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The embedded call to a special version of the web-based Bilbao Crystallographic

Server tool k-SUBGROUPSMAG from within GSAS-II to form a list of all

possible commensurate magnetic subgroups of a parent magnetic grey group is

described. It facilitates the selection and refinement of the best commensurate

magnetic structure model by having all the analysis tools including Rietveld

refinement in one place as part of GSAS-II. It also provides the chosen magnetic

space group as one of the 1421 possible standard Belov–Neronova–Smirnova

forms or equivalent non-standard versions.

1. Introduction

Methods for describing and refining magnetic crystal struc-

tures from neutron powder data were embodied in the original

Algol and Fortran programs by Rietveld (1969) and the

solution of a magnetic structure at that time was mostly by an

ad hoc trial-and-error process. A much modified (Wiles &

Young, 1981) descendant of the original Rietveld Fortran

code, FullProf (Rodrı́guez-Carvajal, 1993) makes use of a call

to BasIreps (Rodrı́guez-Carvajal, 2010, 2021) to develop a list

of the possible irreducible representations (irreps) (Bertaut,

1968) for the magnetic structure. Alternatively, FullProf can

now use the results of using the web-based tool MAXMAGN

(Perez-Mato et al., 2015), which gives the maximal magnetic

space subgroups and can generate a magnetic cif file from a

selected entry and the starting paramagnetic structure and a

propagation vector. In both cases, the magnetic structure

information must be inserted by hand into the FullProf

control file.

Similarly, the JANA system of programs (Dušek et al., 2001)

uses an internal routine to develop irreps and associated

magnetic space groups; each is then tested against the data to

determine the best description of the magnetic structure.

Here we consider that the symmetry of a commensurate

magnetic structure will belong to one of the 1421 possible

Belov–Neronova–Smirnova (Belov et al., 1957) magnetic

space groups (Types I, III and IV) just as a commensurate

crystal structure uses one of the 230 three-dimensional space

groups. The alternative OG description (Opechowski &

Guccione, 1965) is not used here as it does not adhere to a

fundamental property of crystal lattices for Type IV magnetic

structures, i.e. translation symmetry of unit cells. Moreover,

the development of magnetic ordering within a crystal struc-

ture will have only very minor effects on the parent crystal

structure. Thus, the magnetic structure will belong to a
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subgroup of the corresponding parent structure grey group in

which every space-group operation is duplicated by including

spin inversion. In addition, extra reflections may be observed

that have fractional indices with respect to the parent reci-

procal lattice as described by a propagation vector; this

expands the available suite of parent magnetic symmetry

operations for consideration in forming the proper subgroups

for the magnetic structure. Each subgroup is then found by

removing a cycle of operations (‘symmetry breaking’) from

this suite of operations followed by an appropriate transfor-

mation of the remaining operations to have them conform to

one of the possible magnetic space groups. This process can be

repeated on the subgroups thus found to find lower symmetry

subgroups until the lowest magnetic symmetry is reached.

Each subgroup must then be tested against the neutron

diffraction data to find the best description of the magnetic

structure. The web-based Bilbao Crystallographic Server tool,

k-SUBGROUPSMAG (Perez-Mato et al., 2015) will do the

symmetry breaking analysis beginning with a parent space

group and appropriate propagation vector(s) and produce a

table of magnetic subgroups or alternatively a graphic display

of their hierarchies. Given the parent magnetic ion positions,

the Bilbao Crystallographic server tool, MAGMODELIZE

(Perez-Mato et al., 2015), will produce the new positions

within the selected magnetic subgroup along with the reflec-

tion extinction rules. The user must then test these with other

software via Rietveld refinement (Rietveld, 1969) against the

neutron powder diffraction data obtained from the sample;

multiple web calls are required to generate each model each

involving selection of relevant web page options. If desired,

the corresponding irreps for the subgroup can be found from

k-SUBGROUPSMAG.

To facilitate these operations, we have embedded a single

web call to a special version of k-SUBGROUPSMAG in

GSAS-II (Toby & Von Dreele, 2015) that returns sufficient

data as an html table; this allows the user to select a subgroup

and do these all tests directly from within GSAS-II. We

describe here this implementation and show an example.

