research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Assembly of two novel coordination polymers by selecting ditopic or chelating auxiliary ligands with naphthalene-2,6-di­carb­­oxy­lic acid: synthesis, structure and luminescence sensing

aSchool of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224051, People's Republic of China, and bSchool of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, People's Republic of China
*Correspondence e-mail: xueys1988@163.com, zhangjun@ahjzu.edu.cn

Edited by I. D. Williams, Hong Kong University of Science and Technology, Hong Kong (Received 21 April 2020; accepted 16 November 2020; online 24 November 2020)

The FeIII ion as a ubiquitous metal plays a key role in biochemical processes. Iron deficiency or excess in the human body can induce various diseases. Thus, effective detection of the FeIII ion has been deemed an issue of focus. To develop more crystalline chemical sensors for the selective detection of Fe3+, two novel two-dimensional (2D) coordination polymers, namely, poly[[[μ-bis­(pyridin-4-yl)amine-κ2N:N′](μ-naphthalene-2,6-di­carboxyl­ato-κ2O2:O6)zinc(II)] 0.5-hy­drate], {[Zn(C12H6O4)(C10H9N3)]·0.5H2O}n, 1, and poly[(4,4′-dimethyl-2,2′-bi­pyridine-κ2N,N′)(μ-naphthalene-2,6-di­carboxyl­ato-κ2O2:O6)hemi(μ-naphthalene-2,6-di­carb­oxy­lic acid-κ2O2:O6)copper(II)] [Cu(C12H6O4)(C12H12N2)(C12H8O4)0.5]n, 2, have been prepared using solvothermal methods. Single-crystal X-ray diffraction analysis shows that com­pound 1 is an undulating twofold inter­penetrated 2D (4,4)-sql network and com­pound 2 is a twofold inter­penetrated 2D honeycomb-type network with a (6,3)-hcb topology. In addition, 1 exhibits highly selective sensing for the Fe3+ ion.

1. Introduction

Over the past few decades, coordination polymers (CPs) have undergone rapid development as a special branch of crystalline porous materials, owing to their fascinating structural diversities, as well as their extensive applications, such as catalysis, magnetism, gas separation, proton conductivity and mol­ecular recognition (Vellingiri et al., 2017[Vellingiri, K., Philip, L. & Kim, K.-H. (2017). Coord. Chem. Rev. 353, 159-179.]; Park et al., 2018[Park, H. D., Dincă, M. & Román-Leshkov, Y. (2018). J. Am. Chem. Soc. 140, 10669-10672.]; Wang et al., 2019[Wang, H.-Y., Su, J., Ma, J.-P., Yu, F., Leong, C.-F., D'Alessandro, D. M., Kurmoo, M. & Zuo, J.-L. (2019). Inorg. Chem. 58, 8657-8664.]; Kong et al., 2017[Kong, C., Du, H., Chen, L. & Chen, B. (2017). Energy Environ. Sci. 10, 1812-1819.]; Zhang et al., 2018[Zhang, J., Bai, H.-J., Ren, Q., Luo, H.-B., Ren, X.-M., Tian, Z.-F. & Lu, S. (2018). ACS Appl. Mater. Interfaces, 10, 28656-28663.]; Yabushita et al., 2016[Yabushita, M., Li, P., Bernales, V., Kobayashi, H., Fukuoka, A., Gagliardi, L., Farha, O. K. & Katz, A. (2016). Chem. Commun. 52, 7094-7097.]). Among the reported works, the self-assembly of CPs with desirable structures and functionalities using suitable organic ligands has proved to be an effective route (Xue et al., 2019[Xue, Y.-S., Cheng, W., Cao, J.-P. & Xu, Y. (2019). Chem. Asian J. 14, 1949-1957.]). For example, rigid carb­oxy­lic acids as bridging ligands have been used extensively to construct robust CPs, owing to their structural predictability and miscellaneous coordination modes (Xue et al., 2017[Xue, Y.-S., Tan, X., Zhou, M., Mei, H. & Xu, Y. (2017). Dalton Trans. 46, 16623-16630.]; Wong-Foy et al., 2007[Wong-Foy, A.-G., Lebel, O. & Matzger, A.-J. (2007). J. Am. Chem. Soc. 129, 15740-15741.]; Horcajada et al., 2007[Horcajada, P., Surblé, S., Serre, C., Hong, D.-Y., Seo, Y.-K., Chang, J.-S., Grenèche, J., Margiolaki, I. & Férey, G. (2007). Chem. Commun. pp. 2820-2822.]; Lin et al., 2006[Lin, X., Jia, J., Zhao, X., Thomas, K.-M., Blake, A.-J., Walker, G.-S., Champness, N.-R., Hubberstey, P. & Schröder, M. (2006). Angew. Chem. Int. Ed. 45, 7358-7364.], 2009[Lin, X., Telepeni, I., Blake, A.-J., Dailly, A., Brown, C.-M., Simmons, J.-M., Zoppi, M., Walker, G.-S., Thomas, K.-M., Mays, T.-J., Hubberstey, P., Champness, N.-R. & Schröder, M. (2009). J. Am. Chem. Soc. 131, 2159-2171.]). Currently, we have been inter­ested in employing the rigid carboxyl­ate ligand naphthlalene-2,6-di­carboxyl­ate, because some reported studies have indicated that CPs could exhibit the characteristics of enhanced lifetime, fluorescence intensity and quantum efficiencies when constructed from organic ligands containing π-electron-rich moieties (Yang et al., 2015[Yang, J., Wang, Z., Hu, K.-L., Li, Y.-S., Feng, J.-F., Shi, J.-L. & Gu, J.-L. (2015). Appl. Mater. Interfaces, 7, 11956-11964.]; Nagarkar et al., 2016[Nagarkar, S. S., Desai, A. V. & Ghosh, S. K. (2016). CrystEngComm, 18, 2994-3007.]; Hu et al., 2016[Hu, Y.-L., Ding, M., Liu, X.-Q., Sun, L.-B. & Jiang, H.-L. (2016). Chem. Commun. 52, 5734-5737.]). In addition, multi-N-heterocyclic ligands as auxiliary linkers have been widely used to construct novel CPs due to their greater flexibility com­pared with a single ligand. There exists a coordination com­ple­mentarity or com­petition relationship relating to the com­bination of N-donor and carboxyl­ate ligands, which influences the charge density distribution (Zhu et al., 2017[Zhu, Z., Cui, L.-S., Fan, C.-B., Zhang, X.-Y., Zhang, D.-M., Jin, F. & Fan, Y.-H. (2017). Polyhedron, 133, 374-382.]; Zhang et al., 2015[Zhang, H.-M., Yang, J., Liu, Y.-Y., Kang, D.-W. & Ma, J.-F. (2015). CrystEngComm, 17, 3181-3196.]). Moreover, the combination of different ligands could significantly increase the structural and functional diversity of CPs. Based on the above considerations, we selected naphthalene-2,6-di­carb­oxy­lic acid (H2L) as a rigid bridging ligand and bis­(pyridin-4-yl)amine (dpa) and 4,4′-dimethyl-2,2′-bi­pyridine (dbp) as auxiliary ligands to produce two polymeric com­pounds, namely, {[Zn(L)dpa)]·0.5H2O}n, 1, and [Cu(L)(dbp)(H2L)0.5]n, 2 (see Scheme 1[link]). Compound 1 shows an undulating twofold inter­penetrated two-dimensional (2D) framework with a (4,4)-sql topology, while com­pound 2 features a twofold inter­penetrated 2D honeycomb-type network with a (6,3)-hcb topology. Furthermore, com­pound 1 displays fluorescence sensing behaviour for Fe3+ in aqueous solution.

2. Experimental

All reagents and solvents were purchased from commercial sources and used without further purification. Powder X-ray diffraction (PXRD) patterns were obtained on a Bruker D8 Advance instrument using Cu Kα radiation (λ = 1.54056 Å). Thermal analyses were conducted on a NETZSCH STA 449 F5 Jupiter thermogravimetric analyzer under an N2 atmos­phere at a heating rate of 10 K min−1. Elemental analyses for C, H and N were conducted on a PerkinElmer 240C Elemental Analyzer. Photoluminescence (PL) spectra were recorded on a PerkinElmer LS 55 Fluorescence Spectrophotometer.

2.1. Synthesis and crystallization

2.1.1. Synthesis of {[Zn(L)dpa)]·0.5H2O}n, 1

A mixture of Zn(NO3)2·6H2O (0.035 g, 0.12 mmol), H2L (0.012 g, 0.06 mmol), dpa (0.010 g, 0.06 mmol), di­methyl­formamide (DMF; 1 ml), H2O (2 ml) and 2 M HNO3 (150 µl) was placed in a glass vial and heated at 120 °C for 2 d. When cooled to room tem­per­ature, colourless block-shaped crystals were filtered off, washed with EtOH and dried in air, yielding pure crystals (19% yield based on H2L). Elemental analysis calculated (%) for C22H16N3O4.5Zn: C 57.69, H 3.48, N 9.17; found: C 56.39, H 3.65, N 8.86.

2.1.2. Synthesis of [Cu(L)(dbp)(H2L)0.5]n, 2

A mixture of Cu(NO3)2·3H2O (0.035 g, 0.15 mmol), H2L (0.012 g, 0.06 mmol), dbp (0.010 g, 0.05 mmol), DMF (3 ml) and 2 M HNO3 solution (150 µl) was added to a glass vial and kept at 120 °C for 2 d. Dark-blue block-shaped crystals were obtained by filtration after cooling to room temperature for 12 h, and then washed with EtOH several times. The resultant products were dried in an oven at 50 °C for 6 h. Single crystals of 2 were collected in ca 23% yield based on H2L. Elemental analysis calculated (%) for C30H22CuN2O6: C 63.21, H 3.89, N 4.91; found: C 62.32, H 4.15, N 4.77.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. In com­pound 1, the H atoms of the water mol­ecule were located in difference Fourier maps and refined using a riding-model approximation, with O—H distances fixed at 0.85 Å and Uiso(H) = 1.5Ueq(O). The other H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for pyridyl and phenyl H atoms. In com­pound 2, the disordered atoms of the naphthyl ring were split over two sites

[Scheme 1]
(C27/C28/C29/C30 and C27A/C28A/C29A/C30A), with an occupancy ratio of 0.90:0.10 (Fig. S1 in the supporting information), and some C—C bond lengths of the naphthyl ring were restrained, resulting in a better refinement. The H atoms of the protonated carb­oxy­lic acid groups were placed in calculated positions and treated as riding atoms, with O—H distances fixed at 0.84 Å and Uiso(H) = 1.5Ueq(O). The other H atoms were placed in geometrically idealized positions and treated as riding atoms, with C—H = 0.95 Å for pyridyl and phenyl H atoms, and N—H = 0.86 Å for the amine group. The final formula was derived from crystallographic data com­bined with elemental and thermogravimetric analysis (TGA) data. Full details of the refinements can be found in the embedded instruction files in the CIF.

Table 1
Experimental details

Experiments were carried out with Mo Kα radiation using a Bruker APEXII CCD diffractometer. Absorption was corrected for by multi-scan methods (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]). H-atom parameters were constrained.

  1 2
Crystal data
Chemical formula [Zn(C12H6O4)(C10H9N3)]·0.5H2O [Cu(C12H6O4)(C12H12N2)(C12H8O4)0.5]
Mr 459.75 570.03
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}]
Temperature (K) 298 150
a, b, c (Å) 11.0556 (10), 9.5218 (9), 18.2923 (17) 11.0642 (4), 11.1234 (4), 11.6697 (4)
α, β, γ (°) 90, 100.732 (3), 90 61.912 (1), 86.182 (1), 80.602 (1)
V3) 1891.9 (3) 1249.97 (8)
Z 4 2
μ (mm−1) 1.34 0.92
Crystal size (mm) 0.15 × 0.11 × 0.1 0.12 × 0.11 × 0.1
 
Data collection
Tmin, Tmax 0.608, 0.746 0.652, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 39472, 3350, 3020 30448, 5778, 4537
Rint 0.034 0.024
(sin θ/λ)max−1) 0.596 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.063, 1.08 0.026, 0.065, 0.79
No. of reflections 3350 5778
No. of parameters 283 401
No. of restraints 6 33
Δρmax, Δρmin (e Å−3) 0.22, −0.31 0.32, −0.32
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

2.3. Sensing experiments

To investigate the potential of com­pound 1 for detecting ions, sensing experiments were performed as follows (Chen et al., 2019[Chen, Z.-L., Dong, Y., Liu, Q.-W., Bian, R.-R., Cheng, W.-W., Xue, Y.-S. & Liu, M.-P. (2019). Transition Met. Chem. 44, 445-454.]). A sample (10 mg) of com­pound 1 was ground and dispersed in aqueous solutions (3.0 ml) of metal salts (i.e. Na+, K+, Ca2+, Mg2+, Ba2+, Zn2+, Co2+, Ni2+, Cu2+, Cd2+, Hg2+, Al3+, Cr3+ and Fe3+) using the ultrasonic method to obtain a suspension, and then tested using a fluorescence spectrophotometer. In addition, a com­parative experiment was performed to evaluate the anti-inter­ference ability of com­pound 1.

3. Results and discussion

3.1. Structure description of com­pound 1

Single-crystal X-ray analysis revealed that com­pound 1 is a 2D inter­penetrating CP with a 44-sql topology structure. Compound 1 crystallizes in the monoclinic space group P21/n (No. 14) and each asymmetric unit contains one crystallographically independent Zn atom, one fully deprotonated naphthalene-2,6-di­carboxyl­ate (L2−) ligand, one bis­(pyridin-4-yl)amine (dpa) ligand and one guest water mol­ecule (half-occupied). As shown in Fig. 1[link], the Zn1 centre exhibits a tetra­hedral {ZnN2O2} configuration, four-coordinated by two N atoms of two dpa ligands and two O atoms from two monodentate carboxyl­ate groups of two different L2− ligands (Table 2[link]). The X—Zn—X (X = O and N) angles range from 96.56 (6) to 117.27 (7)° and the τ4 geometry index for Zn1 is 0.892, indicating that the tetra­hedral geometry is slightly distorted (Addison et al., 1981[Addison, A. W., Hendriks, H. M., Reedijk, J. & Thompson, L. K. (1981). Inorg. Chem. 20, 103-110.]).

Table 2
Selected geometric parameters (Å, °) for 1[link]

Zn1—O2i 1.9520 (14) Zn1—N1 2.0016 (16)
Zn1—O4 1.9450 (14) Zn1—N3ii 2.0365 (16)
       
O2i—Zn1—N1 116.94 (7) C1—O2—Zn1iii 112.95 (13)
O2i—Zn1—N3ii 96.56 (6) C12—O4—Zn1 123.10 (14)
O4—Zn1—O2i 108.14 (7) C13—N1—Zn1 117.71 (13)
O4—Zn1—N1 111.28 (7) C17—N1—Zn1 126.31 (13)
O4—Zn1—N3ii 105.17 (7) C20—N3—Zn1iv 126.81 (13)
N1—Zn1—N3ii 117.27 (7) C21—N3—Zn1iv 115.34 (13)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x-1, y, z].
[Figure 1]
Figure 1
The coordination environment of the zinc centre in 1, drawn with 50% probability displacement ellipsoids. [Symmetry codes: (i) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (ii) x + 1, y, z.]

Each L2− ligand in com­pound 1 is com­pletely deprotonated and connects two Zn atoms adopting a monodentate coordination mode to form one-dimensional (1D) [Zn(L)]n chains. The Zn atoms are arranged in a zigzag manner in these chains, with a Zn⋯Zn separation of 12.7691 (9) Å (Fig. 2[link]a). The dpa ligands occupy the remaining coordination sites of the Zn atoms to form 1D [Zn(dpa)]n chains, and the Zn atoms are arranged in a linear fashion (Fig. 2[link]b). The [Zn(dpa)]n chains are inclined to the propagation direction of the [Zn(L)]n chain, forming a 2D undulating 44-sql network (Fig. 2[link]c). There exists one kind of window with a size of ca 11.1 × 12.8 Å based on the diagonal Zn⋯Zn distance, which has enough empty space to accommodate a second network. Thus, each 2D network is further inter­penetrated, resulting in a twofold inter­penetrated structure (Fig. 3[link]), which contributes to the stabilization of the framework.

[Figure 2]
Figure 2
The 2D layer structure of 1, viewed along (a) the a, (b) the c and (c) the b direction.
[Figure 3]
Figure 3
View of the twofold inter­penetrating network of 1 along the b-axis direction.

3.2. Structure description of com­pound 2

Compound 2 was obtained using a similar synthetic route to that of 1, but with the auxiliary ligand changed from dpa to 4,4′-dimethyl-2,2′-bi­pyridine (dbp). An X-ray diffraction study revealed that com­pound 2 crystallizes in the triclinic space group P[\overline{1}] (No. 2). As shown in Fig. 4[link], the copper centre is five-coordinated by three O atoms of the carboxyl groups of two fully deprotonated L2− ligands (O3 and O5) and one fully protonated H2L ligand (O1), and by two N atoms of one dbp ligand (N1 and N2), forming a slightly distorted square-pyramidal configuration (Table 3[link]).

Table 3
Selected geometric parameters (Å, °) for 2[link]

Cu1—O1 2.3327 (12) Cu1—N1 2.0176 (12)
Cu1—O3 1.9359 (11) Cu1—N2 1.9976 (13)
Cu1—O5 1.9614 (11) O1—C13 1.2286 (19)
       
O3—Cu1—O1 101.39 (5) N2—Cu1—N1 80.96 (5)
O3—Cu1—O5 92.57 (5) C13—O1—Cu1 119.56 (12)
O3—Cu1—N1 90.26 (5) C19—O3—Cu1 127.62 (11)
O3—Cu1—N2 171.05 (5) C25—O5—Cu1 109.74 (10)
O5—Cu1—O1 93.44 (5) C1—N1—Cu1 126.80 (12)
O5—Cu1—N1 162.09 (5) C5—N1—Cu1 114.30 (10)
O5—Cu1—N2 95.25 (5) C6—N2—Cu1 115.22 (10)
N1—Cu1—O1 103.33 (5) C10—N2—Cu1 126.59 (11)
N2—Cu1—O1 82.52 (5)    
[Figure 4]
Figure 4
The coordination environment of the copper centre in 2, drawn with 50% probability displacement ellipsoids.

Compound 2 is a twofold inter­penetrated 2D honeycomb network. Successive Cu centres are bridged by three organic ligands to form a hexa­gon with dimensions 15.5 × 29.4 Å in a single net (Fig. 5[link]). Viewed along the b-axis direction, the network only contains rectangular rings, and the dbp ligands are inserted into the rectangular rings like guest mol­ecules. Each rectangular ring links six adjacent rings by sharing four edges to generate a 2D layer architecture. When nets were inter­penetrated, the ring windows were almost com­pletely blocked (Fig. 6[link]). Employing the TOPOS program (Blatov, 2004[Blatov, V. A. (2004). TOPOS. Samara State University, Samara, Russian Federation.]), com­­pound 2 can be simplified as a uninodal 3-con­nected net, which is known as a hcb net with a {63} point symbol from a topological viewpoint.

[Figure 5]
Figure 5
View of the 2D hexa­gonal grid of com­pound 2 along the [111] direction.
[Figure 6]
Figure 6
View of the twofold inter­penetrating network of 2 along the b-axis direction.

3.3. Thermal stability of com­pounds 1 and 2

The thermal stabilities of com­pounds 1 and 2 were measured under a nitro­gen atmosphere and are shown in Fig. 7[link]. As can be seen from the TG curve, com­pound 1 showed a weight loss of 1.88% at 20–240 °C, which was assigned to the guest water mol­ecules (calculated 1.57%). Higher temperatures give rise to a collapse of the framework and decom­position of the organic ligands. The final remaining weight corresponds to a likely formation of ZnO. Thermogravimetric analysis (TGA) shows com­pound 2 to be stable up to 400 °C. Above this temperature, the lattice structure decom­posed with an abrupt weight loss. The final mass remnant corresponds to CuO.

[Figure 7]
Figure 7
TGA curves for com­pounds 1 and 2.

3.4. Fluorescence sensing of the Fe3+ ion

CPs with d10 closed-shell metal centres have been widely investigated due to their excellent luminescence properties (Xue et al., 2012[Xue, Y.-S., Jin, F.-Y., Zhou, L., Liu, M.-P., Xu, Y., Du, H.-B., Fang, M. & You, X.-Z. (2012). Cryst. Growth Des. 12, 6158-6164.]). Thus, the luminescence properties of com­pound 1 and free H2L were investigated (Fig. 8[link]). The main emission was located at 383 nm upon excitation at 275 nm for 1. Compared with the emission of free H2L (λem = 410 nm), a blue shift of ca 27 nm was observed. As reported previously, the emission band of the ligand can be assigned to π*–n or π*–π transitions (Zheng et al., 2004[Zheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem. 43, 830-838.]; Allendorf et al., 2009[Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330-1352.]). Because the ZnII ion is difficult to reduce and oxidize due to its d10 electronic configuration, the emission of 1 does not derive from ligand-to-metal charge transfer (LMCT) or metal-to-ligand charge transfer (MLCT). The only reasonable conclusion is that the emissive behaviour of com­pound 1 is attributed to intra­ligand transitions (Ma et al., 2009[Ma, L.-F., Wang, L.-Y., Hu, J.-L., Wang, Y.-Y. & Yang, G.-P. (2009). Cryst. Growth Des. 9, 5334-5342.]; Sun et al., 2013[Sun, D., Yan, Z.-H., Blatov, V.-A., Wang, L. & Sun, D.-F. (2013). Cryst. Growth Des. 13, 1277-1289.]; Wei et al., 2018[Wei, J., Zhou, T., Zuo, Y., Cheng, W.-W., Liu, M.-P., Bian, R.-R., Chen, N.-N., Xue, Y.-S. & Tao, J. (2018). Transition Met. Chem. 43, 529-537.]).

[Figure 8]
Figure 8
Fluorescence spectra for com­pound 1 and free H2L at room temperature.

The potential luminescence sensing of com­pound 1 toward metal ions was explored carefully. We investigated the luminescence properties of com­pound 1 in different aqueous solutions of 0.005 mol l−1 M(NO3)n (M = Na+, K+, Ca2+, Mg2+, Ba2+, Zn2+, Co2+, Ni2+, Cu2+, Cd2+, Hg2+, Al3+, Cr3+ and Fe3+). As shown in Fig. 9[link], the luminescence intensity of 1 is dependent on the metal ion species, especially for Fe3+, which shows a remarkable quenching effect (98.3%). Meanwhile, the Cr3+ ion exhibits a distinct quenching behaviour (68.8%), while the other ions have no or only slight quenching effects on the luminescence intensity of 1. The results indicate that com­pound 1 has a selective luminescence response toward the Fe3+ ion.

[Figure 9]
Figure 9
Fluorescence quenching efficiency histogram of com­pound 1 upon exposure to 0.005 mol l−1 aqueous solutions of different metal ions (the insert is the emission spectrum).

To investigate the sensing sensitivity of com­pound 1 for the Fe3+ ion, concentration-dependent luminescence measurements were performed with a series of suspensions. Obviously, the emission intensities were gradually quenched when the concentrations of Fe3+ were increased from 1 × 10−6 to 1 × 10−2 mol l−1, and the intensity showed a prominent quenching effect (94.4%) with the addition of 10−3 mol l−1 Fe3+ ion (Fig. 10[link]). The quenching efficiency was defined by (I0I)/I0 × 100%, where the values I0 and I are the luminescence intensities of the suspension before and after the introduction of Fe3+, respectively. The qu­anti­tative relationship was further analysed by employing the Stern–Volmer (S–V) equation (I0/I = KSV [Fe3+] + 1) between the concentration of the Fe3+ ion and the quenching effect. Here, KSV is the quenching constant and [Fe3+] refers to the molar concentration of the Fe3+ ion. The S–V plots exhibited an almost linear correlation (R2 = 0.9793) at low concentrations, and the KSV value was 1.76 × 104 M−1 (Fig. 11[link]).

[Figure 10]
Figure 10
Dependence of the quenching efficiency on the concentration of Fe3+. The insert is the emission spectrum of com­pound 1 on exposure to different concentrations of Fe3+.
[Figure 11]
Figure 11
The Stern–Volmer plot of com­pound 1 versus Fe3+ concentration.

Additionally, metal-ion anti-inter­ference experiments were conducted to investigate the selectivity for Fe3+ in the presence of various metal ions. As shown in Fig. 12[link], the luminescence intensity of 1 in Fe3+Mn+ mixed solution was almost unchanged com­pared to that of 1 exposed to the Fe3+ ion (M = Na+, K+, Ca2+, Mg2+, Ba2+, Zn2+, Co2+, Ni2+, Cd2+, Hg2+, Cu2+, Al3+ and Cr3+). The results indicate that com­pound 1 can recognize the Fe3+ ion effectively in aqueous solution and has a good anti-inter­ference recognition ability.

[Figure 12]
Figure 12
Selective detection of Fe3+ on com­pound 1 in the presence of other metal ions.

According to the literature, the mechanism of luminescence quenching for metal ions mainly have the following inter­pretations: (i) the structure collapsed when the sample was immersed in metal ion solution; (ii) resonance energy transfer could occur between the luminophores of the CPs and metal ions (Hou et al., 2016[Hou, B.-L., Tian, D., Liu, J., Dong, L.-Z., Li, S.-L., Li, D.-S. & Lan, Y.-Q. (2016). Inorg. Chem. 55, 10580-10586.]; Pan et al., 2019[Pan, C.-D., Wang, J., Xu, J.-Q., Zhang, K.-F. & Wang, X.-W. (2019). Acta Cryst. C75, 979-984.]). To realize the possible quenching mechanism of the luminescence quenching behaviour for the Fe3+ ion, investigative tests were performed. As shown in Fig. 13[link](a), the PXRD pattern of 1 was consistent with that after immersion in Fe3+ ion solution, which indicated that the luminescence quenching effect was not due to the collapse of the framework. Because no new peaks appear in the PXRD patterns, ion exchange between the Fe3+ ions and ZnII centres in com­pound 1 may not be involved during the quenching process (Shi et al., 2018[Shi, Y., Ye, J., Qi, Y., Akram, M. A., Rauf, A. & Ning, G. (2018). Dalton Trans. 47, 17479-17485.]). To clearly understand the luminescence quenching mechanism, the UV–Vis spectra for M(NO3)x (0.01 mol l−1) were measured. As shown in Fig. 14[link], the absorption band of the Fe3+ ion solution has an overlap with the emission spectrum of 1. However, other metal ions have no obvious overlap. The results show that resonance energy transfer exists in the selective fluorescence quenching for Fe3+.

[Figure 13]
Figure 13
Powder X-ray diffraction (PXRD) patterns of com­pound (a) 1 and (b) 2, showing (a) calculated, (b) as-synthesized and (c) after sensing Fe3+.
[Figure 14]
Figure 14
The absorbance spectra of various metal ions.

To confirm that luminescence quenching occurred at the external surfaces of the crystals, recycling experiments were carried out. Compound 1 could be separated by centrifugation after detection toward the Fe3+ ion, then cleaned and recovered for luminescence sensing (Fig. 15[link]). The results revealed that the intensity of recovered 1 remained almost unchanged and the quenching effect of the Fe3+ ion on recovered 1 was still obvious after two cycles. In the third cycle, the fluorescence intensity of recovered 1 was slightly reduced, which could be due to the loss of sample in the recycling process.

[Figure 15]
Figure 15
Comparison of (a) the fluorescence intensity and (b) the quenching efficiency of 1 for Fe3+ over three cycles.

4. Conclusion

In this work, two CPs have been synthesized, employing the solvothermal method, based on the rigid ligand naphthalene-2,6-di­carb­oxy­lic acid (H2L) and an auxiliary ligand (ditopic or chelating N-donor linker). Compound 1 is an undulating twofold inter­penetrated 2D framework with a (4,4)-sql topology. Compound 2 shows a twofold inter­penetrated 2D honeycomb-type network with a (6,3)-hcb topology. Moreover, luminescence sensing experiments show that com­pound 1 is a good chemical sensor and exhibits quenching responses for Fe3+ with high selectivity and sensitivity. The results demonstrate that organic ligands containing π-electron-rich moieties (e.g. H2L) are suitable for constructing luminescent CPs with excellent luminescence sensing performances. Future studies along these lines will be focused on exploring new sensitive luminescent sensors based on H2L.

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[[[µ-bis(pyridin-4-yl)amine-κ2N:N'](µ-naphthalene-2,6-dicarboxylato-κ2O2:O6)zinc(II)] 0.5-hydrate] (1) top
Crystal data top
[Zn(C12H6O4)(C10H9N3)]·0.5H2OF(000) = 940
Mr = 459.75Dx = 1.614 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.0556 (10) ÅCell parameters from 9047 reflections
b = 9.5218 (9) Åθ = 2.9–27.5°
c = 18.2923 (17) ŵ = 1.34 mm1
β = 100.732 (3)°T = 298 K
V = 1891.9 (3) Å3Block, colourless
Z = 40.15 × 0.11 × 0.1 mm
Data collection top
Bruker APEXII CCD
diffractometer
3020 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 25.1°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.608, Tmax = 0.746k = 1111
39472 measured reflectionsl = 2121
3350 independent reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0282P)2 + 1.3393P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3350 reflectionsΔρmax = 0.22 e Å3
283 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.81921 (2)0.68197 (2)0.54500 (2)0.02175 (8)
O10.21828 (14)0.06770 (17)0.09370 (9)0.0417 (4)
O20.39703 (14)0.04452 (16)0.11804 (8)0.0378 (4)
O30.66253 (18)0.74991 (17)0.38502 (10)0.0544 (5)
O40.79147 (14)0.59343 (17)0.44749 (8)0.0404 (4)
N10.66614 (14)0.77501 (17)0.56474 (9)0.0247 (4)
N20.32981 (14)0.96120 (18)0.58118 (10)0.0297 (4)
H20.33731.04670.59650.036*
N30.02952 (14)0.80532 (16)0.54781 (9)0.0233 (3)
C10.32588 (19)0.0580 (2)0.12630 (11)0.0287 (5)
C20.38160 (19)0.1735 (2)0.17746 (11)0.0273 (4)
C30.3040 (2)0.2796 (2)0.19696 (12)0.0333 (5)
H30.21950.27470.17940.040*
C40.35173 (19)0.3888 (2)0.24119 (12)0.0344 (5)
H40.29950.45750.25380.041*
C50.47955 (18)0.3988 (2)0.26806 (11)0.0265 (4)
C60.55852 (18)0.2919 (2)0.24994 (11)0.0260 (4)
C70.50535 (19)0.1799 (2)0.20385 (11)0.0282 (4)
H70.55590.10920.19130.034*
C80.68630 (19)0.2995 (2)0.27878 (11)0.0303 (5)
H80.73850.23060.26640.036*
C90.73362 (19)0.4070 (2)0.32455 (11)0.0303 (5)
H90.81730.40870.34470.036*
C100.65609 (19)0.5159 (2)0.34153 (11)0.0279 (4)
C110.53275 (19)0.5117 (2)0.31338 (11)0.0305 (5)
H110.48270.58440.32420.037*
C120.7065 (2)0.6314 (2)0.39428 (11)0.0308 (5)
C130.56050 (18)0.7026 (2)0.54888 (12)0.0293 (4)
H130.56460.60960.53390.035*
C140.44746 (18)0.7559 (2)0.55314 (12)0.0289 (4)
H140.37760.69980.54160.035*
C150.43748 (17)0.8948 (2)0.57481 (11)0.0238 (4)
C160.54713 (18)0.9705 (2)0.59323 (12)0.0320 (5)
H160.54581.06290.60950.038*
C170.65626 (18)0.9087 (2)0.58727 (12)0.0311 (5)
H170.72780.96180.59940.037*
C180.21066 (16)0.90947 (19)0.56635 (11)0.0229 (4)
C190.12665 (18)0.9618 (2)0.60736 (12)0.0301 (5)
H190.14941.03380.64150.036*
C200.01048 (17)0.9069 (2)0.59719 (11)0.0294 (5)
H200.04370.94180.62600.035*
C210.04987 (17)0.7614 (2)0.50539 (11)0.0273 (4)
H210.02300.69410.46910.033*
C220.16804 (18)0.8098 (2)0.51240 (11)0.0276 (4)
H220.21920.77630.48130.033*
O1W0.4755 (6)0.8144 (8)0.2542 (4)0.116 (2)0.5
H1WA0.54930.83720.27240.174*0.5
H1WB0.46480.84200.20930.174*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01634 (12)0.02300 (13)0.02494 (13)0.00070 (9)0.00132 (8)0.00038 (9)
O10.0335 (9)0.0397 (9)0.0477 (9)0.0085 (7)0.0031 (7)0.0056 (7)
O20.0372 (8)0.0327 (8)0.0404 (9)0.0018 (7)0.0010 (7)0.0118 (7)
O30.0815 (14)0.0235 (9)0.0513 (11)0.0046 (9)0.0058 (9)0.0070 (8)
O40.0347 (8)0.0510 (10)0.0324 (8)0.0011 (7)0.0017 (7)0.0151 (7)
N10.0172 (8)0.0250 (9)0.0318 (9)0.0006 (7)0.0043 (7)0.0008 (7)
N20.0189 (8)0.0202 (8)0.0509 (11)0.0019 (7)0.0092 (7)0.0083 (8)
N30.0192 (8)0.0243 (9)0.0265 (8)0.0001 (6)0.0044 (6)0.0009 (7)
C10.0349 (12)0.0281 (11)0.0234 (10)0.0091 (9)0.0059 (9)0.0010 (9)
C20.0316 (11)0.0259 (11)0.0241 (10)0.0054 (8)0.0044 (8)0.0003 (8)
C30.0268 (11)0.0356 (12)0.0358 (12)0.0013 (9)0.0015 (9)0.0037 (10)
C40.0305 (11)0.0330 (12)0.0390 (12)0.0063 (9)0.0047 (9)0.0069 (10)
C50.0299 (11)0.0247 (10)0.0250 (10)0.0011 (8)0.0048 (8)0.0004 (8)
C60.0279 (10)0.0251 (10)0.0246 (10)0.0010 (8)0.0043 (8)0.0007 (8)
C70.0327 (11)0.0234 (10)0.0282 (10)0.0009 (8)0.0053 (8)0.0033 (8)
C80.0303 (11)0.0281 (11)0.0319 (11)0.0031 (9)0.0037 (9)0.0024 (9)
C90.0301 (11)0.0290 (11)0.0296 (11)0.0044 (9)0.0003 (8)0.0003 (9)
C100.0368 (11)0.0241 (10)0.0218 (10)0.0067 (9)0.0025 (8)0.0008 (8)
C110.0375 (12)0.0247 (11)0.0288 (11)0.0024 (9)0.0051 (9)0.0031 (9)
C120.0366 (12)0.0280 (11)0.0284 (11)0.0099 (9)0.0078 (9)0.0042 (9)
C130.0228 (10)0.0203 (10)0.0445 (12)0.0006 (8)0.0056 (9)0.0012 (9)
C140.0192 (10)0.0206 (10)0.0468 (12)0.0041 (8)0.0056 (9)0.0001 (9)
C150.0188 (9)0.0246 (10)0.0287 (10)0.0008 (8)0.0060 (8)0.0014 (8)
C160.0247 (10)0.0250 (11)0.0466 (13)0.0033 (8)0.0072 (9)0.0123 (10)
C170.0186 (10)0.0310 (11)0.0429 (12)0.0054 (8)0.0036 (9)0.0084 (9)
C180.0183 (9)0.0187 (9)0.0315 (10)0.0018 (7)0.0039 (8)0.0020 (8)
C190.0229 (10)0.0271 (11)0.0400 (12)0.0006 (8)0.0050 (9)0.0142 (9)
C200.0202 (10)0.0333 (11)0.0360 (11)0.0022 (8)0.0087 (8)0.0102 (9)
C210.0236 (10)0.0288 (11)0.0294 (10)0.0011 (8)0.0050 (8)0.0086 (9)
C220.0229 (10)0.0316 (11)0.0303 (10)0.0022 (8)0.0098 (8)0.0062 (9)
O1W0.098 (4)0.135 (5)0.117 (5)0.026 (4)0.023 (3)0.073 (4)
Geometric parameters (Å, º) top
Zn1—O2i1.9520 (14)C6—C81.415 (3)
Zn1—O41.9450 (14)C7—H70.9300
Zn1—N12.0016 (16)C8—H80.9300
Zn1—N3ii2.0365 (16)C8—C91.363 (3)
O1—C11.231 (2)C9—H90.9300
O2—Zn1iii1.9519 (14)C9—C101.416 (3)
O2—C11.280 (3)C10—C111.365 (3)
O3—C121.228 (3)C10—C121.500 (3)
O4—C121.273 (3)C11—H110.9300
N1—C131.341 (3)C13—H130.9300
N1—C171.349 (3)C13—C141.364 (3)
N2—H20.8600C14—H140.9300
N2—C151.372 (2)C14—C151.391 (3)
N2—C181.385 (2)C15—C161.397 (3)
N3—Zn1iv2.0364 (16)C16—H160.9300
N3—C201.341 (3)C16—C171.365 (3)
N3—C211.342 (2)C17—H170.9300
C1—C21.500 (3)C18—C191.391 (3)
C2—C31.413 (3)C18—C221.387 (3)
C2—C71.365 (3)C19—H190.9300
C3—H30.9300C19—C201.367 (3)
C3—C41.362 (3)C20—H200.9300
C4—H40.9300C21—H210.9300
C4—C51.410 (3)C21—C221.369 (3)
C5—C61.420 (3)C22—H220.9300
C5—C111.417 (3)O1W—H1WA0.8499
C6—C71.418 (3)O1W—H1WB0.8507
O2i—Zn1—N1116.94 (7)C8—C9—C10120.37 (19)
O2i—Zn1—N3ii96.56 (6)C10—C9—H9119.8
O4—Zn1—O2i108.14 (7)C9—C10—C12120.70 (18)
O4—Zn1—N1111.28 (7)C11—C10—C9119.91 (18)
O4—Zn1—N3ii105.17 (7)C11—C10—C12119.27 (19)
N1—Zn1—N3ii117.27 (7)C5—C11—H11119.4
C1—O2—Zn1iii112.95 (13)C10—C11—C5121.27 (19)
C12—O4—Zn1123.10 (14)C10—C11—H11119.4
C13—N1—Zn1117.71 (13)O3—C12—O4125.7 (2)
C13—N1—C17115.77 (16)O3—C12—C10119.68 (19)
C17—N1—Zn1126.31 (13)O4—C12—C10114.61 (19)
C15—N2—H2115.5N1—C13—H13117.7
C15—N2—C18128.90 (17)N1—C13—C14124.51 (19)
C18—N2—H2115.5C14—C13—H13117.7
C20—N3—Zn1iv126.81 (13)C13—C14—H14120.3
C20—N3—C21116.44 (16)C13—C14—C15119.48 (18)
C21—N3—Zn1iv115.34 (13)C15—C14—H14120.3
O1—C1—O2124.02 (19)N2—C15—C14125.36 (17)
O1—C1—C2119.68 (19)N2—C15—C16118.00 (17)
O2—C1—C2116.27 (18)C14—C15—C16116.62 (17)
C3—C2—C1118.89 (18)C15—C16—H16120.0
C7—C2—C1121.43 (19)C17—C16—C15119.91 (19)
C7—C2—C3119.66 (18)C17—C16—H16120.0
C2—C3—H3119.7N1—C17—C16123.68 (18)
C4—C3—C2120.60 (19)N1—C17—H17118.2
C4—C3—H3119.7C16—C17—H17118.2
C3—C4—H4119.6N2—C18—C19118.24 (17)
C3—C4—C5120.71 (19)N2—C18—C22124.58 (17)
C5—C4—H4119.6C22—C18—C19117.18 (17)
C4—C5—C6119.36 (18)C18—C19—H19120.2
C4—C5—C11122.33 (19)C20—C19—C18119.61 (18)
C11—C5—C6118.32 (18)C20—C19—H19120.2
C7—C6—C5118.25 (18)N3—C20—C19123.46 (18)
C8—C6—C5119.39 (18)N3—C20—H20118.3
C8—C6—C7122.35 (18)C19—C20—H20118.3
C2—C7—C6121.41 (19)N3—C21—H21118.1
C2—C7—H7119.3N3—C21—C22123.79 (18)
C6—C7—H7119.3C22—C21—H21118.1
C6—C8—H8119.7C18—C22—H22120.4
C9—C8—C6120.67 (19)C21—C22—C18119.29 (18)
C9—C8—H8119.7C21—C22—H22120.4
C8—C9—H9119.8H1WA—O1W—H1WB104.5
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x1/2, y+1/2, z1/2; (iv) x1, y, z.
Poly[(4,4'-dimethyl-2,2'-bipyridine-κ2N,N')(µ-naphthalene-2,6-dicarboxylato-κ2O2:O6)hemi(µ-naphthalene-2,6-\# dicarboxylic acid-κ2O2:O6)copper(II)] (2) top
Crystal data top
[Cu(C12H6O4)(C12H12N2)(C12H8O4)0.5]Z = 2
Mr = 570.03F(000) = 586
Triclinic, P1Dx = 1.515 Mg m3
a = 11.0642 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1234 (4) ÅCell parameters from 9878 reflections
c = 11.6697 (4) Åθ = 3.0–27.6°
α = 61.912 (1)°µ = 0.92 mm1
β = 86.182 (1)°T = 150 K
γ = 80.602 (1)°Block, blue
V = 1249.97 (8) Å30.12 × 0.11 × 0.1 mm
Data collection top
Bruker APEXII CCD
diffractometer
4537 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 27.6°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.652, Tmax = 0.746k = 1414
30448 measured reflectionsl = 1515
5778 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0014P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.79(Δ/σ)max = 0.001
5778 reflectionsΔρmax = 0.32 e Å3
401 parametersΔρmin = 0.31 e Å3
33 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.62316 (2)0.56483 (2)0.73767 (2)0.01693 (7)
O10.70966 (10)0.37657 (13)0.92661 (12)0.0263 (3)
O20.87286 (11)0.45640 (14)0.95408 (14)0.0326 (3)
H20.8209680.5263490.9392500.049*
O30.56788 (10)0.69878 (13)0.79878 (12)0.0236 (3)
O40.72750 (11)0.66667 (14)0.92574 (13)0.0337 (3)
O50.77943 (9)0.63468 (12)0.67803 (12)0.0216 (3)
O60.68382 (11)0.75759 (13)0.48627 (13)0.0312 (3)
N10.44948 (11)0.53005 (14)0.73974 (14)0.0174 (3)
N20.65250 (11)0.42775 (14)0.67005 (13)0.0154 (3)
C10.34977 (14)0.58882 (19)0.77608 (18)0.0242 (4)
H10.3595920.6454380.8144110.029*
C20.23247 (15)0.5700 (2)0.75975 (18)0.0256 (4)
H2A0.1635720.6131140.7868180.031*
C30.21610 (14)0.48787 (18)0.70374 (17)0.0214 (4)
C40.32009 (13)0.42570 (17)0.66731 (16)0.0178 (4)
H40.3126260.3683050.6291520.021*
C50.43509 (13)0.44826 (17)0.68719 (16)0.0154 (3)
C60.55084 (13)0.38279 (16)0.65519 (15)0.0146 (3)
C70.55744 (14)0.28249 (17)0.61630 (17)0.0187 (4)
H70.4843340.2552660.6040510.022*
C80.67030 (14)0.22102 (18)0.59492 (17)0.0210 (4)
C90.77433 (14)0.26641 (18)0.61288 (17)0.0214 (4)
H90.8535620.2264870.6005570.026*
C100.76149 (13)0.36945 (18)0.64857 (17)0.0196 (4)
H100.8331950.4006380.6584180.024*
C110.08993 (14)0.4658 (2)0.68228 (19)0.0309 (5)
H11A0.0660680.5235730.5906970.046*
H11B0.0308140.4908630.7366850.046*
H11C0.0911760.3686800.7055670.046*
C120.67752 (16)0.1096 (2)0.5554 (2)0.0338 (5)
H12A0.7456350.1171810.4953660.051*
H12B0.6006700.1196460.5123640.051*
H12C0.6909640.0192570.6326170.051*
C130.81920 (15)0.36247 (19)0.94994 (17)0.0242 (4)
C140.90396 (15)0.23282 (19)0.97504 (17)0.0228 (4)
C150.86075 (15)0.13322 (19)0.96017 (17)0.0239 (4)
H150.7774110.1466160.9359550.029*
C161.02769 (15)0.21448 (19)1.01345 (18)0.0260 (4)
H161.0576830.2845841.0230480.031*
C171.10355 (15)0.09404 (19)1.03659 (18)0.0269 (4)
H171.1856460.0806411.0644550.032*
C181.06189 (14)0.00947 (19)1.01977 (17)0.0222 (4)
C190.62418 (15)0.72392 (18)0.87507 (17)0.0216 (4)
C200.55944 (14)0.83489 (17)0.90631 (17)0.0184 (4)
C210.60057 (14)0.84466 (17)1.00953 (16)0.0183 (4)
H210.6655870.7778681.0623170.022*
C220.54924 (13)0.95074 (17)1.03949 (16)0.0162 (3)
C230.46012 (14)0.93163 (18)0.82916 (17)0.0204 (4)
H230.4299020.9239930.7589080.024*
C240.40783 (14)1.03562 (18)0.85546 (17)0.0201 (4)
H240.3415921.1000910.8027920.024*
C250.76658 (14)0.73466 (18)0.56299 (18)0.0198 (4)
C260.92622 (16)0.8442 (2)0.6051 (2)0.0166 (5)0.897 (4)
H260.9260740.7770320.6938910.020*0.897 (4)
C270.8564 (3)0.8372 (3)0.5170 (4)0.0178 (6)0.897 (4)
C280.85907 (18)0.9349 (2)0.3845 (2)0.0196 (5)0.897 (4)
H280.8112750.9291240.3230580.024*0.897 (4)
C290.92936 (16)1.0375 (2)0.34353 (19)0.0205 (5)0.897 (4)
H290.9306561.1017630.2539040.025*0.897 (4)
C301.0009 (2)1.0490 (3)0.4342 (3)0.0159 (6)0.897 (4)
C27A0.864 (2)0.820 (2)0.555 (2)0.018 (8)0.103 (4)
C26A0.8874 (17)0.908 (2)0.454 (2)0.017 (4)0.103 (4)
H26A0.8528260.9143780.3789400.020*0.103 (4)
C30A1.0266 (19)0.983 (2)0.565 (2)0.010 (6)0.103 (4)
C29A1.0072 (15)0.8800 (19)0.678 (2)0.027 (5)0.103 (4)
H29A1.0469090.8624210.7550140.033*0.103 (4)
C28A0.9267 (15)0.799 (2)0.678 (2)0.017 (4)0.103 (4)
H28A0.9089310.7248700.7588180.020*0.103 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01635 (10)0.01852 (12)0.02194 (12)0.00282 (8)0.00001 (8)0.01429 (10)
O10.0265 (6)0.0241 (7)0.0248 (7)0.0032 (5)0.0017 (5)0.0106 (6)
O20.0303 (7)0.0310 (8)0.0434 (9)0.0112 (6)0.0130 (6)0.0264 (8)
O30.0243 (6)0.0254 (7)0.0310 (8)0.0005 (5)0.0025 (5)0.0220 (6)
O40.0338 (7)0.0347 (8)0.0441 (9)0.0135 (6)0.0165 (6)0.0314 (8)
O50.0191 (6)0.0221 (7)0.0277 (8)0.0059 (5)0.0008 (5)0.0141 (6)
O60.0341 (7)0.0300 (8)0.0311 (8)0.0149 (6)0.0078 (6)0.0115 (7)
N10.0171 (6)0.0184 (8)0.0206 (8)0.0010 (6)0.0019 (6)0.0129 (7)
N20.0153 (6)0.0155 (7)0.0168 (8)0.0030 (5)0.0010 (5)0.0087 (6)
C10.0231 (9)0.0287 (11)0.0272 (11)0.0010 (8)0.0024 (7)0.0196 (9)
C20.0182 (8)0.0320 (11)0.0289 (11)0.0016 (7)0.0045 (7)0.0182 (10)
C30.0162 (8)0.0221 (10)0.0211 (10)0.0024 (7)0.0008 (7)0.0063 (8)
C40.0186 (8)0.0161 (9)0.0192 (9)0.0036 (7)0.0003 (7)0.0084 (8)
C50.0160 (7)0.0144 (9)0.0149 (9)0.0016 (6)0.0006 (6)0.0064 (7)
C60.0151 (7)0.0139 (9)0.0145 (9)0.0026 (6)0.0007 (6)0.0062 (7)
C70.0177 (8)0.0168 (9)0.0246 (10)0.0037 (7)0.0016 (7)0.0120 (8)
C80.0243 (9)0.0169 (9)0.0226 (10)0.0019 (7)0.0032 (7)0.0106 (8)
C90.0165 (8)0.0212 (10)0.0271 (10)0.0010 (7)0.0032 (7)0.0132 (9)
C100.0138 (7)0.0229 (10)0.0228 (10)0.0023 (7)0.0009 (7)0.0114 (8)
C110.0167 (8)0.0391 (12)0.0382 (12)0.0052 (8)0.0022 (8)0.0189 (11)
C120.0316 (10)0.0294 (12)0.0529 (14)0.0050 (9)0.0102 (9)0.0307 (11)
C130.0282 (9)0.0276 (11)0.0154 (10)0.0040 (8)0.0014 (7)0.0112 (9)
C140.0253 (9)0.0228 (10)0.0156 (9)0.0023 (7)0.0001 (7)0.0070 (8)
C150.0199 (8)0.0266 (11)0.0193 (10)0.0007 (7)0.0009 (7)0.0070 (9)
C160.0272 (9)0.0252 (11)0.0248 (11)0.0013 (8)0.0023 (8)0.0115 (9)
C170.0210 (9)0.0284 (11)0.0282 (11)0.0019 (8)0.0036 (7)0.0107 (9)
C180.0207 (8)0.0242 (10)0.0178 (9)0.0015 (7)0.0006 (7)0.0073 (8)
C190.0257 (9)0.0190 (10)0.0245 (10)0.0023 (7)0.0007 (7)0.0140 (9)
C200.0206 (8)0.0169 (9)0.0216 (10)0.0045 (7)0.0023 (7)0.0120 (8)
C210.0194 (8)0.0161 (9)0.0199 (9)0.0003 (7)0.0019 (7)0.0092 (8)
C220.0182 (8)0.0154 (9)0.0164 (9)0.0038 (7)0.0010 (6)0.0083 (8)
C230.0235 (8)0.0229 (10)0.0200 (10)0.0040 (7)0.0028 (7)0.0137 (8)
C240.0209 (8)0.0195 (9)0.0211 (10)0.0016 (7)0.0055 (7)0.0112 (8)
C250.0183 (8)0.0192 (10)0.0303 (11)0.0055 (7)0.0049 (7)0.0182 (9)
C260.0163 (9)0.0168 (11)0.0149 (13)0.0009 (8)0.0001 (8)0.0064 (10)
C270.0154 (12)0.0174 (15)0.0260 (19)0.0037 (10)0.0029 (12)0.0145 (13)
C280.0213 (10)0.0252 (12)0.0189 (13)0.0077 (9)0.0019 (9)0.0140 (11)
C290.0210 (10)0.0263 (12)0.0159 (11)0.0077 (8)0.0013 (8)0.0099 (9)
C300.0125 (11)0.0197 (14)0.0208 (13)0.0036 (10)0.0003 (9)0.0134 (11)
C27A0.020 (9)0.015 (9)0.023 (10)0.002 (4)0.008 (5)0.012 (6)
C26A0.022 (7)0.020 (8)0.013 (8)0.007 (6)0.005 (6)0.013 (7)
C30A0.008 (7)0.009 (7)0.017 (7)0.004 (4)0.001 (4)0.009 (5)
C29A0.028 (8)0.030 (9)0.034 (9)0.005 (6)0.003 (6)0.023 (7)
C28A0.016 (5)0.015 (6)0.024 (6)0.008 (4)0.004 (4)0.010 (4)
Geometric parameters (Å, º) top
Cu1—O12.3327 (12)C14—C151.361 (2)
Cu1—O31.9359 (11)C14—C161.422 (2)
Cu1—O51.9614 (11)C15—H150.9500
Cu1—N12.0176 (12)C15—C18i1.421 (2)
Cu1—N21.9976 (13)C16—H160.9500
O1—C131.2286 (19)C16—C171.376 (2)
O2—H20.8400C17—H170.9500
O2—C131.304 (2)C17—C181.405 (2)
O3—C191.2743 (19)C18—C18i1.425 (3)
O4—C191.249 (2)C19—C201.507 (2)
O5—C251.276 (2)C20—C211.372 (2)
O6—C251.234 (2)C20—C231.418 (2)
N1—C11.3370 (19)C21—H210.9500
N1—C51.347 (2)C21—C221.407 (2)
N2—C61.3552 (19)C22—C22ii1.425 (3)
N2—C101.3398 (19)C22—C24ii1.424 (2)
C1—H10.9500C23—H230.9500
C1—C21.387 (2)C23—C241.363 (2)
C2—H2A0.9500C24—H240.9500
C2—C31.388 (2)C25—C271.516 (3)
C3—C41.391 (2)C25—C27A1.518 (9)
C3—C111.513 (2)C26—H260.9500
C4—H40.9500C26—C271.365 (3)
C4—C51.391 (2)C26—C30iii1.422 (3)
C5—C61.482 (2)C27—C281.412 (4)
C6—C71.379 (2)C28—H280.9500
C7—H70.9500C28—C291.365 (3)
C7—C81.389 (2)C29—H290.9500
C8—C91.395 (2)C29—C301.427 (3)
C8—C121.502 (2)C30—C30iii1.405 (5)
C9—H90.9500C27A—C26A1.17 (3)
C9—C101.377 (2)C27A—C28A1.53 (3)
C10—H100.9500C26A—H26A0.9500
C11—H11A0.9800C26A—C30Aiii1.58 (3)
C11—H11B0.9800C30A—C30Aiii1.52 (5)
C11—H11C0.9800C30A—C29A1.31 (3)
C12—H12A0.9800C29A—H29A0.9500
C12—H12B0.9800C29A—C28A1.37 (2)
C12—H12C0.9800C28A—H28A0.9500
C13—C141.497 (2)
O3—Cu1—O1101.39 (5)C15—C14—C16120.62 (16)
O3—Cu1—O592.57 (5)C16—C14—C13120.42 (17)
O3—Cu1—N190.26 (5)C14—C15—H15119.4
O3—Cu1—N2171.05 (5)C14—C15—C18i121.16 (16)
O5—Cu1—O193.44 (5)C18i—C15—H15119.4
O5—Cu1—N1162.09 (5)C14—C16—H16120.4
O5—Cu1—N295.25 (5)C17—C16—C14119.28 (17)
N1—Cu1—O1103.33 (5)C17—C16—H16120.4
N2—Cu1—O182.52 (5)C16—C17—H17119.4
N2—Cu1—N180.96 (5)C16—C17—C18121.26 (16)
C13—O1—Cu1119.56 (12)C18—C17—H17119.4
C13—O2—H2109.5C15i—C18—C18i118.2 (2)
C19—O3—Cu1127.62 (11)C17—C18—C15i122.36 (15)
C25—O5—Cu1109.74 (10)C17—C18—C18i119.4 (2)
C1—N1—Cu1126.80 (12)O3—C19—C20116.43 (14)
C1—N1—C5118.60 (13)O4—C19—O3126.70 (16)
C5—N1—Cu1114.30 (10)O4—C19—C20116.88 (15)
C6—N2—Cu1115.22 (10)C21—C20—C19118.89 (15)
C10—N2—Cu1126.59 (11)C21—C20—C23119.52 (15)
C10—N2—C6117.96 (14)C23—C20—C19121.56 (15)
N1—C1—H1118.9C20—C21—H21119.0
N1—C1—C2122.26 (16)C20—C21—C22121.92 (15)
C2—C1—H1118.9C22—C21—H21119.0
C1—C2—H2A120.1C21—C22—C22ii118.47 (18)
C1—C2—C3119.79 (15)C21—C22—C24ii122.82 (15)
C3—C2—H2A120.1C24ii—C22—C22ii118.71 (18)
C2—C3—C4117.81 (14)C20—C23—H23119.9
C2—C3—C11121.70 (15)C24—C23—C20120.21 (15)
C4—C3—C11120.49 (16)C24—C23—H23119.9
C3—C4—H4120.3C22ii—C24—H24119.4
C5—C4—C3119.46 (16)C23—C24—C22ii121.15 (15)
C5—C4—H4120.3C23—C24—H24119.4
N1—C5—C4122.08 (14)O5—C25—C27118.3 (2)
N1—C5—C6114.81 (13)O5—C25—C27A103.6 (7)
C4—C5—C6123.10 (15)O6—C25—O5125.04 (15)
N2—C6—C5114.15 (14)O6—C25—C27116.7 (2)
N2—C6—C7121.79 (14)O6—C25—C27A131.0 (8)
C7—C6—C5124.05 (14)C27—C26—H26119.6
C6—C7—H7119.8C27—C26—C30iii120.8 (2)
C6—C7—C8120.41 (15)C30iii—C26—H26119.6
C8—C7—H7119.8C26—C27—C25120.0 (3)
C7—C8—C9117.21 (16)C26—C27—C28119.6 (2)
C7—C8—C12120.37 (15)C28—C27—C25120.1 (2)
C9—C8—C12122.41 (15)C27—C28—H28119.6
C8—C9—H9120.2C29—C28—C27120.9 (2)
C10—C9—C8119.59 (15)C29—C28—H28119.6
C10—C9—H9120.2C28—C29—H29119.7
N2—C10—C9123.01 (15)C28—C29—C30120.5 (2)
N2—C10—H10118.5C30—C29—H29119.7
C9—C10—H10118.5C26iii—C30—C29121.9 (2)
C3—C11—H11A109.5C30iii—C30—C26iii119.6 (3)
C3—C11—H11B109.5C30iii—C30—C29118.5 (3)
C3—C11—H11C109.5C25—C27A—C28A121.4 (12)
H11A—C11—H11B109.5C26A—C27A—C25119.4 (18)
H11A—C11—H11C109.5C26A—C27A—C28A119.1 (14)
H11B—C11—H11C109.5C27A—C26A—H26A117.8
C8—C12—H12A109.5C27A—C26A—C30Aiii124 (2)
C8—C12—H12B109.5C30Aiii—C26A—H26A117.8
C8—C12—H12C109.5C29A—C30A—C30Aiii126 (2)
H12A—C12—H12B109.5C30A—C29A—H29A121.8
H12A—C12—H12C109.5C30A—C29A—C28A116 (2)
H12B—C12—H12C109.5C28A—C29A—H29A121.8
O1—C13—O2124.41 (16)C27A—C28A—H28A118.1
O1—C13—C14121.72 (17)C29A—C28A—C27A123.8 (18)
O2—C13—C14113.86 (15)C29A—C28A—H28A118.1
C15—C14—C13118.96 (15)
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y+2, z+2; (iii) x+2, y+2, z+1.
 

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (grant Nos. 21501147 and 21671003); Natural Science Foundation of the Jiangsu Higher Education Institutions of China (grant No. 19KJB480012).

References

First citationAddison, A. W., Hendriks, H. M., Reedijk, J. & Thompson, L. K. (1981). Inorg. Chem. 20, 103–110.  CrossRef CAS Google Scholar
First citationAllendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330–1352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBlatov, V. A. (2004). TOPOS. Samara State University, Samara, Russian Federation.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z.-L., Dong, Y., Liu, Q.-W., Bian, R.-R., Cheng, W.-W., Xue, Y.-S. & Liu, M.-P. (2019). Transition Met. Chem. 44, 445–454.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHorcajada, P., Surblé, S., Serre, C., Hong, D.-Y., Seo, Y.-K., Chang, J.-S., Grenèche, J., Margiolaki, I. & Férey, G. (2007). Chem. Commun. pp. 2820–2822.  CSD CrossRef Google Scholar
First citationHou, B.-L., Tian, D., Liu, J., Dong, L.-Z., Li, S.-L., Li, D.-S. & Lan, Y.-Q. (2016). Inorg. Chem. 55, 10580–10586.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHu, Y.-L., Ding, M., Liu, X.-Q., Sun, L.-B. & Jiang, H.-L. (2016). Chem. Commun. 52, 5734–5737.  CSD CrossRef CAS Google Scholar
First citationKong, C., Du, H., Chen, L. & Chen, B. (2017). Energy Environ. Sci. 10, 1812–1819.  CrossRef CAS Google Scholar
First citationLin, X., Jia, J., Zhao, X., Thomas, K.-M., Blake, A.-J., Walker, G.-S., Champness, N.-R., Hubberstey, P. & Schröder, M. (2006). Angew. Chem. Int. Ed. 45, 7358–7364.  CSD CrossRef CAS Google Scholar
First citationLin, X., Telepeni, I., Blake, A.-J., Dailly, A., Brown, C.-M., Simmons, J.-M., Zoppi, M., Walker, G.-S., Thomas, K.-M., Mays, T.-J., Hubberstey, P., Champness, N.-R. & Schröder, M. (2009). J. Am. Chem. Soc. 131, 2159–2171.  CSD CrossRef PubMed CAS Google Scholar
First citationMa, L.-F., Wang, L.-Y., Hu, J.-L., Wang, Y.-Y. & Yang, G.-P. (2009). Cryst. Growth Des. 9, 5334–5342.  Web of Science CSD CrossRef CAS Google Scholar
First citationNagarkar, S. S., Desai, A. V. & Ghosh, S. K. (2016). CrystEngComm, 18, 2994–3007.  CrossRef CAS Google Scholar
First citationPan, C.-D., Wang, J., Xu, J.-Q., Zhang, K.-F. & Wang, X.-W. (2019). Acta Cryst. C75, 979–984.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPark, H. D., Dincă, M. & Román-Leshkov, Y. (2018). J. Am. Chem. Soc. 140, 10669–10672.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, Y., Ye, J., Qi, Y., Akram, M. A., Rauf, A. & Ning, G. (2018). Dalton Trans. 47, 17479–17485.  CSD CrossRef CAS PubMed Google Scholar
First citationSun, D., Yan, Z.-H., Blatov, V.-A., Wang, L. & Sun, D.-F. (2013). Cryst. Growth Des. 13, 1277–1289.  CSD CrossRef CAS Google Scholar
First citationVellingiri, K., Philip, L. & Kim, K.-H. (2017). Coord. Chem. Rev. 353, 159–179.  CrossRef CAS Google Scholar
First citationWang, H.-Y., Su, J., Ma, J.-P., Yu, F., Leong, C.-F., D'Alessandro, D. M., Kurmoo, M. & Zuo, J.-L. (2019). Inorg. Chem. 58, 8657–8664.  CSD CrossRef CAS PubMed Google Scholar
First citationWei, J., Zhou, T., Zuo, Y., Cheng, W.-W., Liu, M.-P., Bian, R.-R., Chen, N.-N., Xue, Y.-S. & Tao, J. (2018). Transition Met. Chem. 43, 529–537.  CSD CrossRef CAS Google Scholar
First citationWong-Foy, A.-G., Lebel, O. & Matzger, A.-J. (2007). J. Am. Chem. Soc. 129, 15740–15741.  PubMed CAS Google Scholar
First citationXue, Y.-S., Cheng, W., Cao, J.-P. & Xu, Y. (2019). Chem. Asian J. 14, 1949–1957.  CSD CrossRef CAS PubMed Google Scholar
First citationXue, Y.-S., Jin, F.-Y., Zhou, L., Liu, M.-P., Xu, Y., Du, H.-B., Fang, M. & You, X.-Z. (2012). Cryst. Growth Des. 12, 6158–6164.  CSD CrossRef CAS Google Scholar
First citationXue, Y.-S., Tan, X., Zhou, M., Mei, H. & Xu, Y. (2017). Dalton Trans. 46, 16623–16630.  CSD CrossRef CAS PubMed Google Scholar
First citationYabushita, M., Li, P., Bernales, V., Kobayashi, H., Fukuoka, A., Gagliardi, L., Farha, O. K. & Katz, A. (2016). Chem. Commun. 52, 7094–7097.  CrossRef CAS Google Scholar
First citationYang, J., Wang, Z., Hu, K.-L., Li, Y.-S., Feng, J.-F., Shi, J.-L. & Gu, J.-L. (2015). Appl. Mater. Interfaces, 7, 11956–11964.  CrossRef Google Scholar
First citationZhang, H.-M., Yang, J., Liu, Y.-Y., Kang, D.-W. & Ma, J.-F. (2015). CrystEngComm, 17, 3181–3196.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J., Bai, H.-J., Ren, Q., Luo, H.-B., Ren, X.-M., Tian, Z.-F. & Lu, S. (2018). ACS Appl. Mater. Interfaces, 10, 28656–28663.  CrossRef CAS PubMed Google Scholar
First citationZheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem. 43, 830–838.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhu, Z., Cui, L.-S., Fan, C.-B., Zhang, X.-Y., Zhang, D.-M., Jin, F. & Fan, Y.-H. (2017). Polyhedron, 133, 374–382.  CSD CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds