research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Dibenzoate esters of cis-tetra­lin-2,3-diol as analogs of (–)-epigallocatechin gallate: synthesis and crystal structure of anti­cancer drug candidates

aScience Education Academy of the Ryukyus, University of the Ryukyus, 1 Senbar, Nishihara, Okinawa 903-0213, Japan, bFaculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan, cDepartment of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada, dDepartment of Chemistry, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Kansai 558-8585, Japan, and eGlobal Education Institute, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
*Correspondence e-mail: r-andrea@lab.u-ryukyu.ac.jp

Edited by R. I. Cooper, University of Oxford, United Kingdom (Received 8 September 2020; accepted 9 November 2020; online 24 November 2020)

(−)-Epigallocatechin gallate (EGCG), the main component of green tea extract, displays multiple biological activities. However, it cannot be used as a drug due to its low cellular absorption, instability and metabolic degradation. Therefore, there is a need to provide analogs that can overcome the limitations of EGCG. In this work, six synthetic analogs of EGCG sharing a common tetra­lindiol dibenzoate core were synthesized and fully characterized by 1H NMR, 13C NMR, HRMS and IR spectroscopies, and X-ray crystallography. These are (2R,3S)-1,2,3,4-tetra­hydro­naphthalene-2,3-diyl bis­[3,4,5-tris­(benz­yloxy)benzoate], C66H56O10, and the analogous esters bis­(3,4,5-tri­meth­oxy­benzoate), C30H32O10, bis­(3,4,5-tri­fluoro­benzoate), C24H14F6O4, bis­[4-(benz­yloxy)benzoate], C38H32O6, bis­(4-meth­oxy­benzoate), C26H24O6, and bis­(2,4,6-tri­fluoro­benzoate), C24H14F6O4. Structural analysis revealed that the mol­ecular shapes of these dibenzoate esters of tetra­lindiol are significantly different from that of previously reported dimandelate esters or monobenzoate esters, as the acid moieties extend far from the bicyclic system without folding back over the tetra­lin fragment. Com­pounds with small fluorine substituents take a V-shape, whereas larger meth­oxy and benz­yloxy groups determine the formation of an L-shape or a cavity. Inter­molecular inter­actions are dominated by ππ stacking and C—H⋯π inter­actions involving the arene rings in the benzoate fragment and the arene ring in the tetra­hydro­naphthalene moiety. All six crystal structures are determined in centrosymmetric space groups (either P[\overline{1}], P21/n, C2/c or I2/a).

1. Introduction

(−)-Epigallocatechin 3-gallate [(−)-EGCG, Fig. 1[link]] is a polyphenolic com­pound that constitutes the main component of the green tea extract. EGCG displays a wide range of biological activities (Abhinav et al., 2017[Abhinav, A., Chawla, J., Mahajan, A., Sharma, N. & Khurana, N. (2017). Int. J. Green Pharm. 11, S364-S370.]), such as anti­cancer (Bimonte et al., 2017[Bimonte, S., Cascella, M., Leongito, M., Palaia, R., Caliendo, D., Izzo, F. & Cuomo, A. (2017). Recenti Prog. Med. 108, 282-287.]; George et al., 2017[George, V. C., Dellaire, G. & Rupasinghe, H. P. V. (2017). J. Nutr. Biochem. 45, 1-14.]; Kona et al., 2014[Kona, F. R., Shen, M., Chen, D., Chan, T. H. & Dou, Q. P. (2014). Recent Advances in Polyphenol Research, edited by A. Romani, V. Lattanzio & S. Quideau, pp. 209-237. Chichester: John Wiley & Sons Ltd.]), anti­bacterial (Navarro-Perán et al., 2005[Navarro-Perán, E., Cabezas-Herrera, J., García-Cánovas, F., Durrant, M. C., Thorneley, R. N. F. & Rodríguez-López, J. N. (2005). Cancer Res. 65, 2059-2064.]; Seleem et al., 2017[Seleem, D., Pardi, V. & Murata, R. M. (2017). Arch. Oral Biol. 76, 76-83.]), anti-­oxidant (Yeh et al., 2017[Yeh, W.-J., Hsia, S.-M., Lee, W.-H. & Wu, C.-H. (2017). J. Food Drug Anal. 25, 84-92.]) and cardioprotective (Eng et al., 2018[Eng, Q. Y., Thanikachalam, P. V. & Ramamurthy, S. (2018). J. Ethnopharmacol. 210, 296-310.]). Such a diverse range of bioactivities makes EGCG an attractive lead in drug discovery. Although the mechanisms of action of EGCG have not been fully understood, some of its mol­ecular targets have been identified. For example, the anti­cancer activity of EGCG is attributed to the inhibition of proteasome, a multicatalytic complex involved in the proliferation of cancer cells (Correia da Silva et al., 2017[Correia da Silva, D., Andrade, P. B., Ribeiro, V., Valentao, P. & Pereira, D. M. (2017). Recent Pat. Anticancer Drug Discov. 12, 4-15.]; Kona et al., 2014[Kona, F. R., Shen, M., Chen, D., Chan, T. H. & Dou, Q. P. (2014). Recent Advances in Polyphenol Research, edited by A. Romani, V. Lattanzio & S. Quideau, pp. 209-237. Chichester: John Wiley & Sons Ltd.]). Unfortunately, low cellular absorption, chemical instability at physiological pH and short half-life due to metabolic transformations decrease the bioavailability of EGCG, making it unsuitable as a drug (Sang et al., 2005[Sang, S., Lee, M.-J., Hou, Z., Ho, C.-T. & Yang, C. S. (2005). J. Agric. Food Chem. 53, 9478-9484.]). To overcome these limitations, several synthetic analogs of EGCG with improved stability, bioavailability and bioactivity have been prepared. Among such analogs (Qin et al., 2012[Qin, X. L., Li, X. M., Yuan, J., Chen, D., Jiang, T., Dou, Q. P., Chan, T. H. & Wan, S. B. (2012). Synth. Commun. 42, 3524-3531.]; Colomer et al., 2017[Colomer, R., Sarrats, A., Lupu, R. & Puig, T. (2017). Curr. Drug Targets, 18, 147-159.]; Landis-Piwowar et al., 2007[Landis-Piwowar, K. R., Huo, C., Chen, D., Milacic, V., Shi, G., Chan, T. H. & Dou, Q. P. (2007). Cancer Res. 67, 4303-4310.]; Huo et al., 2008[Huo, C., Shi, G., Lam, W. H., Chen, D., Cui, Q. C., Dou, Q. P. & Chan, T. H. (2008). Can. J. Chem. 86, 495-502.]), the benzoate diesters of cis-tetra­lin-2,3-diol, having the general structure I (Fig. 1[link]), have shown higher activities than EGCG in the inhibition of proteasome (Chan & Dou, 2011[Chan, T. H. & Dou, Q. P. (2011). US Patent No. US2011/0152210A1.]; Chan et al., 2012[Chan, T. H., Pamu, S., Dou, Q. P. & Chen, D. (2012). WO Patent No. WO/2012/171114.]; Huo et al., 2010[Huo, C., Yang, H., Cui, Q. C., Dou, Q. P. & Chan, T. H. (2010). Bioorg. Med. Chem. 18, 1252-1258.]), as well as AMPK (AMP-activated protein kinase) (Chen et al., 2012[Chen, D., Pamu, S., Cui, Q., Chan, T. H. & Dou, Q. P. (2012). Bioorg. Med. Chem. 20, 3031-3037.]; Chan et al., 2012[Chan, T. H., Pamu, S., Dou, Q. P. & Chen, D. (2012). WO Patent No. WO/2012/171114.]). The key features of com­pounds of type I are the following: (i) a symmetrical structure, which simplifies the chemical synthesis while retaining biological activity, and (ii) modification of the –OH groups on the benzoate phenyl ring, which increases stability and bioavailability. However, none of the com­pounds of type I has been characterized by X-ray crystallography. Here we report the synthesis and full characterization of six EGCG analogs of type I, namely, (2R,3S)-1,2,3,4-tetra­hydro­naphthalene-2,3-diyl bis­[3,4,5-tris­(benz­yloxy)benzoate] (4), (2R,3S)-1,2,3,4-tetra­hydro­naphthalene-2,3-diyl bis­(3,4,5-tri­meth­oxy­benzoate) (5), (2R,3S)-1,2,3,4-tetra­hydro­naph­tha­lene-2,3-diyl bis­(3,4,5-tri­fluoro­benzoate) (6), (2R,3S)-1,2,3,4-tetra­hydro­naphthalene-2,3-diyl bis­[4-(benz­yl­oxy)ben­zoate] (7), (2R,3S)-1,2,3,4-tetra­hydro­naphthalene-2,3-diyl bis­(4-meth­oxy­benzoate) (8), and (2R,3S)-1,2,3,4-tetra­hydro­naphthalene-2,3-diyl bis­(2,4,6-tri­fluoro­benzoate) (9) (Fig. 2[link]), in which the –OH groups on the benzoate phenyl ring have been either alkyl­ated or replaced with F atoms in order to increase chemical stability and lipophilicity (and hence cell permeability). Four of the com­pounds (5, 7, 8 and 9) have not been described previously.

[Figure 1]
Figure 1
(−)-Epigallocatechin gallate [(−)-EGCG] and its synthetic analogs (I).
[Figure 2]
Figure 2
Synthesis of EGCG analogs 49 by a Steglich-type esterification from diol 3 and a substituted benzoic acid. Diol 3 was obtained by reduction of naphthalene (1) with Na metal followed by di­hydroxy­lation. The isolated yield is reported.

The proteasome inhibition activity of 6 is known (Chan & Dou, 2011[Chan, T. H. & Dou, Q. P. (2011). US Patent No. US2011/0152210A1.]; Chan et al., 2012[Chan, T. H., Pamu, S., Dou, Q. P. & Chen, D. (2012). WO Patent No. WO/2012/171114.]); the same activity is expected for com­pound 9, which differs from 6 by the positions of the F atoms. The other com­pounds are polyphenols protected by benzyl or methyl groups. They are expected to behave as prodrugs and to generate the pharmacologically active free polyphenols by de­benzyl­ation or de­methyl­ation after entering the cell (Sipes, 2020[Sipes, I. G. (2020). WHO Food Additives Series: 52, Aliphatic and Aromatic Ethers, http://www.inchem.org/documents/jecfa/jecmono/v52je16.htm.]).

2. Experimental

2.1. Chemical synthesis

Reagents were purchased from commercial suppliers and were used as received. 1H and 13C NMR spectra were recorded on a Bruker 400 or 500 MHz instrument. Chemical shifts are reported in parts per million (ppm) from tetra­methyl­silane (TMS) with the solvent resonance as the inter­nal standard (CDCl3: δ 7.26 for 1H and δ 77.16 for 13C). IR spectra were measured using a KBr disk. High-resolution mass spectra (HRMS) were obtained on a sector-field mass spectrometer. IR spectra were recorded on a Jasco FT/IR-6100 spectrom­eter.

2.1.1. 1,4-Di­hydro­naphthalene (2)

Com­pound 2 was prepared according to the literature procedure of Menzek et al. (2003[Menzek, A., Altundas, A. & Gültekin, D. (2003). J. Chem. Res. (S), 2003, 752-753.]) using double quantities. To a solution of naphthalene (1; 10.047 g, 78 mmol, 1.0 equiv.) in dry Et2O (150 ml) was added Na metal (5.50 g, 196 mmol, 2.5 equiv.) in small pieces over a period of 10 min. A solution of t-BuOH (18.7 ml, 14.5 g, 196 mmol, 2.5 equiv.) in dry Et2O (20 ml) was then added over a period of 10 min. After stirring at room temperature for 3 h, unreacted Na and solid NaOt-Bu were removed by gravity filtration and washed with Et2O (50 ml). The combined organic layer was washed with water (3 × 60 ml), dried over MgSO4 and dried under reduced pressure to provide crude 1,4-di­hydro­naphthalene (2) as a colorless liquid (yield: 9.485 g, 73 mmol, 84%, literature 89%). The crude was used in the following synthesis step without further purification.

2.1.2. cis-Tetra­lin-2,3-diol (3)

Com­pound 3 was prepared according to the reported procedure of Huo et al. (2010[Huo, C., Yang, H., Cui, Q. C., Dou, Q. P. & Chan, T. H. (2010). Bioorg. Med. Chem. 18, 1252-1258.]) with a modified scale and work-up.

A 250 ml flask was charged with 1,4-di­hydro­naphthalene (2.475 g, 15.2 mmol, 1.00 equiv.), acetone (12 ml) and water (4 ml). To this solution were added a solution of N-methyl­morpholine N-oxide (NMO) in water (50% w/w, 6.200 g, 25.7 mmol, 1.80 equiv.) and a solution of OsO4 in water (522 µl, 4.0% w/w, 85.5 µmol, 0.01 equiv.). The mixture was stirred at room temperature for 18 h. After this time, the solution became cloudy and dark brown, and thin-layer chromatography (TLC; silica gel, ethyl acetate) showed partial formation of the product. Another aliquot of NMO solution in water (50% w/w, 6.200 g, 25.7 mmol, 1.80 equiv.) was added and the mixture stirred for another 18 h. After this time, the mixture became light brown and TLC indicated the reaction to be complete. Saturated Na2SO3 aqueous solution (40 ml) and Florisil (2 g) slurried in water (10 ml) were added. The slurry was stirred for 15 min and then filtered through a pad of Celite on a fritted-glass funnel of fine porosity. The celite cake was washed with three 10 ml portions of acetone. The filtrate was neutralized to pH 7 with 6 M sulfuric acid. Acetone was evaporated under vacuum. The pH of the resulting aqueous solution was adjusted to 2 with 6 M sulfuric acid, and the diol was separated from N-methyl­morpholine hydro­sulfate by extraction with five 30 ml portions of n-butanol. The combined butanol extracts were washed once with a saturated sodium chloride solution (40 ml) and the aqueous phase was backwashed with butanol (40 ml). The butanol extracts were evaporated under vacuum, affording a brown liquid. The product crystallized upon storing the crude mixture overnight at room temperature. The crystals were washed with a CHCl3/hexane mixture (3:1 v/v) to afford diol 3 as a white solid (yield: 2.294 g, 14.0 mmol, 92%, literature 83%).

2.1.3. General procedure for the preparation of 4–9

A 100 ml flask was charged with the diol (500 mg, 3.04 mmol, 1.0 equiv.), the acid (6.08 mmol, 2.0 equiv.), 4-(di­methyl­amino)­pyridine (594 mg, 4.86 mmol, 1.6 equiv.), 3-[3-(di­methyl­amino)­prop­yl]-1-ethyl­carbodi­imide hydro­chloride (EDAC·HCl; 1.282 g, 6.69 mmol, 2.2 equiv.) and di­chloro­methane (40 ml). The suspension was stirred at room temperature for 48 h. After this time, TLC on silica gel (eluent: hexa­ne/ethyl acetate = 7:3) indicated the complete consumption of the starting materials. The mixture was washed with water (2 × 50 ml), brine (1 × 50 ml), aqueous citric acid at pH = 2 (2 × 50 ml) and a saturated NaHCO3 aqueous solution (1 × 50 ml). The organic layer was dried over Na2SO4 and concentrated under reduced pressure. The crude was purified by column chromatography on silica gel (eluent: hexa­ne/ethyl acetate = 90:10→80:20→70:30, unless otherwise stated) to afford the product.

2.1.4. (2R,3S)-1,2,3,4-Tetra­hydro­naphthalene-2,3-diyl bis­[3,4,5-tris­(benz­yloxy)benzoate] (4)

Obtained according to the general procedure from 2.683 g of 3,4,5-tris­(benz­yloxy)benzoic acid as a white solid (yield: 2.571 g, 2.55 mmol, 84%).

2.1.5. (2R,3S)-1,2,3,4-Tetra­hydro­naphthalene-2,3-diyl bis­(3,4,5-tri­meth­oxy­benzoate) (5)

Obtained according to the general procedure from 1.290 g of 3,4,5-tri­meth­oxy­benzoic acid as a white solid (yield: 1.231 g, 2.23 mmol, 73%). The eluent for column chromatography was hexa­ne/ethyl acetate = 80:20→70:30→65:35.

2.1.6. (2R,3S)-1,2,3,4-Tetra­hydro­naphthalene-2,3-diyl bis­(3,4,5-tri­fluoro­benzoate) (6)

Obtained according to the general procedure from 1.071 g of 3,4,5-tri­fluoro­benzoic acid as a white solid (yield: 810 mg, 0.67 mmol, 55%).

2.1.7. (2R,3S)-1,2,3,4-Tetra­hydro­naphthalene-2,3-diyl bis­(4-(benz­yloxy)benzoate) (7)

Obtained according to the general procedure from 1.388 g of 4-benzyl­oxybenzoic acid as a white solid (yield: 1.243 g, 2.12 mmol, 70%).

2.1.8. (2R,3S)-1,2,3,4-Tetra­hydro­naphthalene-2,3-diyl bis­(4-meth­oxy­benzoate) (8)

Obtained according to the general procedure from 925 mg of 4-meth­oxy­benzoic acid as a white solid (yield: 1.004 g, 2.32 mmol, 76%).

2.1.9. (2R,3S)-1,2,3,4-Tetra­hydro­naphthalene-2,3-diyl bis­(2,4,6-tri­fluoro­benzoate) (9)

Obtained according to the general procedure from 1.071 g of 2,4,6-tri­fluoro­benzoic acid as a white solid (yield: 918 mg, 1.91 mmol, 63%).

2.2. Crystal growth of 4–9

Com­pounds 4 and 7 crystallized spontaneously from a fraction of column chromatography eluate containing hexane and ethyl acetate (4:1 v/v). Single crystals of the remaining com­pounds were obtained according to the following procedure. The com­pound (10 mg) was placed in a 5 ml glass vial and dissolved in a 1:1 (v/v) CHCl3/CH2Cl2 mixture (1 ml). Hexane (3 ml) was added slowly to the top of the solution. The tube was placed in a 10 ml glass beaker, which was capped with aluminium paper and placed under a fumehood to promote crystallization. After 24–72 h, crystals suitable for X-ray diffraction analysis had formed.

2.3. Crystal and refinement data for 4–9

A search in the Cambridge Structural Database (CSD, Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) and SciFinder (Version 2018, https://www.cas.org/products/scifinder) revealed no hits. Crystal data, data collection and structure refinement analysis are summarized in Table 1[link]. For 5, the H atoms were placed in calculated positions and included as riding contributions with isotropic displacement parameters. The aryl H atoms were constrained with C—H = 0.95 Å, the methine groups with C—H = 1.00 Å, the methyl­ene groups with C—H = 0.99 Å and the methyl groups with C—H = 0.98 Å [Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise]. For the other com­pounds, H atoms were located in difference Fourier maps and were refined freely with isotropic displacement parameters.

Table 1
Experimental details

Experiments were carried out at 193 K with Mo Kα radiation on a Rigaku Saturn724+ (2×2 bin mode) diffractometer. H-atom parameters were constrained.

  4 5 6
Crystal data
Chemical formula C66H56O10 C30H32O10 C24H14F6O4
Mr 1009.10 552.55 480.35
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n Monoclinic, C2/c
a, b, c (Å) 13.574 (3), 13.829 (3), 14.657 (3) 12.147 (8), 20.697 (13), 12.702 (9) 30.399 (10), 9.176 (3), 14.994 (5)
α, β, γ (°) 79.013 (6), 87.544 (9), 83.381 (8) 90, 117.432 (5), 90 90, 97.204 (4), 90
V3) 2682.3 (10) 2834 (3) 4150 (2)
Z 2 4 8
μ (mm−1) 0.08 0.10 0.14
Crystal size (mm) 0.13 × 0.08 × 0.07 0.17 × 0.05 × 0.03 0.18 × 0.09 × 0.09
 
Data collection
Absorption correction Multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Empirical (using intensity measurements) (DTABSCOR) Empirical (using intensity measurements) (DTABSCOR)
Tmin, Tmax 0.857, 1.000 0.551, 1.000 0.713, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 22437, 11802, 7475 19152, 6351, 4312 20773, 4718, 3317
Rint 0.032 0.051 0.036
(sin θ/λ)max−1) 0.649 0.646 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.141, 1.04 0.070, 0.164, 1.15 0.041, 0.120, 1.01
No. of reflections 11802 6351 4718
No. of parameters 740 367 307
No. of restraints 132 0 0
Δρmax, Δρmin (e Å−3) 0.20, −0.19 0.21, −0.20 0.20, −0.28
  7 8 9
Crystal data
Chemical formula C38H32O6 C26H24O6 C24H14F6O4
Mr 583.64 432.45 480.35
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n Monoclinic, I2/a
a, b, c (Å) 10.239 (4), 13.056 (5), 23.923 (9) 9.033 (3), 6.427 (2), 37.080 (14) 23.308 (10), 7.132 (3), 27.253 (9)
α, β, γ (°) 86.992 (11), 89.198 (10), 73.621 (6) 90, 91.948 (7), 90 90, 112.62 (3), 90
V3) 3064 (2) 2151.4 (14) 4182 (3)
Z 4 4 8
μ (mm−1) 0.09 0.10 0.14
Crystal size (mm) 0.24 × 0.09 × 0.05 0.24 × 0.14 × 0.10 0.24 × 0.12 × 0.09
 
Data collection
Absorption correction Empirical (using intensity measurements) (DTABSCOR) Multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Empirical (using intensity measurements) (DTABSCOR)
Tmin, Tmax 0.703, 1.000 0.893, 1.000 0.797, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 31561, 13700, 8408 20997, 4916, 4213 20765, 4763, 3880
Rint 0.043 0.055 0.044
(sin θ/λ)max−1) 0.647 0.651 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.139, 0.99 0.043, 0.116, 1.04 0.046, 0.123, 1.13
No. of reflections 13700 4916 4763
No. of parameters 793 291 307
No. of restraints 0 0 0
Δρmax, Δρmin (e Å−3) 0.29, −0.24 0.20, −0.20 0.22, −0.22
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

3. Results and discussion

3.1. Chemical synthesis

EGCG analogs 49 were synthesized on a gram scale in three steps from naphthalene (1). Birch reduction of 1 at room temperature on a 10 gram scale cleanly afforded di­hydro­naphthalene (2) in 84% yield. Com­pound 2 is commercially available, but the high cost of 2 (60 $/g) compared to 1 (22 $/500 g) and the simple experimental procedure of the Birch reduction, which does not require purification, make the preparation of 2 convenient on a laboratory scale. Di­hydroxy­lation of 2 with N-methyl­morpholine N-oxide (NMO) and a catalytic amount of OsO4 in a water/acetone mixture on a 2 gram scale provided diol 3 in 92% yield. The use of excess NMO was critical to reoxidize Os0 to OsIV and drive the reaction to completion. Steglich-type esterification of diol 3 with the corresponding benzoic acid on a gram scale afforded diesters 49 in 55–84% yield. The experimental procedure for this reaction features two modifications with respect to that reported previously by some of us: (i) the use of 3-[3-(di­methyl­amino)­prop­yl]-1-ethyl­carbodi­imide hydro­chloride (EDAC·HCl) as the coupling agent in place of di­cyclo­hexyl carbodi­imide (DCC), and (ii) the use of 4-(di­methyl­amino)­pyridine (DMAP) in stoichiometric amounts (1.6 equiv.) rather than catalytic amounts. DCC, the classical coupling agent used in Steglich esterifications and amidations, affords di­cyclo­hexyl­urea as a by-product. This com­pound is insoluble in most organic solvents, so it needs to be removed by multiple tedious filtrations. EDAC·HCl, being water soluble, allows the removal of excess reagent and the corresponding urea by simple washing with water, simplifying the experimental procedure considerably. The function of DMAP is to activate the O-acyl­isourea inter­mediate into a highly electrophilic N-acyl­iminium ion, which is then attacked by the acid with formation of ester and regeneration of the base. The activation of O-acyl­isourea offers the additional advantage of suppressing the main side reaction, namely, the 1,3-rearrangement of the O-acyl­isourea to N-acyl­urea, which does not react with alcohol. Although the reaction mechanism of DMAP is catalytic, in practice the free base is not easily regenerated, so that stoichiometric amounts of DMAP are required. The Steglich reaction is an efficient and well-known strategy for the formation of esters and amides; however, since 3 is a vicinal diol, its double esterification becomes highly sensitive to the steric effects of substituent on the phenyl ring of benzoic acid. Benzoic acids substituted in positions 3, 4 and 5 experience no steric hindrance around the carboxyl group and always provide the corresponding diester in high yield, even when the substituent is bulky (e.g. yield of 4 = 84%). Conversely, benzoic acids substituted in positions 2, 4 and 6 experience high steric hindrance around the carboxyl group, so the esterification may only happen once, unless the substituent size is small. For instance, 2,4,6-tri­fluoro­benzoic acid affords diester 9, whereas 2,4,6-tri­meth­oxy­benzoic acid only affords the corresponding monoester. Therefore, substitution pattern and substituent size are two factors to be considered when planning the synthesis of EGCG analogs of type I.

3.2. NMR, IR and HRMS data

All products were characterized by 1H NMR, 13C NMR and IR spectroscopy (NMR data can be found in the supporting information). The identities of new com­pounds 5, 7, 8 and 9 were confirmed by HRMS with an experimental error <7.0 ppm. Com­pound 9 was also analyzed by 19F NMR spectroscopy. The most diagnostic signals in the NMR and IR spectra are provided by non-aromatic fragments. The saturated portion of tetra­lin-2,3-diol is detected by both 1H and 13C NMR spectroscopy. The 1H NMR spectrum shows one multiplet at 3.2–3.4 ppm which integrates for four protons (CH2 group) and another multiplet at 5.7–5.8 ppm integrating for two protons (OCH group). The 13C NMR spectrum shows one signal in the alkyl region at δ = 32 ppm (CH2 group) and one signal in the ether region at δ = 70 ppm (CH group). In both the 1H and the 13C NMR spectrum, the OCH peak is deshielded with respect to CH2 due to the electron-withdrawing effect of oxygen. The presence of the ester carbonyl group in all com­pounds is confirmed by both 13C NMR (δ = 160–166 ppm) and IR spectroscopy, with C=O stretching bands appearing at [\~ \nu] = 1712–1732 cm−1. The meth­oxy and methylen­oxy groups appear in the 1H NMR spectrum as singlets around 3.8 (OCH3) or 5.0 ppm (OCH2), and in the 13C NMR spectrum around 60 (OCH3) or 70 ppm (OCH2). The 19F NMR spectrum of 9 shows two peaks for two chemically non-equivalent F atoms: F-4 (δ = −101 ppm) and F-2/F-6 (δ = −105 ppm). The presence of CH3O, CH2O and F is consistent with the IR spectrum, which shows strong bands at 1000–1400 cm−1 for the ether C—O stretching and C—F stretching.

3.3. Crystal data

3.3.1. Stereochemistry

Com­pounds 4 and 7, bearing three or one benz­yloxy group on the benzoate phenyl ring, crystallize in the triclinic space group P[\overline{1}] (Table 1[link]). Com­pounds 5 and 8, bearing meth­oxy groups on the benzoate phenyl rings, crystallize in the monoclinic space group P21/n. Com­pounds 6 and 9, containing fluorine, crystallize in the monoclinic space groups C2/c and I2/a, respectively. Each com­pound is a meso form of configuration (2R,3S), because it is generated from an achiral cis-diol (3) by an esterification reaction that leaves the stereogenic centres unaffected. cis-Tetra­lin-2,3-diol can adopt two half-chair conformations in which the axial and equatorial positions on the C atom out of plane are non-equivalent (Fig. 3[link]). The two half-chair conformations are flexible and inter­convert in solution, and each of them can react to form the diester; however, once the product crystallizes, only the more stable conformer bearing the ester group in an equatorial position on the C atom out of plane is isolated.

[Figure 3]
Figure 3
Stereochemical outcome for the conversion of diol 3 into diesters 49, showing the half-chair conformations of 3.

The cis configuration of com­pounds 49 is expected to be important for biological activity, because the binding site of proteasome, one of the anti­cancer targets of EGCG, is pseudo­symmetrical (Dou et al., 2008[Dou, Q. P., Landis-Piwowar, K. R., Chen, D., Huo, C., Wan, S. B. & Chan, T. H. (2008). Inflammopharmacology, 16, 208-212.]). This structure implies that tetra­lin-2,3-diol dibenzoates in the cis configuration, which have a mirror plane bis­ecting the tetra­lin fragment, display a higher binding affinity than those in the trans con­figuration, which do not have such a plane. The relevance of stereochemistry for the anti­cancer activity of green tea catechins is confirmed by the observation that natural (−)-EGCG and its synthetic analog (+)-EGCG, both in the cis configuration, are equally potent proteasome inhibitors (Smith et al., 2002[Smith, D. M., Wang, Z., Kazi, A., Li, L., Chan, T. H. & Dou, Q. P. (2002). Mol. Med. 8, 382-392.]). The bioactivity of EGCG and other green tea catechins is also mediated by their binding to the cell membrane (Tsuchiya, 1999[Tsuchiya, H. (1999). Pharmacology, 59, 34-44.]). Inter­actions between catechins and mem­brane lipids are stereospecific (Tsuchiya, 2001[Tsuchiya, H. (2001). Chem. Biol. Interact. 134, 41-54.]) due to the presence of one stereogenic center in the glycerol fragment of phospho­lipids (Alifimoff et al., 1993[Alifimoff, J. K., Bugge, B., Forman, S. A. & Miller, K. W. (1993). Anesthesiology, 79, 122-128.]; Dickinson et al., 1994[Dickinson, R., Franks, N. P. & Lieb, W. R. (1994). Biophys. J. 66, 2019-2023.]). Among natural EGCG analogs, (+)-epicatechin and (−)-epicatechin, both in a cis configuration, bind cellular mem­branes more strongly than (+)-catechin and (−)-catechin, both in a trans form (Tsuchiya, 2001[Tsuchiya, H. (2001). Chem. Biol. Interact. 134, 41-54.]). Based on this trend, cis com­pounds 49 are expected to establish stronger inter­actions with the cell membrane than their trans anlaogs, thus dis­playing higher bioactivity.

3.3.2. Geometric parameters

The mol­ecular structures and unit cells of com­pounds 49 are shown in Figs. 4[link] and 5[link], respectively; geometric parameters are reported in Tables 2[link] (angles) and 3[link] (distances). A comparison of the mol­ecular structures and unit cells of 49 allows the identification of some common features. (i) The tetra­lin fragment adopts the same half-chair conformation in all six com­pounds, whereas the arrangement of the ester moiety is markedly affected by the substitution pattern on the phenyl ring. (ii) In all six com­pounds, the steric hindrance of the substituents forces the two benzoate phenyl rings to be oriented transversally. The deviation from coplanarity is at a maximum for benz­yloxy-substituted com­pounds 4 and 7 (angle between planes > 80°), at a minimum for com­pound 6 fluorinated at positions 3, 4 and 5 (angle between planes ≃ 50°) and inter­mediate for meth­oxy-substituted com­pounds 5 and 7, as well as for 2,4,6-tri­fluoro-substituted com­pound 9 (angle between planes ≃ 75°). (iii) All com­pounds except 4 exhibit supra­molecular aggregates. Inter­molecular inter­actions are dominated by ππ stacking involving the benzoate pheny rings and C—H⋯π inter­actions between the tetra­hydro­naphthalene moiety and the phenyl rings of a benzoate fragment.

Table 2
Dihedral and torsion angles (°) for 49

4 (ring C12–C17)⋯(ring C33–C38) 10.65
  (ring C12–C17)⋯(ring C40–C45) 81.96
  (ring C26–C31)⋯(ring C19–C24) 57.10
  (ring C33–C38)⋯(ring C26A–C31A) 79.07
  (ring C33–C38)⋯(ring C47–C52) 11.74
  (ring C40–C45)⋯(ring C54–C59) 7.19
  (ring C47–C52)⋯(ring C54–C59) 67.29
  (ring C54–C59)⋯(ring C61–C66) 72.59
     
5 (ring C12–C17)⋯(ring C22–C27) 74.69
  C18—O3—C14—C13 −2.1 (3)
  C19—O4—C15—C16 −89.8 (3)
  C20—O5—C16—C17 2.0 (3)
  C28—O8—C24—C23 −7.0 (3)
  C29—O9—C25—C26 −70.1 (3)
  C30—O10—C26—C27 4.3 (3)
     
6 (ring C12–C17)⋯(ring C19–C24) 89.74
     
7 (ring C26–C31)⋯(ring C12–C17) 74.09
  (ring C33–C38)⋯(ring C26–C31) 55.99
  (ring C19–C24)⋯(ring C12–C17) 79.13
  (ring C50–C55)⋯(ring C57–C62) 74.23
  (ring C64–C69)⋯(ring C71–C76) 47.97
  (ring C50–C55)⋯(ring C12–C17) 20.95
  (ring C19–C24)⋯(ring C57–C62) 25.91
  (ring C26–C31)⋯(ring C64–C69) 10.37
  (ring C33–C38)⋯(ring C71–C76) 2.38
     
8 C18—O3—C15—C14 0.55 (19)
  C26—O6—C23—C22 −6.92 (17)
  (ring C12–C17)⋯(ring C20–C25) 50.31
     
9 (ring C12–C17)⋯(ring C19–C24) 75.16

Table 3
Intra- and inter­molecular contacts (Å) for 49

4 (ring C33–C38)⋯(ring C47–C52)i 5.301
  (ring C19–C24)⋯(ring C19–C24)i 4.297
     
5 H27⋯(ring C12–C17) 3.928
  H9⋯(ring C22–C27)ii 2.781
     
6 (ring C12–C17)⋯(ring C12–C17)iii 3.717
  (ring C12–C17)⋯(ring C12–C17)i 3.844
  (ring C4–C10)⋯(ring C19–C24)iv 5.816
  (ring C19–C24)⋯(ring C19–C24)v 4.030
     
7 H1⋯(ring C50–C55)i 3.671
  H2⋯(ring C50–C55)i 3.913
  H3A⋯(ring C64–C69)i 3.456
  H35⋯(ring C4–C10)i 3.519
  (ring C64–C69)⋯(ring C26–C31)i 6.358
  (ring C33–C38)⋯(ring C71–C76)i 6.370
     
8 H14⋯(ring C12–C17)ii 2.876
  (ring C20–C25)⋯(ring C20–C25)i 3.801
     
9 (ring C4–C10)⋯(ring C19–C24)vi 3.733
  (ring C19–C24)⋯(ring C4–C10)vi 7.885
  (ring C19–C24)⋯(ring C19–C24)vii 8.016
  (ring C12–C17)⋯(ring C4–C10)vi 2.674
  (ring C12–C17)⋯(ring C12–C17)vi 3.630
Symmetry codes: (i) −x, −y, −z; (ii) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (iii) −x, y, −z + [{1\over 2}]; (iv) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (v) −x + [{1\over 2}], −y + [{1\over 2}], −z; (vi) −x + [{1\over 2}], y, −z; (vii) −x, y + [{1\over 2}], −z + [{1\over 2}].
[Figure 4]
Figure 4
The mol­ecular structures of (a)–(f) 49.
[Figure 5]
Figure 5
Crystal packing of (a)–(f) 49, with the unit-cell axes, showing all the mol­ecular entities in the crystals. See Table 3[link] for atom labelling and symmetry codes.

Despite their similarities, com­pounds 49 present some differences.

In 4, the presence of nine bulky benzyl groups forces the two benzoate phenyl rings to be almost perpendicular to each other (dihedral angle > 80°). In each 3,4,5-tris­(benz­yloxy)benzoate moiety, the phenyl rings of two adjacent benzyl groups are twisted with respect to each other (angles = 57–79°), with one of the three benzyl groups being almost coplanar with the benzoate phenyl ring (angle between the planes of rings C12–C17 and C33–C38 = 10.65°; angle between the planes of rings C40–C45 and C54–C59 = 7.19°). Two benzyl groups belonging to different benzoate units are also coplanar with each other (angle between the planes of rings C33–C38 and C47–C52 = 11.74°), although too distant to form significant ππ inter­actions (distance between planes = 5.301 Å). Overall, the mol­ecule adopts a calixarene-type shape with a central cage surrounded by eight phenyl rings of the benzoate moieties. Unlike the other com­pounds, 4 shows no significant inter­molecular inter­actions.

In 5, similar to 4, the two benzoate phenyl rings are oriented transversally (angle between planes ≃ 75°); however, the deviation from coplanarity in 5 is less marked than in 4 due to the presence of smaller –OCH3 groups in place of benz­yloxy. In each tri­meth­oxy­benzoate moiety, two of the three –OCH3 groups are coplanar with the benzoate phenyl ring (C—C—O—CH3 torsion angle < 7°), with the remaining one being almost per­pen­dicular to the ring [C—C—O—CH3 torsion angle = −70.1 (3) or −89.8 (3)°]. A significant intra­molecular C—H⋯π inter­action (3.928 Å) is formed between the ben­zoate phenyl rings. The crystal of 5 contains supra­molecular aggregates, with a C—H⋯π inter­action (2.781 Å) between the CH group in the tetra­hydro­naphthalene moiety of one mol­ecule with the benzoate phenyl ring of another mol­ecule.

For 7, there are two symmetry-independent mol­ecules in the unit cell. The mol­ecules have similar conformations and are related by a pseudotranslation of b/2. They are almost superimposable, with angles of <26° between corresponding rings. Each benzyl­oxybenzoate group takes a fully extended conformation, with the two phenyl rings oriented transversally (dihedral angles = 48–79°). The two benzoate moieties extend away from the tetra­lin fragment, giving the mol­ecule a V-shape that potentially makes it suitable for the construction of supra­molecular aggregates (Xu et al., 2017[Xu, J., Yu, S., Zhong, K. & Jin, L. Y. (2017). Polymers, 9, 685.]). Each mol­ecule inter­acts with two neighbouring mol­ecules via four C—H⋯π inter­actions (3.7–3.9 Å): three are formed between the CH groups of the tetra­hydro­naphthalene moiety and the benzoate phenyl ring of a neighbouring mol­ecule, and one is formed between the π-system of tetra­lin and the CH group of the benzoate of a neighbouring mol­ecule.

In 8, the meth­oxy group is coplanar with the benzoate phenyl ring (dihedral angles < 7°). A mol­ecule of 8 inter­acts with two surrounding mol­ecules via two inter­actions: (i) ππ stacking between the benzoate phenyl ring of one mol­ecule and the benzoate phenyl ring of a neighbouring mol­ecule and (ii) a C—H⋯π inter­action between the benzoate phenyl ring of one mol­ecule and the tetra­hydro­naphthalene unit in a neighbouring mol­ecule.

For 6, a mol­ecule shows ππ inter­actions with the sur­rounding four mol­ecules. One of the benzoate phenyl rings inter­acts with two benzoate phenyl rings of two neighbouring mol­ecules (centroid–centroid distances = 3.717 and 3.844 Å); the other inter­acts with the phenyl ring in the benzoate moiety of a neighbouring mol­ecule (4.030 Å) and the phenyl ring in the tetra­hydro­naphthalene moiety of another mol­ecule (centroid–centroid distances = 4.030 and 5.816 Å, respectively).

For 9, each mol­ecule inter­acts with two neighbouring mol­ecules via three inter­actions. Tetra­hydro­naphthalene and the equatorial benzoate phenyl ring in one mol­ecule form ππ inter­actions with the equatorial benzoate phenyl ring and the tetra­hydro­naphthalene group of a neighbouring mol­ecule, respectively. The axial benzoate phenyl ring forms C—H⋯π and ππ inter­actions with tetra­hydro­naphthalene and the axial benzoate phenyl ring of another neighbouring mol­ecule, respectively.

Overall, the substituents on the tetra­lindiol dibenzoate affect both the mol­ecular shape and the inter­molecular inter­actions. Com­pounds 6 and 9, bearing small F atoms, take an L-shape, with the phenyl rings arranged in an almost perpendicular manner with respect to each other. In 6, the F atoms at positions 3, 4 and 5 determine the minimum steric hindrance and the phenyl rings adopt an almost perfect perpendicular arrangement (dihedral angle ≃ 90°). In 9, the F atoms at positions 2 and 6 create partial steric hindrance, reducing the dihedral angle to ≃75°. In com­pounds 5 and 8, the meth­oxy groups generate a steric hindrance larger than fluorine, moving the benzoate phenyl rings away from perpendicularity and forcing the mol­ecule to adopt a V-shape. The same shape is observed for 7, in which the benz­yloxy group, although bulkier than meth­oxy, does not generate a significant hindrance as it is located in the para position. In 4, the three bulky benz­yloxy groups determine the formation of a cavity. Steric effects of the substituents also affect the mol­ecular packing and inter­molecular inter­actions. Fluorinated com­pounds 6 and 9, experiencing the minimum steric hindrance, display tight packing, with ππ distances as low as 3.6 Å, and have the largest number of inter­molecular inter­actions, which are dominated by ππ stacking. Com­pounds 5, 7 and 8 show a lower number of inter­molecular inter­actions, which are dominated by C—H⋯π stacking. In com­pound 4, steric hindrance is at a maximum and keeps mol­ecules far from each other, preventing any significant inter­molecular inter­actions and hence the formation of supra­molecular aggregates.

3.3.3. Electrostatic potential

The difference in mol­ecular shape among com­pounds 49 is reflected in their electronic properties (Fig. 6[link]). In 4 and 8, the greatest negative electrostatic potential is located on the substituent in an equatorial position. This asymmetric distribution of electron density is significant in terms of binding inter­actions, as it implies that the ligand might fit into the receptor active site using only one tetra­lin substituent. Com­pound 5, unlike 4 and 8, has the negative charge mainly located on the tetra­hydro­naphthalene moiety, suggesting a different binding mode to the receptor. The two mol­ecules in the asymmetric unit of 7 show a different distribution of electrostatic potential, with one holding the negative charge on four phenyl rings and the other on the two terminal phenyl rings only; however, they are expected to become equivalent in solution in terms of electronic distribution. In both fluorinated com­pounds 8 and 9, the negative charge is localized on the F and O atoms, leaving the remainder of the mol­ecule highly positive. These com­pounds are expected to inter­act with the receptor mainly through hydrogen bonds.

[Figure 6]
Figure 6
Electrostatic potential maps of (a)–(f) 49. [Computer program: ArgusLab 4.0.1 (Intel).]
3.3.4. Comparison with analogous com­pounds

Crystal structure characterizations of tetra­lin-2,3-diol ester derivatives are scarce in the literature. A search of the Cambridge Structural Database (CSD, Version 5 of 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 1,2,3,4-tetra­hydro­naphthalene-2,3-diol resulted in 131 hits, of which three had the most similar structures to com­pounds 49 (Li et al., 2017[Li, R.-Z., Tang, H., Yang, K. R., Wan, L.-Q., Zhang, X., Liu, J., Fu, Z. & Niu, D. (2017). Angew. Chem. Int. Ed. 56, 7213-7217.]; Back et al., 2004[Back, T. G., Bey, M. A., Parvez, M. & Pharis, R. P. (2004). Tetrahedron Asymmetry, 15, 873-880.]). One of these com­pounds (see 10 in Fig. 7[link]) is a mono­benzoic acid ester of tetra­lindiol, in which one of the –OH groups is propargylated (Li et al., 2017[Li, R.-Z., Tang, H., Yang, K. R., Wan, L.-Q., Zhang, X., Liu, J., Fu, Z. & Niu, D. (2017). Angew. Chem. Int. Ed. 56, 7213-7217.]). The remaining two com­pounds are dimandelic acid esters of tetra­lindiol differing only in the substituent at position 5 on the tetra­hydro­naphthalene moiety; com­pound 11, for which the C5 substituent is –OCOCH3, is shown in Fig. 7[link] (Back et al., 2004[Back, T. G., Bey, M. A., Parvez, M. & Pharis, R. P. (2004). Tetrahedron Asymmetry, 15, 873-880.]). Com­pounds 10 and 11 have structures significantly different from those of 49, despite sharing the tetra­lin moiety and one or two ester groups. In 10, the rotational freedom around the O—CH(proparg­yl) bond allows the phenyl ring of the alk­oxy group to fold back and establish ππ stacking with the phenyl ring of tetra­lin. In 11, the presence of the mandelate moiety, which is conformationally more flexible than benzoic acid, also allows the benzoate phenyl ring to fold back and establish a C—H⋯π inter­action with tetra­lin. In com­pounds 49, intra­molecular inter­actions between phenyl rings of ester and diol are prevented by conformational rigidity resulting from the presence of two benzoic acid esters. Such rigidity forces 49 to adopt a V-shape or an L-shape that are markedly different from those of 10 and 11.

[Figure 7]
Figure 7
The mol­ecular structures of two com­pounds (10 and 11) analogous to those investigated in this study.

4. Conclusion

Dibenzoate esters of tetra­lin-2,3-diol are drug candidates that are expected to show improved stability, cell permeability and metabolic resistance compared to their natural analog. They share two important features: (i) they are conformationally more rigid than dimandelate esters or monobenzoate esters, taking a V-shape with fully extended benzoate chains, and (ii) they show no hydrogen bonds but only a plethora of weaker inter­actions propagating throughout the crystal lattice, which hold the crystal structure together. This work is important for two reasons. Firstly, the crystallographic characterization of the com­pounds presented here will be essential in guiding docking analysis and predicting the binding inter­actions between the ligand and the mol­ecular target. Secondly, this is the first systematic study of the crystallographic structure of 2,3-disubstituted tetra­lins. In vivo experiments will be carried out to evaluate the anti­cancer activity of all com­pounds except 6, whose bioactivity is known.

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 2008) for (4), (6), (7), (8), (9); CrystalClear-SM Expert (Rigaku, 2011) for (5). Cell refinement: CrystalClear (Rigaku, 2008) for (4), (6), (7), (8), (9); CrystalClear-SM Expert (Rigaku, 2011) for (5). Data reduction: CrystalClear (Rigaku, 2008) for (4), (6), (7), (8), (9); CrystalClear-SM Expert (Rigaku, 2011) for (5). For all structures, program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(2R,3S)-1,2,3,4-Tetrahydronaphthalene-2,3-diyl bis[3,4,5-tris(benzyloxy)benzoate] (4) top
Crystal data top
C66H56O10Z = 2
Mr = 1009.10F(000) = 1064
Triclinic, P1Dx = 1.249 Mg m3
a = 13.574 (3) ÅMo Kα radiation, λ = 0.71075 Å
b = 13.829 (3) ÅCell parameters from 8135 reflections
c = 14.657 (3) Åθ = 3.0–27.5°
α = 79.013 (6)°µ = 0.08 mm1
β = 87.544 (9)°T = 193 K
γ = 83.381 (8)°Plate, clear colourless
V = 2682.3 (10) Å30.13 × 0.08 × 0.07 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
11802 independent reflections
Radiation source: sealed X-ray tube7475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
dtprofit.ref scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
h = 1616
Tmin = 0.857, Tmax = 1.000k = 1717
22437 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0587P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
11802 reflectionsΔρmax = 0.20 e Å3
740 parametersΔρmin = 0.18 e Å3
132 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.73344 (8)0.70247 (9)0.68718 (8)0.0408 (3)
O50.53926 (9)0.97432 (9)0.36357 (8)0.0455 (3)
O90.93988 (8)0.41510 (9)0.25621 (8)0.0431 (3)
O60.83722 (9)0.52822 (9)0.64620 (8)0.0438 (3)
O30.37480 (9)0.75731 (9)0.58587 (9)0.0476 (3)
O80.86191 (9)0.59140 (9)0.29997 (8)0.0473 (3)
O100.95194 (9)0.25176 (9)0.38016 (9)0.0473 (3)
O40.37380 (9)0.90210 (10)0.43536 (9)0.0503 (4)
O20.81809 (9)0.75757 (10)0.55480 (9)0.0552 (4)
O70.90443 (10)0.37088 (9)0.69560 (9)0.0540 (4)
C120.64205 (13)0.78422 (12)0.55684 (12)0.0366 (4)
C160.54976 (13)0.89834 (13)0.43846 (12)0.0375 (4)
C140.46598 (13)0.78486 (13)0.55310 (12)0.0378 (4)
C150.46235 (13)0.85937 (13)0.47422 (12)0.0370 (4)
C320.62505 (12)1.02131 (13)0.32988 (12)0.0396 (4)
H32A0.6771900.9721090.3113920.048*
H32B0.6514081.0502180.3793900.048*
C20.71398 (13)0.54176 (14)0.87901 (12)0.0412 (4)
C170.63958 (13)0.85989 (13)0.47919 (12)0.0382 (4)
H170.6992300.8851110.4541950.046*
C130.55558 (13)0.74646 (13)0.59436 (12)0.0387 (4)
H130.5578550.6949710.6476220.046*
C110.74048 (14)0.74752 (13)0.59737 (13)0.0395 (4)
C420.88031 (13)0.51315 (13)0.37194 (12)0.0391 (4)
C430.91311 (13)0.42290 (13)0.34640 (12)0.0392 (4)
C410.86817 (12)0.51874 (13)0.46550 (12)0.0397 (4)
H410.8473180.5804960.4834850.048*
C90.82884 (13)0.54594 (13)0.74040 (12)0.0392 (4)
H90.8885120.5120550.7757440.047*
C10.75421 (13)0.62360 (14)0.89874 (12)0.0407 (4)
C330.59738 (13)1.10170 (13)0.24740 (12)0.0370 (4)
C440.92717 (13)0.33670 (13)0.41472 (13)0.0397 (4)
C100.73620 (14)0.50701 (14)0.78790 (12)0.0434 (4)
H10A0.6792040.5298460.7463450.052*
H10B0.7450300.4336600.7994340.052*
C400.88666 (12)0.43373 (13)0.53238 (12)0.0380 (4)
C390.87865 (13)0.43821 (14)0.63261 (13)0.0416 (4)
C80.82547 (13)0.65648 (13)0.73355 (13)0.0403 (4)
H80.8843200.6817070.6972560.048*
C190.40241 (13)0.57904 (14)0.65011 (13)0.0438 (5)
C450.91520 (13)0.34203 (13)0.50787 (13)0.0415 (4)
H450.9262780.2840380.5543510.050*
C610.98163 (14)0.08034 (13)0.38786 (13)0.0444 (5)
C340.50041 (14)1.14012 (14)0.22908 (13)0.0464 (5)
H340.4483571.1146260.2685170.056*
C470.79546 (15)0.75641 (13)0.23721 (13)0.0449 (5)
C180.37089 (14)0.68120 (14)0.66778 (13)0.0465 (5)
H18A0.3021880.6837490.6934690.056*
H18B0.4142330.6951910.7152360.056*
C380.67231 (14)1.14153 (14)0.19001 (13)0.0441 (5)
H380.7394401.1157350.2017780.053*
C70.82248 (14)0.68111 (14)0.82976 (13)0.0446 (5)
H7A0.8010970.7527830.8248890.054*
H7B0.8905000.6682160.8543180.054*
C60.73257 (15)0.65074 (16)0.98476 (14)0.0527 (5)
H60.7602520.7060350.9989240.063*
C600.96534 (14)0.15976 (13)0.44522 (13)0.0460 (5)
H60A0.9058110.1509700.4860950.055*
H60B1.0234030.1579740.4843860.055*
C30.65294 (15)0.49063 (16)0.94546 (14)0.0538 (5)
H30.6252850.4348400.9323580.065*
C50.67191 (16)0.59929 (18)1.04993 (15)0.0621 (6)
H50.6580130.6190351.1081860.075*
C350.47834 (16)1.21551 (16)0.15369 (15)0.0571 (6)
H350.4111901.2405350.1410040.069*
C370.65043 (16)1.21825 (15)0.11596 (13)0.0519 (5)
H370.7024701.2460620.0781070.062*
C460.82522 (16)0.68509 (14)0.32410 (14)0.0539 (5)
H46A0.8774300.7104010.3553160.065*
H46B0.7674200.6771510.3673470.065*
C360.55313 (17)1.25446 (16)0.09699 (14)0.0586 (6)
H360.5377531.3059840.0451000.070*
C540.88872 (13)0.36655 (15)0.12043 (13)0.0460 (5)
C26A0.3268 (13)0.8511 (13)0.2925 (11)0.052 (4)0.51 (2)
C530.86549 (14)0.43764 (16)0.18628 (14)0.0526 (5)
H53A0.8661930.5067360.1524470.063*
H53B0.7989130.4302240.2153130.063*
C240.36813 (15)0.54799 (17)0.57460 (16)0.0593 (6)
H240.3251990.5924460.5324620.071*
C40.63186 (16)0.51924 (19)1.02968 (15)0.0628 (6)
H40.5895890.4836281.0738480.075*
C590.90289 (15)0.26572 (16)0.15303 (15)0.0553 (5)
H590.9003120.2411670.2180920.066*
C200.46373 (16)0.51275 (16)0.71112 (16)0.0603 (6)
H200.4880340.5329780.7635440.072*
C661.07103 (16)0.06351 (16)0.34243 (16)0.0632 (6)
H661.1232940.1016430.3490600.076*
C620.90766 (16)0.02384 (16)0.37733 (16)0.0596 (6)
H620.8453500.0340860.4080670.071*
C580.92065 (16)0.20021 (18)0.09315 (17)0.0643 (6)
H580.9302730.1309640.1167450.077*
C520.86359 (17)0.78305 (17)0.16801 (15)0.0619 (6)
H520.9302860.7535000.1742100.074*
C250.31539 (16)0.83749 (19)0.39921 (16)0.0687 (7)
H25A0.2446850.8521980.4164310.082*0.51 (2)
H25B0.3369390.7677360.4273900.082*0.51 (2)
H25C0.3358700.7684890.4303780.082*0.49 (2)
H25D0.2450370.8536530.4167930.082*0.49 (2)
C480.69896 (17)0.79881 (17)0.22646 (17)0.0687 (7)
H480.6503830.7802120.2731450.082*
C651.08616 (18)0.00778 (18)0.28739 (18)0.0742 (7)
H651.1481220.0178590.2560350.089*
C641.0114 (2)0.06416 (18)0.27803 (18)0.0757 (7)
H641.0215460.1139340.2409500.091*
C630.92267 (19)0.04776 (18)0.32256 (19)0.0766 (7)
H630.8704950.0859940.3158950.092*
C500.7426 (2)0.89517 (18)0.08043 (19)0.0829 (8)
H500.7251210.9441140.0270950.099*
C230.39563 (19)0.4525 (2)0.5595 (2)0.0768 (8)
H230.3721230.4322340.5066990.092*
C510.8371 (2)0.85186 (19)0.08964 (18)0.0807 (8)
H510.8852220.8689520.0420340.097*
C220.4562 (2)0.3876 (2)0.6199 (2)0.0833 (9)
H220.4749830.3222860.6092200.100*
C550.89481 (17)0.40077 (19)0.02617 (15)0.0704 (7)
H550.8869990.4700410.0024650.084*
C31A0.3658 (14)0.9309 (12)0.2398 (11)0.063 (3)0.51 (2)
H31A0.3856840.9809110.2691640.076*0.51 (2)
C570.92445 (18)0.2350 (2)0.00055 (18)0.0784 (7)
H570.9355650.1897370.0421720.094*
C210.49015 (19)0.41673 (19)0.6964 (2)0.0791 (8)
H210.5315950.3712780.7391660.095*
C490.6719 (2)0.8692 (2)0.1471 (2)0.0881 (8)
H490.6052740.8985980.1396580.106*
C560.9123 (2)0.3346 (2)0.03458 (17)0.0875 (9)
H560.9158310.3585990.0997020.105*
C30A0.3771 (13)0.9402 (11)0.1434 (9)0.075 (3)0.51 (2)
H30A0.4052620.9960100.1086180.090*0.51 (2)
C27A0.2971 (14)0.7812 (11)0.2453 (10)0.081 (4)0.51 (2)
H27A0.2700880.7246700.2799130.097*0.51 (2)
C28A0.3058 (15)0.7916 (9)0.1490 (9)0.093 (4)0.51 (2)
H28A0.2823080.7439920.1186860.112*0.51 (2)
C29A0.3483 (12)0.8706 (9)0.0978 (10)0.079 (3)0.51 (2)
H29A0.3574990.8769370.0324280.095*0.51 (2)
C26B0.3215 (13)0.8412 (13)0.3011 (12)0.051 (4)0.49 (2)
C31B0.3788 (16)0.9023 (14)0.2421 (11)0.068 (4)0.49 (2)
H31B0.4217290.9403340.2664180.081*0.49 (2)
C27B0.2617 (10)0.7844 (11)0.2661 (11)0.065 (3)0.49 (2)
H27B0.2235930.7404300.3068520.078*0.49 (2)
C28B0.2572 (13)0.7914 (10)0.1718 (11)0.090 (4)0.49 (2)
H28B0.2161890.7514000.1478240.108*0.49 (2)
C29B0.3101 (14)0.8543 (14)0.1121 (11)0.100 (5)0.49 (2)
H29B0.3031560.8611160.0468810.120*0.49 (2)
C30B0.3739 (15)0.9083 (16)0.1467 (11)0.100 (5)0.49 (2)
H30B0.4143590.9494760.1054910.120*0.49 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0425 (7)0.0396 (7)0.0370 (7)0.0021 (6)0.0012 (6)0.0001 (6)
O50.0440 (7)0.0450 (8)0.0441 (8)0.0155 (6)0.0038 (6)0.0074 (6)
O90.0442 (7)0.0450 (8)0.0391 (7)0.0011 (6)0.0015 (6)0.0089 (6)
O60.0566 (8)0.0372 (7)0.0355 (7)0.0030 (6)0.0003 (6)0.0068 (6)
O30.0449 (7)0.0480 (8)0.0479 (8)0.0125 (6)0.0077 (6)0.0012 (6)
O80.0674 (9)0.0292 (7)0.0424 (8)0.0033 (6)0.0007 (6)0.0046 (6)
O100.0659 (9)0.0304 (7)0.0438 (8)0.0034 (6)0.0007 (6)0.0077 (6)
O40.0454 (8)0.0537 (9)0.0502 (8)0.0100 (6)0.0079 (6)0.0017 (7)
O20.0461 (8)0.0619 (10)0.0503 (8)0.0072 (7)0.0055 (7)0.0077 (7)
O70.0786 (10)0.0374 (8)0.0426 (8)0.0016 (7)0.0059 (7)0.0027 (6)
C120.0443 (11)0.0317 (9)0.0351 (10)0.0066 (8)0.0023 (8)0.0085 (8)
C160.0504 (11)0.0311 (9)0.0317 (9)0.0106 (8)0.0006 (8)0.0038 (7)
C140.0424 (11)0.0367 (10)0.0367 (10)0.0117 (8)0.0073 (8)0.0102 (8)
C150.0392 (10)0.0358 (10)0.0382 (10)0.0078 (8)0.0011 (8)0.0098 (8)
C320.0415 (10)0.0346 (10)0.0415 (10)0.0091 (8)0.0022 (8)0.0021 (8)
C20.0431 (11)0.0438 (11)0.0351 (10)0.0016 (9)0.0046 (8)0.0042 (8)
C170.0433 (11)0.0351 (10)0.0367 (10)0.0107 (8)0.0018 (8)0.0047 (8)
C130.0493 (11)0.0313 (9)0.0355 (10)0.0075 (8)0.0028 (9)0.0050 (8)
C110.0475 (11)0.0313 (10)0.0388 (10)0.0080 (8)0.0027 (9)0.0031 (8)
C420.0447 (11)0.0316 (10)0.0386 (10)0.0016 (8)0.0004 (8)0.0018 (8)
C430.0427 (11)0.0378 (10)0.0364 (10)0.0004 (8)0.0011 (8)0.0071 (8)
C410.0426 (10)0.0331 (10)0.0430 (11)0.0018 (8)0.0011 (8)0.0081 (8)
C90.0491 (11)0.0370 (10)0.0317 (10)0.0030 (8)0.0019 (8)0.0073 (8)
C10.0426 (10)0.0404 (11)0.0385 (10)0.0036 (8)0.0083 (8)0.0090 (8)
C330.0442 (11)0.0324 (9)0.0337 (10)0.0039 (8)0.0011 (8)0.0049 (8)
C440.0427 (10)0.0322 (10)0.0446 (11)0.0004 (8)0.0001 (8)0.0107 (8)
C100.0528 (11)0.0403 (11)0.0383 (10)0.0108 (9)0.0007 (9)0.0070 (8)
C400.0401 (10)0.0346 (10)0.0387 (10)0.0035 (8)0.0009 (8)0.0061 (8)
C390.0458 (11)0.0360 (10)0.0431 (11)0.0052 (8)0.0004 (9)0.0079 (9)
C80.0397 (10)0.0358 (10)0.0434 (11)0.0025 (8)0.0039 (8)0.0027 (8)
C190.0442 (11)0.0434 (11)0.0455 (11)0.0163 (9)0.0103 (9)0.0082 (9)
C450.0462 (11)0.0338 (10)0.0423 (11)0.0028 (8)0.0004 (8)0.0029 (8)
C610.0525 (12)0.0298 (10)0.0494 (12)0.0009 (8)0.0037 (9)0.0061 (8)
C340.0466 (12)0.0433 (11)0.0462 (12)0.0068 (9)0.0023 (9)0.0004 (9)
C470.0615 (13)0.0285 (10)0.0451 (11)0.0020 (9)0.0040 (10)0.0086 (8)
C180.0534 (12)0.0438 (11)0.0416 (11)0.0146 (9)0.0132 (9)0.0044 (9)
C380.0462 (11)0.0440 (11)0.0406 (11)0.0061 (9)0.0029 (9)0.0043 (9)
C70.0485 (11)0.0372 (10)0.0496 (12)0.0055 (9)0.0086 (9)0.0095 (9)
C60.0576 (13)0.0541 (13)0.0481 (12)0.0066 (10)0.0134 (10)0.0189 (10)
C600.0590 (12)0.0301 (10)0.0471 (12)0.0038 (9)0.0019 (9)0.0036 (8)
C30.0573 (12)0.0578 (14)0.0453 (12)0.0120 (10)0.0036 (10)0.0051 (10)
C50.0641 (14)0.0801 (17)0.0397 (12)0.0103 (12)0.0001 (11)0.0162 (12)
C350.0555 (13)0.0547 (13)0.0558 (13)0.0043 (10)0.0093 (11)0.0010 (11)
C370.0637 (14)0.0485 (12)0.0411 (11)0.0102 (11)0.0088 (10)0.0023 (9)
C460.0782 (14)0.0322 (11)0.0500 (12)0.0032 (10)0.0033 (10)0.0094 (9)
C360.0771 (16)0.0485 (13)0.0436 (12)0.0032 (11)0.0044 (11)0.0060 (10)
C540.0406 (11)0.0558 (13)0.0399 (11)0.0013 (9)0.0050 (9)0.0079 (9)
C26A0.050 (6)0.054 (6)0.055 (6)0.019 (4)0.027 (5)0.002 (4)
C530.0533 (12)0.0540 (13)0.0484 (12)0.0059 (10)0.0110 (10)0.0093 (10)
C240.0581 (13)0.0613 (15)0.0653 (15)0.0213 (11)0.0024 (11)0.0209 (12)
C40.0625 (14)0.0784 (17)0.0442 (13)0.0059 (12)0.0084 (11)0.0059 (12)
C590.0624 (13)0.0551 (14)0.0496 (12)0.0092 (11)0.0002 (10)0.0118 (11)
C200.0715 (15)0.0524 (14)0.0549 (14)0.0148 (11)0.0076 (11)0.0022 (11)
C660.0613 (14)0.0509 (13)0.0808 (17)0.0046 (11)0.0063 (12)0.0240 (12)
C620.0574 (13)0.0490 (13)0.0758 (16)0.0046 (10)0.0024 (11)0.0211 (12)
C580.0718 (15)0.0589 (15)0.0639 (15)0.0035 (12)0.0027 (12)0.0181 (12)
C520.0658 (14)0.0609 (15)0.0550 (14)0.0097 (11)0.0047 (11)0.0013 (11)
C250.0568 (14)0.0909 (19)0.0605 (15)0.0380 (13)0.0102 (11)0.0001 (13)
C480.0694 (16)0.0623 (15)0.0692 (16)0.0072 (12)0.0003 (12)0.0085 (13)
C650.0716 (16)0.0647 (16)0.0894 (19)0.0102 (13)0.0058 (14)0.0348 (14)
C640.0864 (18)0.0556 (15)0.0918 (19)0.0132 (13)0.0182 (15)0.0395 (14)
C630.0731 (17)0.0625 (16)0.105 (2)0.0088 (13)0.0119 (15)0.0405 (15)
C500.129 (2)0.0510 (15)0.0602 (17)0.0119 (16)0.0198 (17)0.0010 (12)
C230.0809 (18)0.0714 (18)0.093 (2)0.0315 (15)0.0206 (15)0.0434 (16)
C510.106 (2)0.0658 (17)0.0635 (17)0.0126 (16)0.0011 (15)0.0060 (13)
C220.0860 (19)0.0518 (16)0.118 (3)0.0198 (14)0.0371 (18)0.0310 (17)
C550.0868 (17)0.0682 (16)0.0456 (13)0.0260 (13)0.0041 (12)0.0040 (12)
C31A0.074 (7)0.061 (6)0.058 (5)0.025 (6)0.019 (4)0.005 (4)
C570.0926 (18)0.084 (2)0.0584 (16)0.0189 (15)0.0060 (13)0.0296 (14)
C210.0790 (17)0.0513 (15)0.099 (2)0.0028 (13)0.0122 (15)0.0014 (15)
C490.0882 (19)0.081 (2)0.085 (2)0.0323 (15)0.0213 (17)0.0130 (16)
C560.123 (2)0.085 (2)0.0440 (14)0.0311 (17)0.0040 (14)0.0116 (14)
C30A0.101 (6)0.078 (6)0.046 (4)0.023 (4)0.029 (4)0.001 (3)
C27A0.127 (11)0.043 (4)0.074 (6)0.021 (7)0.021 (6)0.003 (4)
C28A0.159 (11)0.054 (4)0.073 (6)0.011 (7)0.029 (7)0.020 (4)
C29A0.113 (9)0.064 (5)0.064 (5)0.001 (5)0.019 (5)0.021 (4)
C26B0.047 (6)0.042 (5)0.060 (6)0.005 (4)0.008 (4)0.007 (4)
C31B0.070 (6)0.087 (10)0.050 (5)0.019 (7)0.011 (4)0.015 (6)
C27B0.071 (6)0.044 (4)0.081 (7)0.008 (4)0.031 (5)0.007 (4)
C28B0.128 (9)0.056 (4)0.097 (8)0.003 (6)0.042 (6)0.040 (5)
C29B0.123 (11)0.120 (9)0.066 (7)0.025 (9)0.022 (7)0.030 (6)
C30B0.108 (7)0.133 (13)0.064 (6)0.038 (8)0.006 (5)0.017 (7)
Geometric parameters (Å, º) top
O1—C111.349 (2)C35—H350.9500
O1—C81.467 (2)C35—C361.376 (3)
O5—C161.3669 (19)C37—H370.9500
O5—C321.4231 (19)C37—C361.378 (3)
O9—C431.377 (2)C46—H46A0.9900
O9—C531.436 (2)C46—H46B0.9900
O6—C91.445 (2)C36—H360.9500
O6—C391.352 (2)C54—C531.504 (3)
O3—C141.377 (2)C54—C591.379 (3)
O3—C181.441 (2)C54—C551.375 (3)
O8—C421.368 (2)C26A—C251.542 (16)
O8—C461.436 (2)C26A—C31A1.368 (13)
O10—C441.368 (2)C26A—C27A1.395 (13)
O10—C601.435 (2)C53—H53A0.9900
O4—C151.373 (2)C53—H53B0.9900
O4—C251.445 (2)C24—H240.9500
O2—C111.209 (2)C24—C231.387 (3)
O7—C391.211 (2)C4—H40.9500
C12—C171.390 (2)C59—H590.9500
C12—C131.389 (2)C59—C581.372 (3)
C12—C111.481 (3)C20—H200.9500
C16—C151.400 (2)C20—C211.389 (3)
C16—C171.385 (2)C66—H660.9500
C14—C151.393 (2)C66—C651.381 (3)
C14—C131.385 (2)C62—H620.9500
C32—H32A0.9900C62—C631.382 (3)
C32—H32B0.9900C58—H580.9500
C32—C331.506 (2)C58—C571.367 (3)
C2—C11.394 (2)C52—H520.9500
C2—C101.511 (2)C52—C511.376 (3)
C2—C31.392 (2)C25—H25A0.9900
C17—H170.9500C25—H25B0.9900
C13—H130.9500C25—H25C0.9900
C42—C431.390 (2)C25—H25D0.9900
C42—C411.390 (2)C25—C26B1.428 (17)
C43—C441.403 (2)C48—H480.9500
C41—H410.9500C48—C491.399 (3)
C41—C401.386 (2)C65—H650.9500
C9—H91.0000C65—C641.375 (3)
C9—C101.515 (2)C64—H640.9500
C9—C81.508 (2)C64—C631.362 (3)
C1—C71.515 (3)C63—H630.9500
C1—C61.393 (2)C50—H500.9500
C33—C341.379 (2)C50—C511.353 (4)
C33—C381.387 (2)C50—C491.367 (4)
C44—C451.383 (2)C23—H230.9500
C10—H10A0.9900C23—C221.362 (4)
C10—H10B0.9900C51—H510.9500
C40—C391.481 (2)C22—H220.9500
C40—C451.391 (2)C22—C211.376 (4)
C8—H81.0000C55—H550.9500
C8—C71.510 (2)C55—C561.389 (3)
C19—C181.496 (3)C31A—H31A0.9500
C19—C241.377 (3)C31A—C30A1.398 (13)
C19—C201.381 (3)C57—H570.9500
C45—H450.9500C57—C561.366 (3)
C61—C601.497 (2)C21—H210.9500
C61—C661.377 (3)C49—H490.9500
C61—C621.372 (3)C56—H560.9500
C34—H340.9500C30A—H30A0.9500
C34—C351.384 (3)C30A—C29A1.370 (13)
C47—C461.494 (3)C27A—H27A0.9500
C47—C521.370 (3)C27A—C28A1.393 (12)
C47—C481.375 (3)C28A—H28A0.9500
C18—H18A0.9900C28A—C29A1.374 (13)
C18—H18B0.9900C29A—H29A0.9500
C38—H380.9500C26B—C31B1.372 (14)
C38—C371.381 (2)C26B—C27B1.370 (13)
C7—H7A0.9900C31B—H31B0.9500
C7—H7B0.9900C31B—C30B1.389 (14)
C6—H60.9500C27B—H27B0.9500
C6—C51.380 (3)C27B—C28B1.369 (13)
C60—H60A0.9900C28B—H28B0.9500
C60—H60B0.9900C28B—C29B1.356 (13)
C3—H30.9500C29B—H29B0.9500
C3—C41.376 (3)C29B—C30B1.377 (13)
C5—H50.9500C30B—H30B0.9500
C5—C41.374 (3)
C11—O1—C8117.58 (13)C36—C37—H37120.0
C16—O5—C32117.65 (13)O8—C46—C47108.61 (15)
C43—O9—C53119.17 (13)O8—C46—H46A110.0
C39—O6—C9117.90 (14)O8—C46—H46B110.0
C14—O3—C18118.52 (14)C47—C46—H46A110.0
C42—O8—C46116.78 (14)C47—C46—H46B110.0
C44—O10—C60117.86 (14)H46A—C46—H46B108.3
C15—O4—C25116.35 (16)C35—C36—C37119.59 (19)
C17—C12—C11116.74 (16)C35—C36—H36120.2
C13—C12—C17120.95 (17)C37—C36—H36120.2
C13—C12—C11122.30 (16)C59—C54—C53120.84 (18)
O5—C16—C15115.94 (16)C55—C54—C53120.6 (2)
O5—C16—C17124.12 (16)C55—C54—C59118.6 (2)
C17—C16—C15119.95 (16)C31A—C26A—C25122.5 (11)
O3—C14—C15114.43 (16)C31A—C26A—C27A116.8 (13)
O3—C14—C13124.85 (16)C27A—C26A—C25120.7 (12)
C13—C14—C15120.69 (16)O9—C53—C54107.60 (15)
O4—C15—C16118.69 (16)O9—C53—H53A110.2
O4—C15—C14121.50 (16)O9—C53—H53B110.2
C14—C15—C16119.54 (16)C54—C53—H53A110.2
O5—C32—H32A109.9C54—C53—H53B110.2
O5—C32—H32B109.9H53A—C53—H53B108.5
O5—C32—C33108.95 (14)C19—C24—H24119.7
H32A—C32—H32B108.3C19—C24—C23120.7 (2)
C33—C32—H32A109.9C23—C24—H24119.7
C33—C32—H32B109.9C3—C4—H4120.0
C1—C2—C10121.43 (16)C5—C4—C3120.0 (2)
C3—C2—C1118.96 (18)C5—C4—H4120.0
C3—C2—C10119.60 (17)C54—C59—H59119.4
C12—C17—H17120.2C58—C59—C54121.2 (2)
C16—C17—C12119.69 (16)C58—C59—H59119.4
C16—C17—H17120.2C19—C20—H20119.7
C12—C13—H13120.4C19—C20—C21120.5 (2)
C14—C13—C12119.13 (17)C21—C20—H20119.7
C14—C13—H13120.4C61—C66—H66119.4
O1—C11—C12112.21 (15)C61—C66—C65121.2 (2)
O2—C11—O1124.09 (17)C65—C66—H66119.4
O2—C11—C12123.69 (17)C61—C62—H62119.6
O8—C42—C43115.48 (16)C61—C62—C63120.8 (2)
O8—C42—C41124.77 (16)C63—C62—H62119.6
C43—C42—C41119.75 (16)C59—C58—H58120.1
O9—C43—C42122.38 (16)C57—C58—C59119.7 (2)
O9—C43—C44117.55 (16)C57—C58—H58120.1
C42—C43—C44119.90 (16)C47—C52—H52119.4
C42—C41—H41120.2C47—C52—C51121.2 (2)
C40—C41—C42119.61 (17)C51—C52—H52119.4
C40—C41—H41120.2O4—C25—C26A111.1 (6)
O6—C9—H9109.6O4—C25—H25A109.4
O6—C9—C10110.23 (14)O4—C25—H25B109.4
O6—C9—C8106.40 (14)O4—C25—H25C108.1
C10—C9—H9109.6O4—C25—H25D108.1
C8—C9—H9109.6C26A—C25—H25A109.4
C8—C9—C10111.49 (15)C26A—C25—H25B109.4
C2—C1—C7121.32 (17)H25A—C25—H25B108.0
C6—C1—C2118.71 (18)H25C—C25—H25D107.3
C6—C1—C7119.95 (18)C26B—C25—O4116.6 (7)
C34—C33—C32122.35 (16)C26B—C25—H25C108.1
C34—C33—C38118.71 (17)C26B—C25—H25D108.1
C38—C33—C32118.88 (16)C47—C48—H48119.8
O10—C44—C43114.18 (16)C47—C48—C49120.3 (2)
O10—C44—C45125.47 (16)C49—C48—H48119.8
C45—C44—C43120.34 (17)C66—C65—H65120.0
C2—C10—C9111.68 (15)C64—C65—C66119.9 (2)
C2—C10—H10A109.3C64—C65—H65120.0
C2—C10—H10B109.3C65—C64—H64120.4
C9—C10—H10A109.3C63—C64—C65119.2 (2)
C9—C10—H10B109.3C63—C64—H64120.4
H10A—C10—H10B107.9C62—C63—H63119.6
C41—C40—C39120.78 (17)C64—C63—C62120.7 (2)
C41—C40—C45121.34 (17)C64—C63—H63119.6
C45—C40—C39117.86 (16)C51—C50—H50119.7
O6—C39—C40111.25 (15)C51—C50—C49120.7 (2)
O7—C39—O6123.21 (17)C49—C50—H50119.7
O7—C39—C40125.54 (17)C24—C23—H23119.9
O1—C8—C9107.65 (14)C22—C23—C24120.3 (3)
O1—C8—H8110.4C22—C23—H23119.9
O1—C8—C7108.16 (14)C52—C51—H51120.0
C9—C8—H8110.4C50—C51—C52120.0 (3)
C9—C8—C7109.86 (15)C50—C51—H51120.0
C7—C8—H8110.4C23—C22—H22120.0
C24—C19—C18120.7 (2)C23—C22—C21119.9 (3)
C24—C19—C20118.7 (2)C21—C22—H22120.0
C20—C19—C18120.56 (19)C54—C55—H55119.8
C44—C45—C40118.89 (17)C54—C55—C56120.4 (2)
C44—C45—H45120.6C56—C55—H55119.8
C40—C45—H45120.6C26A—C31A—H31A119.4
C66—C61—C60120.66 (18)C26A—C31A—C30A121.2 (13)
C62—C61—C60121.23 (18)C30A—C31A—H31A119.4
C62—C61—C66118.10 (19)C58—C57—H57119.9
C33—C34—H34119.7C56—C57—C58120.2 (2)
C33—C34—C35120.52 (18)C56—C57—H57119.9
C35—C34—H34119.7C20—C21—H21120.1
C52—C47—C46121.10 (19)C22—C21—C20119.9 (3)
C52—C47—C48118.6 (2)C22—C21—H21120.1
C48—C47—C46120.24 (19)C48—C49—H49120.4
O3—C18—C19113.55 (15)C50—C49—C48119.2 (2)
O3—C18—H18A108.9C50—C49—H49120.4
O3—C18—H18B108.9C55—C56—H56120.0
C19—C18—H18A108.9C57—C56—C55119.9 (2)
C19—C18—H18B108.9C57—C56—H56120.0
H18A—C18—H18B107.7C31A—C30A—H30A119.3
C33—C38—H38119.6C29A—C30A—C31A121.4 (12)
C37—C38—C33120.76 (18)C29A—C30A—H30A119.3
C37—C38—H38119.6C26A—C27A—H27A118.9
C1—C7—H7A108.6C28A—C27A—C26A122.2 (12)
C1—C7—H7B108.6C28A—C27A—H27A118.9
C8—C7—C1114.63 (15)C27A—C28A—H28A120.1
C8—C7—H7A108.6C29A—C28A—C27A119.9 (11)
C8—C7—H7B108.6C29A—C28A—H28A120.1
H7A—C7—H7B107.6C30A—C29A—C28A118.4 (12)
C1—C6—H6119.2C30A—C29A—H29A120.8
C5—C6—C1121.6 (2)C28A—C29A—H29A120.8
C5—C6—H6119.2C31B—C26B—C25123.2 (12)
O10—C60—C61105.85 (15)C27B—C26B—C25116.6 (13)
O10—C60—H60A110.6C27B—C26B—C31B120.1 (14)
O10—C60—H60B110.6C26B—C31B—H31B120.1
C61—C60—H60A110.6C26B—C31B—C30B119.7 (15)
C61—C60—H60B110.6C30B—C31B—H31B120.1
H60A—C60—H60B108.7C26B—C27B—H27B120.2
C2—C3—H3119.3C28B—C27B—C26B119.6 (12)
C4—C3—C2121.4 (2)C28B—C27B—H27B120.2
C4—C3—H3119.3C27B—C28B—H28B119.3
C6—C5—H5120.3C29B—C28B—C27B121.4 (12)
C4—C5—C6119.3 (2)C29B—C28B—H28B119.3
C4—C5—H5120.3C28B—C29B—H29B120.3
C34—C35—H35119.8C28B—C29B—C30B119.5 (12)
C36—C35—C34120.4 (2)C30B—C29B—H29B120.3
C36—C35—H35119.8C31B—C30B—H30B120.2
C38—C37—H37120.0C29B—C30B—C31B119.7 (13)
C36—C37—C38120.01 (19)C29B—C30B—H30B120.2
O1—C8—C7—C174.96 (19)C19—C24—C23—C220.8 (3)
O5—C16—C15—O43.0 (2)C19—C20—C21—C220.9 (3)
O5—C16—C15—C14177.08 (15)C45—C40—C39—O6171.38 (15)
O5—C16—C17—C12178.27 (16)C45—C40—C39—O78.0 (3)
O5—C32—C33—C3417.9 (2)C61—C66—C65—C640.7 (4)
O5—C32—C33—C38164.91 (16)C61—C62—C63—C640.2 (4)
O9—C43—C44—O109.6 (2)C34—C33—C38—C370.1 (3)
O9—C43—C44—C45170.80 (15)C34—C35—C36—C370.3 (3)
O6—C9—C10—C2168.72 (14)C47—C52—C51—C500.6 (4)
O6—C9—C8—O165.60 (17)C47—C48—C49—C500.1 (4)
O6—C9—C8—C7176.84 (13)C18—O3—C14—C15179.50 (15)
O3—C14—C15—O41.6 (2)C18—O3—C14—C131.7 (3)
O3—C14—C15—C16175.52 (15)C18—C19—C24—C23178.53 (18)
O3—C14—C13—C12176.80 (15)C18—C19—C20—C21177.71 (18)
O8—C42—C43—O99.6 (2)C38—C33—C34—C351.4 (3)
O8—C42—C43—C44175.38 (15)C38—C37—C36—C351.7 (3)
O8—C42—C41—C40178.27 (16)C7—C1—C6—C5179.03 (18)
O10—C44—C45—C40177.94 (16)C6—C1—C7—C8169.56 (15)
O4—C25—C26B—C31B0 (2)C6—C5—C4—C30.5 (3)
O4—C25—C26B—C27B176.3 (11)C60—O10—C44—C43178.52 (15)
C16—O5—C32—C33179.58 (14)C60—O10—C44—C451.0 (3)
C14—O3—C18—C1975.6 (2)C60—C61—C66—C65178.3 (2)
C15—O4—C25—C26A101.2 (7)C60—C61—C62—C63178.5 (2)
C15—O4—C25—C26B99.7 (8)C3—C2—C1—C7178.99 (17)
C15—C16—C17—C121.5 (3)C3—C2—C1—C60.6 (3)
C15—C14—C13—C120.9 (3)C3—C2—C10—C9159.78 (17)
C32—O5—C16—C15175.00 (15)C46—O8—C42—C43178.28 (16)
C32—O5—C16—C174.8 (3)C46—O8—C42—C411.5 (3)
C32—C33—C34—C35178.54 (18)C46—C47—C52—C51177.3 (2)
C32—C33—C38—C37177.22 (17)C46—C47—C48—C49176.9 (2)
C2—C1—C7—C812.1 (2)C54—C59—C58—C570.0 (3)
C2—C1—C6—C50.6 (3)C54—C55—C56—C570.6 (4)
C2—C3—C4—C50.5 (3)C26A—C31A—C30A—C29A1 (3)
C17—C12—C13—C140.3 (3)C26A—C27A—C28A—C29A2.6 (19)
C17—C12—C11—O1157.86 (15)C53—O9—C43—C4266.1 (2)
C17—C12—C11—O221.6 (3)C53—O9—C43—C44118.75 (18)
C17—C16—C15—O4176.84 (16)C53—C54—C59—C58177.68 (18)
C17—C16—C15—C142.7 (3)C53—C54—C55—C56177.4 (2)
C13—C12—C17—C160.0 (3)C24—C19—C18—O345.5 (2)
C13—C12—C11—O121.4 (2)C24—C19—C20—C210.0 (3)
C13—C12—C11—O2159.08 (18)C24—C23—C22—C210.1 (4)
C13—C14—C15—O4176.39 (16)C59—C54—C53—O952.6 (2)
C13—C14—C15—C162.4 (3)C59—C54—C55—C561.7 (3)
C11—O1—C8—C9103.96 (17)C59—C58—C57—C561.1 (4)
C11—O1—C8—C7137.39 (15)C20—C19—C18—O3136.81 (18)
C11—C12—C17—C16179.32 (16)C20—C19—C24—C230.8 (3)
C11—C12—C13—C14179.57 (16)C66—C61—C60—O1075.4 (2)
C42—O8—C46—C47171.52 (15)C66—C61—C62—C630.1 (3)
C42—C43—C44—O10175.08 (15)C66—C65—C64—C630.8 (4)
C42—C43—C44—C454.5 (3)C62—C61—C60—O10103.2 (2)
C42—C41—C40—C39177.28 (16)C62—C61—C66—C650.3 (3)
C42—C41—C40—C451.4 (3)C58—C57—C56—C550.8 (4)
C43—O9—C53—C54143.27 (16)C52—C47—C46—O862.4 (2)
C43—C42—C41—C401.5 (3)C52—C47—C48—C491.3 (3)
C43—C44—C45—C401.6 (3)C25—O4—C15—C16122.73 (18)
C41—C42—C43—O9170.62 (15)C25—O4—C15—C1463.3 (2)
C41—C42—C43—C444.4 (3)C25—C26A—C31A—C30A178.7 (14)
C41—C40—C39—O69.9 (2)C25—C26A—C27A—C28A179.6 (11)
C41—C40—C39—O7170.74 (18)C25—C26B—C31B—C30B174.2 (15)
C41—C40—C45—C441.4 (3)C25—C26B—C27B—C28B174.1 (12)
C9—O6—C39—O73.7 (3)C48—C47—C46—O8119.4 (2)
C9—O6—C39—C40176.96 (14)C48—C47—C52—C511.0 (3)
C9—C8—C7—C142.3 (2)C65—C64—C63—C620.6 (4)
C1—C2—C10—C919.5 (2)C23—C22—C21—C200.9 (4)
C1—C2—C3—C40.1 (3)C51—C50—C49—C481.6 (4)
C1—C6—C5—C40.1 (3)C55—C54—C53—O9128.4 (2)
C33—C34—C35—C361.2 (3)C55—C54—C59—C581.4 (3)
C33—C38—C37—C361.6 (3)C31A—C26A—C25—O415.5 (18)
C44—O10—C60—C61174.56 (14)C31A—C26A—C27A—C28A0 (2)
C10—C2—C1—C70.3 (3)C31A—C30A—C29A—C28A1 (2)
C10—C2—C1—C6178.68 (16)C49—C50—C51—C521.9 (4)
C10—C2—C3—C4179.24 (18)C27A—C26A—C25—O4164.5 (13)
C10—C9—C8—O154.62 (19)C27A—C26A—C31A—C30A1 (3)
C10—C9—C8—C762.94 (19)C27A—C28A—C29A—C30A3.0 (17)
C39—O6—C9—C1083.79 (18)C26B—C31B—C30B—C29B1 (3)
C39—O6—C9—C8155.19 (15)C26B—C27B—C28B—C29B1 (2)
C39—C40—C45—C44177.35 (16)C31B—C26B—C27B—C28B2 (2)
C8—O1—C11—O24.8 (3)C27B—C26B—C31B—C30B2 (3)
C8—O1—C11—C12175.73 (14)C27B—C28B—C29B—C30B4 (2)
C8—C9—C10—C250.8 (2)C28B—C29B—C30B—C31B4 (3)
(2R,3S)-1,2,3,4-Tetrahydronaphthalene-2,3-diyl bis(3,4,5-trimethoxybenzoate) (5) top
Crystal data top
C30H32O10F(000) = 1168
Mr = 552.55Dx = 1.295 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 12.147 (8) ÅCell parameters from 7542 reflections
b = 20.697 (13) Åθ = 3.2–27.5°
c = 12.702 (9) ŵ = 0.10 mm1
β = 117.432 (5)°T = 193 K
V = 2834 (3) Å3Prism, colourless
Z = 40.17 × 0.05 × 0.03 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
4312 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.051
profile data from ω–scansθmax = 27.3°, θmin = 3.2°
Absorption correction: empirical (using intensity measurements)
DTABSCOR
h = 1514
Tmin = 0.551, Tmax = 1.000k = 2617
19152 measured reflectionsl = 1616
6351 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0603P)2 + 0.2555P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
6351 reflectionsΔρmax = 0.21 e Å3
367 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.53432 (15)0.89653 (8)0.49170 (14)0.0498 (4)
O80.06315 (14)0.48493 (8)0.26403 (14)0.0483 (4)
O100.42162 (15)0.60887 (8)0.36939 (16)0.0547 (5)
O10.41098 (16)0.78224 (7)0.76634 (15)0.0518 (5)
O90.27227 (15)0.50882 (8)0.25270 (15)0.0568 (5)
O40.73363 (16)0.83344 (8)0.50406 (14)0.0513 (4)
O30.83623 (15)0.73463 (8)0.65386 (15)0.0541 (5)
O70.06825 (17)0.64743 (9)0.57726 (17)0.0644 (5)
O20.50896 (18)0.68521 (9)0.80440 (17)0.0685 (6)
O60.21321 (19)0.71604 (9)0.5854 (2)0.0833 (7)
C220.1795 (2)0.62430 (10)0.46752 (19)0.0379 (5)
C230.1005 (2)0.57400 (10)0.40323 (19)0.0384 (5)
H230.0260530.5660660.4082420.046*
C160.5764 (2)0.84501 (10)0.56775 (18)0.0384 (5)
C170.5181 (2)0.82224 (11)0.63286 (19)0.0402 (5)
H170.4469080.8437250.6282200.048*
C240.1328 (2)0.53562 (10)0.33160 (19)0.0374 (5)
C150.6818 (2)0.81383 (11)0.57535 (19)0.0396 (5)
C250.2437 (2)0.54738 (11)0.32526 (19)0.0405 (5)
C130.6713 (2)0.73703 (11)0.71495 (19)0.0412 (5)
H130.7029200.7002650.7647220.049*
C260.3191 (2)0.59943 (11)0.3867 (2)0.0402 (5)
C270.2876 (2)0.63796 (11)0.4585 (2)0.0411 (5)
H270.3389990.6731860.5010470.049*
C140.7311 (2)0.76071 (11)0.65120 (19)0.0402 (5)
C120.5645 (2)0.76811 (11)0.70446 (19)0.0388 (5)
C210.1462 (2)0.66230 (11)0.5480 (2)0.0433 (6)
C110.4949 (2)0.73958 (12)0.7646 (2)0.0476 (6)
C40.1772 (2)0.87960 (13)0.6923 (2)0.0491 (6)
C50.2385 (2)0.87002 (12)0.8152 (2)0.0470 (6)
C100.2476 (2)0.92254 (13)0.8885 (2)0.0567 (7)
H100.2895110.9169160.9721570.068*
C280.0576 (2)0.47537 (12)0.2572 (2)0.0550 (7)
H28A0.1020450.4416340.1987530.083*
H28B0.0481050.4621810.3350200.083*
H28C0.1047550.5158050.2330770.083*
C200.4212 (2)0.92665 (13)0.4772 (2)0.0581 (7)
H20A0.3964670.9601810.4160710.087*
H20B0.3555520.8940390.4532900.087*
H20C0.4346600.9461990.5524970.087*
C70.1286 (2)0.94004 (14)0.6470 (3)0.0588 (7)
H70.0885590.9466040.5636260.071*
C80.1376 (2)0.99089 (14)0.7216 (3)0.0643 (8)
H80.1025231.0317300.6893600.077*
C90.1977 (2)0.98186 (14)0.8430 (3)0.0631 (8)
H90.2045771.0165190.8946660.076*
C300.4959 (2)0.66451 (13)0.4226 (3)0.0629 (8)
H30A0.4434000.7031450.3991750.094*
H30B0.5357560.6600600.5091440.094*
H30C0.5596920.6685260.3961150.094*
C10.3080 (3)0.75842 (13)0.7855 (3)0.0577 (7)
H10.3253910.7136800.8189840.069*
C60.2902 (3)0.80482 (12)0.8701 (2)0.0570 (7)
H6A0.3710330.8113850.9410160.068*
H6B0.2331380.7847680.8965440.068*
C30.1657 (3)0.82511 (14)0.6070 (2)0.0629 (8)
H3A0.2240500.8331920.5740520.075*
H3B0.0805880.8251770.5402460.075*
C20.1925 (3)0.75932 (13)0.6656 (3)0.0660 (9)
H20.1192900.7441800.6748910.079*
C180.8870 (3)0.67763 (13)0.7239 (3)0.0692 (8)
H18A0.8250220.6430040.6951290.104*
H18B0.9608370.6639730.7173250.104*
H18C0.9098000.6869790.8070530.104*
C290.3786 (3)0.46806 (14)0.3129 (3)0.0776 (9)
H29A0.3866570.4393870.2554410.116*
H29B0.4532460.4948390.3519720.116*
H29C0.3686990.4421050.3725160.116*
C190.8253 (3)0.88248 (16)0.5537 (3)0.0780 (9)
H19A0.8560090.8940230.4970850.117*
H19B0.7889300.9206870.5711860.117*
H19C0.8943000.8665440.6271480.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0516 (11)0.0511 (10)0.0497 (10)0.0080 (8)0.0260 (9)0.0139 (8)
O80.0411 (10)0.0479 (10)0.0571 (10)0.0099 (8)0.0237 (8)0.0141 (8)
O100.0474 (10)0.0616 (11)0.0693 (12)0.0163 (9)0.0389 (9)0.0233 (9)
O10.0590 (11)0.0459 (10)0.0706 (12)0.0029 (8)0.0471 (10)0.0026 (8)
O90.0470 (10)0.0673 (12)0.0604 (11)0.0069 (9)0.0285 (9)0.0274 (9)
O40.0590 (11)0.0565 (10)0.0524 (10)0.0045 (9)0.0374 (9)0.0016 (8)
O30.0540 (11)0.0570 (11)0.0665 (11)0.0150 (9)0.0407 (9)0.0110 (9)
O70.0791 (13)0.0632 (12)0.0802 (13)0.0211 (10)0.0617 (12)0.0205 (10)
O20.0878 (14)0.0580 (12)0.0852 (14)0.0154 (10)0.0615 (12)0.0255 (10)
O60.0903 (15)0.0761 (14)0.1291 (18)0.0410 (12)0.0894 (15)0.0602 (13)
C220.0415 (13)0.0361 (12)0.0413 (12)0.0005 (10)0.0236 (11)0.0022 (10)
C230.0393 (13)0.0371 (12)0.0424 (12)0.0002 (10)0.0217 (11)0.0032 (10)
C160.0411 (14)0.0373 (13)0.0352 (12)0.0005 (10)0.0162 (11)0.0006 (10)
C170.0391 (13)0.0423 (13)0.0421 (12)0.0006 (10)0.0212 (11)0.0025 (10)
C240.0361 (13)0.0326 (12)0.0411 (12)0.0030 (10)0.0157 (11)0.0008 (10)
C150.0416 (13)0.0436 (13)0.0390 (12)0.0024 (11)0.0234 (11)0.0035 (10)
C250.0398 (14)0.0440 (13)0.0407 (13)0.0011 (11)0.0210 (11)0.0056 (10)
C130.0454 (14)0.0403 (13)0.0391 (12)0.0031 (11)0.0205 (11)0.0007 (10)
C260.0376 (13)0.0435 (13)0.0450 (13)0.0034 (11)0.0237 (11)0.0041 (10)
C270.0447 (14)0.0364 (13)0.0452 (13)0.0037 (10)0.0234 (11)0.0042 (10)
C140.0365 (13)0.0464 (14)0.0405 (12)0.0042 (11)0.0202 (11)0.0028 (10)
C120.0439 (14)0.0400 (13)0.0374 (12)0.0008 (11)0.0228 (11)0.0021 (10)
C210.0452 (15)0.0393 (13)0.0510 (14)0.0053 (11)0.0269 (12)0.0052 (11)
C110.0551 (16)0.0463 (15)0.0490 (14)0.0034 (12)0.0306 (13)0.0007 (12)
C40.0393 (14)0.0587 (16)0.0568 (16)0.0083 (12)0.0285 (13)0.0145 (13)
C50.0463 (15)0.0505 (15)0.0572 (15)0.0076 (12)0.0350 (13)0.0101 (12)
C100.0552 (17)0.0624 (18)0.0605 (16)0.0093 (14)0.0334 (14)0.0160 (14)
C280.0447 (15)0.0566 (16)0.0666 (17)0.0118 (13)0.0280 (14)0.0066 (13)
C200.0627 (18)0.0611 (17)0.0515 (15)0.0202 (14)0.0271 (14)0.0159 (13)
C70.0410 (15)0.0716 (19)0.0601 (17)0.0023 (14)0.0201 (13)0.0028 (15)
C80.0474 (17)0.0512 (17)0.093 (2)0.0038 (13)0.0315 (17)0.0095 (16)
C90.0548 (18)0.0569 (18)0.080 (2)0.0121 (14)0.0325 (16)0.0270 (16)
C300.0530 (17)0.0626 (17)0.086 (2)0.0219 (14)0.0427 (16)0.0251 (15)
C10.0685 (19)0.0484 (15)0.085 (2)0.0070 (13)0.0602 (18)0.0029 (14)
C60.0695 (18)0.0587 (17)0.0658 (17)0.0028 (14)0.0510 (15)0.0039 (13)
C30.0519 (17)0.078 (2)0.0617 (17)0.0055 (15)0.0290 (14)0.0260 (15)
C20.0673 (19)0.0643 (19)0.096 (2)0.0241 (15)0.0630 (19)0.0419 (17)
C180.0700 (19)0.0572 (17)0.098 (2)0.0265 (15)0.0542 (18)0.0216 (16)
C290.068 (2)0.0632 (19)0.111 (3)0.0052 (16)0.0490 (19)0.0254 (18)
C190.068 (2)0.099 (2)0.075 (2)0.0301 (18)0.0408 (17)0.0019 (18)
Geometric parameters (Å, º) top
O5—C161.370 (3)C4—C31.524 (3)
O5—C201.442 (3)C5—C101.403 (3)
O8—C241.373 (3)C5—C61.516 (4)
O8—C281.443 (3)C10—H100.9500
O10—C261.375 (3)C10—C91.374 (4)
O10—C301.427 (3)C28—H28A0.9800
O1—C111.356 (3)C28—H28B0.9800
O1—C11.465 (3)C28—H28C0.9800
O9—C251.379 (3)C20—H20A0.9800
O9—C291.434 (3)C20—H20B0.9800
O4—C151.381 (3)C20—H20C0.9800
O4—C191.422 (3)C7—H70.9500
O3—C141.372 (3)C7—C81.386 (4)
O3—C181.434 (3)C8—H80.9500
O7—C211.205 (3)C8—C91.381 (4)
O2—C111.213 (3)C9—H90.9500
O6—C211.330 (3)C30—H30A0.9800
O6—C21.463 (3)C30—H30B0.9800
C22—C231.396 (3)C30—H30C0.9800
C22—C271.399 (3)C1—H11.0000
C22—C211.486 (3)C1—C61.529 (3)
C23—H230.9500C1—C21.523 (4)
C23—C241.393 (3)C6—H6A0.9900
C16—C171.395 (3)C6—H6B0.9900
C16—C151.397 (3)C3—H3A0.9900
C17—H170.9500C3—H3B0.9900
C17—C121.388 (3)C3—C21.513 (4)
C24—C251.407 (3)C2—H21.0000
C15—C141.402 (3)C18—H18A0.9800
C25—C261.397 (3)C18—H18B0.9800
C13—H130.9500C18—H18C0.9800
C13—C141.403 (3)C29—H29A0.9800
C13—C121.398 (3)C29—H29B0.9800
C26—C271.391 (3)C29—H29C0.9800
C27—H270.9500C19—H19A0.9800
C12—C111.498 (3)C19—H19B0.9800
C4—C51.400 (4)C19—H19C0.9800
C4—C71.390 (4)
C16—O5—C20116.76 (18)H28B—C28—H28C109.5
C24—O8—C28117.33 (18)O5—C20—H20A109.5
C26—O10—C30117.43 (18)O5—C20—H20B109.5
C11—O1—C1119.26 (19)O5—C20—H20C109.5
C25—O9—C29115.2 (2)H20A—C20—H20B109.5
C15—O4—C19114.81 (19)H20A—C20—H20C109.5
C14—O3—C18117.91 (18)H20B—C20—H20C109.5
C21—O6—C2119.15 (19)C4—C7—H7119.5
C23—C22—C27121.4 (2)C8—C7—C4121.1 (3)
C23—C22—C21117.8 (2)C8—C7—H7119.5
C27—C22—C21120.8 (2)C7—C8—H8120.2
C22—C23—H23120.6C9—C8—C7119.6 (3)
C24—C23—C22118.9 (2)C9—C8—H8120.2
C24—C23—H23120.6C10—C9—C8119.7 (3)
O5—C16—C17123.7 (2)C10—C9—H9120.2
O5—C16—C15116.13 (19)C8—C9—H9120.2
C17—C16—C15120.1 (2)O10—C30—H30A109.5
C16—C17—H17120.1O10—C30—H30B109.5
C12—C17—C16119.9 (2)O10—C30—H30C109.5
C12—C17—H17120.1H30A—C30—H30B109.5
O8—C24—C23124.5 (2)H30A—C30—H30C109.5
O8—C24—C25115.27 (19)H30B—C30—H30C109.5
C23—C24—C25120.2 (2)O1—C1—H1110.7
O4—C15—C16120.0 (2)O1—C1—C6108.3 (2)
O4—C15—C14120.1 (2)O1—C1—C2107.1 (2)
C16—C15—C14119.9 (2)C6—C1—H1110.7
O9—C25—C24118.7 (2)C2—C1—H1110.7
O9—C25—C26121.2 (2)C2—C1—C6109.3 (2)
C26—C25—C24120.0 (2)C5—C6—C1113.5 (2)
C14—C13—H13120.4C5—C6—H6A108.9
C12—C13—H13120.4C5—C6—H6B108.9
C12—C13—C14119.3 (2)C1—C6—H6A108.9
O10—C26—C25115.40 (19)C1—C6—H6B108.9
O10—C26—C27124.5 (2)H6A—C6—H6B107.7
C27—C26—C25120.1 (2)C4—C3—H3A109.0
C22—C27—H27120.3C4—C3—H3B109.0
C26—C27—C22119.3 (2)H3A—C3—H3B107.8
C26—C27—H27120.3C2—C3—C4112.8 (2)
O3—C14—C15115.10 (19)C2—C3—H3A109.0
O3—C14—C13124.9 (2)C2—C3—H3B109.0
C15—C14—C13120.0 (2)O6—C2—C1108.3 (2)
C17—C12—C13120.8 (2)O6—C2—C3106.0 (2)
C17—C12—C11119.9 (2)O6—C2—H2109.8
C13—C12—C11119.1 (2)C1—C2—H2109.8
O7—C21—O6122.8 (2)C3—C2—C1113.2 (2)
O7—C21—C22125.3 (2)C3—C2—H2109.8
O6—C21—C22111.84 (19)O3—C18—H18A109.5
O1—C11—C12110.9 (2)O3—C18—H18B109.5
O2—C11—O1124.1 (2)O3—C18—H18C109.5
O2—C11—C12125.0 (2)H18A—C18—H18B109.5
C5—C4—C3121.0 (2)H18A—C18—H18C109.5
C7—C4—C5119.7 (2)H18B—C18—H18C109.5
C7—C4—C3119.3 (2)O9—C29—H29A109.5
C4—C5—C10118.0 (2)O9—C29—H29B109.5
C4—C5—C6122.3 (2)O9—C29—H29C109.5
C10—C5—C6119.7 (2)H29A—C29—H29B109.5
C5—C10—H10119.1H29A—C29—H29C109.5
C9—C10—C5121.9 (3)H29B—C29—H29C109.5
C9—C10—H10119.1O4—C19—H19A109.5
O8—C28—H28A109.5O4—C19—H19B109.5
O8—C28—H28B109.5O4—C19—H19C109.5
O8—C28—H28C109.5H19A—C19—H19B109.5
H28A—C28—H28B109.5H19A—C19—H19C109.5
H28A—C28—H28C109.5H19B—C19—H19C109.5
O5—C16—C17—C12177.5 (2)C21—O6—C2—C3125.3 (3)
O5—C16—C15—O43.2 (3)C21—C22—C23—C24176.9 (2)
O5—C16—C15—C14179.90 (19)C21—C22—C27—C26176.9 (2)
O8—C24—C25—O90.8 (3)C11—O1—C1—C6138.2 (2)
O8—C24—C25—C26177.4 (2)C11—O1—C1—C2104.0 (2)
O10—C26—C27—C22178.8 (2)C4—C5—C10—C90.5 (4)
O1—C1—C6—C570.1 (3)C4—C5—C6—C119.2 (3)
O1—C1—C2—O661.3 (3)C4—C7—C8—C91.2 (4)
O1—C1—C2—C355.9 (3)C4—C3—C2—O6164.0 (2)
O9—C25—C26—O100.0 (3)C4—C3—C2—C145.4 (3)
O9—C25—C26—C27179.4 (2)C5—C4—C7—C81.3 (4)
O4—C15—C14—O34.5 (3)C5—C4—C3—C216.2 (3)
O4—C15—C14—C13173.9 (2)C5—C10—C9—C80.6 (4)
C22—C23—C24—O8179.86 (19)C10—C5—C6—C1163.2 (2)
C22—C23—C24—C250.4 (3)C28—O8—C24—C237.0 (3)
C23—C22—C27—C261.9 (3)C28—O8—C24—C25173.3 (2)
C23—C22—C21—O712.5 (4)C20—O5—C16—C172.0 (3)
C23—C22—C21—O6167.4 (2)C20—O5—C16—C15176.2 (2)
C23—C24—C25—O9179.5 (2)C7—C4—C5—C100.4 (3)
C23—C24—C25—C262.9 (3)C7—C4—C5—C6178.1 (2)
C16—C17—C12—C131.9 (3)C7—C4—C3—C2165.3 (2)
C16—C17—C12—C11173.8 (2)C7—C8—C9—C100.3 (4)
C16—C15—C14—O3178.59 (19)C30—O10—C26—C25175.0 (2)
C16—C15—C14—C133.1 (3)C30—O10—C26—C274.3 (3)
C17—C16—C15—O4175.08 (19)C1—O1—C11—O217.9 (4)
C17—C16—C15—C141.9 (3)C1—O1—C11—C12160.6 (2)
C17—C12—C11—O117.2 (3)C6—C5—C10—C9177.2 (2)
C17—C12—C11—O2161.3 (2)C6—C1—C2—O6178.4 (2)
C24—C25—C26—O10176.5 (2)C6—C1—C2—C361.2 (3)
C24—C25—C26—C272.9 (3)C3—C4—C5—C10178.9 (2)
C15—C16—C17—C120.6 (3)C3—C4—C5—C63.4 (3)
C25—C26—C27—C220.5 (3)C3—C4—C7—C8179.8 (2)
C13—C12—C11—O1167.11 (19)C2—O6—C21—O70.1 (4)
C13—C12—C11—O214.4 (4)C2—O6—C21—C22180.0 (2)
C27—C22—C23—C242.0 (3)C2—C1—C6—C546.3 (3)
C27—C22—C21—O7166.3 (2)C18—O3—C14—C15176.1 (2)
C27—C22—C21—O613.7 (3)C18—O3—C14—C132.1 (3)
C14—C13—C12—C170.6 (3)C29—O9—C25—C24113.3 (2)
C14—C13—C12—C11175.0 (2)C29—O9—C25—C2670.1 (3)
C12—C13—C14—O3180.0 (2)C19—O4—C15—C1689.8 (3)
C12—C13—C14—C151.8 (3)C19—O4—C15—C1493.3 (3)
C21—O6—C2—C1113.0 (3)
(2R,3S)-1,2,3,4-Tetrahydronaphthalene-2,3-diyl bis(3,4,5-trifluorobenzoate) (6) top
Crystal data top
C24H14F6O4F(000) = 1952
Mr = 480.35Dx = 1.538 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
a = 30.399 (10) ÅCell parameters from 4720 reflections
b = 9.176 (3) Åθ = 3.0–27.5°
c = 14.994 (5) ŵ = 0.14 mm1
β = 97.204 (4)°T = 193 K
V = 4150 (2) Å3Prism, colourless
Z = 80.18 × 0.09 × 0.09 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
3317 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.036
dtprofit.ref scansθmax = 27.5°, θmin = 3.0°
Absorption correction: empirical (using intensity measurements)
DTABSCOR
h = 3939
Tmin = 0.713, Tmax = 1.000k = 1111
20773 measured reflectionsl = 1919
4718 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0689P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4718 reflectionsΔρmax = 0.20 e Å3
307 parametersΔρmin = 0.28 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42150 (3)0.24401 (9)0.29860 (6)0.0457 (2)
F50.29014 (3)0.26696 (10)0.75797 (6)0.0727 (3)
O30.34776 (3)0.14683 (10)0.37857 (6)0.0513 (2)
O40.28229 (3)0.02898 (12)0.36197 (7)0.0600 (3)
F40.23441 (3)0.07078 (12)0.67027 (6)0.0818 (3)
F60.35691 (3)0.37908 (12)0.67886 (6)0.0882 (3)
O20.48416 (3)0.14070 (12)0.36481 (9)0.0796 (4)
F10.57826 (4)0.57051 (14)0.46755 (7)0.1059 (4)
F30.45007 (4)0.77437 (11)0.31262 (8)0.1056 (4)
F20.53110 (5)0.80613 (12)0.40746 (8)0.1213 (5)
C190.30713 (4)0.14181 (14)0.50193 (9)0.0455 (3)
C180.31038 (4)0.09802 (15)0.40761 (9)0.0476 (3)
C120.47953 (4)0.39868 (14)0.35625 (8)0.0438 (3)
C240.33582 (5)0.24260 (15)0.54698 (10)0.0546 (4)
H240.3592970.2836330.5189780.066*
C50.38171 (4)0.14037 (15)0.11268 (9)0.0521 (3)
C110.46275 (4)0.24714 (14)0.34107 (9)0.0460 (3)
C30.33177 (4)0.23110 (17)0.22433 (9)0.0559 (4)
H3A0.3404380.3278580.2499680.067*
H3B0.2991460.2225290.2210400.067*
C200.27298 (4)0.08240 (15)0.54366 (9)0.0502 (3)
H200.2533700.0130520.5130250.060*
C20.35328 (4)0.11385 (15)0.28586 (9)0.0499 (3)
H20.3385850.0185390.2689800.060*
C40.34486 (4)0.22103 (16)0.13056 (9)0.0535 (4)
C60.40911 (4)0.05403 (15)0.18551 (10)0.0533 (4)
H6A0.4015570.0505130.1776550.064*
H6B0.4408670.0654190.1784000.064*
C230.32960 (5)0.28181 (16)0.63285 (10)0.0565 (4)
C130.52183 (4)0.41464 (17)0.40317 (8)0.0540 (4)
H130.5389700.3316350.4231760.065*
C220.29575 (5)0.22500 (15)0.67471 (9)0.0536 (4)
C10.40215 (4)0.09992 (14)0.27959 (9)0.0475 (3)
H10.4159070.0274040.3244700.057*
C170.45477 (5)0.51907 (15)0.32590 (9)0.0517 (3)
H170.4259340.5081650.2939560.062*
C100.39252 (5)0.13788 (18)0.02492 (10)0.0638 (4)
H100.4174540.0832260.0117670.077*
C210.26781 (4)0.12459 (16)0.62926 (10)0.0537 (4)
C140.53810 (6)0.5516 (2)0.41978 (10)0.0688 (5)
C70.32021 (6)0.29590 (19)0.06109 (11)0.0697 (5)
H70.2951420.3507220.0733160.084*
C90.36760 (7)0.21340 (19)0.04277 (11)0.0756 (5)
H90.3755140.2109480.1020720.091*
C160.47285 (7)0.65502 (16)0.34303 (11)0.0683 (5)
C150.51432 (7)0.67264 (19)0.38997 (11)0.0757 (5)
C80.33119 (7)0.2927 (2)0.02488 (12)0.0794 (5)
H80.3138660.3445000.0716370.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0407 (5)0.0372 (5)0.0559 (6)0.0003 (4)0.0066 (4)0.0027 (4)
F50.0893 (7)0.0764 (6)0.0500 (5)0.0105 (5)0.0009 (5)0.0039 (4)
O30.0445 (5)0.0564 (6)0.0513 (6)0.0098 (4)0.0004 (4)0.0067 (4)
O40.0462 (5)0.0686 (7)0.0623 (6)0.0125 (5)0.0049 (5)0.0123 (5)
F40.0796 (7)0.0959 (8)0.0730 (6)0.0177 (5)0.0225 (5)0.0008 (5)
F60.0932 (7)0.0945 (7)0.0731 (6)0.0333 (6)0.0051 (5)0.0287 (5)
O20.0558 (6)0.0465 (6)0.1262 (10)0.0073 (5)0.0282 (6)0.0005 (6)
F10.0866 (7)0.1446 (11)0.0837 (7)0.0705 (7)0.0002 (6)0.0150 (7)
F30.1548 (11)0.0424 (5)0.1244 (9)0.0034 (6)0.0357 (8)0.0136 (5)
F20.1773 (13)0.0744 (7)0.1191 (9)0.0741 (8)0.0461 (9)0.0233 (7)
C190.0397 (7)0.0421 (7)0.0515 (8)0.0035 (5)0.0071 (6)0.0004 (6)
C180.0401 (7)0.0451 (7)0.0554 (8)0.0008 (6)0.0032 (6)0.0013 (6)
C120.0486 (7)0.0455 (7)0.0376 (7)0.0068 (6)0.0061 (5)0.0029 (5)
C240.0461 (7)0.0548 (8)0.0603 (9)0.0070 (6)0.0037 (6)0.0028 (7)
C50.0498 (8)0.0492 (8)0.0555 (9)0.0047 (6)0.0009 (6)0.0140 (6)
C110.0402 (7)0.0434 (7)0.0523 (8)0.0018 (5)0.0032 (6)0.0030 (6)
C30.0420 (7)0.0673 (9)0.0562 (9)0.0075 (7)0.0023 (6)0.0063 (7)
C200.0445 (7)0.0466 (7)0.0570 (9)0.0009 (6)0.0033 (6)0.0002 (6)
C20.0440 (7)0.0523 (8)0.0516 (8)0.0062 (6)0.0007 (6)0.0094 (6)
C40.0484 (8)0.0575 (8)0.0518 (8)0.0001 (6)0.0046 (6)0.0109 (6)
C60.0466 (7)0.0445 (7)0.0676 (9)0.0002 (6)0.0023 (7)0.0133 (6)
C230.0563 (8)0.0531 (8)0.0555 (9)0.0034 (7)0.0112 (7)0.0082 (7)
C130.0519 (8)0.0656 (9)0.0439 (8)0.0145 (7)0.0035 (6)0.0015 (7)
C220.0594 (9)0.0528 (8)0.0454 (8)0.0132 (7)0.0058 (7)0.0005 (6)
C10.0438 (7)0.0374 (7)0.0590 (8)0.0022 (5)0.0026 (6)0.0042 (6)
C170.0637 (8)0.0431 (7)0.0495 (8)0.0026 (6)0.0125 (7)0.0002 (6)
C100.0657 (9)0.0652 (10)0.0605 (10)0.0042 (8)0.0080 (8)0.0210 (8)
C210.0489 (8)0.0537 (8)0.0571 (9)0.0036 (6)0.0018 (7)0.0068 (7)
C140.0702 (10)0.0876 (13)0.0498 (9)0.0411 (9)0.0118 (8)0.0093 (8)
C70.0685 (10)0.0790 (11)0.0573 (10)0.0162 (9)0.0086 (8)0.0089 (8)
C90.0986 (13)0.0769 (12)0.0509 (9)0.0070 (10)0.0073 (9)0.0149 (8)
C160.1036 (13)0.0409 (8)0.0650 (10)0.0060 (8)0.0293 (9)0.0038 (7)
C150.1103 (15)0.0588 (10)0.0632 (10)0.0438 (10)0.0307 (10)0.0132 (8)
C80.0974 (13)0.0846 (12)0.0519 (10)0.0137 (11)0.0077 (9)0.0064 (9)
Geometric parameters (Å, º) top
O1—C111.3336 (16)C3—C41.511 (2)
O1—C11.4606 (15)C20—H200.9500
F5—C221.3376 (16)C20—C211.368 (2)
O3—C181.3437 (16)C2—H21.0000
O3—C21.4529 (16)C2—C11.5060 (18)
O4—C181.2050 (15)C4—C71.387 (2)
F4—C211.3451 (17)C6—H6A0.9900
F6—C231.3484 (16)C6—H6B0.9900
O2—C111.2026 (16)C6—C11.512 (2)
F1—C141.3468 (19)C23—C221.373 (2)
F3—C161.3445 (19)C13—H130.9500
F2—C151.3401 (18)C13—C141.362 (2)
C19—C181.4855 (19)C22—C211.375 (2)
C19—C241.3874 (18)C1—H11.0000
C19—C201.3890 (19)C17—H170.9500
C12—C111.4888 (18)C17—C161.374 (2)
C12—C131.3940 (17)C10—H100.9500
C12—C171.3813 (19)C10—C91.375 (2)
C24—H240.9500C14—C151.369 (3)
C24—C231.373 (2)C7—H70.9500
C5—C41.3963 (19)C7—C81.372 (2)
C5—C61.512 (2)C9—H90.9500
C5—C101.396 (2)C9—C81.379 (3)
C3—H3A0.9900C16—C151.374 (3)
C3—H3B0.9900C8—H80.9500
C3—C21.512 (2)
C11—O1—C1116.37 (10)C1—C6—H6B108.9
C18—O3—C2116.38 (9)F6—C23—C24120.33 (13)
C24—C19—C18122.08 (13)F6—C23—C22117.77 (13)
C24—C19—C20120.14 (13)C24—C23—C22121.90 (13)
C20—C19—C18117.74 (12)C12—C13—H13120.7
O3—C18—C19112.23 (11)C14—C13—C12118.69 (15)
O4—C18—O3123.99 (12)C14—C13—H13120.7
O4—C18—C19123.77 (12)F5—C22—C23120.51 (13)
C13—C12—C11116.87 (12)F5—C22—C21120.83 (14)
C17—C12—C11122.32 (12)C23—C22—C21118.66 (13)
C17—C12—C13120.82 (13)O1—C1—C2106.70 (10)
C19—C24—H24120.7O1—C1—C6109.52 (11)
C23—C24—C19118.64 (13)O1—C1—H1110.3
C23—C24—H24120.7C2—C1—C6109.65 (10)
C4—C5—C6121.44 (13)C2—C1—H1110.3
C10—C5—C4118.62 (13)C6—C1—H1110.3
C10—C5—C6119.92 (13)C12—C17—H17120.8
O1—C11—C12112.13 (11)C16—C17—C12118.40 (14)
O2—C11—O1124.43 (12)C16—C17—H17120.8
O2—C11—C12123.44 (12)C5—C10—H10119.5
H3A—C3—H3B107.9C9—C10—C5120.97 (15)
C2—C3—H3A109.1C9—C10—H10119.5
C2—C3—H3B109.1F4—C21—C20120.46 (13)
C4—C3—H3A109.1F4—C21—C22118.31 (13)
C4—C3—H3B109.1C20—C21—C22121.21 (14)
C4—C3—C2112.34 (11)F1—C14—C13120.00 (18)
C19—C20—H20120.3F1—C14—C15118.41 (15)
C21—C20—C19119.45 (13)C13—C14—C15121.59 (15)
C21—C20—H20120.3C4—C7—H7119.2
O3—C2—C3110.04 (11)C8—C7—C4121.53 (16)
O3—C2—H2108.8C8—C7—H7119.2
O3—C2—C1108.10 (10)C10—C9—H9119.9
C3—C2—H2108.8C10—C9—C8120.23 (16)
C1—C2—C3112.14 (12)C8—C9—H9119.9
C1—C2—H2108.8F3—C16—C17119.93 (17)
C5—C4—C3121.48 (12)F3—C16—C15118.58 (15)
C7—C4—C5119.30 (14)C15—C16—C17121.48 (16)
C7—C4—C3119.21 (13)F2—C15—C14120.33 (18)
C5—C6—H6A108.9F2—C15—C16120.66 (19)
C5—C6—H6B108.9C14—C15—C16119.00 (14)
C5—C6—C1113.52 (11)C7—C8—C9119.35 (16)
H6A—C6—H6B107.7C7—C8—H8120.3
C1—C6—H6A108.9C9—C8—H8120.3
F5—C22—C21—F40.7 (2)C3—C2—C1—C662.89 (15)
F5—C22—C21—C20179.19 (12)C3—C4—C7—C8178.74 (16)
O3—C2—C1—O165.84 (13)C20—C19—C18—O3171.79 (11)
O3—C2—C1—C6175.63 (10)C20—C19—C18—O49.5 (2)
F6—C23—C22—F50.7 (2)C20—C19—C24—C230.1 (2)
F6—C23—C22—C21179.36 (12)C2—O3—C18—O40.77 (19)
F1—C14—C15—F20.7 (2)C2—O3—C18—C19177.94 (10)
F1—C14—C15—C16178.44 (14)C2—C3—C4—C516.95 (19)
F3—C16—C15—F22.1 (2)C2—C3—C4—C7164.32 (13)
F3—C16—C15—C14178.82 (14)C4—C5—C6—C117.94 (18)
C19—C24—C23—F6179.77 (12)C4—C5—C10—C90.2 (2)
C19—C24—C23—C220.5 (2)C4—C3—C2—O3167.43 (10)
C19—C20—C21—F4178.61 (12)C4—C3—C2—C147.08 (15)
C19—C20—C21—C220.1 (2)C4—C7—C8—C90.1 (3)
C18—O3—C2—C387.56 (14)C6—C5—C4—C32.7 (2)
C18—O3—C2—C1149.68 (11)C6—C5—C4—C7178.61 (13)
C18—C19—C24—C23177.43 (12)C6—C5—C10—C9178.81 (14)
C18—C19—C20—C21177.37 (11)C23—C22—C21—F4179.20 (12)
C12—C13—C14—F1177.78 (12)C23—C22—C21—C200.7 (2)
C12—C13—C14—C151.3 (2)C13—C12—C11—O1177.72 (11)
C12—C17—C16—F3178.45 (13)C13—C12—C11—O22.2 (2)
C12—C17—C16—C150.7 (2)C13—C12—C17—C160.04 (19)
C24—C19—C18—O310.62 (18)C13—C14—C15—F2179.84 (14)
C24—C19—C18—O4168.10 (13)C13—C14—C15—C160.7 (2)
C24—C19—C20—C210.3 (2)C1—O1—C11—O20.8 (2)
C24—C23—C22—F5179.02 (12)C1—O1—C11—C12179.33 (10)
C24—C23—C22—C210.9 (2)C17—C12—C11—O12.15 (18)
C5—C4—C7—C80.0 (2)C17—C12—C11—O2177.98 (14)
C5—C6—C1—O170.05 (14)C17—C12—C13—C141.0 (2)
C5—C6—C1—C246.71 (15)C17—C16—C15—F2178.78 (14)
C5—C10—C9—C80.3 (3)C17—C16—C15—C140.4 (2)
C11—O1—C1—C2146.63 (11)C10—C5—C4—C3178.74 (13)
C11—O1—C1—C694.76 (13)C10—C5—C4—C70.0 (2)
C11—C12—C13—C14178.91 (12)C10—C5—C6—C1163.47 (12)
C11—C12—C17—C16179.91 (13)C10—C9—C8—C70.3 (3)
C3—C2—C1—O155.64 (14)
(2R,3S)-1,2,3,4-Tetrahydronaphthalene-2,3-diyl bis[4-(benzyloxy)benzoate] (7) top
Crystal data top
C38H32O6Z = 4
Mr = 583.64F(000) = 1232
Triclinic, P1Dx = 1.267 Mg m3
a = 10.239 (4) ÅMo Kα radiation, λ = 0.71075 Å
b = 13.056 (5) ÅCell parameters from 7390 reflections
c = 23.923 (9) Åθ = 3.1–27.5°
α = 86.992 (11)°µ = 0.09 mm1
β = 89.198 (10)°T = 193 K
γ = 73.621 (6)°Prism, colourless
V = 3064 (2) Å30.24 × 0.09 × 0.05 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
8408 reflections with I > 2σ(I)
dtprofit.ref scansRint = 0.043
Absorption correction: empirical (using intensity measurements)
DTABSCOR
θmax = 27.4°, θmin = 3.1°
Tmin = 0.703, Tmax = 1.000h = 1313
31561 measured reflectionsk = 1616
13700 independent reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0593P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
13700 reflectionsΔρmax = 0.29 e Å3
793 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O71.30215 (11)0.17114 (8)0.18042 (4)0.0410 (3)
O41.35744 (11)0.76348 (9)0.28689 (4)0.0418 (3)
O101.34590 (10)0.24465 (9)0.29203 (4)0.0395 (3)
O11.33099 (12)0.66175 (9)0.17978 (5)0.0461 (3)
O90.97997 (11)0.28329 (8)0.07517 (4)0.0445 (3)
O30.98629 (11)0.19994 (8)0.09329 (5)0.0436 (3)
O81.36254 (12)0.19406 (9)0.08981 (5)0.0494 (3)
O121.29915 (13)0.08896 (10)0.47780 (5)0.0577 (3)
O61.28924 (13)0.42277 (10)0.46894 (5)0.0580 (3)
O21.42417 (14)0.65436 (10)0.09425 (5)0.0658 (4)
O51.12829 (13)0.70808 (12)0.28649 (7)0.0790 (5)
O111.12624 (14)0.22110 (13)0.31493 (7)0.0825 (5)
C421.56817 (16)0.45174 (12)0.25791 (6)0.0354 (4)
C551.16410 (15)0.04151 (12)0.15827 (6)0.0345 (4)
H551.1814810.0155710.1960710.041*
C541.08742 (15)0.14664 (12)0.14681 (7)0.0365 (4)
H541.0544250.1926920.1764630.044*
C171.16394 (15)0.45642 (13)0.16580 (7)0.0382 (4)
H171.1656000.4947070.2007920.046*
C531.05961 (15)0.18359 (12)0.09148 (7)0.0365 (4)
C121.24863 (16)0.50380 (13)0.12282 (7)0.0382 (4)
C501.21564 (15)0.02614 (12)0.11543 (6)0.0350 (4)
C161.07677 (15)0.35359 (13)0.15821 (7)0.0384 (4)
H161.0205480.3211030.1880220.046*
C411.41567 (16)0.42973 (13)0.26558 (7)0.0398 (4)
H41A1.3969370.4446090.3054330.048*
H41B1.3839400.4798610.2432780.048*
C51.65081 (16)0.86808 (13)0.23145 (6)0.0391 (4)
C401.33373 (16)0.31617 (12)0.24857 (6)0.0365 (4)
H401.2359380.3132420.2435140.044*
C491.30041 (16)0.13783 (13)0.12552 (6)0.0367 (4)
C151.07280 (15)0.29877 (12)0.10644 (7)0.0357 (4)
C570.82961 (17)0.45510 (12)0.09047 (7)0.0388 (4)
C391.38881 (16)0.27830 (12)0.19482 (6)0.0362 (4)
H391.3828100.3266650.1644920.043*
C131.24527 (16)0.44684 (13)0.07152 (7)0.0414 (4)
H131.3034410.4784130.0420300.050*
C451.65558 (17)0.54656 (13)0.28116 (7)0.0423 (4)
H451.6182490.5947610.3026430.051*
C431.62395 (16)0.38144 (13)0.22658 (6)0.0372 (4)
C41.59555 (17)0.94913 (13)0.25136 (7)0.0399 (4)
C141.15848 (16)0.34538 (13)0.06325 (7)0.0393 (4)
H141.1569610.3072280.0282290.047*
C31.44467 (17)0.93659 (13)0.24740 (8)0.0477 (4)
H3A1.4140820.9650710.2828330.057*
H3B1.4286750.9801200.2169430.057*
C190.78282 (16)0.05931 (13)0.10716 (7)0.0395 (4)
C511.18866 (17)0.01284 (13)0.06013 (7)0.0435 (4)
H511.2240150.0325000.0304210.052*
C11.42235 (17)0.76865 (12)0.19002 (7)0.0414 (4)
H11.4293600.8095650.1553890.050*
C301.38587 (18)0.56450 (14)0.41186 (7)0.0457 (4)
H301.4721010.5666060.4268200.055*
C691.38105 (17)0.11439 (13)0.37558 (7)0.0431 (4)
H691.4605570.1579490.3587220.052*
C261.25104 (17)0.63374 (13)0.34988 (7)0.0428 (4)
C620.88798 (18)0.52731 (13)0.06345 (7)0.0469 (4)
H620.9842830.5116580.0613720.056*
C641.25335 (17)0.12349 (13)0.36116 (7)0.0421 (4)
C521.11124 (17)0.11645 (13)0.04810 (7)0.0447 (4)
H521.0931060.1420440.0102810.054*
C441.53543 (16)0.27678 (13)0.20081 (7)0.0423 (4)
H44A1.5717770.2630030.1634730.051*
H44B1.5389020.2177760.2245780.051*
C21.35909 (17)0.82188 (13)0.23637 (7)0.0410 (4)
H21.2642260.8201250.2259260.049*
C631.23324 (17)0.19997 (14)0.32097 (7)0.0446 (4)
C560.91774 (18)0.35370 (13)0.11835 (7)0.0461 (4)
H56A0.9886400.3695440.1413450.055*
H56B0.8619150.3197050.1430950.055*
C71.68193 (18)1.04458 (14)0.27392 (7)0.0479 (4)
H71.6445051.0998540.2876090.057*
C251.23612 (18)0.70477 (14)0.30538 (8)0.0470 (4)
C111.34306 (18)0.61288 (13)0.12934 (7)0.0443 (4)
C61.56301 (17)0.76284 (13)0.20629 (7)0.0455 (4)
H6A1.6087960.7418530.1726860.055*
H6B1.5533690.7069380.2336990.055*
C461.79454 (18)0.57166 (14)0.27361 (7)0.0489 (5)
H461.8521320.6365250.2896250.059*
C311.37658 (17)0.63586 (13)0.37236 (7)0.0418 (4)
H311.4566890.6868400.3604510.050*
C681.39250 (18)0.04248 (14)0.41418 (7)0.0481 (4)
H681.4799110.0371160.4238730.058*
C600.6677 (2)0.64563 (15)0.04278 (8)0.0597 (6)
H600.6123680.7115160.0268970.072*
C481.76441 (17)0.40833 (15)0.21906 (7)0.0484 (4)
H481.8026090.3611380.1971970.058*
C471.84942 (18)0.50149 (15)0.24247 (8)0.0523 (5)
H471.9450980.5175110.2372900.063*
C101.79085 (18)0.88436 (16)0.23504 (7)0.0526 (5)
H101.8289800.8291790.2218340.063*
C671.27712 (19)0.02214 (14)0.43895 (7)0.0488 (4)
C711.22504 (19)0.22520 (14)0.54373 (7)0.0505 (5)
C81.82109 (19)1.06014 (16)0.27670 (7)0.0545 (5)
H81.8788531.1258600.2917190.065*
C610.8074 (2)0.62206 (14)0.03946 (8)0.0575 (5)
H610.8482030.6710730.0206390.069*
C331.2126 (2)0.28075 (15)0.53154 (8)0.0526 (5)
C271.13546 (19)0.55881 (15)0.36822 (8)0.0587 (5)
H271.0492430.5566530.3532340.070*
C291.26943 (19)0.48986 (14)0.42965 (7)0.0480 (4)
C651.13832 (19)0.05829 (16)0.38625 (8)0.0589 (5)
H651.0508700.0638620.3767900.071*
C91.87537 (19)0.97909 (17)0.25741 (8)0.0573 (5)
H91.9706750.9886310.2595700.069*
C240.8129 (2)0.03632 (15)0.09729 (7)0.0537 (5)
H240.8997440.0422000.1074180.064*
C580.68922 (19)0.47900 (15)0.09267 (8)0.0551 (5)
H580.6477590.4295390.1106530.066*
C281.14309 (19)0.48699 (16)0.40797 (9)0.0618 (6)
H281.0629470.4364730.4202110.074*
C590.6088 (2)0.57436 (17)0.06890 (9)0.0640 (6)
H590.5123990.5903100.0707250.077*
C200.6571 (2)0.06701 (18)0.09220 (8)0.0607 (5)
H200.6353010.1327740.0982950.073*
C661.14915 (19)0.01453 (16)0.42476 (8)0.0608 (5)
H661.0697810.0588980.4413160.073*
C180.8856 (2)0.15332 (15)0.13403 (8)0.0616 (6)
H18A0.9296330.1302380.1657530.074*
H18B0.8402170.2068440.1486890.074*
C321.1706 (2)0.34744 (16)0.48963 (9)0.0639 (6)
H32A1.1090090.3857580.5075700.077*
H32B1.1210950.3007910.4582430.077*
C230.7201 (3)0.12221 (16)0.07330 (8)0.0756 (7)
H230.7429230.1874670.0666220.091*
C341.1549 (2)0.26955 (17)0.58394 (9)0.0671 (6)
H341.0921020.3084660.5946010.080*
C381.3058 (2)0.22467 (17)0.51726 (8)0.0653 (6)
H381.3472730.2313810.4813620.078*
C721.1714 (2)0.23820 (17)0.59652 (8)0.0677 (6)
H721.1102130.1989280.6088610.081*
C361.2773 (2)0.14701 (17)0.60680 (9)0.0693 (6)
H361.2980250.1003500.6322720.083*
C371.3388 (2)0.15890 (17)0.55496 (9)0.0709 (6)
H371.4039810.1218210.5450520.085*
C701.1817 (2)0.15459 (16)0.50475 (9)0.0636 (6)
H70A1.1337990.1089400.5259990.076*
H70B1.1182170.1989640.4762900.076*
C351.1860 (3)0.20323 (18)0.62126 (9)0.0753 (7)
H351.1442440.1963480.6571030.090*
C761.3141 (2)0.28247 (17)0.52638 (9)0.0703 (6)
H761.3526600.2741920.4899650.084*
C210.5617 (2)0.0217 (3)0.06808 (9)0.0868 (9)
H210.4740300.0172180.0581420.104*
C220.5956 (3)0.1161 (2)0.05876 (9)0.0876 (10)
H220.5312680.1769410.0421010.105*
C731.2037 (3)0.3063 (2)0.63190 (9)0.0839 (8)
H731.1656710.3134760.6684220.101*
C741.2910 (3)0.36416 (18)0.61468 (11)0.0831 (8)
H741.3126280.4124030.6389250.100*
C751.3476 (3)0.35175 (18)0.56159 (11)0.0854 (7)
H751.4091550.3908010.5494650.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0477 (7)0.0300 (6)0.0368 (6)0.0032 (5)0.0015 (5)0.0013 (5)
O40.0368 (6)0.0442 (7)0.0406 (6)0.0042 (5)0.0027 (5)0.0069 (5)
O100.0377 (6)0.0425 (7)0.0373 (6)0.0083 (5)0.0005 (5)0.0106 (5)
O10.0559 (7)0.0321 (6)0.0401 (7)0.0039 (5)0.0030 (5)0.0002 (5)
O90.0536 (7)0.0294 (6)0.0414 (7)0.0029 (5)0.0031 (5)0.0002 (5)
O30.0459 (7)0.0334 (6)0.0438 (7)0.0015 (5)0.0041 (5)0.0022 (5)
O80.0572 (8)0.0375 (7)0.0408 (7)0.0074 (6)0.0051 (5)0.0041 (5)
O120.0542 (8)0.0544 (8)0.0633 (8)0.0090 (6)0.0032 (6)0.0278 (7)
O60.0558 (8)0.0523 (8)0.0617 (8)0.0050 (6)0.0019 (6)0.0203 (7)
O20.0819 (10)0.0482 (8)0.0463 (8)0.0157 (7)0.0081 (7)0.0030 (6)
O50.0378 (8)0.0858 (11)0.1105 (12)0.0050 (7)0.0067 (7)0.0468 (9)
O110.0392 (8)0.0985 (12)0.1140 (13)0.0167 (8)0.0096 (8)0.0625 (10)
C420.0382 (9)0.0335 (9)0.0333 (8)0.0072 (7)0.0033 (7)0.0061 (7)
C550.0342 (9)0.0333 (9)0.0339 (8)0.0059 (7)0.0030 (6)0.0032 (7)
C540.0364 (9)0.0326 (9)0.0384 (9)0.0056 (7)0.0017 (7)0.0048 (7)
C170.0356 (9)0.0370 (9)0.0387 (9)0.0046 (7)0.0056 (7)0.0015 (7)
C530.0353 (9)0.0274 (8)0.0430 (9)0.0028 (7)0.0018 (7)0.0002 (7)
C120.0379 (9)0.0332 (9)0.0406 (9)0.0046 (7)0.0063 (7)0.0049 (7)
C500.0312 (8)0.0319 (9)0.0383 (9)0.0028 (7)0.0002 (6)0.0024 (7)
C160.0350 (9)0.0385 (9)0.0373 (9)0.0030 (7)0.0015 (7)0.0043 (7)
C410.0419 (10)0.0341 (9)0.0430 (9)0.0106 (7)0.0023 (7)0.0015 (7)
C50.0401 (10)0.0411 (10)0.0323 (8)0.0044 (8)0.0009 (7)0.0068 (7)
C400.0368 (9)0.0353 (9)0.0369 (9)0.0084 (7)0.0037 (7)0.0051 (7)
C490.0370 (9)0.0339 (9)0.0358 (9)0.0040 (7)0.0025 (7)0.0026 (7)
C150.0339 (9)0.0294 (8)0.0417 (9)0.0051 (7)0.0041 (7)0.0039 (7)
C570.0415 (10)0.0282 (9)0.0434 (9)0.0037 (7)0.0004 (7)0.0055 (7)
C390.0422 (9)0.0248 (8)0.0362 (9)0.0004 (7)0.0028 (7)0.0019 (7)
C130.0436 (10)0.0378 (9)0.0393 (9)0.0047 (8)0.0014 (7)0.0081 (8)
C450.0476 (10)0.0349 (9)0.0414 (9)0.0059 (8)0.0048 (7)0.0038 (8)
C430.0387 (9)0.0360 (9)0.0354 (9)0.0074 (7)0.0020 (7)0.0047 (7)
C40.0442 (10)0.0355 (9)0.0360 (9)0.0038 (8)0.0041 (7)0.0064 (7)
C140.0440 (10)0.0339 (9)0.0372 (9)0.0064 (7)0.0005 (7)0.0012 (7)
C30.0482 (11)0.0336 (9)0.0591 (11)0.0069 (8)0.0125 (8)0.0030 (8)
C190.0375 (9)0.0343 (9)0.0405 (9)0.0000 (7)0.0041 (7)0.0043 (7)
C510.0472 (10)0.0359 (9)0.0383 (9)0.0029 (8)0.0047 (7)0.0034 (8)
C10.0477 (10)0.0297 (9)0.0389 (9)0.0030 (7)0.0057 (7)0.0051 (7)
C300.0422 (10)0.0452 (10)0.0466 (10)0.0073 (8)0.0028 (8)0.0014 (8)
C690.0412 (10)0.0411 (10)0.0440 (10)0.0064 (8)0.0050 (7)0.0058 (8)
C260.0424 (10)0.0365 (9)0.0465 (10)0.0061 (8)0.0007 (8)0.0031 (8)
C620.0432 (10)0.0374 (10)0.0593 (11)0.0098 (8)0.0074 (8)0.0013 (9)
C640.0390 (10)0.0400 (10)0.0440 (10)0.0048 (8)0.0020 (7)0.0081 (8)
C520.0518 (11)0.0391 (10)0.0348 (9)0.0002 (8)0.0031 (7)0.0016 (8)
C440.0438 (10)0.0367 (9)0.0442 (10)0.0086 (8)0.0012 (7)0.0033 (8)
C20.0404 (9)0.0356 (9)0.0447 (10)0.0056 (7)0.0099 (7)0.0063 (8)
C630.0347 (10)0.0426 (10)0.0507 (11)0.0001 (8)0.0004 (8)0.0090 (8)
C560.0533 (11)0.0307 (9)0.0473 (10)0.0003 (8)0.0040 (8)0.0070 (8)
C70.0506 (11)0.0404 (10)0.0457 (10)0.0011 (8)0.0034 (8)0.0029 (8)
C250.0353 (10)0.0419 (10)0.0575 (11)0.0007 (8)0.0011 (8)0.0025 (9)
C110.0523 (11)0.0350 (9)0.0386 (10)0.0003 (8)0.0056 (8)0.0042 (8)
C60.0505 (11)0.0384 (10)0.0451 (10)0.0085 (8)0.0022 (8)0.0025 (8)
C460.0489 (11)0.0395 (10)0.0494 (11)0.0031 (9)0.0078 (8)0.0071 (8)
C310.0395 (9)0.0378 (10)0.0431 (10)0.0034 (8)0.0033 (7)0.0018 (8)
C680.0430 (10)0.0479 (11)0.0540 (11)0.0118 (8)0.0009 (8)0.0139 (9)
C600.0697 (14)0.0372 (11)0.0577 (12)0.0111 (10)0.0187 (10)0.0102 (9)
C480.0411 (10)0.0529 (11)0.0492 (11)0.0110 (9)0.0002 (8)0.0018 (9)
C470.0360 (10)0.0592 (12)0.0552 (11)0.0026 (9)0.0007 (8)0.0047 (10)
C100.0448 (11)0.0649 (13)0.0449 (10)0.0106 (10)0.0065 (8)0.0012 (9)
C670.0528 (11)0.0431 (10)0.0485 (11)0.0078 (9)0.0002 (8)0.0157 (9)
C710.0616 (12)0.0408 (10)0.0431 (10)0.0032 (9)0.0022 (9)0.0094 (8)
C80.0494 (12)0.0557 (12)0.0434 (10)0.0096 (10)0.0027 (8)0.0022 (9)
C610.0773 (15)0.0340 (10)0.0618 (13)0.0166 (10)0.0137 (10)0.0025 (9)
C330.0610 (12)0.0423 (11)0.0460 (11)0.0007 (9)0.0044 (9)0.0071 (9)
C270.0383 (10)0.0585 (13)0.0737 (14)0.0014 (9)0.0032 (9)0.0198 (11)
C290.0526 (11)0.0400 (10)0.0484 (11)0.0072 (9)0.0004 (8)0.0064 (8)
C650.0405 (11)0.0619 (13)0.0703 (13)0.0030 (9)0.0025 (9)0.0291 (10)
C90.0385 (10)0.0775 (15)0.0466 (11)0.0012 (10)0.0013 (8)0.0022 (10)
C240.0678 (13)0.0499 (12)0.0492 (11)0.0255 (10)0.0082 (9)0.0023 (9)
C580.0471 (11)0.0520 (12)0.0615 (12)0.0068 (9)0.0093 (9)0.0030 (10)
C280.0446 (11)0.0575 (13)0.0761 (14)0.0012 (9)0.0009 (10)0.0247 (11)
C590.0411 (11)0.0666 (14)0.0702 (14)0.0101 (10)0.0033 (9)0.0152 (11)
C200.0574 (13)0.0726 (14)0.0594 (13)0.0303 (11)0.0085 (10)0.0059 (11)
C660.0437 (11)0.0612 (13)0.0711 (13)0.0008 (9)0.0025 (9)0.0319 (11)
C180.0622 (13)0.0520 (12)0.0506 (11)0.0147 (10)0.0142 (9)0.0018 (9)
C320.0600 (13)0.0565 (13)0.0698 (14)0.0039 (10)0.0039 (10)0.0239 (11)
C230.133 (2)0.0329 (11)0.0499 (13)0.0053 (13)0.0047 (13)0.0053 (9)
C340.0826 (16)0.0587 (13)0.0582 (13)0.0163 (12)0.0087 (11)0.0099 (11)
C380.0835 (16)0.0672 (14)0.0475 (12)0.0242 (12)0.0012 (10)0.0071 (10)
C720.0803 (15)0.0706 (15)0.0495 (12)0.0148 (12)0.0077 (10)0.0150 (11)
C360.0965 (18)0.0491 (13)0.0521 (13)0.0015 (12)0.0192 (12)0.0108 (10)
C370.0914 (17)0.0627 (14)0.0636 (14)0.0291 (13)0.0116 (12)0.0058 (11)
C700.0613 (13)0.0608 (13)0.0668 (13)0.0097 (10)0.0068 (10)0.0302 (11)
C350.1061 (19)0.0678 (15)0.0482 (13)0.0171 (14)0.0050 (12)0.0115 (11)
C760.1069 (19)0.0612 (14)0.0491 (12)0.0326 (13)0.0052 (11)0.0102 (10)
C210.0318 (11)0.157 (3)0.0593 (14)0.0061 (15)0.0006 (9)0.0111 (17)
C220.092 (2)0.0834 (19)0.0415 (12)0.0501 (16)0.0033 (12)0.0031 (12)
C730.105 (2)0.0867 (19)0.0484 (13)0.0037 (16)0.0043 (12)0.0253 (13)
C740.108 (2)0.0549 (15)0.0754 (17)0.0016 (14)0.0361 (15)0.0293 (12)
C750.118 (2)0.0618 (15)0.0850 (18)0.0371 (15)0.0089 (15)0.0115 (13)
Geometric parameters (Å, º) top
O7—C491.3604 (18)C62—H620.9500
O7—C391.4565 (17)C62—C611.380 (2)
O4—C21.4598 (19)C64—C631.479 (2)
O4—C251.3452 (19)C64—C651.393 (2)
O10—C401.4628 (18)C52—H520.9500
O10—C631.3382 (19)C44—H44A0.9900
O1—C11.4551 (18)C44—H44B0.9900
O1—C111.356 (2)C2—H21.0000
O9—C531.3669 (18)C56—H56A0.9900
O9—C561.4386 (19)C56—H56B0.9900
O3—C151.3671 (18)C7—H70.9500
O3—C181.436 (2)C7—C81.383 (3)
O8—C491.2084 (18)C6—H6A0.9900
O12—C671.370 (2)C6—H6B0.9900
O12—C701.432 (2)C46—H460.9500
O6—C291.373 (2)C46—C471.385 (3)
O6—C321.431 (2)C31—H310.9500
O2—C111.209 (2)C68—H680.9500
O5—C251.212 (2)C68—C671.389 (2)
O11—C631.215 (2)C60—H600.9500
C42—C411.516 (2)C60—C611.377 (3)
C42—C451.400 (2)C60—C591.366 (3)
C42—C431.394 (2)C48—H480.9500
C55—H550.9500C48—C471.377 (2)
C55—C541.391 (2)C47—H470.9500
C55—C501.388 (2)C10—H100.9500
C54—H540.9500C10—C91.380 (2)
C54—C531.390 (2)C67—C661.390 (3)
C17—H170.9500C71—C721.370 (3)
C17—C121.390 (2)C71—C701.500 (3)
C17—C161.391 (2)C71—C761.380 (3)
C53—C521.394 (2)C8—H80.9500
C12—C131.397 (2)C8—C91.384 (3)
C12—C111.480 (2)C61—H610.9500
C50—C491.481 (2)C33—C321.505 (3)
C50—C511.395 (2)C33—C341.376 (3)
C16—H160.9500C33—C381.386 (3)
C16—C151.393 (2)C27—H270.9500
C41—H41A0.9900C27—C281.388 (3)
C41—H41B0.9900C29—C281.390 (3)
C41—C401.521 (2)C65—H650.9500
C5—C41.394 (2)C65—C661.385 (3)
C5—C61.513 (2)C9—H90.9500
C5—C101.392 (2)C24—H240.9500
C40—H401.0000C24—C231.355 (3)
C40—C391.512 (2)C58—H580.9500
C15—C141.395 (2)C58—C591.383 (3)
C57—C621.381 (2)C28—H280.9500
C57—C561.504 (2)C59—H590.9500
C57—C581.383 (2)C20—H200.9500
C39—H391.0000C20—C211.391 (3)
C39—C441.516 (2)C66—H660.9500
C13—H130.9500C18—H18A0.9900
C13—C141.377 (2)C18—H18B0.9900
C45—H450.9500C32—H32A0.9900
C45—C461.379 (2)C32—H32B0.9900
C43—C441.516 (2)C23—H230.9500
C43—C481.392 (2)C23—C221.352 (4)
C4—C31.511 (2)C34—H340.9500
C4—C71.396 (2)C34—C351.376 (3)
C14—H140.9500C38—H380.9500
C3—H3A0.9900C38—C371.385 (3)
C3—H3B0.9900C72—H720.9500
C3—C21.518 (2)C72—C731.367 (3)
C19—C241.376 (2)C36—H360.9500
C19—C201.373 (3)C36—C371.379 (3)
C19—C181.495 (2)C36—C351.373 (3)
C51—H510.9500C37—H370.9500
C51—C521.379 (2)C70—H70A0.9900
C1—H11.0000C70—H70B0.9900
C1—C21.512 (2)C35—H350.9500
C1—C61.520 (2)C76—H760.9500
C30—H300.9500C76—C751.381 (3)
C30—C311.384 (2)C21—H210.9500
C30—C291.388 (2)C21—C221.378 (4)
C69—H690.9500C22—H220.9500
C69—C641.395 (2)C73—H730.9500
C69—C681.380 (2)C73—C741.370 (4)
C26—C251.485 (2)C74—H740.9500
C26—C311.393 (2)C74—C751.387 (3)
C26—C271.388 (2)C75—H750.9500
C49—O7—C39116.14 (11)C8—C7—H7119.4
C25—O4—C2117.75 (13)O4—C25—C26111.96 (15)
C63—O10—C40116.97 (13)O5—C25—O4123.38 (17)
C11—O1—C1116.15 (12)O5—C25—C26124.63 (16)
C53—O9—C56117.60 (12)O1—C11—C12112.68 (14)
C15—O3—C18117.72 (12)O2—C11—O1122.94 (15)
C67—O12—C70117.03 (15)O2—C11—C12124.38 (16)
C29—O6—C32117.04 (15)C5—C6—C1112.42 (14)
C45—C42—C41119.56 (15)C5—C6—H6A109.1
C43—C42—C41121.62 (14)C5—C6—H6B109.1
C43—C42—C45118.78 (15)C1—C6—H6A109.1
C54—C55—H55119.4C1—C6—H6B109.1
C50—C55—H55119.4H6A—C6—H6B107.9
C50—C55—C54121.12 (14)C45—C46—H46120.3
C55—C54—H54120.4C45—C46—C47119.42 (16)
C53—C54—C55119.27 (14)C47—C46—H46120.3
C53—C54—H54120.4C30—C31—C26120.71 (16)
C12—C17—H17119.6C30—C31—H31119.6
C12—C17—C16120.79 (15)C26—C31—H31119.6
C16—C17—H17119.6C69—C68—H68119.8
O9—C53—C54124.56 (14)C69—C68—C67120.46 (17)
O9—C53—C52115.33 (14)C67—C68—H68119.8
C54—C53—C52120.09 (14)C61—C60—H60120.0
C17—C12—C13119.15 (15)C59—C60—H60120.0
C17—C12—C11122.38 (15)C59—C60—C61120.07 (18)
C13—C12—C11118.48 (15)C43—C48—H48119.1
C55—C50—C49123.10 (14)C47—C48—C43121.76 (17)
C55—C50—C51118.82 (14)C47—C48—H48119.1
C51—C50—C49118.07 (14)C46—C47—H47120.2
C17—C16—H16120.4C48—C47—C46119.56 (17)
C17—C16—C15119.30 (15)C48—C47—H47120.2
C15—C16—H16120.4C5—C10—H10119.4
C42—C41—H41A108.6C9—C10—C5121.29 (18)
C42—C41—H41B108.6C9—C10—H10119.4
C42—C41—C40114.49 (13)O12—C67—C68116.13 (16)
H41A—C41—H41B107.6O12—C67—C66124.00 (16)
C40—C41—H41A108.6C68—C67—C66119.85 (17)
C40—C41—H41B108.6C72—C71—C70120.4 (2)
C4—C5—C6121.94 (15)C72—C71—C76118.62 (19)
C10—C5—C4118.99 (16)C76—C71—C70120.92 (18)
C10—C5—C6119.07 (16)C7—C8—H8120.3
O10—C40—C41109.32 (12)C7—C8—C9119.39 (17)
O10—C40—H40109.8C9—C8—H8120.3
O10—C40—C39107.61 (13)C62—C61—H61120.0
C41—C40—H40109.8C60—C61—C62120.04 (18)
C39—C40—C41110.45 (13)C60—C61—H61120.0
C39—C40—H40109.8C34—C33—C32121.0 (2)
O7—C49—C50112.24 (13)C34—C33—C38118.26 (19)
O8—C49—O7122.88 (14)C38—C33—C32120.64 (18)
O8—C49—C50124.87 (14)C26—C27—H27119.3
O3—C15—C16124.38 (14)C28—C27—C26121.46 (18)
O3—C15—C14115.36 (14)C28—C27—H27119.3
C16—C15—C14120.23 (14)O6—C29—C30115.70 (16)
C62—C57—C56120.30 (15)O6—C29—C28124.29 (16)
C62—C57—C58118.90 (16)C30—C29—C28120.01 (18)
C58—C57—C56120.78 (16)C64—C65—H65119.4
O7—C39—C40106.98 (12)C66—C65—C64121.19 (18)
O7—C39—H39109.2C66—C65—H65119.4
O7—C39—C44110.28 (13)C10—C9—C8119.90 (18)
C40—C39—H39109.2C10—C9—H9120.0
C40—C39—C44112.07 (13)C8—C9—H9120.0
C44—C39—H39109.2C19—C24—H24119.6
C12—C13—H13119.7C23—C24—C19120.9 (2)
C14—C13—C12120.67 (15)C23—C24—H24119.6
C14—C13—H13119.7C57—C58—H58119.8
C42—C45—H45119.2C59—C58—C57120.49 (19)
C46—C45—C42121.56 (16)C59—C58—H58119.8
C46—C45—H45119.2C27—C28—C29119.21 (18)
C42—C43—C44121.56 (14)C27—C28—H28120.4
C48—C43—C42118.92 (15)C29—C28—H28120.4
C48—C43—C44119.53 (15)C60—C59—C58120.05 (19)
C5—C4—C3121.18 (14)C60—C59—H59120.0
C5—C4—C7119.25 (16)C58—C59—H59120.0
C7—C4—C3119.55 (16)C19—C20—H20120.1
C15—C14—H14120.1C19—C20—C21119.9 (2)
C13—C14—C15119.84 (15)C21—C20—H20120.1
C13—C14—H14120.1C67—C66—H66120.3
C4—C3—H3A108.8C65—C66—C67119.44 (17)
C4—C3—H3B108.8C65—C66—H66120.3
C4—C3—C2113.87 (14)O3—C18—C19109.17 (14)
H3A—C3—H3B107.7O3—C18—H18A109.8
C2—C3—H3A108.8O3—C18—H18B109.8
C2—C3—H3B108.8C19—C18—H18A109.8
C24—C19—C18120.37 (17)C19—C18—H18B109.8
C20—C19—C24119.08 (17)H18A—C18—H18B108.3
C20—C19—C18120.54 (18)O6—C32—C33109.29 (16)
C50—C51—H51119.6O6—C32—H32A109.8
C52—C51—C50120.74 (15)O6—C32—H32B109.8
C52—C51—H51119.6C33—C32—H32A109.8
O1—C1—H1109.4C33—C32—H32B109.8
O1—C1—C2106.62 (13)H32A—C32—H32B108.3
O1—C1—C6110.43 (14)C24—C23—H23119.6
C2—C1—H1109.4C22—C23—C24120.7 (2)
C2—C1—C6111.46 (13)C22—C23—H23119.6
C6—C1—H1109.4C33—C34—H34119.3
C31—C30—H30119.9C33—C34—C35121.5 (2)
C31—C30—C29120.11 (17)C35—C34—H34119.3
C29—C30—H30119.9C33—C38—H38119.8
C64—C69—H69119.8C37—C38—C33120.5 (2)
C68—C69—H69119.8C37—C38—H38119.8
C68—C69—C64120.37 (16)C71—C72—H72119.2
C31—C26—C25122.89 (15)C73—C72—C71121.6 (2)
C27—C26—C25118.56 (16)C73—C72—H72119.2
C27—C26—C31118.49 (17)C37—C36—H36120.3
C57—C62—H62119.8C35—C36—H36120.3
C61—C62—C57120.43 (17)C35—C36—C37119.4 (2)
C61—C62—H62119.8C38—C37—H37119.9
C69—C64—C63123.45 (15)C36—C37—C38120.3 (2)
C65—C64—C69118.68 (16)C36—C37—H37119.9
C65—C64—C63117.87 (16)O12—C70—C71109.40 (16)
C53—C52—H52120.0O12—C70—H70A109.8
C51—C52—C53119.94 (15)O12—C70—H70B109.8
C51—C52—H52120.0C71—C70—H70A109.8
C39—C44—H44A109.3C71—C70—H70B109.8
C39—C44—H44B109.3H70A—C70—H70B108.2
C43—C44—C39111.81 (13)C34—C35—H35119.9
C43—C44—H44A109.3C36—C35—C34120.1 (2)
C43—C44—H44B109.3C36—C35—H35119.9
H44A—C44—H44B107.9C71—C76—H76119.8
O4—C2—C3108.73 (13)C71—C76—C75120.4 (2)
O4—C2—C1107.79 (13)C75—C76—H76119.8
O4—C2—H2110.1C20—C21—H21120.3
C3—C2—H2110.1C22—C21—C20119.4 (2)
C1—C2—C3109.92 (14)C22—C21—H21120.3
C1—C2—H2110.1C23—C22—C21120.1 (2)
O10—C63—C64112.96 (15)C23—C22—H22120.0
O11—C63—O10123.17 (16)C21—C22—H22120.0
O11—C63—C64123.87 (16)C72—C73—H73120.0
O9—C56—C57107.86 (13)C72—C73—C74120.0 (2)
O9—C56—H56A110.1C74—C73—H73120.0
O9—C56—H56B110.1C73—C74—H74120.3
C57—C56—H56A110.1C73—C74—C75119.5 (2)
C57—C56—H56B110.1C75—C74—H74120.3
H56A—C56—H56B108.4C76—C75—C74119.8 (2)
C4—C7—H7119.4C76—C75—H75120.1
C8—C7—C4121.17 (18)C74—C75—H75120.1
O7—C39—C44—C43168.91 (12)C64—C69—C68—C670.3 (3)
O10—C40—C39—O762.81 (15)C64—C65—C66—C670.5 (3)
O10—C40—C39—C4458.18 (16)C44—C43—C48—C47178.78 (16)
O1—C1—C2—O464.81 (15)C2—O4—C25—O59.2 (3)
O1—C1—C2—C3176.83 (13)C2—O4—C25—C26168.90 (13)
O1—C1—C6—C5165.40 (13)C2—C1—C6—C547.07 (18)
O9—C53—C52—C51177.61 (15)C63—O10—C40—C41112.87 (15)
O3—C15—C14—C13177.18 (14)C63—O10—C40—C39127.15 (14)
O12—C67—C66—C65177.83 (18)C63—C64—C65—C66179.33 (18)
O6—C29—C28—C27179.87 (18)C56—O9—C53—C541.8 (2)
C42—C41—C40—O1076.69 (17)C56—O9—C53—C52176.53 (15)
C42—C41—C40—C3941.53 (18)C56—C57—C62—C61177.81 (16)
C42—C45—C46—C470.2 (3)C56—C57—C58—C59177.38 (16)
C42—C43—C44—C3920.8 (2)C7—C4—C3—C2165.19 (15)
C42—C43—C48—C471.0 (3)C7—C8—C9—C100.8 (3)
C55—C54—C53—O9176.59 (14)C25—O4—C2—C3131.03 (15)
C55—C54—C53—C521.6 (2)C25—O4—C2—C1109.85 (15)
C55—C50—C49—O710.4 (2)C25—C26—C31—C30176.86 (16)
C55—C50—C49—O8169.08 (16)C25—C26—C27—C28177.23 (18)
C55—C50—C51—C520.5 (2)C11—O1—C1—C2159.40 (14)
C54—C55—C50—C49178.54 (14)C11—O1—C1—C679.36 (17)
C54—C55—C50—C510.4 (2)C11—C12—C13—C14179.55 (15)
C54—C53—C52—C510.8 (3)C6—C5—C4—C31.5 (2)
C17—C12—C13—C140.6 (2)C6—C5—C4—C7179.77 (14)
C17—C12—C11—O13.7 (2)C6—C5—C10—C9179.73 (16)
C17—C12—C11—O2175.24 (18)C6—C1—C2—O455.78 (17)
C17—C16—C15—O3176.41 (14)C6—C1—C2—C362.59 (18)
C17—C16—C15—C142.0 (2)C31—C30—C29—O6179.92 (15)
C53—O9—C56—C57176.79 (13)C31—C30—C29—C280.3 (3)
C12—C17—C16—C151.3 (2)C31—C26—C25—O45.1 (2)
C12—C13—C14—C150.1 (2)C31—C26—C25—O5176.89 (18)
C50—C55—C54—C531.4 (2)C31—C26—C27—C280.1 (3)
C50—C51—C52—C530.3 (3)C68—C69—C64—C63178.87 (16)
C16—C17—C12—C130.1 (2)C68—C69—C64—C650.3 (3)
C16—C17—C12—C11179.80 (15)C68—C67—C66—C650.5 (3)
C16—C15—C14—C131.3 (2)C48—C43—C44—C39159.36 (15)
C41—C42—C45—C46177.71 (15)C10—C5—C4—C3178.72 (15)
C41—C42—C43—C442.9 (2)C10—C5—C4—C70.5 (2)
C41—C42—C43—C48177.26 (15)C10—C5—C6—C1163.52 (15)
C41—C40—C39—O7177.92 (12)C67—O12—C70—C71177.57 (16)
C41—C40—C39—C4461.09 (17)C71—C72—C73—C740.5 (4)
C5—C4—C3—C216.6 (2)C71—C76—C75—C740.2 (4)
C5—C4—C7—C80.2 (2)C61—C60—C59—C580.8 (3)
C5—C10—C9—C80.1 (3)C33—C34—C35—C360.5 (3)
C40—O10—C63—O114.5 (2)C33—C38—C37—C361.2 (3)
C40—O10—C63—C64176.07 (13)C27—C26—C25—O4172.13 (16)
C40—C39—C44—C4349.85 (18)C27—C26—C25—O55.9 (3)
C49—O7—C39—C40156.72 (13)C27—C26—C31—C300.3 (3)
C49—O7—C39—C4481.17 (16)C29—O6—C32—C33179.42 (16)
C49—C50—C51—C52179.49 (16)C29—C30—C31—C260.2 (3)
C15—O3—C18—C19167.01 (14)C65—C64—C63—O10168.78 (16)
C57—C62—C61—C600.6 (3)C65—C64—C63—O1111.8 (3)
C57—C58—C59—C600.3 (3)C24—C19—C20—C210.8 (3)
C39—O7—C49—O82.6 (2)C24—C19—C18—O377.0 (2)
C39—O7—C49—C50176.88 (13)C24—C23—C22—C210.2 (3)
C13—C12—C11—O1176.45 (14)C58—C57—C62—C610.5 (3)
C13—C12—C11—O24.6 (3)C58—C57—C56—O9108.43 (18)
C45—C42—C41—C40168.67 (14)C59—C60—C61—C621.3 (3)
C45—C42—C43—C44179.26 (14)C20—C19—C24—C230.2 (3)
C45—C42—C43—C480.6 (2)C20—C19—C18—O3103.2 (2)
C45—C46—C47—C480.7 (3)C20—C21—C22—C230.4 (3)
C43—C42—C41—C4013.5 (2)C18—O3—C15—C165.2 (2)
C43—C42—C45—C460.2 (2)C18—O3—C15—C14173.25 (16)
C43—C48—C47—C461.1 (3)C18—C19—C24—C23179.55 (17)
C4—C5—C6—C116.7 (2)C18—C19—C20—C21178.91 (17)
C4—C5—C10—C90.5 (3)C32—O6—C29—C30177.81 (16)
C4—C3—C2—O471.61 (18)C32—O6—C29—C281.8 (3)
C4—C3—C2—C146.18 (19)C32—C33—C34—C35175.7 (2)
C4—C7—C8—C90.8 (3)C32—C33—C38—C37176.56 (19)
C3—C4—C7—C8178.08 (16)C34—C33—C32—O6127.81 (19)
C19—C24—C23—C220.3 (3)C34—C33—C38—C370.3 (3)
C19—C20—C21—C220.9 (3)C38—C33—C32—O655.4 (2)
C51—C50—C49—O7170.71 (14)C38—C33—C34—C351.1 (3)
C51—C50—C49—O89.8 (3)C72—C71—C70—O12135.41 (19)
C1—O1—C11—O20.1 (2)C72—C71—C76—C750.3 (3)
C1—O1—C11—C12178.79 (13)C72—C73—C74—C751.0 (4)
C30—C29—C28—C270.5 (3)C37—C36—C35—C340.9 (3)
C69—C64—C63—O1012.0 (2)C70—O12—C67—C68178.67 (17)
C69—C64—C63—O11167.45 (18)C70—O12—C67—C660.3 (3)
C69—C64—C65—C660.1 (3)C70—C71—C72—C73176.6 (2)
C69—C68—C67—O12178.38 (16)C70—C71—C76—C75176.4 (2)
C69—C68—C67—C660.1 (3)C35—C36—C37—C381.8 (3)
C26—C27—C28—C290.3 (3)C76—C71—C72—C730.2 (3)
C62—C57—C56—O973.3 (2)C76—C71—C70—O1247.9 (3)
C62—C57—C58—C590.9 (3)C73—C74—C75—C760.9 (4)
(2R,3S)-1,2,3,4-Tetrahydronaphthalene-2,3-diyl bis(4-methoxybenzoate) (8) top
Crystal data top
C26H24O6F(000) = 912
Mr = 432.45Dx = 1.335 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 9.033 (3) ÅCell parameters from 4943 reflections
b = 6.427 (2) Åθ = 3.2–27.5°
c = 37.080 (14) ŵ = 0.10 mm1
β = 91.948 (7)°T = 193 K
V = 2151.4 (14) Å3Prism, colourless
Z = 40.24 × 0.14 × 0.10 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
4213 reflections with I > 2σ(I)
dtprofit.ref scansRint = 0.055
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
θmax = 27.5°, θmin = 3.4°
Tmin = 0.893, Tmax = 1.000h = 1111
20997 measured reflectionsk = 88
4916 independent reflectionsl = 4648
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.2076P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4916 reflectionsΔρmax = 0.20 e Å3
291 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.35154 (8)0.42717 (12)0.58411 (2)0.0334 (2)
O10.43359 (9)0.41852 (13)0.65657 (2)0.0355 (2)
O60.87435 (10)0.25409 (13)0.47963 (2)0.0396 (2)
O20.37639 (10)0.71494 (14)0.68506 (3)0.0437 (2)
O31.06172 (10)0.57749 (17)0.72574 (3)0.0490 (3)
O50.46471 (11)0.73940 (14)0.58574 (3)0.0511 (3)
C230.76839 (12)0.31463 (18)0.50262 (3)0.0305 (2)
C210.55206 (12)0.26755 (18)0.53743 (3)0.0314 (2)
H210.4738920.1814270.5452330.038*
C40.02174 (12)0.24833 (17)0.60870 (3)0.0283 (2)
C200.56363 (11)0.47017 (18)0.55002 (3)0.0292 (2)
C220.65296 (12)0.18891 (19)0.51362 (3)0.0322 (3)
H220.6433960.0504100.5048980.039*
C110.46608 (13)0.58583 (18)0.67733 (3)0.0320 (3)
C50.10024 (12)0.10886 (17)0.63082 (3)0.0289 (2)
C170.71936 (13)0.42217 (19)0.68137 (3)0.0341 (3)
H170.6843890.3092220.6669120.041*
C10.28013 (12)0.38695 (18)0.64551 (3)0.0312 (2)
H10.2149190.4425610.6645240.037*
C20.24525 (12)0.49787 (18)0.61014 (3)0.0316 (2)
H20.2556370.6514830.6137000.038*
C250.68081 (13)0.59369 (18)0.53909 (3)0.0334 (3)
H250.6905070.7321390.5478360.040*
C70.12504 (13)0.20538 (19)0.59894 (3)0.0340 (3)
H70.1791210.3006700.5839930.041*
C120.62324 (12)0.58378 (18)0.68972 (3)0.0307 (2)
C240.78284 (13)0.51638 (18)0.51567 (3)0.0342 (3)
H240.8628360.6010750.5084870.041*
C160.86451 (13)0.4252 (2)0.69392 (3)0.0372 (3)
H160.9293700.3150370.6879670.045*
C190.45783 (12)0.56214 (18)0.57505 (3)0.0326 (3)
C30.08953 (13)0.44838 (19)0.59578 (3)0.0358 (3)
H3A0.0911370.4437580.5691060.043*
H3B0.0237840.5646250.6023480.043*
C100.02973 (14)0.06900 (19)0.64288 (3)0.0360 (3)
H100.0824490.1633250.6582990.043*
C60.25825 (13)0.15433 (18)0.64222 (3)0.0330 (3)
H6A0.2820760.0868600.6657040.040*
H6B0.3256470.0974330.6241660.040*
C150.91618 (13)0.5884 (2)0.71518 (3)0.0364 (3)
C80.19386 (13)0.0263 (2)0.61061 (3)0.0396 (3)
H80.2937820.0019680.6034180.048*
C130.67609 (14)0.7457 (2)0.71123 (3)0.0373 (3)
H130.6113270.8559410.7172210.045*
C90.11616 (14)0.1107 (2)0.63276 (4)0.0413 (3)
H90.1627040.2335010.6410520.050*
C140.82177 (14)0.7494 (2)0.72413 (3)0.0400 (3)
H140.8567050.8609280.7389270.048*
C260.85986 (16)0.0570 (2)0.46237 (4)0.0465 (3)
H26A0.9411900.0378390.4458510.070*
H26B0.8633630.0533780.4806140.070*
H26C0.7650680.0507620.4487490.070*
C181.12170 (16)0.7432 (3)0.74715 (5)0.0628 (5)
H18A1.1043620.8756850.7346110.094*
H18B1.0735540.7460970.7704380.094*
H18C1.2284280.7219640.7511440.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0326 (4)0.0331 (4)0.0350 (4)0.0042 (3)0.0088 (3)0.0036 (3)
O10.0285 (4)0.0392 (5)0.0388 (4)0.0010 (3)0.0001 (3)0.0088 (4)
O60.0370 (5)0.0392 (5)0.0435 (5)0.0023 (4)0.0136 (4)0.0027 (4)
O20.0350 (5)0.0428 (5)0.0531 (5)0.0065 (4)0.0012 (4)0.0113 (4)
O30.0313 (5)0.0688 (7)0.0468 (5)0.0020 (4)0.0022 (4)0.0112 (5)
O50.0466 (6)0.0360 (5)0.0722 (7)0.0096 (4)0.0230 (5)0.0152 (5)
C230.0278 (5)0.0350 (6)0.0286 (5)0.0010 (4)0.0024 (4)0.0031 (4)
C210.0268 (5)0.0348 (6)0.0326 (6)0.0067 (4)0.0008 (4)0.0008 (5)
C40.0304 (5)0.0313 (6)0.0237 (5)0.0016 (4)0.0055 (4)0.0026 (4)
C200.0270 (5)0.0317 (6)0.0287 (5)0.0006 (4)0.0004 (4)0.0015 (4)
C220.0314 (6)0.0320 (6)0.0334 (6)0.0047 (5)0.0007 (4)0.0029 (5)
C110.0350 (6)0.0327 (6)0.0286 (5)0.0016 (5)0.0032 (4)0.0001 (4)
C50.0301 (5)0.0305 (6)0.0264 (5)0.0015 (4)0.0038 (4)0.0020 (4)
C170.0355 (6)0.0349 (6)0.0322 (6)0.0021 (5)0.0055 (5)0.0036 (5)
C10.0259 (5)0.0350 (6)0.0327 (6)0.0013 (4)0.0015 (4)0.0029 (5)
C20.0312 (6)0.0294 (6)0.0347 (6)0.0000 (4)0.0071 (4)0.0007 (5)
C250.0346 (6)0.0274 (6)0.0384 (6)0.0020 (4)0.0024 (5)0.0019 (5)
C70.0318 (6)0.0402 (7)0.0300 (6)0.0024 (5)0.0011 (4)0.0010 (5)
C120.0312 (6)0.0347 (6)0.0266 (5)0.0019 (4)0.0040 (4)0.0013 (4)
C240.0320 (6)0.0304 (6)0.0405 (6)0.0055 (5)0.0069 (5)0.0067 (5)
C160.0343 (6)0.0411 (7)0.0365 (6)0.0043 (5)0.0069 (5)0.0028 (5)
C190.0297 (6)0.0327 (6)0.0355 (6)0.0032 (4)0.0009 (4)0.0004 (5)
C30.0317 (6)0.0358 (6)0.0398 (6)0.0020 (5)0.0005 (5)0.0081 (5)
C100.0402 (6)0.0335 (6)0.0345 (6)0.0004 (5)0.0034 (5)0.0032 (5)
C60.0315 (6)0.0324 (6)0.0348 (6)0.0019 (5)0.0006 (4)0.0031 (5)
C150.0303 (6)0.0505 (7)0.0285 (6)0.0020 (5)0.0028 (4)0.0003 (5)
C80.0307 (6)0.0481 (7)0.0402 (6)0.0069 (5)0.0024 (5)0.0037 (6)
C130.0369 (6)0.0391 (7)0.0359 (6)0.0022 (5)0.0016 (5)0.0074 (5)
C90.0425 (7)0.0389 (7)0.0428 (7)0.0109 (5)0.0062 (5)0.0027 (5)
C140.0380 (6)0.0472 (8)0.0346 (6)0.0031 (5)0.0005 (5)0.0113 (5)
C260.0478 (8)0.0444 (8)0.0479 (7)0.0013 (6)0.0126 (6)0.0101 (6)
C180.0377 (7)0.0893 (13)0.0608 (9)0.0022 (8)0.0081 (7)0.0275 (9)
Geometric parameters (Å, º) top
O4—C21.4570 (13)C2—H21.0000
O4—C191.3450 (14)C2—C31.5207 (16)
O1—C111.3488 (14)C25—H250.9500
O1—C11.4465 (14)C25—C241.3802 (16)
O6—C231.3601 (14)C7—H70.9500
O6—C261.4233 (16)C7—C81.3841 (18)
O2—C111.2012 (14)C12—C131.3860 (16)
O3—C151.3607 (15)C24—H240.9500
O3—C181.4246 (18)C16—H160.9500
O5—C191.2071 (15)C16—C151.3833 (18)
C23—C221.3912 (16)C3—H3A0.9900
C23—C241.3885 (17)C3—H3B0.9900
C21—H210.9500C10—H100.9500
C21—C201.3860 (16)C10—C91.3841 (18)
C21—C221.3857 (16)C6—H6A0.9900
C4—C51.3928 (16)C6—H6B0.9900
C4—C71.3901 (16)C15—C141.3885 (18)
C4—C31.5091 (17)C8—H80.9500
C20—C251.3943 (16)C8—C91.3800 (19)
C20—C191.4780 (16)C13—H130.9500
C22—H220.9500C13—C141.3850 (18)
C11—C121.4772 (16)C9—H90.9500
C5—C101.3898 (17)C14—H140.9500
C5—C61.5033 (16)C26—H26A0.9800
C17—H170.9500C26—H26B0.9800
C17—C121.3953 (17)C26—H26C0.9800
C17—C161.3764 (17)C18—H18A0.9800
C1—H11.0000C18—H18B0.9800
C1—C21.5163 (17)C18—H18C0.9800
C1—C61.5124 (17)
C19—O4—C2117.16 (9)C25—C24—C23119.91 (10)
C11—O1—C1117.48 (9)C25—C24—H24120.0
C23—O6—C26118.73 (10)C17—C16—H16119.9
C15—O3—C18117.86 (11)C17—C16—C15120.18 (11)
O6—C23—C22124.62 (11)C15—C16—H16119.9
O6—C23—C24115.20 (10)O4—C19—C20112.41 (10)
C24—C23—C22120.17 (11)O5—C19—O4123.77 (11)
C20—C21—H21119.6O5—C19—C20123.81 (11)
C22—C21—H21119.6C4—C3—C2116.58 (10)
C22—C21—C20120.90 (10)C4—C3—H3A108.1
C5—C4—C3122.09 (10)C4—C3—H3B108.1
C7—C4—C5119.18 (10)C2—C3—H3A108.1
C7—C4—C3118.71 (10)C2—C3—H3B108.1
C21—C20—C25119.10 (10)H3A—C3—H3B107.3
C21—C20—C19122.97 (10)C5—C10—H10119.5
C25—C20—C19117.92 (10)C9—C10—C5120.98 (12)
C23—C22—H22120.3C9—C10—H10119.5
C21—C22—C23119.39 (11)C5—C6—C1109.57 (9)
C21—C22—H22120.3C5—C6—H6A109.8
O1—C11—C12111.01 (10)C5—C6—H6B109.8
O2—C11—O1123.46 (11)C1—C6—H6A109.8
O2—C11—C12125.51 (11)C1—C6—H6B109.8
C4—C5—C6120.00 (10)H6A—C6—H6B108.2
C10—C5—C4119.28 (11)O3—C15—C16115.41 (11)
C10—C5—C6120.70 (10)O3—C15—C14124.39 (11)
C12—C17—H17119.8C16—C15—C14120.19 (11)
C16—C17—H17119.8C7—C8—H8120.3
C16—C17—C12120.47 (11)C9—C8—C7119.47 (12)
O1—C1—H1109.4C9—C8—H8120.3
O1—C1—C2110.38 (9)C12—C13—H13119.5
O1—C1—C6106.43 (9)C14—C13—C12121.09 (11)
C2—C1—H1109.4C14—C13—H13119.5
C6—C1—H1109.4C10—C9—H9120.1
C6—C1—C2111.85 (10)C8—C9—C10119.87 (12)
O4—C2—C1107.71 (9)C8—C9—H9120.1
O4—C2—H2109.5C15—C14—H14120.4
O4—C2—C3108.98 (10)C13—C14—C15119.26 (11)
C1—C2—H2109.5C13—C14—H14120.4
C1—C2—C3111.54 (9)O6—C26—H26A109.5
C3—C2—H2109.5O6—C26—H26B109.5
C20—C25—H25119.7O6—C26—H26C109.5
C24—C25—C20120.51 (11)H26A—C26—H26B109.5
C24—C25—H25119.7H26A—C26—H26C109.5
C4—C7—H7119.4H26B—C26—H26C109.5
C8—C7—C4121.22 (11)O3—C18—H18A109.5
C8—C7—H7119.4O3—C18—H18B109.5
C17—C12—C11122.44 (11)O3—C18—H18C109.5
C13—C12—C11118.74 (10)H18A—C18—H18B109.5
C13—C12—C17118.80 (11)H18A—C18—H18C109.5
C23—C24—H24120.0H18B—C18—H18C109.5
O4—C2—C3—C495.62 (12)C1—O1—C11—C12173.61 (9)
O1—C11—C12—C172.17 (15)C1—C2—C3—C423.17 (14)
O1—C11—C12—C13179.58 (10)C2—O4—C19—O54.04 (17)
O1—C1—C2—O454.30 (12)C2—O4—C19—C20176.99 (9)
O1—C1—C2—C3173.84 (9)C2—C1—C6—C559.51 (12)
O1—C1—C6—C5179.86 (8)C25—C20—C19—O4178.88 (10)
O6—C23—C22—C21179.50 (10)C25—C20—C19—O52.15 (18)
O6—C23—C24—C25179.75 (10)C7—C4—C5—C100.54 (16)
O2—C11—C12—C17176.18 (12)C7—C4—C5—C6178.92 (10)
O2—C11—C12—C132.08 (18)C7—C4—C3—C2174.26 (10)
O3—C15—C14—C13178.78 (11)C7—C8—C9—C100.48 (19)
C21—C20—C25—C240.88 (17)C12—C17—C16—C150.43 (18)
C21—C20—C19—O40.39 (16)C12—C13—C14—C150.24 (19)
C21—C20—C19—O5178.58 (12)C24—C23—C22—C210.57 (17)
C4—C5—C10—C91.02 (17)C16—C17—C12—C11179.07 (10)
C4—C5—C6—C131.79 (14)C16—C17—C12—C130.82 (17)
C4—C7—C8—C90.96 (18)C16—C15—C14—C130.64 (19)
C20—C21—C22—C230.82 (17)C19—O4—C2—C1107.25 (11)
C20—C25—C24—C230.49 (18)C19—O4—C2—C3131.59 (10)
C22—C23—C24—C251.22 (17)C19—C20—C25—C24179.82 (10)
C22—C21—C20—C251.54 (17)C3—C4—C5—C10177.65 (10)
C22—C21—C20—C19179.20 (10)C3—C4—C5—C60.73 (16)
C11—O1—C1—C289.50 (12)C3—C4—C7—C8178.69 (11)
C11—O1—C1—C6148.93 (10)C10—C5—C6—C1146.56 (11)
C11—C12—C13—C14178.80 (11)C6—C5—C10—C9179.39 (11)
C5—C4—C7—C80.45 (17)C6—C1—C2—O464.00 (12)
C5—C4—C3—C23.93 (16)C6—C1—C2—C355.54 (13)
C5—C10—C9—C80.51 (19)C26—O6—C23—C226.92 (17)
C17—C12—C13—C140.48 (18)C26—O6—C23—C24174.11 (11)
C17—C16—C15—O3179.16 (11)C18—O3—C15—C16178.89 (13)
C17—C16—C15—C140.31 (19)C18—O3—C15—C140.55 (19)
C1—O1—C11—O24.77 (16)
(2R,3S)-1,2,3,4-Tetrahydronaphthalene-2,3-diyl bis(2,4,6-trifluorobenzoate) (9) top
Crystal data top
C24H14F6O4F(000) = 1952
Mr = 480.35Dx = 1.526 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71075 Å
a = 23.308 (10) ÅCell parameters from 4856 reflections
b = 7.132 (3) Åθ = 3.0–27.5°
c = 27.253 (9) ŵ = 0.14 mm1
β = 112.62 (3)°T = 193 K
V = 4182 (3) Å3Prism, colorless
Z = 80.24 × 0.12 × 0.09 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
3880 reflections with I > 2σ(I)
dtprofit.ref scansRint = 0.044
Absorption correction: empirical (using intensity measurements)
DTABSCOR
θmax = 27.5°, θmin = 3.0°
Tmin = 0.797, Tmax = 1.000h = 3028
20765 measured reflectionsk = 99
4763 independent reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.5393P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
4763 reflectionsΔρmax = 0.22 e Å3
307 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F60.59538 (4)0.86340 (12)0.25229 (4)0.0460 (3)
F30.69961 (5)0.65624 (13)0.39473 (4)0.0569 (3)
F50.73657 (5)1.00892 (14)0.17474 (4)0.0561 (3)
O10.65445 (5)0.32340 (14)0.37865 (4)0.0348 (3)
O30.59720 (5)0.51045 (15)0.28090 (4)0.0389 (3)
F40.67906 (6)0.38595 (14)0.18057 (5)0.0658 (3)
O40.58017 (6)0.32647 (15)0.20972 (5)0.0471 (3)
F20.89314 (5)0.74404 (17)0.53019 (5)0.0710 (4)
O20.72512 (5)0.10141 (16)0.38462 (5)0.0530 (3)
F10.82341 (6)0.13833 (14)0.47905 (6)0.0881 (5)
C180.60116 (7)0.4672 (2)0.23445 (6)0.0335 (3)
C110.71193 (7)0.2528 (2)0.39675 (6)0.0338 (3)
C190.63521 (7)0.6143 (2)0.21784 (6)0.0324 (3)
C120.75773 (7)0.3858 (2)0.43369 (6)0.0327 (3)
C20.56396 (7)0.3810 (2)0.30194 (6)0.0336 (3)
H20.5285380.3236240.2718920.040*
C40.51410 (7)0.3798 (2)0.36877 (6)0.0347 (3)
C240.63288 (7)0.8053 (2)0.22798 (6)0.0334 (3)
C10.60687 (7)0.2275 (2)0.33442 (6)0.0338 (3)
H10.6260820.1591520.3125250.041*
C30.53896 (7)0.4985 (2)0.33558 (6)0.0358 (3)
H3A0.5053250.5804160.3120730.043*
H3B0.5725760.5800050.3593050.043*
C50.52963 (7)0.1900 (2)0.37866 (6)0.0366 (4)
C170.75112 (7)0.5797 (2)0.43076 (6)0.0371 (4)
C60.57057 (7)0.0928 (2)0.35479 (7)0.0388 (4)
H6A0.6002340.0103410.3820390.047*
H6B0.5442780.0123600.3250270.047*
C200.67321 (8)0.5675 (2)0.19076 (6)0.0396 (4)
C220.70268 (7)0.8798 (2)0.18804 (6)0.0389 (4)
C230.66541 (7)0.9399 (2)0.21340 (6)0.0387 (4)
H230.6622171.0690070.2205630.046*
C210.70778 (8)0.6952 (2)0.17581 (7)0.0416 (4)
H210.7337850.6576320.1579630.050*
C130.81366 (8)0.3227 (2)0.47204 (7)0.0443 (4)
C70.47607 (8)0.4632 (3)0.39167 (7)0.0452 (4)
H70.4653970.5919030.3851280.054*
C150.84887 (8)0.6264 (2)0.49860 (7)0.0456 (4)
C160.79580 (8)0.7021 (2)0.46219 (7)0.0478 (4)
H160.7899350.8340120.4586700.057*
C100.50651 (8)0.0892 (3)0.41096 (7)0.0482 (4)
H100.5167590.0396930.4177080.058*
C140.85954 (8)0.4386 (3)0.50494 (7)0.0478 (4)
H140.8968440.3898640.5308230.057*
C90.46904 (9)0.1735 (3)0.43327 (8)0.0611 (5)
H90.4537090.1029280.4552010.073*
C80.45384 (9)0.3613 (3)0.42362 (8)0.0586 (5)
H80.4281250.4199170.4389830.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F60.0531 (6)0.0338 (5)0.0632 (6)0.0034 (4)0.0359 (5)0.0036 (4)
F30.0447 (6)0.0292 (5)0.0765 (8)0.0044 (4)0.0009 (5)0.0005 (5)
F50.0688 (7)0.0420 (6)0.0721 (7)0.0054 (5)0.0432 (6)0.0102 (5)
O10.0293 (5)0.0313 (5)0.0402 (6)0.0000 (4)0.0093 (5)0.0086 (4)
O30.0455 (6)0.0362 (6)0.0383 (6)0.0110 (5)0.0198 (5)0.0040 (5)
F40.1001 (9)0.0298 (5)0.0994 (9)0.0034 (5)0.0737 (8)0.0053 (5)
O40.0595 (7)0.0358 (6)0.0512 (7)0.0139 (5)0.0272 (6)0.0120 (5)
F20.0597 (7)0.0657 (8)0.0698 (8)0.0273 (6)0.0052 (6)0.0206 (6)
O20.0416 (7)0.0333 (6)0.0747 (9)0.0055 (5)0.0119 (6)0.0136 (6)
F10.0651 (8)0.0339 (6)0.1146 (11)0.0013 (5)0.0214 (7)0.0194 (6)
C180.0327 (8)0.0299 (7)0.0373 (8)0.0005 (6)0.0128 (6)0.0017 (6)
C110.0336 (8)0.0267 (7)0.0412 (9)0.0004 (6)0.0147 (7)0.0010 (6)
C190.0324 (7)0.0293 (7)0.0348 (8)0.0006 (6)0.0120 (6)0.0008 (6)
C120.0330 (7)0.0299 (7)0.0359 (8)0.0033 (6)0.0139 (6)0.0009 (6)
C20.0333 (8)0.0311 (7)0.0357 (8)0.0060 (6)0.0125 (7)0.0000 (6)
C40.0294 (7)0.0390 (8)0.0325 (8)0.0011 (6)0.0081 (6)0.0015 (6)
C240.0328 (8)0.0328 (8)0.0360 (8)0.0032 (6)0.0148 (7)0.0016 (6)
C10.0322 (7)0.0290 (7)0.0384 (8)0.0035 (6)0.0116 (7)0.0091 (6)
C30.0354 (8)0.0304 (8)0.0410 (9)0.0040 (6)0.0142 (7)0.0030 (6)
C50.0314 (8)0.0374 (8)0.0368 (9)0.0021 (6)0.0083 (7)0.0026 (6)
C170.0363 (8)0.0326 (8)0.0412 (9)0.0007 (6)0.0137 (7)0.0016 (7)
C60.0378 (8)0.0286 (7)0.0473 (9)0.0023 (6)0.0134 (7)0.0000 (7)
C200.0496 (9)0.0278 (8)0.0458 (9)0.0048 (6)0.0233 (8)0.0001 (7)
C220.0406 (9)0.0359 (8)0.0413 (9)0.0012 (7)0.0168 (7)0.0096 (7)
C230.0441 (9)0.0285 (7)0.0447 (9)0.0004 (6)0.0183 (8)0.0011 (7)
C210.0479 (9)0.0385 (9)0.0458 (10)0.0064 (7)0.0263 (8)0.0055 (7)
C130.0411 (9)0.0331 (8)0.0516 (10)0.0039 (7)0.0098 (8)0.0086 (7)
C70.0405 (9)0.0524 (10)0.0435 (10)0.0082 (7)0.0170 (8)0.0029 (8)
C150.0437 (10)0.0490 (10)0.0420 (10)0.0177 (8)0.0141 (8)0.0101 (8)
C160.0491 (10)0.0339 (8)0.0573 (11)0.0072 (7)0.0169 (9)0.0100 (8)
C100.0423 (9)0.0509 (10)0.0487 (10)0.0010 (8)0.0145 (8)0.0139 (8)
C140.0395 (9)0.0525 (10)0.0425 (10)0.0087 (8)0.0061 (8)0.0059 (8)
C90.0546 (11)0.0807 (15)0.0554 (12)0.0017 (10)0.0294 (10)0.0209 (11)
C80.0496 (11)0.0809 (15)0.0537 (12)0.0099 (10)0.0294 (10)0.0084 (10)
Geometric parameters (Å, º) top
F6—C241.3492 (17)C1—C61.519 (2)
F3—C171.3404 (19)C3—H3A0.9900
F5—C221.3508 (18)C3—H3B0.9900
O1—C111.3356 (19)C5—C61.514 (2)
O1—C11.4567 (18)C5—C101.395 (2)
O3—C181.3401 (19)C17—C161.376 (2)
O3—C21.4569 (17)C6—H6A0.9900
F4—C201.3422 (18)C6—H6B0.9900
O4—C181.2032 (18)C20—C211.377 (2)
F2—C151.3514 (19)C22—C231.370 (2)
O2—C111.2033 (18)C22—C211.374 (2)
F1—C131.3359 (19)C23—H230.9500
C18—C191.487 (2)C21—H210.9500
C11—C121.492 (2)C13—C141.376 (2)
C19—C241.395 (2)C7—H70.9500
C19—C201.394 (2)C7—C81.379 (3)
C12—C171.391 (2)C15—C161.365 (3)
C12—C131.395 (2)C15—C141.361 (3)
C2—H21.0000C16—H160.9500
C2—C11.517 (2)C10—H100.9500
C2—C31.514 (2)C10—C91.379 (3)
C4—C31.508 (2)C14—H140.9500
C4—C51.400 (2)C9—H90.9500
C4—C71.398 (2)C9—C81.385 (3)
C24—C231.374 (2)C8—H80.9500
C1—H11.0000
C11—O1—C1117.70 (11)C16—C17—C12123.69 (15)
C18—O3—C2117.80 (11)C1—C6—H6A108.9
O3—C18—C19111.34 (12)C1—C6—H6B108.9
O4—C18—O3124.07 (14)C5—C6—C1113.52 (13)
O4—C18—C19124.59 (14)C5—C6—H6A108.9
O1—C11—C12111.43 (12)C5—C6—H6B108.9
O2—C11—O1124.25 (14)H6A—C6—H6B107.7
O2—C11—C12124.32 (14)F4—C20—C19118.46 (14)
C24—C19—C18124.24 (13)F4—C20—C21117.33 (14)
C20—C19—C18120.94 (13)C21—C20—C19124.14 (15)
C20—C19—C24114.82 (14)F5—C22—C23118.13 (14)
C17—C12—C11123.98 (14)F5—C22—C21118.30 (14)
C17—C12—C13114.49 (14)C23—C22—C21123.57 (15)
C13—C12—C11121.37 (14)C24—C23—H23121.5
O3—C2—H2109.5C22—C23—C24117.04 (14)
O3—C2—C1110.85 (12)C22—C23—H23121.5
O3—C2—C3105.94 (11)C20—C21—H21121.7
C1—C2—H2109.5C22—C21—C20116.52 (15)
C3—C2—H2109.5C22—C21—H21121.7
C3—C2—C1111.52 (12)F1—C13—C12118.88 (14)
C5—C4—C3121.86 (14)F1—C13—C14116.82 (15)
C7—C4—C3118.99 (14)C14—C13—C12124.26 (16)
C7—C4—C5119.12 (15)C4—C7—H7119.5
F6—C24—C19118.62 (13)C8—C7—C4120.96 (17)
F6—C24—C23117.48 (13)C8—C7—H7119.5
C23—C24—C19123.87 (14)F2—C15—C16118.30 (16)
O1—C1—C2105.38 (11)F2—C15—C14118.20 (16)
O1—C1—H1110.5C14—C15—C16123.50 (16)
O1—C1—C6110.38 (12)C17—C16—H16121.3
C2—C1—H1110.5C15—C16—C17117.31 (16)
C2—C1—C6109.57 (12)C15—C16—H16121.3
C6—C1—H1110.5C5—C10—H10119.4
C2—C3—H3A109.2C9—C10—C5121.16 (18)
C2—C3—H3B109.2C9—C10—H10119.4
C4—C3—C2112.25 (12)C13—C14—H14121.6
C4—C3—H3A109.2C15—C14—C13116.74 (16)
C4—C3—H3B109.2C15—C14—H14121.6
H3A—C3—H3B107.9C10—C9—H9120.1
C4—C5—C6121.25 (14)C10—C9—C8119.80 (17)
C10—C5—C4119.04 (15)C8—C9—H9120.1
C10—C5—C6119.72 (15)C7—C8—C9119.93 (18)
F3—C17—C12119.68 (13)C7—C8—H8120.0
F3—C17—C16116.60 (14)C9—C8—H8120.0
F6—C24—C23—C22179.08 (14)C2—O3—C18—O41.7 (2)
F3—C17—C16—C15179.17 (15)C2—O3—C18—C19178.84 (12)
F5—C22—C23—C24178.04 (14)C2—C1—C6—C546.35 (17)
F5—C22—C21—C20179.03 (15)C4—C5—C6—C117.0 (2)
O1—C11—C12—C1729.2 (2)C4—C5—C10—C90.2 (3)
O1—C11—C12—C13155.60 (15)C4—C7—C8—C90.2 (3)
O1—C1—C6—C569.26 (16)C24—C19—C20—F4178.49 (14)
O3—C18—C19—C2434.0 (2)C24—C19—C20—C211.7 (2)
O3—C18—C19—C20145.29 (14)C1—O1—C11—O211.7 (2)
O3—C2—C1—O162.45 (15)C1—O1—C11—C12168.05 (12)
O3—C2—C1—C6178.80 (11)C1—C2—C3—C448.10 (16)
O3—C2—C3—C4168.80 (11)C3—C2—C1—O155.33 (15)
F4—C20—C21—C22178.04 (15)C3—C2—C1—C663.42 (15)
O4—C18—C19—C24146.54 (16)C3—C4—C5—C62.1 (2)
O4—C18—C19—C2034.2 (2)C3—C4—C5—C10178.16 (14)
F2—C15—C16—C17179.43 (15)C3—C4—C7—C8178.03 (16)
F2—C15—C14—C13179.77 (16)C5—C4—C3—C217.6 (2)
O2—C11—C12—C17150.50 (17)C5—C4—C7—C80.0 (2)
O2—C11—C12—C1324.7 (2)C5—C10—C9—C80.0 (3)
F1—C13—C14—C15178.46 (17)C17—C12—C13—F1177.79 (16)
C18—O3—C2—C186.51 (15)C17—C12—C13—C140.0 (3)
C18—O3—C2—C3152.36 (12)C6—C5—C10—C9179.94 (16)
C18—C19—C24—F63.1 (2)C20—C19—C24—F6177.58 (13)
C18—C19—C24—C23178.71 (15)C20—C19—C24—C230.6 (2)
C18—C19—C20—F40.8 (2)C23—C22—C21—C200.5 (3)
C18—C19—C20—C21177.64 (15)C21—C22—C23—C241.5 (2)
C11—O1—C1—C2145.89 (13)C13—C12—C17—F3178.94 (14)
C11—O1—C1—C695.90 (15)C13—C12—C17—C160.9 (2)
C11—C12—C17—F33.5 (2)C7—C4—C3—C2164.44 (14)
C11—C12—C17—C16174.61 (15)C7—C4—C5—C6179.92 (14)
C11—C12—C13—F16.6 (2)C7—C4—C5—C100.2 (2)
C11—C12—C13—C14175.62 (16)C16—C15—C14—C130.5 (3)
C19—C24—C23—C220.9 (2)C10—C5—C6—C1163.33 (14)
C19—C20—C21—C221.2 (3)C10—C9—C8—C70.1 (3)
C12—C17—C16—C151.0 (3)C14—C15—C16—C170.3 (3)
C12—C13—C14—C150.6 (3)
Dihedral and torsion angles (°) for 49 top
4(ring C12–C17)···(ring C33–C38)10.65
(ring C12–C17)···(ring C40–C45)81.96
(ring C26–C31)···(ring C19–C24)57.10
(ring C33–C38)···(ring C26A–C31A)79.07
(ring C33–C38)···(ring C47–C52)11.74
(ring C40–C45)···(ring C54–C59)7.19
(ring C47–C52)···(ring C54–C59)67.29
(ring C54–C59)···(ring C61–C66)72.59
5(ring C12–C17)···(ring C22–C27)74.69
C18—O3—C14—C132.13
C19—O4—C15—C1689.78
C20—O5—C16—C171.98
C28—O8—C24—C236.94
C29—O9—C25—C2666.69
C30—O10—C26—C274.34
6(ring C12–C17)···(ring C19–C24)89.74
7(ring C26–C31)···(ring C12–C17)74.09
(ring C33–C38)···(ring C26–C31)55.99
(ring C19–C24)···(ring C12–C17)79.13
(ring C50–C55)···(ring C57–C62)74.23
(ring C64–C69)···(ring C71–C76)47.97
(ring C50–C55)···(ring C12–C17)20.95
(ring C19–C24)···(ring C57–C62)25.91
(ring C26–C31)···(ring C64–C69)10.37
(ring C33–C38)···(ring C71–C76)2.38
8C18—O3—C15—C140.58
C26—O6—C23—C226.92
(ring C12–C17)···(ring C20–C25)50.31
9(ring C12–C17)···(ring C19–C24)75.16
Intra- and intermolecular contacts (Å) for 49 top
4(ring C33–C38)···(ring C47–C52)i5.301
(ring C19–C24)···(ring C19–C24)i4.297
5H27···(ring C12–C17)3.928
H9···(ring C22–C27)ii2.781
6(ring C12–C17)···(ring C12–C17)iii3.717
(ring C12–C17)···(ring C12–C17)i3.844
(ring C4–C10)···(ring C19–C24)iv5.816
(ring C19–C24)···(ring C19–C24)v4.030
7H1···(ring C50–C55)i3.671
H2···(ring C50–C55)i3.913
H3A···(ring C64–C69)i3.456
H35···(ring C4–C10)i3.519
(ring C64–C69)···(ring C26–C31)i6.358
(ring C33–C38)···(ring C71–C76)i6.370
8H14···(ring C12–C17)ii2.876
(ring C20–C25)···(ring C20–C25)i3.801
9(ring C4–C10)···(ring C19–C24)vi3.733
(ring C19–C24)···(ring C4–C10)vi7.885
(ring C19–C24)···(ring C19–C24)vii8.016
(ring C12–C17)···(ring C4–C10)vi2.674
(ring C12–C17)···(ring C12–C17)vi3.630
Symmetry codes: (i) -x, -y, -z; (ii) -x+1/2, y+1/2, -z+1/2; (iii) -x, y, -z+1/2; (iv) x+1/2, -y+1/2, z+1/2; (v) -x+1/2, -y+1/2, -z; (vi) -x+1/2, y, -z; (vii) -x, y+1/2, -z+1/2.
 

Acknowledgements

Funding for this research was provided by the Japan Science and Technology Agency (Global Science Campus Project). We thank Shinichi Gima (University of the Ryukyus) for HRMS analysis and Genta Koja (University of the Ryukyus) for IR and X-ray structure analyses.

References

First citationAbhinav, A., Chawla, J., Mahajan, A., Sharma, N. & Khurana, N. (2017). Int. J. Green Pharm. 11, S364–S370.  Google Scholar
First citationAlifimoff, J. K., Bugge, B., Forman, S. A. & Miller, K. W. (1993). Anesthesiology, 79, 122–128.  CrossRef CAS PubMed Google Scholar
First citationBack, T. G., Bey, M. A., Parvez, M. & Pharis, R. P. (2004). Tetrahedron Asymmetry, 15, 873–880.  CSD CrossRef CAS Google Scholar
First citationBimonte, S., Cascella, M., Leongito, M., Palaia, R., Caliendo, D., Izzo, F. & Cuomo, A. (2017). Recenti Prog. Med. 108, 282–287.  PubMed Google Scholar
First citationChan, T. H. & Dou, Q. P. (2011). US Patent No. US2011/0152210A1.  Google Scholar
First citationChan, T. H., Pamu, S., Dou, Q. P. & Chen, D. (2012). WO Patent No. WO/2012/171114.  Google Scholar
First citationChen, D., Pamu, S., Cui, Q., Chan, T. H. & Dou, Q. P. (2012). Bioorg. Med. Chem. 20, 3031–3037.  CrossRef CAS PubMed Google Scholar
First citationColomer, R., Sarrats, A., Lupu, R. & Puig, T. (2017). Curr. Drug Targets, 18, 147–159.  CrossRef CAS PubMed Google Scholar
First citationCorreia da Silva, D., Andrade, P. B., Ribeiro, V., Valentao, P. & Pereira, D. M. (2017). Recent Pat. Anticancer Drug Discov. 12, 4–15.  CrossRef CAS PubMed Google Scholar
First citationDickinson, R., Franks, N. P. & Lieb, W. R. (1994). Biophys. J. 66, 2019–2023.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDou, Q. P., Landis-Piwowar, K. R., Chen, D., Huo, C., Wan, S. B. & Chan, T. H. (2008). Inflammopharmacology, 16, 208–212.  CrossRef PubMed CAS Google Scholar
First citationEng, Q. Y., Thanikachalam, P. V. & Ramamurthy, S. (2018). J. Ethnopharmacol. 210, 296–310.  CrossRef CAS PubMed Google Scholar
First citationGeorge, V. C., Dellaire, G. & Rupasinghe, H. P. V. (2017). J. Nutr. Biochem. 45, 1–14.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuo, C., Shi, G., Lam, W. H., Chen, D., Cui, Q. C., Dou, Q. P. & Chan, T. H. (2008). Can. J. Chem. 86, 495–502.  CrossRef CAS Google Scholar
First citationHuo, C., Yang, H., Cui, Q. C., Dou, Q. P. & Chan, T. H. (2010). Bioorg. Med. Chem. 18, 1252–1258.  CrossRef CAS PubMed Google Scholar
First citationKona, F. R., Shen, M., Chen, D., Chan, T. H. & Dou, Q. P. (2014). Recent Advances in Polyphenol Research, edited by A. Romani, V. Lattanzio & S. Quideau, pp. 209–237. Chichester: John Wiley & Sons Ltd.  Google Scholar
First citationLandis-Piwowar, K. R., Huo, C., Chen, D., Milacic, V., Shi, G., Chan, T. H. & Dou, Q. P. (2007). Cancer Res. 67, 4303–4310.  PubMed CAS Google Scholar
First citationLi, R.-Z., Tang, H., Yang, K. R., Wan, L.-Q., Zhang, X., Liu, J., Fu, Z. & Niu, D. (2017). Angew. Chem. Int. Ed. 56, 7213–7217.  CSD CrossRef CAS Google Scholar
First citationMenzek, A., Altundas, A. & Gültekin, D. (2003). J. Chem. Res. (S), 2003, 752–753.  CrossRef Google Scholar
First citationNavarro-Perán, E., Cabezas-Herrera, J., García-Cánovas, F., Durrant, M. C., Thorneley, R. N. F. & Rodríguez-López, J. N. (2005). Cancer Res. 65, 2059–2064.  PubMed Google Scholar
First citationQin, X. L., Li, X. M., Yuan, J., Chen, D., Jiang, T., Dou, Q. P., Chan, T. H. & Wan, S. B. (2012). Synth. Commun. 42, 3524–3531.  CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSang, S., Lee, M.-J., Hou, Z., Ho, C.-T. & Yang, C. S. (2005). J. Agric. Food Chem. 53, 9478–9484.  CrossRef PubMed CAS Google Scholar
First citationSeleem, D., Pardi, V. & Murata, R. M. (2017). Arch. Oral Biol. 76, 76–83.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSipes, I. G. (2020). WHO Food Additives Series: 52, Aliphatic and Aromatic Ethers, http://www.inchem.org/documents/jecfa/jecmono/v52je16.htmGoogle Scholar
First citationSmith, D. M., Wang, Z., Kazi, A., Li, L., Chan, T. H. & Dou, Q. P. (2002). Mol. Med. 8, 382–392.  CrossRef PubMed CAS Google Scholar
First citationTsuchiya, H. (1999). Pharmacology, 59, 34–44.  CrossRef PubMed CAS Google Scholar
First citationTsuchiya, H. (2001). Chem. Biol. Interact. 134, 41–54.  CrossRef PubMed CAS Google Scholar
First citationXu, J., Yu, S., Zhong, K. & Jin, L. Y. (2017). Polymers, 9, 685.  CrossRef Google Scholar
First citationYeh, W.-J., Hsia, S.-M., Lee, W.-H. & Wu, C.-H. (2017). J. Food Drug Anal. 25, 84–92.  CrossRef CAS PubMed Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds