

STRUCTURAL CHEMISTRY

Received 22 June 2022
Accepted 28 September 2022

Edited by T. Roseveare, University of Sheffield, United Kingdom

Keywords: noncovalent interactions; halogen bonding; Hirshfeld analysis; crystal structure; bromoferrocene.

CCDC references: 2210089 ; 2210088; 2210087

Supporting information: this article has supporting information at journals.iucr.org/C

OPEN $\begin{array}{r}\text { ACCESS }\end{array}$
Published under a CC BY 4.0 licence

Isolation and crystal and molecular structures of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{Br}_{3}\right)_{2} \mathrm{Fe}\right],\left[\left(\mathrm{C}_{5} \mathrm{HBr}_{4}\right)_{2} \mathrm{Fe}\right]$ and $\left[\left(\mathrm{C}_{5} \mathrm{Br}_{5}\right)\left(\mathrm{C}_{5} \mathrm{Br}_{4} \mathrm{HgBr}\right) \mathrm{Fe}\right]$

Tobias Blockhaus and Karlheinz Sünkel*

Chemistry, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Munich, D-81377, Germany. *Correspondence e-mail: suenk@cup.uni-muenchen.de

The reaction of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Br}_{2}\right)_{2} \mathrm{Fe}\right]$ with lithium tetramethylpiperidinide (LiTMP) in a 1:10 molar ratio in tetrahydrofuran yields, after quenching with $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{4}$, a mixture of the polybromoferrocenes $\left[\mathrm{C}_{10} \mathrm{H}_{10-n} \mathrm{Br}_{n} \mathrm{Fe}\right]$ with $n=4-9$, from which single crystals of bis(1,2,3-tribromocyclopentadienyl)iron(II), $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{Br}_{3}\right)_{2}\right]$, and bis(1,2,3,4-tetrabromocyclopentadienyl)iron(II), $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{HBr}_{4}\right)_{2} \mathrm{Fe}\right]$, were obtained by a combination of chromatography and fractional crystallization. Treatment of ' $\left[\mathrm{C}_{10}(\mathrm{HgOAc})_{10} \mathrm{Fe}\right]$ ' with KBr_{3} yields a mixture of polybromoferrocenes $\left[\mathrm{C}_{10} \mathrm{H}_{10-n} \mathrm{Br}_{n} \mathrm{Fe}\right]$ with $n=8-10$ and bromomercurioferrocenes $\left[\mathrm{C}_{10} \mathrm{H}_{9-n^{-}}\right.$ $\left.\mathrm{Br}_{n}(\mathrm{HgBr}) \mathrm{Fe}\right]$ with $n=7-9$, from which single crystals of (1-bromomercurio-2,3,4,5-tetrabromocyclopentadienyl)(1,2,3,4,5-pentabromocyclopentadienyl)iron(II), $\left[\mathrm{FeHgBr}\left(\mathrm{C}_{5} \mathrm{Br}_{4}\right)\left(\mathrm{C}_{5} \mathrm{Br}_{5}\right)\right]$, were obtained by fractional crystallization. The crystal structures of all the compounds show $\mathrm{Br} \cdots \mathrm{Br}, \mathrm{Br} \cdots \mathrm{H}$ and sometimes $\mathrm{Br} \cdots \mathrm{Cp} \cdots \pi$ (Cp is a ring centroid) interactions, as well as $\pi-\pi$ interactions. The findings are supported by Hirshfeld analyses.

1. Introduction

'Noncovalent interactions' are found in nearly all disciplines of chemistry, biochemistry and biology, and have been studied, at least in part, for quite a while (Hobza \& Řezáč, 2016). This term brings together such apparently different interactions as hydrogen, halogen, lone-pair $-\pi$, anion $-\pi$, cation $-\pi$ and $\pi-\pi$ bonding, and these interactions can either act independently or co-operatively (Mahadevi \& Sastry, 2016; Portela \& Fernández, 2021). Among these, halogen bond(ing) has been studied continuously at a high level since about 1995. The last comprehensive review dates back to 2016 (Cavallo et al., 2016). A look at SciFinder shows since then nearly 2000 new entries for the years 2021 and 2022, and already 492 entries with the concept 'Halogen Bonding' (accessed on May 26th, 2022). The vast majority of these studies are centred on organic or biological systems, with a focus on crystal engineering (Mukherjee et al., 2014). Relatively rarely studied were metal-containing systems (Brammer et al., 2008), in particular, organometallic systems have so far been restricted to a few metal carbonyls, ruthenium-complexed aryl iodides (Kelly \& Holman, 2022) and one study on $1,1^{\prime}$-dihaloferrocenes (Shimizu \& Ferreira da Silva, 2018). Our group has been working on polyhalogenated metallocenes for quite a while (Sünkel \& Motz, 1988; Sünkel \& Hofmann, 1992; Sünkel et al., 1994, 2015; Sünkel \& Bernhartzeder, 2011), and some very recent reports on the synthesis and crystal structure determinations of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{n} \mathrm{Br}_{5-n}\right)\left(\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{Br}_{3}\right) \mathrm{Fe}\right](n=1$ or 2 ; Butler et al., 2021; Butler, 2021) and [$\left.\left(\mathrm{C}_{5} \mathrm{H}_{n} \mathrm{Br}_{5-n}\right)\left(\mathrm{C}_{5} \mathrm{Br}_{5}\right) \mathrm{Fe}\right]$ ($n=0$ or 1 ; Rupf et al., 2022) prompted us to report on our synthetic and

Table 1
Experimental details.
Experiments were carried out with Mo $K \alpha$ radiation.

	3	5	8
Crystal data			
Chemical formula	[Fe($\left.\left.\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{Br}_{3}\right)_{2}\right]$	[$\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{HBr}_{4}\right)_{2}$]	$\left[\mathrm{FeHgBr}\left(\mathrm{C}_{5} \mathrm{Br}_{4}\right)\left(\mathrm{C}_{5} \mathrm{Br}_{5}\right)\right]$
$M_{\text {r }}$	656.69	817.25	1175.64
Crystal system, space group	Triclinic, $P \overline{1}$	Triclinic, $P \overline{1}$	Monoclinic, $P 2_{1} / n$
Temperature (K)	153	103	295
$a, b, c(\AA)$	7.0903 (3), 7.4318 (5), 13.8071 (5)	6.9395 (2), 7.0548 (2), 8.9271 (3)	8.9784 (3), 14.0971 (4), 15.8485 (4)
$\alpha, \beta_{2} \gamma\left({ }^{\circ}\right)$	88.745 (4), 84.993 (3), 77.728 (4)	67.577 (1), 76.160 (1), 86.461 (1)	90, 90.689 (1), 90
$V\left(\mathrm{~A}^{3}\right)$	708.21 (6)	392.06 (2)	2005.79 (10)
Z	2	1	4
$\mu\left(\mathrm{mm}^{-1}\right)$	17.86	21.33	28.28
Crystal size (mm)	$0.49 \times 0.15 \times 0.05$	$0.03 \times 0.01 \times 0.01$	$0.06 \times 0.02 \times 0.02$
Data collection			
Diffractometer	Agilent XCalibur 2	Bruker D8 Venture	Bruker D8 Venture
Absorption correction	Multi-scan (CrysAlis PRO; Agilent, 2014)	Multi-scan (TWINABS; Bruker, 2012)	Multi-scan (SADABS; Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.434, 1.000	0.180, 0.344	0.193, 0.332
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	9297, 3234, 2496	3772, 3772, 3107	33353, 4098, 3154
$R_{\text {int }}$	0.041	-	0.050
$(\sin \theta / \lambda)_{\text {max }}\left(\mathrm{A}^{-1}\right)$	0.649	0.832	0.625
Refinement			
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.043, 0.090, 1.09	$0.037,0.076,1.06$	0.036, 0.092, 1.06
No. of reflections	3234	3772	4098
No. of parameters	162	89	199
No. of restraints	2	0	0
H -atom treatment	H-atom parameters constrained	H -atom parameters constrained	-
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	2.31, -0.97	1.32, -1.31	1.63, -1.24

Computer programs: CrysAlis PRO (Agilent, 2014), APEX2 (Bruker, 2012), SAINT (Bruker, 2011), SHELXT2014 (Sheldrick, 2015a) and SHELXL2018 (Sheldrick, 2015b)
crystallographic studies of polybromoferrocenes. A special focus is made on the occurrence of halogen and hydrogen bonding in these systems.

2. Experimental

2.1. Synthesis and crystallization

2.1.1. Reaction of $1, \mathbf{1}^{\prime}, 2,2^{\prime}$-tetrabromoferrocene (1) with LiTMP in a $1: 10$ molar ratio and $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{4}$. A solution of $\mathbf{1}$ ($243 \mathrm{mg}, 0.48 \mathrm{mmol}$) in tetrahydrofuran (THF; 2 ml) was added to a freshly prepared solution of LiTMP (4.8 mmol) in THF (4 ml) at $-30^{\circ} \mathrm{C}$. After stirring for 5 h , the temperature was lowered to $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{4}(0.6 \mathrm{ml}, 5.0 \mathrm{mmol})$ was added. With continuous stirring, the temperature was raised to ambient temperature over a period of 16 h . After this, water $(10 \mathrm{ml})$ was added and the mixture was extracted with several 10 ml portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with water, then dried with MgSO_{4} and completely evaporated in vacuo. The residue was taken up in the minimum amount of petroleum ether and chromatographed on an alumina column ($20 \times 2 \mathrm{~cm}$), using petroleum ether as eluent. 21 fractions were collected and examined by mass spectroscopy and selected fractions were examined by ${ }^{1} \mathrm{H}$ NMR spectroscopy (Figs. S1 and S2 in the supporting information). All fractions contained mixtures of polybromoferrocenes. While the first fraction consisted of a mixture of penta-, hexa- and heptabromoferrocene, the intermediate fractions contained hexa-, hepta-
and octabromoferrocene, and the last fraction was a mixture of hepta- and octabromoferrocene with traces of nonabromoferrocene. Crystals of $1,1^{\prime}, 2,2^{\prime}, 3,3^{\prime}$-hexabromoferrocene (3) were obtained by slow evaporation of the sixth fraction in a refrigerator, and crystals of $1,1^{\prime}, 2,2^{\prime}, 3,3^{\prime}, 4,4^{\prime}$-octabromoferrocene (5) were obtained from the last fraction by the same method. All other fractions were also recrystallized from different solvents (petroleum ether, $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), but yielded neither crystals nor 'pure' powders (according to ${ }^{1} \mathrm{H}$ NMR spectra taken after redissolution).

Hexabromoferrocene (3). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 4.47 ppm (literature: 4.47 ppm ; Butler, 2021). MS (DEI): $m / z=659.6$ (calculated 659.5).

Octabromoferrocene (5). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): δ 5.20 ppm . MS (DEI): $m / z=817.4$ (calculated 817.3).
2.1.2. Reaction of ' $\left[\mathrm{C}_{10}(\mathrm{HgOAc})_{10} \mathrm{Fe}\right]^{\prime}$ with KBr_{3}. A suspension of 'permercurated ferrocene' $(2.78 \mathrm{~g}$, ca 1 mmol$)$ with KBr_{3}, freshly prepared from $\mathrm{KBr}(1.19 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{Br}_{2}(0.512 \mathrm{ml}, 10 \mathrm{mmol})$ in water $(100 \mathrm{ml})$, was stirred for 4 h at room temperature. After filtration, the residue was first washed with water and then extracted with dichloromethane. The combined extracts were evaporated in vacuo and the residue was placed on top of an alumina column. A 1:1 mixture of petroleum ether and dichloromethane eluted two yellow bands. The first fraction consisted, according to its mass spectrum (Fig. S3), of a mixture of deca-, nona- and octabromoferrocene, while the second fraction yielded a mixture of the bromomercurioferrocenes $\left[\mathrm{C}_{10} \mathrm{H}_{n} \mathrm{Br}_{9-n} \mathrm{HgBrFe}\right]$ with $n=$

1

2

3

4

5

7

6
8

Figure 1
The structural formulae of compounds $\mathbf{1 - 8}$.
$0-2$ (Fig. S4). The ${ }^{1} \mathrm{H}$ NMR spectrum of the first fraction showed four weak signals, which unfortunately could not be assigned to individual compounds (Fig. S5). Recrystallization attempts with the first fraction yielded again only mixtures, while from the second fraction, crystals of $\left[\left(\mathrm{C}_{5} \mathrm{Br}_{5}\right)\left(\mathrm{C}_{5} \mathrm{Br}_{4}\right.\right.$ $\mathrm{HgBr}) \mathrm{Fe}$] (8) could be obtained.

2.2. Refinement

Compound 3: SHELXT (Sheldrick, 2015a) provided the complete molecule of $\mathbf{3}$ on the first run. The following difference Fourier synthesis (see Fig. S6 of the supporting information) showed two electron-density maxima (Q15 and Q16 in Fig. S6; $d=2.66$ and 2.48 e \AA^{-3}) at radial distances of 1.54 and $1.40 \AA$ from ring atoms C24 and C14, respectively. Despite these short distances (more typical for $\mathrm{C}-\mathrm{C}$ bonds), we assigned these peaks to Br atoms (first named X1 and X2) with very low site-occupancy factors, since from the preceeding synthesis no other elements could have been present. The following refinement, however, showed rather short intermolecular distances ($2.581 / 3.328$ and $2.955 / 3.106 \AA$) from these positions to atoms $\mathrm{Br} 21^{\mathrm{i}} / \mathrm{Br} 22^{\mathrm{i}}$ and $\mathrm{Br} 11^{\mathrm{i}} / \mathrm{Br} 12^{\mathrm{i}}$, respectively [symmetry code: (i) $x, y-1, z$] (Fig. S7). It was concluded that $\mathrm{X} 1 / \mathrm{X} 2$ could not be present in the same molecule as $\mathrm{Br} 11 / \mathrm{Br} 12 / \mathrm{Br} 21$ (and eventually Br 22 also) and therefore it was assumed that compound $\mathbf{3}$ (with $\operatorname{Br} 11-\mathrm{Br} 13$ and $\mathrm{Br} 21-$ Br 23) cocrystallized with very small amounts (ca 3\%) of compound 2 [with $\mathrm{Br} 13-\mathrm{Br} 14$ (= X2) and $\mathrm{Br} 22-\mathrm{Br} 24$ (= X1)], and this model was used for the subsequent refinements. The refinement procedure was as follows: first, it was assumed that all Br atoms would have the same isotropic U values and then the site-occupation factors for $\mathrm{X} 1=\mathrm{Br} 24 / \mathrm{H} 24$ and $\mathrm{X} 2=\mathrm{Br} 14 /$ H 14 , as well as $\mathrm{Br} 11 / \mathrm{H} 11, \mathrm{Br} 12 / \mathrm{H} 12, \mathrm{Br} 21 / \mathrm{H} 21$ and $\mathrm{Br} 23 / \mathrm{H} 23$, were allowed to refine. The site-occupancy factors were then fixed at these values and the U values were allowed to refine freely for the main components even anisotropically. Any attempts to produce longer $\mathrm{C} 14-\mathrm{Br} 14$ and $\mathrm{C} 24-\mathrm{Br} 24$ 'bonds' via the use of restraints met with failure. It should be
noted at this point that the crystal structure of 1,1',2,4-tetraiodoferrocene showed a similar disorder and an apparent 'bond shortening', which the authors were able to resolve (Evans et al., 2021).

Compound 5: the measured crystal was recognized as a twin (two domains, rotated by 180° around 010) and a HKLF5 data file was created. The scale factor BASF refined to a final value of 0.17818 . The refinement proceeded without any problems, and no signs of disorder were found.

Crystal data, data collection and structure refinement details of all compounds are summarized in Table 1.

3. Results and discussion

3.1. Synthesis

According to a recent review on haloferrocenes, there were only three heteroannularly substituted polybromoferrocenes known in 2018 (Butenschön, 2018): 1,1'-dibromoferrocene, 1,1',2-tribromoferrocene and decabromoferrocene. Since then, at least one isomer of each of the remaining $\left[\mathrm{C}_{10} \mathrm{H}_{n}\right.$ -$\left.\mathrm{Br}_{10-n} \mathrm{Fe}\right]$ with $n=4-9$ has been obtained, sometimes only as part of mixtures. There were two different synthetic approaches to achieve this: (i) stepwise lithiation followed by electrophilic quenching with ' Br^{+}, starting with $1,1^{\prime}$-dibromoferrocene, or (ii) 'permercuration' of ferrocene followed by treatment with KBr_{3}. Both methods had their shortcomings, however. When $1,1^{\prime}$-dibromoferrocene was treated with 2.1 equivalents of LiTMP in THF at low temperature, followed by electrophilic quenching with 1,1,2,2-tetrabromoethane, a mixture of tri-, tetra-, penta-, hexa-, hepta- and octabromoferrocenes was obtained, from which the first two could be obtained in pure form (yields of 9.9 and 16.0%, respectively; Butler et al., 2021). When the solvent was changed from THF to hexane, the electrophile to dibromohexafluoropropane and the temperature to room temperature, 1, $1^{\prime}, 2,2^{\prime}$-tetrabromoferrocene (1) was obtained in over 90% yield (Butler, 2021). Repeating the latter procedure on compound $\mathbf{1}$ gave rather

Table 2
Overview of the CSD structures of polyhaloferrocenes substituted on both rings.

Chemical formula	Abbreviation in this text	Refcode in the CSD	Conformation	Reference
$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{Fe}$	FdF_{2}	RACROF	Eclipsed, I	Inkpen et al. (2015)
$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{Fe}$	FdCl_{2}	DUTSUH, DUTSUH01	Eclipsed, I	Bryan \& Leadbetter (1986); Inkpen et al. (2015)
$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{Fe}$	FdBr_{2}	BIPDOU	Eclipsed, I	Hnetinka et al. (2004)
$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{I}_{2} \mathrm{Fe}$	FdI_{2}	KOPFAY	Staggered	Roemer \& Nijhuis (2014)
$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Br}_{3} \mathrm{Fe}$	FdBr_{3}	UTOBIR	Nearly eclipsed, VI	Butler et al. (2021)
$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{I}_{3} \mathrm{Fe}$	FdI_{3}	EZAWUA	Nearly eclipsed, VI	Evans et al. (2021)
$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{Cl}_{4} \mathrm{Fe}$	FdCl_{4}	CEVBEK	Eclipsed, IV	Sato et al. (1984)
$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{Br}_{4} \mathrm{Fe}$	FdBr_{4}	UTOBUD	Eclipsed, IV	Butler et al. (2021)
$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{I}_{4} \mathrm{Fe}$ -	FdI_{4}	EZAWOU	Eclipsed, VI	Evans et al. (2021)
$\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{Cl}_{6} \mathrm{Fe}$	FdCl_{6}	DUTSUG	No data in CSD	Bryan \& Leadbetter (1986)
$\mathrm{C}_{10} \mathrm{HBr}_{9} \mathrm{Fe}$	FdBr_{9}	FEFZAV	Staggered	Rupf et al. (2022)
$\mathrm{C}_{10} \mathrm{Br}_{10} \mathrm{Fe}$	FdBr_{10}	FEFYUO	staggered	Rupf et al. (2022)

high yields of $1,1^{\prime}, 2,2^{\prime}, 3,3^{\prime}$-hexabromoferrocene (3), contaminated, however, with heptabromoferrocene (4) and octabromoferrocene (5). All attempts to repeat this procedure on compound $\mathbf{3}$ met with failure, due to the very low solubility of this compound. On the other hand, the preparation of 'permercurated ferrocenes' followed by the addition of KBr_{3}, first reported in 1977, then later in 1994, 1997 and 2022, suffered from difficulties due to solubility problems (Boev \& Dombrovskii, 1977; Han et al., 1994; Neto et al., 1997; Rupf et al., 2022). For example, Han and co-workers showed that using $\mathrm{Hg}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}$ as the mercuration agent gave a 'mixture of at least four partially brominated ferrocenes'. When they used $\mathrm{Hg}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}$ as the mercuration agent, decabromoferrocene (7) could be isolated in 60% yield, contaminated, however, with at least two partially brominated ferrocenes. Rupf and coworkers repeated this latter experiment and showed that besides 7 also nonabromoferrocene (6) and nonabromo(bromomercurio)ferrocene (8) were formed (based on ${ }^{13} \mathrm{C}$ NMR spectroscopy; a closer look at Fig. S20 of their supporting information shows the additional formation of octabromoferrocene 5 and the bromomercurioferrocenes [$\mathrm{C}_{10} \mathrm{H}_{n} \mathrm{Br}_{9-n} \mathrm{HgBrFe}$] with $n=1$ and 2). When they used $\mathrm{Hg}\left(\mathrm{O}_{2} \mathrm{CC}_{3} \mathrm{H}_{7}\right)_{2}$, they apparently obtained a mixture of $\mathbf{7}$ and $\mathbf{8}$ with no other contaminants (based on NMR and IR). Neto and co-workers reported the use of $\mathrm{Hg}\left(\mathrm{O}_{2} \mathrm{CCCl}_{3}\right)_{2}$ as the mercuration agent, the transformation of the apparently formed $\left[\mathrm{C}_{10}\left(\mathrm{HgO}_{2} \mathrm{CCl}_{3}\right)_{10} \mathrm{Fe}\right]$ to the decachloromercurioferrocene, followed by reaction with KBr_{3} to give pure 7 [characterization by NMR and IR spectroscopy, and elemental analysis (C and Fe)].

We decided to look at the lithiation reactions with LiTMP as the lithiating reagent, $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{4}$ as the brominating agent and THF as the reaction medium at low temperatures again. We started with a solution of $1,1^{\prime}, 2,2^{\prime}$-tetrabromoferrocene ($\mathbf{1}$; purity $>95 \%$) in THF and treated it with ten molar equivalents of LiTMP, followed by the addition of tetrabromoethane. After standard work-up, a chromatographic separation was attempted. Since no band formation was recognizable, 21 fractions with equal volume were collected. Fractions 1, 10, 12 and 21 were examined by mass spectrometry (Fig. S1), while fractions $4,6,8$ and 21 were studied by NMR spectroscopy (Fig. S2). All fractions were left standing in open vials for slow evaporation of the solvent. From these crystallization
attempts, fractions 1, 6 and 21 gave crystals. The observation that some compounds were present in nearly all fractions is most likely due to the low solubility in the eluting solvent, which led to 'smearing' over the length of the chromatography column. The use of different solvent mixtures for elution (PE/ $\mathrm{Et}_{2} \mathrm{O}, \mathrm{PE} / \mathrm{THF}$ and $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{PE}$ is petroleum ether) increased the solubility, but did not improve the resolution of the compounds. This problem might have been overcome by the use of high-performance liquid chromatography (HPLC); however, this was not available to us.

The mass spectrum of fraction 1 showed the presence of $\mathbf{2}$ $(m / z=579.7), \mathbf{3}(\mathrm{m} / \mathrm{z}=659.6)$ and $\mathbf{4}(\mathrm{m} / \mathrm{z}=737.5)$, with $\mathbf{2}$ as the main component. In both of fractions 10 and 12,4 was the main component, contaminated by 2 (traces), $\mathbf{3}$ and $\mathbf{5}(\mathrm{m} / \mathrm{z}=$ 817.5). Finally, the mass spectrum of fraction 21 showed $\mathbf{5}$ as the main component, contaminated by $\mathbf{4}$ and traces of $\mathbf{6}(\mathrm{m} / \mathrm{z}=$ 895.2). The ${ }^{1} \mathrm{H}$ NMR spectra of fractions 4,6 and 8 showed different mixtures of compounds $\mathbf{3}(\delta=4.47)$ and $\mathbf{4}(\delta=4.72$ and 4.43) [assignments based on Butler (2021)]. The ${ }^{1} \mathrm{H}$ NMR spectrum of fraction 21 (in dimethyl sulfoxide) showed three very weak signals at $\delta=5.33,5.20$ and 4.76 , which might be assigned to $\mathbf{4}$ and 5 by comparison with the mass spectra (no other NMR data in this solvent were available). The crystals obtained from fraction 1 suffered from disorder or cocrystallization effects, which could not be properly resolved. The crystals from fraction 6 also showed disorder, which could, however, be successfully modelled as cocrystallization of compounds $\mathbf{3}$ (ca 97% contribution) and 2. Fraction 21 yielded pure crystals of compound 5.

Fig. 1 shows the structural formulae of the compounds discussed in this study.

We also repeated the permercuration of ferrocene according to Winter and co-workers, using $\mathrm{Hg}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}$ as the mercurating agent and dichloroethane as the solvent, followed by bromination with KBr_{3}. Chromatography of the crude reaction product yielded two fractions (Han et al., 1994). The first contained, according to its mass spectrum (Fig. S3), a mixture of bromoferrocenes 5-7 (with compound 6 dominating), while the second consisted of a mixture of bromomercurioferrocenes [$\mathrm{C}_{10} \mathrm{H}_{n} \mathrm{Br}_{10-n} \mathrm{HgFe}$] ($n=0-2$; Fig. S4). Fig. S5 shows the ${ }^{1} \mathrm{H}$ NMR spectrum of the first fraction, which apparently consists of four proton-containing substances, of which one dominates. Although we did not perform these

Figure 2
Top view of the molecular structure of compound $\mathbf{3}$ (major orientation), with displacement ellipsoids drawn at the 30% probability level.
experiments, it can be assumed that compounds 5-7 are formed by further bromination of $\left[\mathrm{C}_{10} \mathrm{H}_{n} \mathrm{Br}_{10-n} \mathrm{HgFe}\right]$. Therefore, we conclude that neither the permercuration nor the bromination reactions are complete. Although all fractions were used for crystallization attempts, only crystals of compound $\mathbf{8}$ could be obtained.

3.2. Molecular structures

An intensely debated topic since the very early days of ferrocene chemistry was the question of the relative stability of the eclipsed and staggered conformers of this molecule. While the very first crystal structure determination of ferrocene (Fischer \& Pfab, 1952) hinted at a staggered geometry,

Figure 3
Top view of the molecular structure of compound $\mathbf{5}$, showing a whole molecule, with displacement ellipsoids drawn at the 30% probability level.
the most recent low-temperature IR and XANES (X-ray absorption near edge structure) spectra, as well as DFT (density functional theory) calculations showed that the eclipsed conformation is the energy minimum (Bourke et al., 2016; Silva et al., 2014). For ferrocenes substituted on both rings, an additional conformational isomerism arises from the possibility of different relative positions of the substituents (Scheme 1).

While theoretical calculations on 1,1'-dibromoferrocene showed that the two C_{2} isomers (II and III in Scheme 1) are minimum conformations (Silva et al., 2014), in the crystal structure, only the less favourable $C_{2 v}$ structure (\mathbf{I} in Scheme 1) was obtained (Hnetinka et al., 2004). To obtain an overview of the 'realized' structures, a Cambridge Structural Database (CSD; Groom et al., 2016) search on ferrocenes with at least one halogen substituent on each ring was undertaken. This search delivered 40 hits, of which 14 contained only halogen substituents: all four $\operatorname{Fd} X_{2}$, two $\mathrm{Fd} X_{3}$, three $\mathrm{Fd} X_{4}, \mathrm{FdCl}_{6}$, FdBr_{9} and $\mathrm{FdBr}_{10} ; \mathrm{FdCl}_{2}$ was determined twice and FdI_{4} exists as two positional isomers; ' Fd ' is a common abbreviation for ferrocenes with substituents on both rings, while ' Fc ' symbolizes ferrocenes with substituents only on one ring; strictly speaking, ' Fc ' stands only for the $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Fe}\right]$ residue, while ' Fd ' symbolizes a $\left[\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Fe}\right]$ group. The four $1,1^{\prime}$-dihaloferrocenes have been discussed already with respect to supramolecular interactions in general and halogen bonding in particular (Shimizu \& Ferreira da Silva, 2018). All these

Figure 4
Top view of the molecular structure of $\mathbf{8}$, with displacement ellipsoids drawn at the 30% probability level.

Figure 5
Hirshfeld surfaces of compounds $\mathbf{3}$ (left), $\mathbf{5}$ (middle) and $\mathbf{8}$ (right), together with the closest contact atoms. Red spots show very close contacts between atoms inside and outside the Hirshfeld surface. The Hg compound differs from the other two by the appearance of such a red spot over the plane of the Cp ring.
compounds, except for $\mathrm{FdI}_{2}, \mathrm{FdBr}_{9}$ and FdBr_{10}, showed eclipsed conformations (or nearly eclipsed in the case of FdBr_{3} and FdI_{3}, with torsion angles of $c a 14^{\circ}$). Within this group of eclipsed structures, most showed the apparent 'higher energy' conformations I and IV, respectively. Only $\mathrm{FdBr}_{3}, \mathrm{FdI}_{3}$ and FdI_{4} crystallized in the most stable form VI. Table 2 gives an overview on these structures.

Compound $\mathbf{3}$ crystallizes in the triclinic space group $P \overline{1}$, with one molecule in the asymmetric unit. Fig. 2 shows the major orientation of the disordered molecule. As in most polyhaloferrocene structures (see Table 2), the cyclopentadienyl (Cp) rings are nearly perfectly eclipsed, planar and parallel to each other. All Br atoms are shifted slightly to the distal side of the Cp rings with respect to the Fe atom.

Compound 5 also crystallizes in the triclinic space group $P \overline{1}$, however, as a twin with half a molecule in the asymmetric unit and the Fe atom residing on an inversion centre (Fig. 3). As a consequence of this, the Cp rings are perfectly staggered, with the two $\mathrm{C}-\mathrm{H}$ bonds in relative transoid positions. Both Cp
rings are planar and parallel to each other and the Br atoms are all shifted to the distal sides of the Cp rings, however, to a smaller extent than in the eclipsed structures mentioned before. The iron-centroid distance (determined within PLATON) also seems to be more dependent on the relative orientation of the Cp rings than on the degree of bromination. Table 3 collects important geometrical parameters of several polybromoferrocenes from the literature, together with those of compounds $\mathbf{3}, 5$ and 8 .

Compound $\mathbf{8}$ crystallizes in the monoclinic space group $P 2_{1} / n$, with one molecule in the asymmetric unit (Fig. 4). The $\mathrm{C} 10-\mathrm{Hg} 1-\mathrm{Br} 10$ bond deviates slightly from being linear [171.0 (2) ${ }^{\circ}$]. The Cp rings are planar and parallel to each other, while their relative orientation is staggered. The distances from Fe 1 to both Cp ring centroids are identical within 1σ. Except for atoms Br 5 and Hg 1 , which are within the Cp ring planes, all the ring substituents are shifted again to the distal sides of the Cp rings. In comparison with the structure of the ferricenium salt $\mathbf{8}^{+} \cdot \mathrm{AsF}_{6}{ }^{-}$, the $\mathrm{C}-\mathrm{Br}$ bonds are slightly longer,

Figure 6
Fingerprint plots of compounds $\mathbf{3}$ (left), $\mathbf{5}$ (middle) and $\mathbf{8}$ (right). A red colour symbolizes a large number of points on the Hirshfeld surface at the corresponding $d_{\mathrm{e}} / d_{\mathrm{i}}$ pair, green intermediate numbers and blue small numbers.

sigma-hole interactions

Table 3
Important geometrical parameters of compounds $\mathbf{3}, \mathbf{5}$ and $\mathbf{8}$ in comparison with literature data for closely related compounds.
FdBr_{2} is $1,1^{\prime}$-dibromoferrocene; ' Ct ' is the abbreviation for the 'centroid' of the Cp rings, as calculated by the corresponding feature in PLATON (Spek, 2020); δ $(\mathrm{Br}-\mathrm{Cp})$ is the distance of the Br atoms from the Cp plane.

Compound	$\mathrm{C}-\mathrm{Br}(\AA)$	$\mathrm{Fe}-\mathrm{C}(\AA)$	$\mathrm{Fe}-\mathrm{Ct}(\AA)$	$\mathrm{Ct}-\mathrm{Fe}-\mathrm{Ct}^{\prime}\left({ }^{\circ}\right)$	$\mathrm{Br}-\mathrm{Ct}_{\mathrm{A}}-\mathrm{Ct}^{\prime}-\mathrm{Br}^{\prime}\left({ }^{\circ}\right)$	$\delta(\mathrm{Br}-\mathrm{Cp})(\AA)$	
FdBr_{2}	$1.882(4) / 1.866(4)$	$2.035(4)-2.054(4)$	$1.6500(5) / 1.6483(5)$	$177.71(4)$	$1.55(1)$	$0.137(6) / 0.082(6)$	A
$\mathbf{1}$	$1.873(2)-1.877(2)$	$2.036(2)-2.052(2)$	$1.6482(8)$	$177.75(6)$	$1.59(8)$	$0.130(1)-0.149(1))$	B
$\mathbf{3}$	$1.862(7)-1.881(6)$	$2.033(6)-2.064(6)$	$1.653(3) / 1.654(3)$	$176.3(2)$	$2.09-2.38$	$0.123(1)-0.168(1)$	This work
$\mathbf{5}$	$1.865(3)-1.874(3)$	$2.036(6)-2.056(3)$	$1.6449(16)$	180	$35.9-36.2$	$0.037(1)-0.096(1)$	This work
$\mathbf{6}$	$1.861(10)-1.888(11)$	$2.02(1)-2.06(1)$	$1.637(1) / 1.642(1)$	$178.5(3)$	$33.4(5)$	C	$0.005(1)-0.146(1)$
$\mathbf{7}$	$1.863(4)-1.874(4)$	$2.041(4)-2.049(4)$	$1.645(2)$	180	$0.085(1)-0.142(1)$	C	0.8
$\mathbf{8}$	$1.852(9)-1.880(8)$	$2.024(8)-2.049(8)$	$1.641(4) / 1.644(4)$	$178.4(7)$	$30.5(1)-31.6(1)$	$0.004(14)-0.142(13)$	This work
$\mathbf{8}^{+} \cdot \mathrm{AsF}_{6}$	$1.845(8)-1.865(8)$	$2.066(8)-2.116(8)$	$1.703(4) / 1.708(4)$	$178.9(5)$	$32.5(4)$	$-0.056(1)-0.062(1)$	C

References: (A) Hnetinka et al. (2004); (B) Butler et al. (2021); (C) Rupf et al. (2022).
while the iron-centroid distances are significantly shorter in $\mathbf{8}$, which is quite usual when comparing ferrocenes with their oxidized counterparts (Rupf et al., 2022).

For all three compounds, an analysis with PLATON showed no residual solvent-accessible voids (Spek, 2020).

3.3. Hirshfeld analysis and intermolecular contacts

To gain some insight into the intermolecular interactions at work in these compounds, a Hirshfeld analysis was undertaken, using the program CrystalExplorer (Spackman et al., 2021).

Fig. 5 shows the Hirshfeld surfaces of the three compounds, together with the closest contact atoms (within $3.8 \AA$).

The so-called 'fingerprint plots', which summarize all contacts between atoms inside and outside the Hirshfeld surface (Spackman \& McKinnon, 2002; Spackman \& Jayatilaka, 2009), are shown in Fig. 6. A common feature of all three plots is the occurrence of a red stripe around the main diagonal, reaching from $c a d_{\mathrm{e}} / d_{\mathrm{i}}=1.8 / 1.8$ to $2.2 / 2.2$, which corresponds to a large number of $\mathrm{Br} \cdots \mathrm{Br}$ contacts $\left(d_{\mathrm{e}}+d_{\mathrm{i}}=3.6\right.$ to
4.4 \AA; the sum of the van der Waals radii of two Br atoms is $3.70 \AA$).

The very different appearance of these plots is mainly due to the decreasing number of H atoms present. Table 4 and Fig. S8 of the supporting information provide a more detailed analysis, showing the different contributions of the individual element contacts.

Due to purely statistical effects (there are eight H atoms in FdBr_{2}, four in $\mathbf{3}$, two in $\mathbf{5}$ and none in $\mathbf{8}$), the absolute numbers cannot be compared directly. However, it is quite obvious that the importance of $\mathrm{C} \cdots \mathrm{H}$ and especially $\mathrm{H} \cdots \mathrm{H}$ contacts decreases drastically with increasing bromine content, while the importance of $\mathrm{Br} \cdots \mathrm{Br}$ contacts increases in the same direction. At the same time, it appears quite interesting that $\mathrm{H} \cdots \mathrm{Br}$ contacts are very important in all compounds where H atoms are present.

To obtain a more detailed picture of the individual interactions, a Mercury analysis was undertaken (Macrae et al., 2020)
3.3.1. Hydrogen bonds. The structures of the known polyhaloferrocenes collected in Table 2 show three different

Figure 7
(Partial) packing plots (Mercury; Macrae et al., 2020) of compounds 3 (left), viewed along c, and $\mathbf{5}$ (right), viewed along a, showing the intermolecular hydrogen bonds. Colour codes as defined by Mercury: carbon dark grey, hydrogen light grey, iron orange and bromine brown; the red lines are unexpanded contacts and the cyan lines are expanded contacts.

Table 4
Individual contributions (\%) of the different interactions present in the crystal structures of $\mathrm{FdBr}_{2}, \mathbf{3}, 5$ and $\mathbf{8}$.

Compound	$\mathrm{C} \cdots \mathrm{H}$	$\mathrm{C} \cdots \mathrm{Br}$	$\mathrm{C} \cdots \mathrm{C}$	$\mathrm{H} \cdots \mathrm{H}$	$\mathrm{H} \cdots \mathrm{Br}$	$\mathrm{Br} \cdots \mathrm{Br}$	$\mathrm{Hg} \cdots \mathrm{Br}$
$\mathrm{FdBr}_{2}{ }^{*}$	17.1	3.7	0	37.3	39.6	2.3	-
$\mathbf{1}^{* *}$	6.2	1.6	6.0	14.2	52.4	19.6	-
$\mathbf{3}$	3.3	4.0	5.9	0.8	48.0	38.2	-
$\mathbf{5}$	1.2	6.8	5.9	0.9	20.9	64.3	
$\mathbf{8}$	-	10.7	3.5	-	-	77.7	8.2

Notes: (*) taken from Shimizu \& Ferreira da Silva (2018); (**) calculated from the downloaded CIF file, available from the CCDC as CSD refcode UTOBUB.
patterns of hydrogen bonding (Scheme 2): Type \mathbf{A} is observed in the structures of $\mathrm{FdF}_{2}, \mathrm{FdBr}_{3}, \mathrm{FdI}_{3}, \mathrm{FdCl}_{4}, \mathrm{FdBr}_{4}$ and FdBr_{9}. All $\mathrm{Fd} X_{2}$, as well as iodoferrocenes and FdBr_{4}, show Type \mathbf{B}, while Type \mathbf{C} is seen only in the two trihaloferrocenes.

Scheme 2
When using the standard settings of Mercury, no hydrogen bonds are indicated for compound 3. However, when increasing the limit by $0.2 \AA$, four (obviously very weak) hydrogen bonds appear [Fig. 7 (left) and Table 5].

As can be seen from Fig. 7 (left), the atom pairs H14/Br11 and $\mathrm{H} 24 / \mathrm{Br} 21$ connect the individual molecules in the y direction, while the pairs $\mathrm{H} 15 / \mathrm{Br} 13$ and $\mathrm{H} 25 / \mathrm{Br} 23$ join them in the x direction. Atoms Br 12 and Br 22 are not involved in hydrogen bonding.

In compound $\mathbf{5}$, the standard settings of Mercury suffice to show that only atom H5 (and, of course, its inversion-symmetry-generated counterpart H^{\prime}) engages in a symmetrical bifurcated hydrogen bond (Type \mathbf{A} in Scheme 2) with atoms Br 2 and Br 3 [Fig. 7 (right) and Table 5]. As the figure shows, these interactions join individual molecules in the y direction.

Table 5
Hydrogen-bond parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$) in compounds $\mathbf{3}$ and 5.
Calculated with SHELXL2018 (Sheldrick, 2015b) command HTAB.

	$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathbf{3}$	$\mathrm{C} 24-\mathrm{H} 24 \cdots \mathrm{Br} 21^{\mathrm{i}}$	0.95	3.10	$3.965(9)$	151.8
	$\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{Br} 23^{\mathrm{ii}}$	0.95	3.13	3.874	136.5
	$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{Br} 