Supporting information for article:

Tolerance factor and phase stability of the garnet structure

Zhen Song, Dandan Zhou and Quanlin Liu
Tolerance Factor and Phase Stability of the Garnet Structure

Zhen Song, Dandan Zhou, and Quanlin Liu*

Beijing Key Laboratory for New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

E-mail: qlliu@ustb.edu.cn

Figure S1: Geometrical relationships used to express the Tolerance Factor

Table S1: Tolerance Factor of End-Member Garnets

<table>
<thead>
<tr>
<th>ID Num.</th>
<th>Formula</th>
<th>Ref.</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>80352390</td>
<td>(Y)$_3$(Te)$_2$[Li]3 < O >${12}$</td>
<td>1</td>
<td>0.836</td>
</tr>
<tr>
<td>80352590</td>
<td>(Pr)$_3$(Te)$_2$[Li]3 < O >${12}$</td>
<td>1</td>
<td>0.751</td>
</tr>
</tbody>
</table>

Continuation on next page
Continuation of Table S1

<table>
<thead>
<tr>
<th>Num.</th>
<th>Formula</th>
<th>Ref.</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>80352600</td>
<td>(Nd)$_3${Te}$_2$[Li]3 < O >${12}$</td>
<td>1</td>
<td>0.765</td>
</tr>
<tr>
<td>80352620</td>
<td>(Sm)$_3${Te}$_2$[Li]3 < O >${12}$</td>
<td>1</td>
<td>0.790</td>
</tr>
<tr>
<td>80352630</td>
<td>(Eu)$_3${Te}$_2$[Li]3 < O >${12}$</td>
<td>1</td>
<td>0.800</td>
</tr>
<tr>
<td>80352640</td>
<td>(Gd)$_3${Te}$_2$[Li]3 < O >${12}$</td>
<td>1</td>
<td>0.810</td>
</tr>
<tr>
<td>80352650</td>
<td>(Tb)$_3${Te}$_2$[Li]3 < O >${12}$</td>
<td>1</td>
<td>0.820</td>
</tr>
<tr>
<td>80352660</td>
<td>(Dy)$_3${Te}$_2$[Li]3 < O >${12}$</td>
<td>1</td>
<td>0.830</td>
</tr>
<tr>
<td>80352670</td>
<td>(Ho)$_3${Te}$_2$[Li]3 < O >${12}$</td>
<td>1</td>
<td>0.839</td>
</tr>
<tr>
<td>80352680</td>
<td>(Er)$_3${Te}$_2$[Li]3 < O >${12}$</td>
<td>1</td>
<td>0.847</td>
</tr>
<tr>
<td>80352690</td>
<td>(Tm)$_3${Te}$_2$[Li]3 < O >${12}$</td>
<td>1</td>
<td>0.854</td>
</tr>
<tr>
<td>80352700</td>
<td>(Yb)$_3${Te}$_2$[Li]3 < O >${12}$</td>
<td>1</td>
<td>0.861</td>
</tr>
<tr>
<td>80352710</td>
<td>(Lu)$_3${Te}$_2$[Li]3 < O >${12}$</td>
<td>1</td>
<td>0.866</td>
</tr>
<tr>
<td>80374590</td>
<td>(Pr)$_3${W}$_2$[Li]3 < O >${12}$</td>
<td>1</td>
<td>0.809</td>
</tr>
<tr>
<td>80374600</td>
<td>(Nd)$_3${W}$_2$[Li]3 < O >${12}$</td>
<td>1</td>
<td>0.823</td>
</tr>
<tr>
<td>81313390</td>
<td>(Y)$_3${Al}$_2$[Al]3 < O >${12}$</td>
<td>2–4</td>
<td>0.893</td>
</tr>
<tr>
<td>81313630</td>
<td>(Eu)$_3${Al}$_2$[Al]3 < O >${12}$</td>
<td>5</td>
<td>0.851</td>
</tr>
<tr>
<td>81313640</td>
<td>(Gd)$_3${Al}$_2$[Al]3 < O >${12}$</td>
<td>3,6</td>
<td>0.863</td>
</tr>
<tr>
<td>81313650</td>
<td>(Tb)$_3${Al}$_2$[Al]3 < O >${12}$</td>
<td>7,8</td>
<td>0.874</td>
</tr>
<tr>
<td>81313660</td>
<td>(Dy)$_3${Al}$_2$[Al]3 < O >${12}$</td>
<td>9</td>
<td>0.886</td>
</tr>
<tr>
<td>81313670</td>
<td>(Ho)$_3${Al}$_2$[Al]3 < O >${12}$</td>
<td>9</td>
<td>0.896</td>
</tr>
<tr>
<td>81313680</td>
<td>(Er)$_3${Al}$_2$[Al]3 < O >${12}$</td>
<td>10–12</td>
<td>0.905</td>
</tr>
<tr>
<td>81313690</td>
<td>(Tm)$_3${Al}$_2$[Al]3 < O >${12}$</td>
<td>13</td>
<td>0.914</td>
</tr>
<tr>
<td>81313700</td>
<td>(Yb)$_3${Al}$_2$[Al]3 < O >${12}$</td>
<td>3,11,12</td>
<td>0.921</td>
</tr>
<tr>
<td>81313710</td>
<td>(Lu)$_3${Al}$_2$[Al]3 < O >${12}$</td>
<td>3,14</td>
<td>0.928</td>
</tr>
<tr>
<td>81321390</td>
<td>(Y)$_3${Sc}$_2$[Al]3 < O >${12}$</td>
<td>15</td>
<td>1.186</td>
</tr>
</tbody>
</table>

Continuation on next page
<table>
<thead>
<tr>
<th>Num.</th>
<th>Formula</th>
<th>Ref.</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>81321640</td>
<td>$(\text{Gd})_3{\text{Sc}}_2[\text{Al}]3 < \text{O} >{12}$</td>
<td>16</td>
<td>1.163</td>
</tr>
<tr>
<td>81352110</td>
<td>$(\text{Na})_3{\text{Te}}_2[\text{Al}]3 < \text{O} >{12}$</td>
<td>1</td>
<td>0.782</td>
</tr>
<tr>
<td>81413120</td>
<td>$(\text{Mg})_3{\text{Al}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>17-21</td>
<td>1.073</td>
</tr>
<tr>
<td>81413200</td>
<td>$(\text{Ca})_3{\text{Al}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>17,19,22-24</td>
<td>0.863</td>
</tr>
<tr>
<td>81413250</td>
<td>$(\text{Mn})_3{\text{Al}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>22,23,25,26</td>
<td>1.016</td>
</tr>
<tr>
<td>81413260</td>
<td>$(\text{Fe})_3{\text{Al}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>20,27,28</td>
<td>1.049</td>
</tr>
<tr>
<td>81413270</td>
<td>$(\text{Co})_3{\text{Al}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>29-31</td>
<td>1.065</td>
</tr>
<tr>
<td>81413380</td>
<td>$(\text{Sr})_3{\text{Al}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>Non-Existence 18,32</td>
<td>0.690</td>
</tr>
<tr>
<td>81413480</td>
<td>$(\text{Cd})_3{\text{Al}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>18</td>
<td>0.884</td>
</tr>
<tr>
<td>81413560</td>
<td>$(\text{Ba})_3{\text{Al}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>Non-Existence 18,32</td>
<td>0.391</td>
</tr>
<tr>
<td>81421200</td>
<td>$(\text{Ca})_3{\text{Sc}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>33,34</td>
<td>1.206</td>
</tr>
<tr>
<td>81423200</td>
<td>$(\text{Ca})_3{\text{V}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>35</td>
<td>1.044</td>
</tr>
<tr>
<td>81423250</td>
<td>$(\text{Mn})_3{\text{V}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>18</td>
<td>1.174</td>
</tr>
<tr>
<td>81423480</td>
<td>$(\text{Cd})_3{\text{V}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>36</td>
<td>1.061</td>
</tr>
<tr>
<td>81424120</td>
<td>$(\text{Mg})_3{\text{Cr}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>22</td>
<td>1.189</td>
</tr>
<tr>
<td>81424200</td>
<td>$(\text{Ca})_3{\text{Cr}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>37-39</td>
<td>1.003</td>
</tr>
<tr>
<td>81424250</td>
<td>$(\text{Mn})_3{\text{Cr}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>18,22</td>
<td>1.137</td>
</tr>
<tr>
<td>81424260</td>
<td>$(\text{Fe})_3{\text{Cr}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>22</td>
<td>1.167</td>
</tr>
<tr>
<td>81425200</td>
<td>$(\text{Ca})_3{\text{Mn}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>18</td>
<td>0.943</td>
</tr>
<tr>
<td>81425250</td>
<td>$(\text{Mn})_3{\text{Mn}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>40</td>
<td>1.085</td>
</tr>
<tr>
<td>81426120</td>
<td>$(\text{Mg})_3{\text{Fe}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>41</td>
<td>1.096</td>
</tr>
<tr>
<td>81426200</td>
<td>$(\text{Ca})_3{\text{Fe}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>18,19,41</td>
<td>0.890</td>
</tr>
<tr>
<td>81426250</td>
<td>$(\text{Mn})_3{\text{Fe}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>18,22</td>
<td>1.039</td>
</tr>
<tr>
<td>81426260</td>
<td>$(\text{Fe})_3{\text{Fe}}_2[\text{Si}]3 < \text{O} >{12}$</td>
<td>22</td>
<td>1.072</td>
</tr>
</tbody>
</table>

Continuation on next page
Continuation of Table S1

<table>
<thead>
<tr>
<th>Num.</th>
<th>Formula</th>
<th>Ref.</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>81431200</td>
<td>(Ca)$_3${Ga}_2[Si]3 < O >${12}$</td>
<td>18</td>
<td>1.011</td>
</tr>
<tr>
<td>81439200</td>
<td>(Ca)$_3${Y}_2[Si]3 < O >${12}$</td>
<td>Orthorhombic 42,43</td>
<td>1.423</td>
</tr>
<tr>
<td>81449200</td>
<td>(Ca)$_3${In}_2[Si]3 < O >${12}$</td>
<td>18,44</td>
<td>1.285</td>
</tr>
<tr>
<td>82321110</td>
<td>(Na)$_3${Sc}_2[V]3 < O >${12}$</td>
<td>45,46</td>
<td>1.095</td>
</tr>
<tr>
<td>82626390</td>
<td>(Y)$_3${Fe}_2[Fe]3 < O >${12}$</td>
<td>3,47–50</td>
<td>0.867</td>
</tr>
<tr>
<td>82626590</td>
<td>(Pr)$_3${Fe}_2[Fe]3 < O >${12}$</td>
<td>51,52</td>
<td>0.775</td>
</tr>
<tr>
<td>82626600</td>
<td>(Nd)$_3${Fe}_2[Fe]3 < O >${12}$</td>
<td>52,53</td>
<td>0.791</td>
</tr>
<tr>
<td>82626620</td>
<td>(Sm)$_3${Fe}_2[Fe]3 < O >${12}$</td>
<td>3,54</td>
<td>0.817</td>
</tr>
<tr>
<td>82626630</td>
<td>(Eu)$_3${Fe}_2[Fe]3 < O >${12}$</td>
<td>54</td>
<td>0.828</td>
</tr>
<tr>
<td>82626640</td>
<td>(Gd)$_3${Fe}_2[Fe]3 < O >${12}$</td>
<td>54–56</td>
<td>0.839</td>
</tr>
<tr>
<td>82626650</td>
<td>(Tb)$_3${Fe}_2[Fe]3 < O >${12}$</td>
<td>54,57</td>
<td>0.850</td>
</tr>
<tr>
<td>82626660</td>
<td>(Dy)$_3${Fe}_2[Fe]3 < O >${12}$</td>
<td>3</td>
<td>0.860</td>
</tr>
<tr>
<td>82626670</td>
<td>(Ho)$_3${Fe}_2[Fe]3 < O >${12}$</td>
<td>58</td>
<td>0.870</td>
</tr>
<tr>
<td>82626680</td>
<td>(Er)$_3${Fe}_2[Fe]3 < O >${12}$</td>
<td>54</td>
<td>0.878</td>
</tr>
<tr>
<td>82626690</td>
<td>(Tm)$_3${Fe}_2[Fe]3 < O >${12}$</td>
<td>58</td>
<td>0.886</td>
</tr>
<tr>
<td>82627000</td>
<td>(Yb)$_3${Fe}_2[Fe]3 < O >${12}$</td>
<td>3</td>
<td>0.893</td>
</tr>
<tr>
<td>82627100</td>
<td>(Lu)$_3${Fe}_2[Fe]3 < O >${12}$</td>
<td>3</td>
<td>0.899</td>
</tr>
<tr>
<td>83121390</td>
<td>(Y)$_3${Sc}_2[Ga]3 < O >${12}$</td>
<td>59</td>
<td>1.134</td>
</tr>
<tr>
<td>83121570</td>
<td>(La)$_3${Sc}_2[Ga]3 < O >${12}$</td>
<td>59</td>
<td>1.041</td>
</tr>
<tr>
<td>83121640</td>
<td>(Gd)$_3${Sc}_2[Ga]3 < O >${12}$</td>
<td>59–61</td>
<td>1.113</td>
</tr>
<tr>
<td>83121710</td>
<td>(Lu)$_3${Sc}_2[Ga]3 < O >${12}$</td>
<td>59</td>
<td>1.160</td>
</tr>
<tr>
<td>83131590</td>
<td>(Y)$_3${Ga}_2[Ga]3 < O >${12}$</td>
<td>3,48,50</td>
<td>0.974</td>
</tr>
<tr>
<td>83131600</td>
<td>(Nd)$_3${Ga}_2[Ga]3 < O >${12}$</td>
<td>63</td>
<td>0.905</td>
</tr>
</tbody>
</table>

Continuation on next page
<table>
<thead>
<tr>
<th>Num.</th>
<th>Formula</th>
<th>Ref.</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>83131620</td>
<td>$(\text{Sm})_3{\text{Ga}}_2[\text{Ga}]3 < O >{12}$</td>
<td>63,64</td>
<td>0.929</td>
</tr>
<tr>
<td>83131630</td>
<td>$(\text{Eu})_3{\text{Ga}}_2[\text{Ga}]3 < O >{12}$</td>
<td>62</td>
<td>0.939</td>
</tr>
<tr>
<td>83131640</td>
<td>$(\text{Gd})_3{\text{Ga}}_2[\text{Ga}]3 < O >{12}$</td>
<td>63,65–67</td>
<td>0.949</td>
</tr>
<tr>
<td>83131650</td>
<td>$(\text{Tb})_3{\text{Ga}}_2[\text{Ga}]3 < O >{12}$</td>
<td>7,63,68</td>
<td>0.958</td>
</tr>
<tr>
<td>83131660</td>
<td>$(\text{Dy})_3{\text{Ga}}_2[\text{Ga}]3 < O >{12}$</td>
<td>62</td>
<td>0.968</td>
</tr>
<tr>
<td>83131670</td>
<td>$(\text{Ho})_3{\text{Ga}}_2[\text{Ga}]3 < O >{12}$</td>
<td>69</td>
<td>0.977</td>
</tr>
<tr>
<td>83131680</td>
<td>$(\text{Er})_3{\text{Ga}}_2[\text{Ga}]3 < O >{12}$</td>
<td>70</td>
<td>0.984</td>
</tr>
<tr>
<td>83131700</td>
<td>$(\text{Yb})_3{\text{Ga}}_2[\text{Ga}]3 < O >{12}$</td>
<td>3</td>
<td>0.998</td>
</tr>
<tr>
<td>83131710</td>
<td>$(\text{Lu})_3{\text{Ga}}_2[\text{Ga}]3 < O >{12}$</td>
<td>3</td>
<td>1.003</td>
</tr>
<tr>
<td>83152110</td>
<td>$(\text{Na})_3{\text{Te}}_2[\text{Ga}]3 < O >{12}$</td>
<td>1</td>
<td>0.748</td>
</tr>
<tr>
<td>83212391</td>
<td>$(\text{Y}{2/3}\text{Mg}{1/3})_3{\text{Mg}}_2[\text{Ge}]3 < O >{12}$</td>
<td>71</td>
<td>1.181</td>
</tr>
<tr>
<td>83213200</td>
<td>$(\text{Ca})_3{\text{Al}}_2[\text{Ge}]3 < O >{12}$</td>
<td>72</td>
<td>0.799</td>
</tr>
<tr>
<td>83213250</td>
<td>$(\text{Mn})_3{\text{Al}}_2[\text{Ge}]3 < O >{12}$</td>
<td>73</td>
<td>0.941</td>
</tr>
<tr>
<td>83213480</td>
<td>$(\text{Cd})_3{\text{Al}}_2[\text{Ge}]3 < O >{12}$</td>
<td>44,73</td>
<td>0.819</td>
</tr>
<tr>
<td>83221200</td>
<td>$(\text{Ca})_3{\text{Sc}}_2[\text{Ge}]3 < O >{12}$</td>
<td>33,44,74</td>
<td>1.117</td>
</tr>
<tr>
<td>83221380</td>
<td>$(\text{Sr})_3{\text{Sc}}_2[\text{Ge}]3 < O >{12}$</td>
<td>75,76</td>
<td>1.009</td>
</tr>
<tr>
<td>83221480</td>
<td>$(\text{Cd})_3{\text{Sc}}_2[\text{Ge}]3 < O >{12}$</td>
<td>33,44,73</td>
<td>1.131</td>
</tr>
<tr>
<td>83223200</td>
<td>$(\text{Ca})_3{\text{V}}_2[\text{Ge}]3 < O >{12}$</td>
<td>77</td>
<td>0.967</td>
</tr>
<tr>
<td>83223480</td>
<td>$(\text{Cd})_3{\text{V}}_2[\text{Ge}]3 < O >{12}$</td>
<td>77</td>
<td>0.984</td>
</tr>
<tr>
<td>83224200</td>
<td>$(\text{Ca})_3{\text{Cr}}_2[\text{Ge}]3 < O >{12}$</td>
<td>78</td>
<td>0.929</td>
</tr>
<tr>
<td>83224250</td>
<td>$(\text{Mn})_3{\text{Cr}}_2[\text{Ge}]3 < O >{12}$</td>
<td>79</td>
<td>1.054</td>
</tr>
<tr>
<td>83224480</td>
<td>$(\text{Cd})_3{\text{Cr}}_2[\text{Ge}]3 < O >{12}$</td>
<td>73</td>
<td>0.946</td>
</tr>
<tr>
<td>83225200</td>
<td>$(\text{Ca})_3{\text{Mn}}_2[\text{Ge}]3 < O >{12}$</td>
<td>77</td>
<td>0.874</td>
</tr>
<tr>
<td>83226200</td>
<td>$(\text{Ca})_3{\text{Fe}}_2[\text{Ge}]3 < O >{12}$</td>
<td>71</td>
<td>0.825</td>
</tr>
<tr>
<td>Num.</td>
<td>Formula</td>
<td>Ref.</td>
<td>τ</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>83226250</td>
<td>(Mn)$_3${Fe}_2[Ge]3 < O >${12}$</td>
<td>80</td>
<td>0.963</td>
</tr>
<tr>
<td>83226480</td>
<td>(Cd)$_3${Fe}_2[Ge]3 < O >${12}$</td>
<td>73</td>
<td>0.844</td>
</tr>
<tr>
<td>83231200</td>
<td>(Ca)$_3${Ga}_2[Ge]3 < O >${12}$</td>
<td>81</td>
<td>0.937</td>
</tr>
<tr>
<td>83231250</td>
<td>(Mn)$_3${Ga}_2[Ge]3 < O >${12}$</td>
<td>72</td>
<td>1.061</td>
</tr>
<tr>
<td>83231480</td>
<td>(Cd)$_3${Ga}_2[Ge]3 < O >${12}$</td>
<td>44,73</td>
<td>0.954</td>
</tr>
<tr>
<td>83239120</td>
<td>(Mg)$_3${Y}_2[Ge]3 < O >${12}$</td>
<td></td>
<td>1.445</td>
</tr>
<tr>
<td>83239200</td>
<td>(Ca)$_3${Y}_2[Ge]3 < O >${12}$</td>
<td>71,75</td>
<td>1.319</td>
</tr>
<tr>
<td>83239380</td>
<td>(Sr)$_3${Y}_2[Ge]3 < O >${12}$</td>
<td>75,82</td>
<td>1.228</td>
</tr>
<tr>
<td>83245200</td>
<td>(Ca)$_3${Rh}_2[Ge]3 < O >${12}$</td>
<td>77</td>
<td>1.004</td>
</tr>
<tr>
<td>83249200</td>
<td>(Ca)$_3${In}_2[Ge]3 < O >${12}$</td>
<td>44</td>
<td>1.191</td>
</tr>
<tr>
<td>83249380</td>
<td>(Sr)$_3${In}_2[Ge]3 < O >${12}$</td>
<td>76</td>
<td>1.090</td>
</tr>
<tr>
<td>83249480</td>
<td>(Cd)$_3${In}_2[Ge]3 < O >${12}$</td>
<td>44</td>
<td>1.204</td>
</tr>
<tr>
<td>83266200</td>
<td>(Ca)$_3${Dy}_2[Ge]3 < O >${12}$</td>
<td>76</td>
<td>1.333</td>
</tr>
<tr>
<td>83267200</td>
<td>(Ca)$_3${Ho}_2[Ge]3 < O >${12}$</td>
<td>76</td>
<td>1.320</td>
</tr>
<tr>
<td>83267380</td>
<td>(Sr)$_3${Ho}_2[Ge]3 < O >${12}$</td>
<td>76</td>
<td>1.230</td>
</tr>
<tr>
<td>83268200</td>
<td>(Ca)$_3${Er}_2[Ge]3 < O >${12}$</td>
<td>76</td>
<td>1.306</td>
</tr>
<tr>
<td>83268380</td>
<td>(Sr)$_3${Er}_2[Ge]3 < O >${12}$</td>
<td>76</td>
<td>1.215</td>
</tr>
<tr>
<td>83269200</td>
<td>(Ca)$_3${Tm}_2[Ge]3 < O >${12}$</td>
<td>76</td>
<td>1.294</td>
</tr>
<tr>
<td>83269380</td>
<td>(Sr)$_3${Tm}_2[Ge]3 < O >${12}$</td>
<td>76</td>
<td>1.201</td>
</tr>
<tr>
<td>83270200</td>
<td>(Ca)$_3${Yb}_2[Ge]3 < O >${12}$</td>
<td>76</td>
<td>1.278</td>
</tr>
<tr>
<td>83270380</td>
<td>(Sr)$_3${Yb}_2[Ge]3 < O >${12}$</td>
<td>76</td>
<td>1.185</td>
</tr>
<tr>
<td>83271200</td>
<td>(Ca)$_3${Lu}_2[Ge]3 < O >${12}$</td>
<td>76</td>
<td>1.270</td>
</tr>
<tr>
<td>83271380</td>
<td>(Sr)$_3${Lu}_2[Ge]3 < O >${12}$</td>
<td>76</td>
<td>1.176</td>
</tr>
<tr>
<td>83324110</td>
<td>(Na)$_3${Cr}_2[As]3 < O >${12}$</td>
<td>83</td>
<td>0.904</td>
</tr>
</tbody>
</table>

Continuation on next page
Continuation of Table S1

<table>
<thead>
<tr>
<th>Num.</th>
<th>Formula</th>
<th>Ref.</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>83326110</td>
<td>(Na)$_3${Fe)$_2$[As]3 < O $>{12}$</td>
<td>84</td>
<td>0.788</td>
</tr>
<tr>
<td>85031200</td>
<td>(Ca)$_3${Ga)$_2$[Sn]3 < O $>{12}$</td>
<td>76</td>
<td>0.859</td>
</tr>
<tr>
<td>90313110</td>
<td>(Na)$_3${Al}$_2$[Li]3 < F $>{12}$</td>
<td>85</td>
<td>0.636</td>
</tr>
<tr>
<td>90321110</td>
<td>(Na)$_3${Sc}$_2$[Li]3 < F $>{12}$</td>
<td>86</td>
<td>0.956</td>
</tr>
<tr>
<td>90322110</td>
<td>(Na)$_3${Ti}$_2$[Li]3 < F $>{12}$</td>
<td>87</td>
<td>0.852</td>
</tr>
<tr>
<td>90323110</td>
<td>(Na)$_3${V}$_2$[Li]3 < F $>{12}$</td>
<td>87</td>
<td>0.808</td>
</tr>
<tr>
<td>90324110</td>
<td>(Na)$_3${Cr}$_2$[Li]3 < F $>{12}$</td>
<td>87</td>
<td>0.769</td>
</tr>
<tr>
<td>90326110</td>
<td>(Na)$_3${Fe}$_2$[Li]3 < F $>{12}$</td>
<td>87,88</td>
<td>0.662</td>
</tr>
<tr>
<td>90327110</td>
<td>(Na)$_3${Co}$_2$[Li]3 < F $>{12}$</td>
<td>87</td>
<td>0.654</td>
</tr>
<tr>
<td>90349110</td>
<td>(Na)$_3${In}$_2$[Li]3 < F $>{12}$</td>
<td>86</td>
<td>1.028</td>
</tr>
</tbody>
</table>

End of Table

References

(40) Arlt, T.; Armbruster, T.; Miletich, R.; Ulmer, P.; Peters, T. High Pressure Single-

(43) Piccinelli, F.; Speghini, A.; Mariotto, G.; Bovo, L.; Bettinelli, M. Visible Luminescence of Lanthanide Ions in Ca$_3$Sc$_2$Si$_3$O$_{12}$ and Ca$_3$Y$_2$Si$_3$O$_{12}$. *J. Rare Earths* 2009, 27, 555–559.

(57) Fuess, H.; Bassi, G.; Bonnet, M.; Delapalme, A. Neutron Scattering Length of Terbium

(59) Malysa, B.; Meijerink, A.; Jüstel, T. Temperature Dependent Cr$^{3+}$ Photoluminescence in Garnets of the Type $\text{X}_3\text{Sc}_2\text{Ga}_3\text{O}_{12}$ ($\text{X} = \text{Lu, Y, Gd, La}$). *J. Lumin.* **2018**, *202*, 523–531.

Tolerance factors of over 130 different end-member garnets together with references, illustration of geometrical relationships used to express the tolerance factor are included in the supporting information.