research papers

Received 25 April 2021 Accepted 16 June 2021

Edited by A. R. Kennedy, University of Strathclyde, United Kingdom

Keywords: polyoxometalate; POM; polyoxotungstate; POT; serinol; crystal structure; organic-inorganic hybrid.

CCDC reference: 2079597

Supporting information: this article has supporting information at journals.iucr.org/c

Synthesis and characterization of the Anderson-Evans tungstoantimonate $[Na_5(H_2O)_{18}{(HOCH_2)_2-CHNH_3}_2][SbW_6O_{24}]$

Kleanthi Sifaki,^a Nadiia I. Gumerova,^a Gerald Giester^b and Annette Rompel^{a*}

^aUniversität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria, and ^bUniversität Wien, Fakultät für Geowissenschaften, Geographie und Astronomie, Institut für Mineralogie und Kristallographie, Althanstraße 14, 1090 Wien, Austria. *Correspondence e-mail: annette.rompel@univie.ac.at

A novel tungstoantimonate, $[Na_5(H_2O)_{18}\{(HOCH_2)_2CHNH_3\}_2][Sb^VW^{VI}_6O_{24}]$ (**SbW**₆), was synthesized from an aqueous solution and structurally characterized by single-crystal X-ray diffraction, which revealed *C*2/*c* symmetry. The structure contains two serinol $[(HOCH_2)_2CHNH_3]^+$ and five Na⁺ cations, which are octahedrally surrounded by 18 water molecules, and one $[Sb^VW^{VI}_6O_{24}]^{7-}$ anion. The serinol molecules also play a critical role in the synthesis by acting as a mild buffering agent. Each of the W^{VI} and Sb^V ions is six-coordinated and displays a distorted octahedral motif. A three-dimensional supramolecular framework is formed *via* hydrogen-bonding interactions between the tungstoantimonates and cations. Powder X-ray diffraction, elemental analysis, thermogravimetric analysis and IR spectroscopy were performed on **SbW**₆ to prove the purity, to identify the water content and to characterize the vibrational modes of the crystallized phase.

1. Introduction

Polyoxometalates (POMs) are known as early transition metal-oxygen clusters (Pope, 1983; Gumerova & Rompel, 2020). They are assembled from $\{MO_x\}$ polyhedra, with x = 4-7 and M being commonly $Mo^{V/VI}$, $W^{V/VI}$, $V^{IV/V}$, Nb^V or Ta^V as addenda ions, through sharing of corners and edges (Pope, 1983). POMs can be considered as either isopolyanions $[M_mO_y]^{q-}$, which feature only one metallic M ion $(Mo^{V/VI}, W^{V/VI}, V^{IV/V}, Nb^V$ or Ta^V), or heteropolyanions $[X_rM_mO_y]^{q-}$, which additionally contain a heteroelement X (Pope, 1983). POMs display a wide range of crucial applications, ranging from catalysis (Wang & Yang, 2015), materials science (Cherevan *et al.*, 2020) and molecular magnetism (Clemente-Juan *et al.*, 2012), to bio- and nanotechnology (Rhule *et al.*, 1998; Bijelic *et al.*, 2018, 2019), as well as macromolecular crystallography (Bijelic & Rompel, 2015, 2017, 2018).

The Anderson-Evans polyoxoanion has the general formula $[H_y(XO_6)M_6O_{18}]^{n-}$, where y = 0-6, n = 2-8, M = addenda ion (Mo^{VI} or W^{VI}) and X = central heteroion in oxidation states from +2 to +7 (Blazevic & Rompel, 2016). Its structure consists of six corner- and edge-shared {MoO₆} or {WO₆} octahedra, which surround the {XO}₆ octahedron (Evans, 1948). In the structure, there exist three differently coordinated oxygen ions (Fig. 1): six triple-bridged oxygen ions (μ_3 -O) that connect the heteroion and two addenda ions, six double-bridged oxygen ions (μ_2 -O) that connect two addenda ions and lastly two terminal oxygen ions (O_t) per addenda ion (Evans, 1948; Pope, 1983). The oxidation state of a heteroion plays a significant role in the protonation mode of the triplebridged oxygen ions (μ_3 -O) in the Anderson–Evans arche-

Table 1

POTs with Sb^{III/v} as the only heteroion [based on the Inorganic Crystal Structure Database (FIZ, Karlsruhe; http://www.fiz-informationsdienste.de/DB/ icsd/www-recherche.htm) and the Cambridge Structural Database (CSD; Groom *et al.*, 2016) in April 2021].

POT	Туре	References
$K_5Na_2[Sb^VW_6^{1}O_{24}]$	Anderson	Lee & Sasaki (1987)
$K_{5,5}H_{1,5}[Sb^{V}W^{VI}_{6}O_{24}]$	Anderson	Naruke & Yamase (1992)
$Na_{7}[Sb^{V}W_{6}^{VI}O_{24}]$	Anderson	Mukhacheva et al. (2017)
$K_{6}[H_{12}Sb_{6}^{V}W_{4}^{VI}O_{36}]$	Pseudo-Anderson-Evans dimer	Park et al. (1994)
$(NH_4)_9[Sb^VW^{VI}_{18}O_{60}(OH)_2]$	Dawson	Zhang et al. (2010)
Na ₉ [Sb ^{III} W ^{VI} ₉ O ₃₃]	Keggin	Bösing et al. (1997)
$K_{12}[Sb^{III}_{2}W^{VI}_{22}O_{74}(OH)_{2}]$	Krebs	Bösing et al. (1997)
$[N(CH_3)_4]_{10}Na_{12}[Na_2Sb^{III}_8W^{VI}_{36}O_{132}(H_2O)_4]$	Trimer based on lacunary Keggin	Bösing et al. (1997)
$\begin{array}{l} (H_{2}en)_{8}H_{6}\{[Sb^{III}_{2}(W^{VI}O_{2})_{2}(B^{-}\beta^{-}Sb^{III}W^{VI}_{9}O_{33})_{2}][(W^{VI}O_{2})_{2}^{-}\\ (W^{VI}O_{3})_{2}(B^{-}\beta^{-}Sb^{III}W^{VI}_{9}O_{33})_{2}]\}\ (en = ethylenediamine)\end{array}$	Krebs	Xin et al. (2019)
$K_{11}Na_{16}[H_2(Sb^{III}W^{VI}{}_9O_{33})(W^{VI}{}_5O_{12})(Sb^{III}{}_2W^{VI}{}_{29}O_{103})]$	Trimer based on lacunary Keggin	Tanuhadi et al. (2021)

type, according to which they can be divided into three groups. The first, *i.e.* $[X^{n+}M_6O_{24}]^{(12-n)-}$ (*n* = 5–7), referred to as 'type A', is a deprotonated structure that exists when it contains heteroions with a high oxidation state (e.g. Te^{VI} or I^{VII}). The second, *i.e.* $[X^{n+}(OH)_6M_6O_{18}]^{(6-n)-}$ (n = 2-4), referred to as 'type B', is protonated on the six μ_3 -O ions, with each side having three protons. The B-type POMs are usually present when the heteroion has a low oxidation state (e.g. Ni^{II} or Co^{II}) (Blazevic & Rompel, 2016). The third group, called 'mixed type', is a combination of the two types mentioned above, as it has protonated μ_3 -O ions only on one side (Gumerova *et al.*, 2019). Therefore, it is referred to as one-side protonated with one known polyoxotungstate example, $[Cr^{III}(OH)_3W^{VI}_{6}O_{21}]^{6-}$, so far (Gumerova et al., 2019). Interestingly, there are some platinum-based compounds, with the general formula $[H_n Pt^{IV} M_{6}^{VI} O_{24}]^{(8-n)-1}$ (*M* = W or Mo, where 1 < *n* < 6; Lee *et* al., 2004), which exhibit protonation degrees of their μ_3 -O ions ranging from 1 to 6 and *n* is not necessarily an integer.

The majority of Anderson–Evans-type clusters have a planar hexagonal configuration with $\overline{3}m$ (D_{3d}) point symmetry, which is known as the α -isomer (Anderson, 1937). Another configuration of the Anderson–Evans-type cluster shows a bent structure of 2mm ($C_{2\nu}$) point symmetry and is called the β -isomer (Lindqvist, 1959). An example of the β -isomer was presented by the Ogawa group (Ogawa *et al.*, 1988), *i.e.* [Sb^V(OH)₂Mo^{VI}₆O₂₂]^{5–} and is one of the few reported structures to date (Lee & Sasaki, 1994; Zhang *et al.*, 2017; Li & Wei, 2021). The Anderson–Evans compounds can be modified in several ways: (i) by variation of the heteroion in the central position; (ii) by combination with various inorganic and organic cations, and (iii) by covalent attachment of one or two alkoxo ligands.

In recent decades, some unsubstituted tungstoantimonates, which have only one heteroion, Sb^{III/V}, have been synthesized and structurally characterized (Table 1), but the majority of Sb-containing polyoxotungstates (POTs) contain additional heteroions, such as 3*d* or 4*f* metals (Tanuhadi *et al.*, 2018, 2020). Only three Sb-POTs of the Anderson–Evans archetype, namely, K₅Na₂[Sb^VW^{VI}₆O₂₄]·12H₂O (Lee & Sasaki, 1987), K_{5.5}H_{1.5}[Sb^VW^{VI}₆O₂₄]·6H₂O (Naruke & Yamase, 1992) and Na₇[Sb^VW^{VI}₆O₂₄]·24H₂O (Mukhacheva *et al.*, 2017), have been reported so far. Interestingly, the relative luminescence

yield from the O \rightarrow W LCMT transition of K_{5.5}H_{1.5}[Sb^VW^{V1}₆-O₂₄]·6H₂O was higher than that of Ln-containing Na₉[Gd^{III}-(W^{VI}₅O₁₈)₂]·18H₂O under the same conditions (Naruke & Yamase, 1992). The high luminescence yield of [Sb^VW^{VI}₆-O₂₄]⁷⁻ is attractive for potential photochemical applications in the future.

Serinol (C₃H₉NO₂, 2-aminopropane-1,3-diol) is a very stable, highly water soluble, nontoxic, odourless, biodegradable compound which is widely used as a versatile starting material in organic synthesis and as an additive for materials applications, such as composite materials (Barbera et al., 2020; Andreessen & Steinbüchel, 2011). In POM synthesis, serinol can be seen as an alkoxylation ligand or a counter-cation or buffering agent due to the presence of an amino group. Considering that the Sb-centred Anderson-Evans POT has not yet been reported with organic counter-cations, we expand the compound class by applying serinol, which can coordinate in different ways to metals through the -NH₂ and -HOCH₂ groups and thus significantly affects both the structure and properties, in the synthesis in $Sb^{5+}-WO_4^{2-}$ (with an Sb:W ratio of 1:6) systems. Here we report a novel Anderson-Evans Sbcentred POT, $[Na_5(H_2O)_{18} \{(HOCH_2)_2 CHNH_3]_2] [Sb^V W^{VI}_6 O_{24}]$ (SbW₆), being the first example of $[Sb^{V}W_{6}^{VI}O_{24}]^{7-}$ crystallized with an organic counter-cation, which was synthesized from aqueous solution and has been fully characterized.

2. Experimental

2.1. Synthesis and crystallization

The reagents were used as purchased from Merck (Austria) and VWR (Austria) without further purification.

2.1.1. Synthesis of $[Na_5(H_2O)_{18}\{(HOCH_2)_2CHNH_3]_2][Sb-W_6O_{24}]$ (SbW₆). Na₂WO₄·2H₂O (0.99 g, 3 mmol) and KSb^V(OH)₆ (0.13 g, 0.5 mmol) were mixed in a 6:1 ratio in H₂O (12 ml), yielding a turbid solution. The solution was then acidified with aqueous HCl (1 *M*, 4.4 ml) and the pH was set at 4.0. Serinol [(HOCH₂)₂CHNH₂; 0.18 g, 2 mmol] was then added and the pH was altered to 7.1. Under stirring and heating for 1 h, at 75 °C, the precipitate was dissolved, and the final solution was left for evaporation at room temperature,

research papers

Table 2Experimental details.

Crystal data	
Chemical formula	$[Na_{5}(H_{2}O)_{18}(C_{3}H_{10}NO_{2})_{2}]$ - $[SbW_{4}O_{24}]$
М.,	2232.32
Crystal system, space group	Monoclinic, $C2/c$
Temperature (K)	200
a, b, c (Å)	21.9761 (14), 13.9179 (9), 16.209 (1)
β (°)	111.189 (2)
$V(Å^3)$	4622.5 (5)
Ζ	4
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	15.61
Crystal size (mm)	$0.1\times0.08\times0.05$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2016)
T_{\min}, T_{\max}	0.542, 0.747
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	100214, 8841, 8213
R _{int}	0.030
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.770
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.013, 0.025, 1.15
No. of reflections	8841
No. of parameters	390
No. of restraints	23
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.60, -0.69

Computer programs: APEX3 (Bruker, 2015), SAINT (Bruker, 2016), SHELXT2018 (Sheldrick, 2015a), shelXle (Hübschle et al., 2011), SHELXL2018 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 2006), OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2020).

leading to colourless crystals suitable for single-crystal X-ray diffraction within 1 d (yield: 0.4 g, 60%, based on W). The pH of the Sb⁵⁺–WO₄^{2−} solution was varied from 3.7 to 5.0; however, after the addition of serinol (0.18 g, 2 mmol), the final pH was in the range from 7.0 to 7.7 and, in all cases, crystals with the same unit cell were obtained. Other synthetic routes, such as reflux reaction and hydrothermal synthesis at 120 °C, for the same reaction mixture led to the same product. Elemental analysis found (calculated) for $[Na_5(H_2O)_{18}-{(HOCH_2)_2CHNH_3}_2][Sb^VW^{VI}_6O_{24}]$ (%): C 3.18 (3.23), H 2.56 (2.53), N 1.29 (1.25), O 32.89 (32.97). FT–IR (cm⁻¹): 3357 (*s*), 2952 (*sh*), 1610 (*s*), 1498 (*s*), 1464 (*sh*), 1373 (*w*), 1256 (*w*), 1099 (*w*), 1037 (*s*), 1018 (*sh*), 927 (*s*), 850 (*s*), 703 (*sh*), 632 (*w*), 640 (*w*), 563 (*w*), 420 (*s*), 349 (*s*), 310 (*s*).

2.2. IR spectroscopy

SbW₆ was characterized by IR spectroscopy on a Bruker Vertex70 IR Spectrometer equipped with a single-reflection diamond-ATR unit in the range 4000–300 cm⁻¹.

2.3. TGA measurements

Thermogravimetric analysis (TGA) was performed on a Mettler SDTA851e Thermogravimetric Analyzer under a

nitrogen flow with a heating rate of 5 K min⁻¹ in the region from 303 to 873 K.

2.4. Elemental analysis

The determination of C/H/N/O was carried out using an 'EA 1108 CHNS-O' elemental analyzer by Carlo Erba Instruments at the Mikroanalytisches Laboratorium, Faculty of Chemistry, University of Vienna.

2.5. Powder X-ray diffraction (PXRD)

PXRD was performed on a Bruker D8 Advance diffractometer, with Cu $K\alpha$ radiation ($\lambda = 1.54056$ Å), a Lynxeye silicon strip detector and a SolX energy dispersive detector (variable slit aperture with 12 mm, $10^{\circ} \le 2\theta \le 50^{\circ}$).

2.6. Refinement

In Table 2, the crystallographic characteristics of **SbW**₆ and the experimental conditions of data collection and refinement are reported. The positions of the H atoms of the water molecules were obtained by difference Fourier techniques and were refined with free isotropic displacement parameters and O—H distances restrained to 0.95 (2) Å. The disordered water molecule in the coordination sphere of atom Na1 was refined with two positions (O23 and O24), with free occupancy factors to a total of 100%. The H atoms of this disordered group had $U_{iso}(H)$ values set to $1.5U_{eq}(O)$ of the parent atom. H atoms bound to N or C atoms were placed in idealized positions (N—H = 0.91 Å and C—H = 0.99 or 1.00 Å for CH₂ and CH groups, respectively) and refined in riding modes, with $U_{iso}(H)$ values set to $1.5U_{eq}(N)$ or to $1.2U_{eq}(C)$.

3. Results and discussion

The preparation of **SbW**₆ was carried out at a W^{VI} to Sb^V ratio of 6:1 and at a pH of 7.1. In the absence of serinol, at pH 7.5, protonated $K_{5.5}H_{1.5}[Sb^VW^{VI}_6O_{24}]\cdot 6H_2O$ (Naruke & Yamase, 1992), and at pH 4.5, unprotonated $K_5Na_2[Sb^VW^{VI}_6O_{24}]\cdot$ 12H₂O (Lee & Sasaki, 1987), were obtained.

The main structural elements of SbW₆ are the Anderson-Evans $[Sb^VW^{VI}_{6}O_{24}]^{7-}$ anion and the complex $[Na_5(H_2O)_{18}-{(HOCH_2)_2CHNH_3}_2]^{7+}$ cation, which are connected *via* hydrogen bonds between terminal (O_t) and bridging O atoms $(\mu_2$ -O) of the polyanion and protons from the cationic complex (Fig. 1). Crystallographically centrosymmetric [Sb^VW^{VI}₆- O_{24} ⁷⁻ shows the characteristic Anderson-Evans A-type structure with a central {SbO₆} octahedron surrounded by six edge-shared {WO₆} octahedra that form a planar array of distorted octahedra (Fig. 1). The average W-Sb bond length is 3.26 Å. As is typical for all Anderson-Evans A-type structures, three different coordination modes of the O atoms are present in the structure: six triple-bridged oxygen ions (μ_3 -O) connect the heteroion and two W ions, six double-bridged oxygen ions (μ_2 -O) connect two W ions and two terminal oxygen (Ot) ions are connected to each of the six W ions (Fig. 1). The average distance for Sb $-\mu_3$ -O is 1.98 Å, for W- μ_3 -O is 2.27 Å, for W $-\mu_2$ -O is 1.94 Å and for W $-O_t$ is

Displacement ellipsoid plot of $\mathbf{SbW_6}$ with the hydrogen-bond interactions between the anion and the counter-cation complex highlighted (orange dashed line). Displacement ellipsoids are displayed at the 50% probability level. Colour code: W blue, Sb pink, Na green, C grey, N purple, O red and H white.

1.74 Å. The values are comparable with those of $K_{5.5}H_{1.5}[Sb^VW_{\ 6}^{VI}O_{24}]$ (Naruke & Yamase, 1992). For instance, the Sb- μ_3 -O bond length (1.98 Å) differs by only 0.03 Å from the others reported by Naruke & Yamase (1992) (2.01 Å). Applying bond valence sum (BVS) calculations (Brown & Altermatt, 1985), all the W ions in $[Sb^VW_{\ 6}O_{24}]^{7-}$ exhibit the +VI oxidation state (average calculated value of 6.01) and Sb shows the +V oxidation state (5.37). Based on BVS analysis and the number of counter-cations, it was concluded that the Anderson–Evans anion is not protonated and belongs to type A.

The counter-cation is composed of five octahedrally coordinated Na⁺ ions, which assemble in an elevated T-shape form, and two protonated serinol molecules that are coordinated to two Na⁺ ions *via* –HOCH₂ groups. This group has crystallographically imposed twofold symmetry. One serinol ligand interacts through the –NH₃ group with the terminal O atom of

Figure 3 IR spectrum of **SbW₆** in the region from 4000 to 300 cm⁻¹.

the POT anion, and the second interacts with the adjacent O atom in $\{NaO_6\}$ (Fig. 1).

The three-dimensional (3D) structure of **SbW**₆ consists of two-dimensional (2D) sheets formed of $[Sb^{V}W^{VI}{}_{6}O_{24}]^{7-}$ anions and complex $[Na_5(H_2O)_{18}\{(HOCH_2)_2CHNH_3\}_2]^{7+}$, cations connected *via* hydrogen bonds (Figs. 1 and 2). The distances between 2D layers are approximately 2.79 Å, which allows the formation of hydrogen bonds between the layers and creates cavities along the *b* axis (Fig. 2*a*). This packing is different to that observed in K_{5.5}H_{1.5}[Sb^VW^{VI}₆O₂₄]·6H₂O and K₅Na₂[Sb^VW^{VI}₆O₂₄]·12H₂O, where the layers of anions alternate with layers or single polyhedra of counter-cations.

The IR spectrum of **SbW**₆ (Fig. 3) is characteristic for Anderson–Evans POMs (Liu *et al.*, 2015; Qu *et al.*, 2012). The broad bands in the region between 2300 to 3750 cm⁻¹ represent the vibrations of the –OH groups of H₂O and the N–H bonds of the amine groups of serinol. In the area between 1610

Figure 2

The crystal packing of **SbW**₆, (*a*) viewed along the *b* axis and (*b*) viewed along the *z* axis. Colour code: $\{WO_6\}$ turquoise, $\{SbO_6\}$ orange, $\{Na(H_2O)_6\}$ grey, C grey, N blue, O red and H black.

Experimental (blue colour) and simulated (black colour) powder XRD pattern of \mathbf{SbW}_{6} .

and 1018 cm⁻¹, the bands are attributed to the vibrations of C-H, C-O and again N-H in serinol. The bands at about 930 and 880 cm⁻¹ are attributed to antisymmetric stretching vibrations of the terminal W=O bonds and Sb-O-W bridges (O_b), respectively. The bands at 640 and 563 cm⁻¹ are associated with the asymmetric stretching of W-O-W bridges (O_b) and the bending vibrations of W-O-W, respectively. Lastly, the bands between 750 and 300 cm⁻¹ are contributed by Sb-O-W vibrations (Liu *et al.*, 2015).

The powder XRD pattern of $\mathbf{SbW_6}$ (Fig. 4) was investigated at room temperature. The simulated powder diffraction pattern was based on the single-crystal structural data. The observed peak positions are in good alignment with the simulated patterns, which confirms that the POT structure had been solved accurately and that $\mathbf{SbW_6}$ consists of a single phase.

The exact number of water molecules was determined using TGA. The curve (Fig. 5) shows three weight-loss steps during the heating process from 30 to 600 °C. The first weight loss of 14.7% in the temperature range 30–200 °C corresponds to all

water molecules from the Na^+ coordinating spheres. The second and third step correspond in total to 8.4% and the loss of two serinol molecules.

The composition of the counter-cation has remarkable effects on the crystal packing and thus on the physical properties of Anderson–Evans POMs (Blazevic & Rompel, 2016). The success in synthesizing **SbW**₆ shows that the Sb-centred Anderson–Evans POT is a versatile building block, which can be modified by organic counter-cations into high-dimensional architectures. **SbW**₆ is the first reported K⁺-free salt with an organic counter-cation, and it has much higher water solubility and can expand the areas of its application in aqueous solution.

Acknowledgements

The authors are grateful to Ass.-Prof. Dr. P. Unfried for support with the TGA and to Ao.Univ.-Prof. Mag. Dr. K. Richter for PXRD measurements at the Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna. We thank Elias Tanuhadi, MSc, for valuable discussions concerning this work.

Funding information

Funding for this research was provided by: Austrian Science Fund (grant No. P33927 to NIG; grant No. P33089 to AR); the Erasmus+ program (scholarship No. 1016/2020 to KS) and the University of Vienna.

References

- Anderson, J. S. (1937). Nature, 140, 850.
- Andreessen, B. & Steinbüchel, A. (2011). AMB Express, 1, article No. 12.
- Barbera, V., Leonardi, G., Valerio, A. M., Rubino, L., Sun, S., Famulari, A., Galimberti, M., Citterio, A. & Sebastiano, R. (2020). ACS Sustainable Chem. Eng. 8, 9356–9366.
- Bijelic, A., Aureliano, M. & Rompel, A. (2018). Chem. Commun. 54, 1153–1169.
- Bijelic, A., Aureliano, M. & Rompel, A. (2019). Angew. Chem. Int. Ed. 58, 2980–2999.
- Bijelic, A. & Rompel, A. (2015). Coord. Chem. Rev. 299, 22-38.
- Bijelic, A. & Rompel, A. (2017). Acc. Chem. Res. 50, 1441-1448.
- Bijelic, A. & Rompel, A. (2018). ChemTexts, 4, article No. 10.
- Blazevic, A. & Rompel, A. (2016). Coord. Chem. Rev. 307, 42-64.
- Bösing, M., Loose, I., Pohlmann, H. & Krebs, B. (1997). *Chem. Eur. J.* **3**, 1232–1237.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cherevan, A. S., Nandan, S. P., Roger, I., Liu, R., Streb, C. & Eder, D. (2020). *Adv. Sci.* **7**, article No. 1903511.
- Clemente-Juan, J. M., Coronado, E. & Gaita-Ariño, A. (2012). Chem. Soc. Rev. 41, 7464–7478.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
- Evans, H. T. Jr (1948). J. Am. Chem. Soc. 70, 1291-1292.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

- Gumerova, N. I., Caldera Fraile, T., Roller, A., Giester, G., Pascual-Borràs, M., Ohlin, C. A. & Rompel, A. (2019). *Inorg. Chem.* 58, 106–113.
- Gumerova, N. I. & Rompel, A. (2020). Chem. Soc. Rev. 49, 7568-7601.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Lee, U., Joo, H.-C. & Park, K.-M. (2004). Acta Cryst. E60, i55-i57.
- Lee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc. 15, 37-45.
- Lee, U. K. & Sasaki, Y. (1987). Bull. Korean Chem. Soc. 8, 1-3.
- Li, Q. & Wei, Y. (2021). Chem. Commun. 57, 3865–3868.
- Lindqvist, I. (1959). Ark. Kemi. 2, 323.
- Liu, W., Lin, Z., Bassil, B. S., Al-Oweini, R. & Kortz, U. (2015). CHIMIA Int. J. Chem. 69, 537–540.
- Mukhacheva, A. A., Abramov, P. A. & Sokolov, M. N. (2017). Curr. Inorg. Chem. 7, 4–7.
- Naruke, H. & Yamase, T. (1992). Acta Cryst. C48, 597-599.
- Ogawa, A., Yamato, H., Lee, U., Ichida, H., Kobayashi, A. & Sasaki, Y. (1988). Acta Cryst. C44, 1879–1881.
- Park, K. M., Ozawa, Y. & Lee, U. (1994). J. Korean Chem. Soc. 3, 359–365.Pope, M. (1983). In *Heteropoly and Isopoly Oxometalates*. Berlin: Springer.

- Qu, X., Yang, Y., Zhang, F. & Yu, X. (2012). Struct. Chem. 23, 1867– 1872.
- Rhule, J. T., Hill, C. L., Judd, D. A. & Schinazi, R. F. (1998). Chem. Rev. 98, 327–358.
- Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Tanuhadi, E., Al-Sayed, E., Novitchi, G., Roller, A., Giester, G. & Rompel, A. (2020). *Inorg. Chem.* 59, 8461–8467.
- Tanuhadi, E., Gumerova, N. I., Prado-Roller, A., Mautner, A. & Rompel, A. (2021). *Inorg. Chem.* 60, 8917–8923.
- Tanuhadi, E., Roller, A., Giester, G., Kampatsikas, I. & Rompel, A. (2018). Dalton Trans. 47, 15651–15655.
- Wang, S.-S. & Yang, G.-Y. (2015). Chem. Rev. 115, 4893-4962.
- Xin, X., Ma, Y., Hou, L., Wang, Y., Xue, X., Lin, J. & Han, Z. (2019). Inorg. Chem. 58, 9567–9571.
- Zhang, J., Huang, Y., Hao, J. & Wei, Y. (2017). Inorg. Chem. Front. 4, 1215–1218.
- Zhang, Y.-Y., Liu, S., Yu, C., Tang, Q., Liang, D., Zhang, C., Ma, F., Li, S., Zhang, W. & Tan, R. (2010). *Inorg. Chem. Commun.* **13**, 1418–1420.

Acta Cryst. (2021). C77, 420-425 [https://doi.org/10.1107/S2053229621006239]

Synthesis and characterization of the Anderson–Evans tungstoantimonate $[Na_5(H_2O)_{18}\{(HOCH_2)_2CHNH_3\}_2][SbW_6O_{24}]$

Kleanthi Sifaki, Nadiia I. Gumerova, Gerald Giester and Annette Rompel

Computing details

Data collection: *APEX3* (Bruker, 2015); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a) and *shelXle* (Hübschle *et al.*, 2011); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009) and *PLATON* (Spek, 2020).

Sodium-serinol hexatungstoanitimonate

Crystal data

```
[Na_{5}(H_{2}O)_{18}(C_{3}H_{10}NO_{2})_{2}][SbW_{6}O_{24}]

M_{r} = 2232.32

Monoclinic, C2/c

a = 21.9761 (14) Å

b = 13.9179 (9) Å

c = 16.209 (1) Å

\beta = 111.189 (2)^{\circ}

V = 4622.5 (5) Å^{3}

Z = 4
```

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2016) $T_{\min} = 0.542, T_{\max} = 0.747$ 100214 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.013$ $wR(F^2) = 0.025$ S = 1.158841 reflections 390 parameters 23 restraints Hydrogen site location: mixed F(000) = 4096 $D_x = 3.208 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9051 reflections $\theta = 2.4-33.2^{\circ}$ $\mu = 15.61 \text{ mm}^{-1}$ T = 200 KBlock, clear colourless $0.1 \times 0.08 \times 0.05 \text{ mm}$

8841 independent reflections 8213 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 33.2^\circ, \ \theta_{min} = 2.0^\circ$ $h = -33 \rightarrow 33$ $k = -21 \rightarrow 21$ $l = -24 \rightarrow 24$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0049P)^2 + 8.8181P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.004$ $\Delta\rho_{max} = 0.60$ e Å⁻³ $\Delta\rho_{min} = -0.69$ e Å⁻³ Extinction correction: SHELXL2018 (Sheldrick, 2015b), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.000087 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Olex2_refinement_description 1. Fixed U_{iso} At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All N(H,H,H) groups, All O(H,H) groups 2. Restrained distances O24—H24B = O24—H24A = O23—H23A = O23—H23B = O22—H22A = O22—H22B = O21—H21A = O21—H21B = O20—H20A = O20—H20B = O19—H19A = O19—H19B = O18—H18B = O18—H18A = O16—H16B = O16—H16A = O17—H17B = O17—H17A = O15—H15B = O15—H15A = O14—H14 = O13—H13 0.95 with σ of 0.03 Na1—H24A ~ Na1—H24B with σ of 0.02 3. Others Sof(O24)=Sof(H24A)=Sof(H24B)=FVAR(1) Sof(O23)=Sof(H23A)=Sof(H23B)=FVAR(2) 4.a Free rotating group: O24(H24A,H24B) 4.b Rotating group: O23(H23A,H23B) 4.c Ternary CH refined with riding coordinates: C2(H2) 4.d Secondary CH2 refined with riding coordinates: C1(H1D,H1E), C3(H3A,H3B) 4.e Idealized Me refined as rotating group: N1(H1A,H1B,H1C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
W1	0.23646 (2)	0.98310 (2)	0.50967 (2)	0.00915 (2)	
W2	0.33638 (2)	0.89214 (2)	0.42377 (2)	0.00926 (2)	
W3	0.34950 (2)	0.65895 (2)	0.41500 (2)	0.00910 (2)	
Sb1	0.250000	0.750000	0.500000	0.00687 (3)	
01	0.19305 (6)	0.63497 (9)	0.46152 (8)	0.0092 (2)	
O2	0.32045 (6)	0.65301 (9)	0.53084 (8)	0.0093 (2)	
03	0.26877 (6)	0.76387 (9)	0.38977 (8)	0.0088 (2)	
O4	0.29370 (7)	1.06930 (10)	0.56698 (9)	0.0160 (3)	
05	0.16585 (7)	1.05002 (10)	0.45722 (9)	0.0164 (3)	
06	0.21773 (6)	0.93907 (9)	0.61149 (8)	0.0116 (2)	
07	0.39611 (7)	0.97551 (10)	0.48078 (9)	0.0174 (3)	
08	0.25818 (6)	0.96747 (9)	0.40414 (8)	0.0115 (2)	
09	0.33570(7)	0.89690 (10)	0.31671 (9)	0.0160 (3)	
O10	0.39142 (6)	0.77917 (9)	0.46445 (8)	0.0122 (2)	
011	0.34480 (7)	0.67242 (10)	0.30582 (9)	0.0143 (3)	
O12	0.41832 (7)	0.58827 (10)	0.46496 (9)	0.0168 (3)	
Nal	0.500000	0.99629 (9)	0.250000	0.0197 (2)	
Na2	0.500000	0.74736 (9)	0.250000	0.0239 (3)	
Na3	0.500000	0.49315 (9)	0.250000	0.0192 (2)	
Na4	0.41110 (4)	0.34118 (6)	0.32760 (5)	0.01762 (16)	
013	0.33515 (7)	0.21655 (10)	0.26482 (9)	0.0161 (3)	
H13	0.3018 (12)	0.232 (2)	0.2144 (16)	0.039 (8)*	
O14	0.37746 (8)	0.31336 (12)	0.45147 (10)	0.0228 (3)	
H14	0.370 (2)	0.366 (2)	0.479 (3)	0.086 (14)*	
015	0.31493 (7)	0.43482 (11)	0.27597 (10)	0.0175 (3)	
H15A	0.2958 (12)	0.4493 (19)	0.2199 (14)	0.026 (7)*	
H15B	0.3004 (14)	0.4779 (19)	0.3006 (19)	0.041 (9)*	

016	0.49851 (9)	0.23264 (14)	0.37966 (13)	0.0348(4)	
H16A	0.504 (3)	0.179 (3)	0.352 (3)	0.13 (2)*	
H16B	0.5299 (14)	0.230 (2)	0.4319 (17)	0.051 (10)*	
017	0.42545 (8)	0.35821 (12)	0.19100 (10)	0.0222 (3)	
H17A	0.3901 (13)	0.364 (2)	0.1394 (17)	0.044 (9)*	
H17B	0.4492 (15)	0.316 (2)	0.175 (2)	0.053 (10)*	
O18	0.48239 (7)	0.47272 (12)	0.38301 (10)	0.0198 (3)	
H18A	0.5179 (12)	0.455 (2)	0.4319 (15)	0.031 (7)*	
H18B	0.4610 (15)	0.513 (2)	0.407 (2)	0.053 (10)*	
O19	0.57928 (7)	0.61738 (12)	0.29274 (10)	0.0206 (3)	
H19A	0.6093 (13)	0.603 (2)	0.3462 (16)	0.043 (9)*	
H19B	0.6047 (14)	0.629 (2)	0.262 (2)	0.046 (9)*	
O20	0.50365 (10)	0.76172 (17)	0.39592 (13)	0.0405 (5)	
H20A	0.471 (2)	0.777 (4)	0.416 (4)	0.15 (2)*	
H20B	0.5370 (18)	0.742 (3)	0.445 (2)	0.103 (17)*	
O21	0.58506 (8)	0.87360 (12)	0.28898 (11)	0.0218 (3)	
H21A	0.6135 (13)	0.893 (2)	0.3411 (16)	0.042 (9)*	
H21B	0.601 (2)	0.878 (3)	0.246 (2)	0.094 (15)*	
O22	0.58231 (8)	1.11103 (13)	0.30761 (11)	0.0274 (4)	
H22A	0.6160 (12)	1.114 (2)	0.3604 (16)	0.036 (8)*	
H22B	0.6034 (15)	1.141 (2)	0.277 (2)	0.053 (10)*	
O23	0.4836 (2)	1.0261 (7)	0.3845 (3)	0.0214 (16)	0.49 (3)
H23A	0.520517	1.019846	0.429088	0.032*	0.49 (3)
H23B	0.458680	0.981153	0.392879	0.032*	0.49 (3)
N1	0.24448 (8)	0.28660 (12)	0.33045 (11)	0.0151 (3)	
H1A	0.209963	0.263685	0.284205	0.023*	
H1B	0.268602	0.326406	0.309808	0.023*	
H1C	0.229658	0.319666	0.367847	0.023*	
C1	0.31201 (10)	0.15213 (14)	0.31546 (13)	0.0170 (4)	
H1D	0.348055	0.108998	0.349921	0.020*	
H1E	0.276807	0.111847	0.274682	0.020*	
C2	0.28596 (10)	0.20445 (14)	0.37896 (13)	0.0151 (3)	
H2	0.256858	0.158600	0.394736	0.018*	
C3	0.33729 (10)	0.23864 (15)	0.46485 (13)	0.0192 (4)	
H3A	0.315385	0.262462	0.504576	0.023*	
H3B	0.365219	0.183629	0.494426	0.023*	
O24	0.4901 (3)	0.9763 (14)	0.3884 (4)	0.041 (3)	0.51 (3)
H24A	0.525636	0.986172	0.433912	0.061*	0.51 (3)
H24B	0.460889	1.011938	0.398180	0.061*	0.51 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
W1	0.01187 (3)	0.00678 (3)	0.00937 (3)	0.00066 (2)	0.00455 (2)	-0.00038 (2)
W2	0.00935 (3)	0.00934 (3)	0.00992 (3)	-0.00122 (2)	0.00449 (2)	0.00009 (2)
W3	0.00888 (3)	0.01020 (3)	0.00925 (3)	0.00212 (2)	0.00452 (2)	0.00001 (2)
Sb1	0.00750 (6)	0.00630 (6)	0.00766 (6)	0.00040 (5)	0.00376 (5)	-0.00023 (5)
01	0.0100 (5)	0.0090 (6)	0.0085 (5)	-0.0005 (4)	0.0033 (4)	-0.0006 (4)

O2	0.0098 (5)	0.0092 (6)	0.0092 (5)	0.0025 (4)	0.0038 (4)	0.0000 (4)
O3	0.0092 (5)	0.0098 (6)	0.0083 (5)	0.0002 (4)	0.0041 (4)	0.0001 (4)
O4	0.0205 (7)	0.0128 (6)	0.0155 (6)	-0.0032 (5)	0.0075 (5)	-0.0029 (5)
05	0.0191 (7)	0.0136 (6)	0.0168 (6)	0.0060 (5)	0.0066 (5)	0.0035 (5)
06	0.0136 (6)	0.0114 (6)	0.0101 (6)	-0.0010 (5)	0.0047 (5)	-0.0021 (5)
07	0.0144 (6)	0.0168 (7)	0.0200 (7)	-0.0046 (5)	0.0050 (5)	-0.0026 (5)
08	0.0140 (6)	0.0103 (6)	0.0104 (6)	0.0010 (5)	0.0046 (5)	0.0010 (5)
09	0.0189 (7)	0.0175 (7)	0.0141 (6)	-0.0001 (5)	0.0090 (5)	0.0018 (5)
O10	0.0096 (5)	0.0134 (6)	0.0129 (6)	-0.0002 (5)	0.0031 (5)	-0.0002 (5)
011	0.0165 (6)	0.0163 (7)	0.0125 (6)	0.0016 (5)	0.0080 (5)	0.0002 (5)
012	0.0140 (6)	0.0187 (7)	0.0173 (7)	0.0064 (5)	0.0052 (5)	0.0008 (5)
Na1	0.0167 (5)	0.0227 (6)	0.0192 (6)	0.000	0.0059 (5)	0.000
Na2	0.0221 (6)	0.0230 (6)	0.0256 (6)	0.000	0.0073 (5)	0.000
Na3	0.0205 (6)	0.0199 (6)	0.0193 (6)	0.000	0.0095 (5)	0.000
Na4	0.0149 (4)	0.0206 (4)	0.0174 (4)	-0.0004 (3)	0.0060 (3)	0.0009 (3)
013	0.0179 (7)	0.0170 (7)	0.0126 (6)	0.0008 (5)	0.0045 (5)	-0.0001 (5)
014	0.0220 (7)	0.0267 (8)	0.0204 (7)	-0.0071 (6)	0.0086 (6)	-0.0050 (6)
015	0.0201 (7)	0.0148 (7)	0.0157 (7)	0.0036 (5)	0.0043 (6)	-0.0012 (5)
O16	0.0290 (9)	0.0278 (10)	0.0314 (10)	0.0090 (7)	-0.0085 (7)	-0.0045 (8)
O17	0.0177 (7)	0.0324 (9)	0.0142 (7)	-0.0026 (6)	0.0031 (6)	-0.0011 (6)
O18	0.0187 (7)	0.0248 (8)	0.0148 (7)	0.0074 (6)	0.0047 (6)	-0.0018 (6)
019	0.0177 (7)	0.0266 (8)	0.0182 (7)	0.0008 (6)	0.0075 (6)	0.0056 (6)
O20	0.0266 (9)	0.0643 (14)	0.0300 (10)	0.0032 (9)	0.0094 (8)	0.0026 (10)
O21	0.0191 (7)	0.0265 (8)	0.0214 (8)	-0.0021 (6)	0.0091 (6)	0.0001 (6)
O22	0.0201 (8)	0.0370 (10)	0.0200 (8)	-0.0105 (7)	0.0010 (6)	0.0034 (7)
O23	0.0177 (17)	0.027 (4)	0.0190 (17)	-0.0030 (17)	0.0059 (13)	0.0033 (17)
N1	0.0150 (7)	0.0143 (7)	0.0156 (7)	0.0007 (6)	0.0052 (6)	-0.0007 (6)
C1	0.0209 (9)	0.0105 (8)	0.0184 (9)	0.0016 (7)	0.0055 (7)	0.0002 (7)
C2	0.0184 (9)	0.0110 (8)	0.0150 (8)	-0.0004 (7)	0.0049 (7)	0.0025 (6)
C3	0.0209 (9)	0.0211 (10)	0.0135 (8)	-0.0014 (8)	0.0038 (7)	0.0009 (7)
O24	0.023 (2)	0.080 (9)	0.022 (2)	-0.016 (3)	0.0111 (17)	-0.017 (3)

Geometric parameters (Å, °)

W1—Sb1	3.2668 (2)	Na3—017	2.4480 (19)
W101 ⁱ	2.1899 (12)	Na3—O18	2.3414 (15)
$W1-O2^i$	2.2339 (13)	Na3—O18 ⁱⁱ	2.3414 (15)
W104	1.7435 (14)	Na3—O19	2.3733 (18)
W105	1.7449 (13)	Na3—O19 ⁱⁱ	2.3733 (18)
W1	1.9391 (13)	Na4—O13	2.3669 (17)
W1	1.9471 (13)	Na4—O14	2.4085 (17)
W2—Sb1	3.2772 (1)	Na4—O15	2.3636 (17)
W2-O1 ⁱ	2.2106 (12)	Na4—O16	2.3479 (19)
W2—O3	2.2599 (12)	Na4—O17	2.3585 (17)
W2—O7	1.7455 (14)	Na4—O18	2.3655 (18)
W2—O8	1.9387 (13)	O13—H13	0.90 (2)
W2—O9	1.7312 (13)	O13—C1	1.428 (2)
W2—O10	1.9477 (13)	O14—H14	0.91 (2)

W3—Sb1	3.2348 (1)	O14—C3	1.431 (3)
W3	2.1925 (12)	015—H15A	0.88 (2)
W3-03	2 2189 (12)	015—H15B	0.84(2)
W3-06 ⁱ	1 9416 (13)	016—H16A	0.90(3)
W3-010	1.9383 (13)	O16—H16B	0.90(3) 0.88(2)
W3 011	1.7353(13)	017 H17A	0.00(2)
W3_012	1.7452(13) 1 7394(13)	017—H17B	0.92(2) 0.88(2)
Sb1 01	1.7574 (15)	018 H18A	0.00(2)
Sb1_01	1.9885(12) 1.9885(12)	018 H18B	0.92(2)
Sb1_01	1.9003(12) 1.0773(12)		0.91(2)
Sb1-02	1.9773(12) 1.0773(12)	010 H10P	0.90(2)
Sb1-02 Sb1 03	1.9773(12) 1.0830(12)	O20 H20A	0.00(2)
Sb1-03	1.9030(12) 1.0820(12)	020—H20A	0.92(3)
S01-03 ⁻	1.9830(12)	021 1121 A	0.91(3)
Nal—Na2	3.404/(18)	021—H2IA	0.89(2)
Na1-021	2.4404 (18)	021—H21B	0.89(3)
Na1-021"	2.4405 (18)	022—H22A	0.91 (2)
Na1—022"	2.3394 (18)	022—H22B	0.89 (2)
Nal—O22	2.3394 (18)	O23—H23A	0.8740
Na1—O23 ⁿ	2.371 (6)	O23—H23B	0.8741
Na1—O23	2.371 (6)	N1—H1A	0.9100
Nal—O24	2.346 (6)	N1—H1B	0.9100
Na1—O24 ⁱⁱ	2.346 (6)	N1—H1C	0.9100
Na2—Na3	3.5381 (18)	N1—C2	1.496 (2)
Na2—O19	2.4322 (19)	C1—H1D	0.9900
Na2—O19 ⁱⁱ	2.4322 (19)	C1—H1E	0.9900
Na2—O20	2.346 (2)	C1—C2	1.531 (3)
Na2—O20 ⁱⁱ	2.346 (2)	C2—H2	1.0000
Na2—O21 ⁱⁱ	2.4752 (19)	C2—C3	1.517 (3)
Na2—O21	2.4752 (19)	С3—НЗА	0.9900
Na3—Na4	3.4130 (11)	С3—Н3В	0.9900
Na3—Na4 ⁱⁱ	3.4130 (11)	O24—H24A	0.8699
Na3—O17 ⁱⁱ	2.4480 (19)	O24—H24B	0.8705
O1 ⁱ —W1—Sb1	36.42 (3)	O24—Na1—Na2	83.2 (5)
$O1^{i}$ $W1$ $O2^{i}$	72.79 (4)	O24 ⁱⁱ —Na1—O21	80.7 (3)
O2 ⁱ —W1—Sb1	36.37 (3)	O24 ⁱⁱ —Na1—O21 ⁱⁱ	89.8 (4)
O4—W1—Sb1	130.41 (5)	O24—Na1—O21 ⁱⁱ	80.7 (3)
O4-W1-O1 ⁱ	94.83 (6)	O24—Na1—O21	89.8 (4)
$O4$ — $W1$ — $O2^i$	163.66 (6)	O24 ⁱⁱ —Na1—O23 ⁱⁱ	17.2 (3)
O4—W1—O5	103.63 (7)	O24—Na1—O23 ⁱⁱ	175.4 (5)
O4—W1—O6	95.64 (6)	O24—Na1—O24 ⁱⁱ	166.4 (9)
O4—W1—O8	100.73 (6)	Na1—Na2—Na3	180.0
O5—W1—Sb1	125.95 (5)	019—Na2—Na1	138.05 (4)
O5—W1—O1 ⁱ	160.13 (6)	O19 ⁱⁱ —Na2—Na1	138.06 (4)
O5—W1—O2 ⁱ	90.26 (6)	019—Na2—Na3	41.95 (4)
O5—W1—O6	99.11 (6)	019 ⁱⁱ —Na2—Na3	41.94 (4)
O5-W1-O8	95.10(6)	019^{ii} —Na2—019	83.89 (9)
O6—W1—Sb1	77.17 (4)	019 ⁱⁱ —Na2—O21	176.21 (6)
	· · · · · · · · · · · · · · · · · · ·		

06-W1-O1 ⁱ	86.15 (5)	O19—Na2—O21	93.33 (5)
O6-W1-O2 ⁱ	73.36 (5)	O19—Na2—O21 ⁱⁱ	176.21 (6)
O6—W1—O8	155.13 (5)	O19 ⁱⁱ —Na2—O21 ⁱⁱ	93.33 (5)
O8—W1—Sb1	77.96 (4)	O20 ⁱⁱ —Na2—Na1	85.11 (7)
O8-W1-O1 ⁱ	74.00 (5)	O20—Na2—Na1	85.11 (7)
O8—W1—O2 ⁱ	86.33 (5)	O20 ⁱⁱ —Na2—Na3	94.89 (7)
O1 ⁱ —W2—Sb1	36.33 (3)	O20—Na2—Na3	94.89 (7)
O1 ⁱ —W2—O3	72.77 (4)	O20—Na2—O19	90.93 (7)
O3—W2—Sb1	36.45 (3)	O20—Na2—O19 ⁱⁱ	96.34 (7)
O7—W2—Sb1	128.97 (5)	O20 ⁱⁱ —Na2—O19 ⁱⁱ	90.93 (7)
O7—W2—O1 ⁱ	93.49 (6)	O20 ⁱⁱ —Na2—O19	96.34 (7)
O7—W2—O3	163.07 (6)	O20—Na2—O20 ⁱⁱ	170.23 (13)
O7—W2—O8	100.36 (6)	O20—Na2—O21	86.25 (7)
O7—W2—O10	95.81 (6)	O20 ⁱⁱ —Na2—O21 ⁱⁱ	86.26 (7)
08—W2—Sb1	77.78 (4)	O20 ⁱⁱ —Na2—O21	86.81 (7)
$08-W2-O1^{i}$	73.67 (5)	020 —Na2— 021^{ii}	86.81 (7)
08—W2—O3	85.49 (5)	$O21^{ii}$ —Na2—Na1	44.78 (4)
08-W2-010	153.80 (5)	O_21 —Na2—Na1	44.78 (4)
09—W2—Sb1	127.21 (5)	$O21^{ii}$ Na2-Na3	135.22 (4)
$09-W2-01^{i}$	161.88 (6)	O_21 —Na2—Na3	135.22 (4)
09—W2—O3	91.10(6)	$O21^{ii}$ —Na2—O21	89.56 (9)
09—W2—07	103.75 (7)	Na4 ⁱⁱ —Na3—Na2	128.30 (2)
09—W2—08	97.40 (6)	Na4—Na3—Na2	128.29 (2)
09—W2—010	98.60 (6)	Na4 ⁱⁱ —Na3—Na4	103.41 (4)
010—W2—Sb1	76.02 (4)	017—Na3—Na2	140.10 (4)
$010 - W2 - 01^{i}$	84.96 (5)	017^{ii} —Na3—Na2	140.10 (4)
010—W2—O3	73.62 (5)	017^{ii} —Na3—Na4 ⁱⁱ	43.71 (4)
02—W3—Sb1	36.78 (3)	017—Na3—Na4	43.71 (4)
02 - W3 - 03	73.84 (4)	017^{ii} —Na3—Na4	76.82 (5)
03—W3—Sb1	37.06 (3)	017—Na3—Na4 ⁱⁱ	76.82 (5)
$O6^{i}$ W3 Sh1	77.99 (4)	017^{ii} —Na3— 017	79.80 (9)
O6 ⁱ —W3—O2	74.28 (5)	$O18^{ii}$ —Na3—Na2	96.98 (5)
O6 ⁱ —W3—O3	85.85 (5)	018—Na3—Na2	96.98 (5)
010—W3—Sb1	77.24 (4)	018^{ii} Na3 Na4 ⁱⁱ	43.80 (4)
$010 - W_3 - 02$	85.43 (5)	018^{ii} Na3 Na4	124.83 (5)
010—W3—03	74.75 (5)	018—Na3—Na4 ⁱⁱ	124.84 (5)
$010 - W3 - 06^{i}$	155.22 (5)	018—Na3—Na4	43.80 (4)
011—W3—Sb1	126.05 (4)	018—Na3— 017	87.51 (6)
011—W3—02	160.69 (5)	018^{ii} Na3-017 ⁱⁱ	87.51 (6)
011	89.55 (5)	018^{ii} Na3-017	81.79 (6)
$011 - W3 - 06^{i}$	95 15 (6)	018 Na3 017^{ii}	81 79 (6)
011 - W3 - 010	99 89 (6)	018 Na3 018^{ii}	166.05(10)
012—W3—Sb1	129 14 (5)	0.18^{ii} Na 3 -0.19	90.52 (6)
012—W3—02	93.06 (6)	018^{ii} Na3-019 ⁱⁱ	99.67 (6)
012—W3—03	163 91 (6)	018 - Na3 - 019	99.67 (6)
$012 - W3 - 06^{i}$	99.77 (6)	$O18$ —Na3— $O19^{ii}$	90.52 (6)
012—W3—010	95 30 (6)	019 Na3 Na?	43 24 (4)
012-W3-011	104.81 (6)	010^{ii} Na3 Na2	43.24(4)
012 - 011	101.01	017 1103 1102	ч <i>3.2</i> т (т)

$W1$ — $Sb1$ — $W1^i$	180.0	O19—Na3—Na4	143.27 (4)
$W1^{i}$ —Sb1— $W2^{i}$	59.590 (4)	O19—Na3—Na4 ⁱⁱ	95.82 (4)
W1—Sb1—W2	59.590 (4)	O19 ⁱⁱ —Na3—Na4 ⁱⁱ	143.27 (4)
W1 ⁱ —Sb1—W2	120.410 (3)	O19 ⁱⁱ —Na3—Na4	95.82 (4)
W1—Sb1—W2 ⁱ	120.411 (3)	O19 ⁱⁱ —Na3—O17	97.35 (6)
W2—Sb1—W2 ⁱ	180.0	O19 ⁱⁱ —Na3—O17 ⁱⁱ	171.87 (6)
W3 ⁱ —Sb1—W1 ⁱ	119.789 (2)	O19—Na3—O17	171.87 (6)
W3—Sb1—W1 ⁱ	60.211 (2)	O19—Na3—O17 ⁱⁱ	97.35 (6)
W3 ⁱ —Sb1—W1	60.211 (2)	O19 ⁱⁱ —Na3—O19	86.47 (9)
W3—Sb1—W1	119.789 (2)	O13—Na4—Na3	134.78 (5)
W3—Sb1—W2	60.200 (4)	O13—Na4—O14	81.91 (6)
W3—Sb1—W2 ⁱ	119.800 (5)	O14—Na4—Na3	142.74 (5)
$W3^{i}$ —Sb1— $W2^{i}$	60.200 (4)	O15—Na4—Na3	94.91 (5)
W3 ⁱ —Sb1—W2	119.801 (5)	O15—Na4—O13	81.40 (6)
W3—Sb1—W3 ⁱ	180.0	O15—Na4—O14	83.06 (6)
O1—Sb1—W1	139.17 (4)	O15—Na4—O18	95.30 (6)
O1—Sb1—W1 ⁱ	40.83 (4)	016—Na4—Na3	91.62 (6)
$O1^{i}$ —Sb1—W1	40.83 (4)	016—Na4—013	92.36 (7)
$O1^{i}$ —Sb1—W1 ⁱ	139.17 (4)	016—Na4—014	93.13 (7)
O1-Sb1-W2	138.80 (4)	016—Na4—015	173.08 (7)
O1 ⁱ —Sb1—W2 ⁱ	138.80 (3)	016—Na4—017	91.86 (7)
O1—Sb1—W2 ⁱ	41.20 (4)	O16—Na4—O18	91.03 (7)
O1 ⁱ —Sb1—W2	41.19 (3)	O17—Na4—Na3	45.83 (4)
O1—Sb1—W3 ⁱ	90.19 (4)	O17—Na4—O13	89.02 (6)
O1 ⁱ —Sb1—W3 ⁱ	89.82 (4)	O17—Na4—O14	169.82 (6)
O1 ⁱ —Sb1—W3	90.18 (4)	O17—Na4—O15	91.04 (6)
O1—Sb1—W3	89.81 (4)	O17—Na4—O18	89.07 (6)
O1—Sb1—O1 ⁱ	180.0	O18—Na4—Na3	43.24 (4)
O2 ⁱ —Sb1—W1	42.06 (4)	O18—Na4—O13	176.16 (6)
$O2^{i}$ —Sb1—W1 ⁱ	137.94 (4)	O18—Na4—O14	99.71 (6)
O2—Sb1—W1	137.94 (4)	Na4—O13—H13	115.7 (19)
O2—Sb1—W1 ⁱ	42.06 (4)	C1—O13—Na4	123.74 (12)
O2—Sb1—W2	90.01 (4)	C1—O13—H13	109.0 (19)
O2 ⁱ —Sb1—W2	89.99 (4)	Na4—O14—H14	117 (3)
O2—Sb1—W2 ⁱ	89.99 (4)	C3—O14—Na4	129.46 (12)
O2 ⁱ —Sb1—W2 ⁱ	90.01 (4)	C3—O14—H14	106 (3)
O2 ⁱ —Sb1—W3 ⁱ	41.59 (4)	Na4—O15—H15A	121.8 (17)
O2—Sb1—W3 ⁱ	138.40 (4)	Na4—O15—H15B	132 (2)
O2 ⁱ —Sb1—W3	138.41 (4)	H15A—O15—H15B	102 (3)
O2—Sb1—W3	41.60 (4)	Na4—O16—H16A	126 (4)
O2 ⁱ —Sb1—O1	97.11 (5)	Na4—O16—H16B	129 (2)
$O2^{i}$ —Sb1—O1 ⁱ	82.89 (5)	H16A—O16—H16B	104 (4)
O2—Sb1—O1	82.89 (5)	Na3—O17—H17A	121 (2)
O2—Sb1—O1 ⁱ	97.11 (5)	Na3—O17—H17B	104 (2)
O2—Sb1—O2 ⁱ	180.0	Na4—O17—Na3	90.46 (6)
$O2^{i}$ —Sb1—O3 ⁱ	84.00 (5)	Na4—O17—H17A	121 (2)
O2 ⁱ —Sb1—O3	96.00 (5)	Na4—O17—H17B	120 (2)
O2—Sb1—O3	84.00 (5)	H17A—O17—H17B	101 (3)
	× /		× /

O2—Sb1—O3 ⁱ	96.00 (5)	Na3—O18—Na4	92.96 (6)
O3—Sb1—W1 ⁱ	90.07 (4)	Na3—O18—H18A	117.0 (17)
O3—Sb1—W1	89.93 (4)	Na3—O18—H18B	127 (2)
$O3^i$ —Sb1—W1 ⁱ	89.93 (4)	Na4—O18—H18A	111.3 (17)
$O3^i$ —Sb1—W1	90.07 (4)	Na4—O18—H18B	106 (2)
$O3^{i}$ —Sb1—W2	137.39 (4)	H18A—O18—H18B	101 (3)
O3—Sb1—W2	42 61 (4)	Na2-019-H19A	130(2)
03—Sb1—W2 ⁱ	137 39 (4)	Na2 = 019 = H19B	104(2)
$O3^{i}$ Sb1 W2	42 61 (4)	Na3-019-Na2	94 82 (6)
03 - Sb1 - W3	42.01(1)	$N_{23} = 019 = H_{104}$	109(2)
O_3 Sb1 W_3^i	13750(3)	$N_{23} O19 H10R$	$10^{-1}(2)$
$O3^{i}$ Sb1 W3 ⁱ	42 41 (3)	H194 - O19 - H19B	121(2) 101(3)
O_3^i Sh1 W3	42.41(3)	$N_{0}2 O20 H20A$	130(4)
$O_{3}^{2} = Sb_{1}^{2} = W_{3}^{2}$	137.39 (4) 82.80 (5)	Na2 = O20 = H20R	130(4) 126(2)
03 - 301 - 01	0.00(3)		120(3)
	90.21 (5)	$H_{2}0A = 020 = H_{2}0B$	104 (4)
03 - Sb1 - O1	83.79 (5)	Nal—O21—Na2	89.63 (6)
03—Sb1—01	96.20 (5)	Nal—O21—H21A	104 (2)
$O3$ — $Sb1$ — $O3^1$	180.00 (6)	Nal—O21—H21B	103 (3)
$W1^{1}$ — $O1$ — $W2^{1}$	95.28 (5)	Na2—O21—H21A	132 (2)
Sb1—O1—W1 ¹	102.75 (5)	Na2—O21—H21B	109 (3)
$Sb1-O1-W2^{i}$	102.47 (5)	H21A—O21—H21B	113 (3)
$W3-O2-W1^{i}$	94.91 (5)	Na1—O22—H22A	131.2 (19)
Sb1—O2—W1 ⁱ	101.57 (5)	Na1—O22—H22B	125 (2)
Sb1—O2—W3	101.63 (5)	H22A—O22—H22B	95 (3)
W3—O3—W2	93.64 (5)	Na1—O23—H23A	109.8
Sb1—O3—W2	100.94 (5)	Na1—O23—H23B	109.3
Sb1—O3—W3	100.53 (5)	H23A—O23—H23B	104.3
W1	114.36 (6)	H1A—N1—H1B	109.5
W2	113.61 (6)	H1A—N1—H1C	109.5
W3	114.38 (6)	H1B—N1—H1C	109.5
O21—Na1—Na2	45.59 (4)	C2—N1—H1A	109.5
O21 ⁱⁱ —Na1—Na2	45.59 (4)	C2—N1—H1B	109.5
O21—Na1—O21 ⁱⁱ	91.19 (9)	C2—N1—H1C	109.5
O22—Na1—Na2	133.05 (5)	O13—C1—H1D	109.1
O22 ⁱⁱ —Na1—Na2	133.05 (5)	O13—C1—H1E	109.1
O22—Na1—O21	87.99 (6)	O13—C1—C2	112.67 (15)
$O22^{ii}$ —Na1—O21 ⁱⁱ	87.99 (6)	H1D—C1—H1E	107.8
022 —Na1— 021^{ii}	172.04 (6)	C^2 — $C1$ — $H1D$	109.1
022^{ii} Na1-021	172.04 (6)	C^2 — $C1$ — $H1E$	109.1
022^{ii} Na1 -022	93.90(10)	N1 - C2 - C1	108 36 (15)
022^{ii} Na1 022	84.0 (2)	N1_C2_H2	107.3
022 Nul 023	82.30(18)	N1 - C2 - C3	110.62 (16)
$O_{22} = N_{21} = O_{23}^{ii}$	84.0 (2)	C1 $C2$ $C3$	107.3
022^{-1} Na1 -023^{-1}	87.0(2)	$C_1 - C_2 - C_1$	107.5
$O_{22} = 10a_1 = O_{23}$	02.50(10) 07.0(4)	$C_3 = C_2 = C_1$	113.37(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97.7(4)	$C_3 - C_2 - \Pi_2$	107.3
$O_{22} = Na1 = O_{24}$	91.4(3)	O14 C2 U2 A	112.30 (10)
022—INa1— 024	91.4 (3)	O14 - C3 - H3A	109.1
022^{-1} Na1 -024	9/.9(4)	014—C3—H3B	109.1

O23 ⁱⁱ —Na1—Na2	100.1 (2)	C2—C3—H3A	109.1
O23—Na1—Na2	100.1 (2)	C2—C3—H3B	109.1
O23—Na1—O21	103.9 (2)	H3A—C3—H3B	107.8
O23 ⁱⁱ —Na1—O21	90.22 (18)	Na1—O24—H24A	115.3
O23 ⁱⁱ —Na1—O23	159.8 (5)	Na1—O24—H24B	115.9
O24 ⁱⁱ —Na1—Na2	83.2 (5)	H24A—O24—H24B	104.5
Na4—O13—C1—C2	51.8 (2)	O13—C1—C2—C3	-80.5 (2)
Na4—O14—C3—C2	-31.5 (2)	N1—C2—C3—O14	-56.4 (2)
O13—C1—C2—N1	44.2 (2)	C1—C2—C3—O14	67.2 (2)

Symmetry codes: (i) -x+1/2, -y+3/2, -z+1; (ii) -x+1, y, -z+1/2.