research papers
3+-doped single-crystal samples
and doping in synthetic enstatite: an analysis of Li/FeaDepartment of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy, bDepartment of Energy Technologies and Renewable Sources, ENEA CR Casaccia, S. Maria di Galeria, 00123, Rome, Italy, and cDepartment of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci cubo 15b, I-87036, Arcavacata di Rende (CS), Italy
*Correspondence e-mail: paolo.ballirano@uniroma1.it
A series of Li+/Fe3+-doped enstatite crystals of composition Mg(2–2x)LixFexSi2O6 were synthesized and structurally characterized. Under the selected experimental conditions, we grew three crystals of Pbca orthopyroxene (OPX: x = 0.270–0.313) and two crystals of Pbcn protopyroxene (PPX: x = 0.156–0.164) using the flux-growth technique. The observed variation in the polyhedral volume and distortion of the M2 octahedron as a function of Li/Fe3+ doping suggests the presence of an upper limit, at least for the OPX samples. The same linear relation was observed between the polyhedral volume and 〈M1—O〉 bond length across all analysed samples, including the endmembers protoenstatite (PEN), orthoenstatite (OEN) and LiFe3+Si2O6. It seems that the M2 octahedron plays a crucial role in stabilizing the pyroxene topology in either the PEN or the OEN form, because the PPX and OPX samples show two distinct linear relations between the M2O6 polyhedral volume and 〈M2—O〉, with the PPX trend converging toward the parameters of the LiFe3+Si2O6 endmember, whereas the OPX trend, including OEN, diverges largely from these parameters.
Keywords: SCXRD; SREF; Mg2Si2O6; LiFe3+Si2O6; pyroxenes; orthoenstatite; protoenstatite.
1. Introduction
Magnesium silicate Mg2Si2O6 can occur in six polymorphic modifications. Two of them are orthorhombic, namely, Pbcn protoenstatite (PEN: Kanzaki & Xue, 2017) and Pbca orthoenstatite (OEN: Ganguly & Ghose, 1979; Sasaki et al., 1982), whereas four monoclinic modifications have been described so far, namely, P21/c low-pressure/low-temperature clinoenstatite (LPCEN/LTCEN: Ohashi & Finger, 1976; Ohashi, 1984; Pannhorst, 1984), C2/c (metastable) high-temperature clinoenstatite (HTCEN: Yoshiasa et al., 2013), C2/c high-pressure clinoenstatite (HPCEN: Angel et al., 1992) and P21/c high-pressure clinoenstatite (HPCEN2: Lazarz et al., 2019). PEN has not been found in nature and is stable in a relatively small low-pressure range (<1 GPa) at temperatures (T) exceeding 1000 °C, potentially up to its incongruent melting point at 1550 °C (Boyd et al., 1964). OEN has a large stability field at low pressure extending from ∼600 °C (forsterite Mg2SiO4 + liquid) up to melting (except for the small field occupied by PEN) and is the polymorphic form ubiquitously found in both igneous and metamorphic rocks. LPCEN/LTCEN is uncommon in nature, and it has been synthesized at T < 566 °C, clearly indicating that it is the low-temperature form of Mg2Si2O6. A simplified P–T diagram of Mg2Si2O6 is shown in Fig. 1. Lithium-bearing olivines (Ballirano et al., 2024) were initially chosen as a test case for modelling Li+ + Fe3+ ↔ 2 Mg2+ coupled substitution in silicates. Next, we selected Mg2Si2O6 for further investigation on this issue, owing to its capability to crystallize in different space groups. We focused, in particular, on the orthorhombic polymorphs of Mg2Si2O6 as two synthetic Pbcn protopyroxene crystals of Mg(2–2x)LixScxSi2O6 composition (x = 0.23 and 0.30) have been prepared and described so far (Smyth & Ito, 1977; Yang et al., 1999), possibly suggesting that the partial coupled substitution (Li + VIMe3+) for 2Mg plays the role of of such a pyroxene topology. Despite the small differences in the corresponding ionic radii (Li+ = 0.760 Å and Sc3+ = 0.745 Å; Shannon, 1976), Li was fully ordered at the M2 site, whereas Sc3+ occupies the M1 site (Smyth & Ito, 1977; Yang et al., 1999). However, upon recent revision of the VILi ion radius to 0.812 Å (Hawthorne & Gagné, 2024), this site preference is perfectly explainable. The latter forms a polyhedron that is smaller and much less distorted compared to M2O6. Owing to the significantly smaller ionic radius of Fe3+ compared to Sc3+ (0.649 versus 0.732 Å, respectively: Hawthorne & Gagné, 2024), we can hypothesize the onset of a similar ordering scheme for the Li + + Fe3+ ↔ 2 Mg2+ substitution. It is worth noting that the LiFe3+Si2O6 endmember composition crystallizes as C2/c clinopyroxene (Redhammer & Roth, 2004), with Li allotted at M2 and Fe3+ at M1. In the following, coordination polyhedra are denoted by the central cation site: thus, M2 octahedron.
According to the well-known MgO–SiO2 phase diagram at room pressure, the synthesis of orthorhombic enstatite requires rather high temperatures. To decrease these temperatures, many studies have been carried out testing different synthesis procedures, such as the sol–gel technique (Mitchell et al., 1998; Ban et al., 1999; Douy, 2002) or the method (Ito, 1975; Grandin de L'éprevier & Ito, 1983; Ushio et al., 1991) to obtain enstatite and forsterite. Although the sol–gel technique opens the way to the synthesis of impurity-free films, to obtain these in a crystalline form it is still necessary to use thermal treatment. Otherwise, the method is preferable for obtaining larger crystals and enhance doping (Smyth & Ito, 1977). During cooling, nutrient depletion in the melt and decreased solubility can alter the original molar ratios and lead to the formation of unintended mineral phases (Bloise et al., 2009; Bloise et al., 2011). As reported previously, Mg2Si2O6 may crystallize as three polymorphs, leading to further complications: PEN, stable at high temperatures (1000–1575 °C), and OEN and LTCEN stable at lower temperatures, the extent of crystallization of which has been reported as depending on the cooling rate (Smyth, 1974; Ito, 1975; Catalano et al., 2014). Consequently, slight variations in the synthesis conditions or the molar ratios can lead to the formation of additional phases, making it challenging to achieve stoichiometric control of the single phase due to the particular thermodynamic and kinetic conditions required.
For this work, crystals were grown using the flux-growth technique with lithium–vanadomolybdate as the melting agent (Ozima, 1982; Ozima & Akimoto, 1983; Grandin de L'éprevier & Ito, 1983). The acidity of the is crucial for enhancing the solubility of SiO2 by converting it into orthosilicic acid Si(OH)4. This can be done using MoO3 and V2O5 together. Fluxes lacking either vanadate or molybdate are ineffective in solubilizing SiO2 (Smyth & Ito, 1977; Ushio et al., 1991). Indeed, MgO and SiO2 exhibit minimal mutual reactivity, while the presence of silicic acid promotes the formation of Si—O—Mg bonds, hence favouring the formation of phases such as enstatite and forsterite (Douy, 2002; Gu et al., 2018; Bloise et al., 2009). The formation of LiFeSi2O6, which begins at 500 °C when CO2 is released from the dissolution of Li2CO3 (Tanaka & Takei, 1997), plays a crucial role in lowering the formation temperature of pyroxenes and is responsible for their doping. This effect, as reported previously (e.g. Ito, 1975; Grandin de L'éprevier & Ito, 1983; Smyth & Ito, 1977), stabilizes PEN (the high-temperature polymorph of enstatite), thereby extending its stability range to lower temperatures.
The present work investigates the crystal chemistry of the Li+ + Fe3+ ↔ 2 Mg2+ coupled substitution along the Mg2Si2O6–LiFe3+Si2O6 compositional joint by single-crystal X-ray diffraction (SCXRD). The incorporation of Li and Fe3+ can significantly influence the properties and behaviour of enstatite crystals, with possible implications as cathode materials for lithium-ion batteries (LiBs), given the interest generated by the first report on the electrochemical and structural properties of the pyroxene-type LiFeSi2O6 by Zhou et al. (2014).
2. Experimental
2.1. Synthesis
The route commonly used to synthesize Fe-doped enstatite crystals, ideally Fe0.2Mg1.8Si2O6, was followed. Granular quartz (SiO2; code No. 364011), magnesium oxide (MgO; code No. 459586), metallic iron (Fe; code No. 451377) and hematite (Fe2O3; code No. 451824) from Carlo Erba (reagent grade with purity ≥ 98%) were used as the starting materials without further purification.
Pre-heating was necessary to enhance the reactivity between the starting materials: granular quartz was converted into cristobalite by heating the powdered SiO2 to 1400 °C for 12 h, while MgO, Fe and Fe2O3 powders were heated for a week at 110 °C, to ensure complete dehydration. Iron(II) oxide was prepared through partial reduction of hematite by metallic iron, following the reaction: 1/3Fe + 1/3Fe2O3 = FeO. Molybdenum(VI) oxide (MoO3; code No. 267856), vanadium(V) oxide (V2O5; code No. 223794) and lithium carbonate (Li2CO3; code No. 62470) from Sigma–Aldrich (reagent grade with purity ≥98%) were used as The composition was as follows: MoO3 = 55.9 wt%, V2O5 = 9.8 wt% and Li2CO3 = 34.3 wt% (Bloise et al., 2011). Approximately 1.25 g of finely powdered starting materials (grain size < 0.177 mm), prepared according to the ideal Fe0.2Mg1.8Si2O6 stoichiometry of Fe-doped enstatite, along with were loaded into a 100 ml platinum crucible and placed in a vertical furnace. The lithium–vanadomolybdate was added to the starting materials/flux, maintaining a consistent starting materials (g)/ (g) ratio of 0.5.
Iron-doped enstatite crystals were grown in a furnace equipped with a Super Kanthal heating element (0–1700 °C), with temperature control provided by PtRh–PtRh thermocouples, with a precision of ±4 °C.
The thermal run proceeded as follows: a steep increment up to 1050 °C was followed by 100 h where the temperature was kept constant to bring about complete dissolution and homogenization of the mixture. The resulting melt was then cooled slowly to 650 °C at a rate of 1.25 °C h−1, followed by rapid quenching to room temperature by immersion of the crucible in water.
The growth conditions for enstatite followed well-established protocols from the literature (Bloise et al., 2011; Catalano et al., 2014; Catalano et al., 2015). As a result, orthopyroxene crystals with the composition Mg(2–2x)LixFe3+xSi2O6 (0.15 < x < 0.31) were obtained. colourless crystals, averaging 800 µm in length, were separated from the solidified by sonication in hot water. The crystals were recovered using a binocular microscope, selected and subsequently characterized by SCXRD.
2.2. Single-crystal X-ray diffraction
Five crystal fragments (labelled as 1, 2, 3, 4a and 4d) were selected for X-ray diffraction measurements on a Bruker Kappa APEXII single-crystal diffractometer (Sapienza University of Rome, Earth Sciences Department), equipped with a CCD area detector (6.2 × 6.2 cm active detection area, 512 × 512 pixels) and a graphite-crystal monochromator, using Mo Kα radiation from a fine-focus sealed X-ray tube. The sample-to-detector distance was 4 cm. Preliminary scrutiny of the of the samples clearly indicated their orthorhombic symmetry. Samples 1, 2 and 3 have Pbca symmetry (a ∼ 18.17 Å, b ∼ 8.77 Å and c ∼ 5.19 Å, i.e. that of orthopyroxenes OPX) and samples 4a and 4d have Pbcn symmetry (i.e. that of protopyroxenes PPX), showing a halved a parameter. Diffraction data for 1, 2, 4a and 4d were collected up to sin θmax/λ = 1.000 Å−1 and those for 3 up to sin θmax/λ = 1.184 Å−1.
A total of 1708 (and 1365 for sample 3) exposures (step = 0.4°, time/step = 15 s) covering a full reciprocal sphere with a completeness > 96% and redundancy of approximately 5 were collected. Final unit-cell parameters were refined using the SAINT program (Bruker, 2016) with numbers of reflections ranging between 3347 and 9984, with I > 10σ(I) in the range 6 < 2θ < 91°. The associated intensities of all collected reflections were processed and corrected for Lorentz and background effects plus polarization, using APEX2 software (Bruker, 2016). The data were corrected for absorption using a multi-scan method (SADABS; Bruker, 2016). The absorption correction led to a significant improvement in wR2int (from about 0.04 to about 0.02).
2.3. Structure refinement
Structure refinements were carried out using SHELXL2013 (Sheldrick, 2015) and ShelXle (Hübschle et al., 2011). The starting coordinates were taken from Ganguly & Ghose (1979) for OPX (samples 1, 2 and 3) and from Smyth & Ito (1977) for PPX (samples 4a and 4d).
The key difference between the two orthorhombic pyroxene structures lies in their crystallographically distinct T and O sites. In Pbcn PPX, there is only one T site and three distinct O sites (O1, O2 and O3). In contrast, Pbca OPX has two distinct T sites (T1 and T2) and six distinct O sites (O1a, O1b, O2a, O2b, O3a and O3b). Both structures contain octahedrally coordinated cations at two distinct M1 and M2 sites.
The following parameters were refined: scale factor, extinction coefficient, atom coordinates, site-scattering values and anisotropic atomic displacement factors. In the starting stages of the refinements, Mg was used as the scatterer at the M1 and M2 sites. The observed excess of electron density at M1 and the deficiency in M2 indicated unequivocally the partition of Fe3+ at M1 and Li at M2. This scheme is analogous to that observed in Li/Sc PPX (Sc at M1 and Li at M2; Smyth & Ito, 1977). Subsequently, the M1 and M2 sites were modelled using Mg versus Fe and Mg versus Li scattering factors, respectively. A first set of refinements was done using neutral scattering curves for all atoms. Finally, following Hawthorne et al. (1995) and the results of Ballirano et al. (2021) for amphiboles and Ballirano et al. (2024) for Li/Fe3+-doped olivines, further refinements were done modelling the T1 and T2 sites using the Si0 versus Si4+ scattering factors, whereas the anion sites were modelled with the O0 versus O2− scattering factors. The coefficients for analytical approximation to the scattering factors were from Table 6.1.1.4 of the International Tables for Crystallography (Volume C; Brown et al., 2006), the only exception being those of O2− which were taken from Hovestreydt (1983). A significant improvement of the statistical indicators was observed passing from neutral to partly ionized scattering curves.
In the final stages of the M1 and of Li at M2 were almost coincident (the sof of Li at M2 slightly exceeding that of Fe at M1: Δ = 0.003–0.013) and therefore they were constrained to be equal. The small discrepancy has been attributed to the presence of minor V3+ (ionic radius = 0.641 Å; Hawthorne & Gagné, 2024) replacing Fe3+, owing to its smaller scattering power (23 versus 26 e−). This result is an indirect proof that all iron occurs as Fe3+. The application of this constraint did not affect the various statistical indicators.
it was observed that the site occupancy factor (sof) of Fe atTable S1 reports space groups, unit-cell parameters, 2θmax and sin θmax/λ of the various data collections, and relevant statistical indicators of the refinements. Table S2 lists the M1 and M2 site populations, the ion charges for O and Si, and the equivalent displacement parameters. Relevant bond distances and several parameters describing the extent of polyhedral distortion are reported in Table S3, and the results of a bond valence analysis in Table S4.
3. Results and discussion
Refinements substantially confirmed the findings of Ballirano et al. (2021, 2024) regarding the use of partially ionized scattering curves of O and Si for tremolite and olivine to empirically compensate for perturbation of the electron density caused by the interaction with other atoms (Table S2 in the supporting information). The refined ion charges for O and Si were in the range −1.492 to −1.381 and 0.377 to 0.720, respectively.
OPX samples were characterized by a coupled Li/Fe3+ substitution level in the 0.270 (1)–0.313 (1) sof range, whereas PPX samples were in the 0.156 (1)–0.164 (1) sof range. This finding suggests that, under the present experimental conditions, the PPX topology is favoured at smaller doping levels than in the case of Li/Sc3+, where crystals were obtained in the 0.23–0.30 sof range (Smyth & Ito, 1977; Yang et al., 1999).
3.1. Unit-cell parameters
Unit-cell parameters as a function of composition are illustrated in Figs. 2–4 (see also Fig. S1 in the supporting information), where LiFe3+Si2O6 was considered the common endmember for both the OPX and the PPX series. To obtain a comparable data set, the a parameter of LiFe3+Si2O6 was recalculated based on an orthorhombic cell, according to the well-known relationship aorth = 2amonsinβ, whereas for the PPX samples, the a parameter was multiplied by two, in both cases resulting in a doubled unit-cell volume. The OPX and PPX samples show a different behaviour for each unit-cell parameter, coherent with the significantly different volumes of the OEN and PEN endmembers. For OPX samples, the unit-cell volume dependence on composition follows a bell-shaped curve (i.e. intermediate compositions have a volume smaller than both endmembers), whereas there is a marked decrease from PEN to LiFe3+Si2O6 (Fig. S1). For both series, the a unit-cell parameters contract from Mg2Si2O6 to LiFe3+Si2O6. However, the contraction is remarkably higher and linear for the PPX samples, whereas the trend is nonlinear and decreases at a significantly smaller rate for the OPX samples (Fig. 2). The trend in reversed in the case of the b unit-cell parameter (Fig. 3). Conversely, the c unit-cell parameter shows a strong expansion from OEN to LiFe3+Si2O6, whereas the PPX series is characterized by a small contraction (Fig. 4). Both trends are nonlinear.
3.2. Structural features
Before discussing how the structural features of the two series of orthopyroxenes depend on their composition, it is worth noting that reference structural data for PEN were obtained through ). However, no details of the procedure were reported in the related article, particularly regarding the use of soft constraints on bond distances and how was accounted for. As a consequence, the accuracy of the structural parameters for PEN might be somewhat lower than that of the results. Therefore, any correlations drawn for PPX samples should be approached with some caution.
of laboratory powder X-ray diffraction data collected in reflection mode (Kanzaki & Xue, 2017That said, unit-cell parameters and 〈M1—O〉 and 〈M2—O〉 show similar correlations with the Li/Fe3+ sof (Figs. 5 and 6). For the OPX samples, there is a noticeable increase of 〈M2—O〉 from OEM (2.151 Å) to LiFe3+Si2O6 (2.249 Å). In contrast, in the case of the PPX samples, PEN has a slightly larger 〈M2—O〉 (2.157 Å) than OEN and the doped samples do not show appreciable variations from that value (2.155 Å), but they are still significantly lower than the LiFe3+Si2O6 value. The 〈M1—O〉 decreases smoothly in both series of samples from 2.078 (OEN) or 2.089 (PEN) to 2.025 Å for LiFe3+Si2O6. The trend for OPX is linear and almost linear for PPX if the value for PEN is accepted as accurate.
Analysis of the volume and deviation from ideal shape of the M2 and M1 octahedra (Figs. 7–11) took into consideration several parameters (Table S3): polyhedral volume (Swanson & Peterson, 1980), polyhedral volume distortion (Makovicky & Balić-Žunić, 1998), distortion index (Baur, 1974), mean quadratic elongation and bond angle variance (Robinson et al., 1971), and effective (Hoppe, 1979). The volume of the M2 octahedron is larger than that of the M1 octahedron for the OPX series of samples (∼12.7–12.8 Å3 versus ∼11.5 Å3; Figs. 7 and 9). Moreover, the M2 octahedron is significantly more distorted than the M1 octahedron, as indicated by the mean quadratic elongation of ∼1.06 versus 1.01. This same behaviour holds true for the LiFe3+Si2O6 monoclinic endmember, in which the M2 octahedron has a very large quadratic elongation (1.229) typical of the Li-bearing clinopyroxenes (Cameron & Papike, 1981). In contrast, for the PPX samples, the polyhedral volume of the M2 octahedron is smaller than that of the M1 octahedron (∼11.1 Å3 versus ∼11.7 Å3) and has a larger distortion, even larger than that of the OPX samples (mean quadratic elongation ∼1.13 versus 1.01). The smaller dimension of the M2 octahedron in the PEN and PPX samples with respect to the OPX samples is caused by the sharing of two edges of the octahedron with tetrahedra for the former, whereas in the case of the OEN and OPX samples, no polyhedral edges are shared (Cameron & Papike, 1981). Comparison of Figs. 7 and 8 suggests that for OEN and OPX samples, the increase of the volume of the M2 octahedron as a function of a growing level of doping is coupled to an increase in the mean quadratic elongation. In contrast, PEN and PPX samples do not show a well-defined dependence. OPX samples show an increase of the volume of the M2 octahedron with an increased level of doping and much larger than that of the LiFe3+Si2O6 monoclinic endmember, whose volume is comparable to that of PPX but with a larger mean quadratic elongation value, much larger than for the OPX and PPX samples. This difference between OPX and LiFe3+Si2O6 could potentially impose an upper limit on the level of coupled Li/Fe3+ substitution. Interestingly, recalculation of the original structural data of Smyth & Ito (1977) and Yang et al. (1999) for Li/Sc3+-doped PPX samples (Table S3) results in mean quadratic elongations of the M2 octahedron (where a similar Li versus Mg substitution occurs) that aligns almost perfectly with the curve in Fig. 8 for the present Li/Fe3+-doped PPX samples. In contrast, the polyhedral volume is slightly greater than that of PEN, possibly suggesting that the value reported by Kanzaki & Xue (2017) is too large. Fig. 11 shows the variation in polyhedral volume of the M2 and M1 octahedra in Li/Fe3+-doped orthopyroxenes as a function of 〈M—O〉. As can be seen, the volume of the M1 octahedron is linearly correlated with 〈M—O〉 for both OPX and PPX samples. Conversely, two separate dependences, one for OPX and one for PPX samples, are observed for the M2 octahedron. The displaced position of PEN from this trend suggests that the polyhedral volume of PEN is wrong (too large) and may possibly be related to a lower accuracy of the bond distances as arising from powder X-ray diffraction data with respect to the rest of the data set which is derived from single-crystal SREF.
Fig. S2 and Table S4 report the dependence of the bond valence sum at the various O sites. The parameters used for the calculations were taken from Gagné & Hawthorne (2015). Trends are clearly seen for the analysed samples and there are positive and negative deviations from the valence-sum rule.
4. Conclusions
In this study, we have investigated the 3+. The incorporation of these dopants can significantly influence the properties and behaviour of enstatite crystals, making them interesting. Under the experimental conditions, we recovered five samples of Mg(2–2x)LixFe3+xSi2O6 pyroxenes, namely, three orthopyroxene (OPX) with 0.270 < x < 0.313 and two clinopyroxene (PPX) with 0.156 < x < 0.164. This shows that varying levels of doping preferentially affect the pyroxene topologies.
and doping of enstatite crystals with Li and FeAnalysis of the ship between the volume and distortion of the M2 octahedron versus the level of doping indicates a possible upper limit for the coupled substitution of (Li + Fe3+) for Mg, at least for OPX. The significant role of this polyhedron in stabilizing a specific pyroxene topology is further supported by the observation that for all analysed samples (including the endmembers PEN, OEN and LiFe3+Si2O6), the relationship between the polyhedral volume and 〈M1—O〉 is linear. Conversely, there are two distinct linear relations for PPX and OPX samples between the M2O6 polyhedral volume and 〈M2—O〉, with only the PPX trend converging toward the LiFe3+Si2O6 endmember. Notably, the smaller M2 octahedron in PPX shares two edges with Si tetrahedra, whereas the larger M2 octahedron in OPX does not share two edges with Si tetrahedra.
This research enhances the understanding of 3+-doped enstatite in energy storage devices where a very stable structural framework is required for long-term Li+ ion extraction/insertion.
and doping in enstatite crystals, suggesting a potential use of Li/Fe5. Related literature
The following references are cited in the supporting information: Ilinca (2022); Momma & Izumi (2011).
Supporting information
https://doi.org/10.1107/S2052520624011624/ra5147sup1.cif
contains datablocks OPX_1, OPX_2, OPX_3, PPX_4a, PPX_4d. DOI:Structure factors: contains datablock OPX_1. DOI: https://doi.org/10.1107/S2052520624011624/ra5147OPX_1sup2.hkl
Structure factors: contains datablock OPX_2. DOI: https://doi.org/10.1107/S2052520624011624/ra5147OPX_2sup3.hkl
Structure factors: contains datablock OPX_3. DOI: https://doi.org/10.1107/S2052520624011624/ra5147OPX_3sup4.hkl
Structure factors: contains datablock PPX_4a. DOI: https://doi.org/10.1107/S2052520624011624/ra5147PPX_4asup5.hkl
Structure factors: contains datablock PPX_4d. DOI: https://doi.org/10.1107/S2052520624011624/ra5147PPX_4dsup6.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2052520624011624/ra5147sup7.pdf
Si·3(O)·0.135(Fe)·0.73(Mg)·0.135(Li) | Dx = 3.282 Mg m−3 |
Mr = 102.31 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9984 reflections |
a = 18.1735 (4) Å | θ = 3.0–45.3° |
b = 8.77666 (18) Å | µ = 2.04 mm−1 |
c = 5.19316 (10) Å | T = 293 K |
V = 828.32 (3) Å3 | Anhedral |
Z = 16 | 0.65 × 0.50 × 0.45 mm |
F(000) = 867 |
Bruker Smart Breeze diffractometer | 5429 independent reflections |
Radiation source: fine-focus sealed tube | 4934 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 512 pixels mm-1 | θmax = 57.3°, θmin = 2.2° |
φ and ω scans | h = −42→30 |
Absorption correction: multi-scan SADABS (Sheldrick, 2015) | k = −16→20 |
Tmin = 0.307, Tmax = 0.400 | l = −11→11 |
27573 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0059P)2 + 0.3411P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.028 | (Δ/σ)max = 0.001 |
wR(F2) = 0.050 | Δρmax = 0.69 e Å−3 |
S = 1.27 | Δρmin = −0.50 e Å−3 |
5429 reflections | Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
95 parameters | Extinction coefficient: 0.0041 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mg1 | 0.37538 (2) | 0.65012 (2) | 0.87318 (3) | 0.00574 (3) | 0.7302 (9) |
Fe1 | 0.37538 (2) | 0.65012 (2) | 0.87318 (3) | 0.00574 (3) | 0.2698 (9) |
Mg2 | 0.37657 (2) | 0.48686 (3) | 0.36389 (5) | 0.00774 (5) | 0.7302 (9) |
Li2 | 0.37657 (2) | 0.48686 (3) | 0.36389 (5) | 0.00774 (5) | 0.2698 (9) |
Si1A | 0.27236 (2) | 0.34093 (2) | 0.05339 (3) | 0.00374 (2) | 0.820 (14) |
Si1B | 0.27236 (2) | 0.34093 (2) | 0.05339 (3) | 0.00374 (2) | 0.180 (14) |
Si2A | 0.47393 (2) | 0.33747 (2) | 0.79450 (3) | 0.00384 (2) | 0.820 (14) |
Si2B | 0.47393 (2) | 0.33747 (2) | 0.79450 (3) | 0.00384 (2) | 0.180 (14) |
O1A | 0.18350 (2) | 0.33779 (5) | 0.04225 (7) | 0.00568 (4) | 0.297 (17) |
O2A | 0.31019 (2) | 0.50405 (5) | 0.04725 (7) | 0.00675 (5) | 0.297 (17) |
O3A | 0.30371 (2) | 0.22559 (5) | 0.83081 (7) | 0.00673 (5) | 0.297 (17) |
O1B | 0.56325 (2) | 0.33845 (5) | 0.79707 (7) | 0.00577 (4) | 0.297 (17) |
O2B | 0.43396 (2) | 0.48742 (5) | 0.69556 (8) | 0.00742 (5) | 0.297 (17) |
O3B | 0.44750 (2) | 0.19999 (5) | 0.59420 (7) | 0.00706 (5) | 0.297 (17) |
O1AA | 0.18350 (2) | 0.33779 (5) | 0.04225 (7) | 0.00568 (4) | 0.703 (17) |
O2AA | 0.31019 (2) | 0.50405 (5) | 0.04725 (7) | 0.00675 (5) | 0.703 (17) |
O3AA | 0.30371 (2) | 0.22559 (5) | 0.83081 (7) | 0.00673 (5) | 0.703 (17) |
O1BA | 0.56325 (2) | 0.33845 (5) | 0.79707 (7) | 0.00577 (4) | 0.703 (17) |
O2BA | 0.43396 (2) | 0.48742 (5) | 0.69556 (8) | 0.00742 (5) | 0.703 (17) |
O3BA | 0.44750 (2) | 0.19999 (5) | 0.59420 (7) | 0.00706 (5) | 0.703 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mg1 | 0.00502 (4) | 0.00681 (5) | 0.00540 (4) | 0.00025 (3) | −0.00079 (3) | −0.00070 (3) |
Fe1 | 0.00502 (4) | 0.00681 (5) | 0.00540 (4) | 0.00025 (3) | −0.00079 (3) | −0.00070 (3) |
Mg2 | 0.00851 (8) | 0.00813 (10) | 0.00658 (9) | −0.00118 (7) | −0.00222 (6) | 0.00083 (7) |
Li2 | 0.00851 (8) | 0.00813 (10) | 0.00658 (9) | −0.00118 (7) | −0.00222 (6) | 0.00083 (7) |
Si1A | 0.00339 (4) | 0.00442 (5) | 0.00342 (4) | −0.00052 (3) | 0.00023 (3) | −0.00012 (3) |
Si1B | 0.00339 (4) | 0.00442 (5) | 0.00342 (4) | −0.00052 (3) | 0.00023 (3) | −0.00012 (3) |
Si2A | 0.00338 (4) | 0.00445 (5) | 0.00368 (4) | 0.00041 (3) | −0.00041 (3) | 0.00017 (3) |
Si2B | 0.00338 (4) | 0.00445 (5) | 0.00368 (4) | 0.00041 (3) | −0.00041 (3) | 0.00017 (3) |
O1A | 0.00337 (8) | 0.00755 (12) | 0.00610 (10) | −0.00005 (8) | 0.00009 (7) | −0.00061 (8) |
O2A | 0.00747 (10) | 0.00551 (12) | 0.00728 (11) | −0.00251 (9) | −0.00043 (8) | 0.00087 (8) |
O3A | 0.00570 (9) | 0.00968 (14) | 0.00480 (10) | 0.00049 (9) | −0.00024 (7) | −0.00300 (8) |
O1B | 0.00368 (8) | 0.00783 (13) | 0.00580 (10) | −0.00024 (8) | −0.00049 (7) | 0.00018 (8) |
O2B | 0.00801 (10) | 0.00722 (13) | 0.00704 (12) | 0.00304 (9) | −0.00018 (8) | 0.00192 (9) |
O3B | 0.00594 (9) | 0.00902 (14) | 0.00622 (11) | −0.00083 (9) | 0.00030 (8) | −0.00350 (9) |
O1AA | 0.00337 (8) | 0.00755 (12) | 0.00610 (10) | −0.00005 (8) | 0.00009 (7) | −0.00061 (8) |
O2AA | 0.00747 (10) | 0.00551 (12) | 0.00728 (11) | −0.00251 (9) | −0.00043 (8) | 0.00087 (8) |
O3AA | 0.00570 (9) | 0.00968 (14) | 0.00480 (10) | 0.00049 (9) | −0.00024 (7) | −0.00300 (8) |
O1BA | 0.00368 (8) | 0.00783 (13) | 0.00580 (10) | −0.00024 (8) | −0.00049 (7) | 0.00018 (8) |
O2BA | 0.00801 (10) | 0.00722 (13) | 0.00704 (12) | 0.00304 (9) | −0.00018 (8) | 0.00192 (9) |
O3BA | 0.00594 (9) | 0.00902 (14) | 0.00622 (11) | −0.00083 (9) | 0.00030 (8) | −0.00350 (9) |
Mg1—O2Ai | 1.9658 (4) | Mg2—O1Aii | 2.1020 (5) |
Mg1—O2B | 2.0059 (4) | Mg2—O3Aix | 2.2934 (5) |
Mg1—O1Aii | 2.0273 (4) | Mg2—O3Bix | 2.5125 (5) |
Mg1—O1Biii | 2.0461 (4) | Mg2—Si1A | 2.7977 (3) |
Mg1—O1Aiv | 2.1514 (4) | Si1A—O2A | 1.5885 (4) |
Mg1—O1Bv | 2.1812 (4) | Si1A—O1A | 1.6161 (3) |
Mg1—Mg2i | 2.9236 (3) | Si1A—O3Ax | 1.6387 (4) |
Mg1—Mg2 | 3.0081 (3) | Si1A—O3Aix | 1.6556 (4) |
Mg1—Mg1vi | 3.1330 (2) | Si2A—O2B | 1.5886 (4) |
Mg1—Mg1vii | 3.1330 (2) | Si2A—O1B | 1.6233 (3) |
Mg2—O2B | 2.0136 (5) | Si2A—O3Bxi | 1.6616 (4) |
Mg2—O2A | 2.0450 (5) | Si2A—O3B | 1.6639 (4) |
Mg2—O1Bviii | 2.0605 (5) | ||
O2Ai—Mg1—O2B | 93.846 (18) | O3Aix—Mg2—Mg1x | 109.204 (14) |
O2Ai—Mg1—O1Aii | 96.076 (16) | O3Bix—Mg2—Mg1x | 80.666 (12) |
O2B—Mg1—O1Aii | 85.847 (16) | Si1A—Mg2—Mg1x | 73.561 (8) |
O2Ai—Mg1—O1Biii | 88.605 (16) | O2A—Si1A—O1A | 116.56 (2) |
O2B—Mg1—O1Biii | 97.495 (16) | O2A—Si1A—O3Ax | 113.09 (2) |
O1Aii—Mg1—O1Biii | 174.072 (18) | O1A—Si1A—O3Ax | 108.16 (2) |
O2Ai—Mg1—O1Aiv | 90.679 (16) | O2A—Si1A—O3Aix | 100.74 (2) |
O2B—Mg1—O1Aiv | 175.318 (17) | O1A—Si1A—O3Aix | 111.65 (2) |
O1Aii—Mg1—O1Aiv | 92.484 (14) | O3Ax—Si1A—O3Aix | 106.041 (14) |
O1Biii—Mg1—O1Aiv | 83.803 (15) | O2A—Si1A—Mg2 | 46.052 (15) |
O2Ai—Mg1—O1Bv | 171.404 (17) | O1A—Si1A—Mg2 | 134.816 (16) |
O2B—Mg1—O1Bv | 94.683 (16) | O3Ax—Si1A—Mg2 | 116.999 (15) |
O1Aii—Mg1—O1Bv | 83.489 (15) | O3Aix—Si1A—Mg2 | 55.037 (15) |
O1Biii—Mg1—O1Bv | 91.338 (14) | O2A—Si1A—Mg1xii | 110.859 (16) |
O1Aiv—Mg1—O1Bv | 80.772 (14) | O1A—Si1A—Mg1xii | 33.873 (13) |
O2Ai—Mg1—Mg2i | 44.276 (12) | O3Ax—Si1A—Mg1xii | 132.993 (15) |
O2B—Mg1—Mg2i | 92.751 (13) | O3Aix—Si1A—Mg1xii | 81.011 (13) |
O1Aii—Mg1—Mg2i | 140.218 (13) | Mg2—Si1A—Mg1xii | 105.132 (8) |
O1Biii—Mg1—Mg2i | 44.806 (12) | O2A—Si1A—Mg2xii | 86.287 (16) |
O1Aiv—Mg1—Mg2i | 91.328 (12) | O1A—Si1A—Mg2xii | 33.444 (15) |
O1Bv—Mg1—Mg2i | 136.130 (12) | O3Ax—Si1A—Mg2xii | 111.282 (15) |
O2Ai—Mg1—Mg2 | 95.624 (14) | O3Aix—Si1A—Mg2xii | 135.524 (15) |
O2B—Mg1—Mg2 | 41.647 (12) | Mg2—Si1A—Mg2xii | 121.665 (7) |
O1Aii—Mg1—Mg2 | 44.224 (12) | Mg1xii—Si1A—Mg2xii | 55.947 (6) |
O1Biii—Mg1—Mg2 | 139.050 (13) | O2B—Si2A—O1B | 117.10 (2) |
O1Aiv—Mg1—Mg2 | 136.640 (12) | O2B—Si2A—O3Bxi | 109.55 (2) |
O1Bv—Mg1—Mg2 | 90.050 (12) | O1B—Si2A—O3Bxi | 106.403 (19) |
Mg2i—Mg1—Mg2 | 122.198 (11) | O2B—Si2A—O3B | 105.46 (2) |
O2Ai—Mg1—Mg1vi | 89.073 (12) | O1B—Si2A—O3B | 107.31 (2) |
O2B—Mg1—Mg1vi | 141.214 (12) | O3Bxi—Si2A—O3B | 111.017 (15) |
O1Aii—Mg1—Mg1vi | 132.321 (13) | O2B—Si2A—Mg2 | 33.456 (16) |
O1Biii—Mg1—Mg1vi | 43.858 (11) | O1B—Si2A—Mg2 | 124.568 (16) |
O1Aiv—Mg1—Mg1vi | 39.950 (10) | O3Bxi—Si2A—Mg2 | 125.949 (15) |
O1Bv—Mg1—Mg1vi | 84.947 (12) | O3B—Si2A—Mg2 | 72.229 (16) |
Mg2i—Mg1—Mg1vi | 63.376 (6) | O2B—Si2A—Mg2viii | 84.652 (16) |
Mg2—Mg1—Mg1vi | 174.406 (9) | O1B—Si2A—Mg2viii | 32.708 (15) |
O2Ai—Mg1—Mg1vii | 138.250 (12) | O3Bxi—Si2A—Mg2viii | 125.173 (16) |
O2B—Mg1—Mg1vii | 90.987 (12) | O3B—Si2A—Mg2viii | 115.448 (15) |
O1Aii—Mg1—Mg1vii | 42.956 (11) | Mg2—Si2A—Mg2viii | 95.355 (8) |
O1Biii—Mg1—Mg1vii | 131.773 (12) | O2B—Si2A—Mg1iii | 122.080 (17) |
O1Aiv—Mg1—Mg1vii | 84.827 (12) | O1B—Si2A—Mg1iii | 31.781 (13) |
O1Bv—Mg1—Mg1vii | 40.537 (10) | O3Bxi—Si2A—Mg1iii | 75.640 (14) |
Mg2i—Mg1—Mg1vii | 175.303 (9) | O3B—Si2A—Mg1iii | 126.981 (15) |
Mg2—Mg1—Mg1vii | 62.475 (6) | Mg2—Si2A—Mg1iii | 147.383 (8) |
Mg1vi—Mg1—Mg1vii | 111.947 (9) | Mg2viii—Si2A—Mg1iii | 53.736 (6) |
O2B—Mg2—O2A | 173.31 (2) | Si1A—O1A—Mg1xii | 119.75 (2) |
O2B—Mg2—O1Bviii | 94.028 (19) | Si1A—O1A—Mg2xii | 121.49 (2) |
O2A—Mg2—O1Bviii | 86.103 (18) | Mg1xii—O1A—Mg2xii | 93.501 (16) |
O2B—Mg2—O1Aii | 83.702 (18) | Si1A—O1A—Mg1xiii | 121.65 (2) |
O2A—Mg2—O1Aii | 89.652 (18) | Mg1xii—O1A—Mg1xiii | 97.092 (15) |
O1Bviii—Mg2—O1Aii | 84.816 (18) | Mg2xii—O1A—Mg1xiii | 97.027 (16) |
O2B—Mg2—O3Aix | 111.415 (19) | Si1A—O2A—Mg1x | 149.07 (3) |
O2A—Mg2—O3Aix | 70.072 (16) | Si1A—O2A—Mg2 | 99.94 (2) |
O1Bviii—Mg2—O3Aix | 151.77 (2) | Mg1x—O2A—Mg2 | 93.573 (17) |
O1Aii—Mg2—O3Aix | 109.175 (18) | Si1Ai—O3A—Si1Axi | 135.40 (2) |
O2B—Mg2—O3Bix | 102.278 (18) | Si1Ai—O3A—Mg2xi | 130.55 (2) |
O2A—Mg2—O3Bix | 84.411 (17) | Si1Axi—O3A—Mg2xi | 88.691 (18) |
O1Bviii—Mg2—O3Bix | 89.266 (17) | Si2A—O1B—Mg1iii | 123.52 (2) |
O1Aii—Mg2—O3Bix | 171.892 (19) | Si2A—O1B—Mg2viii | 122.10 (2) |
O3Aix—Mg2—O3Bix | 73.966 (16) | Mg1iii—O1B—Mg2viii | 90.786 (16) |
O2B—Mg2—Si1A | 147.646 (18) | Si2A—O1B—Mg1xiv | 120.26 (2) |
O2A—Mg2—Si1A | 34.005 (12) | Mg1iii—O1B—Mg1xiv | 95.606 (15) |
O1Bviii—Mg2—Si1A | 117.785 (15) | Mg2viii—O1B—Mg1xiv | 97.354 (16) |
O1Aii—Mg2—Si1A | 103.745 (14) | Si2A—O2B—Mg1 | 133.13 (2) |
O3Aix—Mg2—Si1A | 36.272 (10) | Si2A—O2B—Mg2 | 120.76 (3) |
O3Bix—Mg2—Si1A | 74.170 (12) | Mg1—O2B—Mg2 | 96.903 (18) |
O2B—Mg2—Mg1x | 138.435 (17) | Si2Aix—O3B—Si2A | 130.21 (3) |
O2A—Mg2—Mg1x | 42.151 (12) | Si2Aix—O3B—Mg2xi | 122.77 (2) |
O1Bviii—Mg2—Mg1x | 44.409 (11) | Si2A—O3B—Mg2xi | 105.839 (19) |
O1Aii—Mg2—Mg1x | 91.226 (14) |
Symmetry codes: (i) x, y, z+1; (ii) −x+1/2, −y+1, z+1/2; (iii) −x+1, −y+1, −z+2; (iv) −x+1/2, y+1/2, z+1; (v) −x+1, y+1/2, −z+3/2; (vi) x, −y+3/2, z+1/2; (vii) x, −y+3/2, z−1/2; (viii) −x+1, −y+1, −z+1; (ix) x, −y+1/2, z−1/2; (x) x, y, z−1; (xi) x, −y+1/2, z+1/2; (xii) −x+1/2, −y+1, z−1/2; (xiii) −x+1/2, y−1/2, z−1; (xiv) −x+1, y−1/2, −z+3/2. |
Si·3(O)·0.145(Fe)·0.71(Mg)·0.145(Li) | Dx = 3.287 Mg m−3 |
Mr = 102.45 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 5746 reflections |
a = 18.1654 (4) Å | θ = 3.2–45.3° |
b = 8.7730 (2) Å | µ = 2.07 mm−1 |
c = 5.1958 (1) Å | T = 293 K |
V = 828.03 (3) Å3 | Anhedral |
Z = 16 | 0.24 × 0.18 × 0.06 mm |
F(000) = 870 |
Bruker Smart Breeze diffractometer | 3483 independent reflections |
Radiation source: fine-focus sealed tube | 2907 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 512 pixels mm-1 | θmax = 45.3°, θmin = 2.2° |
φ and ω scans | h = −27→36 |
Absorption correction: multi-scan SADABS (Sheldrick, 2015) | k = −14→17 |
Tmin = 0.646, Tmax = 0.883 | l = −10→8 |
20177 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0139P)2 + 0.243P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.021 | (Δ/σ)max = 0.001 |
wR(F2) = 0.042 | Δρmax = 0.44 e Å−3 |
S = 1.01 | Δρmin = −0.44 e Å−3 |
3483 reflections | Extinction correction: SHELXL-2019/3 (Sheldrick 2019), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
95 parameters | Extinction coefficient: 0.0029 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mg1 | 0.37536 (2) | 0.64997 (2) | 0.87375 (3) | 0.00580 (3) | 0.7101 (9) |
Fe1 | 0.37536 (2) | 0.64997 (2) | 0.87375 (3) | 0.00580 (3) | 0.2899 (9) |
Mg2 | 0.37654 (2) | 0.48689 (3) | 0.36462 (6) | 0.00829 (6) | 0.7101 (9) |
Li2 | 0.37654 (2) | 0.48689 (3) | 0.36462 (6) | 0.00829 (6) | 0.2899 (9) |
Si1A | 0.27243 (2) | 0.34082 (2) | 0.05376 (3) | 0.00398 (3) | 0.871 (15) |
Si1B | 0.27243 (2) | 0.34082 (2) | 0.05376 (3) | 0.00398 (3) | 0.129 (15) |
Si2A | 0.47398 (2) | 0.33747 (2) | 0.79407 (3) | 0.00408 (3) | 0.871 (15) |
Si2B | 0.47398 (2) | 0.33747 (2) | 0.79407 (3) | 0.00408 (3) | 0.129 (15) |
O1A | 0.18351 (2) | 0.33752 (5) | 0.04320 (8) | 0.00596 (6) | 0.309 (16) |
O2A | 0.31012 (2) | 0.50425 (5) | 0.04755 (9) | 0.00691 (6) | 0.309 (16) |
O3A | 0.30376 (2) | 0.22584 (5) | 0.83070 (8) | 0.00689 (6) | 0.309 (16) |
O1B | 0.56337 (2) | 0.33829 (5) | 0.79667 (8) | 0.00581 (6) | 0.309 (16) |
O2B | 0.43409 (2) | 0.48797 (5) | 0.69631 (9) | 0.00763 (6) | 0.309 (16) |
O3B | 0.44747 (2) | 0.20054 (5) | 0.59326 (9) | 0.00733 (6) | 0.309 (16) |
O1AA | 0.18351 (2) | 0.33752 (5) | 0.04320 (8) | 0.00596 (6) | 0.691 (16) |
O2AA | 0.31012 (2) | 0.50425 (5) | 0.04755 (9) | 0.00691 (6) | 0.691 (16) |
O3AA | 0.30376 (2) | 0.22584 (5) | 0.83070 (8) | 0.00689 (6) | 0.691 (16) |
O1BA | 0.56337 (2) | 0.33829 (5) | 0.79667 (8) | 0.00581 (6) | 0.691 (16) |
O2BA | 0.43409 (2) | 0.48797 (5) | 0.69631 (9) | 0.00763 (6) | 0.691 (16) |
O3BA | 0.44747 (2) | 0.20054 (5) | 0.59326 (9) | 0.00733 (6) | 0.691 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mg1 | 0.00517 (5) | 0.00680 (6) | 0.00544 (6) | 0.00022 (4) | −0.00078 (4) | −0.00066 (4) |
Fe1 | 0.00517 (5) | 0.00680 (6) | 0.00544 (6) | 0.00022 (4) | −0.00078 (4) | −0.00066 (4) |
Mg2 | 0.00903 (10) | 0.00857 (11) | 0.00726 (11) | −0.00115 (8) | −0.00227 (9) | 0.00095 (9) |
Li2 | 0.00903 (10) | 0.00857 (11) | 0.00726 (11) | −0.00115 (8) | −0.00227 (9) | 0.00095 (9) |
Si1A | 0.00369 (5) | 0.00458 (6) | 0.00365 (5) | −0.00047 (4) | 0.00021 (4) | −0.00007 (4) |
Si1B | 0.00369 (5) | 0.00458 (6) | 0.00365 (5) | −0.00047 (4) | 0.00021 (4) | −0.00007 (4) |
Si2A | 0.00369 (5) | 0.00466 (6) | 0.00389 (5) | 0.00037 (4) | −0.00041 (4) | 0.00023 (4) |
Si2B | 0.00369 (5) | 0.00466 (6) | 0.00389 (5) | 0.00037 (4) | −0.00041 (4) | 0.00023 (4) |
O1A | 0.00365 (11) | 0.00784 (14) | 0.00640 (14) | 0.00000 (10) | 0.00014 (10) | −0.00050 (12) |
O2A | 0.00764 (12) | 0.00590 (14) | 0.00718 (15) | −0.00256 (11) | −0.00019 (12) | 0.00077 (12) |
O3A | 0.00582 (12) | 0.00992 (15) | 0.00494 (13) | 0.00038 (11) | −0.00014 (11) | −0.00322 (12) |
O1B | 0.00357 (11) | 0.00803 (14) | 0.00584 (14) | −0.00030 (10) | −0.00051 (11) | 0.00010 (12) |
O2B | 0.00822 (13) | 0.00721 (14) | 0.00747 (15) | 0.00305 (11) | 0.00008 (12) | 0.00208 (12) |
O3B | 0.00613 (12) | 0.00938 (15) | 0.00647 (14) | −0.00098 (11) | 0.00039 (11) | −0.00378 (12) |
O1AA | 0.00365 (11) | 0.00784 (14) | 0.00640 (14) | 0.00000 (10) | 0.00014 (10) | −0.00050 (12) |
O2AA | 0.00764 (12) | 0.00590 (14) | 0.00718 (15) | −0.00256 (11) | −0.00019 (12) | 0.00077 (12) |
O3AA | 0.00582 (12) | 0.00992 (15) | 0.00494 (13) | 0.00038 (11) | −0.00014 (11) | −0.00322 (12) |
O1BA | 0.00357 (11) | 0.00803 (14) | 0.00584 (14) | −0.00030 (10) | −0.00051 (11) | 0.00010 (12) |
O2BA | 0.00822 (13) | 0.00721 (14) | 0.00747 (15) | 0.00305 (11) | 0.00008 (12) | 0.00208 (12) |
O3BA | 0.00613 (12) | 0.00938 (15) | 0.00647 (14) | −0.00098 (11) | 0.00039 (11) | −0.00378 (12) |
Mg1—O2Ai | 1.9633 (4) | Mg2—O1Aii | 2.1033 (5) |
Mg1—O2B | 2.0020 (4) | Mg2—O3Aix | 2.2938 (5) |
Mg1—O1Aii | 2.0262 (4) | Mg2—O3Bix | 2.5203 (5) |
Mg1—O1Biii | 2.0450 (4) | Mg2—Si1A | 2.7977 (3) |
Mg1—O1Aiv | 2.1508 (4) | Si1A—O2A | 1.5891 (4) |
Mg1—O1Bv | 2.1800 (4) | Si1A—O1A | 1.6166 (4) |
Mg1—Mg2i | 2.9245 (3) | Si1A—O3Ax | 1.6385 (4) |
Mg1—Mg2 | 3.0075 (4) | Si1A—O3Aix | 1.6542 (5) |
Mg1—Mg1vi | 3.1352 (2) | Si2A—O2B | 1.5894 (4) |
Mg1—Mg1vii | 3.1352 (2) | Si2A—O1B | 1.6238 (4) |
Mg2—O2B | 2.0157 (5) | Si2A—O3Bxi | 1.6612 (5) |
Mg2—O2A | 2.0477 (5) | Si2A—O3B | 1.6624 (5) |
Mg2—O1Bviii | 2.0607 (5) | ||
O2Ai—Mg1—O2B | 94.085 (19) | O3Aix—Mg2—Mg1x | 109.076 (16) |
O2Ai—Mg1—O1Aii | 96.116 (18) | O3Bix—Mg2—Mg1x | 80.504 (13) |
O2B—Mg1—O1Aii | 85.951 (18) | Si1A—Mg2—Mg1x | 73.481 (8) |
O2Ai—Mg1—O1Biii | 88.636 (18) | O2A—Si1A—O1A | 116.48 (2) |
O2B—Mg1—O1Biii | 97.545 (18) | O2A—Si1A—O3Ax | 113.05 (2) |
O1Aii—Mg1—O1Biii | 173.906 (18) | O1A—Si1A—O3Ax | 108.18 (2) |
O2Ai—Mg1—O1Aiv | 90.553 (18) | O2A—Si1A—O3Aix | 100.86 (2) |
O2B—Mg1—O1Aiv | 175.234 (18) | O1A—Si1A—O3Aix | 111.53 (2) |
O1Aii—Mg1—O1Aiv | 92.471 (15) | O3Ax—Si1A—O3Aix | 106.147 (16) |
O1Biii—Mg1—O1Aiv | 83.646 (17) | O2A—Si1A—Mg2 | 46.156 (18) |
O2Ai—Mg1—O1Bv | 171.313 (18) | O1A—Si1A—Mg2 | 134.691 (18) |
O2B—Mg1—O1Bv | 94.524 (17) | O3Ax—Si1A—Mg2 | 117.101 (17) |
O1Aii—Mg1—O1Bv | 83.347 (17) | O3Aix—Si1A—Mg2 | 55.054 (17) |
O1Biii—Mg1—O1Bv | 91.378 (15) | O2A—Si1A—Mg1xii | 110.716 (17) |
O1Aiv—Mg1—O1Bv | 80.818 (16) | O1A—Si1A—Mg1xii | 33.803 (16) |
O2Ai—Mg1—Mg2i | 44.332 (14) | O3Ax—Si1A—Mg1xii | 133.095 (16) |
O2B—Mg1—Mg2i | 92.889 (15) | O3Aix—Si1A—Mg1xii | 81.004 (15) |
O1Aii—Mg1—Mg2i | 140.319 (14) | Mg2—Si1A—Mg1xii | 105.008 (8) |
O1Biii—Mg1—Mg2i | 44.794 (13) | O2A—Si1A—Mg2xii | 86.158 (17) |
O1Aiv—Mg1—Mg2i | 91.196 (14) | O1A—Si1A—Mg2xii | 33.536 (16) |
O1Bv—Mg1—Mg2i | 136.158 (14) | O3Ax—Si1A—Mg2xii | 111.190 (17) |
O2Ai—Mg1—Mg2 | 95.688 (15) | O3Aix—Si1A—Mg2xii | 135.524 (17) |
O2B—Mg1—Mg2 | 41.708 (14) | Mg2—Si1A—Mg2xii | 121.610 (8) |
O1Aii—Mg1—Mg2 | 44.272 (13) | Mg1xii—Si1A—Mg2xii | 55.934 (7) |
O1Biii—Mg1—Mg2 | 139.167 (14) | O2B—Si2A—O1B | 117.06 (2) |
O1Aiv—Mg1—Mg2 | 136.678 (14) | O2B—Si2A—O3Bxi | 109.49 (2) |
O1Bv—Mg1—Mg2 | 89.978 (13) | O1B—Si2A—O3Bxi | 106.43 (2) |
Mg2i—Mg1—Mg2 | 122.297 (11) | O2B—Si2A—O3B | 105.53 (2) |
O2Ai—Mg1—Mg1vi | 138.218 (13) | O1B—Si2A—O3B | 107.34 (2) |
O2B—Mg1—Mg1vi | 90.907 (13) | O3Bxi—Si2A—O3B | 110.995 (17) |
O1Aii—Mg1—Mg1vi | 42.888 (12) | O2B—Si2A—Mg2 | 33.684 (18) |
O1Biii—Mg1—Mg1vi | 131.734 (13) | O1B—Si2A—Mg2 | 124.653 (18) |
O1Aiv—Mg1—Mg1vi | 84.892 (13) | O3Bxi—Si2A—Mg2 | 125.893 (17) |
O1Bv—Mg1—Mg1vi | 40.463 (12) | O3B—Si2A—Mg2 | 72.058 (18) |
Mg2i—Mg1—Mg1vi | 175.229 (9) | O2B—Si2A—Mg2viii | 84.570 (17) |
Mg2—Mg1—Mg1vi | 62.450 (6) | O1B—Si2A—Mg2viii | 32.772 (16) |
O2Ai—Mg1—Mg1vii | 89.047 (14) | O3Bxi—Si2A—Mg2viii | 125.343 (17) |
O2B—Mg1—Mg1vii | 141.167 (13) | O3B—Si2A—Mg2viii | 115.348 (17) |
O1Aii—Mg1—Mg1vii | 132.226 (13) | Mg2—Si2A—Mg2viii | 95.365 (8) |
O1Biii—Mg1—Mg1vii | 43.774 (12) | O2B—Si2A—Mg1iii | 121.837 (18) |
O1Aiv—Mg1—Mg1vii | 39.877 (12) | O1B—Si2A—Mg1iii | 31.799 (16) |
O1Bv—Mg1—Mg1vii | 84.970 (13) | O3Bxi—Si2A—Mg1iii | 75.698 (16) |
Mg2i—Mg1—Mg1vii | 63.333 (7) | O3B—Si2A—Mg1iii | 127.159 (17) |
Mg2—Mg1—Mg1vii | 174.350 (9) | Mg2—Si2A—Mg1iii | 147.398 (8) |
Mg1vi—Mg1—Mg1vii | 111.916 (9) | Mg2viii—Si2A—Mg1iii | 53.775 (7) |
O2B—Mg2—O2A | 173.27 (2) | Si1A—O1A—Mg1xii | 119.85 (2) |
O2B—Mg2—O1Bviii | 93.98 (2) | Si1A—O1A—Mg2xii | 121.34 (2) |
O2A—Mg2—O1Bviii | 85.96 (2) | Mg1xii—O1A—Mg2xii | 93.468 (18) |
O2B—Mg2—O1Aii | 83.59 (2) | Si1A—O1A—Mg1xiii | 121.64 (2) |
O2A—Mg2—O1Aii | 89.70 (2) | Mg1xii—O1A—Mg1xiii | 97.236 (17) |
O1Bviii—Mg2—O1Aii | 84.782 (19) | Mg2xii—O1A—Mg1xiii | 96.997 (18) |
O2B—Mg2—O3Aix | 111.62 (2) | Si1A—O2A—Mg1x | 148.97 (3) |
O2A—Mg2—O3Aix | 70.070 (18) | Si1A—O2A—Mg2 | 99.81 (2) |
O1Bviii—Mg2—O3Aix | 151.60 (2) | Mg1x—O2A—Mg2 | 93.598 (19) |
O1Aii—Mg2—O3Aix | 109.32 (2) | Si1Ai—O3A—Si1Axi | 135.51 (3) |
O2B—Mg2—O3Bix | 102.486 (19) | Si1Ai—O3A—Mg2xi | 130.30 (3) |
O2A—Mg2—O3Bix | 84.244 (19) | Si1Axi—O3A—Mg2xi | 88.71 (2) |
O1Bviii—Mg2—O3Bix | 89.268 (19) | Si2A—O1B—Mg1iii | 123.47 (2) |
O1Aii—Mg2—O3Bix | 171.80 (2) | Si2A—O1B—Mg2viii | 121.98 (2) |
O3Aix—Mg2—O3Bix | 73.791 (17) | Mg1iii—O1B—Mg2viii | 90.846 (18) |
O2B—Mg2—Si1A | 147.814 (19) | Si2A—O1B—Mg1xiv | 120.25 (2) |
O2A—Mg2—Si1A | 34.036 (13) | Mg1iii—O1B—Mg1xiv | 95.765 (17) |
O1Bviii—Mg2—Si1A | 117.659 (17) | Mg2viii—O1B—Mg1xiv | 97.377 (19) |
O1Aii—Mg2—Si1A | 103.862 (16) | Si2A—O2B—Mg1 | 133.27 (3) |
O3Aix—Mg2—Si1A | 36.237 (12) | Si2A—O2B—Mg2 | 120.38 (3) |
O3Bix—Mg2—Si1A | 73.966 (13) | Mg1—O2B—Mg2 | 96.930 (19) |
O2B—Mg2—Mg1x | 138.343 (18) | Si2Aix—O3B—Si2A | 130.43 (3) |
O2A—Mg2—Mg1x | 42.069 (13) | Si2Aix—O3B—Mg2xi | 122.73 (2) |
O1Bviii—Mg2—Mg1x | 44.361 (13) | Si2A—O3B—Mg2xi | 105.57 (2) |
O1Aii—Mg2—Mg1x | 91.297 (16) |
Symmetry codes: (i) x, y, z+1; (ii) −x+1/2, −y+1, z+1/2; (iii) −x+1, −y+1, −z+2; (iv) −x+1/2, y+1/2, z+1; (v) −x+1, y+1/2, −z+3/2; (vi) x, −y+3/2, z−1/2; (vii) x, −y+3/2, z+1/2; (viii) −x+1, −y+1, −z+1; (ix) x, −y+1/2, z−1/2; (x) x, y, z−1; (xi) x, −y+1/2, z+1/2; (xii) −x+1/2, −y+1, z−1/2; (xiii) −x+1/2, y−1/2, z−1; (xiv) −x+1, y−1/2, −z+3/2. |
Si·3(O)·0.157(Fe)·0.687(Mg)·0.157(Li) | Dx = 3.290 Mg m−3 |
Mr = 102.62 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9569 reflections |
a = 18.1718 (4) Å | θ = 3.4–45.2° |
b = 8.7706 (2) Å | µ = 2.13 mm−1 |
c = 5.1992 (1) Å | T = 293 K |
V = 828.64 (3) Å3 | Anhedral |
Z = 16 | 0.24 × 0.18 × 0.06 mm |
F(000) = 877 |
Bruker Smart Breeze diffractometer | 3458 independent reflections |
Radiation source: fine-focus sealed tube | 3231 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 512 pixels mm-1 | θmax = 45.3°, θmin = 3.2° |
φ and ω scans | h = −36→29 |
Absorption correction: multi-scan SADABS (Sheldrick, 2015) | k = −13→17 |
Tmin = 0.638, Tmax = 0.880 | l = −10→10 |
20229 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0129P)2 + 0.1879P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.019 | (Δ/σ)max = 0.002 |
wR(F2) = 0.041 | Δρmax = 0.48 e Å−3 |
S = 1.17 | Δρmin = −0.44 e Å−3 |
3458 reflections | Extinction correction: SHELXL-2019/3 (Sheldrick 2019), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
95 parameters | Extinction coefficient: 0.0110 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mg1 | 0.37534 (2) | 0.64975 (2) | 0.87437 (2) | 0.00581 (3) | 0.6865 (9) |
Fe1 | 0.37534 (2) | 0.64975 (2) | 0.87437 (2) | 0.00581 (3) | 0.3135 (9) |
Mg2 | 0.37650 (2) | 0.48689 (3) | 0.36523 (5) | 0.00829 (5) | 0.6865 (9) |
Li2 | 0.37650 (2) | 0.48689 (3) | 0.36523 (5) | 0.00829 (5) | 0.3135 (9) |
Si1A | 0.27250 (2) | 0.34081 (2) | 0.05404 (2) | 0.00393 (3) | 0.886 (16) |
Si1B | 0.27250 (2) | 0.34081 (2) | 0.05404 (2) | 0.00393 (3) | 0.114 (16) |
Si2A | 0.47402 (2) | 0.33749 (2) | 0.79363 (3) | 0.00404 (3) | 0.886 (16) |
Si2B | 0.47402 (2) | 0.33749 (2) | 0.79363 (3) | 0.00404 (3) | 0.114 (16) |
O1A | 0.18354 (2) | 0.33734 (4) | 0.04383 (7) | 0.00587 (5) | 0.254 (16) |
O2A | 0.31006 (2) | 0.50439 (4) | 0.04793 (7) | 0.00688 (5) | 0.254 (16) |
O3A | 0.30382 (2) | 0.22610 (4) | 0.83055 (7) | 0.00696 (5) | 0.254 (16) |
O1B | 0.56344 (2) | 0.33808 (4) | 0.79630 (7) | 0.00592 (5) | 0.254 (16) |
O2B | 0.43426 (2) | 0.48839 (4) | 0.69697 (7) | 0.00767 (5) | 0.254 (16) |
O3B | 0.44749 (2) | 0.20110 (4) | 0.59206 (7) | 0.00744 (5) | 0.254 (16) |
O1AA | 0.18354 (2) | 0.33734 (4) | 0.04383 (7) | 0.00587 (5) | 0.746 (16) |
O2AA | 0.31006 (2) | 0.50439 (4) | 0.04793 (7) | 0.00688 (5) | 0.746 (16) |
O3AA | 0.30382 (2) | 0.22610 (4) | 0.83055 (7) | 0.00696 (5) | 0.746 (16) |
O1BA | 0.56344 (2) | 0.33808 (4) | 0.79630 (7) | 0.00592 (5) | 0.746 (16) |
O2BA | 0.43426 (2) | 0.48839 (4) | 0.69697 (7) | 0.00767 (5) | 0.746 (16) |
O3BA | 0.44749 (2) | 0.20110 (4) | 0.59206 (7) | 0.00744 (5) | 0.746 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mg1 | 0.00508 (5) | 0.00683 (5) | 0.00554 (5) | 0.00024 (3) | −0.00081 (3) | −0.00071 (3) |
Fe1 | 0.00508 (5) | 0.00683 (5) | 0.00554 (5) | 0.00024 (3) | −0.00081 (3) | −0.00071 (3) |
Mg2 | 0.00897 (10) | 0.00851 (9) | 0.00739 (9) | −0.00123 (7) | −0.00244 (7) | 0.00084 (7) |
Li2 | 0.00897 (10) | 0.00851 (9) | 0.00739 (9) | −0.00123 (7) | −0.00244 (7) | 0.00084 (7) |
Si1A | 0.00356 (4) | 0.00445 (4) | 0.00377 (5) | −0.00053 (3) | 0.00023 (3) | −0.00011 (3) |
Si1B | 0.00356 (4) | 0.00445 (4) | 0.00377 (5) | −0.00053 (3) | 0.00023 (3) | −0.00011 (3) |
Si2A | 0.00357 (4) | 0.00447 (4) | 0.00408 (5) | 0.00042 (3) | −0.00041 (3) | 0.00017 (3) |
Si2B | 0.00357 (4) | 0.00447 (4) | 0.00408 (5) | 0.00042 (3) | −0.00041 (3) | 0.00017 (3) |
O1A | 0.00347 (10) | 0.00784 (11) | 0.00630 (11) | −0.00005 (8) | 0.00017 (8) | −0.00056 (9) |
O2A | 0.00769 (11) | 0.00537 (11) | 0.00759 (12) | −0.00258 (9) | −0.00034 (9) | 0.00082 (9) |
O3A | 0.00573 (11) | 0.01000 (12) | 0.00517 (11) | 0.00042 (9) | −0.00015 (8) | −0.00318 (9) |
O1B | 0.00369 (10) | 0.00791 (11) | 0.00616 (11) | −0.00020 (8) | −0.00043 (8) | 0.00024 (9) |
O2B | 0.00808 (12) | 0.00735 (11) | 0.00758 (12) | 0.00322 (9) | −0.00009 (9) | 0.00213 (10) |
O3B | 0.00592 (11) | 0.00974 (12) | 0.00666 (11) | −0.00095 (9) | 0.00025 (8) | −0.00395 (10) |
O1AA | 0.00347 (10) | 0.00784 (11) | 0.00630 (11) | −0.00005 (8) | 0.00017 (8) | −0.00056 (9) |
O2AA | 0.00769 (11) | 0.00537 (11) | 0.00759 (12) | −0.00258 (9) | −0.00034 (9) | 0.00082 (9) |
O3AA | 0.00573 (11) | 0.01000 (12) | 0.00517 (11) | 0.00042 (9) | −0.00015 (8) | −0.00318 (9) |
O1BA | 0.00369 (10) | 0.00791 (11) | 0.00616 (11) | −0.00020 (8) | −0.00043 (8) | 0.00024 (9) |
O2BA | 0.00808 (12) | 0.00735 (11) | 0.00758 (12) | 0.00322 (9) | −0.00009 (9) | 0.00213 (10) |
O3BA | 0.00592 (11) | 0.00974 (12) | 0.00666 (11) | −0.00095 (9) | 0.00025 (8) | −0.00395 (10) |
Mg1—O2Ai | 1.9613 (4) | Mg2—O1Aii | 2.1046 (4) |
Mg1—O2B | 2.0000 (4) | Mg2—O3Aix | 2.2949 (4) |
Mg1—O1Aii | 2.0276 (4) | Mg2—O3Bix | 2.5298 (5) |
Mg1—O1Biii | 2.0447 (4) | Mg2—Si1A | 2.7983 (3) |
Mg1—O1Aiv | 2.1512 (4) | Si1A—O2A | 1.5891 (4) |
Mg1—O1Bv | 2.1803 (4) | Si1A—O1A | 1.6177 (4) |
Mg1—Mg2i | 2.9246 (3) | Si1A—O3Ax | 1.6390 (4) |
Mg1—Mg2 | 3.0080 (3) | Si1A—O3Aix | 1.6538 (4) |
Mg1—Mg1vi | 3.1385 (1) | Si2A—O2B | 1.5894 (4) |
Mg1—Mg1vii | 3.1385 (1) | Si2A—O1B | 1.6251 (3) |
Mg2—O2B | 2.0191 (4) | Si2A—O3Bxi | 1.6596 (4) |
Mg2—O2A | 2.0500 (4) | Si2A—O3B | 1.6618 (4) |
Mg2—O1Bviii | 2.0623 (4) | ||
O2Ai—Mg1—O2B | 94.361 (16) | O3Aix—Mg2—Mg1x | 108.957 (13) |
O2Ai—Mg1—O1Aii | 96.149 (15) | O3Bix—Mg2—Mg1x | 80.334 (11) |
O2B—Mg1—O1Aii | 86.052 (15) | Si1A—Mg2—Mg1x | 73.395 (7) |
O2Ai—Mg1—O1Biii | 88.726 (15) | O2A—Si1A—O1A | 116.459 (19) |
O2B—Mg1—O1Biii | 97.578 (15) | O2A—Si1A—O3Ax | 113.01 (2) |
O1Aii—Mg1—O1Biii | 173.705 (15) | O1A—Si1A—O3Ax | 108.190 (18) |
O2Ai—Mg1—O1Aiv | 90.450 (15) | O2A—Si1A—O3Aix | 100.950 (19) |
O2B—Mg1—O1Aiv | 175.077 (15) | O1A—Si1A—O3Aix | 111.452 (19) |
O1Aii—Mg1—O1Aiv | 92.404 (13) | O3Ax—Si1A—O3Aix | 106.199 (13) |
O1Biii—Mg1—O1Aiv | 83.553 (14) | O2A—Si1A—Mg2 | 46.221 (14) |
O2Ai—Mg1—O1Bv | 171.237 (15) | O1A—Si1A—Mg2 | 134.624 (15) |
O2B—Mg1—O1Bv | 94.314 (15) | O3Ax—Si1A—Mg2 | 117.158 (14) |
O1Aii—Mg1—O1Bv | 83.222 (14) | O3Aix—Si1A—Mg2 | 55.074 (14) |
O1Biii—Mg1—O1Bv | 91.353 (13) | O2A—Si1A—Mg1xii | 110.599 (14) |
O1Aiv—Mg1—O1Bv | 80.854 (14) | O1A—Si1A—Mg1xii | 33.774 (13) |
O2Ai—Mg1—Mg2i | 44.393 (12) | O3Ax—Si1A—Mg1xii | 133.200 (14) |
O2B—Mg1—Mg2i | 93.039 (12) | O3Aix—Si1A—Mg1xii | 81.013 (13) |
O1Aii—Mg1—Mg2i | 140.417 (12) | Mg2—Si1A—Mg1xii | 104.907 (7) |
O1Biii—Mg1—Mg2i | 44.836 (11) | O2A—Si1A—Mg2xii | 86.103 (15) |
O1Aiv—Mg1—Mg2i | 91.129 (11) | O1A—Si1A—Mg2xii | 33.589 (14) |
O1Bv—Mg1—Mg2i | 136.176 (11) | O3Ax—Si1A—Mg2xii | 111.118 (14) |
O2Ai—Mg1—Mg2 | 95.767 (13) | O3Aix—Si1A—Mg2xii | 135.540 (14) |
O2B—Mg1—Mg2 | 41.788 (12) | Mg2—Si1A—Mg2xii | 121.599 (7) |
O1Aii—Mg1—Mg2 | 44.300 (11) | Mg1xii—Si1A—Mg2xii | 55.912 (5) |
O1Biii—Mg1—Mg2 | 139.282 (12) | O2B—Si2A—O1B | 117.04 (2) |
O1Aiv—Mg1—Mg2 | 136.640 (11) | O2B—Si2A—O3Bxi | 109.48 (2) |
O1Bv—Mg1—Mg2 | 89.886 (11) | O1B—Si2A—O3Bxi | 106.444 (19) |
Mg2i—Mg1—Mg2 | 122.410 (10) | O2B—Si2A—O3B | 105.55 (2) |
O2Ai—Mg1—Mg1vi | 138.182 (11) | O1B—Si2A—O3B | 107.320 (19) |
O2B—Mg1—Mg1vi | 90.830 (11) | O3Bxi—Si2A—O3B | 111.012 (14) |
O1Aii—Mg1—Mg1vi | 42.830 (10) | O2B—Si2A—Mg2 | 33.894 (15) |
O1Biii—Mg1—Mg1vi | 131.633 (11) | O1B—Si2A—Mg2 | 124.768 (15) |
O1Aiv—Mg1—Mg1vi | 84.877 (11) | O3Bxi—Si2A—Mg2 | 125.846 (14) |
O1Bv—Mg1—Mg1vi | 40.395 (10) | O3B—Si2A—Mg2 | 71.863 (15) |
Mg2i—Mg1—Mg1vi | 175.140 (8) | O2B—Si2A—Mg2viii | 84.513 (15) |
Mg2—Mg1—Mg1vi | 62.428 (6) | O1B—Si2A—Mg2viii | 32.830 (13) |
O2Ai—Mg1—Mg1vii | 89.032 (11) | O3Bxi—Si2A—Mg2viii | 125.488 (15) |
O2B—Mg1—Mg1vii | 141.122 (11) | O3B—Si2A—Mg2viii | 115.209 (14) |
O1Aii—Mg1—Mg1vii | 132.123 (11) | Mg2—Si2A—Mg2viii | 95.420 (7) |
O1Biii—Mg1—Mg1vii | 43.710 (10) | O2B—Si2A—Mg1iii | 121.606 (15) |
O1Aiv—Mg1—Mg1vii | 39.848 (10) | O1B—Si2A—Mg1iii | 31.788 (13) |
O1Bv—Mg1—Mg1vii | 84.987 (11) | O3Bxi—Si2A—Mg1iii | 75.771 (13) |
Mg2i—Mg1—Mg1vii | 63.312 (6) | O3B—Si2A—Mg1iii | 127.317 (14) |
Mg2—Mg1—Mg1vii | 174.259 (8) | Mg2—Si2A—Mg1iii | 147.412 (7) |
Mg1vi—Mg1—Mg1vii | 111.846 (7) | Mg2viii—Si2A—Mg1iii | 53.763 (5) |
O2B—Mg2—O2A | 173.26 (2) | Si1A—O1A—Mg1xii | 119.90 (2) |
O2B—Mg2—O1Bviii | 93.892 (17) | Si1A—O1A—Mg2xii | 121.24 (2) |
O2A—Mg2—O1Bviii | 85.887 (16) | Mg1xii—O1A—Mg2xii | 93.413 (15) |
O2B—Mg2—O1Aii | 83.558 (17) | Si1A—O1A—Mg1xiii | 121.657 (19) |
O2A—Mg2—O1Aii | 89.711 (17) | Mg1xii—O1A—Mg1xiii | 97.321 (15) |
O1Bviii—Mg2—O1Aii | 84.766 (17) | Mg2xii—O1A—Mg1xiii | 96.990 (16) |
O2B—Mg2—O3Aix | 111.812 (18) | Si1A—O2A—Mg1x | 148.85 (2) |
O2A—Mg2—O3Aix | 70.051 (15) | Si1A—O2A—Mg2 | 99.74 (2) |
O1Bviii—Mg2—O3Aix | 151.464 (19) | Mg1x—O2A—Mg2 | 93.597 (16) |
O1Aii—Mg2—O3Aix | 109.429 (17) | Si1Ai—O3A—Si1Axi | 135.61 (2) |
O2B—Mg2—O3Bix | 102.632 (16) | Si1Ai—O3A—Mg2xi | 130.08 (2) |
O2A—Mg2—O3Bix | 84.109 (16) | Si1Axi—O3A—Mg2xi | 88.708 (17) |
O1Bviii—Mg2—O3Bix | 89.232 (16) | Si2A—O1B—Mg1iii | 123.46 (2) |
O1Aii—Mg2—O3Bix | 171.683 (18) | Si2A—O1B—Mg2viii | 121.88 (2) |
O3Aix—Mg2—O3Bix | 73.672 (15) | Mg1iii—O1B—Mg2viii | 90.813 (15) |
O2B—Mg2—Si1A | 147.989 (16) | Si2A—O1B—Mg1xiv | 120.289 (19) |
O2A—Mg2—Si1A | 34.035 (11) | Mg1iii—O1B—Mg1xiv | 95.896 (14) |
O1Bviii—Mg2—Si1A | 117.569 (14) | Mg2viii—O1B—Mg1xiv | 97.362 (16) |
O1Aii—Mg2—Si1A | 103.911 (13) | Si2A—O2B—Mg1 | 133.37 (2) |
O3Aix—Mg2—Si1A | 36.217 (10) | Si2A—O2B—Mg2 | 120.07 (2) |
O3Bix—Mg2—Si1A | 73.825 (11) | Mg1—O2B—Mg2 | 96.908 (17) |
O2B—Mg2—Mg1x | 138.243 (16) | Si2Aix—O3B—Si2A | 130.70 (2) |
O2A—Mg2—Mg1x | 42.011 (11) | Si2Aix—O3B—Mg2xi | 122.69 (2) |
O1Bviii—Mg2—Mg1x | 44.353 (11) | Si2A—O3B—Mg2xi | 105.250 (18) |
O1Aii—Mg2—Mg1x | 91.349 (13) |
Symmetry codes: (i) x, y, z+1; (ii) −x+1/2, −y+1, z+1/2; (iii) −x+1, −y+1, −z+2; (iv) −x+1/2, y+1/2, z+1; (v) −x+1, y+1/2, −z+3/2; (vi) x, −y+3/2, z−1/2; (vii) x, −y+3/2, z+1/2; (viii) −x+1, −y+1, −z+1; (ix) x, −y+1/2, z−1/2; (x) x, y, z−1; (xi) x, −y+1/2, z+1/2; (xii) −x+1/2, −y+1, z−1/2; (xiii) −x+1/2, y−1/2, z−1; (xiv) −x+1, y−1/2, −z+3/2. |
Si·3(O)·0.082(Fe)·0.836(Mg)·0.082(Li) | Dx = 3.166 Mg m−3 |
Mr = 101.60 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbcn | Cell parameters from 6514 reflections |
a = 9.2232 (2) Å | θ = 3.2–45.3° |
b = 8.7040 (2) Å | µ = 1.62 mm−1 |
c = 5.3107 (1) Å | T = 293 K |
V = 426.34 (2) Å3 | Anhedral |
Z = 8 | 0.40 × 0.32 × 0.25 mm |
F(000) = 435 |
Bruker Smart Breeze diffractometer | 1753 independent reflections |
Radiation source: fine-focus sealed tube | 1661 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.015 |
Detector resolution: 512 pixels mm-1 | θmax = 45.3°, θmin = 3.2° |
φ and ω scans | h = −17→17 |
Absorption correction: multi-scan SADABS (Sheldrick, 2015) | k = −14→17 |
Tmin = 0.542, Tmax = 0.667 | l = −10→9 |
10336 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0154P)2 + 0.0476P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.014 | (Δ/σ)max = 0.001 |
wR(F2) = 0.035 | Δρmax = 0.34 e Å−3 |
S = 1.14 | Δρmin = −0.34 e Å−3 |
1753 reflections | Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
52 parameters | Extinction coefficient: 0.094 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mg1 | 0.000000 | 0.09896 (2) | 0.750000 | 0.00580 (4) | 0.8361 (9) |
Fe1 | 0.000000 | 0.09896 (2) | 0.750000 | 0.00580 (4) | 0.1639 (9) |
Mg2 | 0.000000 | 0.26368 (2) | 0.250000 | 0.00691 (5) | 0.8361 (9) |
Li2 | 0.000000 | 0.26368 (2) | 0.250000 | 0.00691 (5) | 0.1639 (9) |
SiB | 0.29263 (2) | 0.09090 (2) | 0.07181 (2) | 0.00417 (3) | 0.902 (10) |
SiBB | 0.29263 (2) | 0.09090 (2) | 0.07181 (2) | 0.00417 (3) | 0.098 (10) |
O1B | 0.11769 (3) | 0.09247 (3) | 0.07878 (5) | 0.00573 (4) | 0.287 (16) |
O1BB | 0.11769 (3) | 0.09247 (3) | 0.07878 (5) | 0.00573 (4) | 0.713 (16) |
O2B | 0.37515 (3) | 0.25119 (3) | 0.07138 (5) | 0.00805 (4) | 0.287 (16) |
O2BB | 0.37515 (3) | 0.25119 (3) | 0.07138 (5) | 0.00805 (4) | 0.713 (16) |
O3B | 0.35046 (3) | 0.97953 (3) | 0.30011 (5) | 0.00821 (4) | 0.287 (16) |
O3BB | 0.35046 (3) | 0.97953 (3) | 0.30011 (5) | 0.00821 (4) | 0.713 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mg1 | 0.00553 (7) | 0.00653 (6) | 0.00532 (6) | 0.000 | −0.00055 (4) | 0.000 |
Fe1 | 0.00553 (7) | 0.00653 (6) | 0.00532 (6) | 0.000 | −0.00055 (4) | 0.000 |
Mg2 | 0.00762 (9) | 0.00727 (7) | 0.00585 (7) | 0.000 | −0.00086 (6) | 0.000 |
Li2 | 0.00762 (9) | 0.00727 (7) | 0.00585 (7) | 0.000 | −0.00086 (6) | 0.000 |
SiB | 0.00368 (4) | 0.00471 (4) | 0.00413 (4) | −0.00063 (2) | 0.00017 (2) | 0.00007 (2) |
SiBB | 0.00368 (4) | 0.00471 (4) | 0.00413 (4) | −0.00063 (2) | 0.00017 (2) | 0.00007 (2) |
O1B | 0.00373 (9) | 0.00756 (8) | 0.00592 (8) | 0.00024 (6) | 0.00013 (6) | −0.00025 (6) |
O1BB | 0.00373 (9) | 0.00756 (8) | 0.00592 (8) | 0.00024 (6) | 0.00013 (6) | −0.00025 (6) |
O2B | 0.00936 (11) | 0.00673 (8) | 0.00806 (8) | −0.00391 (7) | 0.00030 (7) | −0.00057 (6) |
O2BB | 0.00936 (11) | 0.00673 (8) | 0.00806 (8) | −0.00391 (7) | 0.00030 (7) | −0.00057 (6) |
O3B | 0.00591 (10) | 0.01204 (9) | 0.00669 (8) | 0.00053 (7) | 0.00066 (7) | 0.00460 (7) |
O3BB | 0.00591 (10) | 0.01204 (9) | 0.00669 (8) | 0.00053 (7) | 0.00066 (7) | 0.00460 (7) |
Mg1—O2Bi | 1.9816 (3) | Mg2—O1B | 2.0557 (3) |
Mg1—O2Bii | 1.9816 (3) | Mg2—O2Bviii | 2.0629 (3) |
Mg1—O1Biii | 2.0567 (3) | Mg2—O2Bi | 2.0629 (3) |
Mg1—O1Biv | 2.0567 (3) | Mg2—O3Bix | 2.3458 (3) |
Mg1—O1Bv | 2.1867 (3) | Mg2—O3Bx | 2.3458 (3) |
Mg1—O1Bvi | 2.1867 (3) | Mg2—SiBi | 2.8602 (1) |
Mg1—Mg2iv | 3.0177 (1) | Mg2—SiBviii | 2.8602 (1) |
Mg1—Mg2 | 3.0177 (1) | SiB—O2B | 1.5893 (3) |
Mg1—Mg2v | 3.1564 (3) | SiB—O1B | 1.6140 (3) |
Mg1—Mg1v | 3.1652 (2) | SiB—O3Bxi | 1.6414 (3) |
Mg1—Mg1vii | 3.1652 (2) | SiB—O3Bxii | 1.6560 (3) |
Mg2—O1Biii | 2.0557 (3) | ||
O2Bi—Mg1—O2Bii | 97.677 (18) | O2Bviii—Mg2—O3Bx | 68.174 (10) |
O2Bi—Mg1—O1Biii | 85.317 (11) | O2Bi—Mg2—O3Bx | 118.183 (12) |
O2Bii—Mg1—O1Biii | 96.764 (11) | O3Bix—Mg2—O3Bx | 73.567 (15) |
O2Bi—Mg1—O1Biv | 96.764 (11) | O1Biii—Mg2—SiBi | 114.179 (8) |
O2Bii—Mg1—O1Biv | 85.317 (11) | O1B—Mg2—SiBi | 103.414 (8) |
O1Biii—Mg1—O1Biv | 176.854 (15) | O2Bviii—Mg2—SiBi | 153.556 (11) |
O2Bi—Mg1—O1Bv | 171.513 (12) | O2Bi—Mg2—SiBi | 32.877 (7) |
O2Bii—Mg1—O1Bv | 90.804 (11) | O3Bix—Mg2—SiBi | 35.377 (7) |
O1Biii—Mg1—O1Bv | 94.020 (10) | O3Bx—Mg2—SiBi | 96.116 (9) |
O1Biv—Mg1—O1Bv | 83.573 (11) | O1Biii—Mg2—SiBviii | 103.413 (8) |
O2Bi—Mg1—O1Bvi | 90.804 (11) | O1B—Mg2—SiBviii | 114.178 (8) |
O2Bii—Mg1—O1Bvi | 171.513 (12) | O2Bviii—Mg2—SiBviii | 32.877 (7) |
O1Biii—Mg1—O1Bvi | 83.573 (11) | O2Bi—Mg2—SiBviii | 153.556 (11) |
O1Biv—Mg1—O1Bvi | 94.020 (10) | O3Bix—Mg2—SiBviii | 96.116 (9) |
O1Bv—Mg1—O1Bvi | 80.716 (14) | O3Bx—Mg2—SiBviii | 35.377 (6) |
O2Bi—Mg1—Mg2iv | 96.230 (9) | SiBi—Mg2—SiBviii | 127.472 (9) |
O2Bii—Mg1—Mg2iv | 42.784 (8) | O1Biii—Mg2—Mg1 | 42.808 (8) |
O1Biii—Mg1—Mg2iv | 139.469 (8) | O1B—Mg2—Mg1 | 92.569 (10) |
O1Biv—Mg1—Mg2iv | 42.780 (8) | O2Bviii—Mg2—Mg1 | 134.282 (10) |
O1Bv—Mg1—Mg2iv | 89.778 (7) | O2Bi—Mg2—Mg1 | 40.728 (8) |
O1Bvi—Mg1—Mg2iv | 136.714 (7) | O3Bix—Mg2—Mg1 | 106.301 (7) |
O2Bi—Mg1—Mg2 | 42.784 (8) | O3Bx—Mg2—Mg1 | 118.707 (7) |
O2Bii—Mg1—Mg2 | 96.229 (9) | SiBi—Mg2—Mg1 | 71.607 (3) |
O1Biii—Mg1—Mg2 | 42.780 (8) | SiBviii—Mg2—Mg1 | 137.392 (2) |
O1Biv—Mg1—Mg2 | 139.469 (8) | O1Biii—Mg2—Mg1xiii | 92.568 (9) |
O1Bv—Mg1—Mg2 | 136.714 (7) | O1B—Mg2—Mg1xiii | 42.807 (7) |
O1Bvi—Mg1—Mg2 | 89.778 (7) | O2Bviii—Mg2—Mg1xiii | 40.728 (8) |
Mg2iv—Mg1—Mg2 | 123.268 (9) | O2Bi—Mg2—Mg1xiii | 134.282 (10) |
O2Bi—Mg1—Mg2v | 131.161 (9) | O3Bix—Mg2—Mg1xiii | 118.708 (7) |
O2Bii—Mg1—Mg2v | 131.161 (9) | O3Bx—Mg2—Mg1xiii | 106.301 (7) |
O1Biii—Mg1—Mg2v | 88.427 (8) | SiBi—Mg2—Mg1xiii | 137.392 (2) |
O1Biv—Mg1—Mg2v | 88.427 (8) | SiBviii—Mg2—Mg1xiii | 71.607 (3) |
O1Bv—Mg1—Mg2v | 40.358 (7) | Mg1—Mg2—Mg1xiii | 123.268 (9) |
O1Bvi—Mg1—Mg2v | 40.358 (7) | O2B—SiB—O1B | 118.125 (15) |
Mg2iv—Mg1—Mg2v | 118.366 (4) | O2B—SiB—O3Bxi | 111.337 (15) |
Mg2—Mg1—Mg2v | 118.366 (4) | O1B—SiB—O3Bxi | 108.238 (14) |
O2Bi—Mg1—Mg1v | 87.515 (8) | O2B—SiB—O3Bxii | 99.755 (14) |
O2Bii—Mg1—Mg1v | 139.447 (8) | O1B—SiB—O3Bxii | 110.191 (14) |
O1Biii—Mg1—Mg1v | 43.354 (7) | O3Bxi—SiB—O3Bxii | 108.680 (11) |
O1Biv—Mg1—Mg1v | 134.207 (9) | O2B—SiB—Mg2xiv | 44.798 (11) |
O1Bv—Mg1—Mg1v | 86.222 (9) | O1B—SiB—Mg2xiv | 132.722 (10) |
O1Bvi—Mg1—Mg1v | 40.219 (7) | O3Bxi—SiB—Mg2xiv | 119.036 (11) |
Mg2iv—Mg1—Mg1v | 175.391 (7) | O3Bxii—SiB—Mg2xiv | 55.095 (10) |
Mg2—Mg1—Mg1v | 61.341 (4) | O2B—SiB—Mg1xiii | 112.613 (12) |
Mg2v—Mg1—Mg1v | 57.025 (4) | O1B—SiB—Mg1xiii | 33.661 (9) |
O2Bi—Mg1—Mg1vii | 139.447 (8) | O3Bxi—SiB—Mg1xiii | 133.043 (11) |
O2Bii—Mg1—Mg1vii | 87.515 (8) | O3Bxii—SiB—Mg1xiii | 79.291 (11) |
O1Biii—Mg1—Mg1vii | 134.207 (9) | Mg2xiv—SiB—Mg1xiii | 103.622 (3) |
O1Biv—Mg1—Mg1vii | 43.354 (7) | O2B—SiB—Mg2 | 89.536 (12) |
O1Bv—Mg1—Mg1vii | 40.219 (7) | O1B—SiB—Mg2 | 32.258 (9) |
O1Bvi—Mg1—Mg1vii | 86.222 (9) | O3Bxi—SiB—Mg2 | 109.268 (11) |
Mg2iv—Mg1—Mg1vii | 61.340 (4) | O3Bxii—SiB—Mg2 | 134.148 (11) |
Mg2—Mg1—Mg1vii | 175.392 (7) | Mg2xiv—SiB—Mg2 | 121.841 (3) |
Mg2v—Mg1—Mg1vii | 57.025 (4) | Mg1xiii—SiB—Mg2 | 56.008 (3) |
Mg1v—Mg1—Mg1vii | 114.051 (9) | SiB—O1B—Mg2 | 122.968 (15) |
O1Biii—Mg2—O1B | 87.076 (17) | SiB—O1B—Mg1xiii | 120.556 (14) |
O1Biii—Mg2—O2Bviii | 91.475 (12) | Mg2—O1B—Mg1xiii | 94.413 (11) |
O1B—Mg2—O2Bviii | 83.297 (11) | SiB—O1B—Mg1v | 119.955 (14) |
O1Biii—Mg2—O2Bi | 83.298 (11) | Mg2—O1B—Mg1v | 96.104 (12) |
O1B—Mg2—O2Bi | 91.475 (12) | Mg1xiii—O1B—Mg1v | 96.429 (11) |
O2Bviii—Mg2—O2Bi | 172.805 (18) | SiB—O2B—Mg1xiv | 148.803 (17) |
O1Biii—Mg2—O3Bix | 147.232 (9) | SiB—O2B—Mg2xiv | 102.325 (14) |
O1B—Mg2—O3Bix | 108.682 (11) | Mg1xiv—O2B—Mg2xiv | 96.488 (12) |
O2Bviii—Mg2—O3Bix | 118.183 (12) | SiBxv—O3B—SiBxvi | 139.248 (19) |
O2Bi—Mg2—O3Bix | 68.174 (10) | SiBxv—O3B—Mg2xvii | 125.470 (15) |
O1Biii—Mg2—O3Bx | 108.681 (11) | SiBxvi—O3B—Mg2xvii | 89.528 (11) |
O1B—Mg2—O3Bx | 147.232 (9) |
Symmetry codes: (i) −x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, −z+1; (iii) −x, y, −z+1/2; (iv) x, y, z+1; (v) −x, −y, −z+1; (vi) x, −y, z+1/2; (vii) −x, −y, −z+2; (viii) x−1/2, −y+1/2, −z; (ix) −x+1/2, y−1/2, z; (x) x−1/2, y−1/2, −z+1/2; (xi) x, y−1, z; (xii) x, −y+1, z−1/2; (xiii) x, y, z−1; (xiv) −x+1/2, −y+1/2, z−1/2; (xv) x, y+1, z; (xvi) x, −y+1, z+1/2; (xvii) x+1/2, y+1/2, −z+1/2. |
Si·3(O)·0.078(Fe)·0.844(Mg)·0.078(Li) | Dx = 3.165 Mg m−3 |
Mr = 101.60 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbcn | Cell parameters from 3347 reflections |
a = 9.2255 (2) Å | θ = 3.2–45.3° |
b = 8.7052 (2) Å | µ = 1.62 mm−1 |
c = 5.3106 (1) Å | T = 293 K |
V = 426.49 (2) Å3 | Anhedral |
Z = 8 | 0.40 × 0.32 × 0.25 mm |
F(000) = 435 |
Bruker Smart Breeze diffractometer | 1760 independent reflections |
Radiation source: fine-focus sealed tube | 1539 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 512 pixels mm-1 | θmax = 45.3°, θmin = 3.2° |
φ and ω scans | h = −15→18 |
Absorption correction: multi-scan SADABS (Sheldrick, 2015) | k = −15→17 |
Tmin = 0.543, Tmax = 0.667 | l = −10→10 |
10429 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0168P)2 + 0.0318P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.018 | (Δ/σ)max < 0.001 |
wR(F2) = 0.040 | Δρmax = 0.37 e Å−3 |
S = 1.08 | Δρmin = −0.45 e Å−3 |
1760 reflections | Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
51 parameters | Extinction coefficient: 0.0359 (17) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mg1 | 0.000000 | 0.09881 (2) | 0.750000 | 0.00594 (5) | 0.8439 (11) |
Fe1 | 0.000000 | 0.09881 (2) | 0.750000 | 0.00594 (5) | 0.1561 (11) |
Mg2 | 0.000000 | 0.26371 (4) | 0.250000 | 0.00705 (6) | 0.8439 (11) |
Li2 | 0.000000 | 0.26371 (4) | 0.250000 | 0.00705 (6) | 0.1561 (11) |
SiB | 0.29262 (2) | 0.09092 (2) | 0.07166 (2) | 0.00435 (3) | 0.906 (13) |
SiBB | 0.29262 (2) | 0.09092 (2) | 0.07166 (2) | 0.00435 (3) | 0.094 (13) |
O1B | 0.11764 (3) | 0.09254 (4) | 0.07875 (6) | 0.00585 (5) | 0.299 (17) |
O1BB | 0.11764 (3) | 0.09254 (4) | 0.07875 (6) | 0.00585 (5) | 0.701 (17) |
O2B | 0.37521 (4) | 0.25107 (5) | 0.07118 (7) | 0.00816 (6) | 0.299 (17) |
O2BB | 0.37521 (4) | 0.25107 (5) | 0.07118 (7) | 0.00816 (6) | 0.701 (17) |
O3B | 0.35041 (3) | 0.97958 (5) | 0.30001 (7) | 0.00827 (6) | 0.299 (17) |
O3BB | 0.35041 (3) | 0.97958 (5) | 0.30001 (7) | 0.00827 (6) | 0.701 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mg1 | 0.00571 (7) | 0.00679 (10) | 0.00532 (7) | 0.000 | −0.00050 (5) | 0.000 |
Fe1 | 0.00571 (7) | 0.00679 (10) | 0.00532 (7) | 0.000 | −0.00050 (5) | 0.000 |
Mg2 | 0.00784 (10) | 0.00750 (13) | 0.00581 (10) | 0.000 | −0.00083 (7) | 0.000 |
Li2 | 0.00784 (10) | 0.00750 (13) | 0.00581 (10) | 0.000 | −0.00083 (7) | 0.000 |
SiB | 0.00386 (4) | 0.00505 (6) | 0.00414 (5) | −0.00061 (3) | 0.00016 (3) | 0.00011 (3) |
SiBB | 0.00386 (4) | 0.00505 (6) | 0.00414 (5) | −0.00061 (3) | 0.00016 (3) | 0.00011 (3) |
O1B | 0.00383 (9) | 0.00758 (14) | 0.00612 (11) | 0.00013 (8) | 0.00012 (7) | −0.00028 (9) |
O1BB | 0.00383 (9) | 0.00758 (14) | 0.00612 (11) | 0.00013 (8) | 0.00012 (7) | −0.00028 (9) |
O2B | 0.00948 (11) | 0.00695 (14) | 0.00805 (12) | −0.00389 (10) | 0.00030 (9) | −0.00063 (10) |
O2BB | 0.00948 (11) | 0.00695 (14) | 0.00805 (12) | −0.00389 (10) | 0.00030 (9) | −0.00063 (10) |
O3B | 0.00603 (10) | 0.01215 (16) | 0.00664 (11) | 0.00036 (10) | 0.00054 (8) | 0.00455 (10) |
O3BB | 0.00603 (10) | 0.01215 (16) | 0.00664 (11) | 0.00036 (10) | 0.00054 (8) | 0.00455 (10) |
Mg1—O2Bi | 1.9837 (4) | Mg2—O1B | 2.0555 (4) |
Mg1—O2Bii | 1.9837 (4) | Mg2—O2Bviii | 2.0619 (4) |
Mg1—O1Biii | 2.0564 (3) | Mg2—O2Bi | 2.0619 (4) |
Mg1—O1Biv | 2.0564 (3) | Mg2—O3Bix | 2.3465 (5) |
Mg1—O1Bv | 2.1863 (4) | Mg2—O3Bx | 2.3465 (5) |
Mg1—O1Bvi | 2.1863 (4) | Mg2—SiBi | 2.8600 (2) |
Mg1—Mg2iv | 3.0185 (2) | Mg2—SiBviii | 2.8600 (2) |
Mg1—Mg2 | 3.0185 (2) | SiB—O2B | 1.5887 (4) |
Mg1—Mg2v | 3.1558 (4) | SiB—O1B | 1.6148 (3) |
Mg1—Mg1v | 3.1639 (2) | SiB—O3Bxi | 1.6414 (4) |
Mg1—Mg1vii | 3.1639 (2) | SiB—O3Bxii | 1.6559 (4) |
Mg2—O1Biii | 2.0555 (4) | ||
O2Bi—Mg1—O2Bii | 97.59 (2) | O2Bviii—Mg2—O3Bx | 68.159 (14) |
O2Bi—Mg1—O1Biii | 85.259 (14) | O2Bi—Mg2—O3Bx | 118.162 (17) |
O2Bii—Mg1—O1Biii | 96.754 (14) | O3Bix—Mg2—O3Bx | 73.583 (19) |
O2Bi—Mg1—O1Biv | 96.754 (14) | O1Biii—Mg2—SiBi | 114.184 (10) |
O2Bii—Mg1—O1Biv | 85.259 (14) | O1B—Mg2—SiBi | 103.404 (9) |
O1Biii—Mg1—O1Biv | 176.96 (2) | O2Bviii—Mg2—SiBi | 153.537 (17) |
O2Bi—Mg1—O1Bv | 171.567 (16) | O2Bi—Mg2—SiBi | 32.860 (11) |
O2Bii—Mg1—O1Bv | 90.843 (15) | O3Bix—Mg2—SiBi | 35.379 (9) |
O1Biii—Mg1—O1Bv | 94.070 (13) | O3Bx—Mg2—SiBi | 96.124 (13) |
O1Biv—Mg1—O1Bv | 83.604 (14) | O1Biii—Mg2—SiBviii | 103.404 (9) |
O2Bi—Mg1—O1Bvi | 90.843 (15) | O1B—Mg2—SiBviii | 114.184 (10) |
O2Bii—Mg1—O1Bvi | 171.567 (16) | O2Bviii—Mg2—SiBviii | 32.860 (11) |
O1Biii—Mg1—O1Bvi | 83.604 (14) | O2Bi—Mg2—SiBviii | 153.537 (17) |
O1Biv—Mg1—O1Bvi | 94.070 (13) | O3Bix—Mg2—SiBviii | 96.124 (13) |
O1Bv—Mg1—O1Bvi | 80.731 (19) | O3Bx—Mg2—SiBviii | 35.379 (9) |
O2Bi—Mg1—Mg2iv | 96.190 (13) | SiBi—Mg2—SiBviii | 127.478 (13) |
O2Bii—Mg1—Mg2iv | 42.742 (11) | O1Biii—Mg2—Mg1 | 42.781 (9) |
O1Biii—Mg1—Mg2iv | 139.416 (12) | O1B—Mg2—Mg1 | 92.549 (13) |
O1Biv—Mg1—Mg2iv | 42.759 (10) | O2Bviii—Mg2—Mg1 | 134.270 (14) |
O1Bv—Mg1—Mg2iv | 89.794 (10) | O2Bi—Mg2—Mg1 | 40.766 (10) |
O1Bvi—Mg1—Mg2iv | 136.743 (10) | O3Bix—Mg2—Mg1 | 106.337 (9) |
O2Bi—Mg1—Mg2 | 42.742 (11) | O3Bx—Mg2—Mg1 | 118.711 (9) |
O2Bii—Mg1—Mg2 | 96.190 (13) | SiBi—Mg2—Mg1 | 71.640 (4) |
O1Biii—Mg1—Mg2 | 42.759 (10) | SiBviii—Mg2—Mg1 | 137.378 (3) |
O1Biv—Mg1—Mg2 | 139.416 (12) | O1Biii—Mg2—Mg1xiii | 92.549 (13) |
O1Bv—Mg1—Mg2 | 136.743 (10) | O1B—Mg2—Mg1xiii | 42.781 (9) |
O1Bvi—Mg1—Mg2 | 89.794 (10) | O2Bviii—Mg2—Mg1xiii | 40.766 (10) |
Mg2iv—Mg1—Mg2 | 123.208 (13) | O2Bi—Mg2—Mg1xiii | 134.269 (14) |
O2Bi—Mg1—Mg2v | 131.207 (12) | O3Bix—Mg2—Mg1xiii | 118.711 (10) |
O2Bii—Mg1—Mg2v | 131.207 (12) | O3Bx—Mg2—Mg1xiii | 106.338 (9) |
O1Biii—Mg1—Mg2v | 88.480 (12) | SiBi—Mg2—Mg1xiii | 137.378 (3) |
O1Biv—Mg1—Mg2v | 88.480 (12) | SiBviii—Mg2—Mg1xiii | 71.640 (4) |
O1Bv—Mg1—Mg2v | 40.365 (10) | Mg1—Mg2—Mg1xiii | 123.207 (13) |
O1Bvi—Mg1—Mg2v | 40.365 (10) | O2B—SiB—O1B | 118.15 (2) |
Mg2iv—Mg1—Mg2v | 118.396 (6) | O2B—SiB—O3Bxi | 111.32 (2) |
Mg2—Mg1—Mg2v | 118.396 (6) | O1B—SiB—O3Bxi | 108.220 (18) |
O2Bi—Mg1—Mg1v | 87.504 (11) | O2B—SiB—O3Bxii | 99.75 (2) |
O2Bii—Mg1—Mg1v | 139.462 (10) | O1B—SiB—O3Bxii | 110.207 (18) |
O1Biii—Mg1—Mg1v | 43.370 (10) | O3Bxi—SiB—O3Bxii | 108.675 (13) |
O1Biv—Mg1—Mg1v | 134.274 (13) | O2B—SiB—Mg2xiv | 44.763 (14) |
O1Bv—Mg1—Mg1v | 86.263 (12) | O1B—SiB—Mg2xiv | 132.749 (14) |
O1Bvi—Mg1—Mg1v | 40.234 (9) | O3Bxi—SiB—Mg2xiv | 119.029 (13) |
Mg2iv—Mg1—Mg1v | 175.457 (11) | O3Bxii—SiB—Mg2xiv | 55.128 (14) |
Mg2—Mg1—Mg1v | 61.335 (6) | O2B—SiB—Mg1xiii | 112.672 (15) |
Mg2v—Mg1—Mg1v | 57.062 (7) | O1B—SiB—Mg1xiii | 33.664 (12) |
O2Bi—Mg1—Mg1vii | 139.462 (10) | O3Bxi—SiB—Mg1xiii | 133.004 (14) |
O2Bii—Mg1—Mg1vii | 87.504 (11) | O3Bxii—SiB—Mg1xiii | 79.294 (12) |
O1Biii—Mg1—Mg1vii | 134.274 (13) | Mg2xiv—SiB—Mg1xiii | 103.671 (4) |
O1Biv—Mg1—Mg1vii | 43.370 (10) | O2B—SiB—Mg2 | 89.579 (15) |
O1Bv—Mg1—Mg1vii | 40.234 (9) | O1B—SiB—Mg2 | 32.237 (13) |
O1Bvi—Mg1—Mg1vii | 86.263 (12) | O3Bxi—SiB—Mg2 | 109.246 (13) |
Mg2iv—Mg1—Mg1vii | 61.334 (6) | O3Bxii—SiB—Mg2 | 134.159 (13) |
Mg2—Mg1—Mg1vii | 175.458 (11) | Mg2xiv—SiB—Mg2 | 121.857 (5) |
Mg2v—Mg1—Mg1vii | 57.062 (7) | Mg1xiii—SiB—Mg2 | 56.016 (3) |
Mg1v—Mg1—Mg1vii | 114.123 (13) | SiB—O1B—Mg2 | 122.99 (2) |
O1Biii—Mg2—O1B | 87.08 (2) | SiB—O1B—Mg1xiii | 120.534 (18) |
O1Biii—Mg2—O2Bviii | 91.489 (16) | Mg2—O1B—Mg1xiii | 94.459 (14) |
O1B—Mg2—O2Bviii | 83.314 (15) | SiB—O1B—Mg1v | 119.953 (19) |
O1Biii—Mg2—O2Bi | 83.313 (15) | Mg2—O1B—Mg1v | 96.094 (15) |
O1B—Mg2—O2Bi | 91.488 (16) | Mg1xiii—O1B—Mg1v | 96.395 (14) |
O2Bviii—Mg2—O2Bi | 172.84 (3) | SiB—O2B—Mg1xiv | 148.83 (2) |
O1Biii—Mg2—O3Bix | 147.241 (13) | SiB—O2B—Mg2xiv | 102.38 (2) |
O1B—Mg2—O3Bix | 108.667 (13) | Mg1xiv—O2B—Mg2xiv | 96.491 (15) |
O2Bviii—Mg2—O3Bix | 118.162 (17) | SiBxv—O3B—SiBxvi | 139.28 (2) |
O2Bi—Mg2—O3Bix | 68.159 (14) | SiBxv—O3B—Mg2xvii | 125.47 (2) |
O1Biii—Mg2—O3Bx | 108.667 (13) | SiBxvi—O3B—Mg2xvii | 89.494 (16) |
O1B—Mg2—O3Bx | 147.241 (13) |
Symmetry codes: (i) −x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, −z+1; (iii) −x, y, −z+1/2; (iv) x, y, z+1; (v) −x, −y, −z+1; (vi) x, −y, z+1/2; (vii) −x, −y, −z+2; (viii) x−1/2, −y+1/2, −z; (ix) −x+1/2, y−1/2, z; (x) x−1/2, y−1/2, −z+1/2; (xi) x, y−1, z; (xii) x, −y+1, z−1/2; (xiii) x, y, z−1; (xiv) −x+1/2, −y+1/2, z−1/2; (xv) x, y+1, z; (xvi) x, −y+1, z+1/2; (xvii) x+1/2, y+1/2, −z+1/2. |
Acknowledgements
Open access publishing facilitated by Universita degli Studi di Roma La Sapienza, as part of the Wiley - CRUI-CARE agreement.
Conflict of interest
The authors declare that there are no conflicts of interest.
Funding information
Funding for this research was provided by: Progetti di Ateneo Piccoli 2022.
References
Angel, R. J., Chopelas, A. & Ross, N. L. (1992). Nature, 358, 322–324. CrossRef ICSD CAS Web of Science Google Scholar
Ballirano, P., Celata, B., Pacella, A., Bloise, A., Tempesta, G., Sejkora, J. & Bosi, F. (2024). Inorg. Chem. 63, 20372–20379. CrossRef CAS PubMed Google Scholar
Ballirano, P., Celata, B., Pacella, A. & Bosi, F. (2021). Acta Cryst. B77, 537–549. CrossRef IUCr Journals Google Scholar
Ban, T., Ohya, Y. & Takahashi, Y. (1999). J. Am. Ceram. Soc. 82, 22–26. CrossRef CAS Google Scholar
Baur, W. H. (1974). Acta Cryst. B30, 1195–1215. CrossRef CAS IUCr Journals Web of Science Google Scholar
Bloise, A., Barrese, E., Apollaro, C. & Miriello, D. (2009). Cryst. Res. Technol. 44, 463–468. CrossRef CAS Google Scholar
Bloise, A., Pingitore, V., Miriello, D., Apollaro, C., Armentano, D., Barrese, E. & Oliva, A. (2011). J. Cryst. Growth, 329, 86–91. CrossRef CAS Google Scholar
Boyd, F. R., England, J. L. & Davis, B. T. C. (1964). J. Geophys. Res. 69, 2101–2109. CrossRef CAS Google Scholar
Brown, P. J., Fox, A. G., Maslen, E. N., O'Keefe, M. A. & Willis, B. T. M. (2006). International Tables for Crystallography, Vol. C, edited by E. Prince, pp. 554–595. Dordrecht: Kluwer Academic Publishers. Google Scholar
Bruker (2016). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cameron, M. & Papike, J. J. (1981). Am. Mineral. 66, 1–50. CAS Google Scholar
Catalano, M., Bloise, A., Pingitore, V., Cazzanelli, E., Giarola, M., Mariotto, G. & Barrese, E. (2015). Appl. Phys. A, 120, 175–182. CrossRef CAS Google Scholar
Catalano, M., Bloise, A., Pingitore, V., Miriello, D., Cazzanelli, E., Giarola, M., Mariotto, G. & Barrese, E. (2014). Cryst. Res. Technol. 49, 736–742. CrossRef CAS Google Scholar
Douy, A. (2002). J. Sol-Gel Sci. Technol. 24, 221–228. CrossRef CAS Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578. Web of Science CrossRef IUCr Journals Google Scholar
Ganguly, J. & Ghose, S. (1979). Contr. Miner. Petrol. 69, 375–385. CrossRef CAS Google Scholar
Grandin de L'éprevier, A. & Ito, J. (1983). J. Cryst. Growth, 64, 411–412. Google Scholar
Gu, F., Peng, Z., Tang, H., Ye, L., Tian, W., Liang, G., Rao, M., Zhang, Y., Li, G. & Jiang, T. (2018). Preparation of refractory materials from ferronickel slag, in Characterization of Minerals, Metals, and Materials 2018, pp. 633–642. Cham, Switzerland: Springer. Google Scholar
Hawthorne, F. C. & Gagné, O. C. (2024). Acta Cryst. B80, 326–339. CrossRef IUCr Journals Google Scholar
Hawthorne, F. C., Ungaretti, L. & Oberti, R. (1995). Can. Mineral. 33, 907–911. CAS Google Scholar
Hoppe, R. (1979). Z. Kristallogr. 150, 23–52. CrossRef CAS Web of Science Google Scholar
Hovestreydt, E. (1983). Acta Cryst. A39, 268–269. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Ilinca, G. (2022). Minerals, 12, 924. CrossRef Google Scholar
Ito, J. (1975). Geophys. Res. Lett. 2, 533–536. CrossRef CAS Google Scholar
Kanzaki, M. & Xue, X. (2017). J. Mineral. Petrol. Sci. 112, 359–364. CrossRef CAS Google Scholar
Lazarz, J. D., Dera, P., Hu, Y., Meng, Y., Bina, C. R. & Jacobsen, S. D. (2019). Am. Mineral. 104, 897–904. CrossRef Google Scholar
Makovicky, E. & Balić-Žunić, T. (1998). Acta Cryst. B54, 766–773. Web of Science CrossRef IUCr Journals Google Scholar
Mitchell, M. B., Jackson, D. & James, P. F. (1998). J. Sol-Gel Sci. Technol. 13, 359–364. CrossRef CAS Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ohashi, Y. (1984). Phys. Chem. Miner. 10, 217–229. CrossRef ICSD CAS Web of Science Google Scholar
Ohashi, Y. & Finger, L. W. (1976). Carnegie Inst. Washington Yearb. 75, 743–746. Google Scholar
Ozima, M. (1982). J. Jpn Assoc. Mineral. Petrol. Econ. Geol. 3, 97–103. Google Scholar
Ozima, M. & Akimoto, S. (1983). Am. Mineral. 68 1199–1205. CAS Google Scholar
Pannhorst, W. (1984). Neues Jb. Miner. Abh. 150, 219–228. CAS Google Scholar
Redhammer, G. J. & Roth, G. (2004). Z. Kristallogr. 219, 278–294. Web of Science CrossRef ICSD CAS Google Scholar
Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570. CrossRef PubMed CAS Web of Science Google Scholar
Sasaki, S., Fujino, K., Takeuchi, Y. & Sadanaga, R. (1982). Z. Kristallogr. 158, 279–297. CrossRef CAS Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smyth, J. (1974). Am. Mineral. 59, 345–352. CAS Google Scholar
Smyth, J. R. & Ito, J. (1977). Am. Mineral. 62, 1252–1257. CAS Google Scholar
Swanson, D. K. & Peterson, R. C. (1980). Can. Mineral. 18, 153–156. CAS Google Scholar
Tanaka, T. & Takei, H. (1997). J. Cryst. Growth, 180, 206–211. CrossRef CAS Google Scholar
Ushio, M., Kobayashi, N., Suzuki, M. & Sumiyoshi, Y. (1991). J. Am. Ceram. Soc. 74, 1654–1657. CrossRef CAS Google Scholar
Yang, H., Finger, L. W., Conrad, P. G., Prewit, C. T. & Hazen, R. M. (1999). Am. Mineral. 84, 245–256. CrossRef CAS Google Scholar
Yoshiasa, A., Nakatsuka, A., Okube, M. & Katsura, T. (2013). Acta Cryst. B69, 541–546. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Zhou, S., King, G., Scanlon, D. O., Sougrati, M. T. & Melot, B. C. (2014). J. Electrochem. Soc. 161, A1642–A1647. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.