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This article, written on the occasion of the International Year of Quantum

Science and Technology, explores the development of alternative approaches to

pure-state N-electron wavefunctions in quantum physics. It focuses on Quantum

Crystallography tools and explains how the combination of X-ray coherent-

elastic and incoherent-inelastic scattering data has enabled the description of

mean-electron’s quantum behaviour in phase space. The article gives a

numerical example using a urea crystal to demonstrate the attainability of

recovering a one-electron reduced density matrix and its associated reduced

Wigner function. It emphasizes the importance of momentum-space measure-

ments in obtaining a more accurate phase-space picture of electron quantum

physics in crystals.

1. Introduction

This paper contributes to the celebration of 2025 as the

International Year of Quantum Science and Technology. It has

indeed been one hundred years since the mathematical

foundations of quantum physics were first proposed by

Schrödinger, Heisenberg, Jordan and Born. We here adopt the

biased perspective of Quantum Crystallography (QCr) to

describe the reduced density matrix or the Wigner function as

alternative approaches to the N-electron wavefunction and

what progress has been made in their experimental quest.

First, we explain how and why these quantities were defined

and relate to electron density probability distributions in

solids and molecules (Section 2). In the one-electron case, we

then expose their connections to two common experimental

techniques (Section 3). In Section 4, the main strategies for

retrieving density matrices or Wigner functions from experi-

mental measurements are revisited, distinguishing the pure-

state problem from that involving a statistical mixture of

states. Finally, in Section 5 we summarize our latest attempts

to recover one-electron reduced density matrices and Wigner

functions using a combination of data from the scattering

techniques described in Section 4. We thus claim that it is

possible to give a quantum representation of electron beha-

viour in the (once-believed) classical land of phase space.

2. Early alternatives to the wavefunction

A stay in the great outdoors is often beneficial for the body

and the mind, whether to escape an allergy or the demands of

daily life. We can imagine that the pure air of Heligoland was

as favourable to W. Heisenberg (Cassidy, 1992) as that of the

Swiss Alps was to E. Schrödinger (Moore, 1989). In the

summer of 1925, inspiration gained by Heisenberg in the

pollen-free air of the North Sea rapidly induced the ‘three-
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man paper’ with M. Born and P. Jordan. Thereby the mathe-

matical basis to a new matrix formulation of quantum

mechanics was established (Heisenberg, 1925; Born & Jordan,

1925; Born et al., 1926). Schrödinger’s wave picture emerged

from the snow the following winter, in the picturesque setting

of Arosa (Schrödinger, 1926a; Schrödinger, 1926b). Rigorous

proof of the mathematical equivalence of both formalisms

only appeared in the next decade (von Neumann, 1932; Van

Hove, 1958).

Interestingly, no sooner had Schrödinger found an evolu-

tion equation for his ‘�-(wave)function’ than some of his

contemporaries began to worry about the limits of this

approach.

2.1. Density operator and density matrix

J. von Neumann (soon to be followed by P. Dirac and L.

Landau) found that, if real systems are not isolated from their

environment, one should consider a mixture of quantum states

(von Neumann, 1927; Duncan, 2024; Dirac, 1929; Dirac, 1931)

according to the laws of statistical mechanics. This description

was easily achieved when a single wavefunction was replaced

by a density operator. This operator is constructed from a

convex combination of state projectors (using Dirac’s nota-

tion):

b� ¼
X

j

wjj jih jj; ð1Þ

where j ji are quantum pure-state kets and !j are their

statistical weights in the mixture. When dealing with a closed

system at a fixed temperature imposed by a thermostat, the

weights are mere canonical probabilities if the j ji are the

eigen-kets of the Hamiltonian. For any observable property

represented by operator bA, the mean value is thus computed

from the trace:

hAi ¼ Tr½b� bA�: ð2Þ

It was acknowledged early that two different types of mean

values were thereby simultaneously computed: a ‘quantum’

expectation value, for each state, and a ‘classical’ (statistical)

physics mean value, mixing all the quantum states. Using a

single density operator over an infinite list of wavefunctions

can thus be a convenient option when the system is expected

to be in a non-pure state. If the choice is that of the density

operator, time evolution is given by the von Neumann equa-

tion:

@

@t
b� ¼

1

ih-
bH;b�
h i

; ð3Þ

where bH is the system’s Hamiltonian.

The non-commutation of position and momentum opera-

tors forced every quantum mechanical description to choose a

side. The most common way of representing quantum states or

density operators became that of position representation so

that a wavefunction or a density matrix became the short

name for the projection of the quantum state ket onto the

position space,  ðRÞ ¼ hRj i, or the expression of the density

operator expressed in the position operator’s eigenbasis

� ðR;R0Þ ¼ hRjb� jR0i, respectively.

2.2. A phase-space quantum picture

However, not everyone was ready to give up the conve-

nience of phase space. Obtained from the direct product of

position and momentum spaces, it had become the natural

territory where classical states had progressively settled since

R. Hamilton, J. Liouville, then L. Boltzmann and J. C. Maxwell

(Nolte, 2010). In the early 1930s, when looking for an

approximate method to include quantum effects in thermo-

dynamics, E. Wigner (Wigner, 1932) suggested that the

following function could bear all the required properties to

combine position, R, and momentum, P, components:

WðR;PÞ ¼
1

ð2�h- Þ
n

Z

hRþ
q

2
jb� jR �

q

2
i expð� iP � q=h- Þ dq;

ð4Þ

where n is the number of degrees of freedom of the system,

generally n ¼ 3� N, and N is the number of particles in the

system. Therefore, R and P, respectively, represent the posi-

tion and momentum vectors in an n-dimensional space.

From its definition, it can easily be seen that the Wigner

function, WðR;PÞ, is just as adapted to the description of

systems in a mixture of quantum states as the density operator
b� or the density matrix hRjb� jR0i. However, it has been shown

that the Wigner-function picture is also equivalent to the

Schrödinger description (Tatarski, 1983), since it also obeys an

evolution equation:

@W

@t
¼ �

1

m
P � rRWðR;PÞ

þ
Xþ1

j¼0

ih-

2

� �2j
1

ð2jþ 1Þ!
r
ð2jþ1Þ
P WðR;PÞ � r

ð2jþ1Þ
R UðRÞ; ð5Þ

where UðRÞ is the potential energy term of the Hamiltonian.

Unlike the wavefunction and the density matrix, WðR;PÞ is a

real-valued function. The Wigner-function approach was

rapidly adopted when the purpose was to study the limits

between classical and quantum physics. It is immediately

obvious that if only the first term of the expansion is retained

in (5), the Planck constant vanishes from the evolution

equation and the classical Liouville equation is recovered.

Going further, it would thus be tempting to interpret the

Wigner function as a phase-space probability distribution

since the marginal integrals yield the electron probability

density distributions in position and momentum spaces,

respectively:

�ðRÞ ¼

Z

WðR;PÞ dP; ð6aÞ

e�ðPÞ ¼

Z

WðR;PÞ dR: ð6bÞ

However, using definitions (4), it is clearly seen that for two

orthogonal pure states, i.e. h 1j 2i ¼ 0, the product of their

Wigner functions W1ðR;PÞ and W2ðR;PÞ obeys the following

relation:
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Z

W1ðR;PÞW2ðR;PÞ dR dP ¼ 0: ð7Þ

This implies that the Wigner function should be expected to

take negative values in regions of phase space. This last

property disqualifies the Wigner function from being a proper

density probability function in phase space, despite relations

(6). Apart from this ‘negativity faux pas’, WðR;PÞ can be

employed to compute mean values for any quantum obser-

vable bA:

hAi ¼

Z

AðR;PÞWðR;PÞ dR dP; ð8Þ

provided that the phase-space expression ofbA is defined using

the Weyl transform (Weyl & Robertson, 1950):

AðR;PÞ ¼

Z

hRþ
q

2
jbAjR �

q

2
i expð� iP � q=h- Þ dq: ð9Þ

Consequently, there is no reason to abandon phase space as a

possible playground for quantum physics.

2.3. Reduction of the problem to a mean pair or a mean

single electron

Like for any pure-state wavefunction, the density matrix or

Wigner function description of an assembly of N electrons can

rapidly become too complex. As stated by Coulson, ‘a

conventional many-electron wavefunction tells us more than

we need to know’ (Coulson, 1960). Indeed, no known physical

quantity involves more than two electrons at a time. There-

fore, using (2), computing the quantum expectation value of

such an observable from the density operator amounts to

evaluating

hAi ¼ NðN � 1Þ
X

j

�
!j

Z

 �j ð1; 2; 3; . . . ;NÞ

�bAð1; 2Þ jð1; 2; 3; . . . ;NÞ
�

d1 d2 d3 . . . dN; ð10Þ

where the bold numbered variables include the spin and the

position (or the spin and the momentum) for each particle.

This expression can be rewritten as a two-step process:

hAi ¼

Z �

bAð1; 2Þ
�
NðN � 1Þ

X

j

!j

Z
�
 �j ð1

0; 20; 3; . . . ;NÞ

�  jð1; 2; 3; . . . ;NÞ d3 . . . dN
��
�

1¼10;2¼20

d1 d2; ð11Þ

where operatorbAð1; 2Þ first acts on unprimed variables, before

primed and unprimed variables are set equal. Formulation

(11) demonstrates that there is no need for an all-electron

density matrix, and a partial trace over the N � 2 electrons is

just as useful (Husimi, 1940; Haar, 1961). Defining the two-

electron reduced density matrix as

� ð2Þð1; 2; 10; 20Þ ¼

NðN � 1Þ
X

j

!j

Z

 �j ð1
0; 20; 3; . . . ;NÞ jð1; 2; 3; . . . ;NÞ d3 . . . dN;

ð12Þ

we obtain

hAi ¼

Z

bAð1; 2Þ� ð2Þð1; 2; 10; 20Þ
h i

1¼10;2¼20
d1 d2: ð13Þ

One can thus see that the reduction of the problem is

equivalent to considering a mean electron pair, which carries

all the quantum behaviour of the assembly.

In many cases, the problem can be simplified further by

considering only the one-electron reduced density matrix (1-

RDM):

� ð1Þð1; 10Þ

¼ N
X

j

!j

Z

 �j ð1
0; 2; 3; . . . ;NÞ jð1; 2; 3; . . . ;NÞ d2 d3 . . . dN:

ð14Þ

If the spin value is not relevant, a spin-traced 1-RDM becomes

a mere function of the mean-electron’s position � ð1Þðr; r0Þ and

the diagonal elements of the spin-traced 1-RDM yield the

electron density distribution h�ðrÞi ¼ � ð1Þðr; rÞ, where r now

refers to a single electron position (the mean electron).

Recourse to a 1-RDM description was already envisaged by

Dirac in the very early times of quantum theory in the pure-

state case when discussing the mean-field treatment of the

atom (Dirac, 1930). A similar reduction of the problem can be

carried out for the Wigner function approach. The one-elec-

tron Wigner function will be referred to as the 1-Wigner.

The main advantages of using the density matrix or,

equivalently, the Wigner function formulation over the

wavefunction are thus twofold. Firstly, since all observable

operators are linear, statistical mixtures of quantum states are

naturally accounted for in any mean-value computation.

Secondly, the possibility of reducing the problem to a mean

pair, or even a mean electron (reduced Wigner or reduced

DM), without losing any accuracy in the quantum description,

significantly simplifies the modelling and the graphical repre-

sentation of the distributions.

3. Quantum behaviour from crystallography scattering

techniques

The possibility of obtaining an accurate N-electron wave-

function from experimental X-ray data is still debated within

the QCr community. Nevertheless, there is no doubt that the

strong interplay between wavefunctions and experimental

measurements has been a cornerstone of quantum physics

since the early ages. From what precedes, it emerges that

density matrices (at most 2-RDM) and their Wigner coun-

terparts are the Holy Grail when it comes to predicting or

describing the electronic properties of systems. Given the

theoretical complexity and the sparsity of proper information,

the quest for an experimentally derived 2-RDM or 2-Wigner

has been regularly postponed. Consequently, we will only

report on the progress achieved for the 1-RDM and 1-Wigner.

The previous section demonstrated that the (reduced) Wigner

function possesses exactly the same properties as the
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(reduced) density matrix and that the two descriptions are

equivalent. Therefore, we will mostly refer to the 1-RDM case.

Expressions (2) and (8) and their one-electron versions

clearly show that any experimental measurement should

enrich our knowledge of the density matrix. For the 1-Wigner,

the problem is a special class of quantum (crystallographic)

tomography problem relying on Born’s rule, similar to that

which has been practiced for photon states (as first proposed

by Vogel & Risken, 1989) and expanded to a single electron

(Jullien et al., 2014). As it turns out, two very different scat-

tering techniques, well established in the crystallography

community, have long been known for containing detailed

information on electron probability distributions. As a general

remark, it is worth mentioning that these two specific techni-

ques, belonging to the elastic and inelastic scattering regimes,

provide symmetric approaches to both sides of phase space as

they respectively focus on the position and momentum

representations. The next section gives the essential aspects of

these measurements and how they relate to the 1-RDM or the

1-Wigner.

3.1. A position representation of electrons by diffraction

from single crystals

The diffraction of all kinds of particles was instrumental in

the development of the quantum physics theory. Many are

aware that the Laue–Friedrich–Knipping experiment killed

two birds with one stone.

An X-ray interference pattern, resulting from scattering by

crystalline ZnS (Friedrich et al., 1913), was strong evidence

that X-rays could exhibit wave-like behaviour and, concur-

rently, confirmed that crystals are indeed periodic arrange-

ments of atoms. After the Braggs had demonstrated the

usefulness of X-ray diffraction for determining a crystal’s

atomic structure (Bragg, 1913), Debye was among the first to

state that, with such a new technique, ‘the experimental

investigation of the scattered radiation, especially with light

atoms, seems [ . . . ] of increased interest, as it should then be

possible to experimentally determine the specific arrangement

of electrons in the atom. Such an investigation therefore has

the significance of an ultramicroscopy of the interior of the

atom’ (Debye, 1915). Going further, Compton could not resist

hoping for ‘more definite information concerning the distri-

bution of the electrons in the atoms . . . " (Compton, 1915). At

that time, Schrödinger was still on the war front and had not

yet invented his ‘�-function’.

Thus, even if ‘distribution’ could not yet be associated with

‘probability density’ [Born’s probabilistic interpretation only

appeared in 1926 (Wheeler & Zurek, 1983)], in the same issue

of Nature, W. H. Bragg replied that the density could be

‘analysed by Fourier’s series’. Once the basic formalism had

been put forward by Heisenberg and Schrödinger in 1925, it

was almost a natural consequence to read the 25-year-old L.

Pauling stating in a letter, ‘I think it is very interesting that one

can see the �-function of Schrödinger’s wave mechanics by

means of the X-ray study of crystals. This work should be

continued experimentally; I believe that much information

regarding the nature of the chemical bond will result from it’

(Pauling, 1926). Although it turns out now that Pauling was

overly optimistic, there is no doubt that X-ray diffraction

(XRD) was identified very early as an indispensable tool for

studying the quantum behaviour of electrons in crystals. The

electron distribution was obviously a major concern, but still

restricted to the position component of phase space.

Formally speaking, the connection to the density matrix

problem is straightforward. Whatever the projectiles

employed, photons, neutrons or electrons, diffraction is an

elastic coherent process. Therefore, if the target is periodic,

every time the Bragg condition is fulfilled we can hope to have

access to the Fourier transform of some function of the

distribution density of the scatterers. Since electron behaviour

is our main concern, one can consider X-ray photons as the

most pertinent probes as they give access to the X-ray struc-

ture factors (XRSFs) FXRðGÞ, thereby to a partial repre-

sentation of the 1-RDM, i.e. its diagonal elements

� ð1Þðr; r0 ¼ rÞ ¼ h�ðrÞi (14), or a projection of the 1-Wigner

Wð1Þðr; pÞ (6a):

FXRðGÞ ¼

Z

h�ðrÞi expðiG � rÞ dr ð15aÞ

¼

Z

� ð1Þðr; rÞ expðiG � rÞ dr ð15bÞ

¼

Z

Wð1Þðr; pÞ dp expðiG � rÞ dr; ð15cÞ

where G is the scattering vector.

When electron probes are used, the structure factors are the

Fourier transform of the electrostatic potential (Spence, 1993;

Ogata et al., 2008). When polarized neutrons are employed,

the key quantity is a flipping ratio (Gillon & Becker, 2012),

which eventually yields the Fourier transform of the spin

magnetism density distribution, created by the unpaired

electrons mðrÞ ¼ �"ðrÞ � �#ðrÞ.

Given its paramount impact on our understanding of the

chemical bonding mechanism, reconstruction of the one-

electron density distribution �ðrÞ from a limited set of XRSFs

has become a prominent task at the very heart of Quantum

Crystallography (Genoni et al., 2018; Macchi, 2020; Macchi,

2022). There was little success in this respect until the Hansen–

Coppens model (Hansen & Coppens, 1978) was put forward

and rapidly adopted by the community (Gatti & Macchi,

2012). Thanks to their pseudo-atomic multipolar model, an

unprecedented level of accuracy for experimental �ðrÞ is now

possible. The Hansen–Coppens model has also been adapted,

with similar success, to the reconstruction of spin magnetic

density from polarized neutron diffraction (PND) (Gillon &

Becker, 2012; Brown et al., 1979). Furthermore, combining

both XRD and PND information turned out to be possible

and allowed the reconstruction of the spin-resolved position-

space electron distribution in ferromagnetic compounds

(Deutsch et al., 2014; Voufack et al., 2019).
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3.2. A momentum representation of electrons by Compton

scattering

A. H. Compton’s 1923 experiment was another milestone in

the construction of quantum mechanics (Compton, 1923). Just

like X-ray diffraction (momentarily) settled the dispute

between W. H. Bragg and C. G. Barkla (Stuewer, 1971),

demonstrating the electromagnetic wave nature of X-rays,

Compton’s results showed that X-rays could also behave as

particles (Compton, 1925). The wavelength shift observed

after X-rays had been scattered from a graphite sample, now

called the Compton shift, was clear evidence that some kind of

a photon–electron mechanical collision was involved. Never-

theless, we owe to J. DuMond the fact that, today, Compton

scattering can be employed to better understand electron

dynamics. Building upon the first elements of a theory

proposed by de Broglie (de Broglie, 1926), and an innovative

experimental setup, DuMond published a series of seminal

papers interpreting the breadth of the shifted peak (hereafter

denominated ‘Compton profile’) in terms of the electron

momentum-space distribution (DuMond, 1928; DuMond,

1933). Amongst the reported experimental results was the

early evidence that the electron gas is better described by

Fermi’s statistics than the classical Boltzmann picture.

Compton scattering of X-ray photons is an inelastic inco-

herent process. As such, it is a radically different interaction

mechanism from X-ray diffraction (Schulke, 2007). It has been

shown that, in the limit of large energy and momentum

transfer between the incoming photon and the electron, the

signal is simply proportional to the so-called directional

Compton profile Jðq; uÞ (DCP) defined by

Jðq; uÞ ¼

Z

he�ðpÞi�ðp � u � qÞ dp ð16aÞ

¼
1

2�h-

Z

� ð1Þðr; r þ tuÞ expð� iqt=h- Þ dt dr ð16bÞ

¼

Z

Wð1Þðr; pÞ�ðp � u � qÞ dr dp; ð16cÞ

where u is the unit vector pointing along the scattering vector

and e�ðpÞ is still the one-electron probability density distribu-

tion in momentum space. It is under this assumption, known as

the impulse approximation (Platzman & Tzoar, 1965), that a

Compton scattering spectrum can be associated with e�ðpÞ in

such a straightforward manner (Cooper et al., 2004). Expres-

sions (16a) and (16c) clearly illustrate that a Compton spec-

trum measures the electrons’ marginal probability density

distribution along the scattering vector. It is thus a projection

of the momentum-space electron density onto a particular

direction given by u. As such, expressions (16) are similar to

the Radon transform encountered in many imaging techni-

ques. Obtaining e�ðpÞ from a limited number of DCPs asso-

ciated with different u is still a challenging problem (Hansen,

1980; Dobrzyński & Holas, 1996; Gillet et al., 1999; Kontrym-

Sznajd & Samsel-Czekała, 2000).

R. Weiss (Weiss, 1969) and M. Cooper (Cooper et al., 1965)

pioneered the quantitative studies in momentum space. As

early as 1969, they expressed that, as an incoherent process

with large energy transfer, Compton scattering differs signifi-

cantly from X-ray diffraction by two major aspects worth

mentioning. The technique is only moderately affected by the

crystal quality and only insofar as it changes the direction of

chemical bonds from one site to another or significantly

modifies the electron velocity distribution compared with the

perfect crystal. Additionally, DCPs are barely perturbed by

moderate temperature changes in the system (Matsuda et al.,

2020).

The downside of Compton measurements is that

momentum-space distribution interpretations are not as direct

as in position space because atomic contributions cannot be

easily separated. Consequently, comparing Compton profiles

with ab initio computations remains the most frequent prac-

tice. Furthermore, the general shape of directional Compton

profiles is usually much less informative than Compton

anisotropies, which are the differences between two directions

in the Compton spectra or between each direction and the

spectrum obtained from a reference powder sample. Compton

anisotropies are widely accepted as the best way to remove

less interesting core-electron contributions and most

systematic errors. Two exceptions, where direct information is

made accessible, are worth mentioning. With the development

of high-resolution spectrometers on synchrotron sources, the

shape of the Fermi surface in several metals became a natural

outcome of Compton scattering measurements (Sakurai et al.,

1995; Hämäläinen et al., 1996; Itou et al., 1998) since, for ideal

metals, the Compton profile takes the shape of an inverse

parabola, touching the horizontal axis at the Fermi momentum

in the chosen direction (Hämäläinen et al., 2000). High-reso-

lution Compton scattering has thereby played an important

role in Fermiology (Bansil & Kaprzyk, 1997). Since electron

dynamics observed by Compton scattering are moderately

affected by crystal quality, atomic substitution effects can also

be envisaged. The subtraction of DCPs between crystals of

slightly different stoichiometry has thus paved the way for

momentum-space orbital imaging. A notable example is the

doped hole imaging in a high-Tc superconductor reported by

Sakurai et al. (2011). Similar momentum information, with

better core-valence discrimination, can be obtained from

positron-annihilation spectroscopy, although the necessity to

account for the positron wavefunction brings the data treat-

ment to another level of complexity (Itoh et al., 1982; Schulke,

2007). Finally, much like neutron diffraction, retaining only

the unpaired electron’s contribution becomes possible if

circularly polarized X-ray photons are used. Thereby, one also

has access to the spin-magnetic density distribution of elec-

trons in momentum space, emðpÞ ¼ e�"ðpÞ � e�#ðpÞ. A review is

given by Cooper et al. (2004), and a comparison between

position and momentum representations for unpaired elec-

trons can be found in Yan et al. (2017).

4. One-electron density matrices from experiments

Although a term invented by J. Karle (Massa, 2017), Quantum

Crystallography (QCr) (Grabowsky et al., 2017; Genoni et al.,

2018; Genoni & Macchi, 2020; Macchi, 2020; Macchi, 2022)
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was born with the pioneering works of pure-state 1-RDM

reconstruction conducted by Clinton and coworkers (Clinton

et al., 1969a; Clinton et al., 1969c). The same year, without

explicitly seeking for a possible 1-RDM, Stewart (1969a) also

proposed a similar refinement of a charge–bond-order matrix

from X-ray diffraction data.

It took almost forty years for QCr to become the umbrella

term we use today. It now gathers research on electron charge

or spin densities in position or momentum spaces, using X-ray,

neutron or electron scattering techniques and relevant ab

initio computational approaches. The term was rediscovered

after Jayatilaka’s method (Jayatilaka, 1998), known as the

X-ray restrained wavefunction (XRW), was published. It

became even more broadly used when the combination of

XRW with Hirshfeld atom refinement (Jayatilaka & Dittrich,

2008; Capelli et al., 2014) became popular (Genoni & Macchi,

2020; Genoni, 2024).

An essential feature needs to be exposed at this stage.

Experimental determination of a 1-RDM turns out to be

significantly more challenging than position-space charge

density. While any charge density model fitted on experi-

mental data is physically acceptable as long as it accounts for

all electrons in the system (i.e.
R
�ðrÞ dr ¼ N), it was observed

by Coleman (Coleman, 1963; Erdahl & Smith, 1987) that, if no

particular precaution was taken, a model reduced density

matrix is likely to yield unrealistic electronic energy values. It

thus became a matter of utmost interest to determine the

criteria for discriminating physically acceptable 1-RDMs.

Coleman found the limited number of conditions under which

a possible 1-RDM can be related to a pure-state wavefunction,

or a statistical mixture of pure-state wavefunctions, of the N-

electron assembly. These are called the N-representability

conditions (Coleman, 1961; Coleman, 1963). In the 1-RDM

case, there are still no practical ways of formulating the

constraints for systems of realistic size (more than ten orbitals)

if we restrict the electrons to be in a pure state (Altunbulak &

Klyachko, 2008) For an ensemble of states, the N-represent-

ability constraints are more easily expressed as

Tr½b� ð1Þ� ¼

Z

� ð1Þðr; r0 ¼ rÞ dr ¼ N; ð17aÞ

b� ð1Þ � 0; ð17bÞ

b1 � b� ð1Þ � 0; ð17cÞ

where � 0 means that all the eigenvalues are non-negative.

Then equation (17) amounts to retaining only the 1-RDMs

that account for all electrons (17a) but also with eigenvalues

between 0 and 1 [(17b) and (17c), respectively]. Conditions

(17) also ensure that the 1-Wigner obtained from such a 1-

RDM is physically acceptable.

4.1. Pure states from X-ray diffraction

As previously mentioned, the crystallography community

initiated the quest for an experimental electron density matrix

determination. The main reason was that X-ray diffraction

data were considered the best information source available for

this purpose. However, X-ray structure factors give limited

access to the 1-RDM, only through its (spin-traced) diagonal

elements in position space. Namely, re-examining (15b),

FXRðGÞ ¼

Z

� ð1Þðr; r0 ¼ rÞ expðiG � rÞ dr: ð18Þ

With such a strategy, no experimental information is exploited

to determine the off-diagonal part of the matrix (i.e. when

r0 6¼ r). Moreover, as explained by Aleksandrov and cowor-

kers (Aleksandrov et al., 1989), there are an infinite number of

1-RDMs corresponding to a given density (Gilbert, 1975;

Harriman, 1990; Harriman, 1992) and an unconstrained 1-

Wigner may reveal to be pertinent only in the position portion

of phase space.

A powerful strategy, inspired by McWeeny’s purification

scheme (McWeeny, 1960), was therefore developed by Clinton

et al. (Clinton et al., 1969b; Clinton & Massa, 1972). The

procedure is generally to focus on the quest for a population

matrixbP, which is the discrete representation of the 1-RDM in

a given basis set of functions f�jðrÞg such that the 1-RDM can

be written as

� ð1Þðr; r0Þ �
X

i;j

Pi;j�
�
i ðr
0Þ�jðrÞ: ð19Þ

This can be seen as an approximate reformulation of (14)

when the wavefunctions are expressed in terms of a limited set

of orbitals.

The idempotent 1-RDM, also called the Fock–Dirac density

matrix (FDRDM), must obey the Clinton equations, which

impose asymptotic idempotency to the 1-RDM and the best fit

against the chosen X-ray structure factors. The idempotency

condition is defined as the mathematical projector property
b� ð1Þb� ð1Þ ¼ b� ð1Þ. The N-representability conditions are auto-

matically fulfilled since the eigenvalues of the resulting

idempotent 1-RDM are necessarily 0 or 1. However, this very

strict constraint forbids access to non-pure quantum states.

Furthermore, it limits the model in its capacity to describe

correlation effects, beyond those induced by Pauli’s principle

(Fermi correlation), since it becomes equivalent to imposing a

single-determinant N-electron wavefunction (Schmider et al.,

1990). Nevertheless, the Clinton equation approach was

successfully tested not only for ‘simple’ systems (Massa et al.,

1985) but also molecular crystals (Howard et al., 1994; Huang

et al., 1999). A very interesting alternative was put forward by

Snyder & Stevens (1999), who conducted an idempotent-

constrained density matrix refinement on experimental X-ray

structure factors on a molecular compound without resorting

to Clinton’s equations. Beyond their analysis of the resulting

deformation density, the point worth noting is their compar-

ison of the FDRDM-derived Hartree–Fock energy with the ab

initio one. However, no explicit results for the kinetic

component were given, leaving doubts about the detailed

nature of the non-diagonal part. In a similar spirit of deter-

mining the FDRDM, Aleksandrov et al. first developed an

alternative method for larger molecules and, more impor-

tantly, took a linear combination of atomic orbitals formalism

extending the previous isolated-molecule model paradigm to
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other systems (Aleksandrov et al., 1989). This paper is

important because, to our best knowledge, it is the first work

on the FDRDM with an explicit comparison of resulting

directional Compton profiles with experimental data (for

diamond and silicon). It is, therefore, a unique example of

assessment of the pure-state 1-RDM model by a clear exam-

ination beyond its diagonal elements.

Jayatilaka’s X-ray restrained wavefunction (XRW)

approach is an even more directed alternative to that

presented by Clinton, Massa et al. Instead of using McWeeny’s

purification scheme simultaneously with the XRSF fitting

condition, this strategy developed from the original idea put

forward by Henderson & Zimmerman (1976) and aims at

minimizing the total energy of a trial N-electron wavefunction

model in the usual variational manner (generally expressed as

a single determinant) while enforcing the best possible

reproduction of the XRSFs. The method converges towards an

admissible N-electron wavefunction more efficiently, giving

access to an idempotent 1-RDM. Thus, it can be seen as

imposing a specific environment (using a new, data-condi-

tioned, effective potential included in the Hartree–Fock or

Kohn–Sham equations), represented by the information in the

experimental XRSFs. Today, the method has gathered a

significant community of users, mostly because of its versatility

and, more specifically, its efficacy in predicting properties in

important molecular compounds.

Given the importance of these methods for retrieving an

experimental 1-RDM, one can only regret that no graphical

representation of such an idempotent experimental 1-RDM

has ever been published and could be compared with theo-

retical results at different levels of quantum chemistry

computation. It can be assumed that because of the significant

role played by the self-consistent field component, upon which

X-ray restraint is a mere perturbation, the resulting pure-state

1-RDM should be very good quality.

Since one of our concerns in this article is to study the

possibility of exploring the phase-space behaviour of elec-

trons, it should be noted that the connections between the

1-RDM work described in this section with momentum-space

properties are very sparse. To our knowledge, kinetic energy,

which is proportional to the second moment of momentum-

space density, has been briefly mentioned on only a few

occasions. The first was by Massa et al. (1985), when they

determined a 1-RDM for beryllium metal from fewer than 60

structure factors (Larsen & Hansen, 1984). These are the same

data exploited in Jayatilaka’s 1998 seminal paper. As

previously mentioned, more detailed momentum-space results

were given in 1989 by Aleksandrov et al. (1989), after they

obtained an idempotent 1-RDM for diamond and silicon.

While the general behaviour of a unique directional Compton

profile was evidence of a global qualitative agreement, the

remaining discrepancies at low momentum indicate that the

most delocalized chemical features were not fully described.

Compton profile anisotropies would probably have been more

informative in distinguishing the isotropic core-electron from

the useful valence-electron contributions.

4.2. Pure states, statistical mixtures and combination of

scattering methods

Since the only information used by the previous methods

originates from X-ray diffraction structure factors, the difficult

challenge is to determine a matrix while only its diagonal

elements are (possibly) available. From an equivalent but

different point of view, the lack of experimental input on the

momentum distribution precludes reliable access to the 1-

Wigner. To our knowledge, this is why no attempts to explore

the quantum behaviour of crystal electrons in phase space

from an experimental perspective have been reported yet.

This lack of information also explains why the 1-RDM model

needs to be heavily constrained at the price of imposing

idempotency.

Schmider et al. (1990) observed that the momentum-space

electron density distribution is directly connected to the

density matrix’s off-diagonal elements. More precisely, direc-

tional Compton profiles as defined in equation (16) can easily

be related to the 1-RDM since, for the scattering vector

direction u, the DCP is given by (16b). Equivalently, one could

consider the auto-correlation function Bðt; uÞ, also named the

reciprocal form factor, of which the inverse Fourier transform

is the DCP Jðq; uÞ:

Jðq; uÞ ¼
1

2�h-

Z

Bðt; uÞ expð� iqt=h- Þ dt; ð20aÞ

Bðt; uÞ ¼

Z

� ð1Þðr; r þ tuÞ dr: ð20bÞ

The reciprocal form factor has been particularly useful as an

intermediate quantity for momentum-space density recon-

struction from a set of DCPs (Hansen, 1980; Gillet et al., 1999).

Bðt; uÞ was first considered (Calais, 1981) for chemical bond

characterization before Bader’s topological method was

broadly adopted.

A closer examination of (16b) and (18) can help to under-

stand how information from a large set of DCPs is a precious

supplement to X-ray diffraction for 1-RDM experimental

determination.

Reports of direct wavefunction, 1-RDM or 1-Wigner

extraction from solely momentum-space-oriented experi-

ments are sparse. A very early attempt was published by

Pecora (1986), who modified Clinton’s method and explained

how it could be employed to exploit positron-annihilation-

derived momentum density data better. They first demon-

strated that such momentum-space information could retrieve

minute chemical details, which usually go undetected by other

methods. This triggered a series of works in which momentum

space and Compton data were precious experimental infor-

mation sources. Simple wavefunction models were refined

from a large set of DCPs for LiH (Gillet et al., 1995) or MgO

(Gillet et al., 2001). Perhaps even more relevant to our subject

are the 1-RDM reconstructions for atomic systems reported

by Schmider (Schmider & Smith, 1993). The latter group

initiated a series of studies where several strategies were

considered to obtain a non-necessarily idempotent 1-RDM
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from a combination of X-ray scattering data, mostly on atomic

systems, to push the description further than the single-

determinant model (Schmider et al., 1990). While no graphical

illustration of the total 1-RDM thus obtained was offered, the

final results strongly advocated combining Compton and

diffraction data to reach the most accurate picture of electron

behaviour in these atomic systems. The question of tackling

the delicate problem of rendering a thorough phase-space

picture of electrons in a real molecular (or crystalline) system

was still to be solved.

5. Combining data for a phase-space representation of

chemical bonds

As explained in the previous sections, the quest for an

experimental 1-RDM is not a new topic and has accompanied

the development of QCr since the late 1960s. Nevertheless, for

the following five decades, the difficulties or successes in

obtaining satisfying results were seldom judged by observing

the graphical representation of the 1-RDM itself. Noticeable

exceptions are those given in Schmider et al. (1992) and

Schmider et al. (1993) but did not attract the attention they

deserved. Even in the QCr community, few knew what a

density matrix looked like. Furthermore, since the phase space

was globally ignored, except for the examples published by

Springborg (Dahl & Springborg, 1982; Springborg, 1983a) in

the atomic case and Springborg (1983b) in the molecular LiH

case, the 1-Wigner representations are virtually absent from

the QCr literature. In the remaining part of this article,

emphasis will be placed on the discrepancies, and sometimes

agreements, that the reconstructed 1-RDM and 1-Wigner can

have with ab initio results.

Starting with a paper reinstating the importance of

combining elastic and inelastic scattering data (Gillet, 2007),

our group has been active during the last two decades in

exploring different methods for recovering the 1-RDM in

molecules and crystals from the above-mentioned experi-

ments. Two different paths have been considered. What is the

best strategy for combining data, and what is the most perti-

nent 1-RDM model? In line with most previously reported

works, ensemble N-representability is the first necessary

condition that any viable 1-RDM model must fulfil. From the

start, it was decided not to consider the idempotency option,

which had been extensively explored since McWeeny and

Clinton’s works and would be an obstacle to the thorough

account of electron correlation effects. As a result, allowing

the 1-RDM eigenvalues to take intermediate values between 0

and 1 can thus be made possible in at least two ways. The

easiest is probably to compute, by an ab initio method for a

given basis set, the 1-RDM and its natural orbitals (i.e. its

eigenfunctions), then refine the occupation numbers (i.e. its

eigenvalues) to find the best fit against experimental data. A

more challenging alternative is still choosing a basis set and

then refining the full population matrix subject to N-repre-

sentability constraints. For simplicity’s sake, we now assume a

set of orthogonal basis functions. This basis set is constructed

from an extensive set of atom-centred Cartesian Gaussian

functions. Thus we will denote the population matrix in the

orthogonal basis as P?. Only spin-paired electron systems are

considered here, but an extension to spin-resolved experi-

ments is straightforward. The global formalism can be

summarized as the following optimization procedure, starting

from expression (19) then finding the elements P?i;j of matrix

P? that minimize the statistical agreement function (�2)

between experiment and model prediction:

argminP?

X

k

TrðOkP?Þ � O
exp
k

�k

� �2

; ð21Þ

where k sums over all experimental data and Ok are the

observable operator matrices corresponding to experimental

data values O
exp
k with standard deviation �k. Assuming only

spin-paired electrons, optimization (21) is subject to

P? � 0; ð22aÞ

2I � P? � 0; ð22bÞ

TrðP?Þ ¼ N; ð22cÞ

where (22a) and (22b) constrain the eigenvalues to be found in

the ½0; 2� interval, while (22c) fixes the sum of occupation

numbers to match the total number of electrons in the system.

In keeping with the preceding sections, only XRSFs and

DCP experimental data have been used throughout these

works. Therefore, one can represent the matrix elements of Ok

as either

ðFqÞij ¼

Z

��i ðrÞ�jðrÞ expð� iq � rÞ dr ð23Þ

or

ðJqÞij ¼
1

2�h-

Z

��i ðrÞ�jðr þ tuÞ expð� iqtÞ dt dr: ð24Þ

To account for possible thermal agitation, each XRSF matrix

element can be modified by the adjunction of a Debye–Waller

(DW) factor of the form expð� q �bBa � qÞ, where a refers to the

nucleus centre to which both basis functions are attached.

When the basis functions do not share the same nucleus

centre, different schemes can be used to average the Debye–

Waller factors of two nuclei (Stewart, 1969; Coppens et al.,

1971; Tanaka, 1988). For example, in the Coppens model the

average is taken as ½expð� q �bBa � qÞ þ expð� q �bBb � qÞ�=2. In

the last reported work (Yu & Gillet, 2024), only single-centre

DW terms are used to avoid unfair similarity with the

computational method used to generate the reference data.

The model that determines all elements of the population

matrix is the most flexible. It is also the most difficult to

constrain N-representability beyond idempotency [as in

conditions (22)]. Fortunately, semi-definite programming

methods and packages have become available, and preli-

minary tests on toy systems have demonstrated their potential

(Mazziotti, 2007; De Bruyne & Gillet, 2020). The compatibility

of a convex optimization approach with the highly non-linear

determination of the thermal agitation contribution was

further tested with success in Launay & Gillet (2021).

Therefore, after having experience of the occupation number
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refinement in previous works (Gueddida et al., 2018a; Gued-

dida et al., 2018b), and confirming the difficulty in providing

the necessary flexibility, it was decided to give pre-eminence to

the P? refinement.

The latest compound under scrutiny is urea, [CO(NH2)2],

shown in Fig. 1(a). Details of this work have been reported by

Yu & Gillet (2024). Despite the lack of a centre of symmetry,

the crystal has been the subject of several high-resolution

X-ray diffraction measurements (Zavodnik et al., 1999;

Birkedal et al., 2004) and some of the very rare Compton

measurements on molecular crystals (Shukla et al., 2001). The

latter exhibit weak Compton anisotropy, which is expected to

become another difficulty, as mentioned in Section 3.2.

First, both periodic and molecular ab initio calculations for

urea are carried out with density functional theory on a

B3LYP/POB-DZVP (Peintinger et al., 2013) level of theory

using, respectively, the Crystal code (Dovesi et al., 2014) and

Gaussian 16 (Frisch et al., 2016). From the periodic calculation,

and its resulting theoretical 1-RDM, 3627 XRSFs at 0 K and

52 K, and DCPs along eight directions are computed to serve

as reference data for the refinement. The 52 K Bragg and

Compton data are then corrupted with statistical noise. As a

common practice for position- and momentum-space density

reconstructions, the core-electron contribution was pre-

calculated by a standard ab initio procedure and kept frozen

throughout the 1-RDM modelling process. All symmetry

invariances of the urea molecule were also imposed to

construct the single-molecule 1-RDM model. Translation and

rotational operations were applied to fully recover the crystal-

phase properties. However, it must be made clear that the

model only accounts for a single molecule in its environment

and does not involve any Bloch function or intermolecular

contribution.

To assess the quality of the refinement from the 1-RDM

perspective, there is no alternative but to use artificial data

computed from a known ab initio 1-RDM. This procedure is

particularly useful for evaluating the ability of the model to

gather information from both sets of data, XRSFs and DCPs.

Fig. 2(a) displays both the periodic and molecular ab initio 1-

RDM (Dovesi et al., 2014). Fig. 2(b) shows the model 1-RDM

with a 6-31G(p) basis set refined from a set of 3627 XRSFs

when 8 DCPs are included (upper left triangle) or left out

(lower right triangle). More specifically, the XRSF data are at

0 K and noise-free when the DCPs are left out (lower right) to

highlight the impact of Compton data alone. When all data are

used, both the XRSFs and DCPs are corrupted with noise and

the XRSFs are simulated at 52 K. More detailed analysis

regarding noise and temperature effects can be found in Yu &

Gillet (2024).

At this stage, knowing how to interpret such pictures may

be useful. Firstly, the density matrix for a 3D system is a

function from R6 to C (or to R if only real basis functions are

chosen to describe stationary states). Consequently, the

graphical representation on a 2D page necessitates some

drastic reduction, either by projection or a cut. This is some-

what arbitrary and depends on what features are found to be

the most relevant. Here, we opted for a cut and followed a

path constructed from a list of segments connecting the

successive nuclei positions O–C–N–H [Fig. 1(a)]. With this

choice, one can only access �-electrons but pass through each

bond critical point (Bader, 1990).

The representation thus gives the values of a continuous

matrix � ð1Þðt; t0Þ where t and t0 are curvilinear coordinates

along the chosen path. When t ¼ t0 the value corresponds to

that taken by the electron density in the molecule at this

specific position on the path. Note that this matrix repre-

sentation is flipped upside-down compared with the usual

matrix notation. The contours on the diagonal (thus from

bottom left to top right) are positive, just as a probability

density should be. A detailed description of specific regions is

proposed by Sandoval-Lira et al. (2016). We can mention here

that off-diagonal parts describe the relationship between

distant regions and how it affects the behaviour of the mean

electron as a representative of the system’s global N-electron
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Figure 1
(a) The dashed line gives the path through the urea molecule. It is the one-dimensional position space used to represent the 1-RDM or the 1-Wigner, with
t and t0 the curvilinear coordinates. (b) Compton anisotropies (in % of an electron) comparing the DCPs along the 100 and the 110 directions in the urea
crystal. Empty circles: 3D ab initio calculations. Empty triangles: artificial data [same as before but corrupted with noise]. Connected black dots: model
refined from ideal data (no noise, DCPs and XRSFs at 0 K). Connected filled red triangles: model refined from artificial data (with noise, DCPs at 0 K
and XRSFs at 52 K).



wavefunction(s). Therefore, it is an accurate describer of long-

range interactions at work in the chemical bonding

mechanism.

To better test the stability of the refinement process, nuclei

agitation at moderate temperature can be included in the

artificial data (Erba et al., 2013) together with random noise

[see Yu & Gillet (2024) for details of the noise generation]. In

the urea case, it was found that Compton anisotropies tend to

be buried under any realistic noise level [Fig. 1(b)]. Conse-

quently, the refinement becomes more challenging. This is

seen in Fig. 2(b) where second-neighbour interactions, such as

between O and N, are (moderately) deteriorated. But changes

can also be observed in regions corresponding to the inter-

action between both sides of the C or N nuclei. Additionally,

the off-diagonal part is closely connected to the momentum

density (16a) and, as such, determines T, the kinetic energy of

the system. It is thus instructive to estimate the resulting virial

ratio � V=2T after the refinements shown in Fig. 2. If the two-

electron potential energy V is computed from the 2-RDM

expression ansatz � ð2Þðr01; r
0
2; r1; r2Þ = � ð1Þðr1; r

0
1Þ�
ð1Þðr02; r2Þ

� � ð1Þðr01; r2Þ�
ð1Þðr02; r1Þ, it is found that the estimated virial

ratio from a refinement using both data sets only deviates from

unity by 0.4% (against 6.6% when the 8 DCPs are omitted).

Following expression (4), the 1-Wigner can be deduced

from the refined 1-RDM. The results are reported in Fig. 3.

The expected ab initio 1-Wigner along the chosen path is

displayed in the upper portion. Not surprisingly, the long

vertical blue stripes confirm that the electrons that are the

closest to the nuclei (O–C–N) are also those with the possible

highest momentum values along the path. This can be related

to the Heisenberg position–momentum inequalities. But

another significant manifestation of quantum behaviour is the
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Figure 2
(a) Theoretical 1-RDM computed along the path given in Fig. 1. The upper portion of the matrix gives the isolated-molecule case. The lower portion
corresponds to the periodic ab initio calculation used for generating the artificial data. (b) The upper portion gives the 1-RDM model refined using only
0 K XRSFs. The lower portion shows the same model but refined using a combination of noisy DCPs and XRSFs (at 52 K). Contours (positive solid blue)
are every �0.01 � 2n e Å� 3, with n 2 N.

Figure 3
The 1-Wigner along the path given in Fig. 1(a). The vertical axis indicates the values of the momentum pk (in a.u.) tangent to the path at the current
curvilinear position t. In both panels, the upper half is the ab initio 1-Wigner for the isolated molecule. The lower half in (a) is the refined 1-Wigner model
from XRSFs at 0 K and without DCP data [same refinement as Fig. 2(b) upper triangle]. The lower half of (b) is the same refined model but with a
combination of artificial data [same refinement as Fig. 2(b) lower triangle]. Contours (positive solid blue) are every�2n � 10� 7 e (a.u. Å)� 3, with n 2 N.



negative (red-dashed) more diffuse features. Their existence is

a consequence of interference between atomic contributions

and disqualifies the 1-Wigner as a position–momentum joint

probability distribution while labelling its quantum origin. The

impact of Compton profiles is evident when comparing the

1-Wigner function reconstructed using all available artificial

data with that obtained using only artificial structure factors.

In the high-momentum regime (p >� 2 a.u.), the lower part of

Fig. 3(b) exhibits better overall similarity with the molecular

DFT calculations shown in the upper part, even if the data are

affected by noise and thermal smearing. This contrasts with

the reconstruction using only structure factors and displayed

in the lower part of Fig. 3(a). In the low-momentum regime (p
<
� 2 a.u.), the absence of Compton profiles leads to the

omission of specific features in the reconstructed 1-Wigner

function. For instance, the sign change between the carbon

and oxygen atoms, absent in the lower part of Fig. 3(a), is

successfully recovered in Fig. 3(b). Another striking difference

occurs around the hydrogen atom. The reconstruction without

Compton profiles fails to capture features behind the final H

atom, as shown in Fig. 3(a). This is due to the limited infor-

mation that can be extracted from the structure factors for this

region of space. In contrast, Fig. 3(b) demonstrates qualitative

agreement around the hydrogen atom when Compton profiles

and structure factors are jointly employed. These figures are

thus a clear demonstration that a combination of data related

to the projections of the 1-Wigner in position (via XRSFs) and

momentum (via DCPs) spaces opens up the gates of phase

space to a quantum representation of electrons in crystals.

6. Conclusion

More than a century after their key role in the emergence of

quantum physics, X-ray diffraction and Compton scattering

are still powerful techniques for providing access to the most

profound and fundamental electron behaviour in crystalline

systems. Such a combination of experimental methods, which

has become one of the pillars of quantum crystallography,

remains in the early phases of development. The success of the

model and strategy described in this paper supports the idea

that phase space, once pictured as the sole territory of classical

physics, could shortly become accessible for real systems as

complex as electrons in molecules and crystals.
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