
research papers

Acta Cryst. (2024). B80, 219–234 https://doi.org/10.1107/S2052520624004268 219

ISSN 2052-5206

This article is part of a focused issue on Magnetic

Structures.

Keywords: IUCr Commission on Magnetic

Structures; magnetic structures; magnetic space

groups; representation analysis; magnetic CIF;

guidelines.

# 2024 International Union of Crystallography

Guidelines for communicating commensurate
magnetic structures. A report of the International
Union of Crystallography Commission on Magnetic

Structures

J. M. Perez-Mato,a* B. J. Campbell,b V. O. Garlea,c F. Damay,d G. Aurelio,e

M. Avdeev,f,g M. T. Fernández-Dı́az,h M. S. Henriques,i D. Khalyavin,j S. Lee,k

V. Pomjakushin,l N. Terada,m O. Zaharko,l J. Campo,n O. Fabelo,h D. B. Litvin,o

V. Petricek,i S. Rayaprol,p J. Rodriguez-Carvajalh and R. Von Dreeleq

aFacultad de Ciencia y Tecnologı́a, Universidad del Paı́s Vasco, UPV/EHU, Apartado 644, Bilbao, E-48080, Spain,
bDepartment of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA, cNeutron Scattering

Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA, dUniversité Paris-Saclay, CEA-CNRS
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A report from the International Union of Crystallography Commission on

Magnetic Structures outlining the recommendations for communicating

commensurate magnetic structures.

1. Introduction

Since 1949, thousands of magnetic structures have been

determined and reported. However, the lack of a standardi-

zation of their description has hampered a comprehensive and

unambiguous exchange of information about them. Under

these circumstances, the development of a database of

magnetic structures was for many years an impossible objec-

tive. The International Union of Crystallography (IUCr)

established the Commission on Magnetic Structures (CMS) in

2011 with the purpose, among other things, of improving this

situation by establishing a set of standards for the description

and dissemination of magnetic structures. Under its auspices

and the direction of CMS Chair, Branton J. Campbell, and

with the supervision of the IUCr Committee for the main-

tenance of the CIF standard (COMCIFS), the so-called

magnetic CIF dictionary1 (magCIF), which extends the CIF

(Crystallographic Information Framework) standard (Hall &

McMahon, 2005) to magnetic structures, began its develop-

ment in 2014 and was approved by the IUCr in 2016. As it is

done for ordinary structures, the magCIF format presents the

constraints of the magnetic symmetry group in a standardized

1 https://www.iucr.org/__data/iucr/cifdic_html/3/MAGNETIC_CIF/index.html
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form to provide a simple and unambiguous description, which

restricts the listing of the magnetic moments and atomic

positions to an asymmetric unit.

In recent years, the magCIF standard has been imple-

mented in most mainstream computer tools available for the

analysis, visualization and determination of magnetic struc-

tures (ISOTROPY: Stokes et al., 1995; Bilbao Crystallographic

Server: Perez-Mato et al., 2015; VESTA: Momma & Izumi,

2011; JMOL: Hanson, 2010; JANA2020: Petřı́ček et al., 2023;

FullProf: Rodrı́guez-Carvajal, 1993; GSAS-II: Toby & Von

Dreele, 2013). This standard format allows magnetic-structure

information to be interchanged between all these programs. It

has also enabled the development of MAGNDATA (Gallego

et al., 2016a,b), a free database of magnetic structures with

more than 2000 entries. Each entry, which can be downloaded

as a magCIF file, contains an unambiguous description and a

correctly applied magnetic symmetry group.

The magCIF standard and the new software tools that

employ it provide an opportunity for the magnetic-structure

research community to work together to standardize the

communication of magnetic structure information across

many intersecting scientific disciplines. This report makes an

effort in that direction by presenting guidelines and illustrative

examples on how to unambiguously report a commensurate

magnetic structure, making use of its magnetic space-group

symmetry.

Except for some general considerations, where incommen-

surate structures are explicitly mentioned, these guidelines are

intended for commensurate structures. Though they are not

addressed by the current report, the magCIF standard also

supports incommensurate magnetic structures and their

magnetic superspace-group symmetries. They require

however a different methodology and therefore they will be

the subject of a separate report. As an additional comment, it

is important to state that this report addresses magnetic

structures that can be described in the ‘atomic approximation’,

where the magnetic moment density is expressed in terms of

real-valued magnetic moments localized at atomic sites, which

sometimes in the following will be referred to as spins. This

document does not contain recommendations or guidelines on

the reporting of experimental data or experimental details.

By recommending the crystallographic description of

magnetic structures, which employs magnetic symmetry

groups, the present guidelines break from the traditional

approach of describing a magnetic structure in terms of spin

basis vectors (or symmetry modes) of the irreducible repre-

sentations (irreps) of the parent non-magnetic space group. In

contrast with the representation analysis, the crystallographic

description of a magnetic structure is a straightforward stan-

dalone description that does not refer to any other structure.

Historically, many researchers considered the use of magnetic

symmetry groups and irreps as mutually exclusive alternatives.

Nevertheless, in fact, the two approaches are complementary

and work together perfectly when applied with sufficient

generality. Thus, the theoretical and practical (computational)

progress of the past decade now permits a harmonious

combination of both magnetic space groups and magnetic

irreps in the characterization of commensurate magnetic

structures. These guidelines are a consequence of this progress

and in no way diminish the importance of group-representa-

tion analysis, which can be routinely used for the construction

of the relevant magnetic space groups in each case.

This report is comprehensive, including lengthy arguments

on which the recommendations are based. Therefore, in order

to facilitate a quick and simple reference, a brief appendix is

included, with two examples of magnetic CIF files, where the

minimal set of items that are necessary for communicating

commensurate magnetic structures are highlighted.

2. General considerations

The guidelines, which will be enumerated in the next section,

are based on the following general principles and considera-

tions.

(i) Standardization necessarily implies complicating the

description of simple structures for the benefit of simplifying

the description of complex ones under a common framework.

If one looks at how the structure of NaCl is described in a

standard CIF file, it may be surprising to see the complete

listing of the 192 symmetry operations (defining its space

group). This description based on the CIF format may appear

inefficient and excessive given the simplicity of the structure.

However, the advantage of this common standard description

is that it can be used for much more complicated structures,

without a significant increase in format complexity. This is also

the case when standardization is applied to the description of a

magnetic structure.

(ii) The characterization of a commensurate magnetic

structure must include the identification of its magnetic space

group (MSG).

Whatever the method employed to determine a three-

dimensional magnetic structure, the model being reported, or

the format used to describe it, if the model is commensurate,

its symmetry group is necessarily one of the 1421 possible

types of magnetic space groups (MSGs), also known as

Shubnikov groups (Koptsik, 1966), having excluded the 230

gray MSGs associated with structures without magnetic order.

This MSG must be identified and reported, as it dictates the

symmetry constraints on the atomic magnetic moments

themselves and on any possible effect that the magnetic

ordering may induce. Among other things, the MSG allows the

identification of the point group symmetry of the system,

which is required for any systematic analysis of its crystal

tensor and twinning properties.

(iii) The identification of the MSG of a magnetic structure

should not be limited to the assignment of an MSG symbol

and/or index, but must also adequately specify the symmetry

operations of the relevant MSG relative to the basis (unit cell

and origin) employed for the description of the structure.

The various listings of the symmetry operations of the MSG

types, which are available on the internet, are all coincident,

and some of them are computer readable. They can therefore

be considered as the standard or reference setting of the

MSGs [see point (vi) below]. However, the unit cell and origin
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(henceforth basis) used for the description of a magnetic

structure often does not correspond to the standard setting of

its MSG. Therefore, in such cases the identification of the

MSG should not be limited to the assignment of the symbol

and/or numerical index of the corresponding MSG type. In

addition, enough information should be given to communicate

unambiguously the symmetry operations of the MSG in the

current basis (the basis being used in the description). The

simplest way to do this is to supplement the MSG symbol with

the transformation from the current basis to that of the stan-

dard setting of the MSG, which can then be used (inversely) to

transform the listed operations of the MSG type in the stan-

dard setting to the current setting.

When the structural description employs a non-standard

setting of the MSG, in order to prevent any misunderstanding,

it is also recommended that the MSG symmetry operations for

the current basis be also listed explicitly. As these two forms of

defining the MSG of the structure are redundant, they allow a

possible crosscheck of their mutual consistency.

(iv) In the case that alternative magnetic orderings with

different MSGs are equally compatible with the available data,

the structure should be reported making an arbitrary choice

among the possible MSGs, preferably an MSG of maximal

symmetry, though the other possible MSGs should also be

indicated.

In some cases, due to limitations of the experimental data,

alternative spin arrangements with different MSGs may fit the

data equally well. One should be aware that these different

possible MSGs generally imply physically non-equivalent

phases. Typical examples are systems with a uniaxial para-

magnetic phase, where the absolute orientation of the atomic

magnetic moments on the basal plane remains undetermined,

single-k or multi-k models equally fitting the data, or magnetic

modulations with a propagation vector inside the Brillouin

zone, such that the actual spin arrangement depends on the

global phase of the modulation, to which the magnetic

diffraction is insensitive. If no additional argument exists to

make preferable one of the possible solutions, one is then

obliged to make an arbitrary choice among the possible MSGs.

We recommend, in such a case, choosing an arrangement

corresponding to an MSG of higher symmetry. However, the

arbitrariness of this choice and details of any other possible

MSGs should be communicated clearly. These alternative

MSGs may imply, for instance, rather different macroscopic

properties, which could be investigated by other means to

resolve the ambiguity in future work.

(v) A magnetic structure can be described using its MSG, as

a direct generalization of the well established methodology of

ordinary crystallography, i.e. a crystallographic description.

This approach is simple, compact, unambiguous and robust.

These guidelines are based on this method, which is also the

basis for the magCIF format.

In the same way as it is done for ordinary structures, a

commensurate magnetic structure can be described using its

symmetry group (i.e. its MSG) to reduce the listing of atomic

positions and magnetic moments to a set of symmetry-inde-

pendent atoms, the so-called asymmetric unit. The atomic

positions and magnetic moments of the remaining atoms can

be generated by applying the symmetry operations of the

MSG.

In the case of atoms in the asymmetric unit that lie at some

special position, the MSG also determines their symmetry

constraints, both for their positions and their magnetic

moments. In this way, all new degrees of freedom, both

magnetic and structural ones, present in the magnetic phase as

a consequence of the symmetry loss caused by the magnetic

ordering, become explicit.

(vi) There are two alternative settings and notations for the

MSG types that can be considered standard: the Belov–

Neronova–Smirnova (BNS) and the Opechowski–Guccione

(OG) notations.

The listings of the operations in these two alternative

notations of each MSG type are readily accessible in Litvin

(2013) for the OG setting, and both in the BNS and OG

settings in resources like ISOSPACEGROUP in the

ISOTROPY Software Suite (Stokes et al., 1995) and

MGENPOS in the Bilbao Crystallographic Server (Perez-

Mato et al., 2015). These Tables are also available in

ISO_MAG (Stokes et al. (1995) and we take them as the

standard setting for the MSGs. The magCIF dictionary

supports both settings, so that magnetic CIF files can, in

principle, be produced using either of the two settings and

notations, which only differ in the description of MSGs of

type 4.

For MSGs of type 4 (i.e. those groups having translations

combined with time reversal – the so-called anti-translations),

the OG description employs a unit cell, which does not

generate the periodic lattice possessed by the structure when

the magnetic degrees of freedom are considered. This breaks

with a key convention of ordinary crystallography, thereby

making more difficult the development of appropriate soft-

ware via simple extensions of crystallographic software tools

available for non-magnetic structures. This problem does not

arise with BNS settings, which is probably the reason why all

major software tools that employ magnetic space groups in the

analysis and/or description of magnetic structures support

only the BNS description. For this reason, and to keep this

report as simple as possible, the present guidelines will only

consider the BNS settings for the MSGs.

In the future, new software may be developed and/or

currently available software may be upgraded to support OG

settings and notation, in which case, these guidelines can be

easily adapted and extended to include them.

(vii) Unified (UNI) symbols for MSG types have been

proposed recently as a new step towards standardizing MSG

use.

These new symbols, together with the numerical indices of

the BNS notation, are intended as unified labels for the MSG

types, independent of the use of the BNS or OG setting

(Campbell et al., 2022). The UNI symbols resolve some

weaknesses of the two traditional notations, being transparent

in all cases about the underlying magnetic point groups

(MPGs) and about their differences from ordinary space

groups. It is therefore expected that in the future these UNI
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symbols will be generally adopted. In the present guidelines,

for the sake of clarity, they are included in the examples

alongside the traditional BNS symbol.

(viii) An explicit statement about the magnetic point group

(MPG) of the reported structure is recommended, although

this information can be derived from the MSG.

The magnetic point group (MPG) associated with an MSG

can be trivially derived from the knowledge of the MSG

symmetry operations. The MPG alone determines the

symmetry constraints of all crystal tensor properties, and some

of these properties, primarily the basic ones, can be directly

inferred from the MPG label and the orientations of the MPG

operations with respect to the basis being used. The MPG,

compared with the point group of the paramagnetic phase is

also the basis for deriving the possible orientational domain

states of the crystal and the switching properties of any tensor

property. It is therefore convenient that the report of a

magnetic structure includes the explicit statement of its MPG.

(ix) The report of a magnetic structure is incomplete

without information about the positions of the non-magnetic

atoms.

The MSG of a magnetic structure, and therefore its prop-

erties, depends in general on the positions of the non-magnetic

atoms. The report of a commensurate magnetic structure

should therefore specify not only the positions and moments

of the magnetic atoms, but also the positions (at least

approximate) of the non-magnetic ones. Hence, the crystalline

arrangement of all the atoms should be indicated. This crys-

talline structure is often termed nuclear structure, or chemical

structure. Here we will simply denote it as crystal structure, in

the sense that it defines the atomic positional crystalline

arrangement present in the magnetic structure. In the crys-

tallographic description recommended in this report both the

crystal structure and the spin arrangement are described

within a unique framework, applying the MSG of the system.

This means that in the frequent case where the positions of

the non-magnetic atoms have not been necessary for deter-

mining the spin arrangement, the crystal structure should

however be part of the report, even if it is only approximate

and corresponds to a different temperature, run, sample or

literature work. At the very least, a specific literature refer-

ence to the assumed crystal structure should be provided.

(x) The MSG of a magnetic structure not only describes the

symmetry of the arrangement of the magnetic moments, but it

is also the symmetry group that constrains the non-magnetic

degrees of freedom, as for instance lattice strain and atomic

positions.

This means that in many cases, the symmetry loss caused by

the magnetic ordering reduces the symmetry constraints on

the non-magnetic degrees of freedom as well. This is, for

instance, the ultimate origin of the magnetically induced

ferroelectricity observed in type II multiferroics, and it is also

the cause of some ‘concomitant’ structural transitions, which

are in fact induced magneto-structural effects.

If the crystal structure is described under the MSG of the

system, as recommended in these guidelines, all possible new

structural degrees of freedom that are released by the

magnetic ordering become explicit, showing in particular the

resulting Wyckoff site splitting of both magnetic and non-

magnetic atoms and the symmetry-allowed lattice strain. This

should be the starting point of any quantitative investigation

of possible magneto-structural effects.

(xi) Magnetic-induced structural effects are often too weak

to be observed, which has previously encouraged separate

descriptions of the magnetic and non-magnetic parts of the

magnetic structure. Because such a separation hampers port-

ability, both non-magnetic and magnetic structural details

should be communicated within a common crystallographic

framework, as recommended in these guidelines.

Structural effects induced by magnetic ordering are often

weak enough to be neglected, such that the crystal structure

can be approximated by that of the paramagnetic phase or its

space group can be assumed within experimental resolution to

be still valid in the magnetic phase, independently of the

symmetry loss produced by the magnetic ordering. This allows,

when fitting the diffraction data, a handy separation of the

magnetic and non-magnetic parts, as if they were ‘two phases’.

This two-phase separation has also been traditionally main-

tained in the final description of the magnetic structure. This

separation however hampers the portability of the model and

its use in other studies, such as DFT calculations. For any

practical use, the two-phase information must be somehow

merged in a common framework and treated as a single phase,

which it really is. It is therefore recommended, independently

of the method employed for the determination of the struc-

ture, to avoid the two-phase description and instead report the

crystal structure within the same framework as the spin

arrangement, i.e. under its MSG in the crystallographic form

described by these guidelines. As explained in point (x) this

allows one to explicitly indicate which non-magnetic structural

constraints are relaxed due to the magnetic ordering, even if

these changes are negligible within the resolution of the

structure-determination experiment.

If for any reason, the crystal structure is described sepa-

rately from the spin arrangement, then the report must include

the setting transformation that relates the basis (unit cell and

origin) used for the crystal structure and its space group to the

basis used for the spin arrangement and its MSG.

(xii) Group-representation analysis should be considered as

a complement rather than an alternative to the crystal-

lographic description of a magnetic structure under its MSG.

The group-representation method, which employs spin

basis modes (or vectors) adapted to the irreducible repre-

sentations (irreps) of the parent space group (usually the

space group of the paramagnetic structure), is a powerful and

systematic way to explore and enumerate possible spin

arrangements. The early existence of efficient computer

programs applying this method has facilitated its extensive use

in the determination and description of magnetic structures. In

contrast, the lack of data and software infrastructure for

magnetic symmetry groups greatly limited the adoption of the

crystallographic description of magnetic structures. Fortu-

nately, there are now a variety of powerful and freely acces-

sible computer tools that support the investigation of any
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commensurate magnetic structure using a complementary and

self-consistent combination of both magnetic symmetry

groups and group-representation analysis.

(xiii) The crystallographic description of a magnetic struc-

ture under its MSG does not require a comparison with any

other structure, while the description in terms of irrep basis

modes is based on a comparison with a specified non-magnetic

parent structure.

The determination of a magnetic structure usually starts

from the knowledge of the corresponding paramagnetic

structure, which provides a natural reference or parent struc-

ture, from which to characterize the magnetic ordering.

However, once the magnetic structure has been determined, it

can be described in a crystallographic form, as recommended

in these guidelines, without reference to any other structure.

The crystallographic description under an MSG is a

straightforward standalone description, while a group-repre-

sentational description in terms of irrep spin basis vectors is

inherently a comparison against a parent paramagnetic

structure. In fact, once the magnetic structure is defined under

its MSG, its group-representational description can be derived

if a parent structure is specified.

