, B. (1999). Cisplatin Chemistry and Biochemistry of a Leading Anticancer Drug. New York: Wiley-VCH. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Min, Y., Mao, C., Xu, D., Wang, J. & Liu, Y. (2010). Chem. Commun. 46, 8424–8426. Web of Science CrossRef CAS Google Scholar
Montero, E. I., Díaz, S., González-Vadillo, A. M., Pérez, J. M., Alonso, C. & Navarro-Ranninger, C. (1999). J. Med. Chem. 42, 4264–4268. Web of Science CrossRef PubMed CAS Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659–659. CrossRef CAS IUCr Journals Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Oberoi, H. S., Nukolova, N. V., Kabanov, A. V. & Bronich, T. K. (2013). Adv. Drug Deliv. Rev. 65, 1667–1685. Web of Science CrossRef CAS PubMed Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Oxford Diffraction (2002). CrysAlis. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rabik, C. A. & Dolan, M. E. (2007). Cancer Treat. Rev. 33, 9–23. Web of Science CrossRef PubMed CAS Google Scholar
Rauko, P., Novotny, L., Dovinova, I., Hunakova, L., Szekeres, T. & Jayaram, H. N. (2001). Eur. J. Pharm. Sci. 12, 387–394. Web of Science CrossRef PubMed CAS Google Scholar
Reedijk, J. (2011). Pure Appl. Chem. 83, 1709–1719. Web of Science CrossRef CAS Google Scholar
Rosenberg, B., Van Camp, L. & Krigas, T. (1965). Nature, 205, 698–699. CrossRef PubMed CAS Web of Science Google Scholar
Sheldrick, G. M. (2010). SADABS. University of Gottingen, Germany. Google Scholar
Sinnokrot, M. & Sherrill, C. D. (2006). J. Phys. Chem. A, 110, 10656–10668. Web of Science CrossRef PubMed CAS Google Scholar
Steward, D. J. (2007). Crit. Rev. Oncol. Hematol. 63, 12–31. Web of Science PubMed Google Scholar
Van Beusichem, M. & Farrell, N. (1992). Inorg. Chem. 31, 634–639. CSD CrossRef CAS Web of Science Google Scholar
Vernhet, L., Petit, J. Y. & Lang, F. (1997). J. Pharmacol. Exp. Ther. 283, 358–365. CAS PubMed Web of Science Google Scholar
Vinci, D. & Chateigner, D. (2022). Acta Cryst. B78, 835–841. Web of Science CSD CrossRef IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
Wiltshaw, E. (1979). Plat. Met. Rev. 23, 90–98. CAS Google Scholar
Wong, E. & Giandomenico, C. M. (1999). Chem. Rev. 99, 2451–2466. Web of Science CrossRef PubMed CAS Google Scholar
Zhang, J., Dai, J., Lan, X., Zhao, Y., Yang, F., Zhang, H., Tang, S., Liang, G., Wang, X. & Tang, Q. (2022). Eur. J. Med. Chem. 233, 114215. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.