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JANA2020 is a program developed for the solution and refinement of regular,

twinned, modulated, and composite crystal structures. In addition, JANA2020

also includes a magnetic option for solving magnetic structures from powder and

single-crystal neutron diffraction data. This tool uses magnetic space and

superspace symmetry to describe commensurate and incommensurate magnetic

structures. The basics of the underlying formulation of magnetic structure

factors and the use of magnetic symmetry for handling modulated and non-

modulated magnetic structures are presented here, together with the general

features of the magnetic tool. Examples of structures solved in the magnetic

option of JANA2020 are given to illustrate the operation and capabilities of the

program.

1. Introduction

The crystallographic computing system JANA2020 is a

program created for structure analysis of polycrystalline or

single-crystal materials from diffraction data (Petřı́ček et al.,

2023). JANA has been developed over the last 40 years and is

a well established tool in the crystallographic community. Its

history, general features, structure, and latest improvements

can be found in Petřı́ček et al. (2014, 2023).

JANA2020 allows the solution and refinement of crystal and

magnetic structures, standard or modulated (up to three

modulation vectors), commensurate and incommensurate,

twinned or composite. It is also possible to simultaneously

refine the crystal and the magnetic structures, combine various

data types, and use them for the same structure model.

The magnetic option dedicated to the determination and

description of magnetic structures is one of the swiftly

developing implementations in JANA2020. This tool is

continuously improved and tested with experimental data and

feedback from neutron users and instrument experts world-

wide. The formalism and methodology behind this specialized

routine in JANA support a comprehensive characterization

and description of magnetic structures found in different

magnetic materials.

‘Magnetic material’ is a broad term that generally refers to

the existence of magnetic order in a material, that is, the onset

of an orderly long-range arrangement of magnetic moments

below a certain critical temperature at which the magnetic

exchange interaction holds over (or pairs up with) other

energy terms. Magnetic phases and transitions are important

and current topics in different research fields, from funda-

mental to applied physics or materials science (Guillou et al.,

2018).

The ordering of magnetic moments in a crystalline material

is intrinsically linked to the underlying symmetry of the crystal

lattice that characterizes the position periodicity of the atoms
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carrying magnetic moments within the material. Generally, the

crystal structure (also termed nuclear structure) of the para-

magnetic phase is known a priori and often termed parent

structure. The information on the translation properties of the

moment distribution in a crystal is described by vector quan-

tities, the so-called magnetic propagation vectors ki. This

wavevector expresses the relation between the spin1 of a

general atom � in the unit cell n and the spin of the symmetry

equivalent atom � in the zeroth cell. It is a reciprocal lattice

vector within or on the surface of the first Brillouin zone of the

Bravais lattice of the parent (paramagnetic) unit cell. This

concept provides a simple and concise formalism for the

description of magnetic structures according to the modulus

and number of propagation vectors needed to represent the

magnetic ordering. The magnetic structure is said to be non-

modulated if k = 0. That is, the periodicity of the magnetic

structure coincides with the periodicity of the paramagnetic

crystal structure. If the magnetic arrangement has a non-zero

propagation vector, the structure is said to be modulated. In

this case, the magnetic unit cell can be commensurate (k is

rational) or incommensurate (k is irrational) with the under-

lying crystalline (parent) lattice. An exclusive position among

commensurate magnetic structures is held by those whose

vector k is not a vector of a primitive reciprocal cell, but the

vector 2k is. These lead to full compensation of magnetic

moments in antiferromagnetic arrangement, and their

symmetry is included in magnetic (Shubnikov) space groups.

In the following, we will limit the commensurate magnetic

structure to these cases only. General commensurate modu-

lation vectors can be fully described as magnetic commensu-

rately modulated with magnetic space groups. Furthermore,

magnetic modulated phases can be single-k or multi-k struc-

tures, whether only one or more independent propagation

vectors are needed to describe the spin arrangement. Most of

the reported magnetic structures are single-k. For this reason

and for the sake of simplicity, the discussion presented here is

restricted to one-dimensional modulations.

In the framework of the Landau (1937) theory, a magnetic

phase transition involves a symmetry reduction from the

paramagnetic (parent) phase to the magnetically ordered one.

A symmetry-based description of a magnetic phase includes

the assignment of the relevant symmetry modes for the spin

configuration and their constraints consistent with the parent

phase and the magnetic propagation vector(s). In this context,

the two approaches most widely used to describe magnetic

structures are group-representation analysis and magnetic

symmetry. Group-representational analysis is a method in

which the set of possible magnetic configurations is given by

the spin modes transforming as one or more physically irre-

ducible representations (irreps) of the paramagnetic space

group (Bertaut, 1968). In the second approach, the magnetic

symmetry of a particular phase can be expressed in the form of

a magnetic (Shubnikov) space group (MSG) (Koptsik, 1966;

Bradley & Cracknell, 1972) for commensurate ordering or

magnetic superspace groups (MSSG) for incommensurate

order (Janner & Janssen, 1980; Petřı́ček et al., 2010; Perez-

Mato et al., 2012). The symmetry group of a magnetic phase

comprises all the symmetry restrictions for the spins and other

important features such as magneto-structural couplings,

formation of domains and twin-related configurations.

In the magnetic option of JANA2020, the symmetry infor-

mation from MSGs and MSSGs is applied to derive the

magnetic structure factors, analyze the symmetry of the

diffraction data, and constrain magnetic and crystal para-

meters. The user can explore and test the different magnetic

configurations against the experimental data. The selection

and analysis of the different models can be done through the

simulation of powder profiles, direct visualization, or by

calling in external programs. The magnetic option of

JANA2020 is the only existing tool capable of handling

modulated magnetic structures coupled with secondary

(structural) modulations.

This paper presents details on how JANA2020 works with

magnetic structures. We explain the magnetic structure factors

formulated in JANA2020 and the conditions for magnetic

diffraction from non-modulated and generally modulated

phases, followed by the symmetry of magnetic diffraction and

a brief description of the magnetic space and superspace

groups. Another section is devoted to representation analysis

as implemented in JANA2020. The tools and capabilities of

the magnetic option of JANA2020 are detailed for powders

and single crystals using illustrative examples.

