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1. Bridging the classical and quantum worlds in crys-

tallography

Crystallography has long been a tool for understanding the

structure of matter at the atomic level, rooted in classical

physics concepts (e.g. diffraction and interference of waves by

atomic planes of spheres) (Buerger, 1942; Rhodes, 2006;

Sands, 1975; Stout & Jensen, 1989). Quantum mechanics does

not typically play a direct role in data collection, data

manipulation, and data processing. Perhaps the only indirect

role of quantum mechanics at this stage is to compute the

electron densities of spherical atoms in their ground state to

generate the pseudoatomic density used to provide the first

guess for the refinement cycles. This treatment yields good

geometries and electron density maps. For more accurate

work, especially for electron density analyzes such as those

based on the Quantum Theory of Atoms in Molecules

(QTAIM) (Bader, 1990), the refinement can be performed

using a non-spherical (aspherical) multipolar representation

of the atomic densities which yields accurate electron densities

in bonding regions. A new frontier, initiated by Clinton and

Massa more than five decades ago (Clinton et al., 1973; Massa

& Clinton, 1972) is now a booming emerging field termed

Quantum Crystallography (QCr) (Genoni et al., 2018; Gillet,

2023; Gillet & Macchi, 2021; Jayatilaka, 1998; Jayatilaka &

Grimwood, 2001; Grimwood & Jayatilaka, 2001; Launay &

Gillet, 2021; Macchi, 2022), a term coined in a landmark paper

by Massa, Huang and Karle in 1995 (Massa et al., 1995; Huang

et al., 1999; Huang et al., 2010; Matta et al., 2023), which seeks

to extend the quantum mechanical description of matter into

the realm of crystallographic techniques. The work of Yu and

Gillet, published in this issue of Acta Crystallographica Section

B (Yu & Gillet, 2025), represents a significant stride in this

direction. This important contribution demonstrates how

quantum-mechanical phase-space description of electron

distributions, once considered a purely theoretical concept,

can now be recovered from a combination of experimental

scattering data.

2. Quantum crystallography: a paradigm shift

The fundamental challenge in quantum chemistry and

condensed matter physics has been the accurate description of

electron distributions accounting, for example, for static and

dynamic correlation. The many-electron wavefunction, while
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the most complete representation, is of such complexity that

makes it infeasible for large systems. As an alternative,

quantum crystallography, in Yu & Gillet (2025), focuses on

reduced representations such as the one-electron reduced

density matrix (1-RDM) and the Wigner function, both of

which encode essential quantum information beyond the

electron density while remaining experimentally accessible.

Yu and Gillet’s work highlights how a combination of high-

resolution X-ray diffraction and Compton scattering

measurements can provide a complete phase-space descrip-

tion of electrons in a crystal (Yu & Gillet, 2025). This marks a

departure from conventional crystallography by switching

from electron densities described in position space only to

embrace a quantum mechanical view that incorporates dyna-

mical information by describing the electron distribution in

both position and momentum spaces.

3. The role of phase-space representations

A key innovation is the retrieval of the Wigner function — a

quasi-probability distribution that offers a full phase-space

description of electrons (Yu & Gillet, 2025). Unlike the clas-

sical probability distributions used in conventional crystal-

lography, the Wigner function can exhibit negative values, a

hallmark of non-classical behavior. This negativity is a direct

consequence of quantum interference effects and serves as a

fingerprint of the quantum nature of electronic states. Yu &

Gillet (2025) demonstrate the experimental feasibility of

reconstructing the Wigner function using data from both

X-ray diffraction (elastic) and Compton (inelastic) scattering.

While the first provides information about the electron density

in position space, Compton scattering supplies complementary

data on the electronic momentum distributions. By drawing on

the complementary information of these two techniques, the

authors propose a more complete picture of ‘electronic

structure’ in crystals, bridging the gap between theoretical

quantum mechanics and experimental crystallography.

To showcase the power of this approach, Yu & Gillet (2025)

applied their methodology to a test-case molecular crystal,

namely, urea (NH2)2C O. Using a combination of X-ray

structure factors and directional Compton profiles, they

successfully reconstructed the 1-RDM and its corresponding

Wigner function. Their results not only corroborate quantum

chemical predictions but also highlight subtle quantum effects

that classical approaches would overlook. (See Fig. 2 of their

paper reproduced with permission here as Fig. 1.)

One striking observation is the role of electronic delocali-

zation, which is elegantly captured in the off-diagonal

elements of the 1-RDM. These elements reveal long-range

electronic correlations that govern bonding interactions. The

corresponding Wigner function [in Fig. 3 of Yu & Gillet

(2025)] indicates that electrons in the vicinity of OCN nuclei

exhibit the highest momenta reflecting Heisenberg’s inde-

terminacy, reinforcing the notion that electrons do not simply

‘orbit’ nuclei but exhibit intricate quantum behavior dictated

by their quantum nature.

4. Closing comments

The work of Yu and Gillet has taken us a step closer to a

quantum mechanical description of crystals. As experimental

techniques continue to advance, particularly with the advent

of ultra-high-resolution X-ray and electron diffraction

methods, the potential for the general field of quantum crys-

tallography will only grow. The study of these authors has far-

reaching implications. It provides a combined experimental-

theoretical approach to elucidate electron correlation offering

additional insights into the nature of chemical bonding in

crystals. Enabling an experimental access to phase-space

quantum mechanical representation could aid, eventually, in

designing novel materials with tailored electronic properties

(functional materials) such as organic semiconductors.
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Figure 1
(a) Theoretical 1-RDM along the path O C—N—H within urea with the upper matrix representing the isolated molecule and the lower matrix showing
periodic ab initio data. (b) The upper matrix depicts the 1-RDM refined using X-ray structure factors alone, determined at 0 K, whereas the lower matrix
incorporates noisy directional Compton scattering data along with structure factors obtained at 52 K. Positive contours are solid in the blue regions while
negative ones are dotted in red regions with step size = 0.01 � 2n, n = 0, 1, 2, . . .
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