For most magnetic structures, the MSG is only compatible

with a single irrep of its parent paramagnetic space group [see

the next point (xiv)]. In the most general case, however, the

MSG of the structure may permit contributions from multiple

irreps. Commonly, some of the MSG-compatible irreps do not

contribute to the observed spin arrangement, and as a

consequence, the magnetic structure has additional spin

correlations which cannot be explained by its MSG. These are

precisely the situations where the crystallographic description

is best complemented by the additional presentation of irrep

basis vectors. In such cases, the joint use of an MSG and irrep

basis vectors provides a more complete description of a

magnetic structure.

Any irrep that must necessarily contribute to the spin

arrangement in order to reduce the symmetry of the crystal

from the parent paramagnetic space group down to the

observed MSG are called primary. The remaining MSG-

compatible irreps, which may also be present in the spin

arrangement under the constraints of the MSG, but are not

necessary to arrive at the MSG, are termed secondary, since if

present, they can usually be considered as secondary effects.

It is important to remark that although the choice of the

paramagnetic parent structure is in most cases obvious, it is

formally not unique, and in the case of materials with several

paramagnetic phases or with a paramagnetic phase having

some pseudo-symmetry, it can be a matter of choice.

(xiv) The MSGs of most commensurate magnetic structures

are only compatible with a single irrep of the parent para-

magnetic space group, and for these structures, the crystal-

lographic description is especially advantageous.

Most magnetic structures have spin arrangements asso-

ciated with a single irrep of the parent space group, and in a

majority of these cases, the resulting MSG is only compatible

with this specific irrep. This means that all other irreps are

forbidden by the symmetry constraints defined by the MSG. In

other words, these structures have MSGs, which automatically

force their spin arrangements to comply with one and only one

irrep of the parent space group. About 80% of the roughly

1900 commensurate magnetic structures in the MAGNDATA

database are in this category.

In the case that the irrep compatible with the MSG is one-

dimensional, so the irrep is necessarily real, there is a one-to-

one correspondence between the free parameters of the

crystallographic and group-representational descriptions. The

crystallographic description is, however, more self-contained

and straightforward to communicate to a broad audience.

In the case of a magnetic structure for which the only MSG-

allowed irrep is multi-dimensional (i.e. the dimension is

greater than 1), a variety of possible alternative MSGs might

be possible depending on the ‘direction’ of the corresponding

multi-dimensional magnetic order parameter (i.e. the specific

linear combination of basis vectors of that irrep). In other

words, the MSG of the structure depends on how the irrep’s

multiple basis vectors are combined. For such structures, the

crystallographic description of the spin arrangement under its

MSG generally requires fewer parameters than a group-

representational description under the relevant multi-

dimensional irrep.

Thus, in the very common case of an MSG that is compa-

tible with only one magnetic irrep (either one-dimensional or

multi-dimensional), the crystallographic description is

especially preferred, even if the magnetic structure

was originally determined using the group-representation

method. Of course, the crystallographic description can

always be supplemented with group-representational infor-

mation.

(xv) When the MSG of the magnetic structure is compatible

with more than one irrep, the combined use of the MSG and

the spin basis vectors of these irreps is a more efficient and

complete way to describe the structure.

If more than one irrep of the parent space group is

compatible with the MSG of the magnetic structure, the

magnetic degrees of freedom allowed by the MSG can be

decomposed into contributions from these compatible irreps.

In such cases, each irrep spin basis vector imposes constraints

on the magnetic moments of the atoms within the asymmetric

unit and/or some correlation amongst them, which are not

enforced by the MSG itself. These are sufficient to define the

irrep spin basis vector, because any additional relations with

the magnetic moments of other atoms out of the asymmetric

unit, which complete the spin arrangement of the spin basis

vector, are taken into account by the symmetry relations

enforced by the MSG.

Consequently, as mentioned in point (xiii), if only one of the

several MSG-compatible irreps is active (something that

happens quite often), the restriction of the magnetic

arrangement to the spin basis vectors of this irrep implies

additional constraints beyond those of the MSG. These addi-

tional restrictions, which decrease the number of parameters

necessary to describe the spin arrangement, become explicit

when the irrep basis vector(s) are invoked as a complement to

the crystallographic description under the MSG.
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(xvi) Commensurate magnetic structures with a propaga-

tion vector that allows magnetic odd harmonics necessarily

have an MSG compatible with more than one irrep. The

additional degrees of freedom corresponding to any higher

harmonics are automatically included in the crystallographic

description under its MSG.

The MSG description of a magnetic structure automatically

includes all the degrees of freedom, which are released by the

magnetic ordering as possible induced effects. This includes

the possible presence of higher harmonics in the magnetic

ordering. This happens for instance when the propagation

vector k of the magnetic arrangement is such that 3k is not

equivalent to k. In such cases, the MSG generally splits the

magnetic-atom sites with respect to the parent space group so

that some atomic magnetic moments become symmetry

independent, which would otherwise be correlated if the

magnetic arrangement were restricted to a single harmonic

wave of the observed propagation vector.

These structures are examples where the MSG is compa-

tible with more than one irrep, as the higher harmonics are

necessarily associated with irreps that are different from that

of the primary modulation. The MSG necessarily allows them,

as they are possible secondary induced effects. The additional

correlations coming from the restriction to the primary

harmonic become explicit if the crystallographic description is

complemented with the definition of the irrep basis vectors for

all MSG-compatible irreps and the values of their amplitudes

are given.

(xvii) There are two alternative labeling systems for the

irrep notation, which are robust and unambiguous. It is

recommended to use one of them. We advise against labeling

the irreps arbitrarily or according to labels arbitrarily assigned

by some programs.

There are two irrep notation systems, which are widely used

and well supported in terms of software and documentation.

The Cracknell, Davies, Miller and Love (CDML) irrep nota-

tion, originating in the tables of Cracknell et al. (1979), is

presently used by many programs, including the ISOTROPY

Software Suite (Stokes et al., 1995), the Bilbao Crystal-

lographic Server (Perez-Mato et al., 2015), JANA2020

(Petřı́ček et al., 2023), some options of FullProf (Rodrı́guez-

Carvajal, 1993), etc. If one is working with a specific irrep with

an arbitrary label, the equivalent CDML label can be easily

identified by comparing the characters of a set of generators of

the parent space group to those in the character tables under

the CDML notation, which are readily accessible via resources

like REPRESENTATIONS SG in the Bilbao Crystallographic

Server (Perez-Mato et al., 2015) or ISO-IR (Stokes et al., 2013)

in the ISOTROPY Software Suite (Stokes et al., 1995).

The other robust and unambiguous irrep labeling system

comes from the book by Kovalev (1965, 1993), which was

transformed into digital form and is available in the program

SARAh (Wills, 2000). Recently the ISOTROPY Software

Suite has made available the mapping between the Kovalev

and the CDML notations, both as listings and as computer

readable files, such that the two notations can be easily

interchanged.

If unfamiliar or arbitrary irrep labels are ultimately

employed, the information is incomplete unless one also lists

the irrep(s) characters for a set of generators of the parent

space group. Otherwise, the arbitrary irrep labels are essen-

tially useless to the reader.

(xviii) To avoid confusion with the irreps associated with

non-magnetic distortions, and for the sake of a more

comprehensive notation, the labeling of the irreps associated

with magnetic orderings should explicitly indicate its odd

character for time reversal, i.e. as irreps of the gray magnetic

space group associated with the parent paramagnetic phase.

The traditional use of irreps of the non-magnetic parent

space group to describe the transformation properties of

magnetic orderings ignores an important additional transfor-

mation property of these distortions, namely its odd character

with respect to time reversal. This contrasts, for instance, with

the transformation properties of phonon modes, which are

even under time reversal. If the transformation properties of a

phonon mode and a spin mode were indeed described by the

same irrep, they could couple bilinearly in the paramagnetic

phase, which is physical nonsense.

Therefore, it is recommended to declare the irreps asso-

ciated with a spin arrangement as belonging to the gray

magnetic space group of the paramagnetic phase (not to the

corresponding non-magnetic space group), and therefore

explicitly possessing an odd character under time reversal.

This is accomplished simply by adding an ‘m’ to the front of

the usual irrep label. For instance, the irrep label X1 becomes

mX1. This change of notation in the irrep labeling of magnetic

distortions was initially introduced within the ISOTROPY

Software Suite (Stokes et al., 1995) and it is now used by many

other computer tools. This simple change of notation makes it

possible to consider together unambiguously both magnetic

and non-magnetic distortions and to classify them consistently

within a common framework.

(xix) The specific irrep or set of irreps associated with a

magnetic arrangement may depend on the way the parent

structure is described, in particular on the choice of origin.

The irrep or irreps associated with the spin arrangement in a

magnetic structure may depend on the origin of the unit cell

chosen for the description of the paramagnetic parent struc-

ture. This typically happens in the case of non-zero propaga-

tion vectors because a change of origin, compatible with the

standard setting of the parent space group, generally inter-

changes some group operations though the corresponding

irrep matrices describing the associated transformation

properties of the spin arrangement cannot change. This

mathematically implies in general a different mapping

between the operations of the group and the matrices, and

therefore a different irrep. Hence, even using a standard

setting for the parent space group, the active irrep or irreps

describing the observed spin arrangement may change

depending on the way the parent structure is described. For

example, in the case of space group Pm�3m, the choice to place

the magnetic atom at the origin or at (1
2
, 1

2
, 1

2
) will in general

imply the association of a different irrep or irreps to the same

spin arrangement, if it has a non-zero propagation vector.
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(xx) Any magnetic ordering is described by real (not

complex) atomic magnetic moments, and therefore necessarily

transforms according to a real representation of the parent

symmetry group. Complex irreps cannot describe the trans-

formation properties of a commensurate magnetic arrange-

ment.

This means that in the case of a complex irrep m�, the

representation to be considered for the description of the

transformation properties of a spin arrangement must be the

direct sum of the pair of complex conjugate irreps: m�+m�*,

i.e. the so-called physically irreducible representation m��*. It

should therefore be stressed that it is mathematically and

physically incorrect to assign one (or more) complex irreps to

a magnetic arrangement, without also including the corre-

sponding complex conjugate irreps.

The CDML notation, extended to time-odd irreps, employs

labels with one or more repeated letters, like mU1U3,

mGM2GM3 or mA1A1, to indicate that two mathematical

complex conjugated irreps are being added to produce a

physically irreducible representation. In the case of a pseudo-

real irrep label, such as mA1A1, the complex irrep and its

complex conjugate are equivalent so that both the letter and

its subscript are repeated.

(xxi) If a magnetic ordering has a single propagation vector

k, and if k and � k are inequivalent, then � k is necessarily also

involved in the spin arrangement, and both vectors must be

considered when irrep basis functions are constructed.

When the propagation vector k of the magnetic ordering is

not translationally equivalent to � k under the symmetry

operations of the parent paramagnetic space group, it has

traditionally been assumed that atomic sites related by a

parent symmetry operation that switches k with � k have

independent irrep spin basis vectors. This is not correct. The

irrep spin basis vectors of these assumed ‘split’ atomic sites are

necessarily correlated to satisfy the transformation properties

defined by a single irrep. These correlations, when refined

using irrep spin basis vectors, have usually been introduced

a posteriori, either ad hoc or as the result of the refinement

process; but in fact, they are inherent to the relevant irrep, and

are automatically introduced in a crystallographic description

via the corresponding MSG.

When k and � k are not related by a symmetry operation of

the parent space group, the irreps associated with k and � k

are distinct and are complex conjugates of one another, so that

a physically irreducible irrep is constructed as their direct sum

[as described in point (xx) above].

In the case where the symmetry operations of the parent

space group transform a propagation vector k into non-

equivalent vectors distinct from � k, the full irrep includes all

these symmetry-related propagation vectors, and as a conse-

quence, multi-k spin arrangements are possible for a single

irrep. These possible multi-k models associated with a single

irrep and their MSGs can be readily obtained from the

mentioned internet resources, which combine the use of

magnetic space groups and representation analysis, and

generally allow higher symmetries than the possible single-k

models.

3. How to report a commensurate magnetic structure

under its magnetic space group

Here we list the items required for a complete and unambig-

uous report of a commensurate magnetic structure in a crys-

tallographic form under its MSG, and the representation-

analysis information that may complement this description.

For the sake of simplicity these guidelines only use the BNS

setting for an MSG, which is the one generally supported by

available software resources. The extension to a description

using the OG setting is rather straightforward.

The necessary items in the description of a magnetic

structure under its MSG are analogous to those necessary for

the crystallographic description of a non-magnetic structure.

The assignment of an MSG permits one to reduce the listing of

atomic positions and magnetic moments to those of an

‘asymmetric unit’, all other atomic positions and magnetic

moments being trivially generated by application of the MSG

symmetry operations.

As illustrative examples, Tables 1 and 2 describe the

magnetic structures of Dy2Co3Al9 and Mn3Sn in the crystal-

lographic recommended form, with Tables 3 and 4 comple-

menting this description with additional representation

analysis information. These structures were reported by

Gorbunov et al. (2018) and Brown et al. (1990), respectively,

and their magCIF files can be retrieved from MAGNDATA

(Gallego et al., 2016b) (entries 1.267 and 0.199). The MSG of

Dy2Co3Al9 is compatible with only one irrep of the parent

paramagnetic space group, while Mn3Sn is an example of the

less frequent case, where the MSG is compatible with more

than one irrep. They are representatives of the two different

basic situations, which are possible when MSG symmetry and

representation analysis are applied together.

The items listed below are divided in two sets:

(a) Crystallographic information sufficient to describe the

magnetic structure itself, complemented by basic information

on the relationship between the magnetic structure and its

parent paramagnetic structure. These items (x3.1.1–x3.1.13)

are all supported by the magCIF format (examples given in

Tables 1 and 2).

(b) Detailed representation-analysis information relating

the magnetic structure to its parent paramagnetic structure.

These items (x3.2.1–x3.2.6) are not yet supported by the

magCIF format (examples given in Tables 3 and 4).

3.1. Crystallographic information (examples in Tables 1 and 2)

3.1.1. Parent space group

Symbol of the space group of the parent paramagnetic struc-

ture. If the parent space group is being considered in a non-

standard setting, the details of this setting should be clearly

indicated. In the case of space groups with alternative stan-

dard settings that vary the origin, the choice made should be

explicitly mentioned. Origin choice 2 (inversion center at the

origin) is strongly recommended, as it is taken as the default

by most programs.
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3.1.2. Propagation vector(s)

Wavevector(s) associated with the spin arrangement. The spin

arrangement of any magnetic structure can be considered as a

modulated disposition of the atomic magnetic moments with

respect to the parent structure according to one or more

reciprocal-space wavevectors, which can be zero in the

simplest case. These so-called propagation vectors of the

magnetic structure should be expressed as unitless relative

components with respect to the conventional reciprocal unit

cell of the parent space group.

In the example given in Table 1, the propagation vector is

(0, 0, 1
2
), which implies a doubling of the unit cell for the lattice

periodicity of the MSG (see x3.1.3), while it is (0, 0, 0) in the

case of Table 2, where the lattice periodicity of the parent

phase is maintained.

3.1.3. Transformation from parent basis to the basis of the

magnetic structure

Transformation of the basis (unit cell and origin) of the parent

space group to the current basis used for the description of the

magnetic structure (see x3.1.8). This transformation can

include not only a change of the unit cell vectors, but also an

origin shift, which should be expressed in unitless relative

components with respect to the conventional unit cell of the

parent space group. Because this transformation can be

combined with any operation of the MSG, it is in general not

unique.

In the example given in Table 1, this transformation is

(a, b, 2c; 0, 0, 0), i.e. the origin and orientation of the unit-cell

parameters in the Cmcm parent space group are maintained,

except for the c parameter, which is necessarily doubled, due

to the propagation vector (0, 0, 1
2
) of the magnetic ordering.

In the example given in Table 2, this transformation is the

identity, because the magnetic propagation vector is null.

Although the MSG in its standard setting is C-centered

orthorhombic, the parent primitive unit cell and origin are also

used for the description of the magnetic structure in order to

facilitate the comparison with the paramagnetic hexagonal

structure.
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Table 1
Magnetic structure of Dy2Co3Al9 (Gorbunov et al., 2018) described under
its MSG (crystallographic description), with basic information about its
relation with its parent paramagnetic structure.

All entries in the table are supported by the magnetic CIF (magCIF) format.

Compound Dy2Co3Al9 (MAGNDATA #1.267)

Parent space group Cmcm (No. 63)

Propagation vector(s) (0, 0, 1
2
)

Transformation from parent
basis to the one used

(a, b, 2c; 0, 0, 0)

MSG symbol Aamm2 (UNI: Amm2.10a)

MSG number 38.192

Transformation from basis
used to standard setting of
MSG

(c, a, b; 0, 0, � 1
8
)

Magnetic point group mm2.10 (c, a, b) or m2m.10

Unit-cell parameters (Å, �) a = 12.72390, � = 90

b = 7.45860, � = 90

c = 18.59880, � = 90

MSG symmetry operations x; y; z; þ1 {1 | 0, 0, 0}

� x; y; � zþ 3
4
;þ1 {2010 | 0, 0, 3

4
}

� x; y; z;þ1 {m100 | 0, 0, 0}

x; y; � zþ 3
4
;þ1 {m001 | 0, 0, 3

4
}

MSG symmetry centering
operations

x; y; z; þ1 {1 | 0, 0, 0}

xþ 1
2
; yþ 1

2
; z;þ1 {1 | 1

2
, 1

2
, 0}

x; y; zþ 1
2
; � 1 {10 | 0, 0, 1

2
}

xþ 1
2
; yþ 1

2
; zþ 1

2
; � 1 {10 | 1

2
, 1

2
, 1

2
}

Positions of magnetic atoms Dy1_1 Dy 0.33940 0.33290 0.12500

Dy1_2 Dy 0.66060 0.66710 0.37500

Positions of non-magnetic
atoms

Co1 Co 0.32880 0.00000 0.00000

Co2 Co 0.00000 0.00000 0.00000

Al1_1 Al 0.00000 0.1249 0.125

Al1_2 Al 0.00000 0.8751 0.375

Al2_1 Al 0.1079 0.4459 0.125

Al2_2 Al 0.8921 0.5541 0.375

Al3_1 Al 0.0000 0.3322 0.2714

Al3_2 Al 0.00000 0.6678 0.5214

Al4_1 Al 0.1686 0.3330 0.03585

Al4_2 Al 0.8314 0.6670 0.28585

Magnetic moment compo-
nents (�B) of magnetic
atoms, symmetry

constraints and moment
magnitudes

Dy1_1 1.34 (2) 8.35 (2) 0.0 (mx, my, 0) 8.46 (2)

Dy1_2 0.0 0.0 1.38 (1) (0, 0, mz) 1.38 (1)

Table 2
Magnetic structure of Mn3Sn (Brown et al., 1990) described under its
MSG (crystallographic description), with basic information about its
relation with its parent paramagnetic structure.

All entries in the table are supported by the magnetic CIF (magCIF) format.

Mn3Sn (MAGNDATA #0.199)

Parent space group P63/mmc (No. 194)

Propagation vector(s) (0, 0, 0)

Transformation from parent
basis to the one used

(a, b, c; 0, 0, 0)

MSG symbol Cmc0m0

MSG number 63.463

Transformation from basis
used to standard setting of
MSG

(� b, 2a+b, c; 0, 0, 0)

Magnetic point group m0m0m (2a+b, c, � b)

Unit-cell parameters (Å, �) a = 5.665, � = 90

b = 5.665, � = 90

c = 4.531, � = 120

MSG symmetry operations x; y; z; þ1 {1 | 0, 0, 0}

� x; � xþ y; � z;þ1 {2010 | 0, 0, 0}

� x; � y; � z;þ1 {� 1 | 0, 0, 0}

x; x � y; z;þ1 {m010 | 0, 0, 0}

x; x � y; � zþ 1
2
; � 1 {20210 | 0, 0, 1

2
}

� x; � y; zþ 1
2
; � 1 {20001 | 0, 0, 1

2
}

� x; � xþ y; zþ 1
2
; � 1 {m0210 | 0, 0, 1

2
}

x; y; � zþ 1
2
; � 1 {m0001 | 0, 0, 1

2
}

Positions of magnetic atoms Mn1_1 Mn 0.8388 0.6776 0.25

Mn1_2 Mn 0.3224 0.1612 0.25

Positions of non-magnetic
atoms

Sn1 Sn 0.33333 0.66667 0.25

Magnetic moment compo-
nents (�B) of magnetic
atoms, symmetry
constraints and moment
magnitudes

Mn1_1 3.00 (1) 3.00 0.0 (mx, my, 0) 3.00 (1)

Mn1_2 0.0 � 3.00 0.0 (0, my, 0) 3.00 (1)



3.1.4. MSG symbol

Symbol in the BNS notation of the MSG of the magnetic

structure. MSG symbols and their numerical indices in the

BNS notation, and listings of the corresponding symmetry

operations in their standard setting, can be found in the

ISOTROPY Software Suite (Stokes et al., 1995) and in the

Bilbao Crystallographic Server (Perez-Mato et al., 2015).

Alternatively, or as a complement, the UNI symbol (Campbell

et al., 2022), also available in these resources, can be used.

Another complementary symbol that may be provided is the

magnetic Hall symbol (González-Platas et al., 2021).

The MSG of the example given in Table 1 is of type 4, where

UNI symbols differ considerably from those in the BNS

notation. In this case, the UNI symbol Amm2.10a makes

explicit that the time-reversal operation is part of the magnetic

point group. In the example of Table 2, the MSG is of type 3,

and in this case, the BNS, OG and UNI symbols coincide.

3.1.5. MSG numerical index

It is recommended to include as an additional very robust

identification of the MSG, its numerical index in the BNS

setting (Stokes et al., 1995; Perez-Mato et al., 2022), which is

also used in the UNI notation.

3.1.6. Transformation to standard setting of the MSG

In the case that the MSG is not employed in its standard

setting, the MSG symbol should be complemented with the

transformation from the current basis of the MSG (unit-cell

vectors and origin used in the magnetic-structure description)

to a basis where the MSG acquires its BNS standard setting.

This transformation must include not only the relation of the

unit-cell vectors in the standard setting with those being used,

but the required origin shift, which should be expressed in

unitless relative components with respect to the current unit

cell. Generally, there may be more than one transformation

possible and it is sufficient to indicate one of them. If no

transformation accompanies the MSG, the standard setting of

the MSG is to be assumed.

In the example given in Table 1 the transformation

(c, a, b; 0, 0, � 1
8
) means that the MSG would take its standard

form if the unit-cell parameters as, bs, cs were chosen as as = c,

bs = a, cs = b, and the origin were located at � 1
8

c, where a, b, c

are the vectors defining the current unit cell used.

In the example given in Table 2, the parent paramagnetic

phase is hexagonal and the magnetic structure is ortho-

rhombic. The MSG setting of Cmc0m0 employed here is related

to the standard BNS setting of the MSG by transformation

(� b, 2a+b, c; 0, 0, 0), as the parent hexagonal unit cell is used

in the description of the magnetic structure. The transforma-

tion defines the standard C-centered orthorhombic unit cell of

the MSG, embedded in the lattice generated by the oblique

primitive unit cell being used. Notice that this primitive unit

cell is symmetry-allowed to exhibit some strain, but in a

restricted form to maintain the orthorhombic C-centered

lattice (a and b must maintain equal lengths, but the � angle

can deviate from 120�).

The transformation to standard in Table 1 implies we could

have used the MSG symbol Cm2m.1c instead of Amm2.1a,

obviating the transformation of the unit-cell vectors, but this

alternative setting still requires an origin shift � 1
8
c, which

should then be also indicated. In general, one can always use

the standard symbol of the MSG and indicate unambiguously

the transformation to its standard setting, including the

necessary origin shift.
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Table 3
Representation analysis of the magnetic structure of Dy2Co3Al9, which
complements the crystallographic description in Table 1.

This is a typical case, where only one irrep of the parent space group is
compatible with the MSG of the structure. In such cases, the irrep constraints
are fully taken into account by the MSG. irrep spin basis vectors or modes are

not necessary.

Dy2Co3Al9

Primary irrep(s) label(s) with dimension mZ1 (two-dimensional)
(special direction)

Description of the primary irrep mZ1:

{2001 | 0, 0, 1
2
}: (0, � 1; 1, 0)

{2010 | 0, 0, 1
2
}: (1, 0; 0, � 1)

{� 1 | 0, 0, 0}: (0, � 1; � 1, 0)
{1 | 0, 0, 1}: (� 1, 0; 0, � 1)
{1 | 0, 1, 0}: (1, 0; 0, 1)
{1 | 1, 0, 0}: (1, 0; 0, 1)
{1 | 1

2
, 1

2
, 0}: (1, 0; 0, 1)

Secondary irrep(s) label(s) Not allowed

Table 4
Representation analysis of the magnetic structure Mn3Sn (Brown et al.,
1990), which complements its crystallographic description in Table 2.

This is an example, where more than one irrep, namely two irreps of the parent
space group, are compatible with the MSG of the structure. One of them is
observed, being responsible for the symmetry break (primary irrep), while the

other one corresponds to a possible induced effect (secondary irrep). The
magnetic arrangement described in Table 2 is decomposed into components
associated with the two irreps. The irrep basis modes are defined describing
the corresponding additional constraints and/or correlations for the atoms in
the asymmetric unit of the crystallographic description.

Mn3Sn

Primary irrep(s) label(s) with dimension mGM6+ (two-dimensional)

(special direction)

Description of primary irrep(s) mGM6+:

{6001 | 0, 0, 1
2
}: (1

2
, �

ffiffi
3
2

q

;

ffiffi
3
2

q

, 1
2
)

{� 1 | 0, 0, 0}: (1, 0; 0, 1)

{m010 | 0, 0, 0}: (1
2
,

ffiffi
3
2

q

;

ffiffi
3
2

q

, � 1
2
)

Secondary irrep(s) label(s) with dimen-
sion

mGM3+ (one-dimensional)

Description of secondary irrep(s) mGM3+:

{6001 | 0, 0 , 1
2
}: � 1

{� 1 | 0, 0, 0}: 1

{m010 | 0, 0, 0}: 1

Primary basis mode(s) and amplitude(s)
Ci (in �B)

mGM6+, mode 1:

Mn1_1 (1, 1, 0) C1 = 3.00 (1)

Mn1_2 (0, � 1, 0)

mGM6+, mode 2:

Mn1_1 (0, 1, 0) C2 = 0.0

Mn1_2 (0, 1, 0)

Secondary basis mode(s) and ampli-
tude(s) Ci (in �B)

mGM3+, mode 3:

Mn1_1 (1, 0, 0) C3 = 0.0

Mn1_2 (0, 1, 0)



3.1.7. Magnetic point group symbol

Symbol of the magnetic point group (MPG) associated with

the MSG of the structure. One system of labeling and

numbering of MPGs, which can be taken as standard, can be

found in Litvin (2013). Another option is the UNI MPG

symbols from which the new UNI MSG symbols (Campbell et

al., 2022) are derived. The UNI MPG symbols are now used by

a number of software tools including the ISOTROPY

Software Suite (Stokes et al., 1995) and the Bilbao Crystal-

lographic server (Perez-Mato et al., 2015).

The form of the operations of the MPG in the current basis

may not coincide with those of its standard setting. Therefore,

in such cases it is necessary to include additional information

that defines the transformation from the current basis to one

where the operations of the MPG acquire their standard form.

For point groups only the transformation of the unit cell is

relevant.

In the example of Table 1, the MPG is denoted as

mm2.10 (c, a, b), because the twofold axis is along c in the

standard description of the MPG, as shown in its label, while in

the current unit cell it is along b. In this simple case, one could

use a modified label of the form m2m.10, though one should be

aware that such a setting-adapted labeling of the MPG is not

always possible because the orientation of the MPG standard

setting can be oblique with respect to the current basis. In

these cases, an indication of the transformation to standard of

the MPG cannot be avoided (see, for instance, Table 2). In

accordance with the UNI notation, the MPG symbol in Table 1

includes a dot separating the 10 symbol.

In the example of Table 2, the MPG is denoted as

m0m0m (2a+b, c, � b), so that the transformation to standard

differs from that given for the MSG because the standard

orientation of the MPG differs from that implied by the

standard setting of the MSG. We can immediately discern from

the MPG symbol and its transformation to standard that the

b axis of the current unit cell is perpendicular to the non-

primed mirror plane, and therefore admits a ferromagnetic

moment.

3.1.8. Unit-cell parameters

Parameters defining the unit cell of the magnetic structure.

This is the current unit cell employed to describe the opera-

tions of the MSG, the coordinates of the atomic positions and

the components of the magnetic moments. It is often denoted

as magnetic unit cell. Since we are considering a BNS setting

this unit cell generates a lattice that describes the periodicity

for both the atomic magnetic moments and atomic positions.

When employing a conventional-centered or otherwise a non-

standard setting of the MSG that uses a supercell, the defini-

tion of the lattice must be completed with additional centering

translations, as described below in x3.1.10.

It is important that this unit cell does not necessarily coin-

cide with that of the parent paramagnetic structure. In Table 1,

it is a supercell with the c unit-cell parameter doubled relative

to that of the parent paramagnetic unit cell since its magnetic

ordering has propagation vector (0, 0, 1
2
). In the example given

in Table 2, the propagation vector is (0, 0, 0) so that the MSG

and paramagnetic parent space group share the same unit cell.

3.1.9. MSG symmetry operations

In the case that the magnetic structure is described with its

MSG in a non-standard setting, it is strongly recommended to

include the listing of the representative symmetry operations

of the MSG relative to its current unit cell as given in x3.1.8.

This can be a full set of translationally inequivalent operations,

but this listing can be reduced to a minimal set of generators,

especially in the case of an MSG with a large number of

operations.

The listed MSG symmetry operations must be consistent

with the reported MSG (see x3.1.4 and x3.1.5) and the given

transformation to the MSG standard setting (see x3.1.6).

When this list is not at hand, one can generate it by simply

inverting the given transformation and applying it to each of

the standard-setting MSG operations. Thus, in principle, the

list of operations itself is redundant with the information given

according to x3.1.4 (or x3.1.5) and x3.1.6. Nevertheless, if the

MSG is not being applied in its standard setting, this explicit

list of MSG operations eliminates any possible ambiguity. In

fact, an explicit list of MSG operations in the current basis is

obligatory in the magCIF format, whereas the MSG symbol,

MSG numerical index and transformation to standard setting

are merely strong recommendations.

The set of symmetry operations to be listed can be shor-

tened if the set of centering and anti-centering translations are

listed separately (see x3.1.10). But, if desired, they can be

listed together including all their possible combinations, as is

done in the standard CIF description of ordinary space groups.

The notation of the symmetry operations in the examples of

Tables 1 and 2 follows the magCIF format in describing a

transformation of a generic point (x, y, z), along with a �1 to

indicate whether the operation is time reversed (� 1) or not

(+1). Generalized Seitz symbols (Glazer et al., 1990) are also

presented in these tables as a possible easily interpreted

alternative, to be used instead of the (x, y, z) notation. Other

notations may also be used, so long as the operations are

unambiguously defined.

Note that Table 1 includes MSG operations with transla-

tional parts equal to (0, 0, 3
4
), while these same operations in

the standard setting of this MSG have translational parts equal

to (0, 0, 0). The reason is that in order to facilitate its

comparison with the parent paramagnetic structure, the

magnetic structure and therefore the MSG, is being described

keeping the unit-cell orientation and origin of the parent space

group Cmcm. This introduces non-standard translations in the

MSG operations, which would acquire its standard form if the

basis is changed according to the transformation indicated in

x3.1.6, which includes an appropriate origin shift.

3.1.10. MSG symmetry-centering and anti-centering opera-

tions

List of all the symmetry operations that are fractional trans-

lations and anti-translations within the current unit cell if
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there are any. An anti-translation is the combination of the

time-reversal operation with a translation and is analogous to

a glide mirror plane operation or a screw rotation. As anti-

translations are not lattice translations, they do not belong

rigorously to a list of true centering operations. However, the

magCIF format, because of its simplicity, allows and

encourages the presentation of both centering and anti-

centering operations in the same list when using the BNS

description.

When the unit cell of the MSG is a supercell of the para-

magnetic parent unit cell, one can often achieve a simpler

comparison with the parent structure by choosing an equiva-

lent or larger supercell whose basis vectors are parallel to

those of the parent cell. In many cases, this results in a non-

standard setting of the MSG requiring the inclusion of non-

standard centering and anti-centering translations.

In Table 1, because the MSG is of type 4, it has anti-

centering operations, the simplest of which has the form

{10 | 0, 0, 1
2
} . This combines with the C-centering translation

{1 | 1
2
, 1

2
, 0} to generate the other non-zero anti-centering

operation, {10 | 1
2
, 1

2
, 1

2
}. Notice that this MSG Amm2.10a in its

standard setting is A-centered and has an anti-centering

translation along a. In Table 1, however, it was convenient to

choose a basis for the MSG that preserves the shape and

orientation of the C-centered parent unit cell, except for the

necessary doubling of the cell along c. A transformation to the

standard setting of the MSG would instead require a permu-

tation of the unit cell axes of the parent (see x3.1.6).

In Table 2, the MSG is of type 3 so that no anti-centering

can exist. Nor does the list include any non-trivial centering

translations despite the MSG (Cmc0m0) being C-centered.

Once again, an MSG basis is being used that preserves the unit

cell of the parent hexagonal paramagnetic structure, which is

oblique and primitive. The C-centering translation would only

appear in the list if the structure is described in the standard

setting of the MSG, which has an orthogonal unit cell (see

x3.1.6).

3.1.11. Positions of magnetic atoms

Atomic positions, in relative coordinates with respect to the

current MSG basis, of all symmetry-independent magnetic

atoms forming an asymmetric unit for the MSG. Any split sites

that were symmetry related in the space group of the para-

magnetic phase but are not related by symmetry operations of

the MSG should be listed separately within the asymmetric

unit. If the magneto-structural coupling is weak enough, as it is

often the case, the positions of split sites can still be related

within experimental accuracy by the parent space-group

symmetry, but their magnetic moments and hence their posi-

tions are truly independent in the magnetic structure.

In the example of Table 1, the atom Dy1 in the asymmetric

unit of the parent space group Cmcm splits into two inde-

pendent magnetic atoms in the asymmetric unit of the MSG,

Dy1_1 and Dy1_2. Their positions are within experimental

accuracy related by an inversion center in the parent space

group, which is lost due to the magnetic ordering, such that

their positions are (x, y, z) and (1 � x, 1 � y, 1
2
� z), respec-

tively. But this correlation between the two sites coming from

the parent space group is no longer symmetry protected.

Something similar happens in the case of Table 2, where the

two MSG-independent atomic sites, Mn1_1 and Mn1_2, were

symmetry related in the hexagonal parent space group.

3.1.12. Positions of non-magnetic atoms

Atomic positions, in relative coordinates with respect to the

current MSG basis, of all symmetry-independent non-

magnetic atoms forming an asymmetric unit for the MSG. Any

split sites that were symmetry related in the space group of the

paramagnetic phase but are not related by the symmetry

operations of the MSG should be listed separately within the

asymmetric unit of the MSG. If the magneto-structural

coupling is weak enough, as it is often the case, the positions of

the split sites may still be related within experimental accuracy

by the parent space-group symmetry. But this correlation

between the split positions is no longer symmetry protected,

and the description considering only the MSG is convenient,

in order to explicitly present all the new structural degrees of

freedom that are released by the symmetry break caused by

the magnetic order.

In the example of Table 1, the Al sites in the asymmetric

unit of parent space group Cmcm become split into two

independent sites in the asymmetric unit of the MSG. The

choice of the split sites in the asymmetric unit is not unique.

For instance, the Al1_1 and Al1_2 atoms are related by the

lost inversion operation, but the chosen Al4_1 and Al4_2 sites

are related by the operation {2001 | 1, 1, 1
2
} of the parent space

group, which is also lost.

3.1.13. Magnetic moments of magnetic atoms and their MSG

constraints

Magnetic moments of the magnetic atoms in the asymmetric

unit of the MSG, as well as the MSG symmetry-constraints on

these moments. It is recommended to parameterize the

magnetic moments using vector components parallel to the

crystallographic unit-cell axes (in Bohr magneton units). This

description is presently supported by many software resources,

including programs for structure refinement, analysis and

visualization. The components of the moment should gener-

ally be complemented by the value of the moment modulus.

The alternative parameterization based on the spherical

coordinates of the moment vector, although supported by

most refinement programs and by the magCIF standard, is not

supported by most mainstream programs for analysis and

visualization.

The magnetic moments on split sites that were symmetry

related in the space group of the paramagnetic phase but are

not related by symmetry operations of the MSG should be

listed separately within the asymmetric unit of the MSG. The

magnetic moments of atoms in the asymmetric unit of the

MSG are symmetry independent, while the magnetic moments

of all other atoms in the crystal are necessarily related to those
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of the asymmetric unit by the symmetry operations of the

MSG.

If a magnetic atom in the asymmetric unit lies on a special

position, its magnetic moment may be subject to symmetry

constraints due to the magnetic point group of the site. These

symmetry constraints should be indicated so as to make

explicit the degrees of freedom available to these moments

under the MSG. Any additional constraints or correlations on

the magnetic moments present in the model will then clearly

have motivations unrelated to the MSG.

In Table 1, although the two independent magnetic sites are

split from a single site in the paramagnetic phase, their

symmetry constraints are completely different, one being

restricted to the ab plane and the other being parallel to the c

axis. Thus, there are three free parameters to define the spin

arrangement and the reported model has determined the

three of them as independent uncorrelated parameters. In the

case of the second example, in Table 2, although the MSG also

allows three free parameters in the description of the magnetic

moments, the model includes a correlation between the three

symmetry-independent parameters so that a single parameter

has been determined to fully describe the model. As we will

see below in Table 4, these additional correlations, which are

not dictated by the MSG, are due to the compatibility of the

MSG with two irreps of the parent space group and the

absence of one of them in the spin arrangement, while the

ferromagnetic order corresponding to the active irrep is also

absent.

3.2. Representation-analysis information relating the

magnetic structure to its parent paramagnetic structure

(examples in Tables 3 and 4)

The crystallographic information listed above in x3.1 is

sufficient to obtain an unambiguous description of a

commensurate magnetic structure. The crystallographic

description can then be complemented by a representation

analysis of the deviations of the magnetic structure relative to

the parent paramagnetic structure. In the common case of an

MSG that is compatible with only a single irrep, the repre-

sentation analysis is necessarily reduced to the identification

of the relevant irrep, because the spin correlations and

constraints dictated by the MSG fully coincide with those

resulting from the irrep. When the MSG is compatible with

more than one irrep, it is convenient to decompose the degrees

of freedom allowed by the MSG into modes for each of the

distinct compatible irreps, especially if some of the compatible

irreps are inactive.

3.2.1. Primary irrep(s) label(s) and their dimension

The label (and dimension) of the primary irrep(s), either in the

CDML or the Kovalev notation [see point (xvii) in Section 2].

For each primary irrep, it is also convenient to indicate if the

order parameter must be restricted to a special direction

within the irrep carrier space, or in other words, if its irrep

basis vectors/modes must be in a specific linear combination to

comply with the MSG. Because some software tools specify

this so-called order–parameter direction, one should under-

stand that its interpretation depends on the specific form of

the irrep matrices used. Therefore, when presenting the order–

parameter direction of an irrep, one should explicitly either

include the relevant irrep matrices or reference a standard

source of irrep-matrix data (see x3.2.3).

If the irrep has a single wavevector, the dimension of the

small irrep associated with the small group of the wavevector

(the one shown in some of the most popular software

programs), is also the total dimension of the full irrep. But

when the star of the irrep has more than one symmetry-related

wavevector, the dimension of the full irrep is equal to the

dimension of the small irrep multiplied by the number of

symmetry-related wavevectors in the star. Thus, the dimen-

sions of a multi-k irrep are partitioned equally amongst the

wavevectors of the star of k.

A wavevector in the star of k is active if it is present in the

spin arrangement. The effective dimension of the irrep within

a given magnetic structure is the sum of the dimensions

associated with the active wavevectors of that magnetic

structure; the inactive k vectors of the irrep do not contribute.

In the case of a single-k structure based on a multi-k primary

irrep, the effective irrep dimension is the dimension of the

small irrep, except for cases where � k is in the star of k but not

equivalent to k, whereupon this dimension is doubled [see

point (xxi) in Section 2].

For a structure with an MSG compatible with a single irrep,

as in the example of Tables 1 and 3, this unique irrep is

necessarily the primary one, and no other can contribute to

the spin arrangement. The active irrep is mZ1 (CDML nota-

tion) with wavevector (0, 0, 1
2
), the irrep star containing only

this single vector. Hence, the small irrep coincides with the full

irrep and is two-dimensional. This means that the irrep is

defined by 2 � 2 matrices, one for each operation of the

parent space group.

For the example of Tables 2 and 4, the structure was

determined restricting the arrangement to the single two-

dimensional irrep mGM6+. However, the resulting MSG is

also compatible with the one-dimensional irrep mGM3+,

which can be considered secondary, since the presence of a

magnetic component according to this irrep is not necessary in

order to realize the observed MSG.

3.2.2. Description of the primary irrep(s)

The CDML label or the Kovalev label is sufficient to uniquely

specify a space-group irrep because there are free online

resources wherein these labels can be associated with unam-

biguous irrep matrices. A list of explicit irrep matrices is

therefore not necessary when CDML or Kovalev irrep labels

are used, though they may be optionally presented if desired

for completeness. However, when arbitrary irrep labels are

used, an explicit list of irrep(s) matrices is absolutely neces-

sary. Either way, whenever explicit irrep matrices are

provided, a minimal set of group generators is adequate.

In the example of Table 3, the list of 2 � 2 matrices defining

the irrep mZ1 is limited to three adequately chosen opera-
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tions, which together with those associated with lattice trans-

lations generate all the operations of the space group Cmcm.

The matrices associated with the unit cell and centering

translations can be trivially derived from the value of the

propagation vector, but for completeness, they are included in

the table.

It is important to note that the symmetry operations in these

listings of irrep matrices, as shown in Tables 3 and 4, refer to

the parent space group, while the symmetry operations listed

to define the MSG, shown in Tables 1 and 2, refer to the MSG.

Thus, these latter are generally defined with respect to a

different basis (unit cell and origin) from that of the parent

space group.

3.2.3. Secondary irrep(s) label(s) and their dimension

The label (and dimension) of the secondary irrep(s), either in

the CDML or the Kovalev notation [see point (xvii) in x2],

which are allowed by the MSG. About the constraints to a

special irrep direction, the same considerations as in x3.2.1

apply.

In the example of Table 3, as the MSG is only compatible

with a single irrep, no secondary irrep is to be considered,

while in the example of Table 4, a one-dimensional secondary

irrep mGM3+ (CDML notation) with wavevector (0, 0, 0) is

indicated.

3.2.4. Description of the secondary irrep(s)

If the CDML or the Kovalev notation is used to label the

secondary irrep(s), these labels are sufficient to define the

irrep. But if desired for completeness, irrep matrices may be

optionally included. However, when arbitrary irrep labels are

used, an explicit list of irrep(s) matrices is absolutely neces-

sary. Either way, whenever explicit irrep matrices are

provided, a minimal set of group generators is adequate.

In the example given in Table 4, the secondary irrep

mGM3+ is one-dimensional and the 1 � 1 matrices (values)

for three adequately chosen group operations are sufficient to

generate the irrep values for all the operations of parent space

group P63/mmc. Thus, the list of values defining the irrep

mGM3+ is limited to three operations. All lattice translations

are trivially mapped to the identity matrix because of the null

value of the irrep propagation vector.

3.2.5. Primary irrep mode(s) and their amplitude(s)

In the case of structures like the example given in Tables 1

and 3, where the MSG is only compatible with a single irrep,

no additional information on the irreps involved in the

magnetic ordering is necessary, as no additional irrep is

possible, and the spin correlations associated with the irrep are

already fully taken into account by the MSG operations.

In contrast, in structures like the example of Tables 2 and 4,

where more than one irrep is compatible with the MSG, the

magnetic arrangement of the structure can be decomposed

into contributions from different irreps. These irrep compo-

nents can be described in terms of collective spin symmetry

modes, which define correlations not described by the MSG

relations. These spin symmetry modes are traditionally called

spin basis functions or spin basis vectors. Here they will be

denoted as irrep basis modes or just modes.

The definition of the basis modes for each irrep can be

limited to the set of magnetic atoms in the asymmetric unit of

the MSG, which were symmetry related in the parent space

group. If a magnetic atom in the asymmetric unit of the parent

space group is split into several symmetry independent sites,

the irrep basis vectors will generally introduce correlations

between the magnetic moments of these split sites. If a

magnetic atom is not split, the irrep basis modes can only

introduce additional constraints on the moment direction that

are not dictated by the MSG.

In the example of Table 4, the magnetic ordering according

to the two-dimensional irrep mGM6+ is spanned by two basis

modes. They are described by specific correlated arrange-

ments of the magnetic moments of the two split Mn sites.

Because the irrep mGM6+ is contained twice in the magnetic

representation of the Mn site, a general mGM6+ spin

arrangement would require four basis modes. The mGM6+

arrangement is however restricted to a specific order–para-

meter direction of the irrep carrier space to yield the relevant

MSG. This means that the basis vectors are to be mixed by

pairs in a specific linear combination, which reduces the

number of possible basis modes complying with the MSG to

two. One of them (mode 2 in Table 4) is a ferromagnetic b-axis

arrangement of the split Mn-site moments: {Mn1_1: (0, 1, 0),

Mn1_2: (0, 1, 0)}, which although absent in the reported

structure would be possible as weak ferromagnetism within

the MSG. The other mGM6+ mode (mode 1), described

simply as {Mn1_1: (1, 1, 0), Mn1_2: (0, � 1, 0)}, corresponds to

the actual reported antiferromagnetic arrangement and is,

therefore, the only mode with a non-zero amplitude. Notice

that any non-zero value of the MSG-allowed ferromagnetic

component associated with mGM6+ mode 2 is sufficient to

break the exact equality of the magnitudes of the two MSG-

independent Mn-site moments.

3.2.6. Secondary irrep mode(s) and their amplitude(s)

The description of the basis modes for the secondary irrep(s)

can also be limited to the set of magnetic atoms present in the

asymmetric unit, which were symmetry related in the parent

space group.

In the example of Table 4, the secondary one-dimensional

irrep mGM3+ spans a one-dimensional subspace in the

magnetic representation of the Mn site and, therefore, it

requires a single basis mode, which correlates the magnetic

moments of the two split Mn sites in a different form than the

two mGM6+ basis modes. This secondary irrep mode, absent

in the reported model, when added to primary mode 1, would

result in different moment magnitudes for the two split Mn

atoms. Thus, although the structure described under its MSG

has three free parameters, two for primary irrep mGM6+ and

one for secondary irrep mGM3+, the refined and reported

structure has only one free parameter, being fully described by

mode 1.
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To our knowledge, among the software publicly available,

an irrep decomposition of the type described in x3.2.5 and

x3.2.6, i.e. embedded within the crystallographic description of

the magnetic structure, can only be obtained in an automatic

form using the program ISODISTORT (Stokes et al., 1995),

and this program requires considerable proficiency and

familiarity with its multiple options. Furthermore, an exten-

sion of the magCIF dictionary that accommodates repre-

sentation analysis has not been yet developed. Therefore, we

do not pretend that this mode decomposition should accom-

pany all reports of magnetic structures with an MSG compa-

tible with more than one irrep. It is presented for

completeness to show the more comprehensive approach of

combining representation analysis with a crystallographic

description under an MSG.

4. Final remarks

This report presents a set of recommendations aimed at

ensuring that newly determined commensurate magnetic

structures are published in a standardized form, which facil-

itates their comprehension and portability and allows their

digital storage. We basically recommend a crystallographic

description of the structure that makes proper use of its

magnetic space group, as supported by the magnetic extension

of the CIF standard (magCIF). This description can be

presented either in the main text of an article or as supple-

mental material, in a tabular form similar to the examples

shown here. If a magCIF file of the structure is available, the

necessary items to be reported can be easily retrieved there-

from. As an illustration, the appendices below reproduce in

the magCIF format the essential contents of the two examples

of Tables 1 and 2, where the use of red font indicates those

items that are necessary for an unambiguous report of the

magnetic structure.

It is then clear that reporting a magnetic structure in

accordance with the present recommendations will require,

especially in complex cases, the previous generation of an

appropriate magCIF file. Presently there are numerous soft-

ware resources that can be used for this purpose. Some of

them allow an efficient combination of magnetic symmetry

groups and representational analysis in the enumeration of

and search of possible models of a magnetic structure, such

that the structure can be directly refined under its crystal-

lographic description, and the appropriate magCIF file can be

directly generated after the refinement. But even if the

magnetic structure is determined using the representation

method alone or by any other method, the corresponding

magCIF file can be easily obtained using freely available

computer tools. First, a very simple magCIF file of the refined

structure can be produced (either manually or by the refine-

ment program) with the MSG limited to the trivial identity

operation, and with a full list of all atomic positions and

magnetic moments in a magnetic unit cell. Then internet

software resources like ISOCIF or FINDSYM (Stokes et al.,

1995) can be used to read this file, to identify the actual MSG

of the structure and to generate an appropriate magCIF file

employing the correct MSG.

In any case, it is strongly recommended that a magCIF file

be included as supplemental material when a magnetic

structure is reported. Only by this means will there be the

possibility of having a continually updated database of

magnetic structures.

APPENDIX A1

Magnetic structure of Dy2Co3Al9 (Table 1) as implemented in

the magnetic CIF format (BNS setting)

Those items that are the minimal necessary for an unambig-

uous description of the magnetic structure are highlighted in

red. It is supposed that the symmetry operators are provided

in the unit-cell basis described in the ‘cell_’ tags.

_parent_space_group.name_H-M_alt ’C m c m’

_parent_space_group.IT_number 63

_parent_space_group.transform_Pp_abc ’a,b,c;0,0,0’

_parent_space_group.child_transform_Pp_abc

’a,b,2c;0,0,0’

loop_

_parent_propagation_vector.id

_parent_propagation_vector.kxkykz

k1 [0 0 1/2]

_space_group_magn.name_BNS ’A_a m m 2’

_space_group_magn.number_BNS 38.192

_space_group_magn.transform_BNS_Pp_abc

’c,a,b;0,0,-1/8’

_space_group_magn.point_group_name "m m 2. 1’ (c,a,b)"

_cell_length_a 12.72390

_cell_length_b 7.45860

_cell_length_c 18.59880

_cell_angle_alpha 90.00

_cell_angle_beta 90.00

_cell_angle_gamma 90.00

loop_

_space_group_symop_magn_operation.id

_space_group_symop_magn_operation.xyz

1 x,y,z,+1

2 -x,y,-z+3/4,+1

3 x,y,-z+3/4,+1

4 -x,y,z,+1

loop_

_space_group_symop_magn_centering.id

_space_group_symop_magn_centering.xyz

1 x,y,z,+1

2 x+1/2,y+1/2,z,+1

3 x,y,z+1/2,-1

4 x+1/2,y+1/2,z+1/2,-1

loop_

_atom_site_label

_atom_site_type_symbol
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_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

Dy1_1 Dy 0.33940 0.33290 0.12500

Dy1_2 Dy 0.66060 0.66710 0.37500

Co1 Co 0.32880 0.00000 0.00000

Co2 Co 0.00000 0.00000 0.00000

Al1_1 Al 0.00000 0.12490 0.12500

Al1_2 Al 0.00000 0.87510 0.37500

Al2_1 Al 0.10790 0.44590 0.12500

Al2_2 Al 0.89210 0.55410 0.37500

Al3_1 Al 0.00000 0.33220 0.27140

Al3_2 Al 0.00000 0.66780 0.52140

Al4_1 Al 0.16860 0.33300 0.03585

Al4_2 Al 0.83140 0.66700 0.28585

loop_

_atom_site_moment.label

_atom_site_moment.crystalaxis_x

_atom_site_moment.crystalaxis_y

_atom_site_moment.crystalaxis_z

_atom_site_moment.symmform

_atom_site_moment.magnitude

Dy1_1 1.34(2) 8.35(2) 0.00000 mx,my,0 8.46(2)

Dy1_2 0.00000 0.00000 1.38(1) 0,0,mz 1.38(1)

APPENDIX A2

Magnetic structure of Mn3Sn (Table 2) as implemented in the

magnetic CIF format (BNS setting)

Those items that are the minimal necessary for an unambig-

uous definition of the magnetic structure are highlighted in

red.

_parent_space_group.name_H-M_alt ’P 6_3/m m c’

_parent_space_group.IT_number 194

_parent_space_group.transform_Pp_abc ’a,b,c;0,0,0’

_parent_space_group.child_transform_Pp_abc

’a,b,c;0,0,0’

loop_

_parent_propagation_vector.id

_parent_propagation_vector.kxkykz

k1 [0 0 0]

_space_group_magn.name_BNS "C m c’ m’"

_space_group_magn.number_BNS 63.463

_space_group_magn.transform_BNS_Pp_abc

’-b,2a+b,c;0,0,0’

_space_group_magn.point_group_name "m’m’m (2a+b,c,-b)"

_cell_length_a 5.66500

_cell_length_b 5.66500

_cell_length_c 4.53100

_cell_angle_alpha 90.00

_cell_angle_beta 90.00

_cell_angle_gamma 120.00

loop_

_space_group_symop_magn_operation.id

_space_group_symop_magn_operation.xyz

1 x,y,z,+1

2 -x,-x+y,-z,+1

3 -x,-y,-z,+1

4 x,x-y,z,+1

5 x,x-y,-z+1/2,-1

6 -x,-y,z+1/2,-1

7 -x,-x+y,z+1/2,-1

8 x,y,-z+1/2,-1

loop_

_space_group_symop_magn_centering.id

_space_group_symop_magn_centering.xyz

1 x,y,z,+1

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

Mn1_1 Mn 0.83880 0.67760 0.25000

Mn1_2 Mn 0.32240 0.16120 0.25000

Sn1 Sn 0.33333 0.66667 0.25000

loop_

_atom_site_moment.label

_atom_site_moment.crystalaxis_x

_atom_site_moment.crystalaxis_y

_atom_site_moment.crystalaxis_z

_atom_site_moment.symmform

_atom_site_moment.magnitude

Mn1_1 3.00(1) 3.00 0.00000 mx,my,0 3.00(1)

Mn1_2 0.00000 -3.00 0.00000 0,my,0 3.00
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