research papers

Received 18 December 2018 Accepted 14 June 2019

Edited by I. D. Williams, Hong Kong University of Science and Technology, Hong Kong

Keywords: arsenate; phosphate; caesium; lithium; ammonium; statistical evaluation; crystal structure; H₂PO₄; H₂AsO₄; H₃AsO₄; As—O bond lengths.

CCDC references: 1922991; 1922990; 1922989

Supporting information: this article has supporting information at journals.iucr.org/c

Three new acid M^+ arsenates and phosphates with multiply protonated As/PO₄ groups

Karolina Schwendtner^a* and Uwe Kolitsch^{b,c}

^aInstitute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9, Wien 1060, Austria, ^bMineralogisch-Petrographische Abteilung, Naturhistorisches Museum, Burgring 7, Wien 1010, Austria, and ^cInstitut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, Wien 1090, Austria. *Correspondence e-mail: karolina.schwendtner@tuwien.ac.at

The crystal structures of caesium dihydrogen arsenate(V) bis[trihydrogen arsenate(V)], Cs(H₂AsO₄)(H₃AsO₄)₂, ammonium dihydrogen arsenate(V) trihydrogen arsenate(V), NH₄(H₂AsO₄)(H₃AsO₄), and dilithium bis(dihydrogen phosphate), Li₂(H₂PO₄)₂, were solved from single-crystal X-ray diffraction data. $NH_4(H_2AsO_4)(H_3AsO_4)$, which was hydrothermally synthesized (T = 493 K), is homeotypic with $Rb(H_2AsO_4)(H_3AsO_4)$, while Cs- $(H_2AsO_4)(H_3AsO_4)_2$ crystallizes in a novel structure type and $Li_2(H_2PO_4)_2$ represents a new polymorph of this composition. The Cs and Li compounds grew at room temperature from highly acidic aqueous solutions. $Li_2(H_2PO_4)_2$ forms a three-dimensional (3D) framework of PO₄ tetrahedra sharing corners with Li_2O_6 dimers built of edge-sharing LiO₄ groups, which is reinforced by hydrogen bonds. The two arsenate compounds are characterized by a 3D network of AsO₄ groups that are connected solely *via* multiple strong hydrogen bonds. A statistical evaluation of the As-O bond lengths in singly, doubly and triply protonated AsO₄ groups gave average values of 1.70 (2) Å for 199 As-OH bonds, 1.728 (19) Å for As–OH bonds in HAsO₄ groups, 1.714 (12) Å for As-OH bonds in H₂AsO₄ groups and 1.694 (16) Å for As-OH bonds in H₃AsO₄ groups, and a grand mean value of 1.667 (18) Å for As-O bonds to nonprotonated O atoms.

1. Introduction

 M^+ phosphates and arsenates, and their crystal structures and physicochemical properties, have been extensively studied. Several compounds exhibit interesting properties, such as protonic conductivity (Chouchene *et al.*, 2017*a,b*; Volkov *et al.*, 1995, 1997; Voronov *et al.*, 2013; Dekhili *et al.*, 2018) or nonlinear optical properties (Dhouib *et al.*, 2014*a*, 2017; Kumaresan *et al.*, 2008).

To further increase the knowledge about the possible compounds and structure types of M^+-M^{3+} arsenates, a comprehensive study of the system M^+-M^{3+} –O–(H–)As/P⁵⁺ (M^+ = Li, Na, K, Rb, Cs, Ag, Tl and NH₄; M^{3+} = Al, Ga, In, Sc, Fe, Cr and Tl) was undertaken, which led to a large number of new structure types that have been published (Schwendtner, 2006; Schwendtner & Kolitsch, 2004*a*,*b*, 2005, 2007*a*,*b*,*c*, 2017*a*,*b*, 2018). The three compounds structurally characterized in the present article are by-products of this comprehensive study. The following paragraphs provide brief backgrounds to the families of materials to which the three compounds belong.

Lithium phosphates are rather common and the system Li– H–P–O has been widely studied because of the proton conductivity of compounds like LiH_2PO_4 (Catti & Ivaldi, 1978). The title compound $\text{Li}_2(\text{H}_2\text{PO}_4)_2$ is a new polymorph of

Table 1 Experimental details.

Experiments were carried out at 293 K with Mo $K\alpha$ radiation using a Nonius KappaCCD single-crystal four-circle diffractometer. Absorption was corrected for by multi-scan methods (*SCALEPACK*; Otwinowski *et al.*, 2003).

	$Cs(H_2AsO_4)(H_3AsO_4)_2$	(NH ₄)(H ₂ AsO ₄)(H ₃ AsO ₄)	Li ₂ (H ₂ PO ₄) ₂	
Crystal data				
Chemical formula	$Cs(H_2AsO_4)(H_3AsO_4)_2$	$(NH_4)(H_2AsO_4)(H_3AsO_4)$	$Li_2(H_2PO_4)_2$	
$M_{ m r}$	557.73	300.92	207.85	
Crystal system, space group	Monoclinic, $P2_1/c$	Orthorhombic, Pbca	Monoclinic, $P2_1/n$	
a, b, c (Å)	9.712 (2), 12.738 (3), 9.307 (2)	7.943 (2), 9.855 (2), 19.623 (4)	5.400 (1), 15.927 (3), 7.562 (2)	
α, β, γ (°)	90, 90.91 (3), 90	90, 90, 90	90, 90.47 (3), 90	
$V(\dot{A}^3)$	1151.2 (4)	1536.1 (6)	650.4 (2)	
Ζ	4	8	4	
$\mu \text{ (mm}^{-1})$	11.83	8.71	0.67	
Crystal size (mm)	$0.14 \times 0.13 \times 0.08$	$0.15 \times 0.10 \times 0.07$	$0.15 \times 0.12 \times 0.10$	
Data collection				
T_{\min}, T_{\max}	0.288, 0.451	0.355, 0.581	0.906, 0.936	
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	8200, 4186, 3411	1799, 1295, 905	5625, 2857, 2490	
Completeness to 0.84 Å resolution	1.00	0.65	1.00	
R _{int}	0.016	0.038	0.014	
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.758	0.676	0.806	
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.023, 0.054, 1.05	0.046, 0.109, 1.02	0.025, 0.072, 1.04	
No. of reflections	4186	1295	2857	
No. of parameters	178	136	126	
No. of restraints	1	9	0	
H-atom treatment	All H-atom parameters refined	Only H-atom coordinates refined	All H-atom parameters refined	
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.91, -1.60	0.74, -0.61	0.44, -0.38	

Computer programs: COLLECT (Nonius, 2003), DENZO and SCALEPACK (Otwinowski et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015), DIAMOND (Brandenburg, 2005) and publcIF (Westrip, 2010).

this well-known compound. Other known compounds in the Li–H–P–O system, the majority containing polymerized phosphate groups, include Li₄H(PO₃)₅, LiH₂PO₂, Li₆(P₆O₁₈)(H₂O)₃, Li₄P₂O₈(H₂O)₄, Li₃(P₃O₉)(H₂O)₃, Li₆(P₆O₁₈)(H₂O)₅, Li₄(P₄O₁₂)-(H₂O)₅, Li₆(P₆O₁₈)(H₂O)_{8.24}, Li₆(P₆O₁₈)(H₂O)_{9.86}, Li₃PO₄ and Li₄P₂O₇.

Known caesium arsenates include CsAs₃O₈ (Schwendtner & Kolitsch, 2007*a*), Cs₃AsO₄ (Emmerling *et al.*, 2002), Cs₂-(HAsO₄)(H₂O)₂ (Stöger & Weil, 2014), KDP-type Cs(H₂AsO₄) (Ferrari *et al.*, 1956) and CsH₅(AsO₄)₂ (Naili *et al.*, 2001). Ammonium arsenate compounds comprise (NH₄)(H₂AsO₄), for which a tetragonal KDP-type polymorph (Khan & Baur, 1972) and an orthorhombic low-temperature polymorph (Fukami, 1989) were reported, (NH₄)₂(HAsO₄) (Weil, 2012) and (NH₄)₃(AsO₄)(H₂O)₃ (Hseu & Lu, 1977).

Compounds containing H_3AsO_4 groups are relatively rare and mainly known from compounds containing organic groups (*e.g.* Dekola *et al.*, 2011; Dhouib *et al.*, 2014*a*,*b*, 2017; Ratajczak *et al.*, 2000). Inorganic compounds containing arsenic acid (with clearly located H atoms of the H_3AsO_4 group) and with known crystal structures are restricted to only seven representatives: $CuH_{10}(AsO_4)_4$ (Tran Qui & Chiadmi, 1986) and isotypic $ZnH_{10}(AsO_4)_4$ (Sure & Guse, 1989) (the O–H bonds were not clearly identified in the latter structure determination), $RbH_5(AsO_4)_2$ (Naili & Mhiri, 2001), $CsH_5(AsO_4)_2$ (Naili *et al.*, 2001), $K_4(SO_4)(HSO_4)_2(H_3AsO_4)$ (Amri *et al.*, 2007), $Cs_4(SeO_4)(HSO_4)_2(H_3AsO_4)$ (Amri *et al.*, 2009) and isotypic $Rb_4(SO_4)(HSO_4)_2(H_3AsO_4)$ (Belhaj Salah *et al.*, 2018). (NH₄)₂(H₃AsO₄)(SO₄) (Boubia *et al.*, 1985) also contains H_3AsO_4 groups, but the H atoms were not located, and for $CdH_{10}(AsO_4)_4$ (Tran Qui & Chiadmi, 1986), hydrogenbond details were published, but no atomic coordinates.

2. Experimental

2.1. Synthesis and crystallization

Analytical grade chemicals were used for all syntheses. $NH_4(H_2AsO_4)(H_3AsO_4)$ was grown by hydrothermal methods (T = 493 K, 7 d, Teflon-lined stainless steel autoclave) from a mixture of In_2O_3 and $H_3AsO_4 \cdot 0.5H_2O$ in an approximate volume ratio of 1:10 and 10 drops of $NH_4(OH)$ (32%). No additional H_2O was added. The reaction product was a solid mass of colourless intergrown crystals with less than 10 vol% of a yellow unidentified material. The $NH_4(H_2AsO_4)$ -(H_3AsO_4) crystals are stable in air.

 $Cs(H_2AsO_4)(H_3AsO_4)_2$ formed as the secondary product from further reaction of hydrothermally grown $CsAs_3O_8$ (Schwendtner & Kolitsch, 2007*a*). $CsAs_3O_8$ contains AsO_6 groups, is highly hygroscopic and, at room temperature, decomposes to a highly acidic liquid in which rounded prismatic glassy colourless crystals of $Cs(H_2AsO_4)(H_3AsO_4)_2$ grew within a few weeks.

 $Li_2(H_2PO_4)_2$ was also a secondary product of a hydrothermal run (T = 493 K, 7 d, Teflon-lined stainless steel autoclave) from a mixture of Li_2CO_3 , Ga_2O_3 , phosphoric acid and distilled water. The initial and final pH values were both about 1. The hydrothermal synthesis yielded globular crystal

Selected bond le	engths (A) for $Cs(H_2)$	$(H_3AsO_4)(H_3AsO_4)_2.$	
Cs1-O6 ⁱ	3.1202 (17)	As1-O1	1.6437 (15)
$Cs1 - O2^{ii}$	3.2184 (19)	As1-O2	1.6903 (17)
$Cs1 - O3^{iii}$	3.2326 (19)	As1-O3	1.6970 (17)
Cs1-O4	3.2469 (17)	As1-O4	1.7025 (16)
$Cs1 - O5^{iv}$	3.2536 (18)	As2–O5	1.6390 (16)
$Cs1-O1^{v}$	3.3579 (17)	As2-O6	1.6874 (16)
$Cs1-O11^{vi}$	3.359 (2)	As2-O7	1.6977 (19)
Cs1-O12	3.478 (2)	As2-O8	1.7004 (19)
Cs1-O9 ^{vii}	3.7056 (19)	As3-O9	1.6515 (16)
Cs1-O11 ^{viii}	3.755 (3)	As3-O10	1.6579 (17)
Cs1-O8	3.844 (2)	As3-O12	1.707 (2)
Cs1-O7 ^{vii}	3.924 (3)	As3-011	1.7104 (19)

Table 2 Selected bond lengths (Å) for $Cs(H_2AsO_4)(H_3AsO_4)_2$

aggregates of rounded hexagonal prisms of $GaPO_4$. From the remaining acidic liquid of the synthesis, $Li_2(H_2PO_4)_2$ grew as colourless crude block-shaped crystals by slow evaporation at room temperature.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. $NH_4(H_2AsO_4)(H_3AsO_4)$ disintegrated ('melted') during the measurement, so only the first two sets or 65% of the Ewald sphere could be measured. Specifically, we note that out of the nine sets collected, the first two were fully usable (no decay visible); the decay only started with set 3, so we ignored sets 3-9. We did not observe any anomalous behaviour of the data set during scaling. The remaining sets showed a pseudocubic I-centred tetragonal unit cell, with approximate a and c values of 7.68 and 7.69 Å, respectively; possibly NH₄(H₂AsO₄)(H₃AsO₄) recrystallized to pseudocubic I42d-type (NH₄)H₂AsO₄ (Fukami, 1989). Nine reflections with negative intensities (blocked by the beam stop) were omitted from the refinement. All N-H and O-H bonds were restricted to 0.9 ± 0.2 Å, as was the O6–H6 bond in $Cs(H_2AsO_4)(H_3AsO_4)_2$. The O-H bonds in $Li_2(H_2PO_4)_2$

Figure 1

The principal building unit of $Cs(H_2AsO_4)(H_3AsO_4)_2$, shown as displacement ellipsoids at the 70% probability level. The symmetry codes are as defined in Table 2.

were not restrained as they refined to reasonable values for refinements based on the X-ray diffraction data sets.

3. Results and discussion

The asymmetric unit of Cs(H₂AsO₄)(H₃AsO₄)₂ contains one Cs, three As, 12 O and eight H atoms (Fig. 1). The Cs atom is 12-coordinated, with the Cs–O bond lengths varying between 3.1202(17) and 3.934(3) Å (Table 2). The average Cs–O bond length (3.458 Å) is considerably longer than the statistical average of 3.377 Å for 12-coordinated Cs atoms (Gagné & Hawthorne, 2016), explaining the low bond-valence sum (BVS; Gagné & Hawthorne, 2015) of 0.85 v.u. The As-O bond lengths are very similar for the doubly (As3) and triply protonated (As1 and As2) As atoms (1.683-1.681 Å) and slightly shorter than the statistical average of 1.687 Å (Gagné & Hawthorne, 2018a). Since two/three O atoms of the coordination polyhedra are protonated, the As-O bond lengths are only slightly elongated compared to unprotonated O atoms. The BVSs of the three As atoms are between 5.06 and 5.09 v.u. and thus close to the expected value, whereas all O atoms are considerably underbonded, with BVSs ranging from 1.22 to 1.53 v.u., and are all either donors or acceptors of hydrogen bonds. The latter are strong (compared to the other H_3AsO_4 -containing compounds cited above), with $O-H \cdots O$ distances in the range 2.524 (2)-2.664 (2) Å (Table 3) and connect the individual protonated AsO₄ tetrahedra into a three-dimensional (3D) network (Figs. 2a-c). In the [101]

Figure 2

Structural drawings of novel Cs(H₂AsO₄)(H₃AsO₄)₂, viewed along (*a*) *a*, (*b*) *c*, (*c*) *b* and (*d*) [101]. The unit cell is outlined. AsO₄ tetrahedra (yellow) are connected *via* multiple hydrogen bonds (blue) into a 3D network. The Cs⁺ cations lie between the AsO₄ tetrahedra.

Table 3Hydrogen-bond geometry (Å, $^{\circ}$) for Cs(H2AsO4)(H3AsO4)2.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$\Omega^2 = H^2 \cdots \Omega^{10^{\text{viii}}}$	0.83(4)	1 70 (4)	2 524 (2)	171 (4)
$O3-H3\cdots O9^{ix}$	0.79 (4)	1.76 (4)	2.553 (3)	172 (4)
$O4-H4\cdots O1^{iii}$	0.92(3)	1.70 (3)	2.609(2)	170 (3)
O6−H6···O10	0.91(2)	1.64 (2)	2.539 (2)	170 (4)
O7−H7···O9 ^{vii}	0.81(4)	1.79 (4)	2.599 (3)	177 (4)
$O11-H11\cdots O1^{vi}$	0.79 (4)	1.85 (4)	2.630 (3)	168 (4)
$O8-H8\cdots O5^{iv}$	0.82(4)	1.85 (4)	2.664(2)	170 (4)
$O12-H12\cdots O5^{iv}$	0.81 (4)	1.84 (4)	2.643 (3)	171 (4)

Symmetry codes: (iii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$, (iv) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (vi) -x + 1, -y + 1, -z + 1; (vii) -x + 1, -y + 1, -z; (viii) x - 1, y, z; (ix) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$.

Table 4

Selected bond lengths (Å) for (NH₄)(H₂AsO₄)(H₃AsO₄).

N-O5	2.869 (10)	N-O3 ⁱ	3.283 (10)
N-O1 ⁱ	2.947 (9)	As1-O1	1.648 (5)
N-O5 ⁱ	3.032 (11)	As1-O2	1.662 (6)
$N-O2^{ii}$	3.075 (9)	As1-O3	1.705 (6)
N-O4 ⁱⁱⁱ	3.082 (9)	As1-O4	1.714 (5)
N-O6	3.148 (10)	As2-O5	1.632 (6)
N-O7 ^{iv}	3.194 (10)	As2-O8	1.692 (5)
N-O3	3.216 (10)	As2-O7	1.693 (5)
$N-O8^{v}$	3.272 (9)	As2-O6	1.696 (6)

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, z; (ii) -x, -y + 1, -z; (iii) -x + 1, -y + 1, -z; (iv) $x + \frac{1}{2}$, y, $-z - \frac{1}{2}$; (v) -x + 1, $y + \frac{1}{2}$, $-z - \frac{1}{2}$.

direction, the structure forms tunnels walled by AsO_4 tetrahedra in which the Cs atom is located (Fig. 2*d*).

The structure of $(NH_4)(H_2AsO_4)(H_3AsO_4)$ is homeotypic with that of Rb(H₂AsO₄)(H₃AsO₄) (Naili & Mhiri, 2001); the Rb^+ cation is replaced by an NH_4^+ group providing additional hydrogen bonds to the atomic arrangement. This structure type is also closely related to that of $CsH_5(AsO_4)_2$ (Naili *et al.*, 2001), which can be seen as a distorted version of the $Rb(H_2AsO_4)(H_3AsO_4)$ structure type. The structure of (NH₄)(H₂AsO₄)(H₃AsO₄) is built of individual, doubly or triply protonated AsO₄ tetrahedra that are connected via strong hydrogen bonds into a 3D network (Figs. 3, 4a and 4b). The NH_4^+ groups lie in voids and further reinforce the network via medium-to-weak strength hydrogen bonds. AsO4 tetrahedra and NH₄⁺ cations are arranged in layers perpendicular to c (Fig. 4). The NH₄⁺ cation is ten-coordinated, with an average N-O bond distance of 3.112 Å (Table 4), leading to a BVS of 0.97 v.u. (García-Rodríguez et al., 2000). Both AsO₄ groups are overbonded (5.08 and 5.13 v.u. for As1 and

Figure 3

The principal building unit of $(NH_4)(H_2AsO_4)(H_3AsO_4)$, shown as displacement ellipsoids at the 70% probability level. Hydrogen bonds are shown as blue dashed lines.

Table 5 Hydrogen-bond geometry (Å, $^\circ)$ for (NH_4)(H_2AsO_4)(H_3AsO_4).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N-H1\cdots O4^{iii}$	0.89(2)	2.36 (8)	3.082 (9)	138 (10)
$N-H1\cdots O7^{iv}$	0.89 (2)	2.54 (9)	3.194 (10)	130 (9)
$N-H4\cdots O5^{i}$	0.90(2)	2.20(7)	3.032 (11)	154 (14)
$N-H3 \cdots O1^{i}$	0.89 (2)	2.10 (4)	2.947 (9)	159 (9)
$N-H2 \cdot \cdot \cdot O5$	0.91(2)	1.96 (2)	2.869 (10)	174 (7)
$O3-H5\cdots O1^{vi}$	0.89 (2)	2.13 (15)	2.616 (7)	113 (12)
$O3-H5\cdots O3^{ii}$	0.89 (2)	2.61 (11)	3.311 (12)	136 (13)
$O6-H7\cdots O2^{vii}$	0.90(2)	1.82 (10)	2.653 (9)	152 (19)
$O4-H6\cdots O1^{i}$	0.89(2)	1.77 (3)	2.650 (8)	170 (7)
$O7-H8\cdots O2^{viii}$	0.89(2)	1.72 (4)	2.568 (8)	157 (8)
$O8-H9\cdots O5^{iv}$	0.89 (2)	1.78 (6)	2.590 (7)	150 (11)

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, z; (ii) -x, -y + 1, -z; (iii) -x + 1, -y + 1, -z; (iv) $x + \frac{1}{2}$, y, $-z - \frac{1}{2}$; (vi) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, -z; (vii) $-x + \frac{1}{2}$, -y + 1, $z - \frac{1}{2}$; (viii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

As2, respectively), although the average As-O bond lengths (1.682 and 1.678 Å) are fairly close to the statistical average of 1.687 Å (Gagné & Hawthorne, 2018a). All O atoms are considerably underbonded and participate in a complex hydrogen-bonding network (Table 5). In $Rb(H_2AsO_4)(H_3AsO_4)$ (Naili & Mhiri, 2001), there are some very strong hydrogen bonds present (2.432 Å) that connect the structure along the caxis. Hydrogen bonds with $O-H \cdots O$ distances < 2.5 Å are also present in many isostoichiometric $M^+H_5(PO_4)_2$ compounds [see compilation in Naili & Mhiri (2001)]. In (NH₄)- $(H_2AsO_4)(H_3AsO_4)$, these O-H···O hydrogen bonds are still strong but considerably longer, ranging from 2.568 (8) to 2.653 (9) Å. This is probably due to a small shift of the atom positions in the two compounds, seen also from an inspection of the unit cells of the two homeotypic compounds. While unitcell parameters a and b are quite similar and 0.003 and 0.033 Å longer, respectively, in the ammonium compound, unit-cell

Structural drawings of $(NH_4)(H_2AsO_4)(H_3AsO_4)$, viewed along (a) [110] and (b) b. The unit cell is outlined. AsO₄ tetrahedra (yellow) are connected via multiple hydrogen bonds (blue dashed lines) into a 3D network. AsO₄ tetrahedra and NH_4^+ cations are arranged in layers perpendicular to c. Additional hydrogen bonds of medium strength are provided by the NH_4^+ cations.

Table 6Hydrogen-bond geometry (Å, °) for $Li_2(H_2PO_4)_2$.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} O3 - H1 \cdots O7^{vi} \\ O4 - H2 \cdots O2^{iv} \\ O7 - H3 \cdots O6^{vii} \\ O8 - H4 \cdots O1^{viii} \end{array}$	0.77 (2)	1.91 (2)	2.6769 (12)	171 (2)
	0.84 (2)	1.99 (2)	2.8292 (14)	176 (2)
	0.73 (2)	1.79 (2)	2.5210 (13)	172 (3)
	0.79 (2)	1.79 (2)	2.5667 (12)	167 (2)

Symmetry codes: (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (vi) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (vii) -x + 2, -y + 1, -z + 1; (viii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.

Table 7Selected bond lengths (Å) for $Li_2(H_2PO_4)_2$.

Li1-O5	1.888 (2)	Li2-P2 ^{iv}	3.077 (2)
Li1-O6 ⁱ	1.902 (2)	P1-O1	1.4996 (9)
Li1-O8 ⁱⁱ	1.967 (2)	P1-O2	1.5043 (8)
Li1-O2	2.045 (2)	P1-O3	1.5588 (9)
Li1–Li2 ⁱⁱⁱ	2.611 (3)	P1-O4	1.5917 (8)
Li1-P2 ⁱ	3.068 (2)	P2-O5	1.4944 (8)
Li2–O5 ^{iv}	1.919 (2)	P2-O6	1.5113 (8)
Li2-O1	1.944 (2)	P2-O7	1.5640 (9)
$Li2-O4^{v}$	1.973 (2)	P2-O8	1.5774 (8)
Li2-O2 ^{iv}	1.974 (2)		

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z + 2; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (v) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

parameter *c* is considerably shorter [19.623 (4) Å; Table 1] in comparison with that of the rubidium compound [20.4226 (6) Å; Naili & Mhiri, 2001], leading also to a distinctly smaller unit-cell volume of $(NH_4)(H_2AsO_4)(H_3AsO_4)$. This change is explained, unlike what is expected from the slightly different effective ionic radii of NH_4^+ and Rb^+ (the latter is slightly smaller), firstly, by the ability of the NH_4^+ cation to form hydrogen bonds, and, secondly, by a slight shift of the As1 atoms in the *b* direction and a slight expansion in that direction. Hydrogen bonds connecting adjacent As2O₄ tetrahedra in the *b* direction in $Rb(H_2AsO_4)(H_3AsO_4)$ are lost and replaced by hydrogen bonds connecting As1O₄ and As2O₄ along *c* in $(NH_4)(H_2AsO_4)(H_3AsO_4)$ (Fig. 5), resulting in a compression of the whole structure along *c*.

Figure 6

The principal building unit of $Li_2(H_2PO_4)_2$, shown with displacement ellipsoids at the 70% probability level. The symmetry codes are as defined in Table 7.

The asymmetric unit of monoclinic $(P2_1/n)$ Li₂(H₂PO₄)₂ contains two Li, two P, eight O and four H atoms, all in general positions (Fig. 6). $Li_2(H_2PO_4)_2$ is built of LiO_4 tetrahedra that share edges with adjacent LiO₄ tetrahedra, thereby forming Li_2O_6 dimers (Fig. 7b). Each corner of the LiO_4 tetrahedra shares a corner with a PO₄ tetrahedron, thus connecting the Li_2O_6 dimers into a 3D network (Figs. 7a and 7b). This network is reinforced by hydrogen bonds of medium-to-high strength (Table 6). In the orthorhombic $(Pna2_1)$ dimorph of $Li(H_2PO_4)$ (Catti & Ivaldi, 1978), which is characterized by a high electrical (proton) conductivity (Hwan Oh et al., 2010), the LiO₄ tetrahedra share corners, thus forming chains that are connected by the PO₄ groups. In monoclinic $Li_2(H_2PO_4)_2$, the average (Table 7) Li-O (1.951 and 1.953 Å) and P-O(1.539 and 1.537 Å) bond lengths are very close to the statistical average of 1.972 Å (Gagné & Hawthorne, 2016) for Li-O and 1.537 Å (Gagné & Hawthorne, 2018b) for P-O

Figure 5 (G) Comparison of (a) homeotypic $(NH_4)(H_2AsO_4)(H_3AsO_4)$ with (b) $Rb(H_2AsO_4)(H_3AsO_4)$ (Naili & Mhiri, 2001). A shift (arrows in figure) of As1 in the b direction leads to a compression of the whole structure along c, and results in a change of the hydrogen-bonding network. Hydrogen bonds connecting As2O₄ tetrahedra along b are lost in $(NH_4)(H_2AsO_4)(H_3AsO_4)$, but new hydrogen bonds now connect As1O₄ and As2O₄ along c.

Statistical analysis of the As-O bolid rengins (A) in $\Pi_n AsO_4$ ($n = 1-3$) groups.							
Bond lengths	Analysed number	Average	Minimum	Maximum			
As-O/OH in H_n AsO ₄ (average)	97	1.687 (6)	1.660	1.709			
As $-O/OH$ in H _n AsO ₄ (individual)	388	1.687 (27)	1.614	1.801			
As-OH in H_n AsO ₄ (including split H-atom positions)	199	1.701 (23)	1.625	1.801			
As $-OH$ in H_nAsO_4 (no split H atoms)	117	1.714 (21)	1.625	1.801			
As–OH in HAsO ₄	43	1.728 (19)	1.689	1.801			
As–OH in H ₂ AsO ₄	41	1.714 (12)	1.688	1.749			
As–OH in H ₃ AsO ₄	33	1.694 (16)	1.625	1.712			
As-OH/2 (split H atoms) in H ₁₋₂ AsO ₄	82	1.683 (13)	1.656	1.714			
As $-O$ (no H atoms) in H _n AsO ₄	189	1.671 (23)	1.614	1.755			
As-O (no H/As*) in H_n AsO ₄	174	1.667 (18)	1.614	1.735			

Table 8							
Statistical	analysis o	of the As-O) bond len	gths (Å) ir	n H _n AsO ₄ (n = 1 - 3)	groups

Note: (*) no As-O-As bonds (see text).

bond lengths. This is also reflected by the nearly ideal BVSs (Gagné & Hawthorne, 2015) of 1.01 and 1.00 v.u. for Li1 and Li2, respectively, and 4.98 and 5.00 v.u. for P1 and P2, respectively. The most underbonded O atoms (O3, O4, O7 and O8, with BVSs of 1.16-1.37 v.u.) form strong-to-medium hydrogen bonds (Table 6). A comparison of the X-ray densities of monoclinic $Li_2(H_2PO_4)_2$ (2.123 kg m⁻³) and its orthorhombic dimorph LiH₂PO₄ (Catti & Ivaldi, 1978) (2.09 kg m^{-3}) suggests that monoclinic Li₂(H₂PO₄)₂ is slightly denser and therefore thermodynamically slightly more stable, at least under ambient conditions. Orthorhombic LiH₂PO₄ shows no phase transition between room temperature and 100 (Hwan Oh et al., 2010) or 17 K (Lee et al., 2008). We note that monoclinic $Li_2(H_2PO_4)_2$ most probably has an isotypic arsenate analogue, since Remy & Bachet (1967) were able to synthesize monoclinic $Li_2(H_2AsO_4)_2$, with a = 5.55, b = 16.36, c = 7.80 Å, $\beta = 90.53^{\circ}$ and space group $P2_1/n$, although they did not determine its crystal structure. Orthorhombic $Li(H_2PO_4)$ also has an isotypic arsenate analogue, the crystal structure of which was reported by Fanchon et al. (1987), who pointed out a slight rearrangement in one of the two independent hydrogen bonds.

4. Statistical evaluation of As—O bonds in protonated AsO₄ groups

Several statistical analyses of bond lengths in As⁵⁺O₄ polyhedra have been published recently. Gagné & Hawthorne (2018a) reported average As-O bond lengths of 1.687 (27) Å in AsO₄ and 1.830 (28) Å in AsO₆ groups, derived from 508 and 13 polyhedra, respectively. Schwendtner (2008) found similar values of 1.686 (29) and 1.827 (29) Å for a larger sample size of 704 AsO₄ and 40 AsO₆ polyhedra, respectively. An analysis of As-O bond lengths in minerals by Majzlan et al. (2014) gave a very similar value of 1.685 Å (no s.u. given) for the average As-O bond length and a value of 1.727 Å (no s.u. given) for As-OH bonds. Data for As-O bond lengths in multiply protonated $As^{5+}O_x$ (x = 4 and 6) polyhedra are scarce (especially those for H₃AsO₄ groups) due to the rare occurrence of compounds containing such polyhedra. An earlier attempt by Ichikawa (1988) to carry out a statistical analysis of the hydrogen-bond-length dependence of the distortion in H_nAsO_4 (*n* = 1–3) tetrahedra was severely hampered for the doubly and triply protonated representatives, since data for only six H₂AsO₄ and two H₃AsO₄ groups were available, and no pertinent conclusions were possible. As the number of synthetic compounds and minerals containing H_nAsO₄ (n =1–3) groups has considerably increased in the last three decades, we were able to perform a detailed analysis of As— O/OH bonds in H_nAsO₄ (n = 1–3) groups using data from the ICSD database (FIZ, 2018) (conventional *R* value < 5, full occupancy of As and O sites), expanded by the published data for known H₃AsO₄-containing inorganic compounds mentioned in the *Introduction* (§1), and the two novel title arsenate compounds (Table 8 and Fig. 8).

The average As-O/OH bond length for the 97 analysed H_nAsO_4 (n = 1-3) groups of 1.686 (27) Å is nearly identical to the value reported by Gagné & Hawthorne (2018*a*), but the individual bond lengths vary greatly with the number of As-OH bonds in the respective polyhedra. While the As-OH bonds are extremely elongated to 1.728 (19) Å in HAsO₄ groups and to 1.714 (12) Å in H₂AsO₄ groups, the average As-OH bond length is considerably shorter, with a value of 1.694 (16) Å in the rare H₃AsO₄ groups. This result is in agreement with the observation of Ferraris & Ivaldi (1984) that the average length of X-OH (X = As and P) bonds tends to decrease from mono- to triprotonated anions with the same

Figure 7

Structural drawings of $\text{Li}_2(\text{H}_2\text{PO}_4)_2$, viewed along (*a*) *a* and (*b*) *c*. The unit cell is outlined. Phosphate tetrahedra are shown in pink and edge-sharing LiO_4 tetrahedra in green. The hydrogen bonds reinforcing the network are shown in blue.

As-O distances in protonated AsO₄ groups

Comparison of As–O distances in H_nAsO_4 (n = 1-3) groups, sorted by As–OH bonds into clouds for H_3AsO_4 (turquoise), H_2AsO_4 (yellow) and HAsO₄ (red) groups. As–OH bonds to split H-atom positions are shown in green, while all bonds to the remaining nonprotonated O atoms are shown in blue.

X atom. We also find that the As bonds to nonprotonated O atoms in H_3AsO_4 groups are shortened to 1.671 (23) Å. If As-O bonds involving bridging O ligands (as present in the As_2O_7 groups in pyroarsenates), *i.e.* As-O-As bonds, are removed from the data set because they are known to be anomalously elongated due to As-As repulsion, the value is even shorter, *i.e.* 1.667 (18) Å. A special case are As-O bonds to half-occupied H-atom positions; these are actually shortened to 1.683 (13) Å. Excluding split H-atom positions, the grand mean average As-OH bond length in H_n AsO₄ (n =1-3) groups is 1.714 (21) Å and thus considerably shorter than the value of 1.727 Å derived by Majzlan et al. (2014), whose evaluation was based mainly on H₁₋₂AsO₄ groups. A visual analysis of the individual As-O bond lengths compared to the averages of the H_nAsO_4 (n = 1-3) groups (Fig. 8) shows that they form clearly distributed clouds, depending on the number of H atoms. The average As-O/OH bond lengths of the polyhedra, as well as the individual As-OH bond lengths, are largest in HAsO4 groups and show a narrower distribution in H₂AsO₄. The population of H₃AsO₄ groups is characterized by shorter individual As-OH bond lengths but also a shorter average As-OH bond length of the polyhedra. It can also be recognized that the whole data set shows a strong concentration of bonds at around ca 1.687 Å and that all the shortest bonds are to the nonprotonated O atoms of each H_nAsO_4 (n = 1-3) group (blue cloud in Fig. 8, cf. Table 8). This is expected because the As atom in each H_nAsO₄ tries to achieve a BVS of 5, and due to the elongation of all the bonds to protonated O atoms, the remaining As-O bonds have to shorten accordingly. This also explains why both the individual As-OH bond lengths and average As-O(H) bond lengths decrease with increasing protonation. In the case of singly protonated AsO₄ groups, the three As–O bonds need to become slightly shortened in order to still achieve a BVS of 5, at the expense of a high bond-length distortion in this tetrahedron. In agreement with the distortion theorem (Brown & Shannon, 1973), this results in a slightly higher value of the average As–O(H) bond length of 1.689 (6) Å in HAsO₄ groups (vertical range of red cloud in Fig. 8) *versus* a corresponding value of 1.688 (3) Å in H₂AsO₄ groups (vertical range of yellow cloud) and the notably lower value of 1.680 (7) Å in H₃AsO₄ groups (vertical range of turquoise cloud). This low value in the latter is a consequence of three competing As–OH bonds which can only be counteracted by one As–O bond. This leads to three similarly short As–OH bonds and one even shorter As–O bond, *i.e.* a small bond-length distortion.

The overall spread of values is a consequence of the variable strengths of the hydrogen bonds in the individual compounds. A conspicuous outlier in Fig. 8 (*e.g.* in the top-right corner) may be explained by the influence of a very strong hydrogen bond in Mg(HAsO₄)(H₂O)₇, with an O···O donor–acceptor distance of 2.491 Å (no s.u. given; Ferraris & Franchini-Angela, 1973).

Acknowledgements

Funding for this research was provided by: Austrian Academy of Sciences (award No. Doc fForte Fellowship to KS).

References

- Amri, M., Zouari, N., Mhiri, T. & Gravereau, P. (2009). J. Alloys Compd. 477, 68–75.
- Amri, M., Zouari, N., Mhiri, T., Pechev, S., Gravereau, P. & Von Der Muhll, R. (2007). J. Phys. Chem. Solids, 68, 1281–1292.

research papers

- Belhaj Salah, M., Nouiri, N., Jaouadi, K., Mhiri, T. & Zouari, N. (2018). J. Mol. Struct. 1151, 286-300.
- Boubia, M., Averbuch-Pouchot, M. T. & Durif, A. (1985). Acta Cryst. C41, 1562-1564.
- Brandenburg, K. (2005). DIAMOND. Version 3.2k. Crystal Impact GbR, Bonn, Germany.
- Brown, I. D. & Shannon, R. D. (1973). Acta Cryst. A29, 266-282.
- Catti, M. & Ivaldi, G. (1978). Z. Kristallogr. 146, 215-226.
- Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017a). J. Alloys Compd. 705, 602-609.
- Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017b). Solid State Ionics, 301, 78-85.
- Dekhili, R., Kauffmann, T. H., Aroui, H. & Fontana, M. D. (2018). Solid State Commun. 279, 22-26.
- Dekola, T., Ribeiro, J. L. & Kloepperpieper, A. (2011). Physica B, 406, 3267-3273.
- Dhouib, I., Feki, H., Guionneau, P., Mhiri, T. & Elaoud, Z. (2014a). Spectrochim. Acta A Mol. Biomol. Spectrosc. 131, 274-281.
- Dhouib, I., Guionneau, P. & Elaoud, Z. (2017). J. Coord. Chem. 70, 3585-3597.
- Dhouib, I., Guionneau, P., Mhiri, T. & Elaoud, Z. (2014b). Eur. J. Chem. 5, 388-393.
- Emmerling, F., Idilbi, M. & Röhr, C. (2002). Z. Naturforsch. Teil B, 57, 599-604.
- Fanchon, E., Vicat, J., Tran Qui, D. & Boudjada, A. (1987). Acta Cryst. C43, 1022-1025.
- Ferrari, A., Nardelli, M. & Cingi, M. (1956). Gazz. Chim. Ital. 86, 1174-1180.
- Ferraris, G. & Franchini-Angela, M. (1973). Acta Cryst. B29, 286-292.
- Ferraris, G. & Ivaldi, G. (1984). Acta Cryst. B40, 1-6.
- FIZ (2018). Inorganic Crystal Structure Database. Version 4.1.0 (build 20181019-1414), Data Release 2018.2. Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany. http:// www2.fiz-karlsruhe.de/icsd_home.html.
- Fukami, T. (1989). J. Phys. Soc. Jpn, 58, 3429-3430.
- Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.
- Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.
- Gagné, O. C. & Hawthorne, F. C. (2018a). Acta Cryst. B74, 63-78.
- Gagné, O. C. & Hawthorne, F. C. (2018b). Acta Cryst. B74, 79-96.
- García-Rodríguez, L., Rute-Pérez, Á., Piñero, J. R. & González-Silgo, C. (2000). Acta Cryst. B56, 565-569.
- Hseu, T. H. & Lu, T. H. (1977). Acta Cryst. B33, 3947-3949.

- Hwan Oh, I., Lee, K.-S., Meven, M., Heger, G. & Eui Lee, C. (2010). J. Phys. Soc. Jpn, 79, 074606.
- Ichikawa, M. (1988). J. Mol. Struct. 177, 441-448.
- Khan, A. A. & Baur, W. H. (1972). Acta Cryst. B28, 683-693.
- Kumaresan, P., Moorthy Babu, S. & Anbarasan, P. M. (2008). J. Cryst. Growth, 310, 1999-2004.
- Lee, K.-S., Ko, J.-H., Moon, J., Lee, S. & Jeon, M. (2008). Solid State Commun. 145, 487-492.
- Majzlan, J., Drahota, P. & Filippi, M. (2014). Rev. Mineral. Geochem. 79, 17-184.
- Naili, H. & Mhiri, T. (2001). J. Alloys Compd. 315, 143-149.
- Naili, H., Mhiri, T. & Jaud, J. (2001). J. Solid State Chem. 161, 9-16.
- Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.
- Ratajczak, H., Barycki, J., Pietraszko, A., Baran, J., Debrus, S., May, M. & Venturini, J. (2000). J. Mol. Struct. 526, 269-278.
- Remy, F. & Bachet, B. (1967). Bull. Soc. Chim. Fr. 38, 1699-1701.
- Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.
- Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.
- Schwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79-i83.
- Schwendtner, K. & Kolitsch, U. (2004b). Acta Cryst. C60, i84-i88.
- Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90-i93.
- Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205-215.
- Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17-i20.
- Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399-409.
- Schwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600-608.
- Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580-1586.
- Schwendtner, K. & Kolitsch, U. (2018). Acta Cryst. C74, 721-727.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Stöger, B. & Weil, M. (2014). Acta Cryst. C70, 7-11.
- Sure, S. & Guse, W. (1989). Neues Jb Miner. Mh, 1989, 401-409. Tran Qui, D. & Chiadmi, M. (1986). Acta Cryst. C42, 391-393.
- Volkov, V. L., Denisova, T. A. & Shtin, A. P. (1995). Inorg. Mater. (Transl. of Neorg. Mater.), 31, 359-362.
- Volkov, V. L., Shtin, A. P., Denisova, T. A. & Inozemtsev, M. V. (1997). Inorg. Mater. (Transl. of Neorg. Mater.), 33, 496-499.
- Voronov, A. P., Babenko, G. N., Puzikov, V. M. & Iurchenko, A. N. (2013). J. Cryst. Growth, 374, 49-52.
- Weil, M. (2012). Acta Cryst. E68, i82.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2019). C75, 1134-1141 [https://doi.org/10.1107/S2053229619008489]

Three new acid *M*⁺ arsenates and phosphates with multiply protonated As/PO₄ groups

Karolina Schwendtner and Uwe Kolitsch

Computing details

For all structures, data collection: *COLLECT* (Nonius, 2003); cell refinement: *SCALEPACK* (Otwinowski *et al.*, 2003); data reduction: *DENZO* and *SCALEPACK* (Otwinowski *et al.*, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg, 2005); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Caesium dihydrogen arsenate(V) bis[trihydrogen arsenate(V)] (CsH2AsO4H3AsO42)

Crystal data

Cs(H₂AsO₄)(H₃AsO₄)₂ $M_r = 557.73$ Monoclinic, $P2_1/c$ a = 9.712 (2) Å b = 12.738 (3) Å c = 9.307 (2) Å $\beta = 90.91$ (3)° V = 1151.2 (4) Å³ Z = 4

Data collection

Nonius KappaCCD single-crystal four-circle diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (SCALEPACK; Otwinowski *et al.*, 2003) $T_{\min} = 0.288, T_{\max} = 0.451$ 8200 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.054$ S = 1.054186 reflections 178 parameters 1 restraint Primary atom site location: structure-invariant direct methods $D_{\rm x} = 3.218 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4360 reflections $\theta = 2.7-32.6^{\circ}$ $\mu = 11.83 \text{ mm}^{-1}$ T = 293 KRounded prisms, colourless $0.14 \times 0.13 \times 0.08 \text{ mm}$ 4186 independent reflections 3411 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.016$ $\theta_{\rm max} = 32.6^{\circ}, \theta_{\rm min} = 2.7^{\circ}$ $h = -14 \rightarrow 14$

 $k = -19 \rightarrow 19$ $l = -14 \rightarrow 14$

F(000) = 1032

Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0217P)^2 + 1.0466P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.91$ e Å⁻³ $\Delta\rho_{min} = -1.60$ e Å⁻³ Extinction correction: SHELXL2016 (Sheldrick, 2015), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00340 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cs1	0.22962 (2)	0.51389 (2)	0.27149 (2)	0.03776 (6)
As1	0.00263 (2)	0.23648 (2)	0.48710 (2)	0.01694 (5)
As2	0.46332 (2)	0.24756 (2)	0.02338 (2)	0.01917 (6)
As3	0.73534 (2)	0.47250 (2)	0.25789 (2)	0.02105 (6)
O1	0.01202 (17)	0.31350 (12)	0.62862 (15)	0.0225 (3)
O2	-0.15805 (17)	0.21801 (14)	0.41934 (18)	0.0273 (3)
O3	0.0553 (2)	0.11305 (13)	0.5291 (2)	0.0298 (4)
O4	0.10335 (17)	0.28641 (13)	0.35555 (17)	0.0255 (3)
05	0.42912 (18)	0.17618 (13)	-0.11930 (16)	0.0262 (3)
O6	0.60947 (17)	0.20728 (13)	0.10689 (19)	0.0277 (4)
07	0.4908 (2)	0.37667 (14)	-0.0112 (2)	0.0411 (5)
08	0.32988 (19)	0.23889 (17)	0.1389 (2)	0.0351 (4)
O9	0.73949 (17)	0.54949 (13)	0.11525 (18)	0.0284 (4)
O10	0.75902 (17)	0.34537 (13)	0.22914 (17)	0.0269 (4)
O11	0.8597 (2)	0.50491 (15)	0.3823 (2)	0.0405 (5)
O12	0.5816 (2)	0.49272 (15)	0.3400 (2)	0.0417 (5)
H2	-0.179 (4)	0.265 (3)	0.360 (4)	0.061 (12)*
Н3	0.115 (4)	0.095 (3)	0.477 (4)	0.067 (12)*
H4	0.081 (4)	0.250 (3)	0.273 (4)	0.054 (10)*
H6	0.659 (4)	0.262 (2)	0.144 (4)	0.080 (14)*
H7	0.420 (4)	0.402 (3)	-0.044 (4)	0.059 (11)*
H8	0.353 (4)	0.262 (3)	0.218 (4)	0.060 (11)*
H11	0.888 (4)	0.563 (3)	0.378 (4)	0.076 (14)*
H12	0.543 (4)	0.437 (3)	0.350 (4)	0.062 (11)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cs1	0.04230 (11)	0.02498 (8)	0.04561 (11)	0.00032 (6)	-0.01130 (8)	-0.00318 (7)
As1	0.01957 (10)	0.01814 (10)	0.01307 (9)	-0.00029 (8)	-0.00091 (7)	-0.00053 (7)
As2	0.01818 (11)	0.01998 (10)	0.01925 (11)	0.00205 (8)	-0.00274 (8)	-0.00085 (8)
As3	0.02387 (11)	0.01600 (11)	0.02320 (11)	-0.00176 (8)	-0.00263 (8)	0.00363 (8)
01	0.0306 (8)	0.0218 (7)	0.0152 (7)	-0.0005 (6)	-0.0010 (6)	-0.0031 (6)
O2	0.0224 (8)	0.0343 (9)	0.0251 (8)	-0.0062 (7)	-0.0048 (6)	0.0062 (7)
03	0.0371 (10)	0.0213 (8)	0.0311 (9)	0.0077 (7)	0.0072 (8)	0.0037 (7)

O4	0.0271 (8)	0.0314 (8)	0.0179 (7)	-0.0088 (7)	0.0032 (6)	-0.0016 (6)
05	0.0298 (9)	0.0305 (8)	0.0182 (7)	0.0036 (7)	-0.0013 (6)	-0.0046 (6)
O6	0.0231 (8)	0.0205 (8)	0.0392 (9)	0.0011 (6)	-0.0103 (7)	0.0019 (7)
O7	0.0416 (12)	0.0211 (8)	0.0601 (13)	0.0007 (8)	-0.0166 (10)	0.0085 (8)
08	0.0244 (9)	0.0577 (13)	0.0233 (9)	0.0012 (8)	0.0031 (7)	-0.0088 (8)
09	0.0260 (8)	0.0283 (8)	0.0308 (8)	-0.0016 (7)	0.0001 (7)	0.0126 (7)
O10	0.0316 (9)	0.0179 (7)	0.0307 (8)	0.0019 (6)	-0.0105 (7)	-0.0006 (6)
O11	0.0527 (13)	0.0260 (9)	0.0419 (11)	-0.0106 (9)	-0.0227 (9)	0.0034 (8)
O12	0.0441 (12)	0.0246 (9)	0.0570 (13)	0.0001 (8)	0.0238 (10)	0.0039 (9)

Geometric parameters (Å, °)

Cs1—O6 ⁱ	3.1202 (17)	Cs1—H3 ⁱⁱⁱ	3.25 (4)
Cs1—O2 ⁱⁱ	3.2184 (19)	Cs1—H6 ⁱ	3.43 (4)
Cs1—O3 ⁱⁱⁱ	3.2326 (19)	As1—O1	1.6437 (15)
Cs1—O4	3.2469 (17)	As1—O2	1.6903 (17)
Cs1—O5 ^{iv}	3.2536 (18)	As1—O3	1.6970 (17)
Cs1—O1 ^v	3.3579 (17)	As1—O4	1.7025 (16)
Cs1—O11 ^{vi}	3.359 (2)	As2—O5	1.6390 (16)
Cs1—O12	3.478 (2)	As2—O6	1.6874 (16)
Cs1—O9 ^{vii}	3.7056 (19)	As2—O7	1.6977 (19)
Cs1—O11 ^{viii}	3.755 (3)	As2—O8	1.7004 (19)
Cs1—O8	3.844 (2)	As3—O9	1.6515 (16)
Cs1—O7 ^{vii}	3.924 (3)	As3—O10	1.6579 (17)
Cs1—O12 ^{vi}	4.028 (3)	As3—O12	1.707 (2)
Cs1—07	4.077 (3)	As3—O11	1.7104 (19)
Cs1—O3 ⁱⁱ	4.103 (2)	O2—H2	0.83 (4)
Cs1—O10 ⁱ	4.2239 (19)	O3—H3	0.79 (4)
Cs1—As1 ⁱⁱ	4.3298 (9)	O4—H4	0.92 (3)
Cs1—As3 ^{vi}	4.3913 (10)	O6—H6	0.910 (18)
Cs1—As1 ^v	4.5175 (9)	O7—H7	0.81 (4)
Cs1—O2 ^v	4.527 (2)	O8—H8	0.82 (4)
Cs1—H8	3.46 (4)	O11—H11	0.79 (4)
Cs1—H12	3.27 (4)	O12—H12	0.81 (4)
Cs1—H2 ⁱⁱ	3.45 (4)		
$O6^{i}$ —Cs1—O2 ⁱⁱ	70.42 (5)	As1 ⁱⁱ —Cs1—H12	142.7 (7)
$O6^{i}$ —Cs1—O3 ⁱⁱⁱ	154.40 (5)	As3 ^{vi} —Cs1—H12	74.4 (6)
O2 ⁱⁱ —Cs1—O3 ⁱⁱⁱ	85.00 (5)	As1 ^v —Cs1—H12	124.7 (6)
O6 ⁱ —Cs1—O4	143.71 (4)	O2 ^v —Cs1—H12	103.5 (6)
O2 ⁱⁱ —Cs1—O4	140.79 (5)	H8—Cs1—H12	55.5 (9)
O3 ⁱⁱⁱ —Cs1—O4	61.72 (4)	O6 ⁱ —Cs1—H2 ⁱⁱ	57.7 (6)
$O6^{i}$ —Cs1—O5 ^{iv}	100.47 (5)	O2 ⁱⁱ —Cs1—H2 ⁱⁱ	13.8 (6)
$O2^{ii}$ —Cs1—O5 ^{iv}	153.62 (4)	O3 ⁱⁱⁱ —Cs1—H2 ⁱⁱ	98.4 (6)
O3 ⁱⁱⁱ —Cs1—O5 ^{iv}	98.54 (5)	O4—Cs1—H2 ⁱⁱ	149.2 (7)
O4—Cs1—O5 ^{iv}	59.07 (4)	O5 ^{iv} —Cs1—H2 ⁱⁱ	151.5 (7)
$O6^{i}$ —Cs1—O1 ^v	74.39 (4)	O1 ^v —Cs1—H2 ⁱⁱ	53.0 (7)
$O2^{ii}$ —Cs1—O1 ^v	58.54 (4)	O11 ^{vi} —Cs1—H2 ⁱⁱ	111.7 (6)

O3 ⁱⁱⁱ —Cs1—O1 ^v	99.22 (5)	O12—Cs1—H2 ⁱⁱ	105.6 (7)
$O4$ — $Cs1$ — $O1^{v}$	104.44 (4)	O9 ^{vii} —Cs1—H2 ⁱⁱ	82.5 (6)
$O5^{iv}$ — $Cs1$ — $O1^{v}$	144.69 (4)	O11 ^{viii} —Cs1—H2 ⁱⁱ	89.7 (7)
$O6^{i}$ — $Cs1$ — $O11^{vi}$	81.01 (5)	O8—Cs1—H2 ⁱⁱ	139.8 (6)
O2 ⁱⁱ —Cs1—O11 ^{vi}	122.02 (5)	O7 ^{vii} —Cs1—H2 ⁱⁱ	63.1 (7)
$O3^{iii}$ — $Cs1$ — $O11^{vi}$	119.57 (5)	O12 ^{vi} —Cs1—H2 ⁱⁱ	113.4 (6)
O4-Cs1-O11 ^{vi}	66.48 (4)	O7—Cs1—H2 ⁱⁱ	104.7 (6)
$O5^{iv}$ — $Cs1$ — $O11^{vi}$	78.98 (5)	O3 ⁱⁱ —Cs1—H2 ⁱⁱ	51.9 (6)
O1 ^v —Cs1—O11 ^{vi}	65.72 (5)	O10 ⁱ —Cs1—H2 ⁱⁱ	22.8 (6)
O6 ⁱ —Cs1—O12	60.63 (5)	As1 ⁱⁱ —Cs1—H2 ⁱⁱ	29.3 (6)
O2 ⁱⁱ —Cs1—O12	111.52 (5)	As3 ^{vi} —Cs1—H2 ⁱⁱ	109.0 (6)
O3 ⁱⁱⁱ —Cs1—O12	126.27 (5)	As1 ^v —Cs1—H2 ⁱⁱ	57.1 (6)
O4—Cs1—O12	105.10 (5)	O2 ^v —Cs1—H2 ⁱⁱ	60.4 (6)
O5 ^{iv} —Cs1—O12	46.08 (4)	H8—Cs1—H2 ⁱⁱ	148.5 (9)
O1 ^v —Cs1—O12	133.57 (4)	H12—Cs1—H2 ⁱⁱ	118.8 (9)
O11 ^{vi} —Cs1—O12	94.97 (6)	O6 ⁱ —Cs1—H3 ⁱⁱⁱ	143.7 (7)
O6 ⁱ —Cs1—O9 ^{vii}	118.46 (5)	O2 ⁱⁱ —Cs1—H3 ⁱⁱⁱ	79.2 (7)
O2 ⁱⁱ —Cs1—O9 ^{vii}	70.13 (4)	O3 ⁱⁱⁱ —Cs1—H3 ⁱⁱⁱ	14.1 (7)
O3 ⁱⁱⁱ —Cs1—O9 ^{vii}	42.49 (4)	O4—Cs1—H3 ⁱⁱⁱ	72.3 (7)
O4—Cs1—O9 ^{vii}	94.38 (4)	O5 ^{iv} —Cs1—H3 ⁱⁱⁱ	97.9 (7)
O5 ^{iv} —Cs1—O9 ^{vii}	94.84 (4)	O1 ^v —Cs1—H3 ⁱⁱⁱ	106.4 (7)
O1 ^v —Cs1—O9 ^{vii}	118.64 (4)	O11 ^{vi} —Cs1—H3 ⁱⁱⁱ	133.4 (7)
$O11^{vi}$ —Cs1—O9 ^{vii}	160.46 (4)	O12—Cs1—H3 ⁱⁱⁱ	116.3 (7)
O12—Cs1—O9 ^{vii}	93.83 (5)	O9 ^{vii} —Cs1—H3 ⁱⁱⁱ	28.4 (7)
O6 ⁱ —Cs1—O11 ^{viii}	113.59 (5)	O11 ^{viii} —Cs1—H3 ⁱⁱⁱ	84.4 (7)
O2 ⁱⁱ —Cs1—O11 ^{viii}	88.68 (5)	O8—Cs1—H3 ⁱⁱⁱ	54.9 (7)
O3 ⁱⁱⁱ —Cs1—O11 ^{viii}	71.56 (5)	O7 ^{vii} —Cs1—H3 ⁱⁱⁱ	82.1 (7)
O4—Cs1—O11 ^{viii}	62.61 (4)	O12 ^{vi} —Cs1—H3 ⁱⁱⁱ	153.0 (7)
$O5^{iv}$ —Cs1—O11 ^{viii}	117.33 (4)	O7—Cs1—H3 ⁱⁱⁱ	58.7 (7)
O1 ^v —Cs1—O11 ^{viii}	42.94 (4)	O3 ⁱⁱ —Cs1—H3 ⁱⁱⁱ	48.7 (7)
$O11^{vi}$ —Cs1—O11 ^{viii}	58.10 (6)	O10 ⁱ —Cs1—H3 ⁱⁱⁱ	115.8 (7)
O12—Cs1—O11 ^{viii}	152.77 (5)	As1 ⁱⁱ —Cs1—H3 ⁱⁱⁱ	69.2 (7)
O9 ^{vii} —Cs1—O11 ^{viii}	110.65 (5)	As3 ^{vi} —Cs1—H3 ⁱⁱⁱ	151.3 (7)
O6 ⁱ —Cs1—O8	135.06 (4)	As1 ^v —Cs1—H3 ⁱⁱⁱ	123.6 (7)
O2 ⁱⁱ —Cs1—O8	127.77 (4)	O2 ^v —Cs1—H3 ⁱⁱⁱ	143.6 (7)
O3 ⁱⁱⁱ —Cs1—O8	56.82 (4)	H8—Cs1—H3 ⁱⁱⁱ	66.2 (9)
O4—Cs1—O8	50.42 (4)	H12—Cs1—H3 ⁱⁱⁱ	111.5 (9)
O5 ^{iv} —Cs1—O8	43.09 (4)	H2 ⁱⁱ —Cs1—H3 ⁱⁱⁱ	93.0 (9)
O1 ^v —Cs1—O8	150.13 (4)	$O6^{i}$ —Cs1—H 6^{i}	15.1 (4)
O11 ^{vi} —Cs1—O8	108.28 (5)	O2 ⁱⁱ —Cs1—H6 ⁱ	56.4 (5)
O12—Cs1—O8	74.64 (4)	O3 ⁱⁱⁱ —Cs1—H6 ⁱ	141.4 (5)
O9 ^{vii} —Cs1—O8	57.64 (4)	O4—Cs1—H6 ⁱ	152.5 (7)
O11 ^{viii} —Cs1—O8	107.98 (4)	O5 ^{iv} —Cs1—H6 ⁱ	115.4 (4)
O6 ⁱ —Cs1—O7 ^{vii}	66.17 (5)	$O1^v$ —Cs1—H6 ⁱ	63.5 (6)
O2 ⁱⁱ —Cs1—O7 ^{vii}	61.16 (4)	$O11^{vi}$ — $Cs1$ — $H6^{i}$	86.1 (7)
O3 ⁱⁱⁱ —Cs1—O7 ^{vii}	96.12 (5)	O12—Cs1—H6 ⁱ	73.9 (5)
O4—Cs1—O7 ^{vii}	137.19 (4)	O9 ^{vii} —Cs1—H6 ⁱ	113.1 (7)
$O5^{iv}$ — $Cs1$ — $O7^{vii}$	92.45 (4)	O11 ^{viii} —Cs1—H6 ⁱ	105.4 (6)

O1 ^v —Cs1—O7 ^{vii}	115.59 (4)	O8—Cs1—H6 ⁱ	146.3 (6)
$O11^{vi}$ — $Cs1$ — $O7^{vii}$	144.05 (5)	$O7^{vii}$ —Cs1—H6 ⁱ	66.0 (7)
O12-Cs1-O7 ^{vii}	56.84 (5)	$O12^{vi}$ —Cs1—H6 ⁱ	71.1 (5)
O9 ^{vii} —Cs1—O7 ^{vii}	53.85 (4)	O7—Cs1—H6 ⁱ	110.1 (7)
O11 ^{viii} —Cs1—O7 ^{vii}	148.74 (4)	O3 ⁱⁱ —Cs1—H6 ⁱ	94.6 (4)
O8—Cs1—O7 ^{vii}	86.80 (4)	$O10^{i}$ —Cs1—H6 ⁱ	21.7 (4)
O6 ⁱ —Cs1—O12 ^{vi}	58.18 (4)	As1 ⁱⁱ —Cs1—H6 ⁱ	71.6 (4)
O2 ⁱⁱ —Cs1—O12 ^{vi}	127.11 (4)	As3 ^{vi} —Cs1—H6 ⁱ	73.5 (6)
O3 ⁱⁱⁱ —Cs1—O12 ^{vi}	147.33 (4)	$As1^v$ — $Cs1$ — $H6^i$	52.9 (7)
O4—Cs1—O12 ^{vi}	86.18 (4)	$O2^v$ —Cs1—H6 ⁱ	37.9 (7)
O5 ^{iv} —Cs1—O12 ^{vi}	56.21 (4)	H8—Cs1—H6 ⁱ	141.1 (8)
O1 ^v —Cs1—O12 ^{vi}	94.31 (4)	H12—Cs1—H6 ⁱ	86.2 (8)
$O11^{vi}$ — $Cs1$ — $O12^{vi}$	42.12 (5)	H2 ⁱⁱ —Cs1—H6 ⁱ	43.2 (8)
O12-Cs1-O12 ^{vi}	53.27 (6)	H3 ⁱⁱⁱ —Cs1—H6 ⁱ	133.6 (9)
$O9^{vii}$ —Cs1—O12 ^{vi}	145.54 (4)	O1—As1—O2	114.91 (9)
$O11^{viii}$ — $Cs1$ — $O12^{vi}$	100.17 (5)	O1—As1—O3	110.85 (8)
O8—Cs1—O12 ^{vi}	98.93 (4)	O2—As1—O3	103.30 (9)
$O7^{vii}$ — $Cs1$ — $O12^{vi}$	104.61 (5)	O1—As1—O4	109.15 (8)
O6 ⁱ —Cs1—O7	105.03 (5)	O2—As1—O4	108.74 (8)
O2 ⁱⁱ —Cs1—O7	96.97 (4)	O3—As1—O4	109.70 (9)
O3 ⁱⁱⁱ —Cs1—O7	70.09 (5)	O1—As1—Cs1 ^{ix}	149.10 (6)
O4—Cs1—O7	90.81 (4)	O2—As1—Cs1 ^{ix}	39.80 (6)
O5 ^{iv} —Cs1—O7	60.59 (4)	O3—As1—Cs1 ^{ix}	70.95 (7)
O1 ^v —Cs1—O7	154.70 (4)	O4—As1—Cs1 ^{ix}	98.34 (6)
O11 ^{vi} —Cs1—O7	139.58 (5)	O1—As1—Cs1 ^v	37.17 (6)
O12—Cs1—O7	57.68 (5)	O2—As1—Cs1 ^v	79.53 (6)
O9 ^{vii} —Cs1—O7	38.65 (4)	O3—As1—Cs1 ^v	133.54 (6)
O11 ^{viii} —Cs1—O7	140.53 (4)	O4—As1—Cs1 ^v	113.07 (6)
O8—Cs1—O7	40.44 (4)	$Cs1^{ix}$ —As1—Cs1 v	118.527 (15)
O7 ^{vii} —Cs1—O7	46.38 (5)	O1—As1—Cs1	82.60 (6)
O12 ^{vi} —Cs1—O7	106.93 (4)	O2—As1—Cs1	112.76 (6)
O6 ⁱ —Cs1—O3 ⁱⁱ	109.44 (4)	O3—As1—Cs1	131.43 (7)
$O2^{ii}$ —Cs1—O3 ⁱⁱ	40.33 (4)	O4—As1—Cs1	28.57 (6)
O3 ⁱⁱⁱ —Cs1—O3 ⁱⁱ	48.55 (5)	Cs1 ^{ix} —As1—Cs1	120.358 (14)
O4—Cs1—O3 ⁱⁱ	100.71 (4)	Cs1 ^v —As1—Cs1	85.61 (2)
O5 ^{iv} —Cs1—O3 ⁱⁱ	146.51 (4)	O1—As1—Cs1 ^{iv}	86.21 (6)
$O1^v$ —Cs1—O3 ⁱⁱ	61.34 (4)	O2—As1—Cs1 ^{iv}	122.72 (6)
$O11^{vi}$ —Cs1—O3 ⁱⁱ	119.62 (5)	O3—As1—Cs1 ^{iv}	25.83 (6)
O12—Cs1—O3 ⁱⁱ	143.06 (5)	O4—As1—Cs1 ^{iv}	113.01 (6)
O9 ^{vii} —Cs1—O3 ⁱⁱ	57.92 (4)	Cs1 ^{ix} —As1—Cs1 ^{iv}	96.02 (2)
O11 ^{viii} —Cs1—O3 ⁱⁱ	63.81 (4)	Cs1 ^v —As1—Cs1 ^{iv}	115.679 (15)
O8—Cs1—O3 ⁱⁱ	103.48 (4)	Cs1—As1—Cs1 ^{iv}	122.793 (14)
$O7^{vii}$ — $Cs1$ — $O3^{ii}$	86.30 (4)	O5—As2—O6	111.26 (9)
$O12^{vi}$ — $Cs1$ — $O3^{ii}$	155.60 (4)	O5—As2—O7	114.48 (10)
O7—Cs1—O3 ⁱⁱ	96.43 (4)	O6—As2—O7	104.36 (9)
$O6^{i}$ —Cs1—O10 ⁱ	36.71 (4)	O5—As2—O8	109.24 (9)
$O2^{ii}$ —Cs1—O10 ⁱ	36.59 (4)	O6—As2—O8	109.46 (9)
$O3^{iii}$ —Cs1—O10 ⁱ	120.83 (4)	O7—As2—O8	107.84 (11)

O4—Cs1—O10 ⁱ	154.48 (4)	O5—As2—Cs1 ^x	95.67 (6)
$O5^{iv}$ — $Cs1$ — $O10^{i}$	136.79 (4)	O6—As2—Cs1 ^x	22.81 (6)
$O1^{v}$ —Cs1—O10 ⁱ	50.52 (4)	$O7$ — $As2$ — $Cs1^x$	126.99 (7)
$O11^{vi}$ — $Cs1$ — $O10^{i}$	94.57 (4)	O8—As2—Cs1 ^x	101.01 (7)
O12—Cs1—O10 ⁱ	92.99 (4)	O5—As2—Cs1 ⁱⁱⁱ	26.12 (6)
$O9^{vii}$ —Cs1—O10 ⁱ	102.35 (3)	O6—As2—Cs1 ⁱⁱⁱ	114.54 (6)
$O11^{viii}$ —Cs1—O10 ⁱ	93.21 (4)	O7—As2—Cs1 ⁱⁱⁱ	132.54 (7)
$O8-Cs1-O10^{i}$	154.64 (4)	O8—As2—Cs1 ⁱⁱⁱ	84.33 (7)
07^{vii} Cs1 -010^{i}	68.01 (4)	$Cs1^{x}$ $As2$ $Cs1^{iii}$	93.09 (2)
$O12^{vi}$ —Cs1—O10 ⁱ	90.61 (3)	Q5—As2—Cs1	134.76 (6)
$07 - Cs1 - 010^{i}$	114.28 (4)	06—As2—Cs1	113.69 (6)
$O3^{ii}$ —Cs1—O10 ⁱ	73.06 (3)	07—As2—Cs1	58.21 (8)
$O6^{i}$ Cs1 As1 ⁱⁱ	86.45 (4)	08—As2—Cs1	50.09(7)
$O2^{ii}$ —Cs1—As1 ⁱⁱ	19.64 (3)	$Cs1^{x}$ As2 Cs1	125,199 (14)
$O3^{iii}$ — $Cs1$ — $As1^{ii}$	71.16 (4)	$Cs1^{iii}$ As2 Cs1	121.926 (14)
04—Cs1—As1 ⁱⁱ	121.53(3)	05—As2—Cs1 ^{vii}	90.42 (6)
05^{iv} Cs1 As1 ⁱⁱ	164 43 (3)	06—As2—Cs1 ^{vii}	86 22 (6)
$O1^{v}$ $Cs1$ $As1^{ii}$	50 57 (3)	07—As2—Cs1 ^{vii}	39.15 (8)
$O11^{vi} Cs1 As1^{ii}$	116 08 (4)	08 As ² Cs ¹ ^{vii}	146 97 (7)
$012 - C_{s1} - A_{s1}^{ii}$	130.88 (4)	$C_{s1x} A_{s2} C_{s1}^{vii}$	103 101 (16)
$O9^{\text{vii}}$ $Cs1$ $As1^{\text{ii}}$	69 65 (3)	$Cs1^{iii}$ As2 $Cs1^{vii}$	116 209 (15)
$011^{\text{viii}} \text{Cs1} \text{As1}^{\text{ii}}$	71 36 (3)	C_{s1} A_{s2} C_{s1}	97 20 (2)
08—Cs1—As1 ⁱⁱ	123 41 (3)	$09 - As^3 - 010$	11643(9)
07^{vii} Cs1 As1	77 50 (3)	$09 - 4s^{3} - 012$	107.64(10)
012^{vi} Cs1 As1	137 57 (3)	$010 - 4s^3 - 012$	110 13 (9)
012 - Cs1 - As1	104.25(3)	$09 - 4s^{3} - 012$	110.13(9) 112.01(9)
O_{i}^{ii} Cs1 As1 ⁱⁱ	104.23(3)	010 As ³ 011	104.28(0)
010^{i} Cs1 As1 ⁱⁱ	23.02 (2) 50.06 (2)	012 - 4s3 - 011	104.28(9) 105.88(12)
$O_{10} - C_{51} - A_{51}$	50.00(2)	$O_1 = A_3 = O_1 I_1$	105.88(12) 140.88(6)
O^{2ii} Cs1 As3 ^{vi}	122.08(3)	O_{2} A_{3} C_{3} C_{3} V_{1}	140.88(0) 101.00(6)
$O_2 = C_3 = A_3 S$	122.06(3) 138.36(4)	O12 As ² Cs ¹ ^{vi}	101.00 (0) 66 54 (0)
$O_{3} = C_{31} = A_{32}$	138.30(4)	O12—AS3—CS1 O11 As3 Cs1vi	00.34(9)
$O_{4} = C_{51} = A_{52}$	79.34(3)	$O_1 - A_{53} - C_{51}$	43.34 (8) 85.37 (6)
O_{1}^{V} C_{2}^{I} $A_{3}^{2}^{\text{Vi}}$	71.42(3)	O_{2} A_{3} C_{3} I_{3}	85.57 (0)
O1 - CS1 - AS5	75.01(3)	$O12 Ac^2 Cc^{1xi}$	147.05(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.43 (4)	O12 As3 $Cs1$	147.93(8)
O12 - Cs1 - As3	166 23 (3)	C_{11} A_{23} C_{21} C_{31}	42.07(9)
$O_{2} = C_{2} = A_{2} = A_{3}$	100.23(3)	Cs1 - As2 - Cs1	84.74 (3)
$O_{11}^{2} - C_{11}^{2} - A_{23}^{2}$	100.80(2)	O_{2} A_{3} C_{3}	104.40(6)
$O_{0} = C_{0} = A_{0} S^{1}$	109.09(3) 122.05(4)	$O12 Ac^2 Cc^1$	104.40(0)
$O_1^{\text{A}} = C_{\text{S}1} = A_{\text{S}2}^{\text{A}1}$	125.95(4)	O12—AS3—CS1	23.37(8)
$O_1^2 = C_{s1} = A_{s2}^{v_1}$	22.88(3)	O_{11} As A_{22} Cs C_{21}	130.41(9)
$O_{}C_{SI} = A_{SS}$	126.41(3) 125.12(2)	$Cs1^{xi}$ As2 $Cs1$	91.01(3)
O_{3}^{m} O_{3	135.12(3)	$Cs1^{}As3^{}Cs1^{}$	10/.238(8)
$O_1 O O_1 O A_2 O_1$	0/./2(2)	$09 - AS3 - 0S1 \cdots$	34.48 (b)
$AS1^{\mu} - US1 - AS3^{\nu}$	124.050 (16)	$\begin{array}{c} 010 \\ -As5 \\ -Cs1^{\text{vir}} \end{array}$	δ2.04 (6) 121.00 (0)
$U0^{i}$ $Us1$ $As1^{v}$	60.99 (4)	$U12$ —As3— $Us1^{vn}$	121.00 (9)
$O2^{\mu}$ — $Cs1$ — $As1^{\nu}$	00.40 (3)	$\bigcup \Pi - As3 - Cs1^{vn}$	127.34 (8)
$O3^{m}$ —Cs1—As1 ^v	116.05 (4)	$Cs1^{v_1}$ —As3— $Cs1^{v_1}$	170.584 (8)

O4—Cs1—As1 ^v	108.35 (4)	Cs1 ^{xi} —As3—Cs1 ^{vii}	86.46 (3)
O5 ^{iv} —Cs1—As1 ^v	131.91 (3)	Cs1—As3—Cs1 ^{vii}	96.08 (3)
O1 ^v —Cs1—As1 ^v	17.20 (3)	As1—O1—Cs1 ^v	125.63 (8)
O11 ^{vi} —Cs1—As1 ^v	55.56 (4)	As1—O1—Cs1	77.18 (6)
O12—Cs1—As1 ^v	117.41 (4)	Cs1 ^v	99.42 (4)
O9 ^{vii} —Cs1—As1 ^v	133.25 (3)	As1-O1-Cs1 ^{iv}	74.03 (6)
O11 ^{viii} —Cs1—As1 ^v	52.95 (3)	$Cs1^v$ — $O1$ — $Cs1^{iv}$	142.21 (4)
O8—Cs1—As1 ^v	158.75 (3)	Cs1—O1—Cs1 ^{iv}	117.40 (4)
O7 ^{vii} —Cs1—As1 ^v	114.39 (3)	As1—O2—Cs1 ^{ix}	120.56 (9)
O12 ^{vi} —Cs1—As1 ^v	77.99 (3)	As1—O2—Cs1 ^v	78.93 (6)
O7—Cs1—As1 ^v	160.62 (3)	Cs1 ^{ix} —O2—Cs1 ^v	157.86 (5)
O3 ⁱⁱ —Cs1—As1 ^v	77.62 (3)	As1—O2—H2	111 (3)
O10 ⁱ —Cs1—As1 ^v	46.39 (3)	Cs1 ^{ix} —O2—H2	99 (3)
As1 ⁱⁱ —Cs1—As1 ^v	63.620 (14)	Cs1 ^v —O2—H2	81 (3)
As3 ^{vi} —Cs1—As1 ^v	60.497 (15)	As1—O3—Cs1 ^{iv}	140.95 (9)
$O6^{i}$ — $Cs1$ — $O2^{v}$	41.82 (4)	As1—O3—Cs1 ^{ix}	86.03 (7)
$O2^{ii}$ — $Cs1$ — $O2^{v}$	72.98 (2)	$Cs1^{iv}$ — $O3$ — $Cs1^{ix}$	131.45 (5)
$O3^{iii}$ — $Cs1$ — $O2^{v}$	137.48 (4)	As1—O3—H3	110 (3)
$O4$ — $Cs1$ — $O2^{v}$	117.24 (4)	Cs1 ^{iv} —O3—H3	84 (3)
$O5^{iv}$ — $Cs1$ — $O2^{v}$	117.36 (4)	Cs1 ^{ix} —O3—H3	90 (3)
$O1^v$ — $Cs1$ — $O2^v$	38.27 (4)	As1—O4—Cs1	136.90 (8)
$O11^{vi}$ — $Cs1$ — $O2^{v}$	53.08 (4)	$As1 - O4 - Cs1^{ix}$	61.45 (5)
O12—Cs1—O2 ^v	95.87 (4)	Cs1—O4—Cs1 ^{ix}	145.93 (5)
$O9^{vii}$ — $Cs1$ — $O2^{v}$	142.89 (3)	As1—O4—H4	107 (2)
$O11^{viii}$ — $Cs1$ — $O2^{v}$	72.01 (4)	Cs1—O4—H4	109 (2)
$O8$ — $Cs1$ — $O2^{v}$	159.03 (4)	Cs1 ^{ix} —O4—H4	45 (2)
$O7^{vii}$ — $Cs1$ — $O2^{v}$	103.84 (4)	As2—O5—Cs1 ⁱⁱⁱ	141.07 (8)
$O12^{vi}$ — $Cs1$ — $O2^{v}$	61.15 (4)	As2—O5—Cs1 ^x	65.44 (6)
$O7$ — $Cs1$ — $O2^{v}$	146.83 (4)	Cs1 ⁱⁱⁱ —O5—Cs1 ^x	106.13 (4)
O3 ⁱⁱ —Cs1—O2 ^v	95.30 (4)	As2—O6—Cs1 ^x	145.08 (8)
$O10^{i}$ — $Cs1$ — $O2^{v}$	41.49 (3)	As2—O6—H6	112 (3)
$As1^{ii}$ — $Cs1$ — $O2^{v}$	77.02 (3)	Cs1 ^x —O6—H6	102 (3)
As3 ^{vi} —Cs1—O2 ^v	49.19 (2)	As2—O7—Cs1 ^{vii}	125.00 (10)
As1 ^v —Cs1—O2 ^v	21.54 (2)	As2—07—Cs1	101.06 (9)
O6 ⁱ —Cs1—H8	127.7 (6)	Cs1 ^{vii} —O7—Cs1	133.62 (5)
O2 ⁱⁱ —Cs1—H8	137.8 (6)	As2—07—H7	108 (3)
O3 ⁱⁱⁱ —Cs1—H8	67.3 (6)	Cs1 ^{vii} —O7—H7	103 (3)
O4—Cs1—H8	48.7 (6)	Cs1—O7—H7	63 (3)
O5 ^{iv} —Cs1—H8	31.8 (6)	As2—O8—Cs1	110.08 (9)
O1 ^v —Cs1—H8	153.0 (6)	As2—O8—Cs1 ⁱⁱⁱ	74.96 (6)
O11 ^{vi} —Cs1—H8	99.6 (6)	Cs1—O8—Cs1 ⁱⁱⁱ	142.44 (5)
O12—Cs1—H8	67.3 (6)	As2—O8—H8	110 (3)
O9 ^{vii} —Cs1—H8	67.9 (6)	Cs1—O8—H8	57 (3)
O11 ^{viii} —Cs1—H8	110.2 (6)	Cs1 ⁱⁱⁱ —O8—H8	159 (3)
O8—Cs1—H8	11.4 (6)	As3—O9—Cs1 ^{vii}	130.90 (8)
O7 ^{vii} —Cs1—H8	89.8 (6)	As3—O9—Cs1 ^{xi}	75.31 (6)
O12 ^{vi} —Cs1—H8	87.5 (6)	Cs1 ^{vii} —O9—Cs1 ^{xi}	99.91 (4)
O7—Cs1—H8	44.8 (6)	As3—O10—Cs1 ^x	168.61 (9)

O3 ⁱⁱ —Cs1—H8	114.7 (6)	As3—O10—Cs1 ^{vi}	59.93 (5)
O10 ⁱ —Cs1—H8	156.5 (6)	Cs1x-010-Cs1vi	111.15 (3)
As1 ⁱⁱ —Cs1—H8	134.8 (6)	As3—O10—Cs1 ^{vii}	78.77 (6)
As3 ^{vi} —Cs1—H8	99.2 (6)	Cs1 ^x —O10—Cs1 ^{vii}	110.89 (3)
As1 ^v —Cs1—H8	154.2 (6)	Cs1 ^{vi} —O10—Cs1 ^{vii}	137.79 (4)
O2 ^v —Cs1—H8	148.0 (6)	As3—O10—Cs1 ^{xi}	72.57 (6)
O6 ⁱ —Cs1—H12	72.2 (7)	Cs1 ^x	113.62 (3)
O2 ⁱⁱ —Cs1—H12	123.9 (7)	$Cs1^{vi}$ — $O10$ — $Cs1^{xi}$	76.59 (3)
O3 ⁱⁱⁱ —Cs1—H12	118.9 (6)	Cs1 ^{vii} —O10—Cs1 ^{xi}	83.52 (4)
O4—Cs1—H12	91.9 (7)	As3—O11—Cs1 ^{vi}	116.21 (11)
O5 ^{iv} —Cs1—H12	32.8 (7)	As3—O11—Cs1 ^{xi}	119.34 (11)
O1 ^v —Cs1—H12	141.8 (6)	Cs1 ^{vi} —O11—Cs1 ^{xi}	121.90 (6)
O11 ^{vi} —Cs1—H12	91.0 (6)	As3—O11—H11	115 (3)
O12—Cs1—H12	13.3 (7)	Cs1 ^{vi} —O11—H11	102 (3)
O9 ^{vii} —Cs1—H12	93.7 (6)	Cs1 ^{xi} —O11—H11	68 (3)
O11 ^{viii} —Cs1—H12	145.1 (6)	As3—O12—Cs1	142.50 (11)
O8—Cs1—H12	63.9 (6)	As3—O12—Cs1 ^{vi}	90.58 (9)
O7 ^{vii} —Cs1—H12	66.1 (6)	Cs1—O12—Cs1 ^{vi}	126.73 (6)
O12 ^{vi} —Cs1—H12	51.9 (6)	As3—O12—H12	110 (3)
O7—Cs1—H12	55.3 (6)	Cs1—O12—H12	68 (3)
O3 ⁱⁱ —Cs1—H12	149.4 (6)	Cs1 ^{vi} —O12—H12	95 (3)
O10 ⁱ —Cs1—H12	105.9 (7)		

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x, y+1/2, -z+1/2; (iii) x, -y+1/2, z-1/2; (iv) x, -y+1/2, z+1/2; (v) -x, -y+1, -z+1; (vi) -x+1, -y+1, -z+1; (vii) -x+1, -y+1, -z+1; (vii) x-1, y, z; (ix) -x, y-1/2, -z+1/2; (x) -x+1, y-1/2, -z+1/2; (x) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
02—H2…O10 ^{viii}	0.83 (4)	1.70 (4)	2.524 (2)	171 (4)
O3—H3…O9 ^x	0.79 (4)	1.76 (4)	2.553 (3)	172 (4)
O4—H4···O1 ⁱⁱⁱ	0.92 (3)	1.70 (3)	2.609 (2)	170 (3)
O6—H6…O10	0.91 (2)	1.64 (2)	2.539 (2)	170 (4)
O7—H7…O9 ^{vii}	0.81 (4)	1.79 (4)	2.599 (3)	177 (4)
O11—H11…O1 ^{vi}	0.79 (4)	1.85 (4)	2.630 (3)	168 (4)
O8—H8…O5 ^{iv}	0.82 (4)	1.85 (4)	2.664 (2)	170 (4)
O12—H12…O5 ^{iv}	0.81 (4)	1.84 (4)	2.643 (3)	171 (4)

Symmetry codes: (iii) x, -y+1/2, z-1/2; (iv) x, -y+1/2, z+1/2; (vi) -x+1, -y+1, -z+1; (vii) -x+1, -y+1, -z; (viii) x-1, y, z; (x) -x+1, y-1/2, -z+1/2.

Dilithium bis(dihydrogen phosphate) (Li2H2PO42)

Crystal data	
$Li_2(H_2PO_4)_2$	V = 650.4 (2) Å ³
$M_r = 207.85$	Z = 4
Monoclinic, $P2_1/n$	F(000) = 416
a = 5.400 (1) Å	$D_{\rm x} = 2.123 {\rm ~Mg} {\rm ~m}^{-3}$
b = 15.927 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 7.562 (2) Å	Cell parameters from 2948 reflections
$\beta = 90.47 \ (3)^{\circ}$	$\theta = 2.6 - 34.9^{\circ}$

 $\mu = 0.67 \text{ mm}^{-1}$ T = 293 K

Data collection

Nonius KappaCCD single-crystal four-circle
diffractometer
Radiation source: fine-focus sealed tube
φ and ω scans
Absorption correction: multi-scan
(SCALEPACK; Otwinowski et al., 2003)
$T_{\min} = 0.906, \ T_{\max} = 0.936$
5625 measured reflections

Refinement

Refinement on F^2 Hydrogen site location: difference Fourier map Least-squares matrix: full All H-atom parameters refined $R[F^2 > 2\sigma(F^2)] = 0.025$ $w = 1/[\sigma^2(F_o^2) + (0.0358P)^2 + 0.2847P]$ $wR(F^2) = 0.072$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.04 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.44 \text{ e} \text{ Å}^{-3}$ 2857 reflections $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$ 126 parameters 0 restraints Extinction correction: SHELXL2016 Primary atom site location: structure-invariant (Sheldrick, 2015), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ direct methods Secondary atom site location: difference Fourier Extinction coefficient: 0.032 (2) map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Crude blocky, colourless

2857 independent reflections 2490 reflections with $I > 2\sigma(I)$

 $0.15 \times 0.12 \times 0.10 \text{ mm}$

 $\theta_{\rm max} = 34.9^\circ, \ \theta_{\rm min} = 2.6^\circ$

 $R_{\rm int} = 0.014$

 $h = -8 \rightarrow 8$ $k = -25 \rightarrow 25$ $l = -12 \rightarrow 12$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Li1	0.3095 (4)	0.41644 (13)	0.8697 (3)	0.0180 (3)	
Li2	0.2049 (4)	0.17789 (12)	0.3787 (3)	0.0188 (4)	
P1	0.20738 (5)	0.22094 (2)	0.78828 (3)	0.01221 (6)	
P2	0.82490 (4)	0.50113 (2)	0.75280 (3)	0.01103 (6)	
01	0.31754 (15)	0.18533 (5)	0.62305 (11)	0.02001 (15)	
O2	0.35275 (14)	0.28897 (5)	0.88008 (11)	0.01756 (14)	
O3	0.16657 (18)	0.15302 (6)	0.93356 (12)	0.02388 (18)	
O4	-0.06014 (14)	0.25573 (6)	0.73730 (11)	0.01953 (15)	
O5	0.64679 (14)	0.43820 (5)	0.82463 (11)	0.01765 (14)	
O6	1.07946 (14)	0.46742 (5)	0.71115 (10)	0.01685 (14)	
O7	0.71704 (16)	0.54689 (6)	0.58619 (11)	0.02046 (16)	
08	0.84346 (15)	0.57281 (5)	0.89622 (10)	0.01729 (14)	
H1	0.057 (4)	0.1225 (14)	0.916 (3)	0.055 (7)*	
H2	-0.089 (4)	0.2448 (15)	0.630(3)	0.056 (6)*	
Н3	0.782 (5)	0.5391 (16)	0.503 (3)	0.064 (8)*	
H4	0.950 (4)	0.6050 (14)	0.874 (3)	0.052 (6)*	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Li1	0.0137 (8)	0.0215 (9)	0.0189 (8)	0.0019 (7)	0.0014 (6)	0.0024 (7)
Li2	0.0161 (8)	0.0181 (8)	0.0222 (9)	-0.0015 (6)	0.0007 (7)	-0.0005 (7)
P1	0.01114 (11)	0.01204 (11)	0.01341 (11)	0.00015 (7)	-0.00151 (8)	-0.00139 (8)
P2	0.01011 (11)	0.01230 (11)	0.01071 (11)	0.00059 (7)	0.00120 (7)	0.00032 (7)
01	0.0202 (4)	0.0236 (4)	0.0162 (3)	0.0080 (3)	-0.0008 (3)	-0.0041 (3)
02	0.0152 (3)	0.0149 (3)	0.0225 (4)	-0.0028 (2)	-0.0017 (3)	-0.0042 (3)
03	0.0271 (4)	0.0227 (4)	0.0217 (4)	-0.0094 (3)	-0.0068 (3)	0.0077 (3)
04	0.0137 (3)	0.0284 (4)	0.0164 (3)	0.0063 (3)	-0.0032(2)	-0.0035 (3)
05	0.0141 (3)	0.0152 (3)	0.0237 (4)	-0.0032 (2)	0.0036 (3)	0.0019 (3)
06	0.0124 (3)	0.0245 (4)	0.0137 (3)	0.0057 (3)	0.0018 (2)	0.0025 (3)
O7	0.0208 (4)	0.0280 (4)	0.0126 (3)	0.0118 (3)	0.0016 (3)	0.0033 (3)
08	0.0207 (4)	0.0166 (3)	0.0147 (3)	-0.0055 (3)	0.0046 (3)	-0.0041 (2)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Li1—O5	1.888 (2)	P1—O2	1.5043 (8)
Li1—O6 ⁱ	1.902 (2)	P1—O3	1.5588 (9)
Li1—O8 ⁱⁱ	1.967 (2)	P1O4	1.5917 (8)
Li1—O2	2.045 (2)	P2—O5	1.4944 (8)
Li1—Li2 ⁱⁱⁱ	2.611 (3)	P2—O6	1.5113 (8)
Li1—P2 ⁱ	3.068 (2)	P2—O7	1.5640 (9)
Li2—O5 ^{iv}	1.919 (2)	P2—O8	1.5774 (8)
Li2—01	1.944 (2)	O3—H1	0.77 (2)
Li2—O4 ^v	1.973 (2)	O4—H2	0.84 (2)
Li2—O2 ^{iv}	1.974 (2)	O7—H3	0.73 (2)
Li2—P2 ^{iv}	3.077 (2)	O8—H4	0.79 (2)
P1—O1	1.4996 (9)		
O5—Li1—O6 ⁱ	115.73 (11)	O2—P1—O4	109.28 (5)
O5—Li1—O8 ⁱⁱ	124.03 (11)	O3—P1—O4	106.20 (5)
O6 ⁱ —Li1—O8 ⁱⁱ	104.66 (10)	O5—P2—O6	115.26 (5)
O5—Li1—O2	94.55 (9)	O5—P2—O7	111.65 (5)
O6 ⁱ —Li1—O2	121.45 (11)	O6—P2—O7	109.33 (5)
O8 ⁱⁱ —Li1—O2	95.77 (9)	O5—P2—O8	105.84 (5)
O5—Li1—Li2 ⁱⁱⁱ	47.19 (7)	O6—P2—O8	110.34 (5)
O6 ⁱ —Li1—Li2 ⁱⁱⁱ	142.36 (11)	O7—P2—O8	103.75 (5)
O8 ⁱⁱ —Li1—Li2 ⁱⁱⁱ	112.09 (10)	O5—P2—Li1 ^{vi}	98.65 (5)
O2—Li1—Li2 ⁱⁱⁱ	48.30 (6)	O6—P2—Li1 ^{vi}	29.39 (5)
O5—Li1—P2 ⁱ	133.57 (9)	O7—P2—Li1 ^{vi}	138.44 (5)
O6 ⁱ —Li1—P2 ⁱ	22.95 (4)	O8—P2—Li1 ^{vi}	94.06 (5)
O8 ⁱⁱ —Li1—P2 ⁱ	81.81 (7)	O5—P2—Li2 ⁱⁱⁱ	29.33 (5)
O2—Li1—P2 ⁱ	122.98 (9)	O6—P2—Li2 ⁱⁱⁱ	85.96 (5)
Li2 ⁱⁱⁱ —Li1—P2 ⁱ	162.91 (9)	O7—P2—Li2 ⁱⁱⁱ	127.10 (6)
O5 ^{iv} —Li2—O1	108.09 (10)	O8—P2—Li2 ⁱⁱⁱ	118.06 (5)
$O5^{iv}$ —Li2—O4 v	120.38 (11)	Li1 ^{vi} —P2—Li2 ⁱⁱⁱ	71.62 (5)

O1—Li2—O4 ^v	106.56 (10)	P1—O1—Li2	133.78 (8)
$O5^{iv}$ —Li2— $O2^{iv}$	95.90 (9)	P1—O2—Li2 ⁱⁱⁱ	133.57 (8)
O1—Li2—O2 ^{iv}	105.81 (10)	P1—O2—Li1	129.67 (8)
$O4^{v}$ —Li2— $O2^{iv}$	118.91 (11)	Li2 ⁱⁱⁱ —O2—Li1	81.02 (8)
O5 ^{iv} —Li2—Li1 ^{iv}	46.19 (7)	Р1—О3—Н1	115.4 (17)
O1—Li2—Li1 ^{iv}	108.00 (10)	P1—O4—Li2 ^{vii}	129.92 (8)
O4 ^v —Li2—Li1 ^{iv}	145.44 (11)	P1—O4—H2	108.9 (16)
O2 ^{iv} —Li2—Li1 ^{iv}	50.68 (7)	Li2 ^{vii} —O4—H2	121.0 (16)
$O5^{iv}$ —Li2—P2 ^{iv}	22.43 (4)	P2—O5—Li1	144.45 (8)
O1—Li2—P2 ^{iv}	106.59 (8)	P2—O5—Li2 ⁱⁱⁱ	128.24 (8)
$O4^{v}$ —Li2—P2 ^{iv}	101.01 (8)	Li1—O5—Li2 ⁱⁱⁱ	86.62 (9)
O2 ^{iv} —Li2—P2 ^{iv}	117.05 (8)	P2—O6—Li1 ^{vi}	127.66 (8)
$Li1^{iv}$ — $Li2$ — $P2^{iv}$	68.47 (6)	Р2—О7—Н3	116 (2)
O1—P1—O2	116.61 (5)	P2—O8—Li1 ⁱⁱ	131.07 (8)
O1—P1—O3	112.58 (5)	P2—O8—H4	111.6 (17)
O2—P1—O3	104.53 (5)	Li1 ⁱⁱ —O8—H4	116.4 (17)
O1—P1—O4	107.18 (5)		

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1, -*y*+1, -*z*+2; (iii) *x*+1/2, -*y*+1/2, *z*+1/2; (iv) *x*-1/2, -*y*+1/2, *z*-1/2; (v) *x*+1/2, -*y*+1/2, *z*-1/2; (vi) *x*+1, *y*, *z*; (vii) *x*-1/2, -*y*+1/2, *z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
O3—H1…O7 ^{viii}	0.77 (2)	1.91 (2)	2.6769 (12)	171 (2)
O4—H2···O2 ^{iv}	0.84 (2)	1.99 (2)	2.8292 (14)	176 (2)
O7—H3···O6 ^{ix}	0.73 (2)	1.79 (2)	2.5210 (13)	172 (3)
O8—H4…O1 ^x	0.79 (2)	1.79 (2)	2.5667 (12)	167 (2)

Symmetry codes: (iv) x-1/2, -y+1/2, z-1/2; (viii) -x+1/2, y-1/2, -z+3/2; (ix) -x+2, -y+1, -z+1; (x) -x+3/2, y+1/2, -z+3/2.

Ammonium dihydrogen arsenate(V) trihydrogen arsenate(V) (NH4H2AsO4H3AsO4)

Crystal data	
$(NH_4)(H_2AsO_4)(H_3AsO_4)$ $M_r = 300.92$ Orthorhombic, <i>Pbca</i> a = 7.943 (2) Å b = 9.855 (2) Å c = 19.623 (4) Å V = 1536.1 (6) Å ³ Z = 8 F(000) = 1168	$D_{\rm x} = 2.602 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 793 reflections $\theta = 3.3-28.7^{\circ}$ $\mu = 8.71 \text{ mm}^{-1}$ T = 293 K Rounded prisms, colourless $0.15 \times 0.10 \times 0.07 \text{ mm}$
Data collection	
Nonius KappaCCD single-crystal four-circle diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (SCALEPACK; Otwinowski <i>et al.</i> , 2003) $T_{\min} = 0.355, T_{\max} = 0.581$ 1799 measured reflections	1295 independent reflections 905 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{max} = 28.7^{\circ}, \ \theta_{min} = 3.3^{\circ}$ $h = -10 \rightarrow 10$ $k = -13 \rightarrow 12$ $l = -25 \rightarrow 26$

Refinement

Refinement on F^2	Hydrogen site location: difference Fourier map
Least-squares matrix: full	Only H-atom coordinates refined
$R[F^2 > 2\sigma(F^2)] = 0.046$	$w = 1/[\sigma^2(F_0^2) + (0.0508P)^2 + 1.4516P]$
$wR(F^2) = 0.109$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
1295 reflections	$\Delta \rho_{\rm max} = 0.74 \text{ e } \text{\AA}^{-3}$
136 parameters	$\Delta \rho_{\rm min} = -0.61 \ {\rm e} \ {\rm \AA}^{-3}$
9 restraints	Extinction correction: SHELXL2016
Primary atom site location: structure-invariant	(Sheldrick, 2015),
direct methods	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0011 (5)
map	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N	0.2990 (9)	0.5958 (9)	-0.1213 (4)	0.0333 (17)	
As1	0.19665 (8)	0.31360 (8)	0.03568 (4)	0.0228 (2)	
As2	0.26446 (8)	0.39549 (9)	-0.27893 (4)	0.0254 (3)	
01	0.2714 (6)	0.1598 (5)	0.0226 (3)	0.0266 (13)	
02	0.0736 (6)	0.3271 (5)	0.1038 (3)	0.0296 (13)	
03	0.0971 (6)	0.3697 (6)	-0.0359 (3)	0.0302 (13)	
O4	0.3684 (6)	0.4183 (6)	0.0407 (3)	0.0305 (14)	
05	0.2149 (6)	0.3602 (6)	-0.2002 (3)	0.0287 (13)	
O6	0.3472 (7)	0.5542 (6)	-0.2792 (3)	0.0351 (14)	
07	0.0911 (6)	0.3961 (6)	-0.3291 (3)	0.0344 (14)	
08	0.4036 (6)	0.2901 (6)	-0.3172 (3)	0.0364 (16)	
H1	0.410 (3)	0.585 (11)	-0.121 (6)	0.08 (4)*	
H2	0.264 (10)	0.522 (6)	-0.145 (4)	0.040*	
Н3	0.251 (11)	0.619 (11)	-0.082 (3)	0.06 (3)*	
H4	0.260 (19)	0.667 (11)	-0.146 (7)	0.18 (9)*	
Н5	0.013 (13)	0.430 (12)	-0.039(8)	0.16 (7)*	
H7	0.37 (2)	0.57 (2)	-0.324 (2)	0.22 (9)*	
H6	0.332 (8)	0.502 (4)	0.032 (4)	0.03 (2)*	
H8	0.057 (10)	0.324 (6)	-0.352 (4)	0.05 (3)*	
H9	0.494 (9)	0.333 (12)	-0.300 (6)	0.10 (5)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Ν	0.035 (4)	0.039 (5)	0.026 (4)	-0.001 (3)	0.002 (3)	-0.009 (4)
As1	0.0201 (4)	0.0169 (4)	0.0313 (5)	0.0005 (3)	0.0001 (3)	-0.0001 (4)
As2	0.0228 (4)	0.0240 (5)	0.0292 (5)	-0.0018 (3)	0.0014 (3)	-0.0014 (4)

01	0.025 (3)	0.017 (3)	0.038 (4)	-0.0009 (19)	0.006 (2)	-0.006 (3)
O2	0.027 (2)	0.025 (3)	0.036 (4)	0.005 (2)	0.003 (2)	-0.004 (3)
03	0.025 (3)	0.032 (3)	0.033 (3)	0.003 (2)	-0.003 (2)	0.006 (3)
O4	0.022 (2)	0.018 (3)	0.051 (4)	-0.001 (2)	-0.003 (2)	0.002 (3)
05	0.026 (3)	0.030 (3)	0.030 (3)	-0.003 (2)	0.004 (2)	0.002 (3)
06	0.041 (3)	0.025 (3)	0.039 (4)	0.000 (2)	-0.003 (2)	-0.002 (3)
07	0.024 (3)	0.039 (4)	0.040 (4)	0.000 (2)	-0.010 (2)	-0.003 (3)
08	0.022 (3)	0.031 (3)	0.056 (5)	0.001 (2)	0.007 (2)	-0.012 (3)

Geometric parameters (Å, °)

N05	2.869 (10)	N—H3	0.89 (2)
N—O1 ⁱ	2.947 (9)	N—H4	0.90 (2)
N—O5 ⁱ	3.032 (11)	As1—O1	1.648 (5)
N—O2 ⁱⁱ	3.075 (9)	As1—O2	1.662 (6)
N—O4 ⁱⁱⁱ	3.082 (9)	As1—O3	1.705 (6)
N—O6	3.148 (10)	As1—O4	1.714 (5)
N	3.194 (10)	As2—O5	1.632 (6)
N—O3	3.216 (10)	As2—O8	1.692 (5)
N	3.272 (9)	As2—07	1.693 (5)
N—O3 ⁱ	3.283 (10)	As2—O6	1.696 (6)
N—O4	3.671 (11)	As2—H9	1.97 (10)
N—As2	3.679 (8)	O3—H5	0.89 (2)
N—As1 ⁱ	3.755 (8)	O4—H6	0.89 (2)
N—O6 ^{vi}	4.106 (10)	O6—H7	0.90 (2)
N—As1	4.229 (9)	O7—H8	0.89 (2)
N—H1	0.89 (2)	O8—H9	0.89 (2)
N—H2	0.91 (2)		
$O5$ — N — $O1^i$	130.2 (3)	O2—As1—O3	111.4 (3)
$O5$ — N — $O5^i$	114.3 (3)	O1—As1—O4	106.0 (2)
$O1^{i}$ N $O5^{i}$	107.3 (3)	O2—As1—O4	111.9 (3)
O5—N—O2 ⁱⁱ	92.1 (2)	O3—As1—O4	102.8 (3)
$O1^{i}$ N $O2^{ii}$	70.0 (2)	O1—As1—N ^{vii}	48.9 (2)
$O5^{i}$ N $O2^{ii}$	79.0 (2)	O2—As1—N ^{vii}	135.4 (2)
O5—N—O4 ⁱⁱⁱ	116.1 (3)	O3—As1—N ^{vii}	60.9 (2)
$O1^{i}$ N $O4^{iii}$	71.4 (2)	O4—As1—N ^{vii}	112.6 (2)
$O5^{i}$ —N— $O4^{iii}$	109.4 (3)	O1—As1—N	114.9 (2)
$O2^{ii}$ —N— $O4^{iii}$	141.2 (3)	O2—As1—N	130.3 (2)
O5—N—O6	52.6 (2)	O3—As1—N	43.6 (2)
01 ⁱ —N—O6	173.6 (4)	O4—As1—N	59.5 (2)
$O5^{i}$ —N—O6	67.3 (2)	N ^{vii} —As1—N	77.08 (15)
O2 ⁱⁱ —N—O6	105.0 (3)	O1—As1—N ⁱⁱ	124.9 (2)
O4 ⁱⁱⁱ —N—O6	113.3 (3)	O2—As1—N ⁱⁱ	31.2 (2)
$O5$ — N — $O7^{iv}$	60.4 (2)	O3—As1—N ⁱⁱ	80.4 (2)
$O1^{i}$ N $O7^{iv}$	124.2 (3)	O4—As1—N ⁱⁱ	124.9 (2)
$O5^{i}$ N $O7^{iv}$	113.6 (3)	N ^{vii} —As1—N ⁱⁱ	116.13 (17)
$O2^{ii}$ N— $O7^{iv}$	152.3 (3)	N—As1—N ⁱⁱ	108.59 (12)

OA^{iii} N $O7^{iv}$	60.4(2)		853(2)
$O_4 = N = O_7$	62.1(2)	$O_1 = A_{S1} = N$ $O_2 = A_{S1} = N^{iii}$	3.3(2)
05 N O3	66.7(2)	O_2 As 1 N ⁱⁱⁱ	102.1(2) 131.8(2)
03 - N - 03	60.7(2)	O_3 —As1—N	131.0(2)
OI - N = O3	05.5(2)	V4—ASI—IN	50.4(2)
03 - N = 03	147.3(3)	N Asl Niii	114.08(18)
02^{n} N 03	68.5 (<i>2</i>)	$\mathbf{N} \longrightarrow \mathbf{A} \mathbf{S} \mathbf{I} \longrightarrow \mathbf{N}^{\text{iii}}$	88.28 (16)
$04^{}N - 03$	97.4 (3)	N^{-} ASI $-N^{-}$	128.79 (19)
06—N—03	118.9 (3)	$OI - ASI - N^{\text{viri}}$	64.6 (2)
0/10 N -0.3	95.4 (3)	O2—As1—N ^{viii}	57.6 (2)
$O5-N-O8^{\vee}$	116.3 (3)	O3—As1—N ^{vin}	103.2 (2)
$O1^{i}$ N $-O8^{v}$	111.4 (3)	O4—As1—N ^{vm}	154.0 (2)
$O5^{i}$ N $O8^{v}$	48.33 (18)	N ^{vii} —As1—N ^{viii}	80.41 (16)
$O2^{ii}$ N— $O8^{v}$	126.3 (3)	N—As1—N ^{viii}	146.26 (12)
$O4^{iii}$ —N— $O8^{v}$	66.2 (2)	N ⁱⁱ —As1—N ^{viii}	60.37 (8)
O6—N—O8 ^v	68.0 (2)	N ⁱⁱⁱ —As1—N ^{viii}	124.17 (18)
$O7^{iv}$ N $O8^{v}$	74.0 (2)	O5—As2—O8	116.5 (3)
O3—N—O8 ^v	163.3 (3)	O5—As2—O7	110.8 (3)
O5—N—O3 ⁱ	177.9 (3)	O8—As2—O7	106.0 (3)
$O1^{i}$ N $O3^{i}$	51.9 (2)	O5—As2—O6	107.0 (3)
$O5^{i}$ N $-O3^{i}$	64.1 (2)	O8—As2—O6	108.2 (3)
$O2^{ii}$ —N— $O3^{i}$	89.0 (2)	O7—As2—O6	108.1 (3)
$O4^{iii}$ —N— $O3^{i}$	63.9 (2)	O5—As2—N	48.4 (2)
O6—N—O3 ⁱ	125.4 (3)	O8—As2—N	130.8 (2)
$O7^{iv}$ —N— $O3^{i}$	118.7 (3)	O7—As2—N	123.2 (2)
O3—N—O3 ⁱ	115.4 (3)	O6—As2—N	58.6 (3)
O8 ^v —N—O3 ⁱ	61.7 (2)	O5—As2—N ^{vii}	31.3 (2)
05—N—04	96.7 (3)	O8—As2—N ^{vii}	88.5 (2)
01 ⁱ —N—04	45.61 (18)	07—As2—N ^{vii}	108.9 (2)
05 ⁱ —N—O4	149.0 (3)	$06-As^2-N^{vii}$	132.8(3)
$02^{ii} - N - 04$	99.5 (2)	$N = As^2 = N^{vii}$	76 88 (15)
04^{iii} N—04	53 5 (2)	05—As2—N ^{vi}	1074(2)
06—N—04	1405(3)	08—As2—N ^{vi}	1266(2)
07^{iv} N 04	82 0 (2)	07—As2—N ^{vi}	261(2)
03_N_04	45.05(17)	$06 4 s^2 N^{vi}$	20.1 (2) 85 1 (2)
0.8^{v} N 0.4	1103(2)	$N_{\Delta s}^{2}$ N^{vi}	100.7(2)
$O3^i$ N $O4$	84.9(2)	Nvii As2 Nvi	120.7(2)
$05 \text{ N} \text{ As}^2$	25.10(13)	$\frac{1}{10} - \frac{1}{10} - \frac{1}{10} = \frac{1}{10}$	120.20(3) 114.5(2)
O_{3} N_{AS2}	25.19(13) 155.0(2)	O_{3} A_{32} N_{13}	114.3(2)
$O_1 - N - A_{S2}$	133.0(3)	O_{0} As 2 Nix	4.0(2)
$O_{3} = N = A_{2}$	91.7(2)	$O = A_{S2} = N^{ix}$	110.0(2)
$O2^{-}$ N $A=2$	98.9 (2)	$V_0 - As_2 - N_1^{TT}$	100.1(2)
$O4^{}N - As2$	118.1(3)	$N - AS2 - N^{ix}$	126.83 (8)
$U_6 - N - As_2$	27.38 (13)	N^{vir} As2 N^{vir}	87.52 (18)
$U/^{v}$ N—As2	5/.81 (1/)	$N^{*} - As2 - N^{*}$	130.26 (19)
U3—N—As2	91.7 (2)	U_{2} $A_{3}2$ N_{1}	130.53 (19)
$O8^{v}$ N—As2	93.3 (2)	O8—As2—N ^{iv}	61.4 (2)
O3 ¹ —N—As2	152.7 (3)	O'/—As2—N ^{IV}	117.1 (2)
O4—N—As2	118.9 (3)	O6—As2—N ^{IV}	46.9 (2)
O5—N—As1 ⁱ	155.1 (3)	N—As2—N ^{iv}	93.05 (19)

O1 ⁱ —N—As1 ⁱ	24.94 (13)	N ^{vii} —As2—N ^{iv}	129.92 (9)
O5 ⁱ —N—As1 ⁱ	85.9 (2)	N ^{vi} —As2—N ^{iv}	109.85 (16)
O2 ⁱⁱ —N—As1 ⁱ	77.1 (2)	N ^{ix} —As2—N ^{iv}	59.62 (5)
O4 ⁱⁱⁱ —N—As1 ⁱ	66.22 (19)	O5—As2—N ^x	91.4 (2)
O6—N—As1 ⁱ	151.7 (3)	O8—As2—N ^x	92.4 (2)
O7 ^{iv} —N—As1 ⁱ	126.5 (3)	O7—As2—N ^x	33.3 (2)
O3—N—As1 ⁱ	88.5 (2)	O6—As2—N ^x	141.2 (2)
O8v—N—As1 ⁱ	87.8 (2)	N—As2—N ^x	128.63 (8)
O3 ⁱ —N—As1 ⁱ	26.98 (12)	N ^{vii} —As2—N ^x	78.44 (17)
O4—N—As1 ⁱ	63.92 (16)	N ^{vi} —As2—N ^x	56.57 (5)
$As2-N-As1^{i}$	175.6 (2)	N^{ix} —As2—N ^x	96.01 (15)
$O5-N-O6^{vi}$	57.27 (18)	N^{iv} —As2—N ^x	136.46 (17)
$O1^{i} N O6^{vi}$	108.1 (2)	05—As2—H9	111 (4)
05^{i} N— 06^{vi}	79.1 (2)	08—As2—H9	26.9 (19)
$O2^{ii}$ N— $O6^{vi}$	40.23 (16)	07—As2—H9	129 (3)
$O4^{iii}$ N— $O6^{vi}$	171.4 (3)	O6-As2-H9	86 (3)
$O6-N-O6^{vi}$	68.00 (18)	$N = As^2 = H9$	106(2)
07^{iv} N— 06^{vi}	1154(3)	N^{vii} As2—H9	93 (4)
$O3-N-O6^{vi}$	75.10 (19)	N^{vi} —As2—H9	142 (4)
$O8^{v} - N - O6^{vi}$	120.9 (3)	N ^{ix} —As2—H9	23.3 (19)
$O3^{i}$ N— $O6^{vi}$	123.0 (3)	N ^{iv} —As2—H9	43 (4)
04—N—06 ^{vi}	119.7 (2)	N ^x —As2—H9	119.3 (19)
As2—N—O6 ^{vi}	58.77 (14)	As1—O1—N ^{vii}	106.1 (3)
As1 ⁱ —N—O6 ^{vi}	117.1 (2)	As1—O1—N ⁱⁱⁱ	73.8 (2)
O5—N—As1	79.4 (2)	N ^{vii} —O1—N ⁱⁱⁱ	131.0 (2)
O1 ⁱ —N—As1	53.58 (17)	As1—O1—N ^{viii}	97.7 (2)
O5 ⁱ —N—As1	158.4 (3)	N ^{vii} —O1—N ^{viii}	97.1 (2)
O2 ⁱⁱ —N—As1	84.0 (2)	N ⁱⁱⁱ —O1—N ^{viii}	131.9 (2)
O4 ⁱⁱⁱ —N—As1	76.2 (2)	As1—O1—N	48.2 (2)
O6—N—As1	130.9 (3)	N ^{vii} —O1—N	70.2 (2)
O7 ^{iv} —N—As1	87.5 (2)	N ⁱⁱⁱ —O1—N	76.27 (17)
O3—N—As1	21.42 (11)	N ^{viii} —O1—N	132.56 (18)
O8 ^v —N—As1	142.4 (3)	As1—O2—N ⁱⁱ	132.5 (3)
O3 ⁱ —N—As1	102.5 (2)	As1—O2—N ^{viii}	105.1 (2)
O4—N—As1	23.73 (9)	N ⁱⁱ —O2—N ^{viii}	76.41 (15)
As2—N—As1	104.2 (2)	As1—O2—N ⁱⁱⁱ	59.12 (17)
As1 ⁱ —N—As1	77.29 (15)	N ⁱⁱ —O2—N ⁱⁱⁱ	154.8 (3)
O6 ^{vi} —N—As1	96.48 (18)	N ^{viii} —O2—N ⁱⁱⁱ	125.74 (19)
O5—N—H1	98 (7)	As1—O2—N ^{vii}	31.33 (17)
O1 ⁱ —N—H1	102 (7)	N ⁱⁱ —O2—N ^{vii}	113.6 (2)
O5 ⁱ —N—H1	98 (7)	N ^{viii} —O2—N ^{vii}	76.03 (17)
O2 ⁱⁱ —N—H1	170 (7)	N^{iii} —O2— N^{vii}	85.99 (16)
O4 ⁱⁱⁱ —N—H1	31 (7)	As1—O3—N	115.0 (3)
O6—N—H1	82 (7)	As1—O3—N ^{vii}	92.1 (3)
O7 ^{iv} —N—H1	37 (7)	N—O3—N ^{vii}	100.3 (2)
O3—N—H1	114 (8)	As1—O3—N ⁱⁱ	77.3 (2)
O8 ^v —N—H1	50 (7)	N—O3—N ⁱⁱ	131.7 (2)
O3 ⁱ —N—H1	81 (7)	N ^{vii} —O3—N ⁱⁱ	126.8 (2)

O4—N—H1	78 (8)	As1—O3—H5	128 (10)
As2—N—H1	91 (7)	N—O3—H5	83 (10)
As1 ⁱ —N—H1	93 (7)	N ^{vii} —O3—H5	135 (10)
O6 ^{vi} —N—H1	149 (7)	N ⁱⁱ —O3—H5	57 (10)
As1—N—H1	96 (8)	As1—O4—N ⁱⁱⁱ	133.2 (3)
O5—N—H2	4 (5)	As1—O4—N	96.7 (3)
O1 ⁱ —N—H2	128 (6)	N ⁱⁱⁱ —O4—N	126.5 (2)
O5 ⁱ —N—H2	114 (6)	As1—O4—N ^{vii}	47.7 (2)
O2 ⁱⁱ —N—H2	88 (5)	N ⁱⁱⁱ —O4—N ^{vii}	124.1 (2)
O4 ⁱⁱⁱ —N—H2	119 (6)	NO4N ^{vii}	72.12 (17)
O6—N—H2	55 (6)	As1—O4—H6	107 (5)
O7 ^{iv} —N—H2	65 (5)	N ⁱⁱⁱ —O4—H6	115 (5)
O3—N—H2	64 (6)	N	49 (6)
O8 ^v —N—H2	120 (5)	N ^{vii} —O4—H6	114 (6)
O3 ⁱ —N—H2	177 (5)	As2—O5—N	106.4 (3)
O4—N—H2	97 (6)	As2—O5—N ^{vii}	132.5 (3)
As2—N—H2	27 (6)	N—O5—N ^{vii}	115.4 (3)
As1 ⁱ —N—H2	152 (5)	As2—O6—N	94.0 (3)
O6 ^{vi} —N—H2	54 (5)	As2—O6—N ^{iv}	115.6 (3)
As1—N—H2	78 (6)	N—O6—N ^{iv}	124.1 (3)
H1—N—H2	102 (8)	As2—O6—N ^{vi}	74.2 (2)
O5—N—H3	125 (7)	N	106.2 (3)
O1 ⁱ —N—H3	15 (6)	N^{iv} —O6— N^{vi}	126.3 (2)
O5 ⁱ —N—H3	102 (8)	As2—O6—H7	102 (10)
O2 ⁱⁱ —N—H3	55 (6)	N—O6—H7	164 (10)
O4 ⁱⁱⁱ —N—H3	86 (6)	N ^{iv} O6H7	50 (10)
O6—N—H3	160 (7)	N ^{vi} —O6—H7	76 (10)
O7 ^{iv} —N—H3	137 (7)	As2—O7—N ^{vi}	140.4 (3)
O3—N—H3	61 (7)	As2—O7—N ^x	134.4 (3)
O8 ^v —N—H3	119 (7)	N^{vi} —O7— N^x	80.52 (12)
O3 ⁱ —N—H3	57 (7)	As2—07—N	39.73 (19)
O4—N—H3	56 (7)	N ^{vi} —O7—N	104.8 (3)
As2—N—H3	146 (7)	N ^x —O7—N	134.77 (17)
As1 ⁱ —N—H3	31 (7)	As2—O7—N ^{vii}	52.8 (2)
O6 ^{vi} —N—H3	94 (6)	N^{vi} —O7— N^{vii}	136.37 (19)
As1—N—H3	57 (8)	N ^x —O7—N ^{vii}	84.68 (19)
H1—N—H3	117 (9)	N—O7—N ^{vii}	60.22 (12)
H2—N—H3	122 (9)	As2—O7—H8	123 (6)
O5—N—H4	105 (10)	N ^{vi} —O7—H8	97 (6)
O1 ⁱ —N—H4	106 (10)	N ^x	29 (5)
$O5^{i}$ —N—H4	18 (10)	N—O7—H8	150 (6)
O2 ⁱⁱ —N—H4	62 (10)	N ^{vii} —O7—H8	90 (6)
O4 ⁱⁱⁱ —N—H4	127 (10)	As2—O8—N ^{ix}	173.9 (3)
O6—N—H4	68 (10)	As2—O8—N ^{iv}	99.4 (2)
O7 ^{iv} —N—H4	124 (10)	N^{ix} —O8— N^{iv}	77.87 (12)
O3—N—H4	130 (10)	As2—O8—N ^{vii}	69.8 (2)
O8 ^v —N—H4	66 (10)	N ^{ix} —O8—N ^{vii}	108.5 (3)
O3 ⁱ —N—H4	74 (10)	N^{iv} —O8— N^{vii}	138.29 (17)

O4—N—H4	152 (10)	As2—O8—N	34.20 (18)
As2—N—H4	87 (10)	N ^{ix}	139.75 (18)
As1 ⁱ —N—H4	90 (10)	N ^{iv} —08—N	85.3 (2)
O6 ^{vi} —N—H4	62 (10)	N ^{vii} —O8—N	62.91 (12)
As1—N—H4	146 (10)	As2—O8—H9	94 (8)
H1—N—H4	116 (10)	N ^{ix} —08—H9	80 (8)
H2—N—H4	104 (10)	N ^{iv} —O8—H9	39 (9)
H3—N—H4	96 (10)	N ^{vii} —O8—H9	100 (9)
01—As1—02	114.3 (3)	N—O8—H9	64 (8)
01—As1—O3	109.7 (3)		

Symmetry codes: (i) -x+1/2, y+1/2, z; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z; (iv) x+1/2, y, -z-1/2; (v) -x+1, y+1/2, -z-1/2; (vi) x-1/2, y, -z-1/2; (vii) -x+1/2, y-1/2, -z; (viii) x-1/2, -y+1/2, -z; (iv) -x+1, y-1/2, -z-1/2; (vi) x-1/2, -z-1/2; (vii) x-1/2, -z-1/2; (viii) x-1/2; -z-1/2;

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
N—H1····O4 ⁱⁱⁱ	0.89 (2)	2.36 (8)	3.082 (9)	138 (10)
N—H1····O7 ^{iv}	0.89 (2)	2.54 (9)	3.194 (10)	130 (9)
N—H4····O5 ⁱ	0.90 (2)	2.20(7)	3.032 (11)	154 (14)
N—H3···O1 ⁱ	0.89 (2)	2.10 (4)	2.947 (9)	159 (9)
N—H2…O5	0.91 (2)	1.96 (2)	2.869 (10)	174 (7)
O3—H5····O1 ^{viii}	0.89 (2)	2.13 (15)	2.616 (7)	113 (12)
O3—H5…O3 ⁱⁱ	0.89 (2)	2.61 (11)	3.311 (12)	136 (13)
O6—H7…O2 ^{xi}	0.90 (2)	1.82 (10)	2.653 (9)	152 (19)
O4—H6…O1 ⁱ	0.89(2)	1.77 (3)	2.650 (8)	170 (7)
O7—H8…O2 ^{xii}	0.89 (2)	1.72 (4)	2.568 (8)	157 (8)
O8—H9…O5 ^{iv}	0.89 (2)	1.78 (6)	2.590 (7)	150 (11)

Symmetry codes: (i) -*x*+1/2, *y*+1/2, *z*; (ii) -*x*, -*y*+1, -*z*; (iii) -*x*+1, -*y*+1, -*z*; (iv) *x*+1/2, *y*, -*z*-1/2; (viii) *x*-1/2, -*y*+1/2, -*z*; (xi) -*x*+1/2, -*y*+1, *z*-1/2; (xii) *x*, -*y*+1/2, *z*-1/2.