research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Crystal structure and doping in synthetic enstatite: an analysis of Li/Fe3+-doped single-crystal samples

crossmark logo

aDepartment of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy, bDepartment of Energy Technologies and Renewable Sources, ENEA CR Casaccia, S. Maria di Galeria, 00123, Rome, Italy, and cDepartment of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci cubo 15b, I-87036, Arcavacata di Rende (CS), Italy
*Correspondence e-mail: paolo.ballirano@uniroma1.it

Edited by R. Černý, University of Geneva, Switzerland (Received 7 October 2024; accepted 28 November 2024; online 14 January 2025)

A series of Li+/Fe3+-doped enstatite crystals of com­position Mg(2–2x)LixFexSi2O6 were synthesized and structurally characterized. Under the selected experimental conditions, we grew three crystals of Pbca orthopy­rox­ene (OPX: x = 0.270–0.313) and two crystals of Pbcn protopy­rox­ene (PPX: x = 0.156–0.164) using the flux-growth technique. The observed variation in the polyhedral volume and distortion of the M2 octa­hedron as a function of Li/Fe3+ doping suggests the presence of an upper limit, at least for the OPX samples. The same linear relation was observed between the polyhedral volume and 〈M1—O〉 bond length across all analysed samples, including the endmembers protoenstatite (PEN), orthoenstatite (OEN) and LiFe3+Si2O6. It seems that the M2 octa­hedron plays a crucial role in stabilizing the py­rox­ene topology in either the PEN or the OEN form, because the PPX and OPX samples show two distinct linear relations between the M2O6 polyhedral volume and 〈M2—O〉, with the PPX trend converging toward the parameters of the LiFe3+Si2O6 endmember, whereas the OPX trend, including OEN, diverges largely from these parameters.

1. Introduction

Magnesium silicate Mg2Si2O6 can occur in six polymorphic modifications. Two of them are ortho­rhom­bic, namely, Pbcn protoenstatite (PEN: Kanzaki & Xue, 2017[Kanzaki, M. & Xue, X. (2017). J. Mineral. Petrol. Sci. 112, 359-364.]) and Pbca orthoenstatite (OEN: Ganguly & Ghose, 1979[Ganguly, J. & Ghose, S. (1979). Contr. Miner. Petrol. 69, 375-385.]; Sasaki et al., 1982[Sasaki, S., Fujino, K., Takeuchi, Y. & Sadanaga, R. (1982). Z. Kristallogr. 158, 279-297.]), whereas four monoclinic modifications have been described so far, namely, P21/c low-pressure/low-tem­per­a­ture clinoenstatite (LPCEN/LTCEN: Ohashi & Finger, 1976[Ohashi, Y. & Finger, L. W. (1976). Carnegie Inst. Washington Yearb. 75, 743-746.]; Ohashi, 1984[Ohashi, Y. (1984). Phys. Chem. Miner. 10, 217-229.]; Pannhorst, 1984[Pannhorst, W. (1984). Neues Jb. Miner. Abh. 150, 219-228.]), C2/c (metastable) high-tem­per­a­ture clinoenstatite (HTCEN: Yoshiasa et al., 2013[Yoshiasa, A., Nakatsuka, A., Okube, M. & Katsura, T. (2013). Acta Cryst. B69, 541-546.]), C2/c high-pressure clinoenstatite (HPCEN: Angel et al., 1992[Angel, R. J., Chopelas, A. & Ross, N. L. (1992). Nature, 358, 322-324.]) and P21/c high-pressure clinoenstatite (HPCEN2: Lazarz et al., 2019[Lazarz, J. D., Dera, P., Hu, Y., Meng, Y., Bina, C. R. & Jacobsen, S. D. (2019). Am. Mineral. 104, 897-904.]). PEN has not been found in nature and is stable in a relatively small low-pressure range (<1 GPa) at tem­per­a­tures (T) exceeding 1000 °C, potentially up to its incongruent melting point at 1550 °C (Boyd et al., 1964[Boyd, F. R., England, J. L. & Davis, B. T. C. (1964). J. Geophys. Res. 69, 2101-2109.]). OEN has a large stability field at low pressure extending from ∼600 °C (forsterite Mg2SiO4 + liquid) up to melting (except for the small field occupied by PEN) and is the polymorphic form ubiquitously found in both igneous and metamorphic rocks. LPCEN/LTCEN is uncommon in nature, and it has been synthesized at T < 566 °C, clearly indicating that it is the low-tem­per­a­ture form of Mg2Si2O6. A simplified PT diagram of Mg2Si2O6 is shown in Fig. 1[link]. Lithium-bearing olivines (Ballirano et al., 2024[Ballirano, P., Celata, B., Pacella, A., Bloise, A., Tempesta, G., Sejkora, J. & Bosi, F. (2024). Inorg. Chem. 63, 20372-20379.]) were initially chosen as a test case for modelling Li+ + Fe3+ ↔ 2 Mg2+ coupled substitution in silicates. Next, we selected Mg2Si2O6 for further investigation on this issue, owing to its capability to crystallize in different space groups. We focused, in particular, on the ortho­rhom­bic polymorphs of Mg2Si2O6 as two synthetic Pbcn protopy­rox­ene crystals of Mg(2–2x)LixScxSi2O6 com­position (x = 0.23 and 0.30) have been prepared and described so far (Smyth & Ito, 1977[Smyth, J. R. & Ito, J. (1977). Am. Mineral. 62, 1252-1257.]; Yang et al., 1999[Yang, H., Finger, L. W., Conrad, P. G., Prewit, C. T. & Hazen, R. M. (1999). Am. Mineral. 84, 245-256.]), possibly suggesting that the partial coupled substitution (Li + VIMe3+) for 2Mg plays the role of stabilizer of such a py­rox­ene topology. Despite the small differences in the corresponding ionic radii (Li+ = 0.760 Å and Sc3+ = 0.745 Å; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]), Li was fully ordered at the M2 site, whereas Sc3+ occupies the M1 site (Smyth & Ito, 1977[Smyth, J. R. & Ito, J. (1977). Am. Mineral. 62, 1252-1257.]; Yang et al., 1999[Yang, H., Finger, L. W., Conrad, P. G., Prewit, C. T. & Hazen, R. M. (1999). Am. Mineral. 84, 245-256.]). However, upon recent revision of the VILi ion radius to 0.812 Å (Hawthorne & Gagné, 2024[Hawthorne, F. C. & Gagné, O. C. (2024). Acta Cryst. B80, 326-339.]), this site preference is perfectly explainable. The latter forms a polyhedron that is smaller and much less distorted com­pared to M2O6. Owing to the significantly smaller ionic radius of Fe3+ com­pared to Sc3+ (0.649 versus 0.732 Å, respectively: Hawthorne & Gagné, 2024[Hawthorne, F. C. & Gagné, O. C. (2024). Acta Cryst. B80, 326-339.]), we can hypothesize the onset of a similar ordering scheme for the Li + + Fe3+ ↔ 2 Mg2+ substitution. It is worth noting that the LiFe3+Si2O6 endmember com­position crystallizes as C2/c clinopy­rox­ene (Redhammer & Roth, 2004[Redhammer, G. J. & Roth, G. (2004). Z. Kristallogr. 219, 278-294.]), with Li allotted at M2 and Fe3+ at M1. In the following, coordination polyhedra are denoted by the central cation site: thus, M2 octa­hedron.

[Figure 1]
Figure 1
Simplified PT diagram of Mg2Si2O6. Abbreviations: protoenstatite (PEN), orthoenstatite (OEN), forsterite (Fo) and clinoenstatite (CEN).

According to the well-known MgO–SiO2 phase diagram at room pressure, the synthesis of ortho­rhom­bic enstatite requires rather high tem­per­a­tures. To decrease these tem­per­a­tures, many studies have been carried out testing different synthesis procedures, such as the sol–gel technique (Mitchell et al., 1998[Mitchell, M. B., Jackson, D. & James, P. F. (1998). J. Sol-Gel Sci. Technol. 13, 359-364.]; Ban et al., 1999[Ban, T., Ohya, Y. & Takahashi, Y. (1999). J. Am. Ceram. Soc. 82, 22-26.]; Douy, 2002[Douy, A. (2002). J. Sol-Gel Sci. Technol. 24, 221-228.]) or the flux method (Ito, 1975[Ito, J. (1975). Geophys. Res. Lett. 2, 533-536.]; Grandin de L'éprevier & Ito, 1983[Grandin de L'éprevier, A. & Ito, J. (1983). J. Cryst. Growth, 64, 411-412.]; Ushio et al., 1991[Ushio, M., Kobayashi, N., Suzuki, M. & Sumiyoshi, Y. (1991). J. Am. Ceram. Soc. 74, 1654-1657.]) to obtain enstatite and forsterite. Although the sol–gel technique opens the way to the synthesis of impurity-free films, to obtain these in a crystalline form it is still necessary to use thermal treatment. Otherwise, the flux method is preferable for obtaining larger crystals and enhance doping (Smyth & Ito, 1977[Smyth, J. R. & Ito, J. (1977). Am. Mineral. 62, 1252-1257.]). During cooling, nutrient depletion in the melt and decreased solubility can alter the original molar ratios and lead to the formation of unintended mineral phases (Bloise et al., 2009[Bloise, A., Barrese, E., Apollaro, C. & Miriello, D. (2009). Cryst. Res. Technol. 44, 463-468.]; Bloise et al., 2011[Bloise, A., Pingitore, V., Miriello, D., Apollaro, C., Armentano, D., Barrese, E. & Oliva, A. (2011). J. Cryst. Growth, 329, 86-91.]). As reported previously, Mg2Si2O6 may crystallize as three polymorphs, leading to further com­plications: PEN, stable at high tem­per­a­tures (1000–1575 °C), and OEN and LTCEN stable at lower tem­per­a­tures, the extent of crystallization of which has been reported as depending on the cooling rate (Smyth, 1974[Smyth, J. (1974). Am. Mineral. 59, 345-352.]; Ito, 1975[Ito, J. (1975). Geophys. Res. Lett. 2, 533-536.]; Catalano et al., 2014[Catalano, M., Bloise, A., Pingitore, V., Miriello, D., Cazzanelli, E., Giarola, M., Mariotto, G. & Barrese, E. (2014). Cryst. Res. Technol. 49, 736-742.]). Consequently, slight variations in the synthesis conditions or the molar ratios can lead to the formation of additional phases, making it challenging to achieve stoichiometric control of the single phase due to the particular thermodynamic and kinetic conditions required.

For this work, crystals were grown using the flux-growth technique with lithium–vanadomolybdate as the melting agent (Ozima, 1982[Ozima, M. (1982). J. Jpn Assoc. Mineral. Petrol. Econ. Geol. 3, 97-103.]; Ozima & Akimoto, 1983[Ozima, M. & Akimoto, S. (1983). Am. Mineral. 68 1199-1205.]; Grandin de L'éprevier & Ito, 1983[Grandin de L'éprevier, A. & Ito, J. (1983). J. Cryst. Growth, 64, 411-412.]). The acidity of the flux is crucial for enhancing the solubility of SiO2 by converting it into orthosilicic acid Si(OH)4. This can be done using MoO3 and V2O5 together. Fluxes lacking either vanadate or molybdate are ineffective in solubilizing SiO2 (Smyth & Ito, 1977[Smyth, J. R. & Ito, J. (1977). Am. Mineral. 62, 1252-1257.]; Ushio et al., 1991[Ushio, M., Kobayashi, N., Suzuki, M. & Sumiyoshi, Y. (1991). J. Am. Ceram. Soc. 74, 1654-1657.]). Indeed, MgO and SiO2 exhibit minimal mutual reactivity, while the presence of silicic acid promotes the formation of Si—O—Mg bonds, hence favouring the formation of phases such as enstatite and forsterite (Douy, 2002[Douy, A. (2002). J. Sol-Gel Sci. Technol. 24, 221-228.]; Gu et al., 2018[Gu, F., Peng, Z., Tang, H., Ye, L., Tian, W., Liang, G., Rao, M., Zhang, Y., Li, G. & Jiang, T. (2018). Preparation of refractory materials from ferronickel slag, in Characterization of Minerals, Metals, and Materials 2018, pp. 633-642. Cham, Switzerland: Springer.]; Bloise et al., 2009[Bloise, A., Barrese, E., Apollaro, C. & Miriello, D. (2009). Cryst. Res. Technol. 44, 463-468.]). The formation of LiFeSi2O6, which begins at 500 °C when CO2 is released from the dissolution of Li2CO3 (Tanaka & Takei, 1997[Tanaka, T. & Takei, H. (1997). J. Cryst. Growth, 180, 206-211.]), plays a crucial role in lowering the formation tem­per­a­ture of py­rox­enes and is responsible for their doping. This effect, as reported previously (e.g. Ito, 1975[Ito, J. (1975). Geophys. Res. Lett. 2, 533-536.]; Grandin de L'éprevier & Ito, 1983[Grandin de L'éprevier, A. & Ito, J. (1983). J. Cryst. Growth, 64, 411-412.]; Smyth & Ito, 1977[Smyth, J. R. & Ito, J. (1977). Am. Mineral. 62, 1252-1257.]), stabilizes PEN (the high-tem­per­a­ture polymorph of enstatite), thereby extending its stability range to lower tem­per­a­tures.

The present work investigates the crystal chemistry of the Li+ + Fe3+ ↔ 2 Mg2+ coupled substitution along the Mg2Si2O6–LiFe3+Si2O6 com­positional joint by single-crystal X-ray diffraction (SCXRD). The incorporation of Li and Fe3+ can significantly influence the properties and behaviour of enstatite crystals, with possible implications as cathode materials for lithium-ion batteries (LiBs), given the inter­est generated by the first report on the electrochemical and structural properties of the py­rox­ene-type LiFeSi2O6 by Zhou et al. (2014[Zhou, S., King, G., Scanlon, D. O., Sougrati, M. T. & Melot, B. C. (2014). J. Electrochem. Soc. 161, A1642-A1647.]).

2. Experimental

2.1. Synthesis

The route commonly used to synthesize Fe-doped enstatite crystals, ideally Fe0.2Mg1.8Si2O6, was followed. Granular quartz (SiO2; code No. 364011), magnesium oxide (MgO; code No. 459586), metallic iron (Fe; code No. 451377) and hematite (Fe2O3; code No. 451824) from Carlo Erba (reagent grade with purity ≥ 98%) were used as the starting materials without further purification.

Pre-heating was necessary to enhance the reactivity between the starting materials: granular quartz was converted into cristobalite by heating the powdered SiO2 to 1400 °C for 12 h, while MgO, Fe and Fe2O3 powders were heated for a week at 110 °C, to ensure com­plete dehydration. Iron(II) oxide was prepared through partial reduction of hematite by metallic iron, following the reaction: 1/3Fe + 1/3Fe2O3 = FeO. Molybdenum(VI) oxide (MoO3; code No. 267856), vanadium(V) oxide (V2O5; code No. 223794) and lithium carbonate (Li2CO3; code No. 62470) from Sigma–Aldrich (reagent grade with purity ≥98%) were used as flux. The flux com­position was as follows: MoO3 = 55.9 wt%, V2O5 = 9.8 wt% and Li2CO3 = 34.3 wt% (Bloise et al., 2011[Bloise, A., Pingitore, V., Miriello, D., Apollaro, C., Armentano, D., Barrese, E. & Oliva, A. (2011). J. Cryst. Growth, 329, 86-91.]). Approximately 1.25 g of finely powdered starting materials (grain size < 0.177 mm), prepared according to the ideal Fe0.2Mg1.8Si2O6 stoichiometry of Fe-doped enstatite, along with flux, were loaded into a 100 ml platinum crucible and placed in a vertical furnace. The lithium–vanadomolybdate flux was added to the starting materials/flux, maintaining a consistent starting materials (g)/ flux (g) ratio of 0.5.

Iron-doped enstatite crystals were grown in a furnace equipped with a Super Kanthal heating element (0–1700 °C), with tem­per­a­ture control provided by PtRh–PtRh thermocouples, with a precision of ±4 °C.

The thermal run proceeded as follows: a steep increment up to 1050 °C was followed by 100 h where the tem­per­a­ture was kept constant to bring about com­plete dissolution and homogenization of the mixture. The resulting melt was then cooled slowly to 650 °C at a rate of 1.25 °C h−1, followed by rapid quenching to room tem­per­a­ture by immersion of the crucible in water.

The growth conditions for enstatite followed well-established protocols from the literature (Bloise et al., 2011[Bloise, A., Pingitore, V., Miriello, D., Apollaro, C., Armentano, D., Barrese, E. & Oliva, A. (2011). J. Cryst. Growth, 329, 86-91.]; Catalano et al., 2014[Catalano, M., Bloise, A., Pingitore, V., Miriello, D., Cazzanelli, E., Giarola, M., Mariotto, G. & Barrese, E. (2014). Cryst. Res. Technol. 49, 736-742.]; Catalano et al., 2015[Catalano, M., Bloise, A., Pingitore, V., Cazzanelli, E., Giarola, M., Mariotto, G. & Barrese, E. (2015). Appl. Phys. A, 120, 175-182.]). As a result, orthopy­rox­ene crystals with the com­position Mg(2–2x)LixFe3+xSi2O6 (0.15 < x < 0.31) were obtained. Euhedral colourless crystals, averaging 800 µm in length, were separated from the solidified flux by sonication in hot water. The crystals were recovered using a binocular microscope, selected and subsequently characterized by SCXRD.

2.2. Single-crystal X-ray diffraction

Five crystal fragments (labelled as 1, 2, 3, 4a and 4d) were selected for X-ray diffraction measurements on a Bruker Kappa APEXII single-crystal diffractometer (Sapienza University of Rome, Earth Sciences Department), equipped with a CCD area detector (6.2 × 6.2 cm active detection area, 512 × 512 pixels) and a graphite-crystal monochromator, using Mo Kα radiation from a fine-focus sealed X-ray tube. The sample-to-detector distance was 4 cm. Preliminary scrutiny of the reciprocal lattice of the samples clearly indicated their ortho­rhom­bic symmetry. Samples 1, 2 and 3 have Pbca symmetry (a ∼ 18.17 Å, b ∼ 8.77 Å and c ∼ 5.19 Å, i.e. that of orthopy­rox­enes OPX) and samples 4a and 4d have Pbcn symmetry (i.e. that of protopy­rox­enes PPX), showing a halved a parameter. Diffraction data for 1, 2, 4a and 4d were collected up to sin θmax/λ = 1.000 Å−1 and those for 3 up to sin θmax/λ = 1.184 Å−1.

A total of 1708 (and 1365 for sample 3) exposures (step = 0.4°, time/step = 15 s) covering a full reciprocal sphere with a com­pleteness > 96% and redundancy of approximately 5 were collected. Final unit-cell parameters were refined using the SAINT program (Bruker, 2016[Bruker (2016). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) with numbers of reflections ranging between 3347 and 9984, with I > 10σ(I) in the range 6 < 2θ < 91°. The associated intensities of all collected reflections were processed and corrected for Lorentz and background effects plus polarization, using APEX2 software (Bruker, 2016[Bruker (2016). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]). The data were corrected for absorption using a multi-scan method (SADABS; Bruker, 2016[Bruker (2016). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]). The absorption correction led to a significant improvement in wR2int (from about 0.04 to about 0.02).

2.3. Structure refinement

Structure refinements were carried out using SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]). The starting coordinates were taken from Ganguly & Ghose (1979[Ganguly, J. & Ghose, S. (1979). Contr. Miner. Petrol. 69, 375-385.]) for OPX (samples 1, 2 and 3) and from Smyth & Ito (1977[Smyth, J. R. & Ito, J. (1977). Am. Mineral. 62, 1252-1257.]) for PPX (samples 4a and 4d).

The key difference between the two ortho­rhom­bic py­rox­ene structures lies in their crystallographically distinct T and O sites. In Pbcn PPX, there is only one T site and three distinct O sites (O1, O2 and O3). In contrast, Pbca OPX has two distinct T sites (T1 and T2) and six distinct O sites (O1a, O1b, O2a, O2b, O3a and O3b). Both structures contain octa­hedrally coordinated cations at two distinct M1 and M2 sites.

The following parameters were refined: scale factor, extinction coefficient, atom coordinates, site-scattering values and anisotropic atomic displacement factors. In the starting stages of the refinements, Mg was used as the scatterer at the M1 and M2 sites. The observed excess of electron density at M1 and the deficiency in M2 indicated unequivocally the partition of Fe3+ at M1 and Li at M2. This scheme is analogous to that observed in Li/Sc PPX (Sc at M1 and Li at M2; Smyth & Ito, 1977[Smyth, J. R. & Ito, J. (1977). Am. Mineral. 62, 1252-1257.]). Subsequently, the M1 and M2 sites were modelled using Mg versus Fe and Mg versus Li scattering factors, respectively. A first set of refinements was done using neutral scattering curves for all atoms. Finally, following Hawthorne et al. (1995[Hawthorne, F. C., Ungaretti, L. & Oberti, R. (1995). Can. Mineral. 33, 907-911.]) and the results of Ballirano et al. (2021[Ballirano, P., Celata, B., Pacella, A. & Bosi, F. (2021). Acta Cryst. B77, 537-549.]) for amphiboles and Ballirano et al. (2024[Ballirano, P., Celata, B., Pacella, A., Bloise, A., Tempesta, G., Sejkora, J. & Bosi, F. (2024). Inorg. Chem. 63, 20372-20379.]) for Li/Fe3+-doped olivines, further refinements were done modelling the T1 and T2 sites using the Si0 versus Si4+ scattering factors, whereas the anion sites were modelled with the O0 versus O2− scattering factors. The coefficients for analytical approximation to the scattering factors were from Table 6.1.1.4 of the Inter­national Tables for Crystallography (Volume C; Brown et al., 2006[Brown, P. J., Fox, A. G., Maslen, E. N., O'Keefe, M. A. & Willis, B. T. M. (2006). International Tables for Crystallography, Vol. C, edited by E. Prince, pp. 554-595. Dordrecht: Kluwer Academic Publishers.]), the only exception being those of O2− which were taken from Hovestreydt (1983[Hovestreydt, E. (1983). Acta Cryst. A39, 268-269.]). A significant improvement of the statistical indicators was observed passing from neutral to partly ionized scattering curves.

In the final stages of the refinement, it was observed that the site occupancy factor (sof) of Fe at M1 and of Li at M2 were almost coincident (the sof of Li at M2 slightly exceeding that of Fe at M1: Δ = 0.003–0.013) and therefore they were constrained to be equal. The small discrepancy has been attributed to the presence of minor V3+ (ionic radius = 0.641 Å; Hawthorne & Gagné, 2024[Hawthorne, F. C. & Gagné, O. C. (2024). Acta Cryst. B80, 326-339.]) replacing Fe3+, owing to its smaller scattering power (23 versus 26 e). This result is an indirect proof that all iron occurs as Fe3+. The application of this constraint did not affect the various statistical indicators.

Table S1 reports space groups, unit-cell parameters, 2θmax and sin θmax/λ of the various data collections, and relevant statistical indicators of the refinements. Table S2 lists the M1 and M2 site populations, the ion charges for O and Si, and the equivalent displacement parameters. Relevant bond distances and several parameters describing the extent of polyhedral distortion are reported in Table S3, and the results of a bond valence analysis in Table S4.

3. Results and discussion

Refinements substanti­ally confirmed the findings of Ballirano et al. (2021[Ballirano, P., Celata, B., Pacella, A. & Bosi, F. (2021). Acta Cryst. B77, 537-549.], 2024[Ballirano, P., Celata, B., Pacella, A., Bloise, A., Tempesta, G., Sejkora, J. & Bosi, F. (2024). Inorg. Chem. 63, 20372-20379.]) regarding the use of partially ionized scattering curves of O and Si for tremolite and olivine to em­pirically com­pensate for perturbation of the electron density caused by the inter­action with other atoms (Table S2 in the supporting information). The refined ion charges for O and Si were in the range −1.492 to −1.381 and 0.377 to 0.720, respectively.

OPX samples were characterized by a coupled Li/Fe3+ substitution level in the 0.270 (1)–0.313 (1) sof range, whereas PPX samples were in the 0.156 (1)–0.164 (1) sof range. This finding suggests that, under the present experimental conditions, the PPX topology is favoured at smaller doping levels than in the case of Li/Sc3+, where crystals were obtained in the 0.23–0.30 sof range (Smyth & Ito, 1977[Smyth, J. R. & Ito, J. (1977). Am. Mineral. 62, 1252-1257.]; Yang et al., 1999[Yang, H., Finger, L. W., Conrad, P. G., Prewit, C. T. & Hazen, R. M. (1999). Am. Mineral. 84, 245-256.]).

3.1. Unit-cell parameters

Unit-cell parameters as a function of com­position are illustrated in Figs. 2[link][link]–4[link] (see also Fig. S1 in the supporting information), where LiFe3+Si2O6 was considered the common endmember for both the OPX and the PPX series. To obtain a com­parable data set, the a parameter of LiFe3+Si2O6 was recalculated based on an ortho­rhom­bic cell, according to the well-known relationship aorth = 2amonsinβ, whereas for the PPX samples, the a parameter was multiplied by two, in both cases resulting in a doubled unit-cell volume. The OPX and PPX samples show a different behaviour for each unit-cell parameter, coherent with the significantly different volumes of the OEN and PEN endmembers. For OPX samples, the unit-cell volume dependence on com­position follows a bell-shaped curve (i.e. inter­mediate com­positions have a volume smaller than both endmembers), whereas there is a marked decrease from PEN to LiFe3+Si2O6 (Fig. S1). For both series, the a unit-cell parameters contract from Mg2Si2O6 to LiFe3+Si2O6. However, the contraction is remarkably higher and linear for the PPX samples, whereas the trend is nonlinear and decreases at a significantly smaller rate for the OPX samples (Fig. 2[link]). The trend in reversed in the case of the b unit-cell parameter (Fig. 3[link]). Conversely, the c unit-cell parameter shows a strong expansion from OEN to LiFe3+Si2O6, whereas the PPX series is characterized by a small contraction (Fig. 4[link]). Both trends are nonlinear.

[Figure 2]
Figure 2
Dependence of the a parameter from the Li site occupancy factor (sof). The blue dashed curve is a guide to the eye showing the variation of Li in the OPX. The linear fit of the variation of Li in the PPX is reported as a red solid line. Cpx = clinopyroxene.
[Figure 3]
Figure 3
Dependence of the b parameter from the Li sof. The red dashed curve is a guide to the eye showing the variation of Li in the PPX. The linear fit of the variation of Li in the OPX is reported as a blue solid line.
[Figure 4]
Figure 4
Dependence of the c parameter from the Li sof. The red and blue dashed curves are guides to the eye showing the variation of Li in the PPX and OPX, respectively.

3.2. Structural features

Before discussing how the structural features of the two series of orthopy­rox­enes depend on their com­position, it is worth noting that reference structural data for PEN were obtained through Rietveld refinement of laboratory powder X-ray diffraction data collected in reflection mode (Kanzaki & Xue, 2017[Kanzaki, M. & Xue, X. (2017). J. Mineral. Petrol. Sci. 112, 359-364.]). However, no details of the refinement procedure were reported in the related article, particularly regarding the use of soft constraints on bond distances and how preferred orientation was accounted for. As a consequence, the accuracy of the structural parameters for PEN might be somewhat lower than that of the results. Therefore, any correlations drawn for PPX samples should be approached with some caution.

That said, unit-cell parameters and 〈M1—O〉 and 〈M2—O〉 show similar correlations with the Li/Fe3+ sof (Figs. 5[link] and 6[link]). For the OPX samples, there is a noticeable increase of 〈M2—O〉 from OEM (2.151 Å) to LiFe3+Si2O6 (2.249 Å). In contrast, in the case of the PPX samples, PEN has a slightly larger 〈M2—O〉 (2.157 Å) than OEN and the doped samples do not show appreciable variations from that value (2.155 Å), but they are still significantly lower than the LiFe3+Si2O6 value. The 〈M1—O〉 decreases smoothly in both series of samples from 2.078 (OEN) or 2.089 (PEN) to 2.025 Å for LiFe3+Si2O6. The trend for OPX is linear and almost linear for PPX if the value for PEN is accepted as accurate.

[Figure 5]
Figure 5
Variation of 〈M2—O〉 as a function of the Li sof. The red dashed curve is a guide to the eye showing the variation of Li in the PPX. The linear fit of the variation of Li in the OPX is reported as a blue solid line.
[Figure 6]
Figure 6
Variation of 〈M1—O〉 as a function of the Fe3+ sof. The red dashed curve is a guide to the eye showing the variation of Fe3+ in the PPX. The linear fit of the variation of Fe3+ in the OPX is reported as a blue solid line.

Analysis of the volume and deviation from ideal shape of the M2 and M1 octa­hedra (Figs. 7[link][link][link][link]–11[link]) took into consideration several parameters (Table S3): polyhedral volume (Swanson & Peterson, 1980[Swanson, D. K. & Peterson, R. C. (1980). Can. Mineral. 18, 153-156.]), polyhedral volume distortion (Makovicky & Balić-Žunić, 1998[Makovicky, E. & Balić-Žunić, T. (1998). Acta Cryst. B54, 766-773.]), distortion index (Baur, 1974[Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.]), mean quadratic elongation and bond angle variance (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]), and effective coordination number (Hoppe, 1979[Hoppe, R. (1979). Z. Kristallogr. 150, 23-52.]). The volume of the M2 octa­hedron is larger than that of the M1 octa­hedron for the OPX series of samples (∼12.7–12.8 Å3 versus ∼11.5 Å3; Figs. 7[link] and 9[link]). Moreover, the M2 octa­hedron is significantly more distorted than the M1 octa­hedron, as indicated by the mean quadratic elongation of ∼1.06 versus 1.01. This same behaviour holds true for the LiFe3+Si2O6 monoclinic endmember, in which the M2 octa­hedron has a very large quadratic elongation (1.229) typical of the Li-bearing clinopy­rox­enes (Cameron & Papike, 1981[Cameron, M. & Papike, J. J. (1981). Am. Mineral. 66, 1-50.]). In contrast, for the PPX samples, the polyhedral volume of the M2 octa­hedron is smaller than that of the M1 octa­hedron (∼11.1 Å3 versus ∼11.7 Å3) and has a larger distortion, even larger than that of the OPX samples (mean quadratic elongation ∼1.13 versus 1.01). The smaller dimension of the M2 octa­hedron in the PEN and PPX samples with respect to the OPX samples is caused by the sharing of two edges of the octa­hedron with tetra­hedra for the former, whereas in the case of the OEN and OPX samples, no polyhedral edges are shared (Cameron & Papike, 1981[Cameron, M. & Papike, J. J. (1981). Am. Mineral. 66, 1-50.]). Comparison of Figs. 7[link] and 8[link] suggests that for OEN and OPX samples, the increase of the volume of the M2 octa­hedron as a function of a growing level of doping is coupled to an increase in the mean quadratic elongation. In contrast, PEN and PPX samples do not show a well-defined dependence. OPX samples show an increase of the volume of the M2 octa­hedron with an increased level of doping and much larger than that of the LiFe3+Si2O6 monoclinic endmember, whose volume is com­parable to that of PPX but with a larger mean quadratic elongation value, much larger than for the OPX and PPX samples. This difference between OPX and LiFe3+Si2O6 could potentially impose an upper limit on the level of coupled Li/Fe3+ substitution. Inter­estingly, recalculation of the original structural data of Smyth & Ito (1977[Smyth, J. R. & Ito, J. (1977). Am. Mineral. 62, 1252-1257.]) and Yang et al. (1999[Yang, H., Finger, L. W., Conrad, P. G., Prewit, C. T. & Hazen, R. M. (1999). Am. Mineral. 84, 245-256.]) for Li/Sc3+-doped PPX samples (Table S3) results in mean quadratic elongations of the M2 octa­hedron (where a similar Li versus Mg substitution occurs) that aligns almost perfectly with the curve in Fig. 8[link] for the present Li/Fe3+-doped PPX samples. In contrast, the polyhedral volume is slightly greater than that of PEN, possibly suggesting that the value reported by Kanzaki & Xue (2017[Kanzaki, M. & Xue, X. (2017). J. Mineral. Petrol. Sci. 112, 359-364.]) is too large. Fig. 11[link] shows the variation in polyhedral volume of the M2 and M1 octa­hedra in Li/Fe3+-doped orthopy­rox­enes as a function of 〈M—O〉. As can be seen, the volume of the M1 octa­hedron is linearly correlated with 〈M—O〉 for both OPX and PPX samples. Conversely, two separate dependences, one for OPX and one for PPX samples, are observed for the M2 octa­hedron. The displaced position of PEN from this trend suggests that the polyhedral volume of PEN is wrong (too large) and may possibly be related to a lower accuracy of the bond distances as arising from powder X-ray diffraction data with respect to the rest of the data set which is derived from single-crystal SREF.

[Figure 7]
Figure 7
Variation of the volume of the M2 octa­hedron as a function of the Li sof.
[Figure 8]
Figure 8
Variation of the quadratic elongation (QE) of the M2 octa­hedron as a function of the Li sof. The red and blue dashed curves are guides to the eye showing the variation of Li in the PPX and OPX, respectively.
[Figure 9]
Figure 9
Variation of the volume of the M1 octa­hedron as a function of the Fe3+ sof. The red dashed curve is a guide to the eye showing the variation of Fe3+ in the PPX. The linear fit of the variation of Fe3+ in the OPX is reported as a blue solid line.
[Figure 10]
Figure 10
Variation of the quadratic elongation (QE) of the M1 octa­hedron as a function of the Li sof. The red dashed curve is a guide to the eye showing the variation of Fe3+ in the PPX. The linear fit of the variation of Fe3+ in the OPX is reported as a blue solid line.
[Figure 11]
Figure 11
Variation of the polyhedral volume of the M2 and M1 octa­hedra as a function of 〈M—O〉. The dashed lines are guides to the eye. Key: red diamonds represent the M2O6 polyhedral volume for OPX; blue diamonds the M2O6 polyhedral volume for PPX, PEN and LiFe3+Si2O6Cpx; red squares the M1O6 polyhedral volume for OPX; blue squares the M1O6 polyhedral volume for PPX, PEN and LiFe3+Si2O6. Cpx = clinopyroxene.

Fig. S2 and Table S4 report the dependence of the bond valence sum at the various O sites. The parameters used for the calculations were taken from Gagné & Hawthorne (2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]). Trends are clearly seen for the analysed samples and there are positive and negative deviations from the valence-sum rule.

4. Conclusions

In this study, we have investigated the crystal structure and doping of enstatite crystals with Li and Fe3+. The incorporation of these dopants can significantly influence the properties and behaviour of enstatite crystals, making them inter­esting. Under the experimental conditions, we recovered five samples of Mg(2–2x)LixFe3+xSi2O6 py­rox­enes, namely, three ortho­pyrox­ene (OPX) with 0.270 < x < 0.313 and two clinopy­rox­ene (PPX) with 0.156 < x < 0.164. This shows that varying levels of doping preferentially affect the py­rox­ene topologies.

Analysis of the ship between the volume and distortion of the M2 octa­hedron versus the level of doping indicates a possible upper limit for the coupled substitution of (Li + Fe3+) for Mg, at least for OPX. The significant role of this polyhedron in stabilizing a specific py­rox­ene topology is further supported by the observation that for all analysed samples (including the endmembers PEN, OEN and LiFe3+Si2O6), the relationship between the polyhedral volume and 〈M1—O〉 is linear. Conversely, there are two distinct linear relations for PPX and OPX samples between the M2O6 polyhedral volume and 〈M2—O〉, with only the PPX trend converging toward the LiFe3+Si2O6 endmember. Notably, the smaller M2 octa­hedron in PPX shares two edges with Si tetra­hedra, whereas the larger M2 octa­hedron in OPX does not share two edges with Si tetra­hedra.

This research enhances the understanding of crystal structure and doping in enstatite crystals, suggesting a potential use of Li/Fe3+-doped enstatite in energy storage devices where a very stable structural framework is required for long-term Li+ ion extraction/insertion.

5. Related literature

The following references are cited in the supporting information: Ilinca (2022[Ilinca, G. (2022). Minerals, 12, 924.]); Momma & Izumi (2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]).

Supporting information


Computing details top

(OPX_1) top
Crystal data top
Si·3(O)·0.135(Fe)·0.73(Mg)·0.135(Li)Dx = 3.282 Mg m3
Mr = 102.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9984 reflections
a = 18.1735 (4) Åθ = 3.0–45.3°
b = 8.77666 (18) ŵ = 2.04 mm1
c = 5.19316 (10) ÅT = 293 K
V = 828.32 (3) Å3Anhedral
Z = 160.65 × 0.50 × 0.45 mm
F(000) = 867
Data collection top
Bruker Smart Breeze
diffractometer
5429 independent reflections
Radiation source: fine-focus sealed tube4934 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 512 pixels mm-1θmax = 57.3°, θmin = 2.2°
φ and ω scansh = 4230
Absorption correction: multi-scan
SADABS (Sheldrick, 2015)
k = 1620
Tmin = 0.307, Tmax = 0.400l = 1111
27573 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0059P)2 + 0.3411P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max = 0.001
wR(F2) = 0.050Δρmax = 0.69 e Å3
S = 1.27Δρmin = 0.50 e Å3
5429 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
95 parametersExtinction coefficient: 0.0041 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mg10.37538 (2)0.65012 (2)0.87318 (3)0.00574 (3)0.7302 (9)
Fe10.37538 (2)0.65012 (2)0.87318 (3)0.00574 (3)0.2698 (9)
Mg20.37657 (2)0.48686 (3)0.36389 (5)0.00774 (5)0.7302 (9)
Li20.37657 (2)0.48686 (3)0.36389 (5)0.00774 (5)0.2698 (9)
Si1A0.27236 (2)0.34093 (2)0.05339 (3)0.00374 (2)0.820 (14)
Si1B0.27236 (2)0.34093 (2)0.05339 (3)0.00374 (2)0.180 (14)
Si2A0.47393 (2)0.33747 (2)0.79450 (3)0.00384 (2)0.820 (14)
Si2B0.47393 (2)0.33747 (2)0.79450 (3)0.00384 (2)0.180 (14)
O1A0.18350 (2)0.33779 (5)0.04225 (7)0.00568 (4)0.297 (17)
O2A0.31019 (2)0.50405 (5)0.04725 (7)0.00675 (5)0.297 (17)
O3A0.30371 (2)0.22559 (5)0.83081 (7)0.00673 (5)0.297 (17)
O1B0.56325 (2)0.33845 (5)0.79707 (7)0.00577 (4)0.297 (17)
O2B0.43396 (2)0.48742 (5)0.69556 (8)0.00742 (5)0.297 (17)
O3B0.44750 (2)0.19999 (5)0.59420 (7)0.00706 (5)0.297 (17)
O1AA0.18350 (2)0.33779 (5)0.04225 (7)0.00568 (4)0.703 (17)
O2AA0.31019 (2)0.50405 (5)0.04725 (7)0.00675 (5)0.703 (17)
O3AA0.30371 (2)0.22559 (5)0.83081 (7)0.00673 (5)0.703 (17)
O1BA0.56325 (2)0.33845 (5)0.79707 (7)0.00577 (4)0.703 (17)
O2BA0.43396 (2)0.48742 (5)0.69556 (8)0.00742 (5)0.703 (17)
O3BA0.44750 (2)0.19999 (5)0.59420 (7)0.00706 (5)0.703 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.00502 (4)0.00681 (5)0.00540 (4)0.00025 (3)0.00079 (3)0.00070 (3)
Fe10.00502 (4)0.00681 (5)0.00540 (4)0.00025 (3)0.00079 (3)0.00070 (3)
Mg20.00851 (8)0.00813 (10)0.00658 (9)0.00118 (7)0.00222 (6)0.00083 (7)
Li20.00851 (8)0.00813 (10)0.00658 (9)0.00118 (7)0.00222 (6)0.00083 (7)
Si1A0.00339 (4)0.00442 (5)0.00342 (4)0.00052 (3)0.00023 (3)0.00012 (3)
Si1B0.00339 (4)0.00442 (5)0.00342 (4)0.00052 (3)0.00023 (3)0.00012 (3)
Si2A0.00338 (4)0.00445 (5)0.00368 (4)0.00041 (3)0.00041 (3)0.00017 (3)
Si2B0.00338 (4)0.00445 (5)0.00368 (4)0.00041 (3)0.00041 (3)0.00017 (3)
O1A0.00337 (8)0.00755 (12)0.00610 (10)0.00005 (8)0.00009 (7)0.00061 (8)
O2A0.00747 (10)0.00551 (12)0.00728 (11)0.00251 (9)0.00043 (8)0.00087 (8)
O3A0.00570 (9)0.00968 (14)0.00480 (10)0.00049 (9)0.00024 (7)0.00300 (8)
O1B0.00368 (8)0.00783 (13)0.00580 (10)0.00024 (8)0.00049 (7)0.00018 (8)
O2B0.00801 (10)0.00722 (13)0.00704 (12)0.00304 (9)0.00018 (8)0.00192 (9)
O3B0.00594 (9)0.00902 (14)0.00622 (11)0.00083 (9)0.00030 (8)0.00350 (9)
O1AA0.00337 (8)0.00755 (12)0.00610 (10)0.00005 (8)0.00009 (7)0.00061 (8)
O2AA0.00747 (10)0.00551 (12)0.00728 (11)0.00251 (9)0.00043 (8)0.00087 (8)
O3AA0.00570 (9)0.00968 (14)0.00480 (10)0.00049 (9)0.00024 (7)0.00300 (8)
O1BA0.00368 (8)0.00783 (13)0.00580 (10)0.00024 (8)0.00049 (7)0.00018 (8)
O2BA0.00801 (10)0.00722 (13)0.00704 (12)0.00304 (9)0.00018 (8)0.00192 (9)
O3BA0.00594 (9)0.00902 (14)0.00622 (11)0.00083 (9)0.00030 (8)0.00350 (9)
Geometric parameters (Å, º) top
Mg1—O2Ai1.9658 (4)Mg2—O1Aii2.1020 (5)
Mg1—O2B2.0059 (4)Mg2—O3Aix2.2934 (5)
Mg1—O1Aii2.0273 (4)Mg2—O3Bix2.5125 (5)
Mg1—O1Biii2.0461 (4)Mg2—Si1A2.7977 (3)
Mg1—O1Aiv2.1514 (4)Si1A—O2A1.5885 (4)
Mg1—O1Bv2.1812 (4)Si1A—O1A1.6161 (3)
Mg1—Mg2i2.9236 (3)Si1A—O3Ax1.6387 (4)
Mg1—Mg23.0081 (3)Si1A—O3Aix1.6556 (4)
Mg1—Mg1vi3.1330 (2)Si2A—O2B1.5886 (4)
Mg1—Mg1vii3.1330 (2)Si2A—O1B1.6233 (3)
Mg2—O2B2.0136 (5)Si2A—O3Bxi1.6616 (4)
Mg2—O2A2.0450 (5)Si2A—O3B1.6639 (4)
Mg2—O1Bviii2.0605 (5)
O2Ai—Mg1—O2B93.846 (18)O3Aix—Mg2—Mg1x109.204 (14)
O2Ai—Mg1—O1Aii96.076 (16)O3Bix—Mg2—Mg1x80.666 (12)
O2B—Mg1—O1Aii85.847 (16)Si1A—Mg2—Mg1x73.561 (8)
O2Ai—Mg1—O1Biii88.605 (16)O2A—Si1A—O1A116.56 (2)
O2B—Mg1—O1Biii97.495 (16)O2A—Si1A—O3Ax113.09 (2)
O1Aii—Mg1—O1Biii174.072 (18)O1A—Si1A—O3Ax108.16 (2)
O2Ai—Mg1—O1Aiv90.679 (16)O2A—Si1A—O3Aix100.74 (2)
O2B—Mg1—O1Aiv175.318 (17)O1A—Si1A—O3Aix111.65 (2)
O1Aii—Mg1—O1Aiv92.484 (14)O3Ax—Si1A—O3Aix106.041 (14)
O1Biii—Mg1—O1Aiv83.803 (15)O2A—Si1A—Mg246.052 (15)
O2Ai—Mg1—O1Bv171.404 (17)O1A—Si1A—Mg2134.816 (16)
O2B—Mg1—O1Bv94.683 (16)O3Ax—Si1A—Mg2116.999 (15)
O1Aii—Mg1—O1Bv83.489 (15)O3Aix—Si1A—Mg255.037 (15)
O1Biii—Mg1—O1Bv91.338 (14)O2A—Si1A—Mg1xii110.859 (16)
O1Aiv—Mg1—O1Bv80.772 (14)O1A—Si1A—Mg1xii33.873 (13)
O2Ai—Mg1—Mg2i44.276 (12)O3Ax—Si1A—Mg1xii132.993 (15)
O2B—Mg1—Mg2i92.751 (13)O3Aix—Si1A—Mg1xii81.011 (13)
O1Aii—Mg1—Mg2i140.218 (13)Mg2—Si1A—Mg1xii105.132 (8)
O1Biii—Mg1—Mg2i44.806 (12)O2A—Si1A—Mg2xii86.287 (16)
O1Aiv—Mg1—Mg2i91.328 (12)O1A—Si1A—Mg2xii33.444 (15)
O1Bv—Mg1—Mg2i136.130 (12)O3Ax—Si1A—Mg2xii111.282 (15)
O2Ai—Mg1—Mg295.624 (14)O3Aix—Si1A—Mg2xii135.524 (15)
O2B—Mg1—Mg241.647 (12)Mg2—Si1A—Mg2xii121.665 (7)
O1Aii—Mg1—Mg244.224 (12)Mg1xii—Si1A—Mg2xii55.947 (6)
O1Biii—Mg1—Mg2139.050 (13)O2B—Si2A—O1B117.10 (2)
O1Aiv—Mg1—Mg2136.640 (12)O2B—Si2A—O3Bxi109.55 (2)
O1Bv—Mg1—Mg290.050 (12)O1B—Si2A—O3Bxi106.403 (19)
Mg2i—Mg1—Mg2122.198 (11)O2B—Si2A—O3B105.46 (2)
O2Ai—Mg1—Mg1vi89.073 (12)O1B—Si2A—O3B107.31 (2)
O2B—Mg1—Mg1vi141.214 (12)O3Bxi—Si2A—O3B111.017 (15)
O1Aii—Mg1—Mg1vi132.321 (13)O2B—Si2A—Mg233.456 (16)
O1Biii—Mg1—Mg1vi43.858 (11)O1B—Si2A—Mg2124.568 (16)
O1Aiv—Mg1—Mg1vi39.950 (10)O3Bxi—Si2A—Mg2125.949 (15)
O1Bv—Mg1—Mg1vi84.947 (12)O3B—Si2A—Mg272.229 (16)
Mg2i—Mg1—Mg1vi63.376 (6)O2B—Si2A—Mg2viii84.652 (16)
Mg2—Mg1—Mg1vi174.406 (9)O1B—Si2A—Mg2viii32.708 (15)
O2Ai—Mg1—Mg1vii138.250 (12)O3Bxi—Si2A—Mg2viii125.173 (16)
O2B—Mg1—Mg1vii90.987 (12)O3B—Si2A—Mg2viii115.448 (15)
O1Aii—Mg1—Mg1vii42.956 (11)Mg2—Si2A—Mg2viii95.355 (8)
O1Biii—Mg1—Mg1vii131.773 (12)O2B—Si2A—Mg1iii122.080 (17)
O1Aiv—Mg1—Mg1vii84.827 (12)O1B—Si2A—Mg1iii31.781 (13)
O1Bv—Mg1—Mg1vii40.537 (10)O3Bxi—Si2A—Mg1iii75.640 (14)
Mg2i—Mg1—Mg1vii175.303 (9)O3B—Si2A—Mg1iii126.981 (15)
Mg2—Mg1—Mg1vii62.475 (6)Mg2—Si2A—Mg1iii147.383 (8)
Mg1vi—Mg1—Mg1vii111.947 (9)Mg2viii—Si2A—Mg1iii53.736 (6)
O2B—Mg2—O2A173.31 (2)Si1A—O1A—Mg1xii119.75 (2)
O2B—Mg2—O1Bviii94.028 (19)Si1A—O1A—Mg2xii121.49 (2)
O2A—Mg2—O1Bviii86.103 (18)Mg1xii—O1A—Mg2xii93.501 (16)
O2B—Mg2—O1Aii83.702 (18)Si1A—O1A—Mg1xiii121.65 (2)
O2A—Mg2—O1Aii89.652 (18)Mg1xii—O1A—Mg1xiii97.092 (15)
O1Bviii—Mg2—O1Aii84.816 (18)Mg2xii—O1A—Mg1xiii97.027 (16)
O2B—Mg2—O3Aix111.415 (19)Si1A—O2A—Mg1x149.07 (3)
O2A—Mg2—O3Aix70.072 (16)Si1A—O2A—Mg299.94 (2)
O1Bviii—Mg2—O3Aix151.77 (2)Mg1x—O2A—Mg293.573 (17)
O1Aii—Mg2—O3Aix109.175 (18)Si1Ai—O3A—Si1Axi135.40 (2)
O2B—Mg2—O3Bix102.278 (18)Si1Ai—O3A—Mg2xi130.55 (2)
O2A—Mg2—O3Bix84.411 (17)Si1Axi—O3A—Mg2xi88.691 (18)
O1Bviii—Mg2—O3Bix89.266 (17)Si2A—O1B—Mg1iii123.52 (2)
O1Aii—Mg2—O3Bix171.892 (19)Si2A—O1B—Mg2viii122.10 (2)
O3Aix—Mg2—O3Bix73.966 (16)Mg1iii—O1B—Mg2viii90.786 (16)
O2B—Mg2—Si1A147.646 (18)Si2A—O1B—Mg1xiv120.26 (2)
O2A—Mg2—Si1A34.005 (12)Mg1iii—O1B—Mg1xiv95.606 (15)
O1Bviii—Mg2—Si1A117.785 (15)Mg2viii—O1B—Mg1xiv97.354 (16)
O1Aii—Mg2—Si1A103.745 (14)Si2A—O2B—Mg1133.13 (2)
O3Aix—Mg2—Si1A36.272 (10)Si2A—O2B—Mg2120.76 (3)
O3Bix—Mg2—Si1A74.170 (12)Mg1—O2B—Mg296.903 (18)
O2B—Mg2—Mg1x138.435 (17)Si2Aix—O3B—Si2A130.21 (3)
O2A—Mg2—Mg1x42.151 (12)Si2Aix—O3B—Mg2xi122.77 (2)
O1Bviii—Mg2—Mg1x44.409 (11)Si2A—O3B—Mg2xi105.839 (19)
O1Aii—Mg2—Mg1x91.226 (14)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1, z+1/2; (iii) x+1, y+1, z+2; (iv) x+1/2, y+1/2, z+1; (v) x+1, y+1/2, z+3/2; (vi) x, y+3/2, z+1/2; (vii) x, y+3/2, z1/2; (viii) x+1, y+1, z+1; (ix) x, y+1/2, z1/2; (x) x, y, z1; (xi) x, y+1/2, z+1/2; (xii) x+1/2, y+1, z1/2; (xiii) x+1/2, y1/2, z1; (xiv) x+1, y1/2, z+3/2.
(OPX_2) top
Crystal data top
Si·3(O)·0.145(Fe)·0.71(Mg)·0.145(Li)Dx = 3.287 Mg m3
Mr = 102.45Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 5746 reflections
a = 18.1654 (4) Åθ = 3.2–45.3°
b = 8.7730 (2) ŵ = 2.07 mm1
c = 5.1958 (1) ÅT = 293 K
V = 828.03 (3) Å3Anhedral
Z = 160.24 × 0.18 × 0.06 mm
F(000) = 870
Data collection top
Bruker Smart Breeze
diffractometer
3483 independent reflections
Radiation source: fine-focus sealed tube2907 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 512 pixels mm-1θmax = 45.3°, θmin = 2.2°
φ and ω scansh = 2736
Absorption correction: multi-scan
SADABS (Sheldrick, 2015)
k = 1417
Tmin = 0.646, Tmax = 0.883l = 108
20177 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0139P)2 + 0.243P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max = 0.001
wR(F2) = 0.042Δρmax = 0.44 e Å3
S = 1.01Δρmin = 0.44 e Å3
3483 reflectionsExtinction correction: SHELXL-2019/3 (Sheldrick 2019), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
95 parametersExtinction coefficient: 0.0029 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mg10.37536 (2)0.64997 (2)0.87375 (3)0.00580 (3)0.7101 (9)
Fe10.37536 (2)0.64997 (2)0.87375 (3)0.00580 (3)0.2899 (9)
Mg20.37654 (2)0.48689 (3)0.36462 (6)0.00829 (6)0.7101 (9)
Li20.37654 (2)0.48689 (3)0.36462 (6)0.00829 (6)0.2899 (9)
Si1A0.27243 (2)0.34082 (2)0.05376 (3)0.00398 (3)0.871 (15)
Si1B0.27243 (2)0.34082 (2)0.05376 (3)0.00398 (3)0.129 (15)
Si2A0.47398 (2)0.33747 (2)0.79407 (3)0.00408 (3)0.871 (15)
Si2B0.47398 (2)0.33747 (2)0.79407 (3)0.00408 (3)0.129 (15)
O1A0.18351 (2)0.33752 (5)0.04320 (8)0.00596 (6)0.309 (16)
O2A0.31012 (2)0.50425 (5)0.04755 (9)0.00691 (6)0.309 (16)
O3A0.30376 (2)0.22584 (5)0.83070 (8)0.00689 (6)0.309 (16)
O1B0.56337 (2)0.33829 (5)0.79667 (8)0.00581 (6)0.309 (16)
O2B0.43409 (2)0.48797 (5)0.69631 (9)0.00763 (6)0.309 (16)
O3B0.44747 (2)0.20054 (5)0.59326 (9)0.00733 (6)0.309 (16)
O1AA0.18351 (2)0.33752 (5)0.04320 (8)0.00596 (6)0.691 (16)
O2AA0.31012 (2)0.50425 (5)0.04755 (9)0.00691 (6)0.691 (16)
O3AA0.30376 (2)0.22584 (5)0.83070 (8)0.00689 (6)0.691 (16)
O1BA0.56337 (2)0.33829 (5)0.79667 (8)0.00581 (6)0.691 (16)
O2BA0.43409 (2)0.48797 (5)0.69631 (9)0.00763 (6)0.691 (16)
O3BA0.44747 (2)0.20054 (5)0.59326 (9)0.00733 (6)0.691 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.00517 (5)0.00680 (6)0.00544 (6)0.00022 (4)0.00078 (4)0.00066 (4)
Fe10.00517 (5)0.00680 (6)0.00544 (6)0.00022 (4)0.00078 (4)0.00066 (4)
Mg20.00903 (10)0.00857 (11)0.00726 (11)0.00115 (8)0.00227 (9)0.00095 (9)
Li20.00903 (10)0.00857 (11)0.00726 (11)0.00115 (8)0.00227 (9)0.00095 (9)
Si1A0.00369 (5)0.00458 (6)0.00365 (5)0.00047 (4)0.00021 (4)0.00007 (4)
Si1B0.00369 (5)0.00458 (6)0.00365 (5)0.00047 (4)0.00021 (4)0.00007 (4)
Si2A0.00369 (5)0.00466 (6)0.00389 (5)0.00037 (4)0.00041 (4)0.00023 (4)
Si2B0.00369 (5)0.00466 (6)0.00389 (5)0.00037 (4)0.00041 (4)0.00023 (4)
O1A0.00365 (11)0.00784 (14)0.00640 (14)0.00000 (10)0.00014 (10)0.00050 (12)
O2A0.00764 (12)0.00590 (14)0.00718 (15)0.00256 (11)0.00019 (12)0.00077 (12)
O3A0.00582 (12)0.00992 (15)0.00494 (13)0.00038 (11)0.00014 (11)0.00322 (12)
O1B0.00357 (11)0.00803 (14)0.00584 (14)0.00030 (10)0.00051 (11)0.00010 (12)
O2B0.00822 (13)0.00721 (14)0.00747 (15)0.00305 (11)0.00008 (12)0.00208 (12)
O3B0.00613 (12)0.00938 (15)0.00647 (14)0.00098 (11)0.00039 (11)0.00378 (12)
O1AA0.00365 (11)0.00784 (14)0.00640 (14)0.00000 (10)0.00014 (10)0.00050 (12)
O2AA0.00764 (12)0.00590 (14)0.00718 (15)0.00256 (11)0.00019 (12)0.00077 (12)
O3AA0.00582 (12)0.00992 (15)0.00494 (13)0.00038 (11)0.00014 (11)0.00322 (12)
O1BA0.00357 (11)0.00803 (14)0.00584 (14)0.00030 (10)0.00051 (11)0.00010 (12)
O2BA0.00822 (13)0.00721 (14)0.00747 (15)0.00305 (11)0.00008 (12)0.00208 (12)
O3BA0.00613 (12)0.00938 (15)0.00647 (14)0.00098 (11)0.00039 (11)0.00378 (12)
Geometric parameters (Å, º) top
Mg1—O2Ai1.9633 (4)Mg2—O1Aii2.1033 (5)
Mg1—O2B2.0020 (4)Mg2—O3Aix2.2938 (5)
Mg1—O1Aii2.0262 (4)Mg2—O3Bix2.5203 (5)
Mg1—O1Biii2.0450 (4)Mg2—Si1A2.7977 (3)
Mg1—O1Aiv2.1508 (4)Si1A—O2A1.5891 (4)
Mg1—O1Bv2.1800 (4)Si1A—O1A1.6166 (4)
Mg1—Mg2i2.9245 (3)Si1A—O3Ax1.6385 (4)
Mg1—Mg23.0075 (4)Si1A—O3Aix1.6542 (5)
Mg1—Mg1vi3.1352 (2)Si2A—O2B1.5894 (4)
Mg1—Mg1vii3.1352 (2)Si2A—O1B1.6238 (4)
Mg2—O2B2.0157 (5)Si2A—O3Bxi1.6612 (5)
Mg2—O2A2.0477 (5)Si2A—O3B1.6624 (5)
Mg2—O1Bviii2.0607 (5)
O2Ai—Mg1—O2B94.085 (19)O3Aix—Mg2—Mg1x109.076 (16)
O2Ai—Mg1—O1Aii96.116 (18)O3Bix—Mg2—Mg1x80.504 (13)
O2B—Mg1—O1Aii85.951 (18)Si1A—Mg2—Mg1x73.481 (8)
O2Ai—Mg1—O1Biii88.636 (18)O2A—Si1A—O1A116.48 (2)
O2B—Mg1—O1Biii97.545 (18)O2A—Si1A—O3Ax113.05 (2)
O1Aii—Mg1—O1Biii173.906 (18)O1A—Si1A—O3Ax108.18 (2)
O2Ai—Mg1—O1Aiv90.553 (18)O2A—Si1A—O3Aix100.86 (2)
O2B—Mg1—O1Aiv175.234 (18)O1A—Si1A—O3Aix111.53 (2)
O1Aii—Mg1—O1Aiv92.471 (15)O3Ax—Si1A—O3Aix106.147 (16)
O1Biii—Mg1—O1Aiv83.646 (17)O2A—Si1A—Mg246.156 (18)
O2Ai—Mg1—O1Bv171.313 (18)O1A—Si1A—Mg2134.691 (18)
O2B—Mg1—O1Bv94.524 (17)O3Ax—Si1A—Mg2117.101 (17)
O1Aii—Mg1—O1Bv83.347 (17)O3Aix—Si1A—Mg255.054 (17)
O1Biii—Mg1—O1Bv91.378 (15)O2A—Si1A—Mg1xii110.716 (17)
O1Aiv—Mg1—O1Bv80.818 (16)O1A—Si1A—Mg1xii33.803 (16)
O2Ai—Mg1—Mg2i44.332 (14)O3Ax—Si1A—Mg1xii133.095 (16)
O2B—Mg1—Mg2i92.889 (15)O3Aix—Si1A—Mg1xii81.004 (15)
O1Aii—Mg1—Mg2i140.319 (14)Mg2—Si1A—Mg1xii105.008 (8)
O1Biii—Mg1—Mg2i44.794 (13)O2A—Si1A—Mg2xii86.158 (17)
O1Aiv—Mg1—Mg2i91.196 (14)O1A—Si1A—Mg2xii33.536 (16)
O1Bv—Mg1—Mg2i136.158 (14)O3Ax—Si1A—Mg2xii111.190 (17)
O2Ai—Mg1—Mg295.688 (15)O3Aix—Si1A—Mg2xii135.524 (17)
O2B—Mg1—Mg241.708 (14)Mg2—Si1A—Mg2xii121.610 (8)
O1Aii—Mg1—Mg244.272 (13)Mg1xii—Si1A—Mg2xii55.934 (7)
O1Biii—Mg1—Mg2139.167 (14)O2B—Si2A—O1B117.06 (2)
O1Aiv—Mg1—Mg2136.678 (14)O2B—Si2A—O3Bxi109.49 (2)
O1Bv—Mg1—Mg289.978 (13)O1B—Si2A—O3Bxi106.43 (2)
Mg2i—Mg1—Mg2122.297 (11)O2B—Si2A—O3B105.53 (2)
O2Ai—Mg1—Mg1vi138.218 (13)O1B—Si2A—O3B107.34 (2)
O2B—Mg1—Mg1vi90.907 (13)O3Bxi—Si2A—O3B110.995 (17)
O1Aii—Mg1—Mg1vi42.888 (12)O2B—Si2A—Mg233.684 (18)
O1Biii—Mg1—Mg1vi131.734 (13)O1B—Si2A—Mg2124.653 (18)
O1Aiv—Mg1—Mg1vi84.892 (13)O3Bxi—Si2A—Mg2125.893 (17)
O1Bv—Mg1—Mg1vi40.463 (12)O3B—Si2A—Mg272.058 (18)
Mg2i—Mg1—Mg1vi175.229 (9)O2B—Si2A—Mg2viii84.570 (17)
Mg2—Mg1—Mg1vi62.450 (6)O1B—Si2A—Mg2viii32.772 (16)
O2Ai—Mg1—Mg1vii89.047 (14)O3Bxi—Si2A—Mg2viii125.343 (17)
O2B—Mg1—Mg1vii141.167 (13)O3B—Si2A—Mg2viii115.348 (17)
O1Aii—Mg1—Mg1vii132.226 (13)Mg2—Si2A—Mg2viii95.365 (8)
O1Biii—Mg1—Mg1vii43.774 (12)O2B—Si2A—Mg1iii121.837 (18)
O1Aiv—Mg1—Mg1vii39.877 (12)O1B—Si2A—Mg1iii31.799 (16)
O1Bv—Mg1—Mg1vii84.970 (13)O3Bxi—Si2A—Mg1iii75.698 (16)
Mg2i—Mg1—Mg1vii63.333 (7)O3B—Si2A—Mg1iii127.159 (17)
Mg2—Mg1—Mg1vii174.350 (9)Mg2—Si2A—Mg1iii147.398 (8)
Mg1vi—Mg1—Mg1vii111.916 (9)Mg2viii—Si2A—Mg1iii53.775 (7)
O2B—Mg2—O2A173.27 (2)Si1A—O1A—Mg1xii119.85 (2)
O2B—Mg2—O1Bviii93.98 (2)Si1A—O1A—Mg2xii121.34 (2)
O2A—Mg2—O1Bviii85.96 (2)Mg1xii—O1A—Mg2xii93.468 (18)
O2B—Mg2—O1Aii83.59 (2)Si1A—O1A—Mg1xiii121.64 (2)
O2A—Mg2—O1Aii89.70 (2)Mg1xii—O1A—Mg1xiii97.236 (17)
O1Bviii—Mg2—O1Aii84.782 (19)Mg2xii—O1A—Mg1xiii96.997 (18)
O2B—Mg2—O3Aix111.62 (2)Si1A—O2A—Mg1x148.97 (3)
O2A—Mg2—O3Aix70.070 (18)Si1A—O2A—Mg299.81 (2)
O1Bviii—Mg2—O3Aix151.60 (2)Mg1x—O2A—Mg293.598 (19)
O1Aii—Mg2—O3Aix109.32 (2)Si1Ai—O3A—Si1Axi135.51 (3)
O2B—Mg2—O3Bix102.486 (19)Si1Ai—O3A—Mg2xi130.30 (3)
O2A—Mg2—O3Bix84.244 (19)Si1Axi—O3A—Mg2xi88.71 (2)
O1Bviii—Mg2—O3Bix89.268 (19)Si2A—O1B—Mg1iii123.47 (2)
O1Aii—Mg2—O3Bix171.80 (2)Si2A—O1B—Mg2viii121.98 (2)
O3Aix—Mg2—O3Bix73.791 (17)Mg1iii—O1B—Mg2viii90.846 (18)
O2B—Mg2—Si1A147.814 (19)Si2A—O1B—Mg1xiv120.25 (2)
O2A—Mg2—Si1A34.036 (13)Mg1iii—O1B—Mg1xiv95.765 (17)
O1Bviii—Mg2—Si1A117.659 (17)Mg2viii—O1B—Mg1xiv97.377 (19)
O1Aii—Mg2—Si1A103.862 (16)Si2A—O2B—Mg1133.27 (3)
O3Aix—Mg2—Si1A36.237 (12)Si2A—O2B—Mg2120.38 (3)
O3Bix—Mg2—Si1A73.966 (13)Mg1—O2B—Mg296.930 (19)
O2B—Mg2—Mg1x138.343 (18)Si2Aix—O3B—Si2A130.43 (3)
O2A—Mg2—Mg1x42.069 (13)Si2Aix—O3B—Mg2xi122.73 (2)
O1Bviii—Mg2—Mg1x44.361 (13)Si2A—O3B—Mg2xi105.57 (2)
O1Aii—Mg2—Mg1x91.297 (16)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1, z+1/2; (iii) x+1, y+1, z+2; (iv) x+1/2, y+1/2, z+1; (v) x+1, y+1/2, z+3/2; (vi) x, y+3/2, z1/2; (vii) x, y+3/2, z+1/2; (viii) x+1, y+1, z+1; (ix) x, y+1/2, z1/2; (x) x, y, z1; (xi) x, y+1/2, z+1/2; (xii) x+1/2, y+1, z1/2; (xiii) x+1/2, y1/2, z1; (xiv) x+1, y1/2, z+3/2.
(OPX_3) top
Crystal data top
Si·3(O)·0.157(Fe)·0.687(Mg)·0.157(Li)Dx = 3.290 Mg m3
Mr = 102.62Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9569 reflections
a = 18.1718 (4) Åθ = 3.4–45.2°
b = 8.7706 (2) ŵ = 2.13 mm1
c = 5.1992 (1) ÅT = 293 K
V = 828.64 (3) Å3Anhedral
Z = 160.24 × 0.18 × 0.06 mm
F(000) = 877
Data collection top
Bruker Smart Breeze
diffractometer
3458 independent reflections
Radiation source: fine-focus sealed tube3231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 512 pixels mm-1θmax = 45.3°, θmin = 3.2°
φ and ω scansh = 3629
Absorption correction: multi-scan
SADABS (Sheldrick, 2015)
k = 1317
Tmin = 0.638, Tmax = 0.880l = 1010
20229 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0129P)2 + 0.1879P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max = 0.002
wR(F2) = 0.041Δρmax = 0.48 e Å3
S = 1.17Δρmin = 0.44 e Å3
3458 reflectionsExtinction correction: SHELXL-2019/3 (Sheldrick 2019), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
95 parametersExtinction coefficient: 0.0110 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mg10.37534 (2)0.64975 (2)0.87437 (2)0.00581 (3)0.6865 (9)
Fe10.37534 (2)0.64975 (2)0.87437 (2)0.00581 (3)0.3135 (9)
Mg20.37650 (2)0.48689 (3)0.36523 (5)0.00829 (5)0.6865 (9)
Li20.37650 (2)0.48689 (3)0.36523 (5)0.00829 (5)0.3135 (9)
Si1A0.27250 (2)0.34081 (2)0.05404 (2)0.00393 (3)0.886 (16)
Si1B0.27250 (2)0.34081 (2)0.05404 (2)0.00393 (3)0.114 (16)
Si2A0.47402 (2)0.33749 (2)0.79363 (3)0.00404 (3)0.886 (16)
Si2B0.47402 (2)0.33749 (2)0.79363 (3)0.00404 (3)0.114 (16)
O1A0.18354 (2)0.33734 (4)0.04383 (7)0.00587 (5)0.254 (16)
O2A0.31006 (2)0.50439 (4)0.04793 (7)0.00688 (5)0.254 (16)
O3A0.30382 (2)0.22610 (4)0.83055 (7)0.00696 (5)0.254 (16)
O1B0.56344 (2)0.33808 (4)0.79630 (7)0.00592 (5)0.254 (16)
O2B0.43426 (2)0.48839 (4)0.69697 (7)0.00767 (5)0.254 (16)
O3B0.44749 (2)0.20110 (4)0.59206 (7)0.00744 (5)0.254 (16)
O1AA0.18354 (2)0.33734 (4)0.04383 (7)0.00587 (5)0.746 (16)
O2AA0.31006 (2)0.50439 (4)0.04793 (7)0.00688 (5)0.746 (16)
O3AA0.30382 (2)0.22610 (4)0.83055 (7)0.00696 (5)0.746 (16)
O1BA0.56344 (2)0.33808 (4)0.79630 (7)0.00592 (5)0.746 (16)
O2BA0.43426 (2)0.48839 (4)0.69697 (7)0.00767 (5)0.746 (16)
O3BA0.44749 (2)0.20110 (4)0.59206 (7)0.00744 (5)0.746 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.00508 (5)0.00683 (5)0.00554 (5)0.00024 (3)0.00081 (3)0.00071 (3)
Fe10.00508 (5)0.00683 (5)0.00554 (5)0.00024 (3)0.00081 (3)0.00071 (3)
Mg20.00897 (10)0.00851 (9)0.00739 (9)0.00123 (7)0.00244 (7)0.00084 (7)
Li20.00897 (10)0.00851 (9)0.00739 (9)0.00123 (7)0.00244 (7)0.00084 (7)
Si1A0.00356 (4)0.00445 (4)0.00377 (5)0.00053 (3)0.00023 (3)0.00011 (3)
Si1B0.00356 (4)0.00445 (4)0.00377 (5)0.00053 (3)0.00023 (3)0.00011 (3)
Si2A0.00357 (4)0.00447 (4)0.00408 (5)0.00042 (3)0.00041 (3)0.00017 (3)
Si2B0.00357 (4)0.00447 (4)0.00408 (5)0.00042 (3)0.00041 (3)0.00017 (3)
O1A0.00347 (10)0.00784 (11)0.00630 (11)0.00005 (8)0.00017 (8)0.00056 (9)
O2A0.00769 (11)0.00537 (11)0.00759 (12)0.00258 (9)0.00034 (9)0.00082 (9)
O3A0.00573 (11)0.01000 (12)0.00517 (11)0.00042 (9)0.00015 (8)0.00318 (9)
O1B0.00369 (10)0.00791 (11)0.00616 (11)0.00020 (8)0.00043 (8)0.00024 (9)
O2B0.00808 (12)0.00735 (11)0.00758 (12)0.00322 (9)0.00009 (9)0.00213 (10)
O3B0.00592 (11)0.00974 (12)0.00666 (11)0.00095 (9)0.00025 (8)0.00395 (10)
O1AA0.00347 (10)0.00784 (11)0.00630 (11)0.00005 (8)0.00017 (8)0.00056 (9)
O2AA0.00769 (11)0.00537 (11)0.00759 (12)0.00258 (9)0.00034 (9)0.00082 (9)
O3AA0.00573 (11)0.01000 (12)0.00517 (11)0.00042 (9)0.00015 (8)0.00318 (9)
O1BA0.00369 (10)0.00791 (11)0.00616 (11)0.00020 (8)0.00043 (8)0.00024 (9)
O2BA0.00808 (12)0.00735 (11)0.00758 (12)0.00322 (9)0.00009 (9)0.00213 (10)
O3BA0.00592 (11)0.00974 (12)0.00666 (11)0.00095 (9)0.00025 (8)0.00395 (10)
Geometric parameters (Å, º) top
Mg1—O2Ai1.9613 (4)Mg2—O1Aii2.1046 (4)
Mg1—O2B2.0000 (4)Mg2—O3Aix2.2949 (4)
Mg1—O1Aii2.0276 (4)Mg2—O3Bix2.5298 (5)
Mg1—O1Biii2.0447 (4)Mg2—Si1A2.7983 (3)
Mg1—O1Aiv2.1512 (4)Si1A—O2A1.5891 (4)
Mg1—O1Bv2.1803 (4)Si1A—O1A1.6177 (4)
Mg1—Mg2i2.9246 (3)Si1A—O3Ax1.6390 (4)
Mg1—Mg23.0080 (3)Si1A—O3Aix1.6538 (4)
Mg1—Mg1vi3.1385 (1)Si2A—O2B1.5894 (4)
Mg1—Mg1vii3.1385 (1)Si2A—O1B1.6251 (3)
Mg2—O2B2.0191 (4)Si2A—O3Bxi1.6596 (4)
Mg2—O2A2.0500 (4)Si2A—O3B1.6618 (4)
Mg2—O1Bviii2.0623 (4)
O2Ai—Mg1—O2B94.361 (16)O3Aix—Mg2—Mg1x108.957 (13)
O2Ai—Mg1—O1Aii96.149 (15)O3Bix—Mg2—Mg1x80.334 (11)
O2B—Mg1—O1Aii86.052 (15)Si1A—Mg2—Mg1x73.395 (7)
O2Ai—Mg1—O1Biii88.726 (15)O2A—Si1A—O1A116.459 (19)
O2B—Mg1—O1Biii97.578 (15)O2A—Si1A—O3Ax113.01 (2)
O1Aii—Mg1—O1Biii173.705 (15)O1A—Si1A—O3Ax108.190 (18)
O2Ai—Mg1—O1Aiv90.450 (15)O2A—Si1A—O3Aix100.950 (19)
O2B—Mg1—O1Aiv175.077 (15)O1A—Si1A—O3Aix111.452 (19)
O1Aii—Mg1—O1Aiv92.404 (13)O3Ax—Si1A—O3Aix106.199 (13)
O1Biii—Mg1—O1Aiv83.553 (14)O2A—Si1A—Mg246.221 (14)
O2Ai—Mg1—O1Bv171.237 (15)O1A—Si1A—Mg2134.624 (15)
O2B—Mg1—O1Bv94.314 (15)O3Ax—Si1A—Mg2117.158 (14)
O1Aii—Mg1—O1Bv83.222 (14)O3Aix—Si1A—Mg255.074 (14)
O1Biii—Mg1—O1Bv91.353 (13)O2A—Si1A—Mg1xii110.599 (14)
O1Aiv—Mg1—O1Bv80.854 (14)O1A—Si1A—Mg1xii33.774 (13)
O2Ai—Mg1—Mg2i44.393 (12)O3Ax—Si1A—Mg1xii133.200 (14)
O2B—Mg1—Mg2i93.039 (12)O3Aix—Si1A—Mg1xii81.013 (13)
O1Aii—Mg1—Mg2i140.417 (12)Mg2—Si1A—Mg1xii104.907 (7)
O1Biii—Mg1—Mg2i44.836 (11)O2A—Si1A—Mg2xii86.103 (15)
O1Aiv—Mg1—Mg2i91.129 (11)O1A—Si1A—Mg2xii33.589 (14)
O1Bv—Mg1—Mg2i136.176 (11)O3Ax—Si1A—Mg2xii111.118 (14)
O2Ai—Mg1—Mg295.767 (13)O3Aix—Si1A—Mg2xii135.540 (14)
O2B—Mg1—Mg241.788 (12)Mg2—Si1A—Mg2xii121.599 (7)
O1Aii—Mg1—Mg244.300 (11)Mg1xii—Si1A—Mg2xii55.912 (5)
O1Biii—Mg1—Mg2139.282 (12)O2B—Si2A—O1B117.04 (2)
O1Aiv—Mg1—Mg2136.640 (11)O2B—Si2A—O3Bxi109.48 (2)
O1Bv—Mg1—Mg289.886 (11)O1B—Si2A—O3Bxi106.444 (19)
Mg2i—Mg1—Mg2122.410 (10)O2B—Si2A—O3B105.55 (2)
O2Ai—Mg1—Mg1vi138.182 (11)O1B—Si2A—O3B107.320 (19)
O2B—Mg1—Mg1vi90.830 (11)O3Bxi—Si2A—O3B111.012 (14)
O1Aii—Mg1—Mg1vi42.830 (10)O2B—Si2A—Mg233.894 (15)
O1Biii—Mg1—Mg1vi131.633 (11)O1B—Si2A—Mg2124.768 (15)
O1Aiv—Mg1—Mg1vi84.877 (11)O3Bxi—Si2A—Mg2125.846 (14)
O1Bv—Mg1—Mg1vi40.395 (10)O3B—Si2A—Mg271.863 (15)
Mg2i—Mg1—Mg1vi175.140 (8)O2B—Si2A—Mg2viii84.513 (15)
Mg2—Mg1—Mg1vi62.428 (6)O1B—Si2A—Mg2viii32.830 (13)
O2Ai—Mg1—Mg1vii89.032 (11)O3Bxi—Si2A—Mg2viii125.488 (15)
O2B—Mg1—Mg1vii141.122 (11)O3B—Si2A—Mg2viii115.209 (14)
O1Aii—Mg1—Mg1vii132.123 (11)Mg2—Si2A—Mg2viii95.420 (7)
O1Biii—Mg1—Mg1vii43.710 (10)O2B—Si2A—Mg1iii121.606 (15)
O1Aiv—Mg1—Mg1vii39.848 (10)O1B—Si2A—Mg1iii31.788 (13)
O1Bv—Mg1—Mg1vii84.987 (11)O3Bxi—Si2A—Mg1iii75.771 (13)
Mg2i—Mg1—Mg1vii63.312 (6)O3B—Si2A—Mg1iii127.317 (14)
Mg2—Mg1—Mg1vii174.259 (8)Mg2—Si2A—Mg1iii147.412 (7)
Mg1vi—Mg1—Mg1vii111.846 (7)Mg2viii—Si2A—Mg1iii53.763 (5)
O2B—Mg2—O2A173.26 (2)Si1A—O1A—Mg1xii119.90 (2)
O2B—Mg2—O1Bviii93.892 (17)Si1A—O1A—Mg2xii121.24 (2)
O2A—Mg2—O1Bviii85.887 (16)Mg1xii—O1A—Mg2xii93.413 (15)
O2B—Mg2—O1Aii83.558 (17)Si1A—O1A—Mg1xiii121.657 (19)
O2A—Mg2—O1Aii89.711 (17)Mg1xii—O1A—Mg1xiii97.321 (15)
O1Bviii—Mg2—O1Aii84.766 (17)Mg2xii—O1A—Mg1xiii96.990 (16)
O2B—Mg2—O3Aix111.812 (18)Si1A—O2A—Mg1x148.85 (2)
O2A—Mg2—O3Aix70.051 (15)Si1A—O2A—Mg299.74 (2)
O1Bviii—Mg2—O3Aix151.464 (19)Mg1x—O2A—Mg293.597 (16)
O1Aii—Mg2—O3Aix109.429 (17)Si1Ai—O3A—Si1Axi135.61 (2)
O2B—Mg2—O3Bix102.632 (16)Si1Ai—O3A—Mg2xi130.08 (2)
O2A—Mg2—O3Bix84.109 (16)Si1Axi—O3A—Mg2xi88.708 (17)
O1Bviii—Mg2—O3Bix89.232 (16)Si2A—O1B—Mg1iii123.46 (2)
O1Aii—Mg2—O3Bix171.683 (18)Si2A—O1B—Mg2viii121.88 (2)
O3Aix—Mg2—O3Bix73.672 (15)Mg1iii—O1B—Mg2viii90.813 (15)
O2B—Mg2—Si1A147.989 (16)Si2A—O1B—Mg1xiv120.289 (19)
O2A—Mg2—Si1A34.035 (11)Mg1iii—O1B—Mg1xiv95.896 (14)
O1Bviii—Mg2—Si1A117.569 (14)Mg2viii—O1B—Mg1xiv97.362 (16)
O1Aii—Mg2—Si1A103.911 (13)Si2A—O2B—Mg1133.37 (2)
O3Aix—Mg2—Si1A36.217 (10)Si2A—O2B—Mg2120.07 (2)
O3Bix—Mg2—Si1A73.825 (11)Mg1—O2B—Mg296.908 (17)
O2B—Mg2—Mg1x138.243 (16)Si2Aix—O3B—Si2A130.70 (2)
O2A—Mg2—Mg1x42.011 (11)Si2Aix—O3B—Mg2xi122.69 (2)
O1Bviii—Mg2—Mg1x44.353 (11)Si2A—O3B—Mg2xi105.250 (18)
O1Aii—Mg2—Mg1x91.349 (13)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1, z+1/2; (iii) x+1, y+1, z+2; (iv) x+1/2, y+1/2, z+1; (v) x+1, y+1/2, z+3/2; (vi) x, y+3/2, z1/2; (vii) x, y+3/2, z+1/2; (viii) x+1, y+1, z+1; (ix) x, y+1/2, z1/2; (x) x, y, z1; (xi) x, y+1/2, z+1/2; (xii) x+1/2, y+1, z1/2; (xiii) x+1/2, y1/2, z1; (xiv) x+1, y1/2, z+3/2.
(PPX_4a) top
Crystal data top
Si·3(O)·0.082(Fe)·0.836(Mg)·0.082(Li)Dx = 3.166 Mg m3
Mr = 101.60Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 6514 reflections
a = 9.2232 (2) Åθ = 3.2–45.3°
b = 8.7040 (2) ŵ = 1.62 mm1
c = 5.3107 (1) ÅT = 293 K
V = 426.34 (2) Å3Anhedral
Z = 80.40 × 0.32 × 0.25 mm
F(000) = 435
Data collection top
Bruker Smart Breeze
diffractometer
1753 independent reflections
Radiation source: fine-focus sealed tube1661 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 512 pixels mm-1θmax = 45.3°, θmin = 3.2°
φ and ω scansh = 1717
Absorption correction: multi-scan
SADABS (Sheldrick, 2015)
k = 1417
Tmin = 0.542, Tmax = 0.667l = 109
10336 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0154P)2 + 0.0476P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.014(Δ/σ)max = 0.001
wR(F2) = 0.035Δρmax = 0.34 e Å3
S = 1.14Δρmin = 0.34 e Å3
1753 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
52 parametersExtinction coefficient: 0.094 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mg10.0000000.09896 (2)0.7500000.00580 (4)0.8361 (9)
Fe10.0000000.09896 (2)0.7500000.00580 (4)0.1639 (9)
Mg20.0000000.26368 (2)0.2500000.00691 (5)0.8361 (9)
Li20.0000000.26368 (2)0.2500000.00691 (5)0.1639 (9)
SiB0.29263 (2)0.09090 (2)0.07181 (2)0.00417 (3)0.902 (10)
SiBB0.29263 (2)0.09090 (2)0.07181 (2)0.00417 (3)0.098 (10)
O1B0.11769 (3)0.09247 (3)0.07878 (5)0.00573 (4)0.287 (16)
O1BB0.11769 (3)0.09247 (3)0.07878 (5)0.00573 (4)0.713 (16)
O2B0.37515 (3)0.25119 (3)0.07138 (5)0.00805 (4)0.287 (16)
O2BB0.37515 (3)0.25119 (3)0.07138 (5)0.00805 (4)0.713 (16)
O3B0.35046 (3)0.97953 (3)0.30011 (5)0.00821 (4)0.287 (16)
O3BB0.35046 (3)0.97953 (3)0.30011 (5)0.00821 (4)0.713 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.00553 (7)0.00653 (6)0.00532 (6)0.0000.00055 (4)0.000
Fe10.00553 (7)0.00653 (6)0.00532 (6)0.0000.00055 (4)0.000
Mg20.00762 (9)0.00727 (7)0.00585 (7)0.0000.00086 (6)0.000
Li20.00762 (9)0.00727 (7)0.00585 (7)0.0000.00086 (6)0.000
SiB0.00368 (4)0.00471 (4)0.00413 (4)0.00063 (2)0.00017 (2)0.00007 (2)
SiBB0.00368 (4)0.00471 (4)0.00413 (4)0.00063 (2)0.00017 (2)0.00007 (2)
O1B0.00373 (9)0.00756 (8)0.00592 (8)0.00024 (6)0.00013 (6)0.00025 (6)
O1BB0.00373 (9)0.00756 (8)0.00592 (8)0.00024 (6)0.00013 (6)0.00025 (6)
O2B0.00936 (11)0.00673 (8)0.00806 (8)0.00391 (7)0.00030 (7)0.00057 (6)
O2BB0.00936 (11)0.00673 (8)0.00806 (8)0.00391 (7)0.00030 (7)0.00057 (6)
O3B0.00591 (10)0.01204 (9)0.00669 (8)0.00053 (7)0.00066 (7)0.00460 (7)
O3BB0.00591 (10)0.01204 (9)0.00669 (8)0.00053 (7)0.00066 (7)0.00460 (7)
Geometric parameters (Å, º) top
Mg1—O2Bi1.9816 (3)Mg2—O1B2.0557 (3)
Mg1—O2Bii1.9816 (3)Mg2—O2Bviii2.0629 (3)
Mg1—O1Biii2.0567 (3)Mg2—O2Bi2.0629 (3)
Mg1—O1Biv2.0567 (3)Mg2—O3Bix2.3458 (3)
Mg1—O1Bv2.1867 (3)Mg2—O3Bx2.3458 (3)
Mg1—O1Bvi2.1867 (3)Mg2—SiBi2.8602 (1)
Mg1—Mg2iv3.0177 (1)Mg2—SiBviii2.8602 (1)
Mg1—Mg23.0177 (1)SiB—O2B1.5893 (3)
Mg1—Mg2v3.1564 (3)SiB—O1B1.6140 (3)
Mg1—Mg1v3.1652 (2)SiB—O3Bxi1.6414 (3)
Mg1—Mg1vii3.1652 (2)SiB—O3Bxii1.6560 (3)
Mg2—O1Biii2.0557 (3)
O2Bi—Mg1—O2Bii97.677 (18)O2Bviii—Mg2—O3Bx68.174 (10)
O2Bi—Mg1—O1Biii85.317 (11)O2Bi—Mg2—O3Bx118.183 (12)
O2Bii—Mg1—O1Biii96.764 (11)O3Bix—Mg2—O3Bx73.567 (15)
O2Bi—Mg1—O1Biv96.764 (11)O1Biii—Mg2—SiBi114.179 (8)
O2Bii—Mg1—O1Biv85.317 (11)O1B—Mg2—SiBi103.414 (8)
O1Biii—Mg1—O1Biv176.854 (15)O2Bviii—Mg2—SiBi153.556 (11)
O2Bi—Mg1—O1Bv171.513 (12)O2Bi—Mg2—SiBi32.877 (7)
O2Bii—Mg1—O1Bv90.804 (11)O3Bix—Mg2—SiBi35.377 (7)
O1Biii—Mg1—O1Bv94.020 (10)O3Bx—Mg2—SiBi96.116 (9)
O1Biv—Mg1—O1Bv83.573 (11)O1Biii—Mg2—SiBviii103.413 (8)
O2Bi—Mg1—O1Bvi90.804 (11)O1B—Mg2—SiBviii114.178 (8)
O2Bii—Mg1—O1Bvi171.513 (12)O2Bviii—Mg2—SiBviii32.877 (7)
O1Biii—Mg1—O1Bvi83.573 (11)O2Bi—Mg2—SiBviii153.556 (11)
O1Biv—Mg1—O1Bvi94.020 (10)O3Bix—Mg2—SiBviii96.116 (9)
O1Bv—Mg1—O1Bvi80.716 (14)O3Bx—Mg2—SiBviii35.377 (6)
O2Bi—Mg1—Mg2iv96.230 (9)SiBi—Mg2—SiBviii127.472 (9)
O2Bii—Mg1—Mg2iv42.784 (8)O1Biii—Mg2—Mg142.808 (8)
O1Biii—Mg1—Mg2iv139.469 (8)O1B—Mg2—Mg192.569 (10)
O1Biv—Mg1—Mg2iv42.780 (8)O2Bviii—Mg2—Mg1134.282 (10)
O1Bv—Mg1—Mg2iv89.778 (7)O2Bi—Mg2—Mg140.728 (8)
O1Bvi—Mg1—Mg2iv136.714 (7)O3Bix—Mg2—Mg1106.301 (7)
O2Bi—Mg1—Mg242.784 (8)O3Bx—Mg2—Mg1118.707 (7)
O2Bii—Mg1—Mg296.229 (9)SiBi—Mg2—Mg171.607 (3)
O1Biii—Mg1—Mg242.780 (8)SiBviii—Mg2—Mg1137.392 (2)
O1Biv—Mg1—Mg2139.469 (8)O1Biii—Mg2—Mg1xiii92.568 (9)
O1Bv—Mg1—Mg2136.714 (7)O1B—Mg2—Mg1xiii42.807 (7)
O1Bvi—Mg1—Mg289.778 (7)O2Bviii—Mg2—Mg1xiii40.728 (8)
Mg2iv—Mg1—Mg2123.268 (9)O2Bi—Mg2—Mg1xiii134.282 (10)
O2Bi—Mg1—Mg2v131.161 (9)O3Bix—Mg2—Mg1xiii118.708 (7)
O2Bii—Mg1—Mg2v131.161 (9)O3Bx—Mg2—Mg1xiii106.301 (7)
O1Biii—Mg1—Mg2v88.427 (8)SiBi—Mg2—Mg1xiii137.392 (2)
O1Biv—Mg1—Mg2v88.427 (8)SiBviii—Mg2—Mg1xiii71.607 (3)
O1Bv—Mg1—Mg2v40.358 (7)Mg1—Mg2—Mg1xiii123.268 (9)
O1Bvi—Mg1—Mg2v40.358 (7)O2B—SiB—O1B118.125 (15)
Mg2iv—Mg1—Mg2v118.366 (4)O2B—SiB—O3Bxi111.337 (15)
Mg2—Mg1—Mg2v118.366 (4)O1B—SiB—O3Bxi108.238 (14)
O2Bi—Mg1—Mg1v87.515 (8)O2B—SiB—O3Bxii99.755 (14)
O2Bii—Mg1—Mg1v139.447 (8)O1B—SiB—O3Bxii110.191 (14)
O1Biii—Mg1—Mg1v43.354 (7)O3Bxi—SiB—O3Bxii108.680 (11)
O1Biv—Mg1—Mg1v134.207 (9)O2B—SiB—Mg2xiv44.798 (11)
O1Bv—Mg1—Mg1v86.222 (9)O1B—SiB—Mg2xiv132.722 (10)
O1Bvi—Mg1—Mg1v40.219 (7)O3Bxi—SiB—Mg2xiv119.036 (11)
Mg2iv—Mg1—Mg1v175.391 (7)O3Bxii—SiB—Mg2xiv55.095 (10)
Mg2—Mg1—Mg1v61.341 (4)O2B—SiB—Mg1xiii112.613 (12)
Mg2v—Mg1—Mg1v57.025 (4)O1B—SiB—Mg1xiii33.661 (9)
O2Bi—Mg1—Mg1vii139.447 (8)O3Bxi—SiB—Mg1xiii133.043 (11)
O2Bii—Mg1—Mg1vii87.515 (8)O3Bxii—SiB—Mg1xiii79.291 (11)
O1Biii—Mg1—Mg1vii134.207 (9)Mg2xiv—SiB—Mg1xiii103.622 (3)
O1Biv—Mg1—Mg1vii43.354 (7)O2B—SiB—Mg289.536 (12)
O1Bv—Mg1—Mg1vii40.219 (7)O1B—SiB—Mg232.258 (9)
O1Bvi—Mg1—Mg1vii86.222 (9)O3Bxi—SiB—Mg2109.268 (11)
Mg2iv—Mg1—Mg1vii61.340 (4)O3Bxii—SiB—Mg2134.148 (11)
Mg2—Mg1—Mg1vii175.392 (7)Mg2xiv—SiB—Mg2121.841 (3)
Mg2v—Mg1—Mg1vii57.025 (4)Mg1xiii—SiB—Mg256.008 (3)
Mg1v—Mg1—Mg1vii114.051 (9)SiB—O1B—Mg2122.968 (15)
O1Biii—Mg2—O1B87.076 (17)SiB—O1B—Mg1xiii120.556 (14)
O1Biii—Mg2—O2Bviii91.475 (12)Mg2—O1B—Mg1xiii94.413 (11)
O1B—Mg2—O2Bviii83.297 (11)SiB—O1B—Mg1v119.955 (14)
O1Biii—Mg2—O2Bi83.298 (11)Mg2—O1B—Mg1v96.104 (12)
O1B—Mg2—O2Bi91.475 (12)Mg1xiii—O1B—Mg1v96.429 (11)
O2Bviii—Mg2—O2Bi172.805 (18)SiB—O2B—Mg1xiv148.803 (17)
O1Biii—Mg2—O3Bix147.232 (9)SiB—O2B—Mg2xiv102.325 (14)
O1B—Mg2—O3Bix108.682 (11)Mg1xiv—O2B—Mg2xiv96.488 (12)
O2Bviii—Mg2—O3Bix118.183 (12)SiBxv—O3B—SiBxvi139.248 (19)
O2Bi—Mg2—O3Bix68.174 (10)SiBxv—O3B—Mg2xvii125.470 (15)
O1Biii—Mg2—O3Bx108.681 (11)SiBxvi—O3B—Mg2xvii89.528 (11)
O1B—Mg2—O3Bx147.232 (9)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1; (iii) x, y, z+1/2; (iv) x, y, z+1; (v) x, y, z+1; (vi) x, y, z+1/2; (vii) x, y, z+2; (viii) x1/2, y+1/2, z; (ix) x+1/2, y1/2, z; (x) x1/2, y1/2, z+1/2; (xi) x, y1, z; (xii) x, y+1, z1/2; (xiii) x, y, z1; (xiv) x+1/2, y+1/2, z1/2; (xv) x, y+1, z; (xvi) x, y+1, z+1/2; (xvii) x+1/2, y+1/2, z+1/2.
(PPX_4d) top
Crystal data top
Si·3(O)·0.078(Fe)·0.844(Mg)·0.078(Li)Dx = 3.165 Mg m3
Mr = 101.60Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 3347 reflections
a = 9.2255 (2) Åθ = 3.2–45.3°
b = 8.7052 (2) ŵ = 1.62 mm1
c = 5.3106 (1) ÅT = 293 K
V = 426.49 (2) Å3Anhedral
Z = 80.40 × 0.32 × 0.25 mm
F(000) = 435
Data collection top
Bruker Smart Breeze
diffractometer
1760 independent reflections
Radiation source: fine-focus sealed tube1539 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 512 pixels mm-1θmax = 45.3°, θmin = 3.2°
φ and ω scansh = 1518
Absorption correction: multi-scan
SADABS (Sheldrick, 2015)
k = 1517
Tmin = 0.543, Tmax = 0.667l = 1010
10429 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0168P)2 + 0.0318P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.018(Δ/σ)max < 0.001
wR(F2) = 0.040Δρmax = 0.37 e Å3
S = 1.08Δρmin = 0.45 e Å3
1760 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
51 parametersExtinction coefficient: 0.0359 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mg10.0000000.09881 (2)0.7500000.00594 (5)0.8439 (11)
Fe10.0000000.09881 (2)0.7500000.00594 (5)0.1561 (11)
Mg20.0000000.26371 (4)0.2500000.00705 (6)0.8439 (11)
Li20.0000000.26371 (4)0.2500000.00705 (6)0.1561 (11)
SiB0.29262 (2)0.09092 (2)0.07166 (2)0.00435 (3)0.906 (13)
SiBB0.29262 (2)0.09092 (2)0.07166 (2)0.00435 (3)0.094 (13)
O1B0.11764 (3)0.09254 (4)0.07875 (6)0.00585 (5)0.299 (17)
O1BB0.11764 (3)0.09254 (4)0.07875 (6)0.00585 (5)0.701 (17)
O2B0.37521 (4)0.25107 (5)0.07118 (7)0.00816 (6)0.299 (17)
O2BB0.37521 (4)0.25107 (5)0.07118 (7)0.00816 (6)0.701 (17)
O3B0.35041 (3)0.97958 (5)0.30001 (7)0.00827 (6)0.299 (17)
O3BB0.35041 (3)0.97958 (5)0.30001 (7)0.00827 (6)0.701 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.00571 (7)0.00679 (10)0.00532 (7)0.0000.00050 (5)0.000
Fe10.00571 (7)0.00679 (10)0.00532 (7)0.0000.00050 (5)0.000
Mg20.00784 (10)0.00750 (13)0.00581 (10)0.0000.00083 (7)0.000
Li20.00784 (10)0.00750 (13)0.00581 (10)0.0000.00083 (7)0.000
SiB0.00386 (4)0.00505 (6)0.00414 (5)0.00061 (3)0.00016 (3)0.00011 (3)
SiBB0.00386 (4)0.00505 (6)0.00414 (5)0.00061 (3)0.00016 (3)0.00011 (3)
O1B0.00383 (9)0.00758 (14)0.00612 (11)0.00013 (8)0.00012 (7)0.00028 (9)
O1BB0.00383 (9)0.00758 (14)0.00612 (11)0.00013 (8)0.00012 (7)0.00028 (9)
O2B0.00948 (11)0.00695 (14)0.00805 (12)0.00389 (10)0.00030 (9)0.00063 (10)
O2BB0.00948 (11)0.00695 (14)0.00805 (12)0.00389 (10)0.00030 (9)0.00063 (10)
O3B0.00603 (10)0.01215 (16)0.00664 (11)0.00036 (10)0.00054 (8)0.00455 (10)
O3BB0.00603 (10)0.01215 (16)0.00664 (11)0.00036 (10)0.00054 (8)0.00455 (10)
Geometric parameters (Å, º) top
Mg1—O2Bi1.9837 (4)Mg2—O1B2.0555 (4)
Mg1—O2Bii1.9837 (4)Mg2—O2Bviii2.0619 (4)
Mg1—O1Biii2.0564 (3)Mg2—O2Bi2.0619 (4)
Mg1—O1Biv2.0564 (3)Mg2—O3Bix2.3465 (5)
Mg1—O1Bv2.1863 (4)Mg2—O3Bx2.3465 (5)
Mg1—O1Bvi2.1863 (4)Mg2—SiBi2.8600 (2)
Mg1—Mg2iv3.0185 (2)Mg2—SiBviii2.8600 (2)
Mg1—Mg23.0185 (2)SiB—O2B1.5887 (4)
Mg1—Mg2v3.1558 (4)SiB—O1B1.6148 (3)
Mg1—Mg1v3.1639 (2)SiB—O3Bxi1.6414 (4)
Mg1—Mg1vii3.1639 (2)SiB—O3Bxii1.6559 (4)
Mg2—O1Biii2.0555 (4)
O2Bi—Mg1—O2Bii97.59 (2)O2Bviii—Mg2—O3Bx68.159 (14)
O2Bi—Mg1—O1Biii85.259 (14)O2Bi—Mg2—O3Bx118.162 (17)
O2Bii—Mg1—O1Biii96.754 (14)O3Bix—Mg2—O3Bx73.583 (19)
O2Bi—Mg1—O1Biv96.754 (14)O1Biii—Mg2—SiBi114.184 (10)
O2Bii—Mg1—O1Biv85.259 (14)O1B—Mg2—SiBi103.404 (9)
O1Biii—Mg1—O1Biv176.96 (2)O2Bviii—Mg2—SiBi153.537 (17)
O2Bi—Mg1—O1Bv171.567 (16)O2Bi—Mg2—SiBi32.860 (11)
O2Bii—Mg1—O1Bv90.843 (15)O3Bix—Mg2—SiBi35.379 (9)
O1Biii—Mg1—O1Bv94.070 (13)O3Bx—Mg2—SiBi96.124 (13)
O1Biv—Mg1—O1Bv83.604 (14)O1Biii—Mg2—SiBviii103.404 (9)
O2Bi—Mg1—O1Bvi90.843 (15)O1B—Mg2—SiBviii114.184 (10)
O2Bii—Mg1—O1Bvi171.567 (16)O2Bviii—Mg2—SiBviii32.860 (11)
O1Biii—Mg1—O1Bvi83.604 (14)O2Bi—Mg2—SiBviii153.537 (17)
O1Biv—Mg1—O1Bvi94.070 (13)O3Bix—Mg2—SiBviii96.124 (13)
O1Bv—Mg1—O1Bvi80.731 (19)O3Bx—Mg2—SiBviii35.379 (9)
O2Bi—Mg1—Mg2iv96.190 (13)SiBi—Mg2—SiBviii127.478 (13)
O2Bii—Mg1—Mg2iv42.742 (11)O1Biii—Mg2—Mg142.781 (9)
O1Biii—Mg1—Mg2iv139.416 (12)O1B—Mg2—Mg192.549 (13)
O1Biv—Mg1—Mg2iv42.759 (10)O2Bviii—Mg2—Mg1134.270 (14)
O1Bv—Mg1—Mg2iv89.794 (10)O2Bi—Mg2—Mg140.766 (10)
O1Bvi—Mg1—Mg2iv136.743 (10)O3Bix—Mg2—Mg1106.337 (9)
O2Bi—Mg1—Mg242.742 (11)O3Bx—Mg2—Mg1118.711 (9)
O2Bii—Mg1—Mg296.190 (13)SiBi—Mg2—Mg171.640 (4)
O1Biii—Mg1—Mg242.759 (10)SiBviii—Mg2—Mg1137.378 (3)
O1Biv—Mg1—Mg2139.416 (12)O1Biii—Mg2—Mg1xiii92.549 (13)
O1Bv—Mg1—Mg2136.743 (10)O1B—Mg2—Mg1xiii42.781 (9)
O1Bvi—Mg1—Mg289.794 (10)O2Bviii—Mg2—Mg1xiii40.766 (10)
Mg2iv—Mg1—Mg2123.208 (13)O2Bi—Mg2—Mg1xiii134.269 (14)
O2Bi—Mg1—Mg2v131.207 (12)O3Bix—Mg2—Mg1xiii118.711 (10)
O2Bii—Mg1—Mg2v131.207 (12)O3Bx—Mg2—Mg1xiii106.338 (9)
O1Biii—Mg1—Mg2v88.480 (12)SiBi—Mg2—Mg1xiii137.378 (3)
O1Biv—Mg1—Mg2v88.480 (12)SiBviii—Mg2—Mg1xiii71.640 (4)
O1Bv—Mg1—Mg2v40.365 (10)Mg1—Mg2—Mg1xiii123.207 (13)
O1Bvi—Mg1—Mg2v40.365 (10)O2B—SiB—O1B118.15 (2)
Mg2iv—Mg1—Mg2v118.396 (6)O2B—SiB—O3Bxi111.32 (2)
Mg2—Mg1—Mg2v118.396 (6)O1B—SiB—O3Bxi108.220 (18)
O2Bi—Mg1—Mg1v87.504 (11)O2B—SiB—O3Bxii99.75 (2)
O2Bii—Mg1—Mg1v139.462 (10)O1B—SiB—O3Bxii110.207 (18)
O1Biii—Mg1—Mg1v43.370 (10)O3Bxi—SiB—O3Bxii108.675 (13)
O1Biv—Mg1—Mg1v134.274 (13)O2B—SiB—Mg2xiv44.763 (14)
O1Bv—Mg1—Mg1v86.263 (12)O1B—SiB—Mg2xiv132.749 (14)
O1Bvi—Mg1—Mg1v40.234 (9)O3Bxi—SiB—Mg2xiv119.029 (13)
Mg2iv—Mg1—Mg1v175.457 (11)O3Bxii—SiB—Mg2xiv55.128 (14)
Mg2—Mg1—Mg1v61.335 (6)O2B—SiB—Mg1xiii112.672 (15)
Mg2v—Mg1—Mg1v57.062 (7)O1B—SiB—Mg1xiii33.664 (12)
O2Bi—Mg1—Mg1vii139.462 (10)O3Bxi—SiB—Mg1xiii133.004 (14)
O2Bii—Mg1—Mg1vii87.504 (11)O3Bxii—SiB—Mg1xiii79.294 (12)
O1Biii—Mg1—Mg1vii134.274 (13)Mg2xiv—SiB—Mg1xiii103.671 (4)
O1Biv—Mg1—Mg1vii43.370 (10)O2B—SiB—Mg289.579 (15)
O1Bv—Mg1—Mg1vii40.234 (9)O1B—SiB—Mg232.237 (13)
O1Bvi—Mg1—Mg1vii86.263 (12)O3Bxi—SiB—Mg2109.246 (13)
Mg2iv—Mg1—Mg1vii61.334 (6)O3Bxii—SiB—Mg2134.159 (13)
Mg2—Mg1—Mg1vii175.458 (11)Mg2xiv—SiB—Mg2121.857 (5)
Mg2v—Mg1—Mg1vii57.062 (7)Mg1xiii—SiB—Mg256.016 (3)
Mg1v—Mg1—Mg1vii114.123 (13)SiB—O1B—Mg2122.99 (2)
O1Biii—Mg2—O1B87.08 (2)SiB—O1B—Mg1xiii120.534 (18)
O1Biii—Mg2—O2Bviii91.489 (16)Mg2—O1B—Mg1xiii94.459 (14)
O1B—Mg2—O2Bviii83.314 (15)SiB—O1B—Mg1v119.953 (19)
O1Biii—Mg2—O2Bi83.313 (15)Mg2—O1B—Mg1v96.094 (15)
O1B—Mg2—O2Bi91.488 (16)Mg1xiii—O1B—Mg1v96.395 (14)
O2Bviii—Mg2—O2Bi172.84 (3)SiB—O2B—Mg1xiv148.83 (2)
O1Biii—Mg2—O3Bix147.241 (13)SiB—O2B—Mg2xiv102.38 (2)
O1B—Mg2—O3Bix108.667 (13)Mg1xiv—O2B—Mg2xiv96.491 (15)
O2Bviii—Mg2—O3Bix118.162 (17)SiBxv—O3B—SiBxvi139.28 (2)
O2Bi—Mg2—O3Bix68.159 (14)SiBxv—O3B—Mg2xvii125.47 (2)
O1Biii—Mg2—O3Bx108.667 (13)SiBxvi—O3B—Mg2xvii89.494 (16)
O1B—Mg2—O3Bx147.241 (13)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1; (iii) x, y, z+1/2; (iv) x, y, z+1; (v) x, y, z+1; (vi) x, y, z+1/2; (vii) x, y, z+2; (viii) x1/2, y+1/2, z; (ix) x+1/2, y1/2, z; (x) x1/2, y1/2, z+1/2; (xi) x, y1, z; (xii) x, y+1, z1/2; (xiii) x, y, z1; (xiv) x+1/2, y+1/2, z1/2; (xv) x, y+1, z; (xvi) x, y+1, z+1/2; (xvii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

Open access publishing facilitated by Universita degli Studi di Roma La Sapienza, as part of the Wiley - CRUI-CARE agreement.

Conflict of interest

The authors declare that there are no conflicts of interest.

Funding information

Funding for this research was provided by: Progetti di Ateneo Piccoli 2022.

References

First citationAngel, R. J., Chopelas, A. & Ross, N. L. (1992). Nature, 358, 322–324.  CrossRef ICSD CAS Web of Science Google Scholar
First citationBallirano, P., Celata, B., Pacella, A., Bloise, A., Tempesta, G., Sejkora, J. & Bosi, F. (2024). Inorg. Chem. 63, 20372–20379.  CrossRef CAS PubMed Google Scholar
First citationBallirano, P., Celata, B., Pacella, A. & Bosi, F. (2021). Acta Cryst. B77, 537–549.  CrossRef IUCr Journals Google Scholar
First citationBan, T., Ohya, Y. & Takahashi, Y. (1999). J. Am. Ceram. Soc. 82, 22–26.  CrossRef CAS Google Scholar
First citationBaur, W. H. (1974). Acta Cryst. B30, 1195–1215.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBloise, A., Barrese, E., Apollaro, C. & Miriello, D. (2009). Cryst. Res. Technol. 44, 463–468.  CrossRef CAS Google Scholar
First citationBloise, A., Pingitore, V., Miriello, D., Apollaro, C., Armentano, D., Barrese, E. & Oliva, A. (2011). J. Cryst. Growth, 329, 86–91.  CrossRef CAS Google Scholar
First citationBoyd, F. R., England, J. L. & Davis, B. T. C. (1964). J. Geophys. Res. 69, 2101–2109.  CrossRef CAS Google Scholar
First citationBrown, P. J., Fox, A. G., Maslen, E. N., O'Keefe, M. A. & Willis, B. T. M. (2006). International Tables for Crystallography, Vol. C, edited by E. Prince, pp. 554–595. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationBruker (2016). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCameron, M. & Papike, J. J. (1981). Am. Mineral. 66, 1–50.  CAS Google Scholar
First citationCatalano, M., Bloise, A., Pingitore, V., Cazzanelli, E., Giarola, M., Mariotto, G. & Barrese, E. (2015). Appl. Phys. A, 120, 175–182.  CrossRef CAS Google Scholar
First citationCatalano, M., Bloise, A., Pingitore, V., Miriello, D., Cazzanelli, E., Giarola, M., Mariotto, G. & Barrese, E. (2014). Cryst. Res. Technol. 49, 736–742.  CrossRef CAS Google Scholar
First citationDouy, A. (2002). J. Sol-Gel Sci. Technol. 24, 221–228.  CrossRef CAS Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGanguly, J. & Ghose, S. (1979). Contr. Miner. Petrol. 69, 375–385.  CrossRef CAS Google Scholar
First citationGrandin de L'éprevier, A. & Ito, J. (1983). J. Cryst. Growth, 64, 411–412.  Google Scholar
First citationGu, F., Peng, Z., Tang, H., Ye, L., Tian, W., Liang, G., Rao, M., Zhang, Y., Li, G. & Jiang, T. (2018). Preparation of refractory materials from ferronickel slag, in Characterization of Minerals, Metals, and Materials 2018, pp. 633–642. Cham, Switzerland: Springer.  Google Scholar
First citationHawthorne, F. C. & Gagné, O. C. (2024). Acta Cryst. B80, 326–339.  CrossRef IUCr Journals Google Scholar
First citationHawthorne, F. C., Ungaretti, L. & Oberti, R. (1995). Can. Mineral. 33, 907–911.  CAS Google Scholar
First citationHoppe, R. (1979). Z. Kristallogr. 150, 23–52.  CrossRef CAS Web of Science Google Scholar
First citationHovestreydt, E. (1983). Acta Cryst. A39, 268–269.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIlinca, G. (2022). Minerals, 12, 924.  CrossRef Google Scholar
First citationIto, J. (1975). Geophys. Res. Lett. 2, 533–536.  CrossRef CAS Google Scholar
First citationKanzaki, M. & Xue, X. (2017). J. Mineral. Petrol. Sci. 112, 359–364.  CrossRef CAS Google Scholar
First citationLazarz, J. D., Dera, P., Hu, Y., Meng, Y., Bina, C. R. & Jacobsen, S. D. (2019). Am. Mineral. 104, 897–904.  CrossRef Google Scholar
First citationMakovicky, E. & Balić-Žunić, T. (1998). Acta Cryst. B54, 766–773.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMitchell, M. B., Jackson, D. & James, P. F. (1998). J. Sol-Gel Sci. Technol. 13, 359–364.  CrossRef CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOhashi, Y. (1984). Phys. Chem. Miner. 10, 217–229.  CrossRef ICSD CAS Web of Science Google Scholar
First citationOhashi, Y. & Finger, L. W. (1976). Carnegie Inst. Washington Yearb. 75, 743–746.  Google Scholar
First citationOzima, M. (1982). J. Jpn Assoc. Mineral. Petrol. Econ. Geol. 3, 97–103.  Google Scholar
First citationOzima, M. & Akimoto, S. (1983). Am. Mineral. 68 1199–1205.  CAS Google Scholar
First citationPannhorst, W. (1984). Neues Jb. Miner. Abh. 150, 219–228.  CAS Google Scholar
First citationRedhammer, G. J. & Roth, G. (2004). Z. Kristallogr. 219, 278–294.  Web of Science CrossRef ICSD CAS Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSasaki, S., Fujino, K., Takeuchi, Y. & Sadanaga, R. (1982). Z. Kristallogr. 158, 279–297.  CrossRef CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmyth, J. (1974). Am. Mineral. 59, 345–352.  CAS Google Scholar
First citationSmyth, J. R. & Ito, J. (1977). Am. Mineral. 62, 1252–1257.  CAS Google Scholar
First citationSwanson, D. K. & Peterson, R. C. (1980). Can. Mineral. 18, 153–156.  CAS Google Scholar
First citationTanaka, T. & Takei, H. (1997). J. Cryst. Growth, 180, 206–211.  CrossRef CAS Google Scholar
First citationUshio, M., Kobayashi, N., Suzuki, M. & Sumiyoshi, Y. (1991). J. Am. Ceram. Soc. 74, 1654–1657.  CrossRef CAS Google Scholar
First citationYang, H., Finger, L. W., Conrad, P. G., Prewit, C. T. & Hazen, R. M. (1999). Am. Mineral. 84, 245–256.  CrossRef CAS Google Scholar
First citationYoshiasa, A., Nakatsuka, A., Okube, M. & Katsura, T. (2013). Acta Cryst. B69, 541–546.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationZhou, S., King, G., Scanlon, D. O., Sougrati, M. T. & Melot, B. C. (2014). J. Electrochem. Soc. 161, A1642–A1647.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds