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The study of magnetic structures from a crystallographic perspective remains a

niche field, largely confined to physical crystallography and microscopic

magnetism. Unlike general or superspace crystallography, magnetic structure

analysis lacks standardization, primarily due to the small research community

and the reliance on specialized experimental techniques like neutron diffraction.

However, emerging topics in condensed matter physics, such as topological

materials, multiferroics, and skyrmions, have heightened the importance of

understanding magnetic ordering. As a result, the analysis of magnetic neutron

scattering data is becoming increasingly relevant, requiring unified methodol-

ogies. Since 2011, the IUCr Commission on Magnetic Structures has been

working to improve the situation. This paper reviews the most commonly used

methods for describing magnetic structures and highlights the capabilities of the

FullProf Suite for analysing magnetic neutron diffraction data.

1. Introduction

In conventional crystallography, a highly effective way to

describe electron and nucleus density is through the concept

of atomicity. This approach simplifies the scattering density by

representing atoms as well defined entities, essentially mass

points or spheres, characterized by their chemical identity,

spatial positions within the unit cell, and displacement para-

meters that account for dynamic or static deviations from

equilibrium positions. The symmetry of periodic atomic

arrangements is well captured by the 230 space group types in

three dimensions (3D) (Bradley & Cracknell, 1972). However,

more intricate atomic structures may require descriptions that

extend beyond three dimensions, utilizing the superspace

approach, where atoms are represented as atomic surfaces

(Janssen & Janner, 2014). While incommensurate, composite,

and quasi-crystalline structures constitute only a small subset

of materials that can be described through conventional 3D

crystallography, their complexity requires higher-dimensional

analysis. The widespread success of crystallography is largely

attributed to the ability to visualize atoms directly, appearing

as small quasi-spherical spots in modern imaging techniques

such as electron microscopy, atomic force microscopy, and

tunnelling microscopy.

Magnetic crystallography is a specialized branch of crys-

tallography focused on describing and determining magneti-

zation density, or, in quantum mechanical terms, spin density,

in solids. The classical representations used to depict magnetic

scattering density are vectors, illustrated as arrows, which

define the elementary magnetic moments (dipoles) of atoms

with unpaired electrons. A magnetic structure refers to a
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specific, nearly static spatial arrangement of these magnetic

moments (solid phase), which forms below the ordering

temperature. Above this temperature, the system becomes

disordered and transitions into the paramagnetic (liquid)

state.

Magnetic structures are typically visualized as a set of

arrows representing non-null magnetic dipoles in the atoms,

with distinct magnitudes and orientations depending on the

structure. However, direct visualization of elementary

magnetic moments using a dedicated magnetic microscope

remains unattainable. Current magnetic imaging techniques

rely on detecting magnetic fields generated by atoms with

unpaired electrons, which is only effective for ferromagnets or

ferrimagnets at the mesoscopic scale. Unlike crystal structures,

many magnetic structures are non-commensurate, meaning

the periodicity of their magnetic moment orientations does

not align with the underlying crystal lattice. This results from

competing exchange interactions and anisotropy terms, often

leading to frustration in many compounds.

All our knowledge of magnetic structures stems from the

analysis and interpretation of magnetic neutron diffraction

patterns. General papers on the experimental determination

of magnetic structures and their mathematical description are

available in the literature (Rossat-Mignod, 1987; Brown, 1986;

Rodrı́guez-Carvajal & Bourée, 2012; Rodrı́guez-Carvajal &

Villain, 2019).

Two distinct approaches have traditionally been used to

describe the symmetry properties of commensurate magnetic

structures: magnetic space groups (MSG), also known as

Shubnikov groups (Opechowski & Guccione, 1965;

Opechowski, 1986; Litvin, 2001, 2013), and group repre-

sentation analysis (Bertaut, 1963, 1968, 1971, 1981; Izyumov &

Naish, 1979; Izyumov et al., 1979a, 1979b, 1979c, 1991;

Izyumov, 1980). As demonstrated in Rodriguez-Carvajal &

Perez-Mato (2024), these approaches are complementary, and

their combined application provides the most effective means

of analysing magnetic structures.

For incommensurate magnetic structures, representation

analysis (RA) can be applied in the same way as for

commensurate structures. However, the most comprehensive

approach involves combining RA with the principles of

superspace crystallography (Janssen & Janner, 2014). This

method incorporates the spin reversal operator, which is a

symmetry operator of the paramagnetic state, enabling the use

of magnetic superspace groups (MSSG) (Pérez-Mato et al.,

2012).

This paper focuses on the various approaches implemented

in the programs of the FullProf Suite and their evolution over

the past thirty years. The FullProf Suite has been developed by

the present authors and their collaborators since the early

1990s. The first published description of the features available

in FullProf for incommensurate magnetic structures was

provided by Rodrı́guez-Carvajal (1993). This paper also

introduced the MagSAN program, which was designed for the

determination of commensurate magnetic structures using

simulated annealing. MagSAN was later incorporated into the

FullProf program for general crystal and magnetic structures.

At the turn of the century, three additional programs, MODY,

SARAh and BasIreps (the latter included in the FullProf

Suite) (Sikora et al., 2004; Wills, 2000; Rodrı́guez-Carvajal,

1998), became available and were developed to assist in

determining magnetic structures. These programs employ the

RA method, popularized by Bertaut (1963, 1968), to generate

basis vectors of irreducible representations (irreps), and they

have become widespread and widely used by the condensed

matter physics and chemistry communities for the study of

magnetic structures.

The FullProf program was initially developed to meet the

needs of the first of the present authors and was later made

available to a wider community. As a result, it is not a black-

box tool that guides users through data analysis with a

predefined workflow. Instead, users have complete control

over the input model, provided they understand the rules

governing the input control file (hereafter referred to as the

PCR file). Consequently, the learning curve may be steeper

than for other software programs.

Over time, several features have been introduced to

enhance the program’s usability. In particular, the graphical

user interface (GUI) program EdPCR allows users to manage

most of the options in FullProf without directly editing the

PCR text file. This interface also supports a hybrid workflow,

where users can manually edit the PCR file within the GUI,

make adjustments by hand, and reload the modified file.

EdPCR will automatically detect any changes and prompt the

user to reload the file accordingly.

The FullProf Suite continues to evolve and is currently the

most widely used software package for the analysis of

magnetic structures from powder or single-crystal neutron

diffraction data. Two of the most significant developments in

FullProf over the past five years are the combined use of RA

and MSG for commensurate magnetic structures and the

capability to handle MSSGs.

In the following sections, we will explore the different

methods used to describe magnetic structures in the literature

and how they have been implemented in the FullProf

program. While we will primarily focus on the application of

the program to neutron powder diffraction (NPD), it is also

applicable to the analysis of integrated intensities obtained

from neutron single crystal diffraction (NSCD).

2. Earlier approach: basic description of commensurate

magnetic structures in the magnetic unit cell

In crystallography, independent atoms are described by their

chemical nature, their position within the unit cell, and a set of

symmetry operators, common to all atoms, that define one of

the 230 space group types. These operators take the form

{Rs|ts}, s = 1 . . . M, where M represents the general multiplicity

(number of coset representatives with respect to the transla-

tion group) of the space group, Rs is a proper or improper

rotation matrix and ts its associated primitive translation. The

symmetry operators generate the remaining atoms within

the unit cell, and this extends in three directions forming a

periodic structure.
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Although MSGs were not fully tabulated in the early stages

of their development, this approach closely resembled that of

conventional crystallography and was also adopted in certain

publications. An MSG contains operators of the form

{Rs, �s|ts}, s = 1 . . . M, where the symbol �s (called signature) is

equal to � 1 (indicating a primed operator) or +1, depending

on whether the time-reversal operation is associated or not

with the s operator. The action of these operators on atom

positions is identical to that of ordinary crystallographic

operators: fRs; �sjtsgr� = Rsr� þ ts ¼ r�s
.

The action of the operators on magnetic moments follows

the transformation: fRs; �sjtsgm� = �s detðRsÞRsm� = m�s
.

Ignoring symmetry (except the translational symmetry), a

complete list of all the atoms within the elementary unit cell,

along with their fractional coordinates, atomic displacement

parameters, and occupation probabilities, provides a full

description of the crystal structure. For the sake of simplicity,

thermal and occupancy parameters will be omitted in the

following discussion. This list of chemical composition and

coordinates is equivalent to a description in the space group

number 1: P1.

Symmetry is of great importance as it reduces the number of

free parameters that must be fitted from experimental data.

Determining all atomic coordinates when describing the

crystal structure in P1 is often challenging due to the limited

number of observations and the correlations between para-

meters during refinement.

Describing a magnetic structure in P1 means that, in addi-

tion to specifying atomic coordinates, it is necessary to list the

magnetic moments associated with each atom. It is important

to note that the magnetic unit cell of a commensurate struc-

ture is generally a multiple of the crystallographic cell or may

coincide with it. The components of the magnetic moments are

expressed in Bohr magnetons, relative to a basis formed by

unitary vectors along the conventional crystal basis U = (a/a,

b/b, c/c) = (e1, e2, e3). This straightforward method of

describing a magnetic structure, that we call the P1-approach,

was commonly used in early literature and represents a special

case of the approaches outlined below. The P1-approach was

used together with constraints in magnetic moments that were

deduced from the observed diffraction patterns and the

particular expressions of the magnetic structure factor. No

explicit reference to magnetic symmetry or RA is mentioned

in the P1-approach. Examples of earlier magnetic structure

determinations can be found in Corliss et al. (1956), Frazer

(1958) and Scatturin et al. (1961).

3. Concept of propagation vector(s) for describing

magnetic structures in the crystallographic unit cell:

incommensurate magnetic structures

In the early stages of magnetic structure studies using neutron

diffraction, it became evident that the positions of magnetic

reflections in diffraction patterns could not always be

described by a ‘magnetic unit cell’. This issue arose in the first

observation of an incommensurate magnetic structure in

MnAu2 [Herpin et al. (1959); see Rodrı́guez-Carvajal & Villain

(2019) for further details on this discovery]. A straightforward

mathematical formula was developed to describe the orien-

tation of magnetic moments in real space, and this was applied

to characterize the helical structure of the MnAu2 compound,

introducing the concept of the propagation vector. The

propagation vector concept is further generalized through the

use of a Fourier series to determine the magnetic moment at

any given point in the crystal:

ml� ¼
X

k

Sk� expð� 2�i kRlÞ: ð1Þ

This defines the magnetic moment of the atom numbered �

within the primitive unit cell, with its origin at the position of

the lattice vector Rl. The atomic position in the crystal given

by Rl� = Rl + r�. The k vectors are defined in reciprocal space

and are referred to as propagation vectors of the magnetic

structure (where harmonics are treated as distinct k vectors).

These vectors are confined to the first Brillouin zone (BZ), as

the addition of a reciprocal lattice vector H does not alter the

sum. Two propagation vectors are considered equivalent

(k�k0) if they differ by a reciprocal lattice vector. Any class of

magnetic structure can be represented by the Fourier series

(1).

Equation (1) may also be defined in a slightly different

manner, which is common in the literature, particularly in the

superspace approach. Instead of writing Rl in the argument of

the exponential function, one can express it as Rl� = Rl + r�:

ml� ¼
X

k

Tk� expð� 2�ikRl�Þ ¼
X

k

Tk� exp½� 2�ikðRlþr�Þ�:

ð2Þ

In this case, the Fourier coefficients, Tk� are related to Sk� by a

phase factor Sk�= Tk�exp(� 2�ikr�), which depends on the

atomic positions within the unit cell. In the following discus-

sion we will use the convention (1), as it offers certain

advantages for commensurate structures, while convention (2)

will be applied when working with magnetic superspace group

symmetry. The general expression for the Fourier coefficients

used in FullProf is given by

Sk� ¼
1

2
Rk� þ i Ik�

� �
exp � 2�i�k�

� �
: ð3Þ

The phase factor is not strictly necessary, but it proves useful

when constraints are applied to the components of Rk� and

Ik� (for instance if |R| = |I| and R?I). When using the super-

space approach for a single pair (k, � k) the convention (2) is

used and the Fourier coefficients Tk� are written as

Tk� ¼
1

2
Mcos

k� þ iMsin
k�

� �
: ð4Þ

The magnetic Bragg reflections are indexed by the diffraction

vectors h = H + k. Reflections where k 6¼ 0 are referred to as

satellite reflections, while those with h = H are known as

fundamental reflections. Under the convention (1), the Fourier

coefficients are identical to the magnetic moments when there

is a single term in the sum and k = 1
2
H.
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Within FullProf, it is possible to work directly with the

Fourier coefficients Sk� utilizing all magnetic atoms within the

unit cell, thereby extending the P1-approach to complex

incommensurate structures.

4. RA as implemented in BasIreps

The initial implementation of symmetry constraints in

FullProf used RA via the BasIreps program. The theoretical

concepts underpinning this program can be found in section 7

of Rodrı́guez-Carvajal & Bourée (2012). The BasIreps

program (Rodrı́guez-Carvajal, 1998) is capable of calculating

the star of the propagation vector and algorithmically gener-

ating the irreps (small irreps) of the propagation vector group

Gk (also known as the ‘little group’). The group Gk consists of

the operators in the space group G that leave the propagation

vector invariant (as defined in the previous section). BasIreps

employs a subroutine from the KAREP program (Hoves-

treydt et al., 1992) to compute the small irreps from which the

full representations of the space group G can be derived,

through the star of k, via the induction formula [see equation

30 in Rodrı́guez-Carvajal & Bourée (2012)]. In the simplest

case of a single pair (k, � k) of an incommensurate structure,

both arms of the star must be taken into account, and the

irreps will have at least dimension 2. The symmetry operators

present in the paramagnetic group transforming k into � k

must be incorporated into the list of relevant operators

(forming the extended little group Gk,� k); otherwise,

neglecting these symmetries would lead to an unnecessary

increase in the number of parameters required to describe the

magnetic structure. BasIreps can also directly read the irreps

of Gk,� k (or the full irreps of G, as detailed below) from the

database provided by Stokes et al. (2013). The basis vectors of

the irreps are related to the Fourier coefficients (3) by the

linear combination

Sk�s

X

n�s

Ck�
n�Sk�

n�ð�sÞ: ð5Þ

The index s enumerates the different atoms of the orbit of the

particular site �, obtained by applying the symmetry operators

{Rs | ts} of Gk (or Gk,� k) to the vector position of the first

representative of site �: r� = r�1. The vectors Sk�
n� correspond

to the atomic components of the basis vectors of the irrep � �
and are expressed in the unitary basis U of the paramagnetic

crystal structure. When the basis vectors are properly

normalized, the coefficients Ck�
n� have units of Bohr magnetons.

The index n ranges from 1 to n�, where n� represents the

number of times the irrep � � appears in the reducible magnetic

representation � mag. Additionally � ranges from 1 to dim(� �),
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Figure 1
Layout of the FullProf Suite toolbar and BasIreps illustrating the results of a calculation, corresponding to the full star (two arms) of the propagation
vector k = (1/2, 0, 1/2), located at the R-point in the BZ of Immm. The full irreps are 2D, and the generated basis vectors, along with their corresponding
coefficients for the content of the primitive cell of the paramagnetic space group Immm.1, are displayed on the right side of the figure. In this case, the
result corresponds to the MSG Cmma.10a (in UNI notation, BNS: Camma) for the irrep associated with the order parameter direction (a, � a). An atom in
a general position in Immm.10 is consequently split into two independent positions in Cmma.10a. The SYMM operators and Sk(s) values are referenced to
the basis of the paramagnetic group.



and these values can be computed using the BasIreps program.

If more than one irrep contributes to the overall magnetic

order, an additional summation over representations (�) must

be considered. For commensurate magnetic structures, the

coefficients must be real, whereas for cases where k lies within

the interior of the BZ, they may be complex.

As mentioned earlier, the standard function of BasIreps is

to calculate the representations and basis vectors of the little

group Gk. However, the current version of the program can

also access the database of complete representation (the full

star of k) of the space group G, using the database of physi-

cally irreducible representations provided by Stokes et al.

(2013). This allows the calculation of basis vectors using

projection operator formulas [see equation 48 of Rodrı́guez-

Carvajal & Bourée (2012)] without explicitly controlling the

direction of the order parameter. For irreps of dimension

higher than 1, this approach may yield more Ck�
n� coefficients

than strictly necessary, requiring the user to manually select

the order parameter. While this method can accommodate any

kind of magnetic structure, it may be cumbersome for users

unfamiliar with the formalism. An example of BasIreps in use

is illustrated in Fig. 1.
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Figure 2
Layout of the magnetic crystallographic calculator. This application operates by selecting a MSG, entering its symbol (UNI, BNS or OG) into the
designated field, and clicking on the Go! button. Once this is done, various calculations are performed by clicking the corresponding buttons, with results
displayed in the output information area. The output can then be copied and pasted into other files as needed.



The current version of BasIreps generates two files: one

containing the complete information (with a portion displayed

in Fig. 1), and another with formatted sections that can be

directly copied into the PCR file for data processing. The

functionality of BasIreps is similar to that of SARAh (Wills,

2025), although the latter features a more user-friendly

interface for integration with FullProf, making it more

suitable for beginners. Examples of BasIreps applications in

magnetic structure determination can be found in the publicly

available tutorials recently uploaded to the FullProf Suite

website, as referenced in the supporting information (SI). In

the SI document we have created three sections that will be

referred hereafter as SI-1, SI-2 and SI-3.

5. MSG utilities in the FullProf Suite

Information and calculations using MSGs can be found on the

Bilbao Crystallographic Server (BCS)

(https://www.cryst.ehu.es; Aroyo et al., 2006a, 2006b, 2011) and

on the ISOTROPY website (https://iso.byu.edu/iso/isotropy.

php; Stokes et al., 2023). Traditionally, two different notation

systems have been used in the literature: Opechowski–

Guccione (OG) (Opechowski & Guccione, 1965) and Belov–

Neronova–Smirnova (BNS) (Belov et al., 1957). Both systems

have their own advantages and limitations. To address this,

Campbell et al. (2022, 2024) have proposed unified symbols

(UNI), which integrate a modified BNS symbol in a BNS

setting while incorporating key information from the OG

symbol. The UNI system is intended to gradually replace both

BNS and OG notations for the description of commensurate

magnetic structures in their standard setting.

González-Platas et al. (2021) introduced another type of

symbol aimed at unambiguously defining the generators of the

MSG represented in the symbol. The Hall symbols are

constructed by applying a set of specific rules outlined in the

aforementioned reference. From these symbols, it is straight-

forward to deduce the explicit form of the matrix, signature,

and translation vectors of the generators. These symbols are

not intended to replace the BNS, OG, or UNI notations;

rather, they serve as a practical tool for generating the

complete set of operators of an MSG by parsing the symbol in

any kind of setting. The FullProf Suite provides two dedicated

applications for working with MSGs:

(1) Magnetic symmetry (GUI). Accessible via the toolbar of

the FullProf Suite under the Crystallographic

Calculator button and then selecting the button

Magnetic Symmetry. This application enables users to

explore MSGs, view special positions, list operators, generate

atomic orbits, change settings, etc. In Fig. 2 we can see few

windows showing different options.

(2) MHall (console program). This second application is a

command-line utility capable of generating an MSG in any
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Figure 3
Example of calculation with the console program MHall.
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setting. It computes the corresponding magnetic Hall symbol

from a list of generators. An example of its use is shown in

Fig. 3.

These tools provide a comprehensive framework for

handling MSGs within the FullProf Suite, facilitating the

analysis and refinement of commensurate magnetic structures.

6. Magnetic structure factors in FullProf

In conventional neutron powder and single-crystal diffraction

the incident beam is unpolarized, meaning that the inter-

ference terms in the scattering cross-section do not contribute.

The intensity of the Bragg reflection at h = H + k is simply the

sum of the magnetic and nuclear contributions.

Ih / NhN�h þM?h �M
�
?h ð6Þ

The nuclear contribution is represented by the complex

nuclear structure factor Nh, which is a scalar quantity.

The magnetic interaction vector M?h is defined in terms of

the vectorial complex magnetic structure factor as

M?h ¼ e�MðhÞ � e ¼ MðhÞ � e½e �MðhÞ�; ð7Þ

where e = h/h is a unit vector along the scattering vector h.

These expressions allow the magnetic contribution to be

treated as a separate phase, independent of the nuclear

contribution. This method is particularly useful when the

crystallographic structure of the paramagnetic state remains a

good approximation for the magnetically ordered state.

However, a complete treatment with MSG or MSSG can also

be performed within a single phase.

A detailed description of the PCR file (input control file) is

beyond the scope of this section, but in the SI we provide

comprehensive documentation on the relevant variables to be

used for the treatment of magnetic structures, as well as

complete examples. Here we provide a brief description of

these variables. A key parameter in the PCR file is Jbt, which

is a phase-dependent parameter that tells FullProf what type

of intensity calculation to perform for the current phase. The

format and content of the PCR file depends on the value of

Jbt. In the second section of SI we give a comprehensive

summary of the different options available through the value

of Jbt.

For commensurate magnetic structures, one can use the

propagation vector formalism, even when a magnetic unit cell

exists. The symmetry constraints can be easily obtained from

the calculation of the basis vectors of the irreps of the

propagation vector group Gk. The basis vectors can be

obtained by using the program BasIreps (or SARAh) to

partially construct the PCR file if one prefers to use this

method instead of MSGs. For irreps of dimension 1, there is a

one-to-one correspondence with a MSG, and for k = 0 the

symbol of the MSG can easily be derived from the character

table of the irreps: the character value of � 1 indicates that the

corresponding operator is associated with time reversal. The

basis vectors for each crystallographic site provide directly the

constraints to be applied to the component of the magnetic

moments. For higher-dimensional irreps there are several

options for the possible MSGs, depending on the direction of

the order parameter. Using the propagation vector formalism

(Jbt=�1) and the setting Isy=-1 (see SI-2) the magnetic

structure factor is calculated as

MðhÞ ¼p
Xn

�¼1

O�f�ðhÞ expð� B�

�
�h=2

�
�2Þ

�
X

s

MsSk� exp
�
2�i½ðHþ kÞfRs

�
�tsgr� � �s�

�
: ð8Þ

The constant p = 1
2
re� = 0.269542 allows the conversion of

Bohr magnetons into scattering lengths. The index � runs for

all magnetic atom sites in the magnetic asymmetric unit (� =

1 . . . n). The index s of the second sum runs over the symmetry

operators described by the SYMM ({Rs} | ts}, s = 1 . . . M) and

MSYM (Ms,�s) items in the PCR file. The occupation factor

O� (distinct from occupancy!) is the quotient of the multi-

plicity of the site � and the multiplicity of the group of

operators M. The magnetic form factor (spherical approx-

imation) of atom � is f�(h), with h = |h|. For simplicity, here we

use the isotropic temperature factor B�. For k = 1
2
H the phase

factors are �s = 0 and the Ms matrices corresponds to the MSG

operators Ms = �sdet(Rs)Rs described in the OG setting (for

details, see Rodrı́guez-Carvajal & Bourée, 2012). In such a

case, the Fourier coefficients are real and correspond directly

to the magnetic moments: Sk� = m�. Alternatively, the

magnetic structure factor can be expressed in terms of the

basis vectors of the irreps as described in equation (5). The

allowed coefficients Ck�
n� are the free parameters of the

magnetic structure.

The magnetic structure factor in this case is

MðhÞ ¼p
Xna

�¼1

O�f�ðhÞ exp
�
� B�

�
�h=2

�
�2
�X

n�

Ck�
n�

�
X

s

Sk�
n�ð�sÞ exp 2�iðhsr� þ h � tsÞ

� �
; ð9Þ

where we have written hs = RT
s h (superscript T stands for

transpose of matrix Rs). Notice that this formalism can also be

applied to incommensurate magnetic structures as we will see

in Section 7.

Commensurate structures have a well defined magnetic unit

cell and a corresponding MSG. To describe the symmetry

operators in the magnetic unit cell, one can use type-4 MSGs

in the BNS setting. Various programs available on the BCS

and ISOTROPY websites, such as ISODISTORT (Campbell

et al., 2006), can directly generate a magnetic CIF file or a PCR

file template containing the appropriate list of operators. In

FullProf, the MSG description is accessible by setting

Jbt=�10, Isy=2 and Nvk=0 (see SI-2). The program can

read the list of operators included in the PCR file by the user

or generated by one of the programs MAXMAGN or

k-SUBGROUPSMAG as a magnetic CIF file.

Additionally, the FullProf Suite provides a utility,

mCIF_to_PCR, which converts a magnetic CIF file into a PCR

template. This utility is accessible from the Tools menu in

the FullProf Suite toolbar and is also available on the BCS.
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The magnetic structure factor for the reflection H,

expressed relative to the reciprocal lattice of the magnetic unit

cell, relies solely on magnetic symmetry without the need for

Fourier coefficients or propagation vectors:

MðhÞ ¼p
Xn

�¼1

O�f�ðHÞ exp
�
� B�

�
�H=2

�
�2
�

�
X

s

�s detðRsÞRsm� exp 2�iHfRsjtsgr�
� �

: ð10Þ

This formulation closely resembles the one used for calcu-

lating nuclear intensities in crystal structures, with the key

distinction being the vectorial nature of the magnetic structure

factor. Examples demonstrating the application of these

options can be found in the public tutorials referenced in SI-3.

7. Different approaches for treating incommensurate

magnetic structures in FullProf

7.1. Calculations without considering symmetry

The option Jbt=5 enables the description of a conical

magnetic structure in terms of magnitudes of magnetic

moments, the half-angle of the cone, the orientation of the

common axis and the associate phases. This approach is

particularly relevant because conical structures with a shared

axis are theoretically predicted in significant classes of mate-

rials (Lyons et al., 1962; Nagamiya, 1967). The formula used

for computing the magnetic structure factor for both funda-

mental and satellite reflections follows the method established

by Hasting & Corliss (1962). This option proves especially

useful when dealing with incommensurate magnetic structures

that exhibit macroscopic net magnetization alongside satellite

reflections. In such cases, it can be effectively combined with

simulated annealing, a strategy that will be discussed later.

7.2. Calculations using Sk�s Fourier coefficients or basis

vectors Sk�
n�ð�sÞ of irreps

These options correspond to Jbt=�1, Nvk<0 and either

Isy=-1 or Isy=-2. The structure factor expression remains

formally equivalent to equations (9) and (10), but in this case

the phase � is not zero and the C-coefficients in equation (5)

may be complex. While user can apply symmetry constraints

and determine the phase factors based on the analysis of the

basis vectors of the irreps, this process requires careful

handling. Notably, in its standard application, the program

BasIreps calculates only the representations and basis vectors

of the little group Gk, from which the full representation of the

star of k can be obtained using the induction formula.

An alternative approach allows for the use of MSYM

operators, where the refinement parameters consist of simple

geometrical parameters and magnetic moment magnitudes.

This corresponds to the option Hel=2 (see SI-2). In this case,

a specific form of the Fourier coefficients is used for the first

representative of atom at site �:

Sk� ¼
1

2
fmu�u� þ imv�v�g expð� 2�i�k�Þ: ð11Þ

In which the unitary vectors u� and v� are orthogonal and

define a plane in which the magnetic moments lay. The normal

to this plane, w� = u� � v�, completes a Cartesian frame (CF)

attached to the atom. Depending of the orientation of the

propagation vector k relative to the plane (u�, v�), the

structure may take the form of a normal spiral or helix (if k is

parallel to w�) or a cycloid (if k is perpendicular to w�).

Each independent atom has six free parameters: the three

Euler angles defining the orientation of the CF attached to the

atom relative to the crystal’s CF, the magnetic moment

components mu�, mv� and the phase factor �k�. If symmetry

or other kind of constraints fix the CF to a particular orien-

tation, the number of free parameters decreases. For example,

if mu� = mv� the helix envelope is circular, otherwise it is

elliptical. The expression for the magnetic structure factor

remains identical to equation (8), with Fourier coefficients Sk�

replaced by equation (11).

7.3. Calculations using superspace operators and Tk Fourier

coefficients

This option was introduced in FullProf from May 2019 and

corresponds to Jbt=�7 (see SI-2). Considering a general

case with d propagation vectors kp, a Bragg reflection is

indexed using the expression

h ¼ h1a�1 þ h2a�2 þ h3a�3 þ
Xd

p¼1

mpkp: ð12Þ

The integer indices (h1, h2, h3, m1 . . . md) = (h1, h2 . . . h3+d)

may be considered as the coordinates in the reciprocal space

of a (3+d)D superspace. For details the reader can refer to

Van Smaalen (2007). This superspace consists of a 3D section

representing the real physical space (also called external

space) and an internal part of dimension d corresponding to

phase shifts of the modulation functions in the external space.

In real space the modulation functions describing magnetic

moments take the form of a general Fourier series:

ml� ¼m�ð�x4; �x5; . . . ; �x3þdÞ

¼
Xm1

n1¼� m1

. . .
Xmd

nd¼� md

Tðn1;...;ndÞ
� exp

�
� 2�iðn1; n2 . . . ndÞ � r

�
I

�

¼
X1

n1¼0

:::
X1

nd¼0

Mðn1;...;ndÞ
� cos cos

�
2�ðn1 �x4 þ . . . nd �x3þdÞ

�

þM
ðn1;...;ndÞ

� sin sin
�
2�ðn1 �x4 þ . . . nd �x3þdÞ

�
; ð13Þ

where �x3þp = tp + kpRl� = tp þ kpðRl þ r�Þ =

tp þ �1p �x1 þ �2p �x2 þ �3p �x3 are the components of the vector

r
�
I in internal space. The initial phase tp is arbitrary and can be

set to zero. A point in superspace has coordinates

r
�
S ¼ ðx

�
S1; x

�
S2; . . . x

�
S3þdÞ ¼ ðr

�
E; r

�
I Þ ¼ ðr�; r

�
I Þ: ð14Þ

An operator ĝS in superspace has the form
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ĝS ¼fgS; �gjtgSg ) gS ¼
Rg 0

Hg "g

 !

tgS ¼ ðtg1; tg2; . . . tg3þdÞ ¼ ðtg; tg4; . . . ; tg3þdÞ ¼ ðtg; tgIÞ:

This can be written in the form of an extended matrix as

ĝS ¼

Rg 0 tg

Hg "g tgI

0 0 1

0

@

1

A

�g

ð15Þ

The subscript g refers to the operator ĝS. The signature

parameter �g is equal to 1 for unprimed operators and � 1 for

primed ones, and it is used as a multiplicative factor only when

applying the operators to magnetic modulation functions. Rg is

the 3�3 rotational part of the parent 3D operator, Hg is a d�3

integer matrix (with rows formed by reciprocal lattice vectors

or zeroes) that may be nullified by an appropriate centred

basis, and "g is a d�d integer matrix with zeroes and �1,

verifying the relations: �Rg = "g� + Hg, where � is a d�3

matrix containing as rows the components of the propagation

vectors kp = (�1p, �2p, �3p). These matrices are determined by

the action of the 3D operators of the parent paramagnetic

space group on the propagation vectors.

In the 3D crystal structure, applying the symmetry operator

{Rg|tg} to an atom at site � yields its symmetry-related coun-

terpart �g. If the resulting superspace operator is a symmetry

of the magnetic structure, its action on the modulation func-

tion follows

m�g

�
r
�g

I

�
¼ ĝm�½r

�
I � ¼ �g detðRgÞRgm�½ĝ

� 1
r
�
I �: ð16Þ

The expression of ĝ� 1 is a little bit complex, but we can write a

simpler equation by substituting the argument of the trans-

formed moment in terms of the internal coordinates of the

source atom. We obtain an expression in term of operator’s

items as:

m�g
½r
�g

I � ¼ m�g
½Hgr� þ "gr

�
gI þ tgI � ¼ �g detðRgÞRg m�½r

�
I �

ð17Þ

This equation is the basis for obtaining the constraints on the

amplitudes Mðn1;...;ndÞ
� cos ;M

ðn1;...;ndÞ
� sin for the site �. The program

FullProf calculates the magnetic structure factor applying

these equations when the full set of symmetry operators is

derived from the provided generators. Currently, in the Full-

Prof Suite, the determination of the MSSG is done by trial and

error starting a process involving the group of the propagation

vector and the representations. A more convenient method is

to use ISODISTORT to generate the list of possible MSSGs

and test the corresponding operators to calculate the diffrac-

tion pattern.

The key aspect is to understand how the amplitudes

Tðn1;::;ndÞ
� = T½n�� ¼ 1=2ðM½n�� cos þ iM

½n�
� sinÞ transform under

superspace symmetry operators and expressing the 3D

magnetic structure factor accordingly when the underlying

crystal structure is unmodulated. The final formula is given by

mðhSÞ ¼p
X

�

O�f�ðhÞexp � B� h=2
�
�

�
�2
X

ĝ

�g detðRgÞRgT
½n�"g
�

� exp 2�i½HðRgr� þ tgÞ þ ½n�ðHgr� þ tgIÞ�; ð18Þ

in which hS = (H,[n]) are the integer indices of the reflection, h

= |hS| and Rg, Hg, "g tg, and tgI are the submatrices of the

general superspace operator ĝS as defined in equation (15).

The notation [n] = (n1, n2 . . . nd) represents a d-dimensional

vector characterizing satellite reflections. The submatrix "g

transforms [n] into another set of indices [m] = [n]"g that are

equal, or opposite, to a predefined set of [m] and T[m], and we

can apply the constraint T[� m] = T[m]*. The predefined [m]

indices determine the harmonics of the observed satellites,

denoted by the tag q_coeff in the current magnetic CIF

dictionary (Campbell et al., 2020). Atoms in special positions,

where an operator leaves them at the same crystallographic

position, impose additional constraints to their components of

the magnetic moment modulation functions. These constraints

can be derived from equation (17).

For NPD, FullProf generates all unique reflections

according to the provided set of symmetry operators and the

set of q_coeff [m], determining systematic absences and

their nature, magnetic, nuclear or mixed. For NSCD, the

program nDataRed processes raw intensity data, performing

data reduction and generating a measured reflection file with

superspace indices and squared magnetic interaction vectors.

8. Combining RA and MSG approaches for commen-

surate magnetic structures: symmetry modes

As discussed in Rodriguez-Carvajal & Perez-Mato (2024), the

RA and MSG approaches can be used together by selecting

the conventional cell basis of the MSG to define the irreps

basis vectors. This is easily achieved through the interoper-

ability of FullProf and ISODISTORT. Here, we describe the

expression of the structure factors when using this method,

referred to as the symmetry modes approach (SMA).

By adopting the cell basis of the subgroup of the para-

magnetic space group and considering displacive and magnetic

distortion modes from the RA, the atomic positions and the

magnetic moments in the asymmetric unit can be written as

r� ¼r0� þ u� ¼ r0� þ
X

�;m

A�;m """ð�;mj�Þ

m� ¼
X

�;m

M�;m jð�;mj�Þ; ð19Þ

where r0� represents the position of the atom in the para-

magnetic state, expressed in the basis of the MSG. The

displacement (polar) vector u� is a linear combination of the

different basis vectors """ð�;mj�Þ of irrep �. The expression, in

equation (19), for the magnetic moment follows the same

structure as the equation (5), except that here the linear

combination is only referred to the first representative atom of

site � without the additional s subscript. Furthermore, the

indices n and � of equation (5) are now combined in the index

m for the basis vectors jð�;mj�Þ. In this context, the coeffi-
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cients of the linear combinations are called amplitudes of the

symmetry modes. The full set of equivalent atoms in the orbit

of the first representative is obtained by applying the MSG

symmetry operators.

The nuclear and magnetic structure factors for reflection H

are then expressed in terms of the amplitudes of displacive

and magnetic modes (A�,m, M�,m) and the normalized basis

vectors """ð�;mj�Þ and jð�;mj�Þ of the irreps (�) contributing

to the final symmetry:

NðHÞ ¼
Xn

�¼1

O�f�ðHÞT�

�
X

s

exp

�

2�i HfRsjtsg

�

r0� þ
X

�;m

A�;m"ð�;mj�Þ

��

;

ð20Þ

MðHÞ ¼ p
Xn

�¼1

O�f�ðHÞT�

X

s

detðRsÞ�sRs

X

�;m

M�;mjð�;mj�Þ

þ exp 2�i HfRsjtsg r0� þ
X

�;m
A�;m"ð�;mj�Þ

h i� �
:

ð21Þ

A key advantage of the SMA is that the constraints on

magnetic moments and atomic positions are automatically

incorporated, eliminating the need for a separate calculation.

This method is implemented in FullProf, and ISODISTORT

automatically generates a template PCR file for this approach.

To use this option, one should set Jbt=-6 (see SI-2 and SI-3

for examples).

The SMA can also be extended to incommensurate struc-

tures using the MSSG formalism. Similar to the commensurate

case, the MSSG symmetry operators can be applied as long as

the modulation functions are expressed as linear combinations

of the basis vectors of the irreps contributing to the MSSG for

each particular atomic position. The Fourier coefficients T½n��
can be written as

T½n�� ¼
1

2

�
M½n�� cos þ iM

½n�
� sin

�

¼
1

2

X

�;m

n
M½n��;m cos jð�;mj�Þcos þ iM

½n�
�;m sin jð�;mj�Þsin

o

or more specifically as

T
½n�"g
� ¼

1

2

X

�;m

n
M
½n�"g

�;m cos jð�;mj�Þcos þ iM
½n�"g

�;m sin jð�;mj�Þsin

o
:

ð22Þ

By substituting this into equation (18), the magnetic structure

factor can be expressed in terms of sine, M
½n�
sin �;m, and cosine,

M½n�cos �;m, amplitudes and the precomputed constant basis

vectors jð�;mj�Þsin and jð�;mj�Þcos. The SMA for incom-

mensurate structures is a new development in FullProf and

will be implemented in future versions.

9. Workflow for the determination of magnetic struc-

tures using the programs of the FullProf Suite from

NPD

Here, we provide a brief overview of how to use the relevant

programs within the FullProf Suite for magnetic structures,

along with the necessary steps for determining and refining a

magnetic structure using NPD.

Before determining a magnetic structure, it is essential to

have a well characterized paramagnetic crystal structure, as its

refinement is a prerequisite for any subsequent magnetic

analysis. The process of determining a magnetic structure

using NPD follows a relatively straightforward procedure,

which can be summarized as follows:

(1) Collect a NPD pattern of the sample in the para-

magnetic state (T > TN or TC). Refine the crystal structure

using the collected data to obtain all relevant structural and

profile parameters. Use FullProf and WinPLOTR for this task.

(2) Collect a NPD pattern below the ordering temperature.

Additional magnetic peaks typically appear in the diffraction

pattern. It is important to perform a refinement of cell para-

meters while keeping the rest of structural parameters fixed,

without including a magnetic model in the PCR file, to clearly

visualize the magnetic contributions to the diffraction pattern.

Determine the positions of the additional peaks simply by

clicking on their positions in WinPLOTR-2006 and saving

them in a format suitable for the k-Search program.

(3) Determine the propagation vector(s) of the magnetic

structure using k-Search or by trial and error, introducing an

additional phase in the PCR file and treating it in Le Bail Fit

(LBF) mode (without magnetic model). If no additional peaks

are observed and only an extra contribution to the nuclear

peaks is present, the magnetic structure has a propagation

vector k = (0, 0, 0).

These three steps are illustrated in the case of LiFeAs2O7 in

Figs. 4, 5 and 6.
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Figure 4
Screenshot of WinPLOTR-2006 displaying the diffraction patterns of
LiFeAs2O7 in both the paramagnetic state (red) and in the magnetically
ordered state (blue), highlighting the additional magnetic reflections. This
image illustrates the first two steps required to begin the analysis of
magnetic NPD data.
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(4) Once the propagation vector has been determined, use

the program BasIreps to obtain the basis vectors of the irreps

of the propagation vector group Gk. For irreps with dimen-

sions higher than one, the user must select the appropriate

basis vectors, as BasIreps does not analyse the isotropy

subgroups as a function of the order parameters. There are

several options for selecting the appropriate symmetry of the

model being constructed.

(4-i). Commensurate structure. Using BasIreps, one can

determine the MSG and the corresponding magnetic

symmetry operators or, alternatively, use the basis vectors of

the irreps directly. Another approach is to use the BCS to

obtain magnetic CIF files, which can then be converted into

PCR file templates for possible MSGs. ISODISTORT also

allows the direct generation of a PCR file template to work in

the SMA with displacive and magnetic symmetry modes. By

default, ISODISTORT employs a standard setting of the

MSG, which may differ significantly from the parent-related

setting preferred by experimentalists, but this can easily be

changed before generating the template.

(4-ii) Incommensurate structure. The output of BasIreps can

be used directly to construct an incommensurate magnetic

structure model using basis vectors or complex Fourier coef-

ficients. Alternatively, specific forms of magnetic structures

(e.g. conical structures, real-space descriptions of multi-helical

structures) may be employed, as described in previous

sections.

(4-iii) Incommensurate structure in superspace. If the

superspace approach is preferred, the most effective method

for working with FullProf is to obtain magnetic CIF files from

ISODISTORT and convert them into PCR files using the

program mCIF_to_PCR. It is better to generate the super-

space group in a setting related to the parent paramagnetic

space group without changing the origin. The appropriate

symbol of the superspace group can easily be determined from

the symbol of the parent group (or one of its subgroups) and

analysing the internal translations of the symmetry operators.

(5) Solve the magnetic structure by using the symmetry

information obtained in step (4), either through trial-and-

error methods or the simulated annealing (SAnn) procedure

implemented in FullProf.

(5-i) Trial-and-error approach. If the RA method is to be

used, modify the PCR file from step (2) by adding an addi-

tional magnetic phase, setting Jbt=1 (magnetic phase with

Fourier coefficients/magnetic moments referred to the unitary

basis along the unit cell axes) and Irf=-1 (only satellite

reflections will be generated). The best way to add this

magnetic phase is to copy it from an already existing PCR file

of a similar case and adjust it using the symmetry information

obtained in step (4). Run FullProf, keeping most parameters

fixed except those for the magnetic moments or the basis

functions coefficients. Check the calculated magnetic peaks

against the observed data. If they do not match, modify the

magnetic model (e.g. use a different representation or

magnetic symmetry operators) and try again.

If the MSG (or MSSG) method is employed, the PCR file

can be efficiently generated using mCIF_to_PCR, which

provides a description of the model within a single phase.

After generating the PCR file, modify it to include the

appropriate profile parameters. Then, run FullProf with

reasonable initial values for the moment parameters. As in
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Figure 6
Selection of magnetic peak positions in WinPLOTR-2006, generating an
intermediate file that stores cell parameters and user-defined conditions
from a previous dialogue. Peak positions are automatically corrected for
zero-shift. Upon exiting the dialogue, the program prompts the user to
run k-Search; if accepted, it proceeds using the prepared file. The lower
section of the figure displays the identified solution, with the resulting
k-vector k � (0.713, 0.010, 0.153).

Figure 5
Execution of FullProf without a magnetic model, where the paramagnetic
structure is fixed along with the linearly interpolated background. Only
the scale factor, unit-cell parameters, and zero shift are refined. This
process generates a profile file with corrected angular positions, enabling
further analysis in WinPLOTR-2006 to determine the propagation vector.



previous steps, most parameters should remain fixed, with only

the magnetic moment components or the cosine and sine

modulation functions allowed to vary. Different MSG (or

MSSG) types can then be tested against the observed

diffraction data.

When the number of intense magnetic peaks is sufficiently

large, this approach (using RA, MSG or MSSG) may be

adequate to solve the magnetic structure. However, if the

number of free parameters is too high relative to the number

of observed magnetic peaks, the least-squares refinement may

diverge or become unstable, especially if the initial values are

far from the true minimum. In such cases, proceed to step

(5-ii) for a robust optimization.

(5-ii) Simulated annealing approach. Modify the PCR file

from step (2) by adding an additional phase in LBF mode, as

in step (3). This additional phase should contain no atoms, and

the settings should be Jbt=2, Irf=-1 and Jview=11. The

nuclear phase should be refined with a fixed scale factor and

structural parameters (except the cell parameters), allowing

the separation of purely magnetic reflections into a separate

file. This file can then be used by FullProf in SAnn mode. The

details of this method are covered in the tutorials referenced

in SI-3.

(6) Refine the magnetic structure using the Rietveld

method implemented in FullProf. Once the magnetic model

produces a calculated NPD pattern that closely matches the

observed data, the refinement phase begins. If the trial-and-

error method (5-i) was used, the refinement continues from

the previous step. If the simulated annealing method (5-ii) was

used, the final solution (stored in an automatically generated

PCR file) must be transferred to a file suitable for refining the

powder diffraction profile. However, it is also possible to

continue using SAnn as a refinement procedure (see

Section 10).

The specific order of the steps described above may be

adjusted depending on the user’s prior knowledge of the

sample.

Examples of the different methods for treating magnetic

structures using FullProf are readily available in the literature.

The treatment of commensurate structures using the SMA is

considered the most effective approach for the reasons

outlined in Rodriguez-Carvajal & Perez-Mato (2024). Exam-

ples of this method can be found in recent studies, with

detailed references provided in SI-3. Here we present some

results of magnetic refinements of Ho2BaCuO5 (Yanda et al.,

2021) as a function of temperature using the SMA, illustrated

in Figs. 7 and 8.

When MSGs or MSSGs are used to analyse magnetic

diffraction data, FullProf generates magnetic CIF files. These

files can be used for data exchange and visualization purposes

with external programs like Jmol (Jmol development team,

2016) or VESTA (Momma & Izumi, 2011). In other cases, such

as when working with Fourier coefficients and irreps basis

vectors, the FullProf Suite application FP_Studio enables the

visualization of magnetic structures. This is achieved using

.fst files, which are automatically generated by FullProf.

Additionally, FP_Studio can be used interactively to learn the

formalism of propagation vectors. Users can edit the .fst file

directly from the GUI, manually adjusting values such as k,

atom positions, Fourier coefficients, and more, while observing

the effects of these changes in the generated picture.

10. Comments on least squares and simulated annealing

methods in NPD

Once a reliable model for the magnetic structure is available

[step (6) in Section 9], FullProf offers two different approa-

ches for optimizing the agreement between the observed and

calculated patterns. The conventional method is the Rietveld

refinement using least-squares (LS), where FullProf employs

the Gauss–Newton optimization algorithm. This method is fast

but prone to divergence if the initial model is far from the

optimal solution. Furthermore, LS is a local optimization

technique, meaning it converges to the nearest minimum

based on the initial model. The second approach is simulated

annealing (SAnn), which is a global optimization method. For

details on the algorithm applied to magnetic structure deter-

mination, refer to Rodrı́guez-Carvajal (1993). SAnn can be

tuned for use as a refinement tool. Typically, it is used to

obtain an initial model by working with clusters of integrated

intensity data derived from a LBF, followed by Rietveld

refinement once a reasonable model has been achieved.

However, if the number of free parameters is too large, LS
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Figure 7
(a) 3D visualization of the low-angle region of diffraction patterns
collected on D1B (l = 2.52 Å). The abrupt background change and the
simultaneous emergence of the kc2 = (0, 0, 0) magnetic peaks indicates a
first-order magnetic transition. (b) Detailed evolution of diffraction
patterns for Ho2BaCuO5 around the transition at �8 K. The peak
indexing [blue for kc1 = (0, 1

2
, 0) and red for kc2 = (0, 0, 0)] is referenced to

the paramagnetic unit cell.
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refinement of a magnetic structure using neutron powder

diffraction (NPD) may not be effective due to inherent

limitations of powder diffraction, namely, the restricted ratio

of observations to degrees of freedom. This issue can be

mitigated by employing SAnn with the full NPD pattern,

allowing simultaneous refinement and exploration of degen-

eracy (i.e. identifying multiple possible solutions for a given

diffraction pattern).

An SAnn refinement follows the same principles as a

standard SAnn run, with the cost function being the reduced

chi-square of the full diffraction profile and the range of

variation for free parameters constrained. A greater-than-

usual number of Monte Carlo cycles per temperature step is

performed (typically 20 times the number of free parameters),

with convergence determined by a user-defined minimal

global average step. The algorithm begins with a random set of

parameters within predefined boundary conditions and

terminates when either the maximum number of temperature

steps is reached or the average global step and chi-square

change by less than 10� 4 over two consecutive temperature

steps. Unlike in least-squares refinement, the standard devia-

tions of the refined parameters in SAnn do not carry the same

statistical meaning; rather, they represent a combination of the

maximum average fluctuations of moves for each parameter

over the last 20 temperature cycles and a lower bound char-

acteristic of the parameter type (typically a few per cent of the

refined values).

The most effective approach is to use the difference pattern

between the magnetically ordered and paramagnetic states.

However, if the temperature range is too large, the difference

pattern may contain numerous artefacts that hinder the

refinement. In such cases, an LBF can be performed on the

magnetic phase while keeping the nuclear phase parameters

fixed. The calculated magnetic profile can then be saved and

used subsequently for solving and refining the magnetic

model.

The following steps outline how to use SAnn as a magnetic

structure refinement tool in FullProf. To work with the full

NPD profile in SAnn mode, an initial LBF run is required to

generate a file with the extension .spr (hereafter referred to

as the SPR file). This file contains the necessary profile

parameters for subsequent SAnn refinement in FullProf. To
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Figure 8
(a) Refinement plot of the lowest-temperature NPD pattern of Ho2BaCuO5 in the MSG, using symmetry modes amplitudes. (b) Temperature
dependence of the magnetic amplitudes of the symmetry modes. For details, refer to the SI of Yanda et al. (2021).

Figure 9
Example of PCR file (test-pm.pcr) prepared to perform an LBF on
the data file xxxxx.dat. It corresponds to constant wavelength NPD
data (Job=1) of and incommensurate magnetic structure described using
a (3+1)D MSSG (d = 1) defined by its generators. The run will generate
both an SPR file (Ipr=-2) of name test.spr, where the final profile
information will be stored, and an INT file (More=1, Jvi=13), of name
test1_ctlr.int, containing the indices of the allowed reflections (h
k l m) according to the provided symmetry operators, and Q_coeff,
multiplicity and integrated intensities. Notice that the file xxxxx.dat
corresponds to a difference pattern, only the magnetic scattering is
present. The keyword mag_only, appearing in the line with the name of
the phase indicates to the program that it should generate only the
allowed magnetic reflections.



generate the SPR file, the global variable Ipr must be set to

-1. In this case, the SPR file is assigned the same name as the

PCR file (for example, if the PCR file is named my_fi-

le.pcr, the generated SPR file will be my_file.spr). If

Ipr is set to -2, the complete SPR file name must be specified

on the next line of the PCR file. Additionally, Jbt must be set

to Jbt=2 for LBF, along with other necessary flags. The LBF

process always generates an HKL file named my_fi-

lep.hkl, or my_filep_npat.hkl (for multiple

patterns), where p is the number of the phase treated with

LBF and npat is the pattern number. This file contains

updated values for reflection indices, multiplicities, and inte-

grated intensities. However, the integrated intensities in the

HKL file are unreliable for structure determination due to

peak overlap. To generate a file that groups clusters of

reflections, the variable More must be set to 1, and Jvi

should be assigned one of the following values on the next

line: Jvi=13 for symmetry information provided using an

MSSG, or Jvi=11 for all other cases. FullProf then creates an

INT file named my_filep_crtl.int, which contains the

reflection clusters. The degree of overlap for clusters can be

adjusted by modifying the default values of the RMub and

RMuc parameters on the same line as Jvi (refer to the

FullProf manual for further details).

The symmetry information for the LBF depends on the type

of calculation. The variable controlling how symmetry is

defined, Isy, is described in SI-2.

For Jbt=�1, when using the propagation vector form-

alism, setting Irf=-1 ensures that only satellite reflections

are generated. After the first LBF run, Irf is automatically

changed to 2, meaning that in subsequent runs the generated

HKL file will be read, with stored intensities used as starting

values. When working with MSGs or MSSGs (Isy=0,2),

Irf should be set to 0, and it will be updated to 2 as before.

Fig. 9 presents a template of PCR file for an incommensu-

rate structure, demonstrating how to perform an LBF that

generates the necessary files for a subsequent SAnn refine-

ment. To prepare the PCR file for magnetic structure refine-

ment using SAnn, the program mCIF_to_PCR can be used to

create a general PCR template from a magnetic CIF file

obtained via the BCS or ISODISTORT.

An example of the application of SAnn to the NPD

difference pattern is provided in the literature for the multi-

ferroic compound Gd2BaCuO5. More details can be found in

the published work by Yanda et al. (2020) and the SI of this

paper. In summary, Gd2BaCuO5 undergoes two magnetic

phase transitions. Upon cooling, long-range magnetic ordering

occurs at TN = 11.8 K with a propagation vector k = (0, 0, �)

followed by a lock-in transition to a strongly non-collinear
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Figure 10
Example of PCR file prepared to perform a SAnn refinement in super-
space (Cry=3, Ipr=-2, Jbt=-7, Irf=4) with modulation functions in
spherical coordinates. The MSSG is generated from the provided
operators. The limits of the Nre=22 parameters are quite large, so a
global search is applied. The value of the parameter Accept means that
the, in the last stages of the algorithm, it acts as a refinement procedure.

Figure 11
Plots of the different SAnn refinements of the difference pattern (9.8 K–
16.1 K) for four models of Gd2BaCuO5 magnetic structure. (a)
Pnma10(0,0,g)ssss, three sites, 12 free parameters. (b) Pnm2110(0,0,g)ss0s,
six sites, 23 free parameters. (c) P21ma10(0,0,g)0s0s, six sites, 22 free
parameters, using the same amplitudes for the Cu atoms. This corre-
sponds to the mixing irreps mLD2�mLD3 for the order parameter
P-P(a,0|b,0) in the notation of ISODISTORT. The PCR file is that of
Fig. 10. (d) Pm10(0,0,g)ss, 12 sites and 32 free parameters. We concluded
that the (c) case is the true magnetic structure of Gd2BaCuO5, because
the subgroup in (d) has too many parameters and the improvement is
negligible. For details consult the text and the SI of Yanda et al. (2020).
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structure at Tloc � 6 K, with kc = (0, 0, 1/2). The paramagnetic

MSG is Pnma.10 and, after evaluating the possible MSSGs

using ISODISTORT, it became evident that the information

contained in the NPD difference pattern was insufficient for

performing a full Rietveld refinement of the possible models,

as refinements allowing all degrees of freedom proved

unstable. As described in previous sections, SPR and INT files

were generated for the different symmetries, and SAnn jobs

were executed using scripts invoking the console version of

FullProf. Fig. 10 presents key sections of the PCR file used to

analyse the data at 9.8 K for one of these cases. Fig. 11

compares the refined profiles obtained for different MSSGs.

11. Conclusion

We have demonstrated how FullProf uses different formula-

tions of magnetic structure factors to model magnetic neutron

diffraction data. Additionally, we have provided a detailed,

step-by-step guide for working with NPD, illustrating the

procedure with examples that may be particularly useful for

those new to magnetic structure determination. The SI

includes access to tutorials containing data files and PCR files,

showcasing various examples in which the workflow and

different refinement options discussed in the text are applied.

We hope this paper, together with the SI, will serve as a

valuable resource for researchers in condensed matter physics

or chemistry seeking to understand the exotic properties of

materials through magnetic structure determination.
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