2. Implementation and example

The general approach for accessing a web page from Python

uses the ‘requests.post’ protocol (‘requests’ is a Python

package that is part of a normal Python distribution; it must be

imported before use). The post command allows defining a

Python dictionary of named values that appear within the html

code for the web page; then the page returned by the post

command is the web site response as if the user had responded

to the original web page by filling in data items, pressing

buttons, making selections, etc. In our hands, the web page

html file is parsed from within Python to extract information.

The details for this are given in supporting information,

Section 1.

As an example, we will show how this works for the anti-

ferromagnetic structure of LaMnO3 (paramagnetic LaMnO3

space group is Pnma) [Moussa et al. (1996) describe it in

Pbnm]. An inspection of the powder pattern peak indexing

shows no evidence of fractional indexed reflections; thus, the

propagation vector is (0,0,0).

For k-SUBGROUPSMAG (https://www.cryst.ehu.es/

cgi-bin/cryst/programs/subgrmag1_k.pl), the returned web

page looks, in part, like that shown in Fig. 1. Normally, the user

would select a space group for the parent paramagnetic

structure, enter propagation vector(s) and make some

optional choices and finally press the ‘submit’ button at the

bottom of the screen (not shown). For LaMnO3, we would

select Pnma (serial No. 62) as the parent paramagnetic phase

and set the propagation vector to (0,0,0);

k-SUBGROUPSMAG would return a web page showing a

table of 51 magnetic subgroups (Fig. 2 shown in part for parent

Pnma10 grey space group).

The user would then select one (or more) for further study

via MAGMODELIZE which uses a cif file of the parent

structure provided by the user to create a magnetic structure

model as a new cif file to try via a Rietveld refinement. This

process is effective in solving the magnetic structure but

involves many interactions with the magnetic structure utili-
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Figure 1
Partial view of the opening screen for k-SUBGROUPSMAG as called from the Bilbao Crystallographic Server/Magnetic Symmetry and Applications
web site.
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ties in the Bilbao site combined with Rietveld refinement tests

of each model to be tested.

For the GSAS-II implementation of this, the user begins

with a GSAS-II project that has defined the parent para-

magnetic phase (most likely from a previous Rietveld refine-

ment with data taken above the magnetic ordering

temperature) which has the full structural details (space

group, unit-cell parameters and atom positions) already

defined. Then GSAS-II shows a simple request (Fig. 3) that

mirrors what was asked directly by k-SUBGROUPSMAG and

includes the selection of a magnetic atom (in our case Mn).

With this information, a special version of k-

SUBGROUPSMAG (https://www.cryst.ehu.es/cgi-bin/cryst/

programs/subgrmag1_general_GSAS.pl?) is called. It returns

an html table that is parsed by GSAS-II (see supporting

information, Section 1 for details) to produce a list of all the

subgroups that are possible (Fig. 4)

The overall hierarchy of this table is that those subgroups

that result from loss of a single cycle of operations (‘maximal’

subgroups) are shown first; in many cases the correct subgroup

is found here as they conform to a single Landau-type

magnetic transition. The next sets are for loss of additional

cycles of operations. In this case, they will be in the sequence

orthorhombic ! monoclinic ! triclinic subgroups. One

rarely must resort to one of these for the correct subgroup. To

facilitate selection of viable solutions to the magnetic struc-

ture, this table shows for each subgroup the number of unique

magnetic atoms and if a non-zero moment is permitted by

symmetry (the ‘Keep’ column). This was determined by

GSAS-II from the special position magnetic moment

symmetry constraints for the Mn atoms transformed to their

subgroup positions (via Trans and Vec in Fig. 4). Some of the

subgroups use nonstandard (e.g. rows 9–12 in Fig. 4) space

group symbols so the unit-cell parameters can better match

the parent unit cell (in contrast, k-SUBGROUPSMAG shows

them only in the standard version of the subgroup symbol).

The ‘Try’ column allows one to visually check the reflection

indexing for any magnetic subgroup against the powder

pattern. For this example, there are two possibilities (Nos. 2

and 8 in Fig. 4) within the first eight magnetic subgroups; they

both index every reflection seen in the powder pattern. Note

that Nos. 1, 5, 6 and 7 in Fig. 4 do not allow magnetic moments

on the Mn atom position (‘Keep’ flag unchecked); and Nos. 3

and 4 do not correctly index the powder pattern. Fig. 5
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Figure 2
Partial view of the response from k-SUBGROUPSMAG for the grey group Pnma10 with propagation vector = (0,0,0).

Figure 3
Pop-up window from GSAS-II requesting data from the user for the
special GSAS-II version of k-SUBGROUPSMAG.

https://www.cryst.ehu.es/cgi-bin/cryst/programs/subgrmag1_general_GSAS.pl?
https://www.cryst.ehu.es/cgi-bin/cryst/programs/subgrmag1_general_GSAS.pl?
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Figure 4
Table of magnetic subgroups of Pnma10 shown by GSAS-II as obtained from the special version of k-SUBGROUPSMAG.

Figure 5
Indexing comparison: Pn0ma0 (No. 2 in Fig. 4) on left versus Pnm0a0 (No. 3 in Fig. 4) on right. In both the vertical dashed lines are expected Bragg peaks
for the indicated magnetic space group. The small peak at �16� 2� is from a contaminating phase. LaMnO3 powder data from NIST BT1 diffractometer
kindly obtained from Q. Huang.



compares indexing with Pn0ma0 (No. 2 in Fig. 4) and Pnm0a0

(No. 3 in Fig. 4); the latter does not index the large peak at

�12� 2�.

In GSAS-II, the process for solving the structure continues

by selecting ‘Keep’ entries in turn for Rietveld refinement;

new GSAS-II project files are created for each. GSAS-II

produces a model with two phases, one for the full chemical

structure and the other for just the magnetic ions. They are

automatically connected by appropriate constraints between

all common parameters to keep them in sync during refine-

ment. In this example, No. 2 (Pn0ma0) gave a better result

(lower Rwp = 6.28%) than No. 8 (Pnma; Rwp = 8.39%). In each

case only one moment component was found to be non-zero;

the others were thus constrained to be zero. The most evident

differences between the two fits are easily seen in their

respective powder patterns [Fig. 6(a) for No. 2 Pn0ma0 and

6(b) for No. 8 Pnma] as displayed in GSAS-II.

In particular, the reflection pair, 210 and 012, are well fitted

with the Pn0ma0 model [Fig. 6(a)] but not by the Pnma one

[Fig. 6(b)], where the calculated 210 reflection is too strong
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Figure 6
Screen shots from GSAS-II showing a selected part of the Rietveld refinement fit for the LaMnO3 (a) Pn0ma0 and (b) Pnma magnetic structures. Two
reflections (210 and 012) are marked. In each plot the ’+’ mark the observed data, green line is that calculated from their respective best fit model, the red
line is the calculated background from the fit and the cyan line below is the (Iobs � Icalc) difference.

Figure 7
Screen shots from GSAS-II showing the LaMnO3 magnetic structures obtained for (left) subgroup Pn0ma0 (No. 2) and (right) subgroup Pnma (No. 8).
Red arrows mark those moments generated via spin inversion operations. The axes edges are coloured red, blue and green for the a, b and c axes,
respectively.



and the calculated 012 reflection is too weak relative to their

respective observed intensities. Finally, one can draw the two

magnetic structures directly from within GSAS-II to see what

the difference is (Fig. 7).

Both structures are antiferromagnetic, but the correct one

(No. 2 Pn0ma0) has the moment directions parallel to the

crystallographic a axis while the incorrect one (No. 8 Pnma)

has them parallel to the b axis. This result compares well with

the determination by Moussa et al. (1996) except that here the

structure is described with respect to the Pnma parent space

group and here the magnetic space group is identified as

Pn0ma0; Moussa et al. (1996) did not identify the magnetic

space group.

3. Conclusion

The inclusion of a single call to a special version of the Bilbao

Crystallographic Server tool, k-SUBGROUPSMAG, into

GSAS-II that generates all the magnetic subgroups of a parent

grey group and propagation vector provides a straightforward

method for solving and refining commensurate magnetic

structures. The result explicitly identifies the Belov–Nero-

nova–Smirnova magnetic space group for the structure, which

can be either one of the 1421 standard Belov–Neronova–

Smirnova groups or as a possibly more suitable non-standard

equivalent one.
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