metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

A compound of a novel tetraazamacrocycle with trinuclear tetracyanonickelate-bridged cations

Neil F. Curtis^a* and Horst Puschmann^b

^aSchool of Chemical and Physical Sciences, Victoria University of Wellington, Box 600, Wellington, New Zealand, and ^bDurham University Chemical Crystallography Group, Durham DH1 3LE, England Correspondence e-mail: neil.curtis@vuw.ac.nz

Received 4 June 2004 Accepted 24 June 2004 Online 21 July 2004

The cation of the title compound, $[Cu(L)]^{2+}$, is formed by Michael condensation of (4,6,6-trimethyl-3,7-diazanon-3-ene-1,9-diamine)copper(II) with methanal and nitropropane. This cation forms a tetracyanonickelate(II) compound, the unit cell of which contains two centrosymmetric tetracyanonickelate(II)-bridged trinuclear cations, namely diaqua- $1,3\kappa^2 O$ -di- μ -cyano- $1:2\kappa^2 C:N;1:3\kappa^2 C:N$ -dicyano- $1\kappa^2 C$ -bis-(13-ethyl-5,7,7-trimethyl-13-nitro-1,4,8,11-tetraazacyclotetradec-4-ene)- $2\kappa^4 N^1, N^4, N^8, N^{11}; 3\kappa^4 N^1, N^4, N^8, N^{11}$ -dicopper(II)di- μ -cyano-1:2 $\kappa^2 C$:N;1:3 $\kappa^2 C$:N-dicyano-1 $\kappa^2 C$ -bisnickel(II) (13-ethyl-5,7,7-trimethyl-13-nitro-1,4,8,11-tetraazacyclotetradec-4-ene)- $2\kappa^4 N^1, N^4, N^8, N^{11}; 3\kappa^4 N^1, N^4, N^8, N^{11}$ -dicopper(II)nickel(II) bis[tetracyanonickelate(II)] octahydrate, [Cu₂- $Ni(CN)_4(C_{15}H_{31}N_5O_2)_2(H_2O)_2[Cu_2Ni(CN)_4(C_{15}H_{31}N_5O_2)_2]$ -[Ni(CN)₄]₂·8H₂O. One cation, [(L)Cu-NC-Ni(CN)₂-CN-Cu(L)²⁺, has an axially coordinated bridging $[Ni(CN)_4]^{2-}$ ion, with a Cu-N distance of 2.226 (3) Å and a Cu-N-C angle of 168.2 (3)°. The other cation, [(H₂O)(L)Cu-NC- $Ni(CN)_2$ -CN-Cu(L)(OH₂)]²⁺, has water axially coordinated *trans* to a weakly bound bridging $[Ni(CN)_4]^{2-}$ ion, with a Cu-O distance of 2.396 (3) Å, a Cu–N distance of 2.677 (4) Å, an O-Cu-N angle of 168.7 (1)° and a Cu-N-C angle of 137.7 (3)°. These cations, plus independent $[Ni(CN)_4]^{2-}$ ions and water molecules, are linked into a hydrogen-bonded network. All $[Ni(CN)_4]^{2-}$ ions are on centres of symmetry.

Comment

Michael condensations of (polyamine)metal complexes with methanal and nitroalkanes form nitroalkyl-substituted cyclic amine complexes (Lawrance, Lye *et al.*, 1993; Lawrance, Maeder *et al.*, 1993; Comba *et al.*, 1986), such as 6-methyl-6-nitro-1,4,8,11-tetraazacyclotetradecane)copper(II), which is formed from (3,7-diazanonane-1,9-diamine)metal compounds, methanal and nitroethane (Comba *et al.*, 1988*a,b*). The (tetraaza-macrocycle)copper(II) cation, $[Cu(L)]^{2+}$, present in the title compound, formed by an analogous reaction of (4,6,6-

trimethyl-3,7-diazanon-3-ene-1,9-diamine)copper(II) with methanal and nitropropane, differs by the presence of the imine function, the introduction of the 5,7,7-trimethyl substituents and the substitution of a 6-ethyl substituent for 6-methyl.

Structures of a number of methyl/nitro-substituted azamacrocycle compounds obtained by reaction of (amine)metal compounds with nitroethane and methanal have been reported, but this is the first for an ethyl/nitro-substituted analogue derived from nitropropane.

The structures of many compounds of (amine)metal cations with cyanometallate anions have been reported, often with oligo- or polymeric structures with bridging cyanometallate ions (Cernak *et al.*, 2002).

The title compound, (I), which crystallizes from aqueous solutions containing $[Ni(CN)_4]^{2-}$ and $[Cu(L)]^{2+}$, has the formal composition $[Cu(L)][Ni(CN)_4]\cdot 2.5H_2O$, but has two structurally distinct centrosymmetric tetracyanonickelate(II)-bridged (aza-macrocycle)copper(II) trinuclear cations, two independent tetracyanonickelate(II) anions, and one coordinated and four uncoordinated water molecules (see Fig. 1 and Table 1).

Atom Cu1A is in a square-planar coordination environment formed by the three secondary amine atoms, *viz*. N1A, N8A and N11A, and imine atom N4A of macrocycle L^a , with atom N55 of the $[Ni5(CN)_4]^{2-}$ tetracyanonickelate(II) ion coordinated axially; the result is a centrosymmetric trinuclear cation, $[(L^a)Cu-NC-Ni(CN)_2-CN-Cu(L^a)]^{2+}$, with a Cu···Cu separation of 10.426 (5) Å (see Fig. 2).

Atom Cu1*B* is in a square-planar coordination environment formed by the four N atoms, *viz*. N1*B*, N4*B*, N8*B* and N11*B*, of macrocycle L^b , with weaker axial interactions with water atom O10 and atom N65 of the [Ni6(CN)₄]²⁻ ion forming a weakly bound centrosymmetric trinuclear cation, [(H₂O)(L^b)Cu–NC– Ni(CN)₂–CN–Cu(L^b)(OH₂)]²⁺, with a Cu···Cu separation of 10.599 (5) Å (see Fig. 3).

For the two (aza-macrocycle)copper(II) cations, the Cu-N_{ring} distances are similar (with the Cu-N_{imine} distance ca 0.03 Å shorter than the mean Cu-N_{amine} distance), the configuration is the same (1S,8R,11R; Spek, 2002) and the conformations are similar. The nitro group and the C72 methyl component of the gem-dimethyl group are axially oriented on the same side of the N₄ macrocycle coordination plane as the N1-H1 and N11-H11 groups, with the N8-H8 group and the axial ligand (N55 for Cu1A and O10 for Cu1B) on the other side. The N₄ plane is less tetrahedrally twisted and the Cu atom is further displaced from this plane for the $[Cu1A(L^{a})]^{2+}$ ion $[\pm 0.017(2)$ and 0.246(2) Å] than for the $[Cu1B(L^b)]^{2+}$ ion $[\pm 0.067 (2)$ and 0.088 (2) Å]; these planes are inclined at $30.9 (2)^{\circ}$. The C15 methylene substituents of both macrocycles are equatorially oriented, with the terminal methyl group, C16A, of the $[Cu(L^a)]^{2+}$ ion further equatorially extended and closer to atom O18A, while the C16B group is axially oriented on the same side as axial water ligand O10.

The coordinated isocyano atom N55 is close to the squarepyramidal axis of the $[Cu1A(L^a)]^{2+}$ ion, with $N_{ring}-Cu1A-$ N55 angles of between 95.1 (1) and 99.3 (1)°. The non-bridging N56-C56-Ni5 group is approximately aligned with the C7A···C14A axis $[N56 \cdot \cdot Ni5 \cdot \cdot Cu1A-C7A = -1.4 (2)^\circ]$.

Figure 1

The structure of the title compound, drawn with displacement ellipsoids at the 50% probability level for non-H atoms, showing the asymmetric unit (labelled atoms and atoms of associated macrocycles), with additional atoms generated by symmetry operations to complete the tetracyanonickelate(II) anions and trinuclear cations.

The ion is tilted with respect to the N₄ coordination plane so that the N8A···N56 distance [6.250 (5) Å] is longer than the N1A···N56(-x, 2 - y, -z) distance [4.998 (5) Å]. For $[Cu1B(L^b)]^{2+}$, the coordinated water O and isocyano N

For $[Cu1B(L^{b})]^{2+}$, the coordinated water O and isocyano N atoms are displaced from the square-bipyramidal axis, with N_{ring}-Cu1B-O10 angles of 87.1 (1)-101.8 (1)° and N_{ring}-Cu1B-N65 angles of 81.9 (1)-96.8 (1)°.

The dimensions of the coordinated and non-coordinated $[Ni(CN)_4]^{2-}$ ions, all centrosymmetric, do not differ significantly. The two tetracyanonickelate(II) anions including atoms Ni7 and Ni8, and the water molecules including atoms O11, O12, O13 and O14 have no direct interaction with the copper(II) cations, though all are linked into a hydrogenbonding network (see Table 2).

Chain polymeric structures are present for bis(ethane-1,2diamine)copper(II) tetracyanonickelate(II), [-Cu(en)₂-NC-Ni(CN)₂-CN-Cu(en)₂-] (Luo *et al.*, 2000; Lokaj *et al.*, 1991),

Figure 2

The $[(L^a)Cu-NC-Ni(CN)_2-CN-Cu(L^a)]^{2+}$ cation, drawn with displacement ellipsoids at the 50% probability level.

The $[(H_2O)(L^a)Cu-NC-Ni(CN)_2-CN-Cu(L^b)(OH_2)]^{2+}$ cation, drawn with displacement ellipsoids at the 50% probability level.

and for analogous cyanometallate compounds of other (tetraamine)copper(II) cations, including the meso-(5,5,-7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)copper(II), $[Cu(L^1)]^{2+}$, compounds with $[Fe(CN)_6]^{3-}$ (Zou et al., 1998) and $[Cr(CN)_6]^{3-}$ (El Fallah et al., 2001). The $[Ni(CN)_4]^{2-}$ compounds formed by $[Ni(L^1)]^{2+}$ (Gainsford & Curtis, 1984) and (3,10-diethyl-1,3,5,8,10,12-hexaazacyclotetradecane)nickel(II) (Kou et al., 2000) have similar structures, but with the Ni-N_{cvano} distances longer than Cu-N_{cvano}. The two faces of these (aza-macrocycle)metal(II) cations are equivalent, favouring the symmetrical structures observed. The two faces of the $[Cu(L)]^{2+}$ cation are inherently different, the configuration observed having the axial nitro and methyl groups on the same side, which minimizes the interaction with an axial substituent coordinated on the other side. For the $[Cu(L^a)]^{2+}$ ion, the isocyano N atom is coordinated on this less congested side, while for the $[Cu(L^b)]^{2+}$ ion, water is bound on this side and the isocyano group is bound more weakly on the other side.

Experimental

Aqua(13-ethyl-5,7,7-trimethyl-13-nitro-1,4,8,11-tetraazacyclotetradec-4-ene)copper(II) bis(perchlorate), $[Cu(L)(H_2O)](ClO_4)_2$, was prepared by condensation of (4,6,6-trimethyl-3,7-diazanon-3-ene-1,9diamine)copper(II) perchlorate (Blight & Curtis, 1962; Curtis, 1972; Curtis et al., 2003), methanal and nitropropane in water, with NaHCO₃ as base. The mauve-coloured tetracyanonickelate(II) compound precipitated when aqueous solutions containing $[Ni(CN)_4]^{2-}$ and $[Cu(L)]^{2+}$ were mixed. The sparingly soluble compound was recrystallized by evaporation of an aqueous solution.

Crystal data

$[C \rightarrow N^{*}(CN) (C \cup U \cap N \cap C)$	$V_{1} = 2710 ((1))^{3}$
$[Cu_2NI(CN)_4(C_{15}H_{31}N_5O_2)_2]$	$V = 2/10.6 (1) \text{ A}^{2}$
$(H_2O)_2][Cu_2Ni(CN)_4-$	Z = 1
$(C_{15}H_{31}N_5O_2)_2][Ni(CN)_4]_2 \cdot 8H_2O$	$D_x = 1.431 \text{ Mg m}^{-3}$
$M_r = 2339.23$	Mo $K\alpha$ radiation
Triclinic, P1	Cell parameters from 7862
a = 11.7497 (2) Å	reflections
b = 14.0540(3) Å	$\theta = 2.3-29.3^{\circ}$
c = 17.9014 (4) Å	$\mu = 1.52 \text{ mm}^{-1}$
$\alpha = 70.154 \ (1)^{\circ}$	T = 120 (2) K
$\beta = 78.165 \ (1)^{\circ}$	Plate, purple
$\gamma = 81.290 \ (1)^{\circ}$	$0.35 \times 0.35 \times 0.08 \text{ mm}$

Data collection

__ _ _ _ _ _ _ _ _

Bruker SMART 1K CCD area	14 372 independent reflections
detector diffractometer	9857 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.034$
Absorption correction: multi-scan	$\theta_{\rm max} = 29.1^{\circ}$
(SADABS; Bruker, 2001)	$h = -15 \rightarrow 15$
$T_{\min} = 0.538, T_{\max} = 0.885$	$k = -19 \rightarrow 19$
$R_{\rm int} = 0.047$ before correction	$l = -24 \rightarrow 23$
22 241 measured reflections	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.162$ S = 1.0514 372 reflections 666 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Cu1A-N4A	1.999 (4)	Cu1B-N8B	2.018 (4)
Cu1A-N11A	2.013 (3)	Cu1B-N1B	2.020 (3)
Cu1A-N8A	2.031 (3)	Cu1 <i>B</i> -N11 <i>B</i>	2.026 (4)
Cu1A-N1A	2.041 (3)	Cu1B-O10	2.396 (3)
Cu1A-N55	2.226 (3)	Cu1B-N65	2.677 (4)
N4A - C5A	1.304 (6)	N4B-C5B	1.304 (6)
Cu1B-N4B	1.986 (4)		
N4A-Cu1A-N11A	164.6 (2)	N4B-Cu1B-N11B	170.7 (2)
N4A - Cu1A - N8A	95.6 (2)	N8B-Cu1B-N11B	86.9 (2)
N11A-Cu1A-N8A	85.9 (1)	N1B-Cu1B-N11B	91.0 (2)
N4A - Cu1A - N1A	85.4 (2)	N4B-Cu1B-O10	101.6 (2)
N11A-Cu1A-N1A	89.7 (1)	N8B-Cu1B-O10	87.0 (2)
N8A - Cu1A - N1A	166.8 (2)	N1B-Cu1B-O10	93.9 (1)
N4A-Cu1A-N55	99.9 (2)	N11B-Cu1B-O10	87.3 (2)
N11A-Cu1A-N55	95.1 (1)	N4B-Cu1B-N65	88.6 (2)
N8A-Cu1A-N55	96.7 (2)	N8B-Cu1B-N65	96.8 (2)
N1A-Cu1A-N55	96.1 (1)	N1B-Cu1B-N65	81.9 (1)
C55-N55-Cu1A	168.2 (3)	N11B-Cu1B-N65	82.2 (1)
N4B-Cu1B-N8B	95.9 (2)	O10-Cu1B-N65	168.7 (1)
N4B-Cu1B-N1B	86.0 (2)	C65-Ni6-C66	89.1 (2)
N8B-Cu1B-N1B	177.7 (2)	C65-N65-Cu1B	137.7 (3)

Table 2

Hydrogen-bonding geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
0.91	2.26	3.124 (5)	159
0.91	2.11	2.869 (5)	140
0.91	2.41	2.978 (5)	121
0.91	2.12	2.937 (5)	149
0.91	2.13	3.041 (5)	174
0.91	2.58	3.052 (5)	113
0.91	2.29	2.874 (5)	122
0.84(5)	1.92 (5)	2.745 (6)	168 (5)
0.85 (5)	1.93 (5)	2.702 (5)	151 (5)
0.84 (3)	2.04 (4)	2.870 (5)	170 (6)
0.83 (5)	2.28 (5)	3.106 (5)	172 (5)
0.83 (4)	1.97 (4)	2.788 (5)	168 (6)
0.84 (4)	1.88 (3)	2.702 (5)	171 (6)
0.84 (4)	1.94 (4)	2.733 (5)	158 (6)
0.83 (4)	2.15 (4)	2.973 (6)	170 (5)
0.82 (4)	2.03 (4)	2.847 (5)	174 (7)
0.82 (5)	2.10 (5)	2.872 (6)	159 (6)
	<i>D</i> -H 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.84 (5) 0.85 (5) 0.83 (5) 0.83 (4) 0.84 (4) 0.84 (4) 0.83 (4) 0.82 (4) 0.82 (5)	$\begin{array}{c ccccc} D-H & H\cdots A \\ \hline 0.91 & 2.26 \\ 0.91 & 2.11 \\ 0.91 & 2.41 \\ 0.91 & 2.12 \\ 0.91 & 2.13 \\ 0.91 & 2.58 \\ 0.91 & 2.29 \\ 0.84 (5) & 1.92 (5) \\ 0.85 (5) & 1.93 (5) \\ 0.84 (3) & 2.04 (4) \\ 0.83 (5) & 2.28 (5) \\ 0.83 (4) & 1.97 (4) \\ 0.84 (4) & 1.88 (3) \\ 0.84 (4) & 1.94 (4) \\ 0.83 (4) & 2.15 (4) \\ 0.82 (4) & 2.03 (4) \\ 0.82 (5) & 2.10 (5) \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) x, 1+y, z; (ii) x-1, y, z; (iii) 1-x, 1-y, -z; (iv) x-1, y - 1, z

C- and N-bound H atoms were placed in calculated positions and treated as riding. Water H atoms were located from difference syntheses, and their positions were refined with restrained O-H distances [0.82 (2) Å] and H–O–H angles [H···H = 1.35 (2) Å].

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3.2 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1674). Services for accessing these data are described at the back of the journal.

References

Blight, M. M. & Curtis, N. F. (1962). J. Chem. Soc. pp. 3016-3020. Bruker (1997). SMART (Version 5.054) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

 $w = 1/[\sigma^2(F_o^2) + (0.0668P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

+ 5.1175P]

 $(\Delta/\sigma)_{\rm max} = 0.006$ $\Delta \rho_{\rm max} = 1.41 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.73 \ {\rm e} \ {\rm \AA}^{-3}$

- Bruker (2001). *SADABS* (Version 2.03) and *SAINT* (Version 6.02A). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cernak, J., Orendac, M., Potocnak, I., Chomic, J., Orendacova, A., Skorsepa, J. & Feher, A. (2002). *Coord. Chem. Rev.* **224**, 51–66.
- Comba, P., Curtis, N. F., Lawrance, G. A., O'Leary, M. A., Skelton, B. W. & White, A. H. (1988a). J. Chem. Soc. Dalton Trans. pp. 497–502.
- Comba, P., Curtis, N. F., Lawrance, G. A., O'Leary, M. A., Skelton, B. W. & White, A. H. (1988b). J. Chem. Soc. Dalton Trans. pp. 2145–2152.
- Comba, P., Curtis, N. F., Lawrance, G. A., Sargeson, A. M., Skelton, B. W. & White, A. H. (1986). *Inorg. Chem.* 25, 4260–4267.
- Curtis, N. F. (1972). J. Chem. Soc. Dalton Trans. pp. 1357-1361.
- Curtis, N. F., Powell, H. K. J., Puschmann, H., Rickard, C. E. F. & Waters, J. M. (2003). *Inorg. Chim. Acta*, 355, 25–32.
- El Fallah, M. S., Ribas, J., Solans, X. & Font-Bardia, M. (2001). J. Chem. Soc. Dalton Trans. pp. 247–250.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gainsford, G. J. & Curtis, N. F. (1984). Aust. J. Chem. 37, 1799-1816.
- Kou, H. Z., Liao, D. Z., Jiang, Z. H., Yan, S. P., Wu, Q. J., Gao, S. & Wang, G. L. (2000). Inorg. Chem. Commun. 3, 151–154.
- Lawrance, G. A., Lye, P. G., Maeder, M. & Wilkes, E. N. (1993). Spec. Publ. R. Soc. Chem. 131, 106–109.
- Lawrance, G. A., Maeder, M. & Wilkes, E. N. (1993). Rev. Inorg. Chem. 13, 199–132.
- Lokaj, J., Gyerova, K., Sopkova, A., Sivy, J., Kettmann, V. & Vrabel, V. (1991). Acta Cryst. C47, 2447–2448.
- Luo, J.-H., Wu, M.-X., Wang, Y.-M., Gao, D.-S., Li, D. & Cheng, C.-Z. (2000). *Jiegou Huaxue*, **19**, 187–190.
- Spek, A. L. (2002). PLATON. Utrecht University, The Netherlands.
- Zou, J. Z., Hu, X. D., Duan, C. Y., Xu, Z., You, X. Z. & Mak, T. C. W. (1998). *Transition Met. Chem.* 23, 477–480.

supporting information

Acta Cryst. (2004). C60, m410-m413 [doi:10.1107/S0108270104015483]

A compound of a novel tetraaza-macrocycle with trinuclear tetracyanonickelate-bridged cations

Neil F. Curtis and Horst Puschmann

Computing details

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3.2 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

di- μ -cyano-1:2 κ^2 C:N;1:3 κ^2 C:N-tetracyano-1 κ^4 N-bis(13-ethyl-5,7,7-trimethyl-13-nitro-1,4,8,11tetraazacyclotetradec-4-ene)- $2\kappa^4 N^1$, N^4 , N^8 , N^{11} ; $3\kappa^4 N^1$, N^4 , N^8 , N^{11} -dicopper(II)nickel(II) diaqua-1, $3\kappa^2 O$ -di- μ cyano-1: $2\kappa^2$ C:N;1: $3\kappa^2$ C:N-tetracyano- $1\kappa^4$ N- bis(13-ethyl-5,7,7-trimethyl-13-nitro-1,4,8,11tetraazacyclotetradec-4-ene)- $2\kappa^4 N^1$, N^4 , N^8 , N^{11} ; $3\kappa^4 N^1$, N^4 , N^8 , N^{11} -dicopper(II)nickel(II) bis[tetracyanonickelate(II)] octahydrate

Crystal data

-	
$[Cu_2Ni(CN)_4(C_{15}H_{31}N_5O_2)_2(H_2O)_2]$	$V = 2710.6 (1) Å^3$
$[Cu_2Ni(CN)_4(C_{15}H_{31}N_5O_2)_2][Ni(CN)_4]_2 \cdot 8H_2O$	Z = 1
$M_r = 2339.23$	F(000) = 1220
Triclinic, P1	$D_{\rm x} = 1.431 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 11.7497 (2) Å	Cell parameters from 7862 reflections
b = 14.0540 (3) Å	$\theta = 2.3 - 29.3^{\circ}$
c = 17.9014 (4) Å	$\mu = 1.52 \text{ mm}^{-1}$
$\alpha = 70.154 \ (1)^{\circ}$	T = 120 K
$\beta = 78.165 \ (1)^{\circ}$	Plate, purple
$\gamma = 81.290 \ (1)^{\circ}$	$0.35\times0.35\times0.08~mm$
Data collection	
SMART 1K CCD area detector	$T_{\min} = 0.538, T_{\max} = 0.885$
diffractometer	22241 measured reflections
Radiation source: fine-focus sealed tube	14372 independent reflections
Graphite monochromator	9857 reflections with $I > 2\sigma(I)$
Detector resolution: 8 pixels mm ⁻¹	$R_{\rm int} = 0.034$
ω scans	$\theta_{\rm max} = 29.1^{\circ}, \theta_{\rm min} = 1.2^{\circ}$
Absorption correction: multi-scan	$h = -15 \rightarrow 15$
(SADABS; Bruker, 2001) R(int)=0.0470 before	$k = -19 \rightarrow 19$
correction	$l = -24 \rightarrow 23$

correction

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.063$	Hydrogen site location: inferred from
$wR(F^2) = 0.162$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
14372 reflections	and constrained refinement
666 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0668P)^2 + 5.1175P]$
15 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.006$
direct methods	$\Delta \rho_{\rm max} = 1.41 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.73 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 5 sets of ω scans; each set at different φ and/or 2θ angles and each scan (10 sec exposure) covering 0.3° in ω . Crystal to detector distance 4.95 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1A	0.51585 (4)	0.65895 (3)	0.23611 (3)	0.02303 (11)	
N1A	0.3381 (3)	0.6770 (2)	0.2623 (2)	0.0259 (7)	
H1A	0.3127	0.6170	0.2967	0.031*	
N4A	0.5137 (3)	0.7137 (3)	0.3259 (2)	0.0355 (8)	
N8A	0.6877 (3)	0.6078 (3)	0.2270 (2)	0.0316 (8)	
H8A	0.7206	0.6564	0.1829	0.038*	
N11A	0.5031 (3)	0.5711 (2)	0.17031 (19)	0.0232 (6)	
H11A	0.4750	0.5125	0.2054	0.028*	
N17A	0.2472 (3)	0.5344 (3)	0.1980 (2)	0.0303 (7)	
C2A	0.3118 (4)	0.7529 (3)	0.3059 (3)	0.0360 (10)	
H2A	0.2310	0.7525	0.3324	0.043*	
H2B	0.3238	0.8204	0.2682	0.043*	
C3A	0.3928 (4)	0.7256 (4)	0.3681 (3)	0.0400 (11)	
H3A	0.3850	0.7788	0.3923	0.048*	
H3B	0.3732	0.6627	0.4103	0.048*	
C5A	0.6043 (5)	0.7166 (4)	0.3564 (3)	0.0481 (12)	
C6A	0.7245 (4)	0.7033 (4)	0.3093 (3)	0.0468 (12)	
H6A	0.7818	0.7063	0.3404	0.056*	
H6B	0.7331	0.7602	0.2599	0.056*	
C7A	0.7534 (5)	0.6051 (5)	0.2876 (4)	0.0521 (14)	
C9A	0.7008 (4)	0.5189 (3)	0.1980 (3)	0.0316 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H9A	0.6769	0.4591	0.2422	0.038*
H9B	0.7817	0.5055	0.1755	0.038*
C10A	0.6247 (3)	0.5438 (3)	0.1343 (3)	0.0313 (9)
H10A	0.6526	0.6003	0.0883	0.038*
H10B	0.6266	0.4856	0.1164	0.038*
C12A	0.4256 (3)	0.6120 (3)	0.1093 (2)	0.0272 (8)
H12A	0.4295	0.5636	0.0808	0.033*
H12B	0.4544	0.6741	0.0704	0.033*
C13A	0.2975 (3)	0.6348 (3)	0.1435 (2)	0.0272 (8)
C14A	0.2764 (3)	0.7086 (3)	0.1926 (3)	0.0293 (9)
H14A	0.3002	0.7743	0.1571	0.035*
H14B	0.1933	0.7172	0.2117	0.035*
C51A	0.5990 (6)	0.7505 (6)	0.4274 (4)	0.074 (2)
H51A	0.5207	0.7493	0.4566	0.111*
H51B	0.6222	0.8183	0.4096	0.111*
H51C	0.6508	0.7057	0.4619	0.111*
C71A	0.8848 (5)	0.5850 (6)	0.2652 (4)	0.0654 (18)
H71A	0.9014	0.5263	0.2474	0.098*
H71B	0.9211	0.5730	0.3114	0.098*
H71C	0.9148	0.6428	0.2227	0.098*
C72A	0.7108 (8)	0.5134 (6)	0.3658 (4)	0.090 (3)
H72A	0.6275	0.5225	0.3805	0.136*
H72B	0.7473	0.5122	0.4095	0.136*
H72C	0.7319	0.4504	0.3545	0.136*
C15A	0.2225 (4)	0.6784 (3)	0.0753 (3)	0.0347 (9)
H15A	0.1409	0.6809	0.0998	0.042*
H15B	0.2407	0.7477	0.0457	0.042*
C16A	0.2383 (4)	0.6202 (4)	0.0155 (3)	0.0398 (11)
H16A	0.3143	0.6283	-0.0169	0.060*
H16B	0.1798	0.6460	-0.0185	0.060*
H16C	0.2308	0.5494	0.0442	0.060*
O18A	0.1574 (3)	0.5370 (3)	0.2445 (2)	0.0469 (9)
019A	0.3001 (3)	0.4555 (2)	0.1910 (3)	0.0598 (11)
Ni5	0.5000	1.0000	0.0000	0.02336 (15)
N55	0.5351 (3)	0.8009 (2)	0.1318 (2)	0.0311 (8)
N56	0.7477 (3)	1.0469 (3)	-0.0123 (3)	0.0437 (10)
C55	0.5245 (3)	0.8761 (3)	0.0810(2)	0.0258 (8)
C56	0.6528 (4)	1.0292 (3)	-0.0074 (2)	0.0297 (9)
Cu1B	0.09397 (4)	0.18678 (4)	0.25244 (3)	0.02937 (13)
N1B	0.2299 (3)	0.2477 (3)	0.2668 (2)	0.0289 (7)
H1B	0.2285	0.3131	0.2334	0.035*
N4B	0.0107 (4)	0.2139 (3)	0.3526(2)	0.0388 (9)
N8B	-0.0399(3)	0.1284 (3)	0.2332 (2)	0.0373 (8)
H8B	-0.0212	0.0602	0.2525	0.045*
N11B	0.1758 (3)	0.1839 (3)	0.1419 (2)	0.0300 (7)
H11B	0.1701	0.2487	0.1077	0.036*
C2B	0.2048 (4)	0.2517 (3)	0.3513 (3)	0.0341 (9)
H2C	0.2504	0.3009	0.3559	0.041*

H2D	0.2258	0.1858	0.3884	0.041*
C3B	0.0763 (4)	0.2817 (4)	0.3717 (3)	0.0417 (11)
H3C	0.0558	0.2752	0.4285	0.050*
H3D	0.0575	0.3518	0.3406	0.050*
C5B	-0.0948 (4)	0.1919 (4)	0.3884 (3)	0.0422 (11)
C6B	-0.1509 (5)	0.1167 (4)	0.3657 (3)	0.0489 (13)
H6C	-0.2295	0.1106	0.3960	0.059*
H6D	-0.1077	0.0508	0.3834	0.059*
C7B	-0.1583 (4)	0.1412 (4)	0.2763 (3)	0.0456 (12)
C9B	-0.0222(4)	0.1486 (4)	0.1444 (3)	0.0387 (10)
H9C	-0.0692	0.1068	0.1318	0.046*
H9D	-0.0449	0.2193	0.1173	0.046*
C10B	0.1040 (4)	0.1237 (3)	0.1175 (3)	0.0339 (9)
H10C	0.1196	0.1394	0.0595	0.041*
H10D	0.1247	0.0517	0.1417	0.041*
C12B	0.2997 (4)	0.1465 (3)	0.1334(3)	0.0336 (9)
H12C	0.3280	0.1557	0.0767	0.040*
H12D	0.3051	0.0740	0.1615	0.040*
C13B	0.3825(4)	0.1929(3)	0.1630(3)	0.0313(9)
C14B	0.3471(4)	0.1925 (3)	0.1030(3) 0.2486(3)	0.0316(9)
H14C	0.3524	0.1312	0.2864	0.0310())
H14D	0.4032	0.2368	0.2576	0.038*
C15B	0.5068 (4)	0.1368(4)	0.1545(3)	0.038 0.0447 (11)
H15F	0.5320	0.1300 (4)	0.0987	0.054*
H15G	0.5603	0.1725	0.1677	0.054*
C16B	0.5005 0.5147 (5)	0.1723 0.0253 (4)	0.1077	0.054
H16D	0.4573	-0.0094	0.1986	0.0500 (15)
H16E	0.4575	0.0004	0.1580	0.075*
H16E	0.5005	-0.0063	0.1951	0.075*
C51B	-0.1626(5)	0.0003	0.1551 0.4540(4)	0.075
H51D	-0.1264	0.2302 (3)	0.4566	0.0090 (19)
H51E	-0.1637	0.2800	0.4500	0.104
1151E 1151E	-0.2412	0.1700	0.3034	0.104
C71P	0.2412 -0.2270 (5)	0.2324	0.4432 0.2207 (4)	0.104°
	-0.2370(3)	-0.0073(4)	0.2707 (4)	0.0338 (14)
П/ID U71Е	-0.2042	-0.0010	0.2920	0.081*
	-0.2430	0.0800	0.2134	0.081*
	-0.3132	0.0765	0.3008	0.081^{*}
U72B	-0.2114 (5)	0.2517 (4)	0.2413 (4)	0.0013 (15)
H/2D	-0.2231	0.2035	0.18/3	0.092*
H/2E	-0.1590	0.2981	0.2411	0.092*
H/2F	-0.2849	0.2621	0.2739	0.092*
NI/B	0.3986 (3)	0.3035 (3)	0.10/3(2)	0.0364 (8)
O19B	0.3262 (4)	0.3450(3)	0.0628 (2)	0.0555 (10)
O18B	0.4805 (3)	0.3460 (3)	0.1104 (2)	0.0518 (9)
010	0.1759 (3)	0.0153 (3)	0.3044 (2)	0.0500 (9)
HI0E	0.215 (4)	-0.006 (4)	0.342 (3)	0.060*
HIOF	0.127 (4)	-0.029 (3)	0.317 (3)	0.060*
Ni6	0.0000	0.5000	0.0000	0.02634 (16)

N65	0.0374 (4)	0.3807 (3)	0.1702 (2)	0.0395 (9)
N66	0.1233 (3)	0.3209 (3)	-0.0505 (2)	0.0380 (9)
C65	0.0219 (4)	0.4272 (3)	0.1060 (3)	0.0296 (8)
C66	0.0769 (4)	0.3893 (3)	-0.0320 (3)	0.0300 (9)
Ni7	1.5000	0.0000	0.5000	0.02809 (17)
N75	1.3252 (5)	-0.0362 (4)	0.4144 (3)	0.0727 (17)
N76	1.5201 (4)	0.2129 (3)	0.3831 (2)	0.0404 (9)
C75	1.3917 (5)	-0.0218 (3)	0.4474 (3)	0.0455 (12)
C76	1.5120 (4)	0.1317 (3)	0.4271 (3)	0.0335 (9)
Ni8	0.0000	-0.5000	0.5000	0.03084 (18)
N85	0.2488 (4)	-0.5019 (3)	0.4135 (3)	0.0525 (11)
N86	-0.0354 (4)	-0.2762 (3)	0.4102 (3)	0.0512 (11)
C85	0.1545 (4)	-0.5016 (4)	0.4466 (3)	0.0377 (10)
C86	-0.0221 (4)	-0.3605 (4)	0.4439 (3)	0.0381 (10)
011	0.8374 (3)	0.8482 (3)	0.1108 (2)	0.0472 (8)
H11E	0.841 (5)	0.797 (2)	0.096 (3)	0.057*
H11F	0.808 (5)	0.899 (3)	0.078 (3)	0.057*
O12	0.0259 (4)	-0.0996 (3)	0.2857 (2)	0.0486 (9)
H12E	0.025 (5)	-0.108 (4)	0.2417 (17)	0.058*
H12F	-0.001 (5)	-0.147 (3)	0.325 (2)	0.058*
O13	0.0452 (3)	-0.1146 (3)	0.1370 (2)	0.0549 (10)
H13E	-0.015 (3)	-0.113 (5)	0.118 (3)	0.066*
H13F	0.098 (3)	-0.096 (5)	0.098 (2)	0.066*
O14	0.4609 (4)	0.4265 (3)	0.3287 (3)	0.0643 (12)
H14E	0.482 (5)	0.3659 (19)	0.345 (4)	0.077*
H14F	0.395 (3)	0.433 (4)	0.353 (4)	0.077*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
Cu1A	0.0241 (2)	0.0199 (2)	0.0228 (2)	0.00072 (17)	-0.00397 (18)	-0.00506 (17)
N1A	0.0251 (16)	0.0198 (15)	0.0314 (17)	-0.0009 (12)	-0.0009 (13)	-0.0089 (13)
N4A	0.034 (2)	0.044 (2)	0.0325 (19)	-0.0004 (16)	-0.0062 (16)	-0.0184 (17)
N8A	0.0308 (18)	0.0321 (18)	0.0337 (19)	0.0069 (14)	-0.0137 (15)	-0.0121 (15)
N11A	0.0218 (15)	0.0192 (15)	0.0245 (16)	-0.0018 (12)	-0.0025 (12)	-0.0024 (12)
N17A	0.0271 (18)	0.0245 (17)	0.0378 (19)	-0.0071 (14)	-0.0061 (15)	-0.0055 (14)
C2A	0.029 (2)	0.034 (2)	0.050 (3)	-0.0006 (17)	-0.0005 (19)	-0.024 (2)
C3A	0.036 (2)	0.048 (3)	0.043 (3)	-0.005 (2)	0.003 (2)	-0.030(2)
C5A	0.046 (3)	0.062 (3)	0.048 (3)	0.001 (2)	-0.010 (2)	-0.034 (3)
C6A	0.037 (3)	0.069 (3)	0.050 (3)	0.005 (2)	-0.018 (2)	-0.037 (3)
C7A	0.041 (3)	0.069 (4)	0.059 (3)	0.018 (3)	-0.019 (2)	-0.040 (3)
C9A	0.028 (2)	0.030 (2)	0.032 (2)	0.0047 (16)	-0.0019 (17)	-0.0081 (17)
C10A	0.024 (2)	0.037 (2)	0.032 (2)	0.0014 (17)	-0.0007 (16)	-0.0148 (18)
C12A	0.029 (2)	0.0234 (19)	0.029 (2)	-0.0060 (15)	-0.0076 (16)	-0.0044 (15)
C13A	0.028 (2)	0.0204 (18)	0.030 (2)	-0.0044 (15)	-0.0038 (16)	-0.0032 (15)
C14A	0.0238 (19)	0.0200 (18)	0.042 (2)	-0.0008 (15)	-0.0061 (17)	-0.0075 (17)
C51A	0.062 (4)	0.117 (6)	0.072 (4)	0.016 (4)	-0.024 (3)	-0.070 (4)
C71A	0.040 (3)	0.112 (5)	0.064 (4)	0.029 (3)	-0.030 (3)	-0.056 (4)

C72A	0.129 (7)	0.085 (5)	0.054 (4)	0.035 (5)	-0.038 (4)	-0.023 (4)
C15A	0.033 (2)	0.031 (2)	0.038 (2)	-0.0042 (17)	-0.0109 (18)	-0.0038 (18)
C16A	0.037 (2)	0.045 (3)	0.042 (3)	-0.008(2)	-0.014 (2)	-0.013 (2)
O18A	0.0382 (18)	0.0399 (18)	0.059 (2)	-0.0161 (15)	0.0117 (16)	-0.0170 (16)
019A	0.045 (2)	0.0256 (17)	0.095 (3)	-0.0104 (15)	0.013 (2)	-0.0122 (18)
Ni5	0.0273 (4)	0.0142 (3)	0.0243 (3)	-0.0034 (3)	-0.0017(3)	-0.0014 (3)
N55	0.0341 (19)	0.0213 (16)	0.0354 (19)	-0.0087 (14)	-0.0093 (15)	-0.0012 (14)
N56	0.035 (2)	0.0290 (19)	0.061 (3)	-0.0063 (16)	-0.0079(19)	-0.0048 (18)
C55	0.0242 (19)	0.0217 (18)	0.031 (2)	-0.0058(14)	-0.0044(16)	-0.0058(16)
C56	0.038 (2)	0.0155 (18)	0.030 (2)	-0.0008(16)	-0.0045(17)	-0.0006(15)
Cu1B	0.0320 (3)	0.0313 (3)	0.0269 (3)	-0.0058(2)	-0.0053(2)	-0.0105(2)
N1B	0.0351(19)	0.0270(17)	0.0238(17)	-0.0070(14)	-0.0025(14)	-0.0065(14)
N4R	0.0551(17)	0.0270(17)	0.0250(17) 0.034(2)	-0.0169(18)	0.0029(17)	-0.0170(17)
N8R	0.044(2)	0.042(2)	0.034(2)	-0.0061(16)	-0.0104(16)	-0.0108(17)
N11B	0.031(2)	0.011(2) 0.0259(17)	0.039(2)	-0.0030(14)	-0.0091(15)	-0.0103(14)
C ² B	0.045(3)	0.0257(17)	0.026(2)	-0.0075(19)	-0.0051(15)	-0.0103(14)
C2D C3B	0.049(3)	0.037(2)	0.020(2)	-0.019(2)	0.0032(10)	-0.0121(17)
C5B	0.049(3)	0.047(3)	0.034(2)	-0.015(2)	0.001(2)	-0.013(2)
C6P	0.040(3)	0.047(3)	0.040(3)	-0.021(2)	0.001(2)	-0.009(2)
C7D	0.043(3)	0.030(3)	0.050(3)	-0.021(2)	-0.001(2)	-0.019(2)
	0.041(3)	0.040(3)	0.033(3)	-0.014(2) -0.005(2)	-0.004(2)	-0.019(2) -0.012(2)
C10D	0.044(3)	0.038(2)	0.039(2)	-0.003(2)	-0.018(2)	-0.012(2)
	0.040(3)	0.030(2)	0.031(2)	-0.0004(18)	-0.0110(19)	-0.0110(17)
CI2B	0.034 (2)	0.032 (2)	0.037(2)	-0.0022(17)	-0.0046 (18)	-0.0150 (18)
CI3B	0.034 (2)	0.027(2)	0.031 (2)	-0.0003(17)	-0.0060 (17)	-0.00/5(1/)
CI4B	0.035 (2)	0.030 (2)	0.031 (2)	-0.0065 (17)	-0.0058 (18)	-0.0102 (17)
CISB	0.035 (2)	0.050 (3)	0.055 (3)	-0.004 (2)	-0.006 (2)	-0.027 (2)
CI6B	0.047 (3)	0.043 (3)	0.068 (4)	0.004 (2)	-0.025 (3)	-0.022 (3)
C51B	0.053 (4)	0.087 (5)	0.078 (4)	-0.030 (3)	0.023 (3)	-0.047 (4)
C71B	0.040 (3)	0.061 (3)	0.069 (4)	-0.013 (2)	-0.008 (3)	-0.027 (3)
C72B	0.054 (3)	0.056 (4)	0.067 (4)	0.004 (3)	-0.010 (3)	-0.014 (3)
N17B	0.038 (2)	0.038 (2)	0.0310 (19)	-0.0087 (17)	0.0029 (16)	-0.0114 (16)
O19B	0.080 (3)	0.048 (2)	0.0366 (19)	-0.0211 (19)	-0.0215 (19)	0.0027 (16)
O18B	0.0379 (19)	0.044 (2)	0.071 (3)	-0.0199 (16)	0.0027 (17)	-0.0153 (18)
O10	0.057 (2)	0.0339 (18)	0.058 (2)	-0.0118 (16)	-0.0290 (19)	0.0016 (16)
Ni6	0.0239 (4)	0.0255 (4)	0.0292 (4)	-0.0016 (3)	-0.0070 (3)	-0.0069 (3)
N65	0.045 (2)	0.037 (2)	0.036 (2)	0.0007 (17)	-0.0105 (18)	-0.0109 (17)
N66	0.041 (2)	0.033 (2)	0.039 (2)	-0.0010 (17)	-0.0054 (17)	-0.0119 (17)
C65	0.030 (2)	0.028 (2)	0.031 (2)	-0.0019 (16)	-0.0059 (17)	-0.0112 (17)
C66	0.028 (2)	0.029 (2)	0.032 (2)	-0.0040 (16)	-0.0084 (17)	-0.0055 (17)
Ni7	0.0347 (4)	0.0229 (4)	0.0236 (4)	-0.0003 (3)	-0.0062 (3)	-0.0037 (3)
N75	0.103 (4)	0.044 (3)	0.070 (3)	-0.027 (3)	-0.055 (3)	0.015 (2)
N76	0.051 (2)	0.032 (2)	0.034 (2)	-0.0030 (17)	-0.0105 (18)	-0.0021 (16)
C75	0.067 (3)	0.027 (2)	0.040 (3)	-0.010 (2)	-0.024 (2)	0.0038 (19)
C76	0.036 (2)	0.035 (2)	0.030 (2)	0.0003 (18)	-0.0120 (18)	-0.0080 (18)
Ni8	0.0329 (4)	0.0360 (4)	0.0239 (4)	-0.0116 (3)	-0.0039 (3)	-0.0067 (3)
N85	0.041 (2)	0.052 (3)	0.051 (3)	-0.008 (2)	0.007 (2)	-0.006 (2)
N86	0.069 (3)	0.042 (2)	0.041 (2)	-0.014 (2)	-0.013 (2)	-0.005 (2)
C85	0.041 (3)	0.038 (2)	0.031 (2)	-0.007 (2)	-0.007 (2)	-0.0045 (19)

supporting information

C86	0.041 (3)	0.045 (3)	0.031 (2)	-0.012 (2)	-0.0067 (19)	-0.012 (2)
011	0.045 (2)	0.047 (2)	0.054 (2)	0.0014 (17)	-0.0155 (17)	-0.0196 (18)
012	0.064 (2)	0.0332 (18)	0.049 (2)	-0.0175 (16)	-0.0165 (19)	-0.0036 (16)
013	0.044 (2)	0.076 (3)	0.052 (2)	-0.021 (2)	-0.0031 (17)	-0.025 (2)
014	0.068 (3)	0.0320 (19)	0.056 (2)	0.0013 (18)	0.021 (2)	0.0120 (17)

Geometric parameters (Å, °)

1.999 (4)	N8B—C7B	1.464 (6)
2.013 (3)	N8B—C9B	1.492 (6)
2.031 (3)	N8B—H8B	0.9100
2.041 (3)	N11B—C12B	1.467 (5)
2.226 (3)	N11B—C10B	1.494 (5)
1.476 (5)	N11B—H11B	0.9100
1.486 (5)	C2B—C3B	1.509 (7)
0.9100	C2B—H2C	0.9700
1.304 (6)	C2B—H2D	0.9700
1.480 (6)	СЗВ—НЗС	0.9700
1.443 (6)	C3B—H3D	0.9700
1.484 (5)	C5B—C51B	1.503 (7)
0.9100	C5B—C6B	1.525 (7)
1.476 (5)	C6B—C7B	1.538 (7)
1.492 (5)	C6B—H6C	0.9700
0.9100	C6B—H6D	0.9700
1.208 (5)	C7B—C71B	1.528 (7)
1.218 (5)	C7B—C72B	1.550 (8)
1.541 (5)	C9B—C10B	1.489 (6)
1.526 (7)	С9В—Н9С	0.9700
0.9700	C9B—H9D	0.9700
0.9700	C10B—H10C	0.9700
0.9700	C10B—H10D	0.9700
0.9700	C12B—C13B	1.514 (6)
1.489 (7)	C12B—H12C	0.9700
1.510 (7)	C12B—H12D	0.9700
1.529 (7)	C13B—C14B	1.534 (6)
0.9700	C13B—N17B	1.550 (5)
0.9700	C13B—C15B	1.555 (6)
1.522 (7)	C14B—H14C	0.9700
1.598 (10)	C14B—H14D	0.9700
1.508 (6)	C15B—C16B	1.534 (7)
0.9700	C15B—H15F	0.9700
0.9700	C15B—H15G	0.9700
0.9700	C16B—H16D	0.9600
0.9700	C16B—H16E	0.9600
1.534 (6)	C16B—H16F	0.9600
0.9700	C51B—H51D	0.9600
0.9700	C51B—H51E	0.9600
1.537 (6)	C51B—H51F	0.9600
	$\begin{array}{c} 1.999 \ (4) \\ 2.013 \ (3) \\ 2.031 \ (3) \\ 2.031 \ (3) \\ 2.041 \ (3) \\ 2.226 \ (3) \\ 1.476 \ (5) \\ 1.486 \ (5) \\ 0.9100 \\ 1.304 \ (6) \\ 1.480 \ (6) \\ 1.480 \ (6) \\ 1.443 \ (6) \\ 1.484 \ (5) \\ 0.9100 \\ 1.476 \ (5) \\ 1.492 \ (5) \\ 0.9100 \\ 1.208 \ (5) \\ 1.218 \ (5) \\ 1.541 \ (5) \\ 1.526 \ (7) \\ 0.9700 \\ 0.9700 \\ 0.9700 \\ 0.9700 \\ 0.9700 \\ 1.529 \ (7) \\ 0.9700 \\ 0.9700 \\ 0.9700 \\ 1.522 \ (7) \\ 1.598 \ (10) \\ 1.508 \ (6) \\ 0.9700 \\ 1.534 \ (6) \\ 0.9700 \\ 0.9700 \\ 1.537 \ (6) \end{array}$	1.999 (4)N8B-C7B 2.013 (3)N8B-C9B 2.031 (3)N8B-H8B 2.041 (3)N11B-C12B 2.226 (3)N11B-C10B 1.476 (5)N11B-H11B 1.476 (5)C2B-C3B 0.9100 C2B-H2C 1.304 (6)C2B-H2D 1.480 (6)C3B-H3D 1.443 (6)C3B-H3D 1.443 (6)C3B-H3D 1.444 (5)C5B-C51B 0.9100 C5B-C6B 1.476 (5)C6B-C7B 1.492 (5)C6B-H6C 0.9100 C6B-H6D 1.208 (5)C7B-C71B 1.218 (5)C7B-C72B 1.541 (5)C9B-H9D 0.9700 C10B-H10C 0.9700 C10B-H10C 0.9700 C10B-H10D 0.9700 C12B-C13B 1.489 (7)C12B-H12C 1.510 (7)C12B-H12C 1.510 (7)C13B-C15B 1.522 (7)C14B-H14D 1.528 (10)C14B-H14D 1.598 (10)C14B-H14D 1.598 (10)C14B-H14D 1.598 (10)C16B-H15F 0.9700 C15B-H15F 0.9700 C15B-H15F 0.9700 C15B-H15F 0.9700 C16B-H16F 0.9700 C16B-H16F 0.9700 C16B-H16F 0.9700 C16B-H16F 0.9700 C16B-H16F 0.9700 C15B-H51E 1.537 (6)C51B-H51F

C13A—C15A	1.553 (6)	C71B—H71D	0.9600
C14A—H14A	0.9700	C71B—H71E	0.9600
C14A—H14B	0.9700	C71B—H71F	0.9600
C51A—H51A	0.9600	C72B—H72D	0.9600
C51A—H51B	0.9600	С72В—Н72Е	0.9600
C51A—H51C	0.9600	C72B—H72F	0.9600
C71A—H71A	0.9600	N17B—O18B	1.227 (5)
C71A—H71B	0.9600	N17B—O19B	1.229 (5)
С71А—Н71С	0.9600	O10—H10E	0.839 (19)
С72А—Н72А	0.9600	O10—H10F	0.853 (19)
С72А—Н72В	0.9600	Ni6—C65 ⁱⁱ	1.876 (4)
С72А—Н72С	0.9600	Ni6—C65	1.876 (4)
C15A—C16A	1.522 (7)	Ni6—C66 ⁱⁱ	1.879 (4)
С15А—Н15А	0.9700	Ni6—C66	1.879 (4)
C15A—H15B	0.9700	N65—C65	1.149 (5)
С16А—Н16А	0.9600	N66—C66	1.147 (5)
C16A—H16B	0.9600	Ni7—C75	1.846 (5)
C16A—H16C	0.9600	Ni7—C75 ⁱⁱⁱ	1.846 (5)
Ni5—C56	1.871 (4)	Ni7—C76 ⁱⁱⁱ	1.874 (4)
Ni5—C56 ⁱ	1.871 (4)	Ni7—C76	1.874 (4)
Ni5—C55	1.877 (4)	N75—C75	1.148 (7)
Ni5—C55 ⁱ	1.877 (4)	N76—C76	1.150 (5)
N55—C55	1.146 (5)	Ni8—C85 ^{iv}	1.870 (5)
N56—C56	1.159 (6)	Ni8—C85	1.871 (5)
Cu1B—N4B	1.986 (4)	Ni8—C86 ^{iv}	1.880 (5)
Cu1B—N8B	2.018 (4)	Ni8—C86	1.880 (5)
Cu1B—N1B	2.020 (3)	N85—C85	1.145 (6)
Cu1B—N11B	2.026 (4)	N86—C86	1.136 (6)
Cu1B—O10	2.396 (3)	O11—H11F	0.832 (19)
Cu1B—N65	2.677 (4)	O12—H12E	0.835 (19)
N1B—C14B	1.465 (5)	O12—H12F	0.832 (19)
N1B—C2B	1.500 (5)	O13—H13E	0.837 (19)
N1B—H1B	0.9100	O13—H13F	0.831 (19)
N4B—C5B	1.304 (6)	O14—H14E	0.818 (19)
N4B—C3B	1.474 (6)	O14—H14F	0.815 (19)
N4A—Cu1A—N11A	164.6 (2)	O10—Cu1B—N65	168.7 (1)
N4A—Cu1A—N8A	95.6 (2)	C14B—N1B—C2B	111.4 (3)
N11A—Cu1A—N8A	85.9 (1)	C14B—N1B—Cu1B	117.4 (3)
N4A—Cu1A—N1A	85.4 (2)	C2B—N1B—Cu1B	106.6 (3)
N11A—Cu1A—N1A	89.7 (1)	C14B—N1B—H1B	107.0
N8A—Cu1A—N1A	166.8 (2)	C2B—N1B—H1B	107.0
N4A—Cu1A—N55	99.9 (2)	Cu1B—N1B—H1B	107.0
N11A—Cu1A—N55	95.1 (1)	C5B—N4B—C3B	123.4 (4)
N8A—Cu1A—N55	96.7 (2)	C5B—N4B—Cu1B	126.2 (3)
N1A—Cu1A—N55	96.1 (1)	C3B—N4B—Cu1B	109.3 (3)
C14A—N1A—C2A	110.9 (3)	C7B—N8B—C9B	118.9 (4)
C14A—N1A—Cu1A	115.6 (2)	C7B—N8B—Cu1B	120.9 (3)
	× /		(-)

C2A—N1A—Cu1A	105.4 (2)	C9B—N8B—Cu1B	105.4 (3)
C14A—N1A—H1A	108.2	C7B—N8B—H8B	102.9
C2A—N1A—H1A	108.2	C9B—N8B—H8B	102.9
Cu1A—N1A—H1A	108.2	Cu1B—N8B—H8B	102.9
C5A—N4A—C3A	122.2 (4)	C12B—N11B—C10B	112.0 (3)
C5A—N4A—Cu1A	125.7 (3)	C12B—N11B—Cu1B	117.5 (3)
C3A—N4A—Cu1A	110.3 (3)	C10B—N11B—Cu1B	105.3 (3)
C7A—N8A—C9A	119.2 (4)	C12B—N11B—H11B	107.2
C7A—N8A—Cu1A	120.2 (3)	C10B—N11B—H11B	107.2
C9A—N8A—Cu1A	106.8 (3)	Cu1B—N11B—H11B	107.2
C7A—N8A—H8A	102.5	N1B—C2B—C3B	108.6 (4)
C9A—N8A—H8A	102.5	N1B—C2B—H2C	110.0
Cu1A—N8A—H8A	102.5	C3B—C2B—H2C	110.0
C12A— $N11A$ — $C10A$	112.0 (3)	N1B—C2B—H2D	110.0
C12A—N11A—Cu1A	117.1 (2)	C3B—C2B—H2D	110.0
C10A— $N11A$ — $Cu1A$	106.6 (2)	$H_2C - C_2B - H_2D$	108.4
C12A— $N11A$ — $H11A$	106.9	N4B-C3B-C2B	100.1 108.0(4)
C10A $N11A$ $H11A$	106.9	N4B-C3B-H3C	110.1
Cu1A N11A H11A	106.9	$C^{2}B = C^{3}B = H^{3}C$	110.1
0184 N17A 0194	123 1 (4)	N4B-C3B-H3D	110.1
018A - N17A - C13A	129.1(4) 119.2(3)	C2B-C3B-H3D	110.1
0194 1174 0134	117.2(3) 117.8(3)	$H_{3}C_{-}C_{3}B_{-}H_{3}D$	108.4
N14 - C24 - C34	108 5 (3)	N4B_C5B_C51B	1244(5)
N1A C2A H2A	110.0	N4B C5B C6B	127.7(3) 1183(1)
$C_{3}A = C_{2}A = H_{2}A$	110.0	C51B - C5B - C6B	117.2(4)
NIA C2A H2B	110.0	C5B C6B C7B	117.2(4) 117.2(4)
$C_{2A} = C_{2A} = H_{2B}$	110.0	$C_{2}D = C_{2}D = C_{2}D$	108.0
	108.4	C7P $C6P$ $H6C$	108.0
MA C3A C2A	100.4	$C_{D} = C_{D} = H_{D}$	108.0
N4A C2A H2A	107.0 (4)	C7P $C6P$ $H6D$	108.0
$A = C_{3A} = H_{3A}$	110.2		108.0
$C_{2A} = C_{3A} = H_{3A}$	110.2	NPP C7P C71P	107.2
N4A - C3A - H3B	110.2	NOD - C / D - C / ID	111.3(4) 107.0(4)
	10.2	NOD - C/D - COD	107.9(4)
	108.5	C/ID - C/D - C0D	107.3(4)
N4A = C5A = C51A	124.3(3)	$N\delta B = C/B = C/2B$	109.8(4) 100.5(5)
N4A - C3A - C0A	116.0 (4)	C/ID - C/D - C/2D	109.5(5)
$C_{5A} = C_{5A} = C_{5A}$	116.0 (5)	$C_{0B} - C_{B} - C_{2B}$	110.5(5)
C5A - C6A - C/A	115.9 (5)	C10B - C9B - 108C	107.4 (4)
C5A - C6A - H6A	108.3	C10B - C9B - H9C	110.2
C/A - C O A - H O A	108.3	N8B-C9B-H9C	110.2
СЗА—С6А—Н6В	108.3	CIOB—C9B—H9D	110.2
	108.3	N8B—C9B—H9D	110.2
H6A—C6A—H6B	107.4	H9C—C9B—H9D	108.5
$N\delta A - C/A - C/IA$	114.4 (4)	COD CLOB NILB	109.7 (4)
	110.2 (4)	CAR CIOR HIOC	109.7
C/1A - C/A - C6A	110.3 (5)	NIIB—CI0B—HI0C	109.7
N8A—C/A—C/2A	106.4 (5)	C9B—C10B—H10D	109.7
C/1A—C7A—C72A	107.3 (5)	N11B—C10B—H10D	109.7

C6A—C7A—C72A	108.0 (5)	H10C—C10B—H10D	108.2
N8A—C9A—C10A	107.5 (3)	N11B—C12B—C13B	118.5 (4)
N8A—C9A—H9A	110.2	N11B—C12B—H12C	107.7
С10А—С9А—Н9А	110.2	C13B—C12B—H12C	107.7
N8A—C9A—H9B	110.2	N11B—C12B—H12D	107.7
C10A—C9A—H9B	110.2	C13B— $C12B$ — $H12D$	107 7
H9A—C9A—H9B	108.5	H12C— $C12B$ — $H12D$	107.1
N11A—C10A—C9A	108.0(3)	C12B— $C13B$ — $C14B$	1170(4)
N11A—C10A—H10A	110.1	C12B $C13B$ $N17B$	109.8(3)
C9A - C10A - H10A	110.1	C12B = C13B = N17B C14B = C13B = N17B	105.6(3)
N11A_C10A_H10B	110.1	C12B $C13B$ $C15B$	100.0(3) 110.0(4)
C94 - C104 - H10B	110.1	C12B $C13B$ $C15B$	100.0(4) 100.3(4)
HIDA CIDA HIDB	108.4	N17B C13B C15B	107.3(+) 104.3(3)
$\frac{110A}{C12A} = C12A$	1144(3)	N1B C1AB C13B	104.3(3) 115.7(3)
$\frac{11}{12} - \frac{12}{12} - \frac{13}{12}$	108.7	N1B - C14B - H14C	108.7 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.7	$\begin{array}{c} \text{N1D} - \text{C14D} - \text{III4C} \\ \text{C12D} \text{C14D} \text{H14C} \\ \end{array}$	100.4
C13A - C12A - H12A	108.7	$\begin{array}{c} C13D - C14D - H14C \\ N1D - C14D - H14D \\ \end{array}$	100.4
$\mathbf{N}\mathbf{I}\mathbf{A} = \mathbf{C}\mathbf{I}2\mathbf{A} = \mathbf{H}\mathbf{I}2\mathbf{B}$	108.7	NID - CI4D - III4D	108.4
U12A = C12A = H12B	108.7	$U_{13} = U_{14} = U$	108.4
H12A - C12A - H12B	107.0	H14C - C14B - H14D	107.4
C12A = C13A = C14A	115.2(3)	CIGB CISB UISE	114.2 (4)
C12A - C13A - N17A	108.9 (3)	Clob—Clob—Hlof	108.7
C12A = C12A = C12A	108.1 (3)	CISB—CISB—HISF	108.7
C12A - C13A - C15A	111.0 (3)	CI6B—CI5B—HI5G	108.7
C14A - C13A - C15A	107.7 (3)	CI3B—CI5B—HI5G	108.7
N17A—C13A—C15A	105.6 (3)	HISF—CISB—HISG	107.6
NIA—CI4A—CI3A	115.0 (3)	C15B—C16B—H16D	109.5
N1A—C14A—H14A	108.5	C15B—C16B—H16E	109.5
C13A—C14A—H14A	108.5	H16D—C16B—H16E	109.5
N1A—C14A—H14B	108.5	C15B—C16B—H16F	109.5
C13A—C14A—H14B	108.5	H16D—C16B—H16F	109.5
H14A—C14A—H14B	107.5	H16E—C16B—H16F	109.5
C5A—C51A—H51A	109.5	C5B—C51B—H51D	109.5
C5A—C51A—H51B	109.5	C5B—C51B—H51E	109.5
H51A—C51A—H51B	109.5	H51D—C51B—H51E	109.5
C5A—C51A—H51C	109.5	C5B—C51B—H51F	109.5
H51A—C51A—H51C	109.5	H51D—C51B—H51F	109.5
H51B—C51A—H51C	109.5	H51E—C51B—H51F	109.5
C7A—C71A—H71A	109.5	C7B—C71B—H71D	109.5
C7A—C71A—H71B	109.5	C7B—C71B—H71E	109.5
H71A—C71A—H71B	109.5	H71D—C71B—H71E	109.5
C7A—C71A—H71C	109.5	C7B—C71B—H71F	109.5
H71A—C71A—H71C	109.5	H71D—C71B—H71F	109.5
H71B—C71A—H71C	109.5	H71E—C71B—H71F	109.5
C7A—C72A—H72A	109.5	C7B—C72B—H72D	109.5
C7A—C72A—H72B	109.5	C7B—C72B—H72E	109.5
H72A—C72A—H72B	109.5	H72D—C72B—H72E	109.5
C7A—C72A—H72C	109.5	C7B—C72B—H72F	109.5
H72A—C72A—H72C	109.5	H72D—C72B—H72F	109.5

H72B—C72A—H72C	109.5	H72E—C72B—H72F	109.5
C16A—C15A—C13A	115.9 (4)	O18B—N17B—O19B	123.1 (4)
C16A—C15A—H15A	108.3	O18B—N17B—C13B	119.3 (4)
C13A—C15A—H15A	108.3	O19B—N17B—C13B	117.6 (4)
C16A—C15A—H15B	108.3	Cu1B—O10—H10E	125 (4)
C13A—C15A—H15B	108.3	Cu1B—O10—H10F	114 (4)
H15A—C15A—H15B	107.4	H10E—O10—H10F	103 (4)
C15A—C16A—H16A	109.5	C65 ⁱⁱ —Ni6—C65	180.0
C15A—C16A—H16B	109.5	C65 ⁱⁱ —Ni6—C66 ⁱⁱ	89.14 (18)
H16A—C16A—H16B	109.5	C65—Ni6—C66 ⁱⁱ	90.86 (18)
C15A—C16A—H16C	109.5	C65 ⁱⁱ —Ni6—C66	90.86 (18)
H16A—C16A—H16C	109.5	C65—Ni6—C66	89.14 (18)
H16B—C16A—H16C	109.5	C66 ⁱⁱ —Ni6—C66	180.00 (14)
C56—Ni5—C56 ⁱ	179.999 (1)	C65—N65—Cu1B	137.7 (3)
C56—Ni5—C55	90.63 (16)	N65—C65—Ni6	178.1 (4)
C56 ⁱ —Ni5—C55	89.37 (16)	N66—C66—Ni6	179.1 (4)
C56—Ni5—C55 ⁱ	89.37 (16)	C75—Ni7—C75 ⁱⁱⁱ	180.000 (1)
C56 ⁱ —Ni5—C55 ⁱ	90.63 (16)	C75—Ni7—C76 ⁱⁱⁱ	89.64 (19)
C55—Ni5—C55 ⁱ	179.999 (1)	C75 ⁱⁱⁱ —Ni7—C76 ⁱⁱⁱ	90.36 (19)
C55—N55—Cu1A	168.2 (3)	C75—Ni7—C76	90.36 (19)
N55—C55—Ni5	177.4 (4)	C75 ⁱⁱⁱ —Ni7—C76	89.64 (19)
N56—C56—Ni5	179.6 (5)	C76 ⁱⁱⁱ —Ni7—C76	179.998 (3)
N4B—Cu1B—N8B	95.9 (2)	N75—C75—Ni7	179.2 (6)
N4B—Cu1B—N1B	86.0 (2)	N76—C76—Ni7	179.0 (4)
N8B—Cu1B—N1B	177.7 (2)	C85 ^{iv} —Ni8—C85	179.999 (2)
N4B—Cu1B—N11B	170.7 (2)	C85 ^{iv} —Ni8—C86 ^{iv}	89.5 (2)
N8B—Cu1B—N11B	86.9 (2)	C85—Ni8—C86 ^{iv}	90.5 (2)
N1B—Cu1B—N11B	91.0 (2)	C85 ^{iv} —Ni8—C86	90.5 (2)
N4B—Cu1B—O10	101.6 (2)	C85—Ni8—C86	89.5 (2)
N8B—Cu1B—O10	87.0 (2)	C86 ^{iv} —Ni8—C86	180.0
N1B—Cu1B—O10	93.9 (1)	N85—C85—Ni8	179.4 (5)
N11B—Cu1B—O10	87.3 (2)	N86—C86—Ni8	179.8 (5)
N4B—Cu1B—N65	88.6 (2)	H11E—O11—H11F	109 (4)
N8B—Cu1B—N65	96.8 (2)	H12E—O12—H12F	112 (4)
N1B—Cu1B—N65	81.9 (1)	H13E—O13—H13F	106 (4)
N11B—Cu1B—N65	82.2 (1)	H14E—O14—H14F	105 (4)

Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x, -y+1, -z; (iii) -x+3, -y, -z+1; (iv) -x, -y-1, -z+1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1A—H1A…N85 ^v	0.91	2.26	3.124 (5)	159
N11 <i>A</i> —H11 <i>A</i> ···O14	0.91	2.11	2.869 (5)	140
N11 <i>A</i> —H11 <i>A</i> ···O19 <i>A</i>	0.91	2.41	2.978 (5)	121
N1 <i>B</i> —H1 <i>B</i> ···O19 <i>A</i>	0.91	2.12	2.937 (5)	149
N8 <i>B</i> —H8 <i>B</i> ···O12	0.91	2.13	3.041 (5)	174
N8 <i>B</i> —H8 <i>B</i> ···O10	0.91	2.58	3.052 (5)	113

N11 <i>B</i> —H11 <i>B</i> ···O19 <i>B</i>	0.91	2.29	2.874 (5)	122	
O10—H10 E ···N75 ^{vi}	0.84 (5)	1.92 (5)	2.745 (6)	168 (5)	
O10—H10F…O12	0.85 (5)	1.93 (5)	2.702 (5)	151 (5)	
O11—H11E····N66 ^{vii}	0.84 (3)	2.04 (4)	2.870 (5)	170 (6)	
O11—H11F…N56	0.83 (5)	2.28 (5)	3.106 (5)	172 (5)	
O12—H12F…N86	0.83 (4)	1.97 (4)	2.788 (5)	168 (6)	
O12—H12E…O13	0.84 (4)	1.88 (3)	2.702 (5)	171 (6)	
O13—H13E…O11 ^{viii}	0.84 (4)	1.94 (4)	2.733 (5)	158 (6)	
O13—H13F…N56 ^{vii}	0.83 (4)	2.15 (4)	2.973 (6)	170 (5)	
O14—H14E…N76 ^{vi}	0.82 (4)	2.03 (4)	2.847 (5)	174 (7)	
O14—H14F…N85 ^v	0.82 (5)	2.10 (5)	2.872 (6)	159 (6)	

Symmetry codes: (v) *x*, *y*+1, *z*; (vi) *x*-1, *y*, *z*; (vii) -*x*+1, -*y*+1, -*z*; (viii) *x*-1, *y*-1, *z*.