2. Magnetic structure factor in JANA2020

Let us consider a general long-range ordering of magnetic

moments carried by some atom(s) in a three-dimensional

regular crystal. The magnetic scattering from such a periodic

array of atoms gives information about the moment distribu-

tion in the material. Independently of the type of ordering, the

atomic magnetization density �mag(r) is a periodic vector

function of space. For the case that crystal and magnetic

structures have the same periodicity, that is k = 0, the

magnetization density can be Fourier expanded according to

�magðrÞ ¼
X

H

FmagðHÞ exp � 2�iH � rð Þ ð1Þ

where the Fourier coefficients Fmag(H) are the magnetic

structure factors and r is a positional vector. The summation

runs over all the diffraction vectors H =
P3

i¼1 Hia
�
i in a three-

dimensional lattice defined by the reciprocal basis vectors a�i .

Considering the contribution ��, mag (r) of each magnetic atom

� located at r� in the unit cell n of the structure to the

magnetization density, then

�magðrÞ ¼
X

n

XNmag

�¼1

��magðrÞ�ðr � r� � nÞ: ð2Þ

The first sum runs over the unit cells in the crystal, n =
P3

i¼1 niai, whereas the second summation is taken over the
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Nmag magnetic atoms in the reference unit cell. Therefore, the

magnetic structure factor Fmag(H) is

FmagðHÞ ¼ p
XNmag

�¼1

f�ðjHjÞM�T�ðHÞ expð2�iH � r�Þ; ð3Þ

where f�(|H|) and T�(H) are the magnetic form factor and the

anisotropic displacement parameters of the magnetic atoms

with moment M� in the unit cell, respectively. The constant p is

equal to 0.2696 � 10� 12 cm and unifies the scales by

converting the units of the magnetic structure factor (Bohr

magnetons) to the neutron scattering cross-section (barns).

Magnetic structures characterized by k 6¼ 0 and at least one

irrational component do not possess translation periodicity in

real space. However, the periodical perturbations generally

incommensurate with the underlying three-dimensional lattice

can be conveniently described by the superspace formalism

(de Wolff et al., 1981). That is, the magnetization density of an

incommensurable modulated magnetic structure is embedded

into a higher-dimensional space (superspace or internal space)

to recover the translational symmetry. This allows the intro-

duction of a general structure factor by an equation similar to

(1).

For any single-k modulated structure, the magnetic moment

of the atom � can be expressed as a Fourier series in the form

M�

�
k � r�

�
¼ M�;0 þ

X

m

h
M�;ms sin

�
2�mk � r�

�

þM�;mc cos
�
2�mk � r�

�i
; ð4Þ

where M�,0 is the absolute term, M�,ms, and M�,mc are the

amplitudes of the sine and cosine terms, respectively. The

structure factors derived from the kinematic theory of

diffraction account for sharp diffraction spots located at

reciprocal points H and Q = H�mk (m > 0):

FmagðHÞ ¼ p
XNmag

�¼1

f�ðjHjÞM�;0T�ðHÞ exp 2�iH � r�ð Þ;

Fmag H�mkð Þ ¼ p
XNmag

�¼1

f� H�mkj jð ÞT� H�mkð Þ

�
M�;mc � iM�;ms

2
exp 2�iH � r�ð Þ: ð5Þ

These formulae are valid for the most frequent case of a

magnetic modulation not coupled with any secondary atomic

modulation. Then, the magnetic structure factors can be

derived analytically, and each n-th harmonic in the Fourier

expansion (4) leads to satellite diffraction of the n-th order.

Magnetic and positional and/or occupational modulations can

also be treated, but it requires the use of an integration

method over the internal space to model their combined

effects properly (Yamamoto, 1982). These complex cases are

rare, but proper magnetic and structural incommensurability

in an organometallic phase was recently solved in JANA2020

(Cañadillas-Delgado et al., 2020).

One of the most effective techniques to probe magnetic

ordering at the atomic level is neutron diffraction. Neutrons

interact with the nuclei, yielding information on the nuclear

(crystal) structure, and also interact with the unpaired elec-

trons on the outer shells of the magnetic atoms, providing

details about the magnetic structure. Notably, these two

contributions are independent if non-polarized neutron beams

are used. Thus, the overall observed intensity in a diffraction

experiment is just the sum of the nuclear and magnetic

components:

IðHÞ ¼ InucðHÞ þ ImagðHÞ: ð6Þ

The intensity of magnetic diffraction is related to the

magnetic structure factor by the fundamental formula of

Halpern & Johnson (1939)

ImagðHÞ ¼ FmagðHÞ
�
�

�
�2 � e � FmagðHÞ

�
�

�
�2; ð7Þ

where e = H/|H| is the unit vector along the scattering vector

H. That is, magnetic diffraction intensity is not directly

proportional to the absolute value of the structure factor but

depends on the direction of the magnetic moments with

respect to the incident neutron beam. Magnetic intensity is

observable only for the moment components that are not

parallel to the scattering vector.

Expression (6) enables the use of the diffraction data to

solve magnetic structures in two different ways. Some

programs apply a multiphase approach by treating nuclear and

magnetic phases separately. On other tools, the nuclear and

magnetic contributions are combined in parallel during the

refinements and used to produce a complete model.

JANA2020 uses the latter method.

3. Symmetry description of magnetic structures:

magnetic space and superspace groups

Magnetic structures can be fully described by means of

magnetic space (or superspace) groups akin to the space

groups used in conventional crystallography. In fact, a

magnetic space (Shubnikov) group describing a commensu-

rate magnetic ordering contains the crystal symmetry

elements combined with a time inversion operator (Belov et

al., 1957a,b). Any magnetic symmetry operation Ŝ can be

written as

bS ¼ R; �jsð Þ; ð8Þ

where R, � = �1, and s are the rotation matrix (proper or

improper), the time inversion operator (also called time

reversal or spin reversal), and the translation part of Ŝ,

respectively. The symmetry elements combined with the time

inversion are called primed to indicate that the inversion of

the spin sign is to be included in the conventional action of the

operator. A paramagnetic space group is the direct product of

the nuclear space group and time reversal represented

symbolically by 10. These groups describing the disordered

spin state are termed gray groups. The symmetry groups

allowing some spin orderings are the proper magnetic groups

(Souvignier, 2006), and they do not include the pure time

inversion operation Ŝ = (E, � 1|0). The magnetic moments of
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two atoms � and � with positions related by r� = Ŝr� = Rr� + s

transform (as axial vectors) under R according to

M� ¼
bSM� ¼ � detðRÞRM�: ð9Þ

The 1651 Shubnikov space groups are obtained by

combining time reversal with the 230 crystallographic space

groups (Koptsik, 1966; Bradley & Cracknell, 1972). The MSGs

are grouped into four types according to whether time reversal

is included and, if present, whether it acts over lattice rotations

or translations. First, the type I groups do not contain the time

inversion operation and correspond to the conventional

crystallographic groups. The type II groups are the gray

groups with all the operators primed and unprimed. The

groups where all rotations appear with and without time

inversion are of type III. Last, the type IV groups have half of

the translations combined with time reversal.

Two notations are yet most currently used for the Shub-

nikov groups, corresponding to two different derivations of

the magnetic unit cell: the Belov–Neronov–Smirnova (BNS)

(Belov et al., 1957b) and the Opechowsky–Guccione (OG)

(Opechowsky & Guccione, 1965). The BNS setting describes

the symmetry operations in a unit cell (supercell), defining the

lattice periodicity of the spin arrangement, which is generally

different from the paramagnetic one. The OG setting uses a

unit cell of the parent phase that does not reproduce the

lattice of the magnetic configuration. These two notations

coincide for the groups of type I–III and affect only type IV.

Both notations carry different robust and weak aspects

recently addressed and combined in a new unified notation for

MSGs: the UNI symbols (Campbell et al., 2022). The magnetic

tools of the Bilbao Crystallographic Server (https://www.cryst.

ehu.es) list MSGs (and magnetic point groups) in the BNS,

OG, and UNI settings. Most computational tools for magnetic

structure determination, including JANA2020, still use mostly

the BNS notation based on the computer-readable tables

available at ISO-MAG (Stokes & Campbell, 2010). Never-

theless, there are plans to include the UNI symbols in

JANA2020 soon.

As magnetic phase transitions involve symmetry-breaking,

some symmetry operations of the parent space group do not

belong to the space group of the ordered phase. Instead, the

lost symmetry elements relate to the magnetic domains

created in response to the symmetry lowering.

The concept of magnetic space group presented above has

been generalized to modulated magnetic phases (Janner &

Janssen, 1980) by employing the superspace formalism in a

way similar to modulated crystal structures (Perez-Mato et al.,

2012; Petřı́ček et al., 2010). Within this approach, any modu-

lated magnetic structure with a single propagation k is fully

characterized by a basic periodic lattice with symmetry given

by a Shubnikov group, plus the set of modulation functions

periodic in the superspace for the magnetic moments of the

atoms in the basic unit cell. In terms of symmetry, this trans-

lates to a superspace operation between modulation functions:

bSS ¼ R; �jsE; sIð Þ; ð10Þ

where the rotation matrix has the dimension (3+1)�(3+1) and

the vector s (3+1). The matrix form shows that the superspace

groups are a 3�1 reducible subset of the general four-

dimensional space groups (de Wolff et al., 1981):

bSS ¼
RE 0

RM RI

� �

; �

�
�
�

sE

sI

� �� �

; ð11Þ

where RE, RM, RI are external 3�3, mixed 1�3, and internal

1�1 block matrices, respectively; sE and sI are external 3�1

and internal 1�1 blocks of the translation part. The external

parts are determined from the basic symmetry of the main

reflections in the diffraction pattern. The non-zero rotational

matrices are related by the propagation vector of the struc-

ture:

RM ¼ kRE � RIk: ð12Þ

The lattice translation in the real (external) three-dimen-

sional space is sE, and such that (RE, � | sE) is an ordinary

symmetry element of the paramagnetic space group as defined

in (8).

The set of symmetry elements imposes constraints on the

form of the modulation functions and relates them for the

symmetry-equivalent atoms in the basic structure. The spin

modulation function of two atoms � and � symmetry related

as r� = REr� + sE is given by

M�

�
x4;�

�
¼ RmagM�;0 þ Rmag

X

n

�
M�;ns sin

�
2�nx4;�

�

þ M�;nc cos
�
2�nx4;�

��
; ð13Þ

where

Rmag ¼ � det REð ÞRE;

x4;� ¼ k � r�;

x4;� ¼ k � r� þ R� 1
I k � sE � sIð Þ:

It is derived from these expressions that in the case of � = �,

the possible modulation functions are forced to have specific

orientations.

In the magnetic option of JANA2020, all the symmetry

restrictions for any structure, modulated or not, are derived

analytically from the SG or SSG operators and the actual

position of the atoms in the unit cell. These constraints are

automatically kept by default during the refinements. Exam-

ples of symmetry-forced constraints generated for modulated

and non-modulated magnetic structures are given in Fig. 1.

The magnetic space and superspace groups provide a

concise and robust description of the magnetic ordering in

periodic and aperiodic crystals and have significant practical

consequences. The symmetry operations of the magnetic

(super)space group define uniquely the spin of all atoms of the

magnetic orbit from one representative atom of the same

orbit. This simplifies equations (3) and (5) to summations only

over the symmetrically independent magnetic atoms. Further,

using symmetry in reciprocal space to merge symmetrically

equivalent reflections improves the stability of refinements.

Another important point is that macroscopic physical prop-

erties of a magnetic phase can be inferred from the symmetry
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operations that compose its magnetic point group, for which

the respective tensors are to be kept invariant by virtue of the

von Neuman principle. That is, magnetic point groups play a

key role when investigating physical phenomena related to

magnetic properties of matter, such as ferroelectricity. Last,

but not least, the MSG and MSSG can be used to derive

systematic absence conditions, which sometimes greatly help

in deciding the correct magnetic model.

4. Symmetry of magnetic diffraction: magnetic

systematic absences

We have seen that identifying the MSG or MSSG of some

magnetically ordered phase in a crystal is essential for its

characterization. The assignment of an MSG reduces the

calculation of the magnetic moments of all symmetry-related

atoms in the same orbit to only one selected representative

position following the expression (9). The invariance of the

density distribution function under the symmetry operation

(8) can be written as:

bS � �magðrÞ ¼ � detðRÞR�mag R� 1ðr � sÞ
� �

¼ �magðrÞ; ð14Þ

which yields

FmagðHRÞ ¼ �� 1 det R� 1
� �

exp � 2�iH � sð ÞR� 1 � FmagðHÞ: ð15Þ

Further, the intensity of the symmetry-related point,

according to (8), is

ImagðHRÞ ¼ Fmag HRkð Þ
� �2

� e � R � Fmag HRkð Þ
� �2

¼ FmagðHÞ
2
� e � FmagðHÞ
� �2

¼ ImagðHÞ:

ð16Þ

This result expresses that each symmetry operation of the

point group induces rotation symmetry (proper or improper)

in the diffraction pattern. An inversion center is always

present in magnetic (and nuclear) diffraction, even for non-

centrosymmetric groups. That is, a magnetic diffraction

pattern follows classical Laue symmetry and there is no direct

influence of the time inversion operation on the diffraction

pattern. Consequently, the observed diffraction symmetry

cannot be used directly to select the actual magnetic symmetry

of the structure from the list of possible MSG.

For the case of an invariant subspace of the reciprocal space

containing all vectors H fixed by HR = H, equation (15) leads

to

F�;magðHÞ ¼ �
� 1 det R� 1

� �
exp � 2�iH � sð ÞR� 1 � F�;magðHÞ:

ð17Þ

A similar expression for the scalar nuclear density directly

yields systematic absence conditions linked to the factor

exp(� 2�iH · s). Considering that the magnetic moment in the

magnetic structure factor is a vector quantity, three equations

are derived and must be fulfilled simultaneously. This fact

substantially reduces the possibility of magnetic systematic

absences. Yet, for translations (cell centerings), equation (17)
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Figure 1
Symmetry restrictions as presented in the magnetic option of JANA2020 for the magnetic structures of (a,b) Dy2Co3Al9 (commensurate, 2 K)
(Gorbunov et al., 2018) and (c,d) Ho3Co (incommensurate, 18 K) (Goswami et al., 2024). The listing of restrictions used during refinements can be
consulted for each magnetic atom through the button ‘Show symmetry restrictions’ (a,c); or for all magnetic (and non-magnetic) atoms in the unit cell in
the refinement listing (b,d).



splits into three different conditions for each component, with

such systematic absences directly associated with the factor

exp(� 2�iH · s).

Analogous expressions to diffraction symmetry (16) and

systematic absence conditions (17) derived for k = 0 can be

deduced for modulated structures. The differences are that a

generalized magnetization density is used, and the diffraction

vector is Q = H�mk (m > 0). All other symmetry consid-

erations made above are valid also for the MSSGs.

Magnetic systematic absence conditions can help decide

between the possible magnetic models. In JANA2020, the

magnetic absences are derived analytically, together with all

symmetry restrictions, as mentioned before. The tool

MAGNEXT in the Bilbao Crystallographic Server provides

the systematic absence rules for non-polarized neutron

magnetic diffraction corresponding to any Shubnikov MSG in

standard and non-standard settings (Gallego et al., 2012;

Perez-Mato et al., 2015).

5. Representation analysis in JANA2020

The two approaches that have been historically most used to

describe and analyze magnetic structures were briefly

presented in the Introduction. Group-representational theory

(Bertaut, 1968) and magnetic symmetric descriptions of a

magnetically ordered phase are not generally equivalent, as

there is only a one-to-one correspondence between a one-

dimensional real irrep of the parent space group and a

magnetic space group of the same geometry class (Niggli,

1959; Indenbom, 1959).

A combined approach was developed by Stokes & Hatch

(1988) and consists in calculating the possible MSGs (or

MSSGs) for the set of active irreps from the paramagnetic

phase, the so-called isotropy subgroups of an irrep. These

subgroups necessarily contain the symmetry operators that

verify the invariance equation for the irrep. For any single-

irrep mT of a non-modulated magnetic structure, this can be

written as:

mTðR; �jsÞ
a

b

� �

¼
a

b

� �

; ð18Þ

where mT (R, � | s) is the matrix of a physically irreducible

magnetic representation, and a,b arbitrary real numbers. The

symmetry operations of the gray space group that keep the

vector (a,b) invariant and transform under the irrep as unit

matrices form the so-called kernel of the irrep. That is, the

kernel symmetry of an irrep is the isotropic subgroups

corresponding to most general directions (a,b) in the irrep

space (or order parameter direction, OPD). Isotropy

subgroups corresponding to symmetry operations that fulfill

equation (18) for specific order parameter directions are

called epikernels and correspond to allowed symmetries

higher than the kernel.

Representation analysis of incommensurate (single-k)

modulated structures departing from the representations of

the paramagnetic space group follows the principles explained

above with a few details. In this case, the paramagnetic phases

are given by irreps containing the pure time inversion

operation Ŝs = (E, � 1 | 0, 0, 0, 0) defined in the respective four-

dimensional space. Any irrep corresponding to a magnetic

order parameter associates the unit matrix combined with

time inversion and necessarily includes the operation Ŝs =

(E, � 1 | 0, 0, 0, 1
2
). This is a general property of any single-k

incommensurate magnetic modulation, which stems from the

harmonic character of any fundamental modulation and

satisfies the invariance equation for the symmetry operations

of the magnetic superspace group [analogous to equation (18),

see e.g. Perez-Mato et al., 2012). It is evident that a � phase

shift combined with the action of the pure time inversion

operator keeps the system invariant. One of the consequences

of this operation is that the Fourier terms in (4) are

constrained to odd-order harmonics, whereas even-terms are

allowed for any structural modulations. Additionally, the

presence of this operation means that the phase has a gray

point group. That is, linear magneto-structural couplings are

not possible, and ferromagnetism (or ferrotoroidicity) is

forbidden for single-k incommensurate phases. This simple

property emphasizes the importance and robustness of

magnetic symmetry considerations in predicting and under-

standing symmetry-related properties of phases.

It has been shown that the direct use of MSGs or MSSGs

simplifies the algorithms of programs refining experimental

data, whereas the selection of an irrep might provide extra
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Figure 2
Scheme of the combined approach used in JANA2020 for representation
analysis. This method allows the straightforward description of all types
of magnetic structures (modulated or not) using magnetic crystallography
and departing from the possible active irreps of the paramagnetic space
group and the respective propagation vector. The k* refers to the set of
distinct k vectors related by the symmetry of the (parent) space group.
The terms ‘k comm’ and ‘k incomm’ signify the propagation vectors of
commensurate and incommensurate structures, respectively, as defined in
the Introduction.



relationships which improve the efficiency and stability of the

programs dealing with magnetic diffraction data (Petřı́ček et

al., 2010).

The combined approach described here is implemented in

the magnetic option of JANA2020. For a single irrep, the

current version of the program allows full representation

analysis except for (3+n)-dimensional MSSGs for n > 1.

Moreover, the possibility of combining irreps is also under

development. The embedded tool of JANA2020 first produces

listings of irreps with the respective basis vectors. Then, it

calculates the set of MS(S)Gs that are the isotropy subgroups

for the kernel (general OPD) and epikernel (specific OPD)

symmetries of the active irreps for the space group of the

paramagnetic phase. The magnetic structures are then the

result of the configuration of spins in directions admissible by

the MSG or MSSG. This methodology is presented in Fig. 2 for

all types of magnetic propagation vectors.

For the case of multi-k modulated structures, magCIF files

are prepared in JANA2020 and then imported into ISODIS-

TORT (Campbell et al., 2006; Stokes et al., 2023) for repre-

sentation analysis. This program calculates the kernel and

epikernels of any possible irrep (one or more) of the parent

space group symmetry independently of the dimension of the

modulation. The resulting models can be saved as magCIF

files and then imported and tested in JANA2020 against

diffraction data.

6. The magnetic option in JANA2020: features and

workflow

The solution and refinement of magnetic structures in

JANA2020 follows the basic scheme presented in Fig. 3. The

first step is defining the parent structure. It can be imported

(from Crystallographic Information Files (CIF), JANA files or

structural files of other programs) into the wizard and

completed with specific magnetic details: type and number of

irreps or form of the magnetic propagation vector(s), magnetic

atoms present in the structure, and their respective magnetic

form factors. All this information is entered into a single

window shown in Fig. 4 and saved. Then, the neutron

diffraction data files are imported into JANA by using one of

the pre-defined formats covering most neutron instruments

(constant wavelength or time-of-flight data) or by reading a

general format reflection file. For powder samples, the

program guides the user through refinements of the profile

parameters (le Bail) and the scale factor (Rietveld). The

parent structure created in the first stage is fixed and used to

perform representation analysis, which is the core of magnetic

structure determination (see Fig. 3).

JANA starts the representation analysis using irrep matrices

from Stokes et al. (2013). It first displays an informative

window listing the irreps of the structure and their corre-

sponding kernel subgroups, as presented in Fig. 5. Next, the

program offers a list of all kernels and epikernels grouped in

blocks ordered from higher to lower symmetry (Fig. 6). Each

block corresponds to the possible combinations of the
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Figure 3
Workflow scheme of the magnetic wizard in JANA2020, showing the main procedure with dark blue continuous arrows and other parallel path options
linked by colored discontinuous arrows.

Figure 4
Interface for defining the basic magnetic parameters of the parent
structure model. The number and type of irrep for a structure can be
conveniently selected from a drop-down menu listing all possible repre-
sentations in CDML (Cracknell et al., 1979) and Kovalev (1993) nota-
tions.



(nuclear) space group operators with time inversion for MSGs

and with the internal translational components for MSSGs.

Detailed information about the magnetic model for each

specific space (or superspace) group in the selected set of

subgroups is subsequently given (Fig. 7). Here, the user can

select and inspect the models by checking the symmetry-

allowed components for the moments in the structure, global

moment, or induced orbit splitting. Complete information

about the symmetry restrictions can be found in ‘Show

details’.

For powders, testing can be done by comparing the

experimental powder pattern against a profile simulation for

random magnetic moments by ‘Starting profile simulation’.

For powders and single crystals, the button ‘Start graphic

simulation’ produces a graphical preview of randomly gener-

ated magnetic moment vectors in a unit cell. These are both

very useful tools to conveniently reduce the number of models

to be refined against data: the first by making direct use of

magnetic systematic absences; the second by checking spin

configurations that, for example, are not compatible with

macroscopic properties of the crystal.

Finally (or not!), the promising symmetry(ies) can be

selected for refinement. To this, JANA2020 launches the

refinement separately for each model with a different job

name, keeping the window with the parent structure always

available for further model trials or other tasks.

When there is a need to perform representation analysis in

ISODISTORT, JANA2020 connects it directly by ‘Run

ISODISTORT analysis’ accessible from the parent structure.

At this point, JANA automatically prepares the CIF of the

parent structure and instructs the user on how to proceed. The

output of ISODISTORT can be saved as an individual

magCIF. These files are then imported into JANA, and the

testing/selection steps proceed as mentioned above.

For visualization of the magnetic models, the new intuitive

plotting tool JANADraw inspects in real-time the changes in

the magnetic structure throughout refinements. JANA can

also directly call the program VESTA (Momma & Izumi,

research papers

Figure 5
First informative window after representation analysis for a (a) parent space group Cmcm and k = (001

2
) and (b) parent space group Pnma and k = (�00).

It lists the minimal symmetry groups (kernels) for the correspondent irreps. The lateral button ‘Details’ displays the symmetry operators for the kernel
space group a) or superspace group b) of the irrep and the respective transformation to the standard setting. The irrep matrices can be consulted in
‘Display representations’ at the bottom.

Figure 6
Second representation analysis window listing the isotropy subgroups associated with the irreps and respective order parameter directions (OPD) for
structures a) commensurate and b) incommensurate from Fig. 5.



2011). Nevertheless, this program plots only approximants for

modulated structures, whereas the plots of JANADraw can

precisely reproduce the complete modulation by changing the

internal space coordinate (see below).

The internal coordinate x4 introduced in (13) is conve-

niently changed to t which characterizes the real three-

dimensional structure,

xI ¼ tþ �xE ð19Þ

where xI and xE are the internal and external coordinates,

respectively, t is the initial phase of the modulation, and � is

the matrix containing the components of the modulation

vector(s). In fact, the t-sections are perpendicular to the

internal subspace of the superspace.

For a general structural modulation, the user of JANA2020

can choose to plot the modulated parameter as function of

either x4 or t. In the case of modulated magnetic structures, the

amplitude of the magnetic moment(s) varies as a function of

the internal space coordinate t or xI. However, such graphs

will be shifted by the phase factor �xE. To compare more

modulation functions by drawing them into one figure only the

t-plot can be used as it is related to the atomic parameters as

they really exist in physical space. This is also true for any

characteristic in which two or more atomic parameters are

combined (distances, angles, etc.).

In JANA, the amplitude change of the magnetic moment

can be plotted in a tool called Grapht (see Fig. 8). JANADraw

can also produce an ‘animated’ model of the modulated

structure as a function of t. This movie helps to visualize and

describe details of the spin modulation, such as type of

arrangement, spin directions and angles, and propagation

direction.

As already mentioned, JANA2020 derives all symmetry

constraints analytically and keeps them active during the

refinements as automatic keys [see Fig. 9(a)]. When refining

magnetic models, JANA also automatically fixes the structural

parameters (atomic positions and thermal parameters). This

constraint and any other restrictions over refinement para-

meters are available for editing on the page ‘Restraints/

Constraints’ [Fig. 9(b)].

The ‘Restrictions’ commands refer to selected parameters

of atoms that are made identical or related by a symmetry

operation. Here, it is possible, e.g. to make identical magnetic

parameters for the specified atoms. In ‘Equations’, user-

defined linear equations containing combinations of any

parameters can be set. In JANA, each variable has an iden-

tifying name that can be used to write the equations for the

research papers

Acta Cryst. (2024). B80 M. S. Henriques et al. � Analysis of magnetic structures in JANA2020 9 of 16

Figure 7
Third step of representation analysis: testing and selecting promising magnetic models for refinement. Detailed information about each model is given in
this window, such as the symmetry restrictions over the moment components (M) for (a) commensurate and (b) incommensurate structures from Figs. 5
and 6. Simulation of magnetic arrangements and powder profiles for the offered space groups is also possible here for single crystals and powders,
respectively.



model. The option ‘Magnetic moment restrains’ allows us to

fix the magnitude of the spin of an atom to a specific value or

to keep the magnitude equal for a certain group of atoms. For

modulated magnetic structures, the magnetic moment ampli-

tude can be fixed to an optimal value, allowing only the

orientation to be affected by the modulation. In ‘Keep

commands’, the geometry of a cycloidal modulation can be

kept for selected atoms.

JANA2020 magnetic option also offers the possibility of

transforming the magnetic structure model. The most useful

pre-defined transformations are group-subgroup transforma-

tion, origin shift, and transformation to standard-setting. The

‘Go to Subgroup’ tool is used to reach subgroups of any

selected space group, for example, when there are zero and

non-zero k vectors associated, or specific magnetic reflections

not explained by the groups of higher (maximal) symmetry.

The interactive wizard first lists all the symmetry operations in

the group, from which the user can select the one(s) to be

present in the subgroup. Once the representatives are

selected, the program completes the subgroup. The original

MSG or MSSG breaks up into individual cosets, from which

the program automatically chooses one symmetry element as

‘coset representative’ for each coset. These representatives

generate the new atomic positions and twin matrices when

applicable. It can be defined manually or automatically. The

new output structure is saved separately and is ready for

testing.

Other tools specific to the magnetic option in JANA2020

include the possibility of searching for the k vector for powder

data and refining magnetic moments in spherical coordinates.

The random search for the k vector is accessible from the

parent phase. The user must change the type of propagation

vector in ‘Edit profile parameters’, which activates the option

‘Random search for modulation vector’ as shown in Fig. 10.

The option to have the magnetic moments in spherical coor-

dinates is available when editing the magnetic parameters of

the atoms (Fig. 11). For the two angles and the amplitude of

the moment no symmetry restrictions are derived auto-

matically and must be manually added in ‘Equations’.

7. Examples

Two examples of magnetic structures solved in the magnetic

option of JANA2020 are presented and discussed here to

illustrate the operation and capabilities of the program.
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Figure 8
Grapht plot of the magnetic moment amplitude (in �B) variation as a function of the internal coordinate t (horizontal axis) for three different magnetic
atoms in the incommensurate structure from Figs. 5–7.



7.1. The commensurate magnetic structure of Dy2Co3Al9 at

2 K

The compound Dy2Co3Al9 has interesting electronic prop-

erties linked to exchange frustration. It undergoes three

consecutive antiferromagnetic transitions, including one of

first order at TN = 3.7 K (Gorbunov et al., 2018). It crystallizes

in a layered orthorhombic structure (space group Cmcm), in

which the Dy atoms occupy the 8g site (x, y, 1
4
) and are

arranged in a hexagonal network. The Co atoms are in two

different positions (8e, 4a) and Al occupies four independent

positions (4c, 8f, 8g and 16h). Refined coordinates can be

found in Gorbunov et al., 2018.

The magnetic phase for T < 3.7 K was probed by single-

crystal neutron diffraction at 2 K. The magnetic propagation

vector for this phase was found to be k = (0 0 1
2
), that is the

magnetic cell is doubled along the c direction compared to the

crystallographic cell.

Representation analysis performed in JANA2020 indicates

two two-dimensional irreps for this k vector (point Z in the

Brillouin zone): mZ1 and mZ2. Their respective matrices are

given in Table 1. The corresponding irrep kernels and

epikernels returned in the analysis [see Figs. 5(a) and 6(a)] are

given in Table 2.

There are four epikernels corresponding to the four

maximal space groups of the gray group Cmcm10. From the

refinement of the experimental data, it follows that the

magnetic structure of Dy2Co3Al9 is described by the MSG

Aamm2 corresponding to the irrep mZ1 but restricted to a
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Figure 9
Different options under ‘Refinement commands’. a) Automatically generated symmetry restrictions are used by JANA throughout the refinements; b)
Individual parameters can be edited or user-defined in several forms. The buttons highlighted in red can control magnetic-moment-related parameters.
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Figure 10
Sequence to make a random search for the k vector for powder data.

Table 1
Irrep matrices defining the magnetic space group Cmcm10 with wavevector k = (0 0 1

2
), point Z in the Brillouin zone.

1 [0, 0, 0] 21 [0, 0, 1] 2 [0, 1, 0] 2 [1, 0, 0] �1 ½0; 0; 0� m [0, 0, 1] m [1, 0, 0] c [0, 1, 0] 10

mZ1
1 0

0 1

� �
0 � 1

1 0

� �
1 0

0 � 1

� �
0 � 1

� 1 0

� �
0 � 1

� 1 0

� �
1 0

0 � 1

� �
1 0

0 1

� �
0 � 1

1 0

� �
� 1 0

0 � 1

� �

mZ2
1 0

0 1

� �
0 � 1

1 0

� �
1 0

0 � 1

� �
0 � 1

� 1 0

� �
0 1

1 0

� �
� 1 0

0 � 1

� �
� 1 0

0 � 1

� �
0 1

� 1 0

� �
� 1 0

0 � 1

� �

Table 2
Epikernels and kernels of the magnetic irreps of Cmcm10 at the point Z.

Irrep OPD MSG
Free
parameters

mZ1 (0, a) Aamm2 3
(a, a) Cc2/m 3

(a, b) Ccm 6
mZ2 (0, a) Aama2 3

(a, a) Cc2/c 3
(a, b) Ccc 6

Table 3
Symmetry operations defining the magnetic structure of Dy2Co3Al9 at
1.5 K in the MSG Aamm2.

{1 | 0 0 0} x y z m

{2010 | 0 0 3
4
} � x y � z + 3

4
m

{m100 | 0 0 0} � x y z m

{m001 | 0 0 3
4
} x y � z + 3

4
m

{10 | 0 0 1
2
} x y z + 1

2
� m

{20010 | 0 0 3
4
} � x y � z + 1

4
� m

{m0100 | 0 0 1
2
} � x y z + 1

2
� m

{m0001 | 0 0 3
4
} x y � z + 1

4
� m



special direction in the irrep space. The symmetry operations

of this MSG are listed in Table 3.

The point group symmetry of the magnetic arrangement of

Dy2Co3Al9 is mm210. Note that due to the lattice translations,

the symmetry operator {10 | 0 0 1
2
} belongs to the point group of

the magnetic phase (see Table 3). This is a polar point group,

which means that macroscopic polarization is allowed for this

phase by the MSG. The decrease of point group symmetry

splits the Dy 8g position into two independent magnetic orbits

with different degrees of freedom. One of the positions allows

noncollinear magnetic moments parallel to the ab plane,

whereas the other restricts the magnetic moments to be

collinear and oriented along the c axis (see Table 4). The

magnetic unit cell of Dy2Co3Al9 is obtained by alternating

these two configurations along the c axis, as shown in Fig. 12.

The larger Dy moment is found along the b axis. It amounts to

8.4 (1) �B/Dy atom and lies at angles of �81 (1)� away from

the a axis. All the free parameters and refined values are

specified in Table 4. With the symmetry reduction, two equally

populated twin domains are automatically created.

As the MSG is a k-maximal subgroup, the spin ordering is

only allowed according to a single irrep, further restricted to

fulfill the MSG constraints. So, there is no advantage in using

irrep analysis alone. This structure is entry No. 1.267 in

MAGNDATA (Gallego et al., 2016a,b).

7.2. The incommensurate magnetic structure of Ho3Co at

18 K

The rare earth-rich intermetallic compound Ho3Co crys-

tallizes in Fe3C-type orthorhombic structure with Pnma space

group (Baranov et al., 2005; Podlesnyak et al., 2004). In this

crystal structure, Ho has two crystallographic positions [4c

(x, 1
4
, z) for Ho1 and 8d (x, y, z) for Ho2] that form trigonal

prisms within which the transition metal Co shares the same

Wyckoff position as Ho1.

Ho3Co is an interesting case, as it exhibits two different

antiferromagnetic transitions at different temperatures:

one below TN (�21–22 K) and the other below TT (�8–9 K)

(Baranov et al., 2005; Podlesnyak et al., 2004; Goswami

et al., 2020). The magnetic structures of the phases are

unknown.

To solve the magnetic structure of Ho3Co, neutron powder

diffraction was performed at 18 K. The powder pattern was

refined in JANA2020 (Petřı́ček et al., 2014, 2023). After

refining the profile parameters (LeBail), a search for a suitable

modulation vector was performed through the random search

procedure in JANA2020 (see Fig. 10). The magnetic propa-

gation vector was found to be k = [0.1585 (19), 0, 0].

Representation analysis was executed using the magnetic

option of JANA2020. This step provided a list of MSSGs

consistent with the possible irreps for the parent structure

(gray magnetic group Pnma10) for the propagation vector k.

This propagation vector lies in the �-line of the Brillouin zone
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Table 4
Refined parameters for the Dy2Co3Al9 magnetic phase at T = 2 K in the Shubnikov group indicated in BNS notation (the second space group symbol is
the UNI symbol of the group).

Transformation to
the standard setting

Atom
label

Symmetry
constraints
on Mi

mx

(�B)
my

(�B)
mz

(�B)

Aamm2
(No. 38.192) {Amm2.10a[Amm2]}

(c, a, b; 0, 0, � 1
8
)

Dy1_1 mx, my, 0 1.34 (2) 8.35 (2) 0
Dy1_2 0, 0, mz 0 0 1.38 (1)

Figure 11
In the magnetic wizard in JANA2020, the magnetic moments can be
refined in spherical coordinates as an alternative to the Cartesian coor-
dinate system.

Figure 12
The magnetic structure of Dy2Co3Al9 at 2 K is described in the non-
centrosymmetric MSG Aamm2. The structure consists of alternating
layers of moments oriented parallel to (110) and moments along [001].
Only the Dy atoms are represented in the unit cell.

Table 5
MSSGs compatible with the irreps, respective OPD, and the number of
free parameters to be refined in each case.

Irreps MSSG OPD Free parameters

mSM1 Pnma.10(�00)000s (a, 0) 2 (Ho1) + 6 (Ho2) + 2 (Co)
Pmc21.10(00�)000s (a, b) 4 (Ho1) + 12 (Ho2) + 4 (Co)

mSM2 Pnma.10(�00)0sss (0, a) 4 (Ho1) + 6 (Ho2) + 4 (Co)
Pmc21.10(00�)ss0s (a, b) 8 (Ho1) + 12 (Ho2) + 8 (Co)

mSM3 Pnma.10(�00)00ss (a, 0) 2 (Ho1) + 6 (Ho2) + 2 (Co)
Pmc21.10(00�)0sss (a, b) 4 (Ho1) + 12 (Ho2) + 4 (Co)

mSM4 Pnma.10(�00)0s0s (0, a) 4 (Ho1) + 6 (Ho2) + 4 (Co)
Pmc21.10(00�)s0ss (a, b) 8 (Ho1) + 12 (Ho2) + 8 (Co)



and the magnetic atoms in this compound reside at the same

positions as the atoms of the paramagnetic crystal structure.

Thus, there are four possible two-dimensional (small) irreps:

mSM1, mSM2, mSM3 and mSM4. The corresponding ortho-

rhombic MSSGs associated with the kernels and epikernels of

these irreps, the respective order parameter direction (OPD),

and the number of free parameters imposed by symmetry are

listed in Table 5.

The MSSG Pnma.10(�00)0s0s (mSM4) provided the best fit

among these possibilities. Yet, the calculated intensities for the

nuclear reflections did not match the experimental ones

without adding a magnetic contribution from a k0 component.

Thus, the time-reversal operation must be removed from the

set of operations describing the structure. As a result, the

magnetic symmetry is transformed to a subgroup of the MSSG

Pnma.10(�00)0s0s with non-gray point-group symmetry.

The four MSSGs fulfilling this criterion are Pn0m0a(�00)000,

Pnm0a0(�00)000, Pn0m0a0(�00)000, and Pnm0a(�00)000. Each

transformed MSSG corresponds to a set of active irreps that

includes the contribution coming from the � -point (GM) and

from the �-line (SM) modes. The possible active irreps are

now mGM2+ | mSM4, mGM3+ | mSM4, mGM1� | mSM4, and

mGM4� | mSM4. The experimental data are best fit by the

MSSG Pnm0a(�00)000 (No. 62.444) and the corresponding

irreps mGM4� | mSM4 with OPD (a | b, 0). Both mGM4� and

mSM4 act as primary irreps in this magnetic structure. The

small irrep mGM4� is one-dimensional, and thus, the matrix

representations of the combined irreps that provide the final

solution for the magnetic structure of Ho3Co are shown in

Table 6. The symmetry associated with this MSSG is given in

Table 7.

Based on the symmetry as shown in Table 7, any operation

such as 21
0 [0, 0, 1] provides the relation between the modu-

lation functions of the magnetic moments as M (x4 + 1
2
) =

21
0.M(x4). Thus, by considering the expression (13), we have

Mi(x4 + 1
2
) = � Mi, sinsin(2�nx4) � Mi, coscos(2�nx4), where i =

x, y, z and Mi,sin1 = � Mi,sin1 and Mi,cos1 = � Mi,cos1. Note that

because this structure is described by a single k incommen-

surate vector (without higher order harmonics), the summa-

tion (14) runs only for n = 1, yielding ‘sin1’ and ‘cos1’ for the

respective terms of the modulated magnetization (first, main)

wave of each magnetic atom type present. Combining these

results with the symmetry constraints, the possible compo-

nents for each magnetic atom are obtained (Table 8).

The refined magnetic model is visualized in JANADraw and

presented in Fig. 13. The magnetic point group is m0mm, with

the Ho1 and Co spins moving only parallel to (101). The

modulation of the Ho1 spins can be described as fanlike

(Buschow, 1977), where the fan has a span of �100� with a
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Table 6
Matrix representations of the irreps, along with the OPD, that provide the best solution for Ho3Co.

1 [0, 0, 0] 21
0 [0, 0, 1] 21 [0, 1, 0] 21

0 [1, 0, 0] �1
0
[0, 0, 0] a [0, 0, 1] m0 [0, 1, 0] n [1, 0, 0]

mGM4� |mSM4
1 0

0 1

� �
� 1 0

0 1

� �
1 0

0 � 1

� �
� 1 0

0 � 1

� �
� 1 0

0 1

� �
1 0

0 1

� �
� 1 0

0 � 1

� �
1 0

0 � 1

� �
ðajb; 0Þ

Table 7
Representative operations of MSSG Pnm0a(�00)000 as used in
JANA2020.

1[0,0,0] x1 x2 x3 x4 +m

21
0[0,0,1] � x1 + 1

2
� x2 x3 + 1

2
� x4 + 1

2
� m

21[0,1,0] � x1 x2 + 1
2
� x3 � x4 + 1

2
+m

21
0[1,0,0] x1 + 1

2
� x2 + 1

2
� x3 + 1

2
x4 � m

�1
0
½0; 0; 0� � x1 � x2 � x3 � x4 + 1

2
� m

a[0,0,1] x1 + 1
2

x2 � x3 + 1
2

x4 +m

m0[0,1,0] x1 � x2 + 1
2

x3 x4 � m

n[1,0,0] � x1 + 1
2

x2 + 1
2

x3 + 1
2
� x4 + 1

2
+m

Table 8
Symmetry restrictions on the moment components and their refined values.

Symmetry restrictions Numerical moment values (�B)

Atom Wave x y z x y z

Ho1 0 Mx0 0 Mz0 � 1.81 (8) 0 2.78 (8)
sin1 Mxsin1 0 Mzsin1 � 1.4 (3) 0 0.8 (2)
cos1 Mxcos1 0 Mzcos1 � 1.6 (2) 0 � 3.73 (16)

Ho2 0 Mx0 My0 Mz0 1.51 (7) 1.78 (4) 1.39 (7)
sin1 Mxsin1 Mysin1 Mzsin1 � 0.65 (14) � 0.83 (18) � 0.11 (15)
cos 1 Mxcos1 Mycos1 Mzcos1 0.48 (13) 1.07 (16) � 2.02 (12)

Co 0 Mx0 0 Mz0 0.24 (11) 0 0.22 (7)
sin1 Mxsin1 0 Mzsin1 � 1.1 (2) 0 0.0 (2)
cos 1 Mxcos1 0 Mzcos1 � 1.0 (2) 0 � 1.02 (19)

Figure 13
Spin modulation of Ho3Co at 18 K for Ho (blue) and Co (red) repre-
sented in a 5� 1� 1 supercell of the parent orthorhombic unit cell. The
modulation of Ho1 and Ho2 is described as fanlike, with a fan spanning of
100�. The fan plane of the Ho1 is parallel to (101), whereas Ho2 spins are
at an angle of 57� away from the a axis. The modulation of the Co spins is
a circular cycloidal restricted to be parallel to (101).



moment amplitude of 4.1 (3) �B. The neighboring spin along

the modulation direction has a reverse sense. Ho2, on the

other hand, is at the general 8d position, with free spin

components in all space directions. Its modulation is also

fanlike, but in a plane of about 57� away from [100]. The fan

span for Ho2 is approximately 100�, but because of the

twofold improper rotation along the modulation direction,

there is a shift in the plane and sense of the spin. The maximal

moment amplitude of Ho2 is 2.72 (10) �B. The transition

metal Co also carries a magnetic moment with a maximal

value of 1.4 (3) �B and describes a circular cycloid. The indi-

vidual modulations of Ho1, Ho2, and Co are shown in Fig. 8 as

plotted by Grapht as red, white, and green waves, respectively.
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