research papers
Order–disorder (OD) 3FeTe2O8(OH)2(H2O)1+x
of KaX-Ray Centre, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
*Correspondence e-mail: bstoeger@mail.tuwien.ac.at
K3FeTe2O8(OH)2(H2O)2 was synthesized under hydrothermal conditions from Te(OH)6, FeSO4·7H2O and 85 wt% KOH in a 1:2:6 molar ratio. The is built of a triperiodic network. One disordered water molecule per formula unit is located in a channel and can be partially removed by heating. Systematic one-dimensional diffuse scattering indicates a polytypic character, which is best described by application of the order–disorder theory. The major polytype is monoclinic with pseudo-orthorhombic metrics. It is interrupted by fragments of an orthorhombic polytype. The diffraction intensities are analyzed using calculations.
Keywords: polytypism; OD theory; X-ray diffraction; tellurate.
1. Introduction
Single crystals of the hydrous potassium iron(III) tellurium(VI) oxide K3FeTe2O8(OH)2(H2O)2 were grown under hydrothermal conditions in an attempt to synthesize Fe analogues of K2Ni2TeO6, a fast potassium ion conductor with potential application as battery materials (Masese et al., 2018). On heating, weakly-bound water is gradually lost, resulting in K3FeTe2O8(OH)2(H2O)1+x (0 ≤ x < 1) with otherwise unchanged structure. The fully hydrated compound and the partially dehydrated products can be formulated as K3FeTe2O8(OH)2(H2O)1+x.
The title compounds feature order–disorder (OD) ). This means that the structure is built of layers that can be stacked in different ways and all are locally equivalent. In particular, adjacent pairs of layers contact in such a way that the resulting pairs are geometrically equivalent. The OD theory thus interprets the common occurrence of and provides a unified description of families of OD structures.
(Dornberger-Schiff & Grell-Niemann, 1961Herein, a detailed OD description of K3FeTe2O8(OH)2(H2O)1+x is given. The diffraction pattern is analyzed using calculations.
2. Experimental
2.1. Synthesis
A mixture of Te(OH)6, FeSO4·7H2O and 85 wt% KOH in a 1:2:6 molar ratio were introduced into PTFE inlays with ∼3 ml inner volume. The inlays were three-quarters filled with deionized water, introduced into steel autoclaves and placed in a pre-heated drying closet at 210°C. After three days, the autoclaves were cooled in air for ∼4 h. The solid residue was washed twice with water and twice with isopropanol and finally dried at 35°C in air to give single phase K3FeTe2O8(OH)2(H2O)2 according to powder X-ray diffraction. The product was obtained as a mixture of microcrystalline powder and tiny lath-shaped single crystals.
2.2. Single crystal diffraction
Single crystals of K3FeTe2O8(OH)2(H2O)2 were selected under a polarizing microscope. A 300 K dataset was collected on a Bruker KAPPA APEX II diffractometer system equipped with a Mo Kα sealed tube, a CCD detector and an Oxford Cryosystems Cryostream 800. High temperature measurements and maps were collected on a STOE Stadivari diffractometer system equipped with a Mo Kα microsource, a DECTRIS Eiger CdTe hybrid photon-counting (HPC) detector and a STOE Heatstream heating system. To reconstruct the diffuse scattering, a room temperature dataset with very long exposure times (120 s per degree) was collected, taking advantage of the practically zero-noise of HPC detectors.
Data were processed using the APEX4 suite (Bruker, 2022) and X-Area (STOE & Cie GmbH, 2021). Corrections for absorption effects were applied using the multi-scan approach followed by a spherical absorption correction implemented in SADABS (Bruker, 2022) and LANA (STOE & Cie, 2021). Data collection and details are compiled in Table 1.
|
2.3. Structure solution and refinement
The unit-cell parameters strongly suggested an orthorhombic I-centered (oI) lattice. A first structural model was obtained using the dual-space methods implemented in SHELXT (Sheldrick, 2015b) in the Imma. The structure was refined using SHELXL (Sheldrick, 2015a). Non-hydrogen atoms were refined using anisotropic displacement parameters (ADPs).
The central atom of an [MO6] octahedron had to be modeled as an occupationally disordered Te/Fe site (labeled as Te1/Fe1) with an 1:1 occupation ratio. Refinements resulted in reasonable reliability factors {R[F2 > 2σ(F2)] ≈ 0.06}, however, the ADP tensors were highly anisotropic.
Since we suspected ordering of the Te/Fe site, we attempted structure solutions in the maximal subgroups of Imma with the same translation lattice, also called translationengleiche subgroups (Müller, 2013), namely Im2a, I2ma, Imm2, I212121, I2/m11, I12/m1 and I112/a. The lost symmetry operations survive in the crystalline edifice as twin operations and define the that was applied in the subsequent refinements.
A satisfying structure model was only obtained in I2/m11. The Te/Fe site of the orthorhombic Imma structure split into two sites with distinctly different electron densities. Yet, both sites still had to be modeled as mixed Te/Fe sites (Te1:Fe1′ and Fe1:Te1′) with the overall Te:Fe ratio being fixed to 1:1. For convenience, the axes were permuted to the standard setting of monoclinic space groups (b unique). In this setting, the of the final model is I2/m and that of the orthorhombic parent structure is Ibmm.
H atoms were located from difference Fourier maps and the O—H distances were restrained to 0.870 Å. The H atoms of the disordered water molecule in channels of the structure could not be localized. The occupancy of the disordered water molecule refined to 1 within experimental precision for the 300 K dataset and to 43 (5)% for the dataset collected at 436 K.
A further dataset was collected at 489 K, though was of even worse quality and is therefore not presented here. Increasing the temperature to 540 K let to a decomposition of the crystal, as evidenced by planes of diffuse scattering normal to b* (though no formation of powder rings).
3. Results and discussion
3.1. Structure overview
The crystal structures of K3FeTe2O8(OH)2(H2O)1+x (Fig. 1) are built of wavy sheets of a FeTe2O8(OH)2 network extending in the (010) plane. The sheets are connected by K atoms and a water molecule (O6) located on a (010) reflection plane (see Table 2). Channels in the structure extending along [001] are filled with a varying number of water molecules (O7) depending on measurement temperature. Owing to the loss of water, the unit-cell volume decreases marginally from 300 K to 436 K (see Table 1). However, as expected, the overall density decreases on heating. The a parameter decreases by ∼0.3%, owing to a shrinking of the channels.
|
3.2. OD interpretation
Faint one-dimensional diffuse scattering perpendicular to (010) (Fig. 2) clearly indicated a non-negligible probability, i.e. which is consistent with the observed and the disorder of the Te1, Fe1 positions. As noted in the introduction, the OD theory often provides convincing arguments for the polytype character of a structure. The crucial step in an OD interpretation is the identification of the OD layers. This is performed by identifying pseudo-symmetry operations that apply only to a part of the structure. These partial operations (POs) may map layers onto themselves or onto a different layer.
For K3FeTe2O8(OH)2(H2O)1+x, the POs correspond to the lost symmetry operations when descending from the Ibmm parent structure with the equally disordered Fe1/Te1 position to the I2/m polytype with two oppositely disordered positions. Since it is known from diffuse scattering along b* that the OD layers extend in the (010) plane, an OD interpretation in terms of two kinds of layers imposes itself as follows.
The K3FeTe2O8(OH)2(H2O)1+x structures are category IV (Grell & Dornberger-Schiff, 1982) OD structures of two kinds of non-polar (with respect to the stacking directions) layers, named A1 and A2. The symbol A is reserved for non-polar layers and the superscript identifies the kind of the layer (Grell & Dornberger-Schiff, 1982). The two kinds of layers appear alternately as indicated in Fig. 1 (right), where the subscript is a sequential number. Note that the exact choice of layer boundary is not relevant as will be shown below and therefore we choose here an interpretation according to crystal chemistry.
The A1 layers comprise a network of K and water molecules [Fig. 3(a)]. The disordered O7 water molecule is not shown, since it is irrelevant for the OD description. The A2 layers [Fig. 3(b)] contain the diperiodic FeTe2O8(OH)2 network where intra-layer hydrogen bonds connect the [TeO4(OH)2] units to the [Te1O6] and [Fe1O6] octahedra (see O5 atom in Table 2).
The layers possess Pc(m)m and P1(2/n)1 symmetry according to the OD interpretation, which, as is typical for OD structures, requires a small degree of idealization. The (pseudo-)symmetry operations are given in Fig. 3 using the usual graphical symbols. In the OD literature, layer groups are written with capital Bravais symbols to indicate the three-dimensional nature of the layers and with parentheses marking the direction lacking translations. In contrast, the International Tables for Crystallography use lowercase Bravais symbols owing to the two-dimensionality of the lattice (Kopsky & Litvin, 2006). However, the latter symbols imply a stacking direction of [001] and therefore have not found use in the OD literature where alternative stacking directions are often preferable.
The symmetry of a particular ) of all its POs, which lacks group character, because POs can only be composed if the target layer of the first is the source layer of the second (Ehresmann, 1957). All OD groupoids of structures built according to the same symmetry principle (Fichtner, 1979) belong to the same OD family, which can be considered as a generalization of the 230 types. The OD family symbol of K3FeTe2O8(OH)2(H2O)1+x is
is given by a space (Ito & Sadanaga, 1976 according to the notation of Grell & Dornberger-Schiff (1982).The first line indicates the layer names and the second line the symmetry of the layers. The third line gives the relative position of two adjacent layers in one possible stacking arrangement. [r, s] means that the origins of the layers are related by rc + sa + b0/2, r and s being metric parameters in addition to the unit-cell parameters (Fichtner, 1979). b0 is the vector perpendicular to the layer planes and the length corresponding to the width of an A1A2 layer packet (see Fig. 1). For K3FeTe2O8(OH)2(H2O)1+x, the metric parameters adopt the fixed values . Indeed, the centers of inversion of the A2 layers, which define the origin of its layer group, are located at c/4 + a/4 + b0/2 with respect to the centers of inversion of the A1 layers (Fig. 3).
3.3. NFZ relationship
The stacking possibilities are derived using the NFZ (Z = N/F) relationship (Ďurovič, 1997). In the case of layers of different kinds, the procedure is as follows: the groups of layer operations that do not invert the orientations of the layers with respect to the stacking directions are determined. These groups can be associated with one of the 17 wallpaper group types. One obtains Pc(2)m for A1 and P1(2)1 for A2, respectively. In a second step, the intersection of the groups is formed, i.e. the common operations, called continuations in the OD literature, are determined. Here, the values of (r,s) = are critical. They cause the 2[010] rotation axes of both layers to overlap perfectly and therefore the group of common operations is P1(2)1. Finally, a decomposition gives the number and orientations of possible stacking arrangements.
For an A1 → A2 contact, there are [Pc(2)m:P1(2)1] = 2 cosets and therefore two ways of placing the A2 layer. The second possibility is obtained by applying the c[100] or equivalently the m[010] operation of the A1 layer onto the A2 layer. This operation exchanges the Te1 and Fe1 positions [Fig. 3(b)]. In contrast, for an A2 → A1 contact, there is only [P1(2)1:P1(2)1] = 1 way of placing the A1 layer.
3.4. MDO and family structure
According to the OD construction, A1nA2n+1 pairs are geometrically equivalent. Likewise, all A1nA2n+1A1n+2 triples are equivalent, since there is only one way of placing the A1 layers (see previous section). However, there are two kinds of A2nA1n+1A2n+2 triples, namely those where the A2 layers are related by the m[010] operation of the central A1 layer and those where they are related by the 2[100] operation.
The ). Assuming that the two triples are energetically slightly different, and therefore one is preferred during crystallization, one would assume that ordered are usually of the MDO kind. Even though a simplistic view, this is indeed very often the case, though exceptions do exist (Nespolo, 2001; Hybler, 2016). MDO are particularly important in an OD interpretation, as all other can be decomposed into fragments of the MDO polytypes.
containing only one of the two kinds of triples are said to be of a maximum degree of order (MDO) (Dornberger-Schiff & Grell, 1982The layer symmetries of the two MDO 3FeTe2O8(OH)2(H2O)1+x are schematized in Figs. 4(a) and 4(b). Operations valid for the whole polytype are indicated in red. The geometric elements of the layers (their symmetry frameworks) are located at the same positions in all but the global symmetries differ. The MDO1 polytype has I2/m symmetry, lattice basis vector b = 2b0 in the conventional setting and corresponds to the major polytype of the crystals under investigation. The MDO2 polytype has Pbnn symmetry with the same unit-cell parameters as MDO1, but a primitive lattice. The P1(2/n)1 symmetry of the A2 layers is retained in both The idealized Pc(m)m symmetry of the A1 layers is reduced to P1(2/m)1 (MDO1) and P2(2)21 (MDO2), respectively.
of KThe (c). Here the Pc(m)m symmetry of the A1 layers is retained and the symmetry of the A2 layers increases from P1(2/n)1 to Pc(n)m. The corresponds to the disordered Ibmm structure of the first attempts described above.
is a fictitious disordered polytype, where all stacking possibilities are realized to the same degree. Its symmetry is schematized in Fig. 4Since the 1 polytype (2/m) is a of the of the (mmm) of index 2, stacking faults lead to domains with two different orientions. The domain orientations are related by the point operations of the that are not point operations of the polytype: 2[100], m[100], 2[001] and m[001]. If the domain size is smaller than the coherence length of the radiation, one obtains a disordered structure with higher symmetry. If it is distinctly larger, then the crystal is a twin and the given operations constitute the If the twin domains are distinctly smaller than the crystal size, the twin volume fractions are approximately equal for statistical reasons. If there are only few stacking faults per crystal, one may obtain twins with unequal volume fractions.
of the MDOThe crystals under investigation were refined at the same time as disordered and twins with equal twin volume fractions, which indicates domain sizes in the region of the coherence length (see Table 1). This is consistent with the observed weak diffuse scattering.
MDO2 and the share the same which means that stacking faults in MDO2 give domains with the same orientation, but different translation states. Since translations lead to a phase shift of the scattered radiation, these are called antiphase domains.
3.5. Desymmetrization
Since the actual symmetry of the layers is in general decreased compared to the idealized OD description, one can expect a certain degree of desymmetrization (Ďurovič, 1979), i.e. deviation from the idealized symmetry. A full quantification of requires structural data of distinct (Ďurovič, 1979), which are not available for the title compounds. One can, however, create an idealized version of the layers with symmetry according to the OD description and quantify the deviation from that idealized structure.
Table 3 lists the distances of the actual A1 layer atoms to the idealized layer. Here, some atoms of the [MO6] octahedra have been included in the layer, even though crystal-chemically they belong to the A2 layers. This is justified by the minute with the largest deviation of only 0.053 Å. Clearly, the OD description of the A1 layers is valid.
|
The A2 layers possess their full symmetry in the MDO and therefore cannot be idealized. It is nevertheless interesting to quantify the deviation from the Ibmm obtained by applying the m[001] symmetry, averaging close atoms and moving the atoms onto the Ibmm Wyckoff positions (see Table 4). In this idealized layer, the Te1 and Fe1 atoms share a single position. Apart from that, the deviation from Pc(n)m symmetry is surprisingly minute (max. 0.065 Å). This shows that in principle the whole structure with exception of the Te1 and Fe1 positions adopts the Ibmm symmetry, a crucial fact used in the next section to analyze the diffraction pattern. Moreover, it means that the choice of interface between the OD layers is not important as long as the Te1/Fe1 atoms are located in the A2 layer.
|
3.6. Diffraction intensities of the MDO polytypes
The diffraction patterns of the title compounds will be described with respect to the basis , which is the a, b0, c). Since all layers possess a translation lattice spanned by (a, c), diffraction intensities can only appear on rods , whereby h and l are integers, and ν is a real number.
of (The reflections corresponding to the family reflections and are always sharp. Those of other are called characteristic reflections and may be more or less diffuse, depending on the degree of order. In many OD structures, the intensities of the family reflections are identical for all (up to a scaling factor). This is the case if the can be decomposed into layers that are translationally equivalent, i.e. the differ only in the origin of the layers, but not their orientation. For the title compounds however, the A2 layers appear with different orientations and therefore the family reflections may possess different intensities. The diffraction intensities therefore deserve a closer look.
are calledThe diffraction patterns of disordered polytypic structures are characterized by a coexistence of discrete and diffuse scattering. Such intensity distributions cannot be expressed using real density functions. Instead, they are properly described by measures or distributions [see Bricogne (2010), Baake & Grimm (2013)]. The classical example of a measure that is not a proper real function is the Dirac measure δ, which associates the weight of 1 to the point x = 0. Since the integral of a function that is zero everywhere except at x = 0 is 0, δ cannot be a function.
Here, we will disregard such subtleties and use the `equivalence'
where δ(ν − k) is the Dirac measure centered at the point k. The equivalence is to be understood in a weak sense, as the function series to the left side does not converge at any point and the right side is not a function.
Since only the positions of the Te1 and Fe1 atoms differ among Ln of one kind (Fig. 1, left side), which are further decomposed into the Te1/Fe1 atoms ( Ln1) and the remaining atoms ( Ln0). The corresponding structure factors are Fn1 and Fn0, respectively.
it is useful to consider the contributions of these and the remaining atoms separately. Instead of partitioning the into two kinds of layers as in the OD description above, it will be described in terms of layersOwing to the I-centering of the Ln0 is derived from L00 by a translation of n(a/2 + c/2 + b0). The Te1/Fe1 atoms may additionally be translated by c/2 and thus the corresponding translation vector is n(a/2) + (n + an)(c/2) + nb0, where is a bi-infinite sequence with an = 0, 1. This sequence fully describes the polytype.
In consequence, the Ln layer is
of thewith
and
For l even, and therefore
Since this expression is independent of , all l even, which consists of sharp reflections corresponding to the This is in agreement experimental observations [Fig. 2(a)].
possess the same diffraction pattern on rodsHenceforth, only the case l odd will be considered and the function arguments hνl will be omitted for brevity. Diffraction intensities of formally calculate as
where an asterisk indicates the complex conjugate and it should be stressed again that these function series do not converge at any point. Let us consider the individual terms of equation (8) and introduce the abbreviation φΔn = 2πΔn[(h/2) + ν + (l/2)]. The first term is independent of and can be expressed in terms of F00 by substituting equation (3) as
The second and third cross terms depend on and can be written in terms of F00 and F01 as [see equations (3), (4)]
and
where we used the fact that l is odd and an = 0, 1. Finally, the forth term depends on the differences an+Δn − an [see equation (4)]:
Combining these terms, the overall intensity I can be expressed using two kinds of probabilities. Let P be the probability that an = 0 for any n. Moreover, let PΔn be the probability that an+Δn = an. The probabilities are compiled for the MDO and the in Table 5. Note that P = 0, 1 both correspond to the MDO1 polytype, however to the two different twin individuals. Moreover, for any structure with a substantial probability.
|
where c = 2P − 1 and cΔn = 2PΔn − 1 (c being a form of correlation). Thus, there are two distinct contributions to the intensities on rods l odd. The first term describes Dirac (Bragg) peaks located at the positions of the family reflections. For MDO2, the and substantially disordered stacking arrangements, c = 0 (see Table 5) and thus the reflection intensities are given only by . In contrast, for MDO1 the intensity is modified by the cross term , where the sign depends on the orientation of the twin domain. Note that an expression of the form AB* + B*A is real, but may be negative. Geometrically, it corresponds to the scalar product of A and B in the complex number plane.
Only the second term of equation (17) with the factor may result in diffuse scattering in the case of disordered stacking arrangements, which means that only the Te1/Fe1 atoms contribute to diffuse scattering. The term may however also produce Dirac peaks when the stacking is ordered. In particular, it may add additional intensity to the family reflections. Substituting the cΔn value from Table 5, the F01F01* contribution to the diffraction intensities calculates as:
MDO1: ,
MDO2: ,
Family structure: F01F01*.
For MDO1, additional intensity is added to the family reflections, for MDO2 additional peaks between the family reflections, as expected given its lack if I-centering. The produces an unstructured streak with the form given by F01F01*. Even though in general , technically the diffuse scattering of the does not contribute to the intensities of the Dirac peaks. The latter is given as the integral of an infinitesimally area below the peak, which is non-zero for a Dirac peak, but vanishes for a regular distribution (i.e. a distribution corresponding to a real function). However, in actual crystals, the Bragg peaks possess a non-zero width owing to experimental artifacts and imperfect crystals and therefore Bragg intensities will be affected by diffuse scattering.
Table 6 summarizes the diffraction intensities of the MDO and the on rods l odd. The MDO (two twin domains in case of MDO1) and the can be clearly distinguished from Bragg intensities. For MDO1, the Ln layers are all translationally equivalent, and therefore the diffraction intensity corresponds to the of a single layer . In the other twin domain, the L0n components are unchanged by the because L0 possesses the of the The exchange of the Fe and Te atoms in the L1n components can also be described by a translation along c/2, which corresponds on rods l odd to a phase shift of π and thus the here is . In MDO2 and disordered stacking arrangements, such as the phases of the L1n components cancel out systematically or randomly and the is accordingly .
|
A quantification of the contribution of the different terms is given in Fig. 5 for the (1ν3)* rod of MDO1 (both twin domains) and MDO2. The intensities of the are indicated by blue dots. Note that for MDO1 the intensities correspond perfectly to the calculated value since MDO1 is generated by repeated translation of a single layer. In contrast for the alternative twin domain and MDO2 the values differ slightly from owing to (deviation from m[100] symmetry of the actual layers). Nevertheless, the tiny deviation proves the validity of the idealization.
The cross term F00F01*+F01F00* is surprisingly pronounced and changes sign, which makes the MDO clearly distinguishable based on the intensities of the family reflections. The term, which is responsible for the diffuse scattering though is weak. In fact, assuming equal displacement parameters T of Te1 and Fe1, calculates as T2|fTe − fFe|2, where f stands for the atomic form factors. In other words, the contribution to the diffuse scattering is given by the difference of an Fe and a Te atom (23 electrons).
The same small contribution is also the only difference between a twin of MDO1 and a fully disordered Imm2 structure as shown in Fig. 6 (also see rows 3 and 5 in Table 6). Thus, these two models are surprisingly hard to distinguish.
The intensities of the crystal under investigation lie between these two cases, whence the Te1/Fe1 positions had to be modelled as disordered in a ∼ 80 : 20 manner. There must therefore be rather large MDO1 domains on the order of magnitude of the coherence length of the employed X-ray radiation. Yet, there must also be rather frequent stacking faults resulting in apparent disorder. This shows a fundamental problem in evaluating such data: the coherence length is not precisely known. In fact, it cannot even be assumed to be a fixed value. In other words, the refined Te1/Fe1 ratio cannot be used to estimate the size of the respective domains as the extent of the twin character (i.e. the ratio of coherent and non-coherent diffraction between the domains) is not known.
Even though with long exposition times the diffuse scattering is clearly observed [Fig. 2(b)], its intensity is too weak for quantitative analysis (Fig. 7). This is due to the weak contribution of Fe1/Te1 and because the crystals are at the border between disordered and twinned crystals. The one-dimensional streaks are unstructured, as would be expected for occasional stacking faults.
4. Conclusion and outlook
Application of the OD theory has again confirmed its status as `the theory of e.g. lack of software support and standardized notations), but also shortcomings in the theory itself (e.g. ambiguities in the choice of layers). Therefore effort should be put into improving the accessibility and the foundation of the theory.
by rationalizing the occurrence of stacking disorder and by classifying the polytype family according to its symmetry principle. However, it remains poorly known in significant parts of the structural science community, even though is an universal phenomenon. This is certainly due to poor accessibility (We also showed that single-crystal diffraction in such a case is an unrivaled tool to structurally characterize the average crystal structure. When it comes to the real structure, however, such as quantification of probabilities, complementary methods are required.
Supporting information
https://doi.org/10.1107/S2052520623009162/yv5013sup1.cif
contains datablocks 300K, 436K. DOI:Structure factors: contains datablock 300K. DOI: https://doi.org/10.1107/S2052520623009162/yv5013300Ksup2.hkl
Structure factors: contains datablock 436K. DOI: https://doi.org/10.1107/S2052520623009162/yv5013436Ksup3.hkl
FeH6K3O12Te2 | F(000) = 1156 |
Mr = 626.40 | Dx = 3.647 Mg m−3 |
Monoclinic, I2/m | Mo Kα radiation, λ = 0.71073 Å |
a = 12.8036 (6) Å | Cell parameters from 4769 reflections |
b = 14.9042 (8) Å | θ = 2.7–36.0° |
c = 5.9782 (3) Å | µ = 7.49 mm−1 |
β = 90.002 (2)° | T = 300 K |
V = 1140.80 (10) Å3 | Needle |
Z = 4 | 0.32 × 0.25 × 0.12 mm |
Bruker KAPPA APEX II CCD diffractometer | 2347 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ω– and φ–scans | θmax = 36.2°, θmin = 2.7° |
Absorption correction: multi-scan SADABS | h = −20→13 |
Tmin = 0.261, Tmax = 0.344 | k = −24→23 |
9677 measured reflections | l = −9→9 |
2649 independent reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | Only H-atom coordinates refined |
R[F2 > 2σ(F2)] = 0.020 | w = 1/[σ2(Fo2) + (0.0219P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.045 | (Δ/σ)max = 0.015 |
S = 1.01 | Δρmax = 1.33 e Å−3 |
2649 reflections | Δρmin = −0.96 e Å−3 |
98 parameters | Extinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
2 restraints | Extinction coefficient: 0.00039 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Te1 | 0.0000 | 0.28339 (2) | 0.5000 | 0.00689 (7) | 0.792 (2) |
Te1' | 0.5000 | 0.21637 (4) | 0.5000 | 0.00821 (13) | 0.208 (2) |
Te2 | 0.2500 | 0.2500 | 0.7500 | 0.00768 (5) | |
Fe1 | 0.5000 | 0.21637 (4) | 0.5000 | 0.00821 (13) | 0.792 (2) |
Fe1' | 0.0000 | 0.28339 (2) | 0.5000 | 0.00689 (7) | 0.208 (2) |
K1 | 0.20295 (4) | 0.13035 (4) | 0.2484 (4) | 0.01802 (10) | |
K2 | 0.35236 (6) | 0.0000 | 0.7465 (8) | 0.02345 (17) | |
O1 | 0.00444 (14) | 0.19541 (11) | 0.2607 (3) | 0.0119 (3) | |
O2 | 0.15493 (15) | 0.28558 (17) | 0.5192 (8) | 0.0096 (5) | |
O3 | 0.34349 (15) | 0.21544 (17) | 0.5149 (11) | 0.0151 (5) | |
O4 | −0.00836 (13) | 0.36920 (11) | 0.7399 (4) | 0.0114 (3) | |
O5 | 0.19305 (13) | 0.12767 (12) | 0.7469 (13) | 0.0148 (3) | |
H1 | 0.1270 (7) | 0.133 (2) | 0.716 (6) | 0.022* | |
O6 | 0.3513 (2) | 0.0000 | 0.257 (3) | 0.0231 (7) | |
H2 | 0.3942 (18) | −0.0427 (14) | 0.219 (7) | 0.035* | |
O7 | 0.0425 (5) | 0.0000 | 0.250 (2) | 0.149 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Te1 | 0.00437 (10) | 0.01069 (15) | 0.00561 (10) | 0.000 | −0.0012 (3) | 0.000 |
Te1' | 0.00572 (18) | 0.0124 (3) | 0.00653 (18) | 0.000 | −0.0012 (7) | 0.000 |
Te2 | 0.00415 (7) | 0.01205 (9) | 0.00684 (7) | 0.00048 (6) | 0.0000 (5) | 0.00006 (9) |
Fe1 | 0.00572 (18) | 0.0124 (3) | 0.00653 (18) | 0.000 | −0.0012 (7) | 0.000 |
Fe1' | 0.00437 (10) | 0.01069 (15) | 0.00561 (10) | 0.000 | −0.0012 (3) | 0.000 |
K1 | 0.0189 (2) | 0.0192 (2) | 0.0159 (2) | 0.00463 (19) | 0.0002 (7) | 0.0004 (7) |
K2 | 0.0168 (3) | 0.0223 (4) | 0.0312 (4) | 0.000 | −0.0017 (12) | 0.000 |
O1 | 0.0097 (6) | 0.0122 (7) | 0.0139 (7) | 0.0001 (6) | 0.0017 (16) | −0.0010 (8) |
O2 | 0.0048 (7) | 0.0211 (10) | 0.0029 (14) | 0.0004 (9) | 0.0017 (10) | 0.0006 (15) |
O3 | 0.0059 (7) | 0.0223 (11) | 0.0170 (16) | 0.0015 (10) | 0.0033 (14) | −0.0034 (19) |
O4 | 0.0105 (6) | 0.0116 (7) | 0.0120 (7) | 0.0003 (6) | 0.0007 (13) | −0.0006 (8) |
O5 | 0.0099 (7) | 0.0134 (7) | 0.0210 (8) | −0.0007 (6) | −0.003 (2) | 0.003 (2) |
O6 | 0.0132 (11) | 0.0140 (12) | 0.042 (2) | 0.000 | −0.001 (4) | 0.000 |
O7 | 0.045 (3) | 0.082 (5) | 0.321 (11) | 0.000 | 0.014 (8) | 0.000 |
Te1—O4i | 1.925 (2) | K1—O3 | 2.717 (5) |
Te1—O4 | 1.925 (2) | K1—O6 | 2.718 (2) |
Te1—O1 | 1.9414 (18) | K1—O1 | 2.7214 (18) |
Te1—O1i | 1.9414 (18) | K1—O2iii | 2.728 (4) |
Te1—O2 | 1.9872 (19) | K1—O7 | 2.827 (4) |
Te1—O2i | 1.9873 (19) | K1—O3iii | 2.848 (4) |
Te1—Te1'ii | 2.9891 (1) | K1—O2 | 2.890 (4) |
Te1—Fe1iii | 2.9891 (1) | K1—O5 | 2.983 (6) |
Te1—Fe1ii | 2.9891 (1) | K1—O5viii | 3.001 (6) |
Te1—Te1'iii | 2.9891 (1) | K1—Te2viii | 3.524 (2) |
Te1—K1 | 3.7707 (11) | K1—K1iii | 3.7647 (11) |
Te1—K1i | 3.7707 (11) | K1—H1 | 2.96 (4) |
Te1'—O3 | 2.0060 (19) | K2—O5ix | 2.7896 (18) |
Te1'—O3iv | 2.0060 (19) | K2—O5 | 2.7896 (18) |
Te1'—O4v | 2.014 (2) | K2—O4ii | 2.7922 (17) |
Te1'—O4ii | 2.014 (2) | K2—O4x | 2.7922 (17) |
Te1'—O1vi | 2.0399 (19) | K2—O6 | 2.924 (11) |
Te1'—O1iii | 2.0399 (19) | K2—O6vii | 3.054 (11) |
Te1'—Te1iii | 2.9891 (1) | K2—Te2x | 3.9499 (3) |
Te1'—Te1ii | 2.9891 (1) | K2—Te1'xi | 4.0180 (19) |
Te1'—Fe1'iii | 2.9891 (1) | K2—Te1ii | 4.0362 (18) |
Te1'—Fe1'ii | 2.9891 (1) | K2—Te1xii | 4.0362 (18) |
Te1'—K1vi | 3.7651 (11) | O1—Fe1iii | 2.0399 (19) |
Te1'—K1iii | 3.7651 (11) | O1—Te1'iii | 2.0399 (19) |
Te2—O2ii | 1.915 (4) | O2—K1iii | 2.728 (4) |
Te2—O2 | 1.915 (4) | O3—K1iii | 2.848 (4) |
Te2—O3ii | 1.917 (5) | O4—Fe1ii | 2.014 (2) |
Te2—O3 | 1.917 (5) | O4—Te1'ii | 2.014 (2) |
Te2—O5 | 1.9637 (17) | O4—K2ii | 2.7922 (17) |
Te2—O5ii | 1.9637 (17) | O5—K1vii | 3.001 (6) |
Te2—K1vii | 3.524 (2) | O5—H1 | 0.8699 (10) |
Te2—K1iii | 3.524 (2) | O6—K1ix | 2.718 (2) |
Te2—K1ii | 3.541 (2) | O6—K2viii | 3.054 (11) |
Te2—K1 | 3.541 (2) | O6—H2 | 0.8700 (10) |
Te2—K2ii | 3.9499 (3) | O7—K1ix | 2.827 (4) |
Te2—K2 | 3.9499 (3) | ||
O4i—Te1—O4 | 96.72 (12) | K1iii—Te2—K2 | 114.59 (7) |
O4i—Te1—O1 | 84.15 (8) | K1ii—Te2—K2 | 115.03 (7) |
O4—Te1—O1 | 178.30 (7) | K1—Te2—K2 | 64.97 (7) |
O4i—Te1—O1i | 178.29 (7) | K2ii—Te2—K2 | 180.0 |
O4—Te1—O1i | 84.15 (8) | O3—K1—O6 | 81.9 (2) |
O1—Te1—O1i | 95.03 (11) | O3—K1—O1 | 115.86 (9) |
O4i—Te1—O2 | 88.66 (13) | O6—K1—O1 | 155.11 (7) |
O4—Te1—O2 | 90.09 (13) | O3—K1—O2iii | 71.81 (5) |
O1—Te1—O2 | 91.40 (13) | O6—K1—O2iii | 82.7 (2) |
O1i—Te1—O2 | 89.87 (13) | O1—K1—O2iii | 118.37 (9) |
O4i—Te1—O2i | 90.09 (12) | O3—K1—O7 | 143.1 (3) |
O4—Te1—O2i | 88.66 (13) | O6—K1—O7 | 90.95 (9) |
O1—Te1—O2i | 89.87 (13) | O1—K1—O7 | 64.30 (9) |
O1i—Te1—O2i | 91.40 (13) | O2iii—K1—O7 | 143.4 (3) |
O2—Te1—O2i | 178.12 (15) | O3—K1—O3iii | 94.91 (15) |
O4i—Te1—Te1'ii | 138.11 (6) | O6—K1—O3iii | 137.2 (3) |
O4—Te1—Te1'ii | 41.75 (6) | O1—K1—O3iii | 62.13 (7) |
O1—Te1—Te1'ii | 137.53 (6) | O2iii—K1—O3iii | 56.25 (6) |
O1i—Te1—Te1'ii | 42.60 (5) | O7—K1—O3iii | 113.91 (19) |
O2—Te1—Te1'ii | 86.69 (14) | O3—K1—O2 | 55.86 (6) |
O2i—Te1—Te1'ii | 93.31 (14) | O6—K1—O2 | 135.2 (3) |
O4i—Te1—Fe1iii | 41.75 (6) | O1—K1—O2 | 60.06 (6) |
O4—Te1—Fe1iii | 138.11 (6) | O2iii—K1—O2 | 95.90 (11) |
O1—Te1—Fe1iii | 42.60 (5) | O7—K1—O2 | 113.15 (18) |
O1i—Te1—Fe1iii | 137.53 (6) | O3iii—K1—O2 | 67.62 (5) |
O2—Te1—Fe1iii | 93.31 (14) | O3—K1—O5 | 56.54 (13) |
O2i—Te1—Fe1iii | 86.68 (14) | O6—K1—O5 | 90.0 (3) |
Te1'ii—Te1—Fe1iii | 179.86 (3) | O1—K1—O5 | 86.45 (7) |
O4i—Te1—Fe1ii | 138.11 (6) | O2iii—K1—O5 | 128.35 (11) |
O4—Te1—Fe1ii | 41.75 (6) | O7—K1—O5 | 87.5 (3) |
O1—Te1—Fe1ii | 137.53 (6) | O3iii—K1—O5 | 123.64 (12) |
O1i—Te1—Fe1ii | 42.60 (5) | O2—K1—O5 | 56.08 (9) |
O2—Te1—Fe1ii | 86.69 (14) | O3—K1—O5viii | 128.31 (13) |
O2i—Te1—Fe1ii | 93.31 (14) | O6—K1—O5viii | 92.3 (3) |
Te1'ii—Te1—Fe1ii | 0.00 (2) | O1—K1—O5viii | 89.56 (8) |
Fe1iii—Te1—Fe1ii | 179.86 (3) | O2iii—K1—O5viii | 56.52 (10) |
O4i—Te1—Te1'iii | 41.75 (6) | O7—K1—O5viii | 88.0 (3) |
O4—Te1—Te1'iii | 138.11 (6) | O3iii—K1—O5viii | 56.62 (12) |
O1—Te1—Te1'iii | 42.60 (5) | O2—K1—O5viii | 124.15 (10) |
O1i—Te1—Te1'iii | 137.53 (6) | O5—K1—O5viii | 174.91 (7) |
O2—Te1—Te1'iii | 93.31 (14) | O3—K1—Te2viii | 98.41 (12) |
O2i—Te1—Te1'iii | 86.68 (14) | O6—K1—Te2viii | 105.0 (3) |
Te1'ii—Te1—Te1'iii | 179.86 (3) | O1—K1—Te2viii | 90.13 (6) |
Fe1iii—Te1—Te1'iii | 0.0 | O2iii—K1—Te2viii | 32.61 (8) |
Fe1ii—Te1—Te1'iii | 179.9 | O7—K1—Te2viii | 118.4 (3) |
O4i—Te1—K1 | 93.80 (6) | O3iii—K1—Te2viii | 32.88 (9) |
O4—Te1—K1 | 137.53 (6) | O2—K1—Te2viii | 96.02 (8) |
O1—Te1—K1 | 43.72 (6) | O5—K1—Te2viii | 149.16 (4) |
O1i—Te1—K1 | 84.58 (6) | O5viii—K1—Te2viii | 33.84 (4) |
O2—Te1—K1 | 49.09 (10) | O3—K1—Te2 | 32.40 (10) |
O2i—Te1—K1 | 132.43 (11) | O6—K1—Te2 | 103.0 (3) |
Te1'ii—Te1—K1 | 113.56 (4) | O1—K1—Te2 | 87.51 (6) |
Fe1iii—Te1—K1 | 66.53 (4) | O2iii—K1—Te2 | 98.74 (9) |
Fe1ii—Te1—K1 | 113.56 (4) | O7—K1—Te2 | 117.8 (3) |
Te1'iii—Te1—K1 | 66.53 (4) | O3iii—K1—Te2 | 95.57 (11) |
O4i—Te1—K1i | 137.53 (6) | O2—K1—Te2 | 32.70 (7) |
O4—Te1—K1i | 93.80 (6) | O5—K1—Te2 | 33.68 (4) |
O1—Te1—K1i | 84.58 (6) | O5viii—K1—Te2 | 149.32 (4) |
O1i—Te1—K1i | 43.72 (6) | Te2viii—K1—Te2 | 115.599 (16) |
O2—Te1—K1i | 132.44 (10) | O3—K1—K1iii | 48.92 (9) |
O2i—Te1—K1i | 49.09 (10) | O6—K1—K1iii | 116.96 (5) |
Te1'ii—Te1—K1i | 66.53 (4) | O1—K1—K1iii | 87.77 (4) |
Fe1iii—Te1—K1i | 113.56 (4) | O2iii—K1—K1iii | 49.78 (7) |
Fe1ii—Te1—K1i | 66.53 (4) | O7—K1—K1iii | 152.07 (8) |
Te1'iii—Te1—K1i | 113.56 (4) | O3iii—K1—K1iii | 45.99 (9) |
K1—Te1—K1i | 105.55 (3) | O2—K1—K1iii | 46.11 (8) |
O3—Te1'—O3iv | 179.21 (15) | O5—K1—K1iii | 91.21 (8) |
O3—Te1'—O4v | 88.67 (16) | O5viii—K1—K1iii | 91.79 (8) |
O3iv—Te1'—O4v | 90.83 (17) | Te2viii—K1—K1iii | 58.01 (5) |
O3—Te1'—O4ii | 90.83 (17) | Te2—K1—K1iii | 57.59 (5) |
O3iv—Te1'—O4ii | 88.67 (16) | O3—K1—H1 | 70.0 (4) |
O4v—Te1'—O4ii | 101.42 (11) | O6—K1—H1 | 102.8 (6) |
O3—Te1'—O1vi | 89.90 (16) | O1—K1—H1 | 70.3 (2) |
O3iv—Te1'—O1vi | 90.61 (16) | O2iii—K1—H1 | 140.1 (6) |
O4v—Te1'—O1vi | 178.35 (7) | O7—K1—H1 | 76.5 (6) |
O4ii—Te1'—O1vi | 79.44 (7) | O3iii—K1—H1 | 116.2 (6) |
O3—Te1'—O1iii | 90.61 (16) | O2—K1—H1 | 52.4 (7) |
O3iv—Te1'—O1iii | 89.90 (16) | O5—K1—H1 | 16.83 (8) |
O4v—Te1'—O1iii | 79.44 (7) | O5viii—K1—H1 | 158.39 (13) |
O4ii—Te1'—O1iii | 178.35 (7) | Te2viii—K1—H1 | 148.0 (7) |
O1vi—Te1'—O1iii | 99.73 (10) | Te2—K1—H1 | 41.3 (6) |
O3—Te1'—Te1iii | 92.55 (19) | K1iii—K1—H1 | 95.0 (7) |
O3iv—Te1'—Te1iii | 87.45 (19) | O5ix—K2—O5 | 86.02 (7) |
O4v—Te1'—Te1iii | 39.53 (5) | O5ix—K2—O4ii | 177.9 (2) |
O4ii—Te1'—Te1iii | 140.61 (6) | O5—K2—O4ii | 92.68 (5) |
O1vi—Te1'—Te1iii | 139.75 (6) | O5ix—K2—O4x | 92.68 (5) |
O1iii—Te1'—Te1iii | 40.11 (5) | O5—K2—O4x | 177.9 (2) |
O3—Te1'—Te1ii | 87.45 (19) | O4ii—K2—O4x | 88.57 (7) |
O3iv—Te1'—Te1ii | 92.55 (19) | O5ix—K2—O6 | 89.9 (2) |
O4v—Te1'—Te1ii | 140.61 (6) | O5—K2—O6 | 89.9 (2) |
O4ii—Te1'—Te1ii | 39.53 (5) | O4ii—K2—O6 | 91.84 (11) |
O1vi—Te1'—Te1ii | 40.11 (5) | O4x—K2—O6 | 91.84 (11) |
O1iii—Te1'—Te1ii | 139.75 (6) | O5ix—K2—O6vii | 89.8 (2) |
Te1iii—Te1'—Te1ii | 179.86 (3) | O5—K2—O6vii | 89.8 (2) |
O3—Te1'—Fe1'iii | 92.55 (19) | O4ii—K2—O6vii | 88.52 (11) |
O3iv—Te1'—Fe1'iii | 87.45 (19) | O4x—K2—O6vii | 88.52 (11) |
O4v—Te1'—Fe1'iii | 39.53 (5) | O6—K2—O6vii | 179.50 (11) |
O4ii—Te1'—Fe1'iii | 140.61 (6) | O5ix—K2—Te2x | 27.61 (3) |
O1vi—Te1'—Fe1'iii | 139.75 (6) | O5—K2—Te2x | 113.63 (4) |
O1iii—Te1'—Fe1'iii | 40.11 (5) | O4ii—K2—Te2x | 153.62 (4) |
Te1iii—Te1'—Fe1'iii | 0.000 (13) | O4x—K2—Te2x | 65.07 (3) |
Te1ii—Te1'—Fe1'iii | 179.86 (3) | O6—K2—Te2x | 90.22 (7) |
O3—Te1'—Fe1'ii | 87.45 (19) | O6vii—K2—Te2x | 89.62 (7) |
O3iv—Te1'—Fe1'ii | 92.55 (19) | O5ix—K2—Te2 | 113.63 (4) |
O4v—Te1'—Fe1'ii | 140.61 (6) | O5—K2—Te2 | 27.61 (3) |
O4ii—Te1'—Fe1'ii | 39.53 (5) | O4ii—K2—Te2 | 65.07 (3) |
O1vi—Te1'—Fe1'ii | 40.11 (5) | O4x—K2—Te2 | 153.62 (4) |
O1iii—Te1'—Fe1'ii | 139.75 (6) | O6—K2—Te2 | 90.22 (7) |
Te1iii—Te1'—Fe1'ii | 179.86 (3) | O6vii—K2—Te2 | 89.62 (7) |
Te1ii—Te1'—Fe1'ii | 0.000 (13) | Te2x—K2—Te2 | 141.24 (2) |
Fe1'iii—Te1'—Fe1'ii | 179.86 (3) | O5ix—K2—Te1' | 153.09 (19) |
O3—Te1'—K1vi | 132.54 (12) | O5—K2—Te1' | 78.28 (8) |
O3iv—Te1'—K1vi | 48.11 (13) | O4ii—K2—Te1' | 27.59 (5) |
O4v—Te1'—K1vi | 136.50 (5) | O4x—K2—Te1' | 103.56 (6) |
O4ii—Te1'—K1vi | 92.47 (6) | O6—K2—Te1' | 68.61 (7) |
O1vi—Te1'—K1vi | 44.63 (5) | O6vii—K2—Te1' | 111.64 (7) |
O1iii—Te1'—K1vi | 85.95 (6) | Te2x—K2—Te1' | 156.22 (12) |
Te1iii—Te1'—K1vi | 113.18 (4) | Te2—K2—Te1' | 53.197 (14) |
Te1ii—Te1'—K1vi | 66.73 (4) | O5ix—K2—Te1'xi | 78.28 (8) |
Fe1'iii—Te1'—K1vi | 113.18 (4) | O5—K2—Te1'xi | 153.10 (19) |
Fe1'ii—Te1'—K1vi | 66.73 (4) | O4ii—K2—Te1'xi | 103.56 (6) |
O3—Te1'—K1iii | 48.11 (13) | O4x—K2—Te1'xi | 27.59 (5) |
O3iv—Te1'—K1iii | 132.54 (12) | O6—K2—Te1'xi | 68.61 (7) |
O4v—Te1'—K1iii | 92.47 (6) | O6vii—K2—Te1'xi | 111.64 (7) |
O4ii—Te1'—K1iii | 136.50 (5) | Te2x—K2—Te1'xi | 53.197 (14) |
O1vi—Te1'—K1iii | 85.95 (6) | Te2—K2—Te1'xi | 156.22 (12) |
O1iii—Te1'—K1iii | 44.63 (5) | Te1'—K2—Te1'xi | 106.75 (7) |
Te1iii—Te1'—K1iii | 66.73 (4) | O5ix—K2—Te1ii | 152.59 (19) |
Te1ii—Te1'—K1iii | 113.18 (4) | O5—K2—Te1ii | 78.26 (8) |
Fe1'iii—Te1'—K1iii | 66.73 (4) | O4ii—K2—Te1ii | 25.27 (5) |
Fe1'ii—Te1'—K1iii | 113.18 (4) | O4x—K2—Te1ii | 102.27 (6) |
K1vi—Te1'—K1iii | 105.29 (3) | O6—K2—Te1ii | 112.18 (7) |
O2ii—Te2—O2 | 180.00 (9) | O6vii—K2—Te1ii | 68.07 (7) |
O2ii—Te2—O3ii | 86.74 (7) | Te2x—K2—Te1ii | 155.22 (12) |
O2—Te2—O3ii | 93.26 (7) | Te2—K2—Te1ii | 53.052 (14) |
O2ii—Te2—O3 | 93.26 (7) | Te1'—K2—Te1ii | 43.569 (5) |
O2—Te2—O3 | 86.74 (7) | Te1'xi—K2—Te1ii | 124.01 (2) |
O3ii—Te2—O3 | 180.0 (3) | O5ix—K2—Te1xii | 78.26 (8) |
O2ii—Te2—O5 | 89.18 (17) | O5—K2—Te1xii | 152.59 (19) |
O2—Te2—O5 | 90.82 (18) | O4ii—K2—Te1xii | 102.27 (6) |
O3ii—Te2—O5 | 91.41 (19) | O4x—K2—Te1xii | 25.27 (5) |
O3—Te2—O5 | 88.59 (19) | O6—K2—Te1xii | 112.18 (7) |
O2ii—Te2—O5ii | 90.82 (18) | O6vii—K2—Te1xii | 68.07 (7) |
O2—Te2—O5ii | 89.18 (17) | Te2x—K2—Te1xii | 53.052 (14) |
O3ii—Te2—O5ii | 88.59 (19) | Te2—K2—Te1xii | 155.22 (12) |
O3—Te2—O5ii | 91.41 (19) | Te1'—K2—Te1xii | 124.01 (2) |
O5—Te2—O5ii | 180.0 | Te1'xi—K2—Te1xii | 43.569 (5) |
O2ii—Te2—K1vii | 50.16 (9) | Te1ii—K2—Te1xii | 106.23 (7) |
O2—Te2—K1vii | 129.84 (9) | Te1—O1—Fe1iii | 97.29 (7) |
O3ii—Te2—K1vii | 53.79 (13) | Te1—O1—Te1'iii | 97.29 (7) |
O3—Te2—K1vii | 126.21 (13) | Fe1iii—O1—Te1'iii | 0.0 |
O5—Te2—K1vii | 58.3 (2) | Te1—O1—K1 | 106.74 (9) |
O5ii—Te2—K1vii | 121.7 (2) | Fe1iii—O1—K1 | 103.59 (8) |
O2ii—Te2—K1iii | 129.84 (9) | Te1'iii—O1—K1 | 103.59 (8) |
O2—Te2—K1iii | 50.16 (9) | Te2—O2—Te1 | 132.2 (2) |
O3ii—Te2—K1iii | 126.21 (13) | Te2—O2—K1iii | 97.22 (8) |
O3—Te2—K1iii | 53.79 (13) | Te1—O2—K1iii | 129.8 (2) |
O5—Te2—K1iii | 121.7 (2) | Te2—O2—K1 | 92.68 (9) |
O5ii—Te2—K1iii | 58.3 (2) | Te1—O2—K1 | 99.60 (12) |
K1vii—Te2—K1iii | 180.0 | K1iii—O2—K1 | 84.10 (11) |
O2ii—Te2—K1ii | 54.63 (10) | Te2—O3—Te1' | 130.9 (3) |
O2—Te2—K1ii | 125.37 (10) | Te2—O3—K1 | 98.15 (9) |
O3ii—Te2—K1ii | 49.44 (11) | Te1'—O3—K1 | 129.7 (2) |
O3—Te2—K1ii | 130.56 (11) | Te2—O3—K1iii | 93.33 (10) |
O5—Te2—K1ii | 122.6 (2) | Te1'—O3—K1iii | 100.28 (15) |
O5ii—Te2—K1ii | 57.4 (2) | K1—O3—K1iii | 85.09 (15) |
K1vii—Te2—K1ii | 64.400 (16) | Te1—O4—Fe1ii | 98.72 (7) |
K1iii—Te2—K1ii | 115.600 (16) | Te1—O4—Te1'ii | 98.72 (7) |
O2ii—Te2—K1 | 125.37 (10) | Fe1ii—O4—Te1'ii | 0.0 |
O2—Te2—K1 | 54.63 (10) | Te1—O4—K2ii | 116.47 (11) |
O3ii—Te2—K1 | 130.56 (11) | Fe1ii—O4—K2ii | 112.44 (12) |
O3—Te2—K1 | 49.44 (11) | Te1'ii—O4—K2ii | 112.44 (12) |
O5—Te2—K1 | 57.4 (2) | Te2—O5—K2 | 111.21 (7) |
O5ii—Te2—K1 | 122.6 (2) | Te2—O5—K1 | 88.9 (2) |
K1vii—Te2—K1 | 115.599 (16) | K2—O5—K1 | 88.7 (2) |
K1iii—Te2—K1 | 64.401 (16) | Te2—O5—K1vii | 87.9 (2) |
K1ii—Te2—K1 | 180.0 | K2—O5—K1vii | 88.80 (19) |
O2ii—Te2—K2ii | 117.93 (11) | K1—O5—K1vii | 174.91 (7) |
O2—Te2—K2ii | 62.07 (11) | Te2—O5—H1 | 106 (2) |
O3ii—Te2—K2ii | 62.31 (12) | K2—O5—H1 | 141 (2) |
O3—Te2—K2ii | 117.68 (12) | K1—O5—H1 | 80 (3) |
O5—Te2—K2ii | 138.82 (5) | K1vii—O5—H1 | 105 (3) |
O5ii—Te2—K2ii | 41.18 (5) | K1ix—O6—K1 | 91.25 (8) |
K1vii—Te2—K2ii | 114.59 (7) | K1ix—O6—K2 | 91.3 (3) |
K1iii—Te2—K2ii | 65.41 (7) | K1—O6—K2 | 91.3 (3) |
K1ii—Te2—K2ii | 64.97 (7) | K1ix—O6—K2viii | 89.0 (3) |
K1—Te2—K2ii | 115.03 (7) | K1—O6—K2viii | 89.0 (3) |
O2ii—Te2—K2 | 62.07 (10) | K2—O6—K2viii | 179.50 (11) |
O2—Te2—K2 | 117.93 (11) | K1ix—O6—H2 | 85.0 (19) |
O3ii—Te2—K2 | 117.69 (12) | K1—O6—H2 | 163 (3) |
O3—Te2—K2 | 62.32 (12) | K2—O6—H2 | 105 (3) |
O5—Te2—K2 | 41.18 (5) | K2viii—O6—H2 | 75 (3) |
O5ii—Te2—K2 | 138.82 (5) | K1—O7—K1ix | 86.82 (16) |
K1vii—Te2—K2 | 65.41 (7) |
Symmetry codes: (i) −x, y, −z+1; (ii) −x+1/2, −y+1/2, −z+3/2; (iii) −x+1/2, −y+1/2, −z+1/2; (iv) −x+1, y, −z+1; (v) x+1/2, −y+1/2, z−1/2; (vi) x+1/2, −y+1/2, z+1/2; (vii) x, y, z+1; (viii) x, y, z−1; (ix) x, −y, z; (x) −x+1/2, y−1/2, −z+3/2; (xi) −x+1, −y, −z+1; (xii) x+1/2, y−1/2, z+1/2. |
FeH4.86K3O11.43Te2 | F(000) = 1133 |
Mr = 616.17 | Dx = 3.592 Mg m−3 |
Monoclinic, I2/m | Mo Kα radiation, λ = 0.71073 Å |
a = 12.7660 (6) Å | Cell parameters from 14095 reflections |
b = 14.9470 (6) Å | θ = 2.7–36.2° |
c = 5.9706 (2) Å | µ = 7.49 mm−1 |
β = 90.047 (3)° | T = 432 K |
V = 1139.27 (8) Å3 | Lath, colourless |
Z = 4 | 0.18 × 0.08 × 0.01 × 0.10 (radius) mm |
STOE STADIVARI diffractometer | 2711 independent reflections |
Radiation source: Axo_Mo | 2207 reflections with I > 2σ(I) |
Graded multilayer mirror monochromator | Rint = 0.043 |
Detector resolution: 13.33 pixels mm-1 | θmax = 36.0°, θmin = 2.7° |
rotation method, ω scans | h = −21→20 |
Absorption correction: multi-scan STOE LANA, absorption correction by scaling of reflection intensities. J. Koziskova, F. Hahn, J. Richter, J. Kozisek, "Comparison of different absorption corrections on the model structure of tetrakis(µ2-acetato)- diaqua-di-copper(II)", Acta Chimica Slovaca, vol. 9, no. 2, 2016, pp. 136 - 140. Afterwards a spherical absorption correction was performed within STOE LANA. | k = −24→24 |
Tmin = 0.062, Tmax = 0.104 | l = −9→3 |
10382 measured reflections |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Only H-atom coordinates refined |
wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.0687P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2711 reflections | Δρmax = 3.77 e Å−3 |
98 parameters | Δρmin = −1.67 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Te1 | 0.0000 | 0.28586 (4) | 0.5000 | 0.01448 (14) | 0.796 (4) |
Te1' | 0.5000 | 0.21398 (6) | 0.5000 | 0.0148 (3) | 0.204 (4) |
Te2 | 0.2500 | 0.2500 | 0.7500 | 0.01511 (11) | |
Fe1 | 0.5000 | 0.21398 (6) | 0.5000 | 0.0148 (3) | 0.796 (4) |
Fe1' | 0.0000 | 0.28586 (4) | 0.5000 | 0.01448 (14) | 0.204 (4) |
K1 | 0.19952 (8) | 0.13172 (7) | 0.2520 (5) | 0.0272 (2) | |
K2 | 0.35101 (13) | 0.0000 | 0.7442 (12) | 0.0356 (4) | |
O1 | 0.0044 (3) | 0.1984 (2) | 0.2595 (6) | 0.0203 (6) | |
O2 | 0.1557 (2) | 0.2878 (3) | 0.5123 (18) | 0.0209 (8) | |
O3 | 0.3426 (3) | 0.2133 (3) | 0.5234 (13) | 0.0197 (11) | |
O4 | −0.0085 (2) | 0.3715 (2) | 0.7416 (7) | 0.0201 (6) | |
O5 | 0.1899 (2) | 0.1287 (2) | 0.7577 (17) | 0.0239 (7) | |
H5 | 0.127 (3) | 0.138 (5) | 0.712 (13) | 0.036* | |
O6 | 0.3471 (4) | 0.0000 | 0.246 (4) | 0.0365 (13) | |
H6 | 0.392 (5) | −0.043 (4) | 0.245 (16) | 0.055* | |
O7 | 0.036 (3) | 0.0000 | 0.258 (13) | 0.21 (3) | 0.43 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Te1 | 0.00881 (17) | 0.0213 (3) | 0.0133 (2) | 0.000 | −0.0034 (4) | 0.000 |
Te1' | 0.0106 (3) | 0.0198 (5) | 0.0139 (4) | 0.000 | −0.0061 (7) | 0.000 |
Te2 | 0.00865 (15) | 0.02181 (16) | 0.01485 (18) | 0.00073 (11) | −0.0043 (5) | −0.00005 (16) |
Fe1 | 0.0106 (3) | 0.0198 (5) | 0.0139 (4) | 0.000 | −0.0061 (7) | 0.000 |
Fe1' | 0.00881 (17) | 0.0213 (3) | 0.0133 (2) | 0.000 | −0.0034 (4) | 0.000 |
K1 | 0.0231 (4) | 0.0314 (4) | 0.0272 (5) | 0.0048 (4) | −0.0043 (9) | −0.0027 (11) |
K2 | 0.0255 (6) | 0.0354 (7) | 0.0458 (11) | 0.000 | −0.0040 (19) | 0.000 |
O1 | 0.0129 (11) | 0.0240 (12) | 0.0241 (16) | 0.0003 (10) | −0.006 (3) | −0.0011 (14) |
O2 | 0.0103 (11) | 0.031 (2) | 0.021 (2) | 0.0009 (14) | −0.006 (2) | 0.003 (3) |
O3 | 0.0095 (11) | 0.035 (2) | 0.015 (3) | 0.0007 (14) | −0.0024 (18) | −0.003 (2) |
O4 | 0.0171 (12) | 0.0220 (12) | 0.0211 (14) | 0.0001 (10) | −0.006 (2) | 0.0011 (15) |
O5 | 0.0161 (12) | 0.0235 (13) | 0.0321 (18) | −0.0010 (10) | 0.002 (3) | −0.005 (4) |
O6 | 0.019 (2) | 0.030 (2) | 0.061 (4) | 0.000 | 0.002 (6) | 0.000 |
O7 | 0.09 (3) | 0.06 (2) | 0.46 (10) | 0.000 | 0.00 (4) | 0.000 |
Te1—Te1'i | 2.9853 (1) | Te2—O5 | 1.970 (3) |
Te1—Te1'ii | 2.9853 (1) | K1—Te2viii | 3.539 (3) |
Te1—Fe1ii | 2.9853 (1) | K1—O1 | 2.683 (3) |
Te1—Fe1i | 2.9853 (1) | K1—O2 | 2.858 (7) |
Te1—K1iii | 3.7410 (18) | K1—O2ii | 2.713 (8) |
Te1—K1 | 3.7410 (18) | K1—O3 | 2.729 (6) |
Te1—O1iii | 1.943 (3) | K1—O3ii | 2.890 (6) |
Te1—O1 | 1.943 (3) | K1—O5viii | 2.954 (8) |
Te1—O2 | 1.989 (3) | K1—O5 | 3.022 (8) |
Te1—O2iii | 1.989 (3) | K1—H5 | 2.90 (8) |
Te1—O4 | 1.932 (4) | K1—O6 | 2.726 (4) |
Te1—O4iii | 1.932 (4) | K1—O7 | 2.87 (3) |
Te1'—Te1i | 2.9853 (1) | K2—Te1'ix | 3.997 (3) |
Te1'—Te1ii | 2.9853 (1) | K2—Te2x | 3.9531 (6) |
Te1'—Fe1'i | 2.9853 (1) | K2—Fe1ix | 3.997 (3) |
Te1'—Fe1'ii | 2.9853 (1) | K2—O4i | 2.782 (3) |
Te1'—K1iv | 3.7502 (16) | K2—O4x | 2.782 (3) |
Te1'—K1ii | 3.7502 (16) | K2—O5 | 2.817 (4) |
Te1'—O1ii | 2.030 (4) | K2—O5xi | 2.817 (4) |
Te1'—O1iv | 2.030 (4) | K2—O6 | 2.977 (19) |
Te1'—O3v | 2.014 (4) | K2—O6vii | 2.994 (19) |
Te1'—O3 | 2.014 (4) | O1—Te1'ii | 2.030 (4) |
Te1'—O4i | 2.006 (4) | O1—Fe1ii | 2.030 (4) |
Te1'—O4vi | 2.006 (4) | O2—K1ii | 2.713 (8) |
Te2—K1ii | 3.539 (3) | O3—K1ii | 2.890 (6) |
Te2—K1i | 3.518 (3) | O4—Te1'i | 2.006 (4) |
Te2—K1vii | 3.539 (3) | O4—Fe1i | 2.006 (4) |
Te2—K1 | 3.519 (3) | O4—K2i | 2.782 (3) |
Te2—K2i | 3.9532 (6) | O5—K1vii | 2.954 (8) |
Te2—K2 | 3.9531 (6) | O5—H5 | 0.86 (2) |
Te2—O2i | 1.944 (7) | O6—K1xi | 2.726 (4) |
Te2—O2 | 1.944 (7) | O6—K2viii | 2.994 (19) |
Te2—O3 | 1.879 (6) | O6—H6 | 0.87 (2) |
Te2—O3i | 1.879 (6) | O7—K1xi | 2.87 (3) |
Te2—O5i | 1.970 (3) | ||
Te1'i—Te1—Te1'ii | 179.91 (5) | O3—Te2—O5i | 90.4 (3) |
Te1'i—Te1—Fe1i | 0.00 (3) | O3i—Te2—O5i | 89.6 (3) |
Te1'i—Te1—Fe1ii | 179.91 (5) | O3—Te2—O5 | 89.6 (3) |
Te1'i—Te1—K1 | 113.39 (5) | O5i—Te2—K1vii | 123.4 (3) |
Te1'ii—Te1—K1 | 66.68 (5) | O5—Te2—K1ii | 123.4 (3) |
Te1'i—Te1—K1iii | 66.68 (5) | O5i—Te2—K1 | 120.9 (3) |
Te1'ii—Te1—K1iii | 113.39 (5) | O5—Te2—K1 | 59.1 (3) |
Fe1i—Te1—Te1'ii | 179.9 | O5i—Te2—K1i | 59.1 (3) |
Fe1ii—Te1—Te1'ii | 0.0 | O5—Te2—K1vii | 56.6 (3) |
Fe1ii—Te1—Fe1i | 179.91 (5) | O5i—Te2—K1ii | 56.6 (3) |
Fe1i—Te1—K1iii | 66.68 (5) | O5—Te2—K1i | 120.9 (3) |
Fe1ii—Te1—K1iii | 113.39 (5) | O5—Te2—K2i | 137.99 (10) |
Fe1ii—Te1—K1 | 66.68 (5) | O5i—Te2—K2 | 138.00 (10) |
Fe1i—Te1—K1 | 113.39 (5) | O5i—Te2—K2i | 42.00 (10) |
K1—Te1—K1iii | 103.97 (5) | O5—Te2—K2 | 42.00 (10) |
O1iii—Te1—Te1'ii | 137.70 (11) | O5—Te2—O5i | 180.0 |
O1iii—Te1—Te1'i | 42.39 (10) | Te2—K1—Te2viii | 115.55 (3) |
O1—Te1—Te1'i | 137.70 (11) | Te2—K1—H5 | 40.8 (14) |
O1—Te1—Te1'ii | 42.39 (10) | Te2viii—K1—H5 | 147.6 (16) |
O1iii—Te1—Fe1ii | 137.70 (11) | O1—K1—Te2viii | 89.91 (10) |
O1—Te1—Fe1i | 137.70 (11) | O1—K1—Te2 | 88.21 (10) |
O1iii—Te1—Fe1i | 42.39 (10) | O1—K1—O2ii | 118.56 (14) |
O1—Te1—Fe1ii | 42.39 (10) | O1—K1—O2 | 60.38 (11) |
O1iii—Te1—K1 | 84.15 (11) | O1—K1—O3 | 116.42 (15) |
O1—Te1—K1iii | 84.15 (11) | O1—K1—O3ii | 62.60 (12) |
O1—Te1—K1 | 43.36 (10) | O1—K1—O5viii | 89.12 (12) |
O1iii—Te1—K1iii | 43.36 (10) | O1—K1—O5 | 87.16 (13) |
O1iii—Te1—O1 | 95.4 (2) | O1—K1—H5 | 71.0 (6) |
O1iii—Te1—O2iii | 90.4 (3) | O1—K1—O6 | 155.55 (11) |
O1iii—Te1—O2 | 90.7 (3) | O1—K1—O7 | 65.2 (5) |
O1—Te1—O2iii | 90.7 (3) | O2—K1—Te2 | 33.51 (14) |
O1—Te1—O2 | 90.4 (3) | O2ii—K1—Te2viii | 32.99 (15) |
O2—Te1—Te1'i | 87.9 (3) | O2—K1—Te2viii | 95.09 (18) |
O2iii—Te1—Te1'ii | 87.9 (3) | O2ii—K1—Te2 | 98.29 (19) |
O2—Te1—Te1'ii | 92.1 (3) | O2ii—K1—O2 | 95.1 (3) |
O2iii—Te1—Te1'i | 92.1 (3) | O2ii—K1—O3ii | 55.96 (11) |
O2iii—Te1—Fe1i | 92.1 (3) | O2—K1—O3ii | 67.61 (11) |
O2—Te1—Fe1i | 87.9 (3) | O2ii—K1—O3 | 72.00 (11) |
O2—Te1—Fe1ii | 92.1 (3) | O2ii—K1—O5viii | 56.9 (2) |
O2iii—Te1—Fe1ii | 87.9 (3) | O2—K1—O5 | 57.38 (19) |
O2iii—Te1—K1iii | 48.9 (2) | O2ii—K1—O5 | 128.0 (2) |
O2—Te1—K1iii | 132.4 (2) | O2—K1—O5viii | 123.2 (2) |
O2—Te1—K1 | 48.9 (2) | O2ii—K1—H5 | 139.1 (14) |
O2iii—Te1—K1 | 132.4 (2) | O2—K1—H5 | 52.9 (16) |
O2—Te1—O2iii | 178.4 (3) | O2ii—K1—O6 | 80.8 (3) |
O4—Te1—Te1'ii | 138.27 (11) | O2ii—K1—O7 | 143.9 (15) |
O4iii—Te1—Te1'ii | 41.64 (11) | O2—K1—O7 | 114.3 (10) |
O4iii—Te1—Te1'i | 138.27 (11) | O3ii—K1—Te2 | 96.43 (14) |
O4—Te1—Te1'i | 41.64 (11) | O3—K1—Te2 | 31.94 (14) |
O4iii—Te1—Fe1ii | 41.64 (11) | O3—K1—Te2viii | 99.05 (16) |
O4—Te1—Fe1ii | 138.27 (11) | O3ii—K1—Te2viii | 32.00 (12) |
O4iii—Te1—Fe1i | 138.27 (11) | O3—K1—O2 | 56.19 (11) |
O4—Te1—Fe1i | 41.64 (11) | O3—K1—O3ii | 95.95 (18) |
O4iii—Te1—K1 | 94.23 (10) | O3ii—K1—O5 | 124.94 (16) |
O4—Te1—K1 | 137.95 (10) | O3ii—K1—O5viii | 55.70 (16) |
O4iii—Te1—K1iii | 137.95 (10) | O3—K1—O5viii | 128.86 (18) |
O4—Te1—K1iii | 94.23 (10) | O3—K1—O5 | 56.02 (18) |
O4—Te1—O1iii | 83.82 (15) | O3ii—K1—H5 | 117.0 (14) |
O4iii—Te1—O1iii | 178.26 (13) | O3—K1—H5 | 68.8 (10) |
O4—Te1—O1 | 178.26 (13) | O3—K1—O7 | 141.8 (15) |
O4iii—Te1—O1 | 83.82 (15) | O5—K1—Te2viii | 149.44 (8) |
O4—Te1—O2iii | 87.8 (3) | O5viii—K1—Te2 | 149.26 (9) |
O4iii—Te1—O2iii | 91.1 (3) | O5—K1—Te2 | 33.99 (7) |
O4iii—Te1—O2 | 87.8 (3) | O5viii—K1—Te2viii | 33.81 (7) |
O4—Te1—O2 | 91.1 (3) | O5viii—K1—O5 | 174.98 (13) |
O4—Te1—O4iii | 97.0 (2) | O5viii—K1—H5 | 158.9 (5) |
Te1ii—Te1'—Te1i | 179.90 (5) | O5—K1—H5 | 16.6 (4) |
Te1ii—Te1'—Fe1'i | 179.90 (5) | O6—K1—Te2 | 104.4 (5) |
Te1i—Te1'—Fe1'ii | 179.90 (5) | O6—K1—Te2viii | 102.9 (5) |
Te1ii—Te1'—Fe1'ii | 0.00 (2) | O6—K1—O2 | 137.1 (4) |
Te1i—Te1'—Fe1'i | 0.00 (2) | O6—K1—O3ii | 134.4 (4) |
Te1i—Te1'—K1ii | 113.58 (5) | O6—K1—O3 | 82.5 (3) |
Te1ii—Te1'—K1ii | 66.35 (5) | O6—K1—O5 | 91.8 (5) |
Te1ii—Te1'—K1iv | 113.58 (5) | O6—K1—O5viii | 90.2 (5) |
Te1i—Te1'—K1iv | 66.35 (5) | O6—K1—H5 | 105.0 (12) |
Fe1'ii—Te1'—Fe1'i | 179.90 (5) | O6—K1—O7 | 90.4 (5) |
Fe1'i—Te1'—K1ii | 113.58 (5) | O7—K1—Te2viii | 119.1 (15) |
Fe1'ii—Te1'—K1ii | 66.35 (5) | O7—K1—Te2 | 117.8 (15) |
Fe1'ii—Te1'—K1iv | 113.58 (5) | O7—K1—O3ii | 115.0 (10) |
Fe1'i—Te1'—K1iv | 66.35 (5) | O7—K1—O5viii | 88.4 (16) |
K1iv—Te1'—K1ii | 104.10 (5) | O7—K1—O5 | 86.9 (16) |
O1iv—Te1'—Te1ii | 139.71 (10) | O7—K1—H5 | 77 (2) |
O1ii—Te1'—Te1ii | 40.20 (9) | Te1'—K2—Te1'ix | 106.29 (12) |
O1iv—Te1'—Te1i | 40.20 (9) | Te1'—K2—Fe1ix | 106.3 |
O1ii—Te1'—Te1i | 139.71 (10) | Te1'ix—K2—Fe1ix | 0.000 (15) |
O1iv—Te1'—Fe1'ii | 139.71 (10) | Te2—K2—Te1'ix | 156.19 (19) |
O1ii—Te1'—Fe1'ii | 40.20 (9) | Te2x—K2—Te1'ix | 53.29 (2) |
O1ii—Te1'—Fe1'i | 139.71 (10) | Te2—K2—Te1' | 53.29 (2) |
O1iv—Te1'—Fe1'i | 40.20 (9) | Te2x—K2—Te1' | 156.19 (19) |
O1iv—Te1'—K1ii | 85.84 (11) | Te2x—K2—Te2 | 141.91 (5) |
O1ii—Te1'—K1iv | 85.84 (11) | Te2—K2—Fe1ix | 156.19 (19) |
O1iv—Te1'—K1iv | 43.83 (10) | Te2x—K2—Fe1ix | 53.29 (2) |
O1ii—Te1'—K1ii | 43.83 (10) | O4x—K2—Te1' | 102.68 (11) |
O1iv—Te1'—O1ii | 99.60 (19) | O4x—K2—Te1'ix | 27.69 (9) |
O3v—Te1'—Te1ii | 86.0 (2) | O4i—K2—Te1'ix | 102.68 (11) |
O3—Te1'—Te1ii | 94.0 (2) | O4i—K2—Te1' | 27.69 (9) |
O3—Te1'—Te1i | 86.0 (2) | O4i—K2—Te2x | 152.64 (8) |
O3v—Te1'—Te1i | 94.0 (2) | O4x—K2—Te2 | 152.64 (8) |
O3—Te1'—Fe1'ii | 94.0 (2) | O4i—K2—Te2 | 65.35 (6) |
O3v—Te1'—Fe1'i | 94.0 (2) | O4x—K2—Te2x | 65.35 (6) |
O3—Te1'—Fe1'i | 86.0 (2) | O4x—K2—Fe1ix | 27.69 (9) |
O3v—Te1'—Fe1'ii | 86.0 (2) | O4i—K2—Fe1ix | 102.68 (11) |
O3—Te1'—K1iv | 130.71 (18) | O4i—K2—O4x | 87.33 (13) |
O3—Te1'—K1ii | 49.72 (18) | O4x—K2—O5xi | 93.18 (9) |
O3v—Te1'—K1ii | 130.71 (18) | O4i—K2—O5xi | 176.6 (3) |
O3v—Te1'—K1iv | 49.72 (18) | O4i—K2—O5 | 93.18 (9) |
O3—Te1'—O1ii | 91.7 (2) | O4x—K2—O5 | 176.6 (3) |
O3v—Te1'—O1iv | 91.7 (2) | O4x—K2—O6vii | 88.97 (18) |
O3—Te1'—O1iv | 88.7 (2) | O4i—K2—O6vii | 88.97 (18) |
O3v—Te1'—O1ii | 88.7 (2) | O4i—K2—O6 | 92.40 (19) |
O3—Te1'—O3v | 179.5 (3) | O4x—K2—O6 | 92.40 (19) |
O4vi—Te1'—Te1ii | 39.78 (10) | O5xi—K2—Te1'ix | 79.15 (10) |
O4i—Te1'—Te1ii | 140.32 (11) | O5xi—K2—Te1' | 154.7 (2) |
O4vi—Te1'—Te1i | 140.32 (11) | O5—K2—Te1' | 79.15 (10) |
O4i—Te1'—Te1i | 39.78 (10) | O5—K2—Te1'ix | 154.7 (2) |
O4i—Te1'—Fe1'ii | 140.32 (11) | O5—K2—Te2 | 27.90 (7) |
O4vi—Te1'—Fe1'ii | 39.78 (10) | O5xi—K2—Te2x | 27.90 (7) |
O4vi—Te1'—Fe1'i | 140.32 (11) | O5—K2—Te2x | 114.01 (8) |
O4i—Te1'—Fe1'i | 39.78 (10) | O5xi—K2—Te2 | 114.01 (8) |
O4vi—Te1'—K1ii | 92.68 (10) | O5xi—K2—Fe1ix | 79.15 (10) |
O4vi—Te1'—K1iv | 137.44 (10) | O5—K2—Fe1ix | 154.7 (2) |
O4i—Te1'—K1ii | 137.44 (10) | O5xi—K2—O5 | 86.12 (14) |
O4i—Te1'—K1iv | 92.68 (10) | O5xi—K2—O6vii | 87.6 (2) |
O4i—Te1'—O1ii | 178.36 (12) | O5—K2—O6vii | 87.6 (2) |
O4i—Te1'—O1iv | 79.78 (14) | O5xi—K2—O6 | 91.0 (2) |
O4vi—Te1'—O1iv | 178.36 (12) | O5—K2—O6 | 91.0 (2) |
O4vi—Te1'—O1ii | 79.78 (14) | O6—K2—Te1' | 69.07 (11) |
O4i—Te1'—O3 | 89.8 (2) | O6vii—K2—Te1'ix | 111.90 (11) |
O4i—Te1'—O3v | 89.8 (2) | O6vii—K2—Te1' | 111.90 (11) |
O4vi—Te1'—O3v | 89.8 (2) | O6—K2—Te1'ix | 69.07 (11) |
O4vi—Te1'—O3 | 89.8 (2) | O6vii—K2—Te2x | 89.17 (12) |
O4vi—Te1'—O4i | 100.9 (2) | O6vii—K2—Te2 | 89.17 (12) |
K1vii—Te2—K1ii | 180.0 | O6—K2—Te2x | 90.21 (11) |
K1i—Te2—K1ii | 115.55 (3) | O6—K2—Te2 | 90.21 (11) |
K1i—Te2—K1vii | 64.45 (3) | O6—K2—Fe1ix | 69.07 (11) |
K1—Te2—K1ii | 64.45 (3) | O6vii—K2—Fe1ix | 111.90 (11) |
K1i—Te2—K1 | 180.0 | O6—K2—O6vii | 178.1 (2) |
K1—Te2—K1vii | 115.55 (3) | Te1—O1—Te1'ii | 97.41 (14) |
K1i—Te2—K2 | 115.02 (9) | Te1—O1—Fe1ii | 97.41 (14) |
K1i—Te2—K2i | 64.98 (9) | Te1—O1—K1 | 106.83 (15) |
K1vii—Te2—K2i | 113.90 (10) | Te1'ii—O1—K1 | 104.59 (15) |
K1—Te2—K2 | 64.98 (9) | Fe1ii—O1—Te1'ii | 0.0 |
K1—Te2—K2i | 115.02 (9) | Fe1ii—O1—K1 | 104.59 (15) |
K1vii—Te2—K2 | 66.10 (10) | Te1—O2—K1 | 99.5 (2) |
K1ii—Te2—K2 | 113.90 (10) | Te1—O2—K1ii | 131.8 (4) |
K1ii—Te2—K2i | 66.10 (10) | Te2—O2—Te1 | 129.9 (5) |
K2—Te2—K2i | 180.0 | Te2—O2—K1ii | 97.55 (14) |
O2—Te2—K1 | 54.3 (2) | Te2—O2—K1 | 92.21 (16) |
O2—Te2—K1vii | 130.5 (2) | K1ii—O2—K1 | 84.9 (3) |
O2—Te2—K1ii | 49.5 (2) | Te1'—O3—K1ii | 98.2 (2) |
O2i—Te2—K1 | 125.7 (2) | Te1'—O3—K1 | 128.9 (3) |
O2—Te2—K1i | 125.7 (2) | Te2—O3—Te1' | 132.6 (3) |
O2i—Te2—K1vii | 49.5 (2) | Te2—O3—K1 | 97.86 (15) |
O2i—Te2—K1ii | 130.5 (2) | Te2—O3—K1ii | 93.39 (18) |
O2i—Te2—K1i | 54.3 (2) | K1—O3—K1ii | 84.05 (18) |
O2i—Te2—K2i | 118.02 (19) | Te1—O4—Te1'i | 98.59 (13) |
O2—Te2—K2 | 118.02 (19) | Te1—O4—Fe1i | 98.59 (13) |
O2i—Te2—K2 | 61.98 (19) | Te1—O4—K2i | 116.05 (19) |
O2—Te2—K2i | 61.98 (19) | Te1'i—O4—K2i | 112.2 (2) |
O2i—Te2—O2 | 180.0 | Fe1i—O4—Te1'i | 0.0 |
O2i—Te2—O5 | 87.5 (3) | Fe1i—O4—K2i | 112.2 (2) |
O2—Te2—O5 | 92.5 (3) | Te2—O5—K1 | 86.9 (3) |
O2i—Te2—O5i | 92.5 (3) | Te2—O5—K1vii | 89.6 (3) |
O2—Te2—O5i | 87.5 (3) | Te2—O5—K2 | 110.10 (13) |
O3—Te2—K1ii | 54.61 (18) | Te2—O5—H5 | 102 (6) |
O3i—Te2—K1i | 50.20 (15) | K1vii—O5—K1 | 174.98 (13) |
O3i—Te2—K1 | 129.80 (15) | K1vii—O5—H5 | 110 (5) |
O3i—Te2—K1ii | 125.39 (18) | K1—O5—H5 | 74 (5) |
O3—Te2—K1 | 50.20 (15) | K2—O5—K1 | 87.2 (2) |
O3—Te2—K1vii | 125.39 (18) | K2—O5—K1vii | 90.5 (2) |
O3—Te2—K1i | 129.80 (15) | K2—O5—H5 | 142 (6) |
O3i—Te2—K1vii | 54.61 (18) | K1xi—O6—K1 | 92.49 (16) |
O3—Te2—K2 | 60.8 (2) | K1—O6—K2 | 89.8 (5) |
O3i—Te2—K2i | 60.8 (2) | K1—O6—K2viii | 91.5 (5) |
O3—Te2—K2i | 119.2 (2) | K1xi—O6—K2 | 89.8 (5) |
O3i—Te2—K2 | 119.2 (2) | K1xi—O6—K2viii | 91.5 (5) |
O3—Te2—O2i | 92.94 (15) | K1xi—O6—H6 | 86 (6) |
O3i—Te2—O2 | 92.94 (15) | K1—O6—H6 | 178 (6) |
O3—Te2—O2 | 87.06 (15) | K2—O6—K2viii | 178.1 (2) |
O3i—Te2—O2i | 87.06 (15) | K2viii—O6—H6 | 89 (7) |
O3—Te2—O3i | 180.0 | K2—O6—H6 | 90 (7) |
O3i—Te2—O5 | 90.4 (3) | K1—O7—K1xi | 86.8 (10) |
K1i—Te2—O3—Te1' | 8.8 (5) | K2i—Te2—O3—K1ii | −15.07 (19) |
K1vii—Te2—O3—Te1' | −75.7 (4) | K2i—Te2—O3—K1 | −99.52 (16) |
K1—Te2—O3—Te1' | −171.2 (5) | O2—Te2—O3—Te1' | 144.7 (4) |
K1ii—Te2—O3—Te1' | 104.3 (4) | O2i—Te2—O3—Te1' | −35.3 (4) |
K1i—Te2—O3—K1 | 180.0 | O2—Te2—O3—K1ii | 40.36 (19) |
K1vii—Te2—O3—K1ii | 180.000 (1) | O2i—Te2—O3—K1 | 135.9 (2) |
K1—Te2—O3—K1ii | 84.45 (19) | O2—Te2—O3—K1 | −44.1 (2) |
K1ii—Te2—O3—K1 | −84.45 (19) | O2i—Te2—O3—K1ii | −139.64 (19) |
K1i—Te2—O3—K1ii | −95.55 (19) | O5—Te2—O3—Te1' | −122.8 (5) |
K1vii—Te2—O3—K1 | 95.55 (19) | O5i—Te2—O3—Te1' | 57.2 (5) |
K2—Te2—O3—Te1' | −90.7 (4) | O5—Te2—O3—K1 | 48.4 (2) |
K2i—Te2—O3—Te1' | 89.3 (4) | O5i—Te2—O3—K1ii | −47.1 (2) |
K2—Te2—O3—K1ii | 164.93 (19) | O5i—Te2—O3—K1 | −131.6 (2) |
K2—Te2—O3—K1 | 80.48 (16) | O5—Te2—O3—K1ii | 132.9 (2) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+3/2; (ii) −x+1/2, −y+1/2, −z+1/2; (iii) −x, y, −z+1; (iv) x+1/2, −y+1/2, z+1/2; (v) −x+1, y, −z+1; (vi) x+1/2, −y+1/2, z−1/2; (vii) x, y, z+1; (viii) x, y, z−1; (ix) −x+1, −y, −z+1; (x) −x+1/2, y−1/2, −z+3/2; (xi) x, −y, z. |
Acknowledgements
The authors acknowledge TU Wien Bibliothek for financial support through its Open Access Funding Program.
References
Baake, M. & Grimm, U. (2013). Aperiodic Order, Vol. 1. Cambridge: Cambridge University Press. Google Scholar
Bricogne, G. (2010). In Reciprocal space, Vol. B of International Tables for Crystallography, ch. 3.3, pp. 24–113. Chester: IUCr. Google Scholar
Bruker (2022). APEXII, RLATT, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dornberger-Schiff, K. & Grell, H. (1982). Acta Cryst. A38, 491–498. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dornberger-Schiff, K. & Grell-Niemann, H. (1961). Acta Cryst. 14, 167–177. CrossRef IUCr Journals Web of Science Google Scholar
Ďurovič, S. (1979). Krist. Techn. 14, 1047–1053. Google Scholar
Ďurovič, S. (1997). EMU Notes Mineral. 1, 3–28. Google Scholar
Ehresmann, C. (1957). Jahresber. Deutsch. Math. Ver. 60, 49–77. Google Scholar
Fichtner, K. (1979). Krist. Techn. 14, 1073–1078. CrossRef CAS Web of Science Google Scholar
Grell, H. & Dornberger-Schiff, K. (1982). Acta Cryst. A38, 49–54. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hybler, J. (2016). Eur. J. Mineral. 28, 777–788. Web of Science CrossRef CAS Google Scholar
Ito, T. & Sadanaga, R. (1976). Proc. Japan Acad. 52, 119–121. CrossRef Web of Science Google Scholar
Kopsky, V. & Litvin, D. B. (2006). Editors. Subperiodic Groups, Vol. E of International Tables For Crystallography. Chester: IUCr. Google Scholar
Masese, T., Yoshii, K., Yamaguchi, Y., Okumura, T., Huang, Z.-D., Kato, M., Kubota, K., Furutani, J., Orikasa, Y., Senoh, H., Sakaebe, H. & Shikano, M. (2018). Nat. Commun. 9, 3823–3834. Web of Science CrossRef PubMed Google Scholar
Müller, U. (2013). Symmetry Relationships between Crystal Structures, Vol. 18 of IUCr Texts on Crystallography. Oxford: Oxford University Press. Google Scholar
Nespolo, M. (2001). Clays Clay Miner. 49, 1–23. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
STOE & Cie (2021). X-AREA (1.31.175.0) and LANA (2.6.2.0). STOE & Cie GmbH, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.