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In recent decades, sustained theoretical and software developments have clearly

established that representation analysis and magnetic symmetry groups are

complementary concepts that should be used together in the investigation and

description of magnetic structures. Historically, they were considered alternative

approaches, but currently, magnetic space groups and magnetic superspace

groups can be routinely used together with representation analysis, aided by

state-of-the-art software tools. After exploring the historical antagonism

between these two approaches, we emphasize the significant advancements

made in understanding and formally describing magnetic structures by embra-

cing their combined use.

1. Introduction

Historically, two approaches for describing long-range

magnetic ordering in a crystal were developed in parallel. The

first approach involves describing the magnetic arrangement

under the symmetry constraints of a specific magnetic space

group (MSG) in the case of a commensurate structure or a

magnetic superspace group (MSSG) if the structure is

incommensurate. The second approach, called representation

analysis (RA), considers one or more irreducible representa-

tions (irreps) of the space group of the paramagnetic phase

and their corresponding spin basis vectors, to build up the

arrangement of atomic magnetic moments in the structure. For

decades, these two approaches were considered mutually

exclusive descriptions, largely due to an unfortunate personal

controversy at the early stages of their development.

However, both descriptions are complementary parts within a

unique framework, namely the description of a system where a

symmetry-breaking process has occurred. The perception

began to change with the availability of digital databases of

MSGs and MSSGs in the Isotropy Software Suite (Stokes &

Campbell, 2010) and the extension to magnetic structures of

software tools using together symmetry groups and irreps,

which were originally developed for the analysis of structu-

rally distorted structures. This was followed by several papers

(Petřı́ček et al., 2010; Rodrı́guez-Carvajal & Bourée, 2012;

Perez-Mato et al., 2012, 2015; Damay, 2015; Rodrı́guez-

Carvajal & Villain, 2019), which discussed the relationship

between the two concepts, stressing their complementarity.

The aim of this paper is to review these historical develop-

ments, without entering into the theoretical formalism, and

show how the two concepts work together when state-of-the-
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art software tools, which combine irreps and magnetic

symmetry groups, are used.

2. History of a strained relationship between RA and

MSGs

In the 1960s and 1970s, with the development of neutron

sources and instrumentation, the experimental determination

of magnetic structures started to grow. While MSGs had been

developed in detail from the mathematical viewpoint [see, for

instance, Opechowski & Guccione (1965)], no systematic

practical method existed for enumerating possible MSGs for

some given diffraction data, leaving MSG theory far from

practical applications. At best, once a magnetic structure was

determined by whatever method, its MSG was identified and

reported. In contrast, the RA method, developed by E. F.

Bertaut and co-workers, offered a systematic approach for the

enumeration and description of possible spin arrangements

consistent with experiment. The RA method was applied to

the studies of commensurate magnetic structures and incom-

mensurate helical magnetic structures; see for instance the

references cited by Bertaut (1963, 1968).

The RA method proposes that spin arrangements can be

classified based on their transformation properties under the

operations of the space group (SG) of the paramagnetic phase,

rather than their invariance properties as done with magnetic

symmetry groups. These transformation properties can be

described by irreducible representations (irreps) of the SG. By

considering the wavevector(s) of the magnetic ordering

[propagation vector(s)], which are directly obtainable from

diffraction data, the possible relevant irreps can be signifi-

cantly narrowed down to those corresponding to the observed

wavevector(s). For each of these irreps, standard representa-

tion group theory is then applied to construct a basis of irrep-

adapted spin modes (spin basis vectors). These basis vectors or

modes can be used to describe any spin arrangement that

satisfies the transformation properties of the irrep. In many

cases, magnetic ordering conforms to a single irrep, though

complex scenarios may require several irreps. This character-

istic makes the method highly efficient and successful in

systematically enumerating and describing possible spin

arrangements.

It is noteworthy that although the RA method is closely

related to the Landau theory of symmetry-breaking phase

transitions, the two extensive articles by Bertaut (1968, 1971),

where the method was thoroughly reviewed, do not mention

Landau theory. This is surprising, especially considering the

emphasis on the suitability of irrep-adapted variables for

diagonalizing the Hamiltonian of the system. In fact, at this

time, based on Landau theory, RA and ordinary space groups

were being used together to study structural phase transitions

and characterize structurally distorted structures [see for

instance Dvořák (1971), Dvořák & Petzelt (1971) and refer-

ences therein]. Irreps were utilized to explain or to predict the

space group of the distorted structure and to describe the

observed atomic displacements, so that symmetry groups and

irreps were considered together within a common framework.

In contrast, in the case of magnetic structures, after Bertaut’s

publication in 1968, intense discussion arose regarding the

capabilities of RA versus MSG analysis for the description or

‘classification’ of magnetic structures, treating them as alter-

native approaches. In the case of commensurate structures,

early claims by Bertaut (1968) that MSGs were inadequate for

dealing with certain commensurate magnetic structures were

refuted in a formal mathematical manner by Opechowski &

Dreyfus (1971). They demonstrated that any commensurate

magnetic structure can indeed be assigned an MSG, and any

additional correlations observed in the structure not dictated

by the MSG could be manually added. The discussion was also

extended to incommensurate magnetic structures, where a

‘symmetry invariance’ approach was in fact not possible at that

time, as MSSGs were not formally established until 1980

(Janner & Janssen, 1980). Despite the obvious advantage of

RA being applicable for both commensurate and incommen-

surate propagation vectors without significant difference,

Opechowski & Dreyfus (1971) insisted on the use of MSGs as

an alternative to the RA description, provided that some

‘algebraic’ relations were added.

Participants in this debate eventually reached a tentative

agreement that the two classification schemes were ‘equiva-

lent’. However, this mutual acceptance of equivalence most

likely added more confusion, because defining the symmetry

group of a system, i.e. its invariance symmetry operations, is

generally different from defining its transformation properties

for the operations of a group that is not its symmetry group. In

essence, the discussion was misdirected, because the crucial

question was not how to assign a label or a classification stamp

to an already known magnetic structure, but rather how to

develop a systematic method for constructing all possible

magnetic arrangements that could fit some given diffraction

data. In this regard, the proposed RA method was undoubt-

edly the most efficient method available at that time. Full

listings of irreps of space groups were available (Kovalev,

1965; Bradley & Cracknell, 1972), and using standard group-

theoretical methods, the construction of irrep spin basis

vectors to build up the spin arrangements was feasible. In

contrast, the theory of MSGs remained detached from prac-

tical applications for many years. As stated by Opechowski &

Guccione (1965): ‘It is not our intention here to formulate

practical rules for determining the characteristics . . . . of an

invariant spin arrangement from some given experimental

data . . . ’. Unfortunately, this lack of ‘practical rules’ persisted

for many years, perhaps exacerbated by the assumed equiva-

lence between the RA method and MSGs. If there was already

a practical method available — the RA method — and both

approaches were deemed equivalent, the development of

practical rules for MSGs seemed unnecessary. Consequently,

the RA method became more widely applied, and in the case

of commensurate structures, the MSGs were often not iden-

tified or mentioned.

By the 1990s, the program KAREP (Hovestreydt et al.,

1992) and the ISOTROPY program (Stokes, 1995) were

released, offering the capability to generate space group

irreps. The KAREP program was freely available and was
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subsequently utilized by the FullProf Suite (Rodrı́guez-

Carvajal, 1993) to automate the generation of irrep basis

vectors. Over the following years, additional software tools

serving the same purpose emerged, such as MODY (Sikora et

al., 2004) and SARAh (Wills, 2000). Consequently, by the turn

of the century, the RA method was supported by software

tools for its automatic application. As a consequence, it

became prevalent in almost all published works, both for

determining and describing magnetic structures.

During this period, the work of Yu. A. Izyumov and his co-

authors also played a significant role in establishing the

prevalence of the RA method and the general devaluation of

MSGs. Through the publication of several papers where the

RA method was thoroughly applied to various experimental

cases, they contributed to its widespread adoption. In 1981,

they published a book in Russian titled ‘Neutron diffraction of

magnetic materials,’ which was later translated into English

with considerable success (Izyumov et al., 1991). In this work,

the two concepts — RA and MSGs — were again compared as

alternative approaches. Unlike previous discussions, this

comparison did not lead to an equivalence conclusion; rather,

the RA method was deemed highly preferable. The book in

fact includes a subchapter titled ‘Insufficiency of the

Description of the Symmetry of Magnetic Bodies with the Aid

of Shubnikov Groups.’, and for commensurate structures, this

‘insufficiency’ was illustrated with two examples. One example

was a ferromagnetic ordering within a cubic structure, where

the spins are oriented along one of the main crystallographic

axes. In this case, the magnetic ordering within the structure

results in a reduction of its symmetry from cubic to tetragonal,

with its MSG being necessarily a tetragonal group. The

perceived insufficiency in this scenario stemmed from the fact

that, within experimental resolution, the structure appeared to

remain cubic. Consequently, it was argued that the MSG was

not acceptable as the symmetry group of the entire system. As

emphasized by the authors themselves, who reproduced a

Landau citation, this reasoning contradicts the accepted

understanding, including that of Landau, that the MSG

describes the symmetry of the entire system, taking into

account that the presence or absence of time reversal in the

group operations is irrelevant for non-magnetic degrees of

freedom. In reality, there is no insufficiency of the MSG in this

case. The MSG fulfils its purpose, which is to describe the

symmetry constraints of all degrees of freedom that are

maintained exactly in this ferromagnetic phase. This holds true

regardless of the magnitude of couplings among these degrees

of freedom in the Hamiltonian or free energy of the system.

The absence of an observable tetragonal structural distortion

accompanying the ferromagnetic order can be attributed to

the smallness of magnetostriction, stemming from the weak-

ness of spin-orbit coupling. However, this coupling, no matter

how small, is symmetry allowed and will be present. The MSG

inherently considers this and cannot impose any constraint

that may be released due to this coupling. It is important to

note that if one were to accept the argument presented in this

book that the MSG does not represent the symmetry of the

system as a whole, then it would be challenging to explain

phenomena such as the magnetically induced ferroelectricity

present in commensurate multiferroics of type II. In these

cases, the magnetic ordering reduces the symmetry to a polar

MSG, enabling spontaneous electric polarization. Moreover,

similar to the example of the ferromagnetic cubic structure

discussed by Izyumov et al. (1991), the structural distortion

causing the small macroscopic electric polarization observed

in these systems is typically too subtle to be detected by

conventional diffraction techniques.

The second example provided in the mentioned book to

illustrate the ‘insufficiency’ of the MSGs was the magnetic

structure of CrCl2. The space group of the paramagnetic

structure of this compound is Pnnm, with a Cr atom at the

origin and a symmetry related one at (1
2
, 1

2
, 1

2
). The reported

magnetic structure for this compound is collinear, with

propagation vector (0, 1
2
, 1

2
). According to the published model,

the two mentioned Cr atoms in the parent unit cell possess

opposite moments (u, v, w) and (� u, � v, � w) along a general

direction. The MSG of such magnetic arrangement is however

very low, namely triclinic Ps
�1 [Belov–Neronova–Smirnova

(BNS notation)], with the two Cr sites being symmetry inde-

pendent under this MSG. Consequently, the reported corre-

lation between the two moments cannot be explained by the

MSG. This type of scenario where the spin arrangement

exhibits correlations not dictated by the MSG, had already

been discussed in prior literature (Opechowski & Dreyfus,

1971). In those discussions, authors did not hesitate to incor-

porate manually these additional relations to establish a

‘classification label’ for the structure. However, in Izyumov et

al. (1991), this scenario was revisited with the CrCl2 example

to emphasize that if the MSG fails to include the observed

correlation between the spins, then there might be something

lacking in the MSG approach. Again, here there is no insuf-

ficiency with the MSG, as it performs its designated function

by defining only correlations that are protected by symmetry.

It is worth noting that this second example might not have

been the most suitable choice. In this specific case, neither the

RA approach nor the MSG can explain the reported corre-

lation between the two spins. The magnetic representation of

the Cr spins for the observed propagation vector includes only

one two-dimensional irrep, indicating that the spin basis

vectors for this single irrep encompass all possible spin

arrangements for this propagation vector. This means that the

RA assigning a single irrep to the spin arrangement does not

bring in this case any constraint to the spins and cannot

explain either the reported correlation. But many structures

exhibit spin correlations that are indeed not entirely

prescribed by MSGs, and some of these correlations can be

elucidated by the fact that the spin arrangement corresponds

to some specific irrep(s). As discussed above, this occurs

because MSGs only define symmetry-protected constraints. If

the constraints imposed by the MSG do not fully align with

those of the active irrep(s), it means that the model allows for

additional spin degrees of freedom corresponding to other

irreps, which may be released through symmetry-allowed

couplings in the Hamiltonian or free energy of the system.

Whether these additional degrees of freedom are observed in
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the experimental spin arrangement depends on the magnitude

of these couplings. Nevertheless, by definition, MSGs must

incorporate them in any case.

If one considers dominating isotropic Heisenberg interac-

tions between the spins (absence of spin-orbit coupling), it

may be possible to have additional symmetries in the Hamil-

tonian. This may be the case of CrCl2 in which the observed

correlation, (u, v, w) and (� u, � v, � w) along a general

direction, may be the consequence of a strong isotropic

exchange between the spins of the two sites. However, if all

potential spin couplings allowed by the Hamiltonian or free

energy under the Pnnm symmetry are considered including

spin-orbit coupling, the observed correlation between the

spins may disappear or the arbitrary direction of the spins may

become blocked to a specific crystallographic direction. In

fact, there is currently an intensive revival of research about

the approximate additional symmetries that can be associated

with a magnetic structure, when spin-orbit coupling is

neglected. This is the subject of the so-called spin space

groups, which were introduced in the 1960s–1970s (Brinkman

& Elliot, 1966, Litvin & Opechowski, 1974). They are now

mainly used to explain specific electronic band features (Liu et

al., 2022; Šmejkal et al., 2022), but they can also provide new

insights into the spin correlations observed in magnetic

structures that cannot be explained by their MSG and/or some

irrep. This is an interesting subject beyond MSG and RA,

which will need to be thoroughly investigated in the future.

To summarize, by the end of the 20th century, the RA

method had become the predominant approach for analysing

and determining magnetic structures, both commensurate and

incommensurate. This was largely facilitated by the avail-

ability of software tools that enabled automatic application of

the RA method. In contrast, the different role played by the

magnetic symmetry groups in the characterization of these

structures was generally overlooked, and consequently,

magnetic symmetry groups appeared to be undervalued. This

perception began to change in the following decade.

3. How RA and MSGs work together

3.1. General considerations

As previously mentioned, RA and space group symmetry

began to be applied in the analysis of structurally distorted

structures in the 1970s, not as competing approaches, but as

complementary concepts. Following Landau theory, a struc-

turally distorted structure relative to a parent structure of

higher symmetry (real or virtual) can be viewed as the

outcome of a symmetry-breaking instability. In this scenario,

one or more primary order parameters (unstable distortion

modes) can be defined, transforming according to one or more

irreps of the parent space group. The irrep of an order para-

meter specifies its transformation properties for all operations

of the parent space group. Some of these operations will

maintain the order parameter invariant and consequently, the

corresponding distortion. These operations define the space

group symmetry remaining with the presence of the distortion.

In the case of multi-dimensional order parameters (i.e. multi-

dimensional irreps), this space group will generally vary based

on the direction taken by the order parameter, i.e. the

combination of the different unstable modes forming the

observed distortion.

Similarly, magnetic ordering is a symmetry breaking process

involving the loss of time-reversal symmetry. Time reversal,

which macroscopically reduces to switching the direction of all

average magnetic moments in the structure is necessarily a

symmetry operation of any paramagnetic structure, where

these moments are necessarily zero, while it is necessarily

absent as symmetry operation in any magnetically ordered

structure. A magnetic structure can therefore be conceptua-

lized as a distorted structure of lower symmetry compared to

the paramagnetic structure. Consequently, one or more order

parameters responsible for the magnetic order can be defined,

which transform according to irreps of the parent symmetry

group, including time reversal, i.e. of the grey MSG associated

with the ordinary parent space group. The relevant irreps are

necessarily odd for this operation, since the magnetic order

breaks it, being trivially related one to one to the irreps of the

ordinary parent space group. The possible MSGs are then

determined by the operations that, according to the irrep(s),

keep the order parameter(s) invariant. In cases involving

multi-dimensional irreps, the resulting MSG typically varies

depending on the direction of the order parameter, i.e. on the

specific combination of the corresponding spin basis vectors.

As highlighted in the previous section, irreps and MSGs

serve distinct purposes in the characterization of a magneti-

cally ordered phase. irreps delineate the transformation

properties of spin configurations that may be unstable within

the system’s Hamiltonian or free energy. On the other hand,

MSGs define the invariant symmetry of the realized spin

arrangement, representing the symmetry that persists in the

distorted phase. The constraints outlined by the MSG extend

beyond just the symmetry-breaking spin ordering; they

encompass all degrees of freedom, including both structural

and magnetic aspects, which may emerge in the distorted

phase through various couplings. The difference and comple-

mentarity of these two concepts become evident in scenarios

involving multi-dimensional irreps. In such cases, different

MSGs can manifest depending on the direction taken by the

order parameter. The possible MSGs corresponding to a given

irrep of dimension greater than one are referred to as isotropy

subgroups. The selection of an arbitrary direction of the order

parameter yields the lowest symmetry group, which is referred

to as the kernel of the irrep. Special directions of the order

parameter correspond to higher symmetry subgroups that are

called the epikernels of the irrep.

Consequently, spin basis vectors associated with a single

multi-dimensional irrep, depending on how they are

combined, can describe magnetic arrangements exhibiting

different MSGs, thereby generally possessing distinct physical

properties. For example, there is a crucial distinction between

stating that a magnetic structure corresponds to the two-

dimensional irrep mX1 (CMDL notation) of the parent space

group Pnma versus stating that the MSG of this magnetic
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structure is Pbmn21 (No 31.129) (BNS notation), with its

standard setting related with that of the parent space group

Pnma by the basis transformation (� b, 2a, c; 3
4
, 1

4
, 0). The MSG

not only specifies the symmetry invariance constraints of the

spin arrangement but also encompasses the constraints of all

degrees of freedom. The Pbmn21 MSG indicates that the

centrosymmetry of the paramagnetic phase has been lost,

resulting in a polar structure along the c axis of the Pnma

setting. This loss of centrosymmetry allows, if the material is

an insulator, for the manifestation of magnetically induced

electric polarization along this direction. The spin arrange-

ment within this structure can indeed be constructed by spin

basis vectors corresponding to the irrep mX1. However,

altering the combination of these basis vectors can yield

different MSGs. For instance, if the basis vectors are combined

differently, the MSG might become the centrosymmetric

monoclinic MSG Pa21/m with its standard setting related to

that of the parent Pnma by the transformation (2a, b, c; 0, 0, 0),

which constitutes another epikernel of the same irrep. This

MSG, with its monoclinic axis aligned along the parent b axis,

is then an alternative centrosymmetric symmetry of a

magnetic ordering according the irrep mX1. Furthermore, for

an arbitrary combination of the basis vectors, the resulting

symmetry might be even lower. In essence, a magnetic struc-

ture described by the irrep mX1 of the space group Pnma can

exhibit various symmetries. If it aligns with one of the two

epikernels, additional symmetry protected spin correlations

implied by this MSG must be considered. Therefore, while the

irrep delineates the transformation properties of the spin

configuration, the MSG provides a comprehensive description

of the structural and magnetic constraints imposed on the

system in its ordered state.

The combined application of irreps and symmetry groups in

the examination of structurally distorted structures gained

traction in the early 1970s, coinciding with the availability of

systematic lists of irreps for space groups. Structural phase

transitions were expected to involve a single order parameter,

i.e. a single active irrep. Consequently, one could determine

the most probable symmetry groups for the resulting low-

symmetry structures by manually computing the isotropy

subgroups for each irrep. For example, publications such as

Aleksandrov (1976) and Perez-Mato et al. (1981) provided

systematic derivations of possible symmetries for distorted

phases according to a single irrep for a given parent space

group.

3.2. Development of databases and computer tools

3.2.1. Structural distortions. By 1981, Hatch and Stokes

initiated the compilation of a catalogue featuring computer-

calculated isotropy subgroups for all irreps of all space groups

at special points of symmetry in the first Brillouin zone. This

endeavour culminated in the publication of a comprehensive

book (Stokes & Hatch, 1988), which served as a valuable

resource for researchers. Conversely, many publications

identified the irrep associated with the order parameter

responsible for the transition when the space group of the

distorted phase was known. This enabled the characterization

of the specific mode or modes that were unstable in the parent

structure, thus facilitating a deeper understanding of the

transition process. In the early 2000s, the advent of compu-

tational tools enabled the comprehensive analysis of structu-

rally distorted structures through RA. A notable development

was the release of the ISODISPLACE program (Campbell et

al., 2006), later renamed ISODISTORT, as part of the

ISOTROPY Software Suite (Stokes et al., 1995). This online

tool facilitated the determination of possible isotropy

subgroups for any irrep of a given parent space group, or the

possible symmetries in the case of several irreps being

involved. This allowed researchers to generate starting models

for structurally distorted low-symmetry structures, to be used

for refinement of experimental diffraction data. ISODIS-

TORT was also able to decompose experimental distortions

into irrep modes when both parent and distorted structures

were known. The program provided a set of basis modes for all

relevant irreps, along with the amplitudes of these modes in

the experimental structure. Subsequently, the Bilbao Crystal-

lographic Server collaborated with the ISOTROPY team to

develop AMPLIMODES (Orobengoa et al., 2009; Perez-Mato

et al., 2010), a program for the irrep mode decomposition of

commensurate displacive distorted structures. The integration

of this irrep mode decomposition into the FullProf Suite

(Rodrı́guez-Carvajal, 1993) and the JANA (Petřı́ček et al.,

2014, 2023) programs, further streamlined the refinement

process. With the space group of the distorted structure

established or assumed, FullProf or JANA could refine the

amplitudes of irrep modes provided by ISODISTORT or

AMPLIMODES instead of refining individual atomic posi-

tions. In this approach to structure refinement, akin to the

traditional RA method for magnetic structures, the bases of

irrep modes are constrained by the space group for the

distorted structure. This convergence of computational tools

significantly advanced the analysis and refinement of struc-

turally distorted materials.

3.2.2. Commensurate magnetic ordering. A complete

compilation of MSGs was published by Litvin in the form of a

freely available huge electronic book (PDF format), which

mimics the International Tables of Crystallography (Litvin,

2001, 2008, 2013). The 2010s were also marked by a significant

progress in the extension to magnetic structures of tools and

methods originally developed for the analysis of structurally

distorted structures. The ISOTROPY Software Suite played a

pivotal role by providing digital listings of all MSGs in June

2010, followed by the integration of magnetic structure

analysis into ISODISTORT in August of the same year. The

Bilbao Crystallographic Server also contributed to this effort

by releasing online MSG listings in a user-friendly format, and

developing practical tools that employ them (Gallego et al.,

2012). In addition, during this period refinement programs like

JANA were extended to accommodate magnetic structures.

The approach in JANA involves enumerating and classifying

possible irreps for observed propagation vectors, calculating

isotropy subgroups for each irrep, and generating magnetic

structure models under each potential MSG for refinement
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against experimental data. Simultaneously, enhancements

were made to FullProf to support MSGs for magnetic struc-

tures. Both FullProf and JANA also extended to magnetic

structures the option that they already had for structural

distortions, and enabled refinements with a parameterization

in terms of separate irrep modes within a specified MSG,

applying the irrep decomposition that the program ISODIS-

TORT can provide.

The development of the International Union of Crystal-

lography’s magCIF format for communicating magnetic

structures has been crucial for all these developments, as it has

facilitated universal portability among programs. This format

allows the investigation and determination of magnetic

structures through automated RA and magnetic symmetry

groups, supported by various resources for analysis, refine-

ment, and visualization — all adhering to the magCIF stan-

dard. Consequently, researchers could explore magnetic

structures more efficiently, combining RA and magnetic

symmetry groups in a seamless manner. The description of the

magCIF format is provided in the following link: https://www.

iucr.org/__data/iucr/cifdic_html/3/MAGNETIC_CIF/index.

html.

3.2.3. Incommensurate magnetic ordering. The emergence

of MSSGs represents a significant development in under-

standing and characterizing incommensurate magnetic struc-

tures. Initially proposed in 1980 for incommensurate phases

(Janner & Janssen, 1980), superspace symmetry groups gained

recognition for their applicability to incommensurate

magnetic structures much later, around 2012. This delay in

recognition was addressed by subsequent publications that

fully developed the theory of MSSGs for magnetic systems

(Petřı́ček et al., 2010; Perez-Mato et al., 2012, Stokes &

Campbell, 2022) and integrated them into mainstream

resources like FullProf, JANA and ISOTROPY Software

Suite. MSSGs introduce a new type of transformation —

global phase shifts of the incommensurate modulation —

alongside traditional transformations like translations, rota-

tions, inversion, and time reversal, to form symmetry opera-

tions. These global phase shifts preserve the energy of the

incommensurate structure, making them compatible with

other energy-invariant transformations. Symmetry operations

in a well defined group not only preserve system invariance

but also satisfy a physical condition: they must be a subset of

operations preserving the system’s energy (Hamiltonian or

free energy). This ensures that the constraints imposed by the

symmetry group are robust and independent of variations in

system parameters, such as temperature or pressure in the

case of the free energy (as long as no phase transition takes

place).

In the case of incommensurate structures, MSSGs provide

constraints not only for the primary irrep(s) associated with

the observed propagation vector(s) but also for any higher

harmonics in the modulation. Once an MSSG is assumed to

model the structure, it governs the symmetry properties

(irreps) of all modulation harmonics through coupling with

the primary irrep(s). Free software tools like ISODISTORT or

JANA can derive MSSGs for each irrep or superposition of

irreps associated with the observed propagation vectors,

allowing for comprehensive analysis and characterization of

incommensurate magnetic structures.

4. Conclusion

The role of RA and magnetic symmetry groups in the

description and characterization of magnetic structures is now

well established, with an analogy to structurally distorted

structures. Software tools originally developed for structurally

distorted structures are now available for magnetic structures,

enabling the simultaneous application of RA and magnetic

symmetry groups. However, there is a significant qualitative

difference in how these tools should be applied to magnetic

structures. In structurally distorted structures, once the

symmetry group is established or assumed, structure deter-

mination typically relies solely on the constraints of the

symmetry group. This is because strong couplings among all

degrees of freedom usually result in significantly independent

values for all released structural degrees of freedom allowed

by the symmetry group. In contrast, for magnetic structures,

the orders of magnitude of coupling mechanisms can vary

significantly, with some degrees of freedom remaining silent

within the experimental resolution due to weak coupling to

the primary ordering mechanism. These silent degrees of

freedom, particularly in magnetic moments, may correspond

to other irreps besides the primary ones. In such cases, a

structure refinement parameterized with the amplitudes of

modes for different irreps allowed by the magnetic symmetry

group is beneficial, as silent irreps can be directly identified

and nullified in a refinement.

Once an MSG or MSSG is assumed for the structure,

mainstream software resources facilitate the refinement with

the magnetic structure consistently described under that

magnetic symmetry group, and if the MSG is compatible with

more than one irrep, RA becomes necessary again to separate

through an irrep decomposition the degrees of freedom

corresponding to each compatible irrep.

Acknowledgements

We heartily thank V. Pomjakushin for his help and colla-

boration at the early stages of the preparation of this article.

References

Aleksandrov, K. S. (1976). Sov. Phys. Crystallogr. 21, 133.
Bertaut, E. F. (1963). Magnetism, edited by G. T. Rado & H. Suhl,

Vol. 3, p. 150. New York: Academic Press.
Bertaut, E. F. (1968). Acta Cryst. A24, 217–231.
Bertaut, E. F. (1971). J. Phys. Colloq. 32, C1-462–C1-470.
Bradley, C. J. & Cracknell, A. P. (1972). The Mathematical Theory of

Symmetry in Solids. Oxford: Clarendon Press.
Brinkman, W. F. & Elliot, R. J. (1966). Proc. R. Soc. Lond. A, 294,

343–358.
Campbell, B. J., Stokes, H. T., Tanner, D. E. & Hatch, D. M. (2006). J.

Appl. Cryst. 39, 607–614.
Damay, F. (2015). J. Phys. D Appl. Phys. 48, 504005.
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