research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Polymorphism of Pb5(PO4)3OHδ within the LK-99 mixture

crossmark logo

aDepartment of Chemistry, Michigan State University, East Lansing, MI 48824, USA
*Correspondence e-mail: xieweiwe@msu.edu

Edited by C. M. Reddy, IISER Kolkata, India (Received 11 March 2024; accepted 14 October 2024; online 19 November 2024)

During the synthetic exploration targeting the polycrystalline compound LK-99, an unexpected phase, Pb5(PO4)3OHδ, was identified as a byproduct. We elucidated the composition of this compound through single-crystal X-ray diffraction analysis. Subsequent synthesis of the target compounds was achieved via high-temperature solid-state pellet reactions. The newly identified Pb5(PO4)3OHδ has an orthorhombic crystal structure with space group Pnma, representing a unique structure differing from the hexagonal apatite phases of Pb10(PO4)6O and Pb5(PO4)3OH. Comprehensive temperature- and magnetic-field-dependent magnetization studies unveiled a temperature-independent magnetic characteristic of Pb5(PO4)3OHδ. Solid-state nuclear magnetic resonance spectroscopy was employed to decipher the origins of the phase stability and confirm the presence of hydrogen atoms in Pb5(PO4)3OHδ. These investigations revealed the presence of protonated oxygen sites, in addition to the interstitial water molecules within the structure, which may play critical roles in stabilizing the orthorhombic phase.

1. Introduction

After the claim of the discovery of an ambient-pressure room-temperature superconductor (Tc > 400 K) LK-99, (Pb10−xCux)(PO4)6O (Lee, Kim & Kwon, 2023[Lee, S., Kim, J.-H. & Kwon, Y.-W. (2023). arXiv:2307.12008.]), with a subsequent report of a levitation experiment at room temperature indicating strong diamagnetic signals (Lee, Kim, Kim et al., 2023[Lee, S., Kim, J., Kim, H.-T., Im, S., An, S. & Auh, K. H. (2023). arXiv:2307.12037.]), LK-99 has garnered unprecedented attention. Despite numerous attempts by various research groups to replicate and verify the superconductivity of LK-99 (Zhu et al., 2023[Zhu, S., Wu, W., Li, Z. & Luo, J. (2023). Matter, 6, 4401-4407.]; Timokhin et al., 2023[Timokhin, I., Chen, C., Wang, Z., Yang, Q. & Mishchenko, A. (2023). arXiv:2308.03823.]; Kumar et al., 2023[Kumar, K., Karn, N. K., Kumar, Y. & Awana, V. P. S. (2023). arXiv:2308.03544.]; Wu et al., 2023[Wu, H., Yang, L., Xiao, B. & Chang, H. (2023). arXiv:2308.01516.]; Hou et al., 2023[Hou, Q., Wei, W., Zhou, X., Sun, Y. & Shi, Z. (2023). arXiv:2308.01192.]), increasing experimental evidence has begun to cast doubt on its superconducting nature (Garisto, 2023[Garisto, D. (2023). Nature, 620, 705-706.]).

In the quest to unravel the mysteries of LK-99's superconductivity, our investigation has led to the discovery of several new phases. Among these, the novel structure of hy­droxy­lpyromorphite, Pb5(PO4)3OHδ, stands out and is different from the conventional hexagonal phase known for Pb10(PO4)6O (Brückner et al., 1995[Brückner, S., Lusvardi, G., Menabue, L. & Saladini, M. (1995). Inorg. Chim. Acta, 236, 209-212.]; Kim et al., 1997[Kim, J. Y., Hunter, B. A., Fenton, R. R. & Kennedy, B. J. (1997). Aust. J. Chem. 50, 1061.]; Barinova et al., 1998[Barinova, A. V., Bonin, M., Pushcharovskii, D. Y., Rastsvetaeva, R. K., Schenk, K. & Dimitrova, O. V. (1998). Crystallogr. Rep. 2, 189.]). The compound Pb10(PO4)6O has been termed oxypyromorphite, a nomenclature that underscores its structural resemblance to pyromorphite, Pb5(PO4)3Cl, and hy­droxy­lpyromorphite, Pb5(PO4)3(OH), which adopts an apatite-like hexagonal structure, wherein O2− anions substitute for the halide ions typically found in apatite structures. This substitution suggests the presence of vacancies at some halide sites, in contrast to the original proposition of a (Pb2+)9(Pb4+)(PO4)6O2 formula (Ito, 1968[Ito, J. (1968). Am. Mineral. 53, 890.]), which would negate the need for such vacancies. However, further studies confirmed the absence of Pb4+ cations in oxypyromorphite (Merker et al., 1970[Merker, L., Engel, G., Wondratschek, H. & Ito, J. (1970). Am. Mineral. 55, 1435.]). Despite its intriguing properties, detailed crystal structure analysis of oxypyromorphite has yet to be carried out. In addition, the lead-based compounds Pb4O(PO4)2, Pb8O5(PO4)2 and Pb10(PO4)6O have been studied for several decades (Yang et al., 2001[Yang, J., Mosby, D. E., Casteel, S. W. & Blanchar, R. W. (2001). Environ. Sci. Technol. 35, 3553-3559.]; Brixner & Foris, 1973[Brixner, L. H. & Foris, C. M. (1973). J. Solid State Chem. 7, 149-154.]; Krivovichev & Burns, 2003[Krivovichev, S. V. & Burns, P. C. (2003). Z. Kristallogr. Cryst. Mater. 218, 357.]). The ferro-elastic Pb8O5(PO4)2 and its vanadium analog Pb8O5(VO4)2 (Dudnik & Kolesov, 1980[Dudnik, E. F. & Kolesov, I. S. (1980). Sov. Phys. Solid State, 22, 700.]; Kiosse et al., 1982[Kiosse, G. A., Dudnik, E. F., Sushko, S. A. & Kolesov, I. S. (1982). Sov. Phys. Crystallogr. 27, 713.]) have also been discovered. Although X-ray and optical analyses on the single crystals of these compounds have been conducted, the crystal structures of both remain unresolved.

In this study, we present a synthetic strategy for the new Pb5(PO4)3OHδ compound using a high-temperature solid-state pellet reaction. Millimetre-sized single crystals were obtained from the reaction. Single-crystal and powder X-ray diffraction (XRD) experiments were conducted to determine the crystal structure and confirm the phase information. Accordingly, Pb5(PO4)3OHδ was found to crystallize in the orthorhombic crystal system with the space group Pnma. Different from the hexagonal apatite phase Pb10(PO4)6O with the balanced charge of (Pb2+)10(PO43−)6O2−, the compound of Pb5(PO4)3O cannot be charge-balanced with the sole existence of Pb2+ and full occupancies on all atomic sites. To confirm the existence of a proton (H+) to balance the charge in Pb5(PO4)3OHδ, high-magnetic-field (800 MHz or 18.8 T) solid-state nuclear magnetic resonance (NMR) spectroscopy was used to determine the chemical environments of proton sites and the presence of water molecules in the system.

2. Synthesis and experimental methods

2.1. Chemical synthesis

Pb5(PO4)3OHδ crystals were synthesized in two steps. The first step was synthesis of the precursors. The mixture of PbO (99.3%, BAKER ANALYZED) and PbSO4 (99.1%, BAKER ANALYZED) was heated under a vacuum for 24 h with 1:1 mole ratio. After the reaction, we obtained the Pb2(SO4)O precursor with Pb3(SO4)O2 (∼1.5 at.%]) impurity. Another precursor is Cu3P, obtained by heating Cu powder (99.9%, Alfa Aesar) and P powder (99%, Beantown Chemical) for 48 h at 550°C under vacuum. The molar ratio of Cu and P was 3:1 and the powder XRD results of the two precursors are shown in the supporting information (Figs. S1a and S1b). The second step was mixing Pb2(SO4)O and Cu3P in the ratio 5:3, remaining at 925°C for 20 h. Millimetre-size single crystals of Pb5(PO4)3OHδ were obtained. All the reaction products were powder pressed using a 0.25 inch (internal diameter) dry pellet pressing die made of carbon steel. A 2 ml alumina cylindrical crucible held the pressed pellet before it was sealed in a fused silica tube under vacuum with around 30 mTorr pressure. After the solid-state reaction, transparent single-crystalline samples can easily be identified on the bottom pellet, which can be separated from black-colored polycrystalline chunks and copper-colored solidified drops on the surface of the black chunks. The rest of the measurements were done using the single crystals separated mechanically from the mixture.

2.2. Structure determination and phase analysis

Pb5(PO4)3OHδ forms transparent, rod-like, brittle single crystals. A single crystal was selected, mounted on a nylon loop with Paratone oil and measured using an XtalLAB Synergy, Dualflex, Hypix single-crystal X-ray diffractometer. Data were collected using ω scans with Mo Kα radiation (λ = 0.71073 Å) and Ag Kα radiation (λ = 0.56087 Å), a micro-focus sealed X-ray tube, 65 kV, 0.67 mA. The total number of runs and images was based on the strategy calculation from the CrysAlisPro (Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.]) program. Data reduction was performed with correction for Lorentz polarization. A numerical absorption correction was applied based on Gaussian integration over a multifaceted crystal model (Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.]). Empirical absorption correction used spherical harmonics, implemented in the SCALE3 ABSPACK scaling algorithm (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]). The structure was solved and refined using the SHELXTL software package (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.], Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). Tables 1[link] and 2[link] show the results of the single-crystal XRD. For the powder XRD measurements, single crystals were ground in an agate mortar and pestle, and the powder placed onto the 20 × 20 × 0.5 mm Rigaku Square groove. Powder XRD measurements were carried out using a Rigaku MiniFlex powder diffractometer in Bragg–Brentano geometry with Cu Kα radiation (λ = 1.5406 Å). Room-temperature measurements were performed with a step size of 0.01° at a scan speed of 0.5° per minute over a Bragg angle (2θ) range of 10–90°. GSAS II (Toby & Von Dreele, 2013[Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.]) was used to perform the Rietveld refinement and analyze phase information.

Table 1
Experimental details

Values in parentheses are the estimated standard deviation from refinement.

Chemical formula Pb5(PO4)3OH
Formula weight (g mol−1) 1337.87
Space group Pnma
Unit-cell dimensions (Å) a = 13.5137 (4), b = 10.2904 (4), c = 9.3838 (3)
Volume (Å3) 1304.93 (7)
Z, Z 4, 0.5
Density (calculated) (g cm−3) 6.810
Absorption coefficient μ (mm−1) 64.725
Crystal size (mm) 0.076 × 0.056 × 0.049
F(000) 2240
   
Data collection  
2θ range (°) 5.286–82.472
No. of reflections collected 48595
No. of independent reflections 4458
Rint 0.1257
   
Refinement method Full-matrix least-squares on F2
No. of data, restraints, parameters 4458, 0, 114
Final R indices R1 [I > 2σ(I)] = 0.0402; wR2 [I > 2σ(I)] = 0.0681 R1 (all) = 0.0811; wR2 (all) = 0.0758
Δρmax, Δρmin (e Å−3) +3.79 and −5.99
RMS deviation from mean (e Å−3) 0.511
Goodness-of-fit on F2 1.047

Table 2
Atomic coordinates and equivalent isotropic atomic displacement parameters (Å2) of Pb5(PO4)3OH

Ueq is one-third of the trace of the orthogonalized Uij tensor. Values in parentheses are the estimated standard deviation from refinement.

Atoms Wyckoff site x y z Occ. Ueq
Pb1 8d 0.07377 (2) 0.55577 (2) 0.29630 (2) 1 0.019 (1)
Pb2 4c 0.02043 (2) 0.75 −0.02843 (3) 1 0.017 (1)
Pb3 4c 0.23350 (3) 0.75 −0.30356 (4) 1 0.025 (1)
Pb4 4c 0.2750 (2) 0.75 0.1556 (2) 0.71 0.0285 (2)
Pb5 4c 0.2703 (5) 0.75 0.1277 (6) 0.29 0.05 (1)
P1 8d −0.1631 (1) 0.5324 (1) 0.07074 (1) 1 0.0123 (2)
P2 4c 0.0030 (2) 0.75 −0.4252 (2) 1 0.0153 (4)
O1 4c −0.0913 (6) 0.75 −0.34610 (8) 1 0.0402 (2)
O2 4c −0.071 (5) 0.75 0.4179 (7) 1 0.0260 (1)
O3 4c 0.1089 (4) 0.75 0.1753 (5) 1 0.013 (1)
O4 8d −0.1751 (4) 0.3859 (4) 0.0955 (4) 1 0.0248 (9)
O5 8d −0.1685 (4) 0.5588 (5) −0.0902 (5) 1 0.030 (1)
O6 8d −0.0618 (4) 0.5794 (5) 0.1249 (6) 1 0.031 (1)
O7 8d −0.2451 (4) 0.6053 (5) 0.1488 (6) 1 0.033 (1)
O8 8d 0.0635 (4) 0.8677 (5) −0.3915 (7) 1 0.041 (1)
H 8d 0.0993 0.85244 −0.322954 0.5 0.061

2.3. Solid-state NMR spectroscopy for detecting protons

1H solid-state NMR experiments were conducted on a Bruker NEO spectrometer with a narrow-bore magnet with B0 = 18.8 T [ν0(1H) = 800 MHz] at room temperature (298 K). Spectra were acquired using a Phoenix NMR 1.6 mm HXY magic-angle spinning (MAS) probe with samples packed into 1.6 mm (outer diameter) zirconia rotors. The MAS frequency was set to 8 kHz. 1H chemical shifts were referenced to alanine (δiso = 1.38 p.p.m.) as a secondary reference with respect to tetra­methyl­silane (δiso = 0 p.p.m.). All 1H spectra were acquired using a rotor-synchronized Hahn echo (90°–τ–180° acquisition) with 2.5 µs (100 kHz) π/2 pulses, an interpulse delay (τ) of 500 µs and a recycle delay of 2 s (see Table S1 for further details). Spectra were processed in TopSpin 4.1 (Bruker), and simulations of all spectra were prepared using ssNake v1.3 (van Meerten et al., 2019[Meerten, S. G. J. van, Franssen, W. M. J. & Kentgens, A. P. M. (2019). J. Magn. Reson. 301, 56-66.]).

2.4. Magnetic measurements

Temperature- and magnetic-field-dependent DC and vibrating sample magnetometry (VSM) magnetization data were collected using a Quantum Design Magnetic Property Measurement System (MPMS3). Temperature- and magnetic-field-dependent DC magnetization measurements were taken on the powder sample loaded in the powder sample holder and put into a brass half-tube sample holder. In VSM measurements, a peak amplitude of 5 mm and an average of 2 s were used. An empty powder sample holder was measured under the same conditions to estimate the background to be subtracted from the measurements.

3. Results and discussion

The crystal structure of Pb5(PO4)3OHδ exhibits similarities to apatite-like lead compounds, including pyromorphite [Pb5(PO4)3Cl], hy­droxy­lapatite [Pb5(PO4)3(OH)] and the LK-99 precursor, Pb10(PO4)6O. Previous determinations of hy­droxy­lapatite's structure, through neutron and X-ray powder diffraction analysis, identified the OH group positioned at the 4e Wyckoff site with a 0.5 site occupation factor (Kim et al., 1997[Kim, J. Y., Hunter, B. A., Fenton, R. R. & Kennedy, B. J. (1997). Aust. J. Chem. 50, 1061.]). In contrast, Barinova et al.'s refinement using single-crystal diffraction data located the OH group at the 2b site, indicating full occupancy – a characteristic more aligned with the halide ion positions in pyromorphite-like compounds (Pb5(PO4)3X, where X = F, Cl (Barinova et al., 1998[Barinova, A. V., Bonin, M., Pushcharovskii, D. Y., Rastsvetaeva, R. K., Schenk, K. & Dimitrova, O. V. (1998). Crystallogr. Rep. 2, 189.]). The structural framework of Pb10(PO4)6O mirrors that of hy­droxy­lapatite, with the O4 atom situated at the 4e site, albeit with a reduced occupation factor of 0.25. Our investigation into a single crystal of Pb5(PO4)3OHδ revealed a deviation from the expected hexagonal structure to an orthorhombic Pnma space group, attributed to lattice parameter distortions, as shown in Fig. 1[link](a). The hydrogen atoms were refined with half occupancy at the 8d sites. However, considering the limitations of XRD in accurately detecting hydrogen positions, we employed high-field 1H solid-state NMR (ssNMR) to further elucidate the hydrogen occupancies, providing a more comprehensive understanding of the structural intricacies of Pb5(PO4)3OHδ. To ascertain the phase purity and facilitate the investigation of its physical properties, powder XRD analysis was performed, with the results presented in Fig. 1[link](b). The data were refined using Rietveld refinement, and the green peak suggests a peak from a minor impurity phase.

[Figure 1]
Figure 1
The crystal structure and the powder XRD data of Pb5(PO4)3OHδ. (a) shows the crystal structure of Pb5(PO4)3(OH) from single-crystal XRD and a comparison of Pb atom distribution between the orthorhombic and hexagonal structures. (b) Powder XRD data of Pb5(PO4)3OHδ from in-laboratory diffraction measurements. The experimental data are plotted as red dots. The black line gives the Rietveld refinement. The blue line indicates the corresponding residual pattern (difference between observed and calculated patterns). Bars give Pb5(PO4)3OHδ peak positions from single-crystal XRD measurement. The green arrow indicates the peak from an impurity. On the upper right of the figure, a picture of the crystals is shown; the size of the chunk is about 5 mm.

The 1H ssNMR spectrum features six underlying peaks with their isotropic chemical shifts (δiso) ranging from 0.8 to 5.2 p.p.m. in a 1:1.2:2.1:2.7:10.4:3.6 ratio from left to right (Fig. 2[link] and Table 3[link]). This is surprising since the solved single-crystal XRD structure only includes one hydrogen position, while the NMR data indicate a far more complex 1H environment. It is not unusual for ssNMR to detect additional structural features that are invisible to XRD techniques (Morris et al., 2017[Morris, S. A., Bignami, G. P. M., Tian, Y., Navarro, M., Firth, D. S., Čejka, J., Wheatley, P. S., Dawson, D. M., Slawinski, W. A., Wragg, D. S., Morris, R. E. & Ashbrook, S. E. (2017). Nat. Chem. 9, 1012-1018. ]; Zhang et al., 2022[Zhang, W., Chen, S., Terskikh, V. V., Lucier, B. E. G. & Huang, Y. (2022). Solid State Nucl. Magn. Reson. 119, 101793.]; Inukai et al., 2016[Inukai, M., Horike, S., Itakura, T., Shinozaki, R., Ogiwara, N., Umeyama, D., Nagarkar, S. S., Nishiyama, Y., Malon, M., Hayashi, A., Ohhara, T., Kiyanagi, R. & Kitagawa, S. (2016). J. Am. Chem. Soc. 138, 8505-8511.]; Corlett et al., 2019[Corlett, E. K., Blade, H., Hughes, L. P., Sidebottom, P. J., Walker, D., Walton, R. I. & Brown, S. P. (2019). CrystEngComm, 21, 3502-3516.]; Li et al., 2013[Li, Z., Miyoshi, T., Sen, M. K., Koga, T., Otsubo, A. & Kamimura, A. (2013). Macromolecules, 46, 6507-6519.]; Serrano-Sevillano et al., 2019[Serrano-Sevillano, J., Carlier, D., Saracibar, A., Lopez del Amo, J. M. & Casas-Cabanas, M. (2019). Inorg. Chem. 58, 8347-8356.]). A few possible explanations for these hydrogen resonances are: (i) structural defects in the sample where the phosphate ion reacts with atmospheric water, (ii) water being incorporated into the structure, either occupying vacancies in the octahedral or tetrahedral holes in the crystal structure and/or (iii) atmospheric water being bound to the lead as a ligand.

Table 3
Isotropic chemical shifts (δiso) and percentages of 1H resonances from ssNMR

  Peak
Parameter a b c d e f
δiso (p.p.m.) 5.2 2.2 2.0 1.5 1.3 0.8
Percentage (%) 5 6 10 13 50 17
[Figure 2]
Figure 2
1H MAS solid-state NMR analysis of Pb5(PO4)3OHδ. Experimental 1H MAS NMR of Pb5(PO4)3OHδ is shown in blue, with corresponding analytical simulations in black, and deconvolution of the simulation is shown in color. Six 1H resonances are color-coded and labeled as af, with their relative intensity percentages provided.

Since only a single spectrum for Pb5(PO4)3OHδ was acquired with no internal reference, only approximate estimation of the amount of hydrogen in the sample is possible. Precise quantification would require a low radiofrequency pulse, a different pulse sequence (i.e. Bloch decay), accurate site assignments of all hydrogen atoms and a series of standards to construct a calibration curve (Bharti & Roy, 2012[Bharti, S. K. & Roy, R. (2012). TrAC Trends Anal. Chem. 35, 5-26.]; Pauli et al., 2012[Pauli, G. F. T., Gödecke, T., Jaki, B. U. & Lankin, D. C. (2012). J. Nat. Prod. 75, 834-851.]; Giraudeau, 2017[Giraudeau, P. (2017). Magn. Reson. Chem. 55, 61-69.]; Holzgrabe, 2010[Holzgrabe, U. (2010). Prog. Nucl. Magn. Reson. Spectrosc. 57, 229-240.]; Pauli et al., 2015[Pauli, G. F., Chen, S. N., Simmler, C., Lankin, D. C., Gödecke, T., Jaki, B. U., Friesen, J. B., McAlpine, J. B. & Napolitano, J. G. (2015). J. Med. Chem. 58, 9061.]). Hence, we are limited to approximately quantifying the Pb5(PO4)3OHδ spectrum relative to another 1H NMR spectrum of a known sample. First, a 1H spectrum of alanine with the exact same experimental parameters as Pb5(PO4)3OHδ was acquired using a sufficiently long recycle delay (in this case, 2 s) to completely re-equilibrate the magnetization before the next scan. Second, a Hahn echo with a long interpulse delay (in this case, 500 µs) was used for these experiments in order to eliminate the broad 1H background signal from the probe to allow for easier quantification of the spectra. It has been shown that the relative quantification of NMR spectra of two compounds is possible using the following equation (Malz & Jancke, 2005[Malz, F. & Jancke, H. (2005). J. Pharm. Biomed. Anal. 38, 813-823.]):

[{{{n_x}} \over {{n_y}}} = {{{I_x}} \over {{I_y}}} \times {{{N_y}} \over {{N_x}}}, \eqno (1)]

where nx/ny is the molar ratio, Ix/Iy is the total integrated intensity ratio and N is the number of nuclei corresponding to the resonance line. Using the total integrated intensities from a spectrum of alanine and Pb5(PO4)3OHδ, we are able to write equation (2) for approximately quantifying the spectrum as

[m = {{{I_{\rm unknown}}} \over {{I_{\rm alanine}}}} \times \left({{{{m_{\rm alanine}}} \over {{M_{\rm alanine}}}} \times {S_{\rm alanine}}} \right), \eqno (2)]

where I is the total integrated intensity of the spectrum, M is the molecular weight, m is the mass of the sample packed in the NMR rotor and S is the number of moles of hydrogen in the sample. Using equation (2), we were able to estimate the amount of hydrogen in Pb5(PO4)3OHδ to be approximately 82.5 µg or 1.15 wt%.

While Fig. 1[link](b) depicted the primary phase of the transparent single crystal, Pb5(PO4)3OHδ, the data also suggested the presence of minor impurity phases within the sample. Single-crystal and powder XRD analyses have identified Cu2S as the predominant impurity. Prior to evaluating the magnetization data, it is essential to consider the potential magnetic contributions from Cu2S impurities. If Cu2S were to significantly influence the magnetic behavior, one might expect to observe a β-to-γ phase transition around 370 K in resistivity, heat capacity and magnetic susceptibility measurements (Zhu et al., 2023[Zhu, S., Wu, W., Li, Z. & Luo, J. (2023). Matter, 6, 4401-4407.]). VSM measurements, conducted without background subtraction across a temperature range of 1.8 to 400 K and presented in Fig. 3[link], do not reveal any magnetic transition near 370 K. The large positive magnetization is also different from previous work (Zhu et al., 2023[Zhu, S., Wu, W., Li, Z. & Luo, J. (2023). Matter, 6, 4401-4407.]). The presence of undetected impurity phases, a common occurrence in the solid-state synthesis of LK-99, cannot be overlooked. Fig. 3[link] presents the findings from temperature-dependent magnetization investigations, conducted under identical experimental conditions to those applied to an empty sample holder to guarantee precision. The magnetization profiles depicted in Fig. 3[link], obtained through zero-field-cooled-warming (ZFCW) and field-cooled (FC) methods, exhibit distinctive Curie–Weiss-like behavior fitting is shown in Figs. S2a and S2b). A significant deviation between the ZFCW and FC data is evident around 50 K, where a kink-like anomaly, potentially arising from oxygen trapped in the measured sample, is identified in the ZFCW magnetization trajectory. This anomaly is accentuated in the derivative d(MT/H)/dT plot, prominently featured in the inset at the upper-left corner of the figure, further emphasizing its significance. The field-dependent magnetization is also shown in Fig. S3b.

[Figure 3]
Figure 3
Temperature-dependent magnetization of Pb5(PO4)3OHδ. ZFCW and FC magnetization as a function of temperature is given by VSM in the range of 1.8–400 K with a field of 1 kOe. The left inset shows d(MT/H)/dT as a function of temperature in the low-temperature range. The right inset shows the derivative of d(MT/H)/dT in the high-temperature range.

In conclusion, the orthorhombic phase of Pb5(PO4)3OHδ was successfully synthesized via solid-state reaction techniques with the objective of creating LK-99. The determination of the phase composition and crystal structure of the product was achieved through an integrated approach, utilizing both single-crystal and powder X-ray diffraction analyses, complemented by solid-state NMR spectroscopy.

Supporting information


Computing details top

(I) top
Crystal data top
HO13P3Pb5Dx = 6.810 Mg m3
Mr = 1337.87Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 15385 reflections
a = 13.5137 (4) Åθ = 2.6–41.0°
b = 10.2904 (4) ŵ = 64.73 mm1
c = 9.3838 (3) ÅT = 293 K
V = 1304.93 (7) Å3Rod-like
Z = 40.08 × 0.06 × 0.05 mm
F(000) = 2240
Data collection top
XtalLAB Synergy, Dualflex, Hypix
diffractometer
Rint = 0.126
Absorption correction: analyticalθmax = 41.2°, θmin = 2.6°
Tmin = 0.057, Tmax = 0.177h = 2424
48595 measured reflectionsk = 1818
4458 independent reflectionsl = 1717
2940 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0195P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.001
S = 1.05Δρmax = 3.79 e Å3
4458 reflectionsΔρmin = 5.99 e Å3
114 parametersExtinction correction: SHELXL-2019/1 (Sheldrick 2019), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00025 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pb10.07377 (2)0.55577 (2)0.29630 (2)0.01897 (6)
Pb20.02043 (2)0.7500000.02842 (3)0.01674 (6)
Pb30.23350 (3)0.7500000.30356 (4)0.02470 (8)
Pb40.27499 (19)0.7500000.1556 (2)0.0285 (2)0.71
Pb50.2703 (5)0.7500000.1277 (6)0.0496 (14)0.29
P10.16310 (10)0.53243 (13)0.07074 (14)0.0123 (2)
P20.00299 (15)0.7500000.4252 (2)0.0153 (4)
O10.0913 (6)0.7500000.3461 (8)0.0402 (19)
O20.0171 (5)0.7500000.4179 (6)0.0257 (13)
O30.1089 (4)0.7500000.1753 (5)0.0134 (10)
O40.1751 (4)0.3859 (4)0.0955 (4)0.0248 (9)
O50.1685 (4)0.5588 (5)0.0902 (5)0.0297 (11)
O60.0618 (3)0.5794 (5)0.1249 (6)0.0311 (11)
O70.2451 (4)0.6053 (5)0.1488 (6)0.0333 (12)
O80.0635 (4)0.8677 (5)0.3915 (7)0.0406 (14)
H80.0992910.8524350.3229540.061*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.02213 (10)0.01654 (10)0.01823 (9)0.00122 (8)0.00192 (8)0.00298 (7)
Pb20.01586 (12)0.02079 (14)0.01357 (11)0.0000.00303 (10)0.000
Pb30.02997 (17)0.02127 (15)0.02286 (15)0.0000.00819 (13)0.000
Pb40.0111 (3)0.0524 (5)0.0221 (5)0.0000.0032 (3)0.000
Pb50.0111 (9)0.098 (2)0.040 (3)0.0000.0058 (15)0.000
P10.0110 (5)0.0105 (5)0.0154 (6)0.0008 (5)0.0014 (5)0.0000 (4)
P20.0142 (8)0.0203 (9)0.0115 (8)0.0000.0010 (7)0.000
O10.029 (4)0.066 (6)0.026 (4)0.0000.011 (3)0.000
O20.022 (3)0.041 (4)0.015 (3)0.0000.002 (2)0.000
O30.010 (2)0.018 (3)0.012 (2)0.0000.0001 (17)0.000
O40.039 (3)0.0122 (18)0.024 (2)0.0076 (19)0.007 (2)0.0007 (15)
O50.040 (3)0.033 (2)0.0160 (19)0.012 (2)0.0050 (19)0.0031 (18)
O60.018 (2)0.041 (3)0.035 (3)0.011 (2)0.0083 (19)0.008 (2)
O70.031 (3)0.025 (2)0.044 (3)0.005 (2)0.020 (2)0.012 (2)
O80.028 (3)0.033 (3)0.061 (4)0.001 (2)0.012 (3)0.019 (3)
Geometric parameters (Å, º) top
Pb1—Pb43.624 (2)Pb3—O5vi2.573 (4)
Pb1—Pb53.681 (6)Pb3—O8iv2.725 (5)
Pb1—O22.608 (4)Pb3—O82.725 (5)
Pb1—O32.347 (3)Pb4—O32.252 (6)
Pb1—O5i2.601 (5)Pb4—O7ii2.379 (5)
Pb1—O62.450 (5)Pb4—O7vii2.379 (5)
Pb1—O7ii2.552 (5)Pb5—O32.226 (9)
Pb2—Pb53.681 (6)Pb5—O7vii2.581 (7)
Pb2—O32.255 (5)Pb5—O7ii2.581 (7)
Pb2—O4i2.592 (5)P1—O41.534 (4)
Pb2—O4iii2.592 (5)P1—O51.536 (4)
Pb2—O62.527 (5)P1—O61.538 (5)
Pb2—O6iv2.527 (5)P1—O71.526 (5)
Pb3—O1v2.753 (7)P2—O11.474 (7)
Pb3—O4i2.528 (4)P2—O2viii1.498 (6)
Pb3—O4iii2.528 (4)P2—O81.495 (5)
Pb3—O5v2.573 (4)P2—O8iv1.495 (5)
Pb4—Pb1—Pb54.13 (11)O7vii—Pb4—Pb188.76 (15)
O2—Pb1—Pb495.16 (11)O7ii—Pb4—Pb1iv88.76 (15)
O2—Pb1—Pb596.41 (12)O7ii—Pb4—Pb144.60 (13)
O3—Pb1—Pb437.09 (13)O7vii—Pb4—Pb1iv44.60 (13)
O3—Pb1—Pb535.30 (14)O7vii—Pb4—O7ii77.5 (3)
O3—Pb1—O269.77 (15)Pb1iv—Pb5—Pb165.77 (11)
O3—Pb1—O5i85.80 (15)Pb2—Pb5—Pb160.61 (10)
O3—Pb1—O675.47 (17)Pb2—Pb5—Pb1iv60.61 (10)
O3—Pb1—O7ii74.55 (17)O3—Pb5—Pb137.53 (9)
O5i—Pb1—Pb467.03 (12)O3—Pb5—Pb1iv37.53 (9)
O5i—Pb1—Pb564.62 (13)O3—Pb5—Pb235.03 (16)
O5i—Pb1—O2154.68 (15)O3—Pb5—O7vii76.0 (2)
O6—Pb1—Pb4105.49 (12)O3—Pb5—O7ii76.0 (2)
O6—Pb1—Pb5101.73 (14)O7vii—Pb5—Pb184.6 (2)
O6—Pb1—O281.89 (19)O7ii—Pb5—Pb143.88 (14)
O6—Pb1—O5i85.71 (17)O7vii—Pb5—Pb1iv43.88 (14)
O6—Pb1—O7ii146.06 (16)O7ii—Pb5—Pb1iv84.6 (2)
O7ii—Pb1—Pb440.88 (12)O7ii—Pb5—Pb2104.4 (2)
O7ii—Pb1—Pb544.49 (14)O7vii—Pb5—Pb2104.4 (2)
O7ii—Pb1—O2102.13 (18)O7vii—Pb5—O7ii70.5 (3)
O7ii—Pb1—O5i76.61 (17)O4—P1—O5108.5 (2)
O3—Pb2—Pb534.53 (16)O4—P1—O6110.6 (3)
O3—Pb2—O4i77.19 (15)O5—P1—O6108.2 (3)
O3—Pb2—O4iii77.19 (15)O7—P1—O4109.5 (3)
O3—Pb2—O6iv75.55 (14)O7—P1—O5110.5 (3)
O3—Pb2—O675.55 (14)O7—P1—O6109.5 (3)
O4iii—Pb2—Pb549.98 (12)O1—P2—O2viii109.8 (4)
O4i—Pb2—Pb549.98 (12)O1—P2—O8111.5 (3)
O4iii—Pb2—O4i65.31 (18)O1—P2—O8iv111.5 (3)
O6—Pb2—Pb5100.19 (12)O8—P2—O2viii107.9 (3)
O6iv—Pb2—Pb5100.19 (12)O8iv—P2—O2viii107.9 (3)
O6—Pb2—O4iii150.17 (14)O8iv—P2—O8108.2 (4)
O6iv—Pb2—O4i150.17 (14)P2—O1—Pb3ix179.6 (5)
O6iv—Pb2—O4iii96.77 (15)Pb1—O2—Pb1iv100.0 (2)
O6—Pb2—O4i96.77 (15)P2x—O2—Pb1iv110.2 (2)
O6iv—Pb2—O688.0 (3)P2x—O2—Pb1110.2 (2)
O4iii—Pb3—O1v82.81 (18)Pb1iv—O3—Pb1116.8 (2)
O4i—Pb3—O1v82.81 (18)Pb2—O3—Pb1iv107.63 (14)
O4iii—Pb3—O4i67.17 (19)Pb2—O3—Pb1107.63 (14)
O4i—Pb3—O5v92.11 (15)Pb4—O3—Pb1103.97 (15)
O4iii—Pb3—O5vi92.11 (14)Pb4—O3—Pb1iv103.96 (15)
O4i—Pb3—O5vi152.01 (14)Pb4—O3—Pb2117.3 (2)
O4iii—Pb3—O5v152.01 (14)Pb5—O3—Pb1iv107.17 (16)
O4iii—Pb3—O874.03 (16)Pb5—O3—Pb1107.17 (16)
O4i—Pb3—O8iv74.03 (16)Pb5—O3—Pb2110.4 (3)
O4iii—Pb3—O8iv102.50 (18)Pb5—O3—Pb46.87 (18)
O4i—Pb3—O8102.50 (18)Pb3i—O4—Pb2i98.09 (15)
O5v—Pb3—O1v75.81 (15)P1—O4—Pb2i114.1 (2)
O5vi—Pb3—O1v75.81 (15)P1—O4—Pb3i133.9 (2)
O5vi—Pb3—O5v99.8 (2)Pb3ix—O5—Pb1i108.18 (15)
O5v—Pb3—O8131.03 (16)P1—O5—Pb1i128.9 (3)
O5v—Pb3—O8iv88.65 (17)P1—O5—Pb3ix122.7 (3)
O5vi—Pb3—O8iv131.03 (16)Pb1—O6—Pb296.54 (15)
O5vi—Pb3—O888.65 (17)P1—O6—Pb1148.3 (3)
O8iv—Pb3—O1v151.60 (12)P1—O6—Pb2114.9 (3)
O8—Pb3—O1v151.60 (12)Pb1xi—O7—Pb5xi91.6 (2)
O8—Pb3—O8iv52.8 (2)Pb4xi—O7—Pb1xi94.52 (17)
Pb1iv—Pb4—Pb166.95 (4)Pb4xi—O7—Pb5xi4.14 (13)
O3—Pb4—Pb138.94 (7)P1—O7—Pb1xi134.1 (3)
O3—Pb4—Pb1iv38.94 (7)P1—O7—Pb4xi126.5 (3)
O3—Pb4—O7vii79.79 (17)P1—O7—Pb5xi128.0 (3)
O3—Pb4—O7ii79.79 (17)P2—O8—Pb399.5 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y, z+1/2; (iii) x, y+1/2, z; (iv) x, y+3/2, z; (v) x+1/2, y, z1/2; (vi) x+1/2, y+3/2, z1/2; (vii) x+1/2, y+3/2, z+1/2; (viii) x, y, z1; (ix) x1/2, y, z1/2; (x) x, y, z+1; (xi) x1/2, y, z+1/2.
 

Funding information

The following funding is acknowledged: US Department of Energy (grant No. DE-SC0023648).

References

First citationBarinova, A. V., Bonin, M., Pushcharovskii, D. Y., Rastsvetaeva, R. K., Schenk, K. & Dimitrova, O. V. (1998). Crystallogr. Rep. 2, 189.  Google Scholar
First citationBharti, S. K. & Roy, R. (2012). TrAC Trends Anal. Chem. 35, 5–26.  CrossRef CAS Google Scholar
First citationBrixner, L. H. & Foris, C. M. (1973). J. Solid State Chem. 7, 149–154.  CrossRef CAS Google Scholar
First citationBrückner, S., Lusvardi, G., Menabue, L. & Saladini, M. (1995). Inorg. Chim. Acta, 236, 209–212.  Google Scholar
First citationCorlett, E. K., Blade, H., Hughes, L. P., Sidebottom, P. J., Walker, D., Walton, R. I. & Brown, S. P. (2019). CrystEngComm, 21, 3502–3516.  Web of Science CSD CrossRef CAS Google Scholar
First citationDudnik, E. F. & Kolesov, I. S. (1980). Sov. Phys. Solid State, 22, 700.  Google Scholar
First citationGaristo, D. (2023). Nature, 620, 705–706.  CrossRef CAS PubMed Google Scholar
First citationGiraudeau, P. (2017). Magn. Reson. Chem. 55, 61–69.  CrossRef CAS PubMed Google Scholar
First citationHolzgrabe, U. (2010). Prog. Nucl. Magn. Reson. Spectrosc. 57, 229–240.  CrossRef CAS PubMed Google Scholar
First citationHou, Q., Wei, W., Zhou, X., Sun, Y. & Shi, Z. (2023). arXiv:2308.01192.  Google Scholar
First citationInukai, M., Horike, S., Itakura, T., Shinozaki, R., Ogiwara, N., Umeyama, D., Nagarkar, S. S., Nishiyama, Y., Malon, M., Hayashi, A., Ohhara, T., Kiyanagi, R. & Kitagawa, S. (2016). J. Am. Chem. Soc. 138, 8505–8511.  CrossRef CAS PubMed Google Scholar
First citationIto, J. (1968). Am. Mineral. 53, 890.  Google Scholar
First citationKim, J. Y., Hunter, B. A., Fenton, R. R. & Kennedy, B. J. (1997). Aust. J. Chem. 50, 1061.  Google Scholar
First citationKiosse, G. A., Dudnik, E. F., Sushko, S. A. & Kolesov, I. S. (1982). Sov. Phys. Crystallogr. 27, 713.  Google Scholar
First citationKrivovichev, S. V. & Burns, P. C. (2003). Z. Kristallogr. Cryst. Mater. 218, 357.  CrossRef Google Scholar
First citationKumar, K., Karn, N. K., Kumar, Y. & Awana, V. P. S. (2023). arXiv:2308.03544.  Google Scholar
First citationLee, S., Kim, J., Kim, H.-T., Im, S., An, S. & Auh, K. H. (2023). arXiv:2307.12037.  Google Scholar
First citationLee, S., Kim, J.-H. & Kwon, Y.-W. (2023). arXiv:2307.12008.  Google Scholar
First citationLi, Z., Miyoshi, T., Sen, M. K., Koga, T., Otsubo, A. & Kamimura, A. (2013). Macromolecules, 46, 6507–6519.  CrossRef CAS Google Scholar
First citationMalz, F. & Jancke, H. (2005). J. Pharm. Biomed. Anal. 38, 813–823.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMeerten, S. G. J. van, Franssen, W. M. J. & Kentgens, A. P. M. (2019). J. Magn. Reson. 301, 56–66.  PubMed Google Scholar
First citationMerker, L., Engel, G., Wondratschek, H. & Ito, J. (1970). Am. Mineral. 55, 1435.  Google Scholar
First citationMorris, S. A., Bignami, G. P. M., Tian, Y., Navarro, M., Firth, D. S., Čejka, J., Wheatley, P. S., Dawson, D. M., Slawinski, W. A., Wragg, D. S., Morris, R. E. & Ashbrook, S. E. (2017). Nat. Chem. 9, 1012–1018.   CrossRef CAS PubMed Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPauli, G. F., Chen, S. N., Simmler, C., Lankin, D. C., Gödecke, T., Jaki, B. U., Friesen, J. B., McAlpine, J. B. & Napolitano, J. G. (2015). J. Med. Chem. 58, 9061.  CrossRef PubMed Google Scholar
First citationPauli, G. F. T., Gödecke, T., Jaki, B. U. & Lankin, D. C. (2012). J. Nat. Prod. 75, 834–851.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.  Google Scholar
First citationSerrano-Sevillano, J., Carlier, D., Saracibar, A., Lopez del Amo, J. M. & Casas-Cabanas, M. (2019). Inorg. Chem. 58, 8347–8356.  CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTimokhin, I., Chen, C., Wang, Z., Yang, Q. & Mishchenko, A. (2023). arXiv:2308.03823.  Google Scholar
First citationToby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544–549.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWu, H., Yang, L., Xiao, B. & Chang, H. (2023). arXiv:2308.01516.  Google Scholar
First citationYang, J., Mosby, D. E., Casteel, S. W. & Blanchar, R. W. (2001). Environ. Sci. Technol. 35, 3553–3559.  CrossRef PubMed CAS Google Scholar
First citationZhang, W., Chen, S., Terskikh, V. V., Lucier, B. E. G. & Huang, Y. (2022). Solid State Nucl. Magn. Reson. 119, 101793.  CrossRef PubMed Google Scholar
First citationZhu, S., Wu, W., Li, Z. & Luo, J. (2023). Matter, 6, 4401–4407.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds