research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Seed layer formation by deposition of microcrystallites on a revolving substrate: modeling of the effective linear elastic, piezoelectric, and dielectric coefficients

crossmark logo

aHolcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA, and bDepartment of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
*Correspondence e-mail: art.ballato@gmail.com, jballat@clemson.edu

Edited by R. Černý, University of Geneva, Switzerland (Received 30 August 2024; accepted 28 October 2024; online 21 November 2024)

Averaging of material coefficients of crystallites deposited at an angle to a rotating substrate is considered. A simple model is proposed, and applied to determine effective linear dielectric, piezoelectric, and elastic constants of all Laue groups. While these represent tensors of rank 2, 3, and 4, the method applies generally to tensors of any rank. Results are then particularized for 6mm point symmetry crystals, and applied numerically to zinc oxide, ZnO. It is shown that, by means of the rotating substrate method, depositions may be achieved having the equivalent of hexagonal anisotropy, enabling the creation of `engineered' structures.

1. Introduction

Deposition technology is critical in micro- and nano-electronic fabrication of sensors, transducers, filters, energy harvesters, resonators, etc. (Martin, 2010[Martin, P. M. (2010). Handbook of Deposition Technologies for Films and Coatings, edited by P. M. Martin, pp. 1-31. Amsterdam: Elsevier.]; Behrisch, 2013a[Behrisch, R. (2013a). Sputtering by Particle Bombardment I: Physical Sputtering of Single-Element Solids. Berlin, Heidelberg: Springer.], Behrisch, 2013b[Behrisch, R. (2013b). Sputtering by Particle Bombardment II: Sputtering of Alloys and compounds, Electron and Neutron Sputtering, Surface Topography. Berlin, Heidelberg: Springer.]; Bundesmann & Neumann, 2018[Bundesmann, C. & Neumann, H. (2018). J. Appl. Phys. 124, 231102.]). These devices most often consist of multi-layer structures, the reliability and functionality of which depend on the ability to create uniform and stable layer interfaces. One modality for assuring interface compatibility is an initial deposition between working layers of a thin `seed' or buffer layer, whose material and composition are chosen to afford compatible adhesion and to provide suitable conditions for subsequent uniform working layer growth (Clement et al., 2012[Clement, M., Olivares, J., Capilla, J., Sangrador, J. & Iborra, E. (2012). IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 59, 128-134.]; Noh et al., 2014[Noh, Y.-K., Park, C.-H., Oh, J.-E., Lee, S.-T. & Kim, M.-D. (2014). J. Korean Phys. Soc. 64, 1577-1580.]; Li et al., 2020[Li, Y., Liu, X., Wen, D., Lv, K., Zhou, G., Zhao, Y., Xu, C. & Wang, J. (2020). Acta Cryst. B76, 233-240.]). This is particularly important when forming structures comprised of single, or quasi-single crystal piezoelectric working layers. The axial orientation of these, with respect to the substrate normal, i.e. the texture (Bunge, 1982[Bunge, H.-J. (1982). Texture Analysis in Materials Science: Mathematical Methods. London: Butterworths.]; Suwas & Gurao, 2008[Suwas, S. & Gurao, N. P. (2008). J. Indian Inst. Sci. 88, 151-177.]) allows their effective piezo-coupling and elastic values to be optimized (Bjurström et al., 2006[Bjurström, J., Wingqvist, G. & Katardjiev, I. (2006). IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 53, 2095-2100.]; Yanagitani et al., 2007a[Yanagitani, T., Kiuchi, M., Matsukawa, M. & Watanabe, Y. (2007a). J. Appl. Phys. 102, 024110.]; Du et al., 2009[Du, J., Xian, K., Wang, J. & Yang, J. (2009). Ultrasonics, 49, 149-152.]; Moreria et al., 2011[Moreria, M., Bjurström, J., Kubart, T., Kuzavas, B. & Katardjiev, I. (2011). IEEE Ultrason. Symp. Proc. pp. 1238-1241.]).

It is found that often superior seed layers are achieved by deposition of microcrystallites at a single angle to a revolving substrate (Stedile et al., 1994[Stedile, F. C., Freire, F. L. Jr, Schreiner, W. H. & Baumvol, I. J. R. (1994). Vacuum, 45, 441-446.]; Auger et al., 2002[Auger, M. A., Gago, R., Fernández, M., Sánchez, O. & Albella, J. M. (2002). Surf. Coat. Technol. 157, 26-33.]; Mertin et al., 2018[Mertin, S., Heinz, B., Rattunde, O., Christmann, G., Dubois, M.-A., Nicolay, S. & Muralt, P. (2018). Surf. Coat. Technol. 343, 2-6.]). The substrate rotation averages the crystallite properties, resulting in a polycrystalline aggregate film with material properties modified from the single crystal values of the seed material. After deposition of the seed layer, the substrate rotation is halted, and deposition of the textured film is commenced. This oriented film may be of the same material as that of the seed, or may, indeed, be of any material, deposited at the same angle as that of the seed microcrystals, or at any desired angle. This is arranged by suitable adjustment of the deposition apparatus parameters.

This work derives effective values for the elastic stiffnesses, piezoelectric stress coefficients, and dielectric permittivities of the seed layer using a simple model outlined below. The model may easily be expanded to accommodate a more realistic orientation distribution function characterizing the incident seed layer flux, rather than a fixed single deposition angle. It is noted that material values deviate from those of the bulk as crystallite size diminishes; this is usual when the micro/nanoboundary is crossed. The effective crystallite material coefficients are to be substituted for those of the bulk, with no changes in the averaging procedure described herein.

If the seed layer is not constrained to be `thin', then other potential configurations emerge. It becomes possible to construct an assortment of tailored structures such as acoustic and optical Bragg reflectors consisting of alternating high- and low-impedance layers (Newell, 1964[Newell, W. E. (1964). Proc. IEEE, 52, 1603-1608.]; Link et al., 2006[Link, M., Schreiter, M., Weber, J., Primig, R., Pitzer, D. & Gabl, R. (2006). IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 53, 492-496.]; Dvoesherstov et al., 2013[Dvoesherstov, M. Yu., Cherednik, V. I., Bosov, S. I., Orlov, I. Ya. & Rudenko, O. V. (2013). Acoust. Phys. 59, 513-520.]), as utilized, for example, in solidly mounted resonators (Lakin, 2003[Lakin, K. M. (2003). IEEE Microw. 4, 61-67.]; Iborra et al., 2012[Iborra, E., Clement, M., Capilla, J., Olivares, J. & Felmetsger, V. (2012). Thin Solid Films, 520, 3060-3063.]; Nguyen et al., 2019[Nguyen, N., Johannessen, A., Rooth, S. & Hanke, U. (2019). Ultrasonics, 94, 92-101.]). Other options are enabled as well, such as superlattices (Schuller, 1980[Schuller, I. K. (1980). Phys. Rev. Lett. 44, 1597-1600.]; Akçakaya et al., 1990[Akçakaya, E., Farnell, G. W. & Adler, E. L. (1990). J. Appl. Phys. 68, 1009-1012.]; Bykhovski et al., 1997[Bykhovski, A. D., Gelmont, B. L. & Shur, M. S. (1997). J. Appl. Phys. 81, 6332-6338.]), including Fibonacci and Moiré designs (MacDonald, 1988[MacDonald, A. H. (1988). Fibonacci Superlattices, edited by C. R. Leavens & R. Taylor, pp. 347-380. In Interfaces, Quantum Wells, and Superlattices, NATO ASI Series, Vol. 179. Boston, MA: Springer.]; Dean et al., 2013[Dean, C. R., Wang, L., Maher, P., Forsythe, C., Ghahari, F., Gao, Y., Katoch, J., Ishigami, M., Moon, P., Koshino, M., Taniguchi, T., Watanabe, K., Shepard, K. L., Hone, J. & Kim, P. (2013). Nature, 497, 598-602.]; Mouldi & Kanzari, 2013[Mouldi, A. & Kanzari, M. (2013). PIER M, 32, 169-180.]). A simple example is offered in Section 4[link] where ZnO microcrystals are considered to be deposited with (103) planes parallel to the revolving substrate plane. Substrate rotation, and consequent angular averaging (see Section 2[link]), produces an engineered crystal, again with 6mm symmetry, albeit with modified material coefficients, which are computed.

2. The model

Microcrystallites are deposited on a revolving substrate, all with a specified facet lying in the substrate plane. The x3 axis of the crystallite is thus inclined with respect to the substrate normal (X3) by a facet angle θ; see Fig. 1[link]. The substrate revolution, in angle φ, creates a distribution of crystallite normals ([002] in the diagram) that form a cone about the substrate normal. The model assumes a uniform areal distribution of crystallites on the substrate. A suitable angular averaging then yields effective values 〈q〉 = [[{1/{(2}\pi)}] {\int }_{0}^{2\pi }q{\rm d}\varphi], where q is the quantity to be averaged. In the following sections this averaging is carried out schematically on the point-group matrices characterizing the linear elastic, piezo, and dielectric crystal properties. These three families of phenomenological coefficients are much utilized in electro-acoustic applications and are used here to illustrate the results applied to tensors of ranks 2, 3, and 4 in their matrix form. The model may be extended to material tensors of arbitrary rank.

[Figure 1]
Figure 1
Schematic of the deposition geometry. The crystallite facet lies upon the substrate; its x3 axis, shown as [002], subtends cone angle θ with respect to the substrate randomizing axis X3.

Axial conventions, and associated nomenclature, for the point groups are given, e.g. in Institute of Radio Engineers Standards Committee (1949[Institute of Radio Engineers Standards Committee (1949). Proc. IRE 37, 1378-1395.]); symmetry relations relating the tensorial material coefficients are succinctly discussed by Bhagavantam & Suryanarayana (1949[Bhagavantam, S. & Suryanarayana, D. (1949). Acta Cryst. 2, 21-26.]), Fumi (1952a[Fumi, F. G. (1952a). Acta Cryst. 5, 44-48.]), Fumi (1952b[Fumi, F. G. (1952b). Acta Cryst. 5, 691-694.]), Fumi (1952c[Fumi, F. G. (1952c). Nuovo Cimento, 9, 739-756.]), Fieschi (1957[Fieschi, R. (1957). Physica, 23, 972-976.]), and in engineering format by Cady (1946[Cady, W. G. (1946). Piezoelectricity: An Introduction to the Theory, Applications of Electromechanical Phenomena in Crystals. New York: McGraw-Hill.]), Cady (1964[Cady, W. G. (1964). Piezoelectricity: An Introduction to the Theory, Applications of Electromechanical Phenomena in Crystals. New York: Dover.]) Mason (1966[Mason, W. P. (1966). Crystal Physics of Interaction Processes. New York: Academic.]), Nye (1985[Nye, J. F. (1985). Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press.]). Tensor coefficients describing the elastic, piezo, and dielectric effects, are transformed according to standard rules (Bond, 1943[Bond, W. L. (1943). Bell Syst. Tech. J. 22, 1-72.]; Juretschke, 1952[Juretschke, H. J. (1952). Acta Cryst. 5, 148-149.]; Bechmann, 1960[Bechmann, R. (1960). Acta Cryst. 13, 110-113.]; Hearmon, 1957[Hearmon, R. F. S. (1957). Acta Cryst. 10, 121-124.]). Initially, the crystallite x3 axis is normal to the substrate reference plane, and a first rotation about its x1 or x2 axis carries it to the configuration shown in Fig. 1[link]. The elastic, piezoelectric, and dielectric matrices resulting from this first rotation are denoted [c′], [e′], and [ɛ′], respectively. Subsequent rotation of the crystallite sitting on the substrate plane is described by a second rotation about its x3′ axis; the averaging is carried out on the resulting transformed quantities, with final averaged results denoted as 〈c″〉, 〈e″〉, and 〈ɛ″〉.

3. Model results for all Laue groups

In this section are given the averaged components, 〈″〉, of the dielectric, piezoelectric, and elastic tensors for all Laue groups (Bechmann & Hearmon, 1969[Bechmann, R. & Hearmon, R. F. S. (1969). The Third Order Elastic Constants. In Landolt-Börnstein - Numerical Data and Functional Relationships. Group III, Vol. 2. Berlin: Springer.]; Brendel, 1979[Brendel, R. (1979). Acta Cryst. A35, 525-533.]).

3.1. Linear dielectric permittivities

Five distinct, symmetric, permittivity matrices, [ɛ], corresponding to Laue groups I, II, III, IV–VI, and VII, characterize the linear dielectric behavior of crystals (Cady, 1946[Cady, W. G. (1946). Piezoelectricity: An Introduction to the Theory, Applications of Electromechanical Phenomena in Crystals. New York: McGraw-Hill.], 1964[Cady, W. G. (1964). Piezoelectricity: An Introduction to the Theory, Applications of Electromechanical Phenomena in Crystals. New York: Dover.]; Mason, 1966[Mason, W. P. (1966). Crystal Physics of Interaction Processes. New York: Academic.]; Nye, 1985[Nye, J. F. (1985). Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press.]). The geometry of Fig. 1[link] is realized by a rotation about an in-plane x1 or x2 axis by facet angle θ; this transforms these to five distinct matrices [ɛ′] in standard fashion. Anticipating the final result, these [ɛ′] matrices are not given explicitly. A further rotation about the resulting x3′ axis (normal to the substrate plane), and subsequent averaging by the revolving substrate produces two distinct 〈ɛ″〉 matrices, the components of which are given in terms of the components of [ɛ′] in Table 1[link], with 〈ɛ22″〉 = 〈ɛ11″〉, and zero off-diagonal elements. In terms of the components of the original [ɛ] matrices, the final result is given in Table 2[link].

Table 1
Averaged dielectric permittivities, 〈ɛkk″〉, in terms of the singly rotated quantities, ɛjj

ɛkk″〉 Groups I–VI Group VII
ɛ11″〉 ½(ɛ11′ + ɛ22′) ɛ11
ɛ33″〉 ɛ33 ɛ11

Table 2
Averaged dielectric permittivities for all Laue groups, for first rotation x1 or x2

C and S are cos(θ) and sin(θ), respectively, where θ is the angle of first rotation, the facet angle.

Rotation Laue → Group I Group II Group III Groups IV–VI Group VII
x1 ɛ11″〉 ½(ɛ11 + ɛ22C2 + 2ɛ23CS + ɛ33S2) ½(ɛ11 + ɛ22C2 + ɛ33S2) ½(ɛ11 + ɛ11C2 + ɛ33S2) ɛ11
ɛ33″〉 ɛ33C2 − 2ɛ23CS + ɛ22S2 ɛ33C2 + ɛ22S2 ɛ33C2 + ɛ22S2 ɛ11
x2 ɛ11″〉 ½(ɛ22 + ɛ11C2 − 2ɛ13CS + ɛ33S2) ½(ɛ22 + ɛ11C2 + ɛ33S2) ½(ɛ11 + ɛ11C2 + ɛ33S2) ɛ11
ɛ33″〉 ɛ33C2 + 2ɛ13CS + ɛ11S2 ɛ33C2 + ɛ11S2 ɛ11

3.2. Linear piezoelectric stress moduli

Sixteen distinct matrices [e], characterize the linear piezoelectric behavior of the 20 piezoelectric classes (Cady, 1946[Cady, W. G. (1946). Piezoelectricity: An Introduction to the Theory, Applications of Electromechanical Phenomena in Crystals. New York: McGraw-Hill.], 1964[Cady, W. G. (1964). Piezoelectricity: An Introduction to the Theory, Applications of Electromechanical Phenomena in Crystals. New York: Dover.]; Mason, 1966[Mason, W. P. (1966). Crystal Physics of Interaction Processes. New York: Academic.]; Nye, 1985[Nye, J. F. (1985). Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press.]). Each of the Laue groups is represented. The pairs (4, 6), (422, 622), (4mm, 6mm), and (23, 43m) share the same matrices. The geometry of Fig. 1[link] is realized by a rotation about an in-plane x1 or x2 axis by facet angle θ; this transforms each of these sixteen to one of five distinct matrices [e′] in standard fashion. The Laue group I results for both x1 and x2 rotations are identical, so there are but nine distinct [e′] matrices. Again, anticipating the final result, these [e′] matrices are not given explicitly. A further rotation about the resulting x3′ axis (normal to the substrate plane), and subsequent averaging by the revolving substrate produces three distinct 〈e″〉 matrices, that we denote as 〈A〉, 〈B〉, and 〈C〉. The structure of matrix 〈A〉 is given in Table 3[link], where the 〈e″〉 components are expressed in terms of the [e′] components; it is identical in form to the matrix of the unrotated classes (4, 6). Matrix 〈B〉 is that of matrix 〈A〉 with e14″ = e25″ = 0 and has the same structure as the matrix of the unrotated classes (4mm, 6mm). Finally, matrix 〈C〉 is that of matrix 〈A〉 with e15″ = e24″ = e31″ = e32″ = e33″ = 0 and has the same structure as the matrix of the unrotated classes (422, 622). The averaged results for the twenty piezoelectric classes are given in Table 4[link].

Table 3
The 〈e″〉 components of matrix 〈A〉 expressed in terms of the singly rotated e′ elements

0 0 0 e14″〉 e15″〉 0 = 0 0 0 [{1\over 2}\left({e}_{14}^{\prime}-{e}_{25}^{\prime}\right)] [{1\over 2}\left({e}_{15}^{\prime}+{e}_{24}^{\prime}\right)] 0
0 0 0 e15″〉 −〈e14″〉 0 0 0 0 [{1\over 2}\left({e}_{15}^{\prime}+{e}_{24}^{\prime}\right)] [-{1 \over 2}\left({e}_{14}^{\prime}-{e}_{25}^{\prime}\right)] 0
e31″〉 e31″〉 e33″〉 0 0 0 [{1\over 2}\left({e}_{31}^{\prime}+{e}_{32}^{\prime}\right)] [{1\over 2}\left({e}_{31}^{\prime}+{e}_{32}^{\prime}\right)] e33 0 0 0

Table 4
Resulting matrix after second rotation about x3, and subsequent averaging by the revolving substrate

Laue → I II III IVa and VIa IVa IVb and VIb IVb Va Vb VIa VIb VIIa and VIIb
H-M → 1 2 m 222 mm2 4, 6 4 422, 622 4mm, 6mm 42m 3 32 3m 6 6m2 23, 43m
Rotation
x1 A A A C B A A C B C A C B A C C
x2 A C B C B A A C B C A A A A B C

The pertinent [e′] matrix components are given explicitly in terms of the components of the original [e] matrices in Table 5[link] and Table 6[link] for Laue group I. These relations are easily specialized for the remaining Laue groups of higher symmetry.

Table 5
Singly rotated e′ coefficients for triclinic Laue group I in terms of the unrotated e coefficients

With θ the angle of first rotation about x1, C and S stand for cos(θ) and sin(θ), where θ is the facet angle.

e14 = e14(C2S2) + (e13e12)CS
e15 e15C2e16S
e24 (e24C + e34S)(C2S2) − [(e22C + e32S) − (e23C + e33S)]CS
e25 (e25C + e35S)C − (e26C + e36S)S
e31 e31Ce21S
e32 (e32Ce22S)C2 + (e33Ce23S)S2 + 2(e34Ce24S)CS
e33 (e33Ce23S)C2 + (e32Ce22S)S2 − 2(e34Ce24S)CS

Table 6
Singly rotated e′ coefficients for triclinic Laue group I in terms of the unrotated e coefficients

With θ the angle of first rotation about x2, C and S stand for cos(θ) and sin(θ), where θ is the facet angle.

e14 = e14C2e36S2 + (e16e34)CS
e15 (e15Ce35S)(C2S2) + [(e11e13)C + (e33e31)S]CS
e24 e24Ce26S
e25 e25(C2S2) + (e21e23)CS
e31 (e31C + e11S)C2 + (e33C + e13S)S2 − 2(e35C + e15S)CS
e32 e32C + e12S
e33 (e33C + e13S)C2 + (e31C + e11S)S2 + 2(e35C + e15S)CS

3.3. Linear elastic stiffnesses

Nine distinct, symmetric, stiffness matrices, [c], corresponding to Laue groups I, II, III, IVa, IVb, Va, Vb, VI, and VII, characterize the linear elastic behavior of crystals (Cady, 1946[Cady, W. G. (1946). Piezoelectricity: An Introduction to the Theory, Applications of Electromechanical Phenomena in Crystals. New York: McGraw-Hill.]; 1964[Cady, W. G. (1964). Piezoelectricity: An Introduction to the Theory, Applications of Electromechanical Phenomena in Crystals. New York: Dover.]; Mason, 1966[Mason, W. P. (1966). Crystal Physics of Interaction Processes. New York: Academic.]; Nye, 1985[Nye, J. F. (1985). Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press.]). The geometry of Fig. 1[link] is realized by a rotation about an in-plane x1 or x2 axis by facet angle θ; this transforms each of these nine to matrices [c′] in standard fashion. A further rotation about the resulting x3′ axis, (normal to the substrate plane), and subsequent averaging by the revolving substrate produces, for all Laue groups, a single 〈c″〉 matrix with hexagonal symmetry. The components of 〈c″〉 are given in terms of the components of [c′] in Table 7[link]. The pertinent [c′] matrix components are given explicitly in terms of the components of the original [c] matrices in Tables 8[link] and 9[link] for Laue group I. These relations are easily specialized for the remaining Laue groups of higher symmetry.

Table 7
Averaged elastic stiffnesses for Laue groups I–VII as function of the c′ components

The 〈c″〉 matrix possesses hexagonal symmetry.

cλμ″〉   x1 or x2 rotation
c11″〉 = [{1\over 8}][3c11′ + 2c12′ + 3c22′ + 4c66′]
c12″〉 [{1\over 8}][c11′ + 6c12′ + c22′ − 4c66′]
c13″〉 ½[c13′ + c23′]
c33″〉 c33
c44″〉 ½[c44′ + c55′]
c66″〉 [{1\over 8}][c11′ − 2c12′ + c22′ + 4c66′]

Table 8
Transformed elastic stiffnesses for triclinic Laue group I, as function of the first rotation x1

Only the pertinent c′, needed for insertion into Table 7[link], are listed. C and S are cos(θ) and sin(θ), respectively, where θ is the facet angle.

c11 = c11
c22 c22C4 + c33S4 + 2[2(c24C2 + c34S2) + (c23 + 2c44)CS]CS
c33 c33C4 + c22S4 + 2[−2(c34C2 + c24S2) + (c23 + 2c44)CS]CS
c44 c44(C4 + S4) + [2(c34c24)(C2S2) + (c22 + c33 − 2c23 − 2c44)CS]CS
c55 c55C2 − 2c56CS + c66S2
c66 c66C2 + 2c56CS + c55S2
c12 c12C2 + 2c14CS + c13S2
c13 c13C2 − 2c14CS + c12S2
c23 c23(C4 + S4) + [2(c34c24)(C2S2) + (c22 + c33 − 4c44)CS]CS
(c44′ − c23′) (c44c23)

Table 9
Transformed elastic stiffnesses for triclinic Laue group I, as function of the first rotation x2

Only the pertinent c′, needed for insertion into Table 7[link], are listed. C and S are cos(θ) and sin(θ), respectively, where θ is the facet angle.

c11 = c11C4 + c33S4 − 2[2(c15C2 + c35S2) − (c13 + 2c55)CS]CS
c22 c22
c33 c33C4 + c11S4 + 2[2(c35C2 + c15S2) + (c13 + 2c55)CS]CS
c44 c44C2 + 2c46CS + c66S2
c55 c55(C4 + S4) + [2(c15c35)(C2S2) + (c11 + c33 − 2c13 − 2c55)CS]CS
c66 c66C2 − 2c46CS + c44S2
c12 c12C2 − 2c25CS + c23S2
c13 c13(C4 + S4) + [2(c15c35)(C2S2) + (c11 + c33 − 4c55)CS]CS
c23 c23C2 + 2c25CS + c12S2
(c55′ − c13′) (c55c13)

4. Example: zinc oxide, Laue group VIb, class 6mm

Zinc oxide, in its 6mm polytype, is similar in many ways to the III-nitrides, and to polarized ceramics. Its high piezoelectric coupling has led to its use in a wide variety of acousto-electronic devices. Provided here are the effective material coefficients, and piezoelectric coupling factors, of deposited ZnO crystallites subjected to the averaging procedure described in Section 2[link]. The 6mm symmetry requires isotropy in the basal plane, hence all rotations (tilts) about any axis, (e.g. x1 or x2), in the (001) plane will yield identical results. We take the first rotation about x1 by a facet angle θ corresponding to the (103) plane (Kushibiki et al., 2009[Kushibiki, J.-I., Ohashi, Y., Arakawa, M. & Tanaka, T. (2009). J. Appl. Phys. 105, 114913.]); in the coordinate system of the substrate, this results in the equivalent of monoclinic symmetry. The averaging process then yields 〈″〉 quantities but again with 6mm symmetry. The numerical input values are taken from Jaffe & Berlincourt (1965[Jaffe, H. & Berlincourt, D. A. (1965). Proc. IEEE, 53, 1372-1386.]) and Pearton et al. (2005[Pearton, S. J., Norton, D. P., Ip, K., Heo, Y. W. & Steiner, T. (2005). Prog. Mater. Sci. 50, 293-340.]).

4.1. Dielectric permittivities

A first rotation, about x1, results in [ɛ′] quantities as follows: ɛ11′ = ɛ11; ɛ12′ = ɛ13′ = 0; ɛ22′ = ɛ11C2 + ɛ33S2; [{\varepsilon _{23}}^{\prime} = \left({{\varepsilon _{33}} - {\varepsilon _{11}}} \right)C S]; and ɛ33′ = ɛ33C2 + ɛ11S2. The resulting 〈ɛ″〉 components, taken from Table 2[link], and numerical values for ZnO referred to the facet plane (103), are given in Table 10[link].

Table 10
Averaged permittivities (pF m−1) for class 6mm, particularized for ZnO with facet plane (103)

ɛ11″〉 ½(ɛ11′ + ɛ22′) = ½(ɛ11 + ɛ11C2 + ɛ33S2) = 74.38
ɛ33″〉 ɛ33 ɛ33C2 + ɛ11S2 77.03

4.2. Piezoelectric stress coefficients

A first rotation, about x1, results in [e′] quantities as follows: e15′ = e15C; e16′ = e15S; e21′ = e31S; e22′ = [e33S2 + (e31 + 2e15)C2]S; e23′ = [e31S2 + (e33 − 2e15)C2]S; e24′ = [e33S2e31S2 + e15(C2S2)]C; e31′ = e31C; e32′ = [e31C2 − 2e15S2 + e33S2]C; e33′ = [e33C2 + 2e15S2 + e31S2]C; and e34′ = [e33C2e31C2e15(C2S2)]S. The subsequent averaging, from Table 4[link], results in matrix 〈B〉 symmetry, with components as follows: 〈e15″〉 = 〈e24″〉 = (1/2)(e15′ + e24′) = (1/2)[2e15C2 + (e33e31)S2]C; 〈e31″〉 = 〈e32″〉 = (1/2)(e31′ + e32′) = (1/2)[e31(1 + C2) + (e33 − 2e15)S2]C; 〈e33″〉 = [e33C2 + (e33 + 2e15)S2]C; numerical results are given in Table 11[link].

Table 11
Averaged piezoelectric stress coefficients (C m−2) for class 6mm, particularized for ZnO with facet plane (103)

0 0 0 0 e15″〉 0 = 0 0 0 0 −0.155 0
0 0 0 e15″〉 0 0 0 0 0 −0.155 0 0
e31″〉 e31″〉 e33″〉 0 0 0 −0.185 −0.185 +0.289 0 0 0

4.3. Elastic stiffnesses components

A first rotation, about x1, results in the [c′] quantities given in Table 12[link]. When these are put into the 〈c″〉 matrix of Table 7[link], the entries of Table 13[link] result; numerical values for ZnO referred to the facet plane (103), are also given.

Table 12
Resulting elastic stiffnesses from a first rotation of a 6mm crystal about its x1 axis. C and S are cos(θ) and sin(θ), respectively, where θ is the facet angle

c11 = c11
c12 c12C2 + c13S2
c13 c13C2 + c12S2
c22 c11C4 + c33S4 + 2(c13 + 2c44)C2S2
c23 c13(C4 + S4) + (c11 + c33 − 4c44)C2S2
c33 c33C4 + c11S4 + 2(c13 + 2c44)C2S2
c44 c44(C4 + S4) + (c11 + c33 − 2c13 − 2c44)C2S2
c55 c44C2 + c66S2
c66 c66C2 + c44S2
(c44′ − c23′) (c44c23)

Table 13
Averaged elastic stiffness coefficients (GPa) for class 6mm, with numerical values particularized for ZnO with facet plane (103)

c11″〉 = [{1\over 8}][c11(3 + 2C2) + 3(c11C4 + c33S4) + 2(c13 + 2c44)(1 + 3C2)S2] = 205.72
c12″〉 [{1\over 8}][c11(1 + 6C2) + (c11C4 + c33S4 − 4c44S4) − 16c66C2 + 2c13(3 + C2)S2] 117.34
c13″〉 ½[c13C2 + c13(C4 + S4) + c11(1 + C2) + (c33C2 − 4c44C2 − 2c66)S2] 111.55
c33″〉 [c33C4 + c11S4 + 2(c13 + 2c44)C2S2] 202.66
c44″〉 ½[c44C2 + c44(C4 + S4) + c66S2 + (c11 + c33 − 2c13 − 2c44)C2S2] 46.78
c66″〉 [{1\over 8}][8c66C2 + (c11 + c33 − 2c13)S2 + 4c44(1 + C4)S2] = (〈c11″〉 − 〈c12″〉)/2 44.19

4.4. Computation of piezo-coupling values

Piezo-coupling coefficients determine efficacy of piezoelectric transduction. As measures thereof, `they appear in considerations of bandwidth and insertion loss in transducers and signal processing devices, in the location and spacing of critical frequencies of resonators, and in electrical/mechanical energy conversion efficiency in actuators and energy harvesters' (Ballato & Ballato, 2023[Ballato, A. & Ballato, J. (2023). Int. J. Ceram. Eng. Sci. 5, e10182.]). Calculation of these quantities for the one-dimensional case of thickness vibrations of plates and films requires knowledge only of the effective dielectric, piezoelectric, and elastic tensors referred to the plate/film coordinates; these are the 〈″〉 quantities in our situation. An eigenvalue equation is solved, yielding three modal elastic stiffnesses, cm, three modal piezoelectric coefficients, em, and the effective permittivity in the thickness direction, ɛ3. Then the coupling coefficients are given in the generic form |km| = |em|/(cmɛ3)1/2 (Foster et al., 1968[Foster, N. F., Coquin, G. A., Rozgonyi, G. A. & Vannatta, F. A. (1968). IEEE Trans. Sonics Ultrason. 15, 28-40.]; Wittstruck et al., 2005[Wittstruck, R. H., Emanetoglu, N. W., Lu, Y., Laffey, S. & Ballato, A. (2005). J. Acoust. Soc. Am. 118, 1414-1423.]; Ballato & Ballato, 2023[Ballato, A. & Ballato, J. (2023). Int. J. Ceram. Eng. Sci. 5, e10182.]).

In Table 14[link] are given the relevant data for averaged ZnO with zero facet angle. Corresponding wave velocities are Vm = (cm/ρ)1/2. The mass density of bulk crystalline ZnO is ρ ≃ 5.606 × 103 (kg m−3) (Pearton et al., 2005[Pearton, S. J., Norton, D. P., Ip, K., Heo, Y. W. & Steiner, T. (2005). Prog. Mater. Sci. 50, 293-340.]). Table 15[link] provides this data for averaged ZnO with facet angle of the (103) plane. The |km| values are plotted in Fig. 2[link], as a function of tilt angle γ, for averaged ZnO with facet angle of the (103) plane.

Table 14
Effective elastic stiffnesses, cm, piezoelectric coupling coefficients, |km|, and deviation angles, |δa| of ZnO thin plates or films having tilt (texture) angles γ = 0°(15°)90° about an axis lying in the basal plane (001)

Subscript m denotes the wave: a the quasi-longitudinal, and b, c the fast and slow quasi-shears, respectively. Piezo-coupling |kc| ≡ 0. Angle |δa| gives the offset of the a wave motion from the wave progression direction, which is parallel to the plate/film thickness.

Quantity Unit γ = 0° γ = 15° γ = 30° γ = 45° γ = 60° γ = 75° γ = 90°
ca GPa 228.07 220.11 205.33 201.12 206.64 209.91 210.00
cb 42.50 48.36 58.23 57.80 50.14 46.94 47.24
cc 42.50 42.62 42.95 43.40 43.85 44.18 44.30
|ka| % 27.36 23.16 10.19 6.08 13.66 10.44 0
|kb| 0 25.82 37.47 29.93 5.81 20.62 31.66
|δa| ° 0 3.74 3.28 0.66 1.86 0.74 0

Table 15
The same quantities defined in Table 14[link], but for ZnO microcrystallites that have undergone the averaging procedure described in the text (see Section 2[link]) to create an engineered crystal with 6mm symmetry

For the entries given, the facet angle for the averaging is that of the (103) plane, (θ ≃ 31.664°). The engineered crystal is then tilted by angles γ = 0°(15°)90° about an axis lying in its basal plane (001), i.e. the plane of the substrate, as a basis for comparison with the entries in Table 14[link], but more importantly, to suggest that untextured, engineered, crystals may be created to meet desired design criteria

Quantity Unit γ = 0° γ = 15° γ = 30° γ = 45° γ = 60° γ = 75° γ = 90°
ca GPa 203.74 203.66 203.86 204.73 205.60 205.81 205.72
cb 46.78 46.96 47.05 46.69 46.45 46.80 47.11
cc 46.78 46.61 46.13 45.48 44.84 44.36 44.19
|ka| % 7.29 5.76 2.01 1.89 3.82 2.93 0
|kb| 0 7.87 11.44 8.89 1.86 5.32 8.30
|δa| ° 0 0.05 0.23 0.34 0.19 0.01 0
[Figure 2]
Figure 2
Piezo-couplings |ka| and |kb| of an engineered ZnO plate formed by averaging over facet angle θ ≃ 31.664°, plotted versus tilt (texture) angle γ. Driving electric field is normal to the substrate plane. Waves a and b are quasi-thickness extension, and quasi-thickness shear, respectively. Note the similar, but reduced, values of coupling compared with Foster et al. (1968[Foster, N. F., Coquin, G. A., Rozgonyi, G. A. & Vannatta, F. A. (1968). IEEE Trans. Sonics Ultrason. 15, 28-40.]), where the facet angle θ = 0°. Wave c, (pure shear) is inert to thickness-directed fields. In devices using the quasi-shear mode, a practical tilt angle would be at, or near, the value where |ka| = 0; here the b wave coupling is nearly a maximum.

5. Conclusions

The rotating substrate method of crystallite deposition is modeled, allowing computation of effective material coefficients of the layers resulting from the averaging. Modeling of the averaging applies generally to tensors of any rank, but is applied here to dielectric, piezoelectric, and elastic coefficients. A worked numerical example particularized to 6mm ZnO is provided. Layers comprised of crystallites deposited with zero facet angle are contrasted with those deposited on facet plane (103). It is proposed that the method enables creation of `engineered' layered structures.

Acknowledgements

JB acknowledges support from the J. E. Sirrine Foundation.

Funding information

Funding for this research was provided by: J. E. Sirrine Textile Foundation.

References

First citationAkçakaya, E., Farnell, G. W. & Adler, E. L. (1990). J. Appl. Phys. 68, 1009–1012.  Google Scholar
First citationAuger, M. A., Gago, R., Fernández, M., Sánchez, O. & Albella, J. M. (2002). Surf. Coat. Technol. 157, 26–33.  CrossRef CAS Google Scholar
First citationBallato, A. & Ballato, J. (2023). Int. J. Ceram. Eng. Sci. 5, e10182.  CrossRef Google Scholar
First citationBechmann, R. (1960). Acta Cryst. 13, 110–113.  CrossRef IUCr Journals Google Scholar
First citationBechmann, R. & Hearmon, R. F. S. (1969). The Third Order Elastic Constants. In Landolt-Börnstein – Numerical Data and Functional Relationships. Group III, Vol. 2. Berlin: Springer.  Google Scholar
First citationBehrisch, R. (2013a). Sputtering by Particle Bombardment I: Physical Sputtering of Single-Element Solids. Berlin, Heidelberg: Springer.  Google Scholar
First citationBehrisch, R. (2013b). Sputtering by Particle Bombardment II: Sputtering of Alloys and compounds, Electron and Neutron Sputtering, Surface Topography. Berlin, Heidelberg: Springer.  Google Scholar
First citationBhagavantam, S. & Suryanarayana, D. (1949). Acta Cryst. 2, 21–26.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBjurström, J., Wingqvist, G. & Katardjiev, I. (2006). IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 53, 2095–2100.  Google Scholar
First citationBond, W. L. (1943). Bell Syst. Tech. J. 22, 1–72.  CrossRef Google Scholar
First citationBrendel, R. (1979). Acta Cryst. A35, 525–533.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBundesmann, C. & Neumann, H. (2018). J. Appl. Phys. 124, 231102.  CrossRef Google Scholar
First citationBunge, H.-J. (1982). Texture Analysis in Materials Science: Mathematical Methods. London: Butterworths.  Google Scholar
First citationBykhovski, A. D., Gelmont, B. L. & Shur, M. S. (1997). J. Appl. Phys. 81, 6332–6338.  CrossRef CAS Google Scholar
First citationCady, W. G. (1946). Piezoelectricity: An Introduction to the Theory, Applications of Electromechanical Phenomena in Crystals. New York: McGraw-Hill.  Google Scholar
First citationCady, W. G. (1964). Piezoelectricity: An Introduction to the Theory, Applications of Electromechanical Phenomena in Crystals. New York: Dover.  Google Scholar
First citationClement, M., Olivares, J., Capilla, J., Sangrador, J. & Iborra, E. (2012). IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 59, 128–134.  CrossRef Google Scholar
First citationDean, C. R., Wang, L., Maher, P., Forsythe, C., Ghahari, F., Gao, Y., Katoch, J., Ishigami, M., Moon, P., Koshino, M., Taniguchi, T., Watanabe, K., Shepard, K. L., Hone, J. & Kim, P. (2013). Nature, 497, 598–602.  CrossRef CAS PubMed Google Scholar
First citationDu, J., Xian, K., Wang, J. & Yang, J. (2009). Ultrasonics, 49, 149–152.  CrossRef PubMed CAS Google Scholar
First citationDvoesherstov, M. Yu., Cherednik, V. I., Bosov, S. I., Orlov, I. Ya. & Rudenko, O. V. (2013). Acoust. Phys. 59, 513–520.  CrossRef CAS Google Scholar
First citationFieschi, R. (1957). Physica, 23, 972–976.  CrossRef Google Scholar
First citationFoster, N. F., Coquin, G. A., Rozgonyi, G. A. & Vannatta, F. A. (1968). IEEE Trans. Sonics Ultrason. 15, 28–40.  CrossRef CAS Google Scholar
First citationFumi, F. G. (1952a). Acta Cryst. 5, 44–48.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFumi, F. G. (1952b). Acta Cryst. 5, 691–694.  CrossRef IUCr Journals Web of Science Google Scholar
First citationFumi, F. G. (1952c). Nuovo Cimento, 9, 739–756.  CrossRef Google Scholar
First citationHearmon, R. F. S. (1957). Acta Cryst. 10, 121–124.  CrossRef IUCr Journals Google Scholar
First citationIborra, E., Clement, M., Capilla, J., Olivares, J. & Felmetsger, V. (2012). Thin Solid Films, 520, 3060–3063.  CrossRef CAS Google Scholar
First citationInstitute of Radio Engineers Standards Committee (1949). Proc. IRE 37, 1378–1395.  Google Scholar
First citationJaffe, H. & Berlincourt, D. A. (1965). Proc. IEEE, 53, 1372–1386.  CrossRef Google Scholar
First citationJuretschke, H. J. (1952). Acta Cryst. 5, 148–149.  CrossRef IUCr Journals Google Scholar
First citationKushibiki, J.-I., Ohashi, Y., Arakawa, M. & Tanaka, T. (2009). J. Appl. Phys. 105, 114913.  CrossRef Google Scholar
First citationLakin, K. M. (2003). IEEE Microw. 4, 61–67.  CrossRef Google Scholar
First citationLi, Y., Liu, X., Wen, D., Lv, K., Zhou, G., Zhao, Y., Xu, C. & Wang, J. (2020). Acta Cryst. B76, 233–240.  CrossRef IUCr Journals Google Scholar
First citationLink, M., Schreiter, M., Weber, J., Primig, R., Pitzer, D. & Gabl, R. (2006). IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 53, 492–496.  CrossRef Google Scholar
First citationMacDonald, A. H. (1988). Fibonacci Superlattices, edited by C. R. Leavens & R. Taylor, pp. 347–380. In Interfaces, Quantum Wells, and Superlattices, NATO ASI Series, Vol. 179. Boston, MA: Springer.  Google Scholar
First citationMartin, P. M. (2010). Handbook of Deposition Technologies for Films and Coatings, edited by P. M. Martin, pp. 1–31. Amsterdam: Elsevier.  Google Scholar
First citationMason, W. P. (1966). Crystal Physics of Interaction Processes. New York: Academic.  Google Scholar
First citationMertin, S., Heinz, B., Rattunde, O., Christmann, G., Dubois, M.-A., Nicolay, S. & Muralt, P. (2018). Surf. Coat. Technol. 343, 2–6.  CrossRef CAS Google Scholar
First citationMoreria, M., Bjurström, J., Kubart, T., Kuzavas, B. & Katardjiev, I. (2011). IEEE Ultrason. Symp. Proc. pp. 1238–1241.  Google Scholar
First citationMouldi, A. & Kanzari, M. (2013). PIER M, 32, 169–180.  CrossRef Google Scholar
First citationNewell, W. E. (1964). Proc. IEEE, 52, 1603–1608.  CrossRef Google Scholar
First citationNguyen, N., Johannessen, A., Rooth, S. & Hanke, U. (2019). Ultrasonics, 94, 92–101.  CrossRef CAS PubMed Google Scholar
First citationNoh, Y.-K., Park, C.-H., Oh, J.-E., Lee, S.-T. & Kim, M.-D. (2014). J. Korean Phys. Soc. 64, 1577–1580.  CrossRef CAS Google Scholar
First citationNye, J. F. (1985). Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press.  Google Scholar
First citationPearton, S. J., Norton, D. P., Ip, K., Heo, Y. W. & Steiner, T. (2005). Prog. Mater. Sci. 50, 293–340.  Web of Science CrossRef CAS Google Scholar
First citationSchuller, I. K. (1980). Phys. Rev. Lett. 44, 1597–1600.  CrossRef CAS Web of Science Google Scholar
First citationStedile, F. C., Freire, F. L. Jr, Schreiner, W. H. & Baumvol, I. J. R. (1994). Vacuum, 45, 441–446.  CrossRef CAS Google Scholar
First citationSuwas, S. & Gurao, N. P. (2008). J. Indian Inst. Sci. 88, 151–177.  CAS Google Scholar
First citationWittstruck, R. H., Emanetoglu, N. W., Lu, Y., Laffey, S. & Ballato, A. (2005). J. Acoust. Soc. Am. 118, 1414–1423.  CrossRef CAS Google Scholar
First citationYanagitani, T., Kiuchi, M., Matsukawa, M. & Watanabe, Y. (2007a). J. Appl. Phys. 102, 024110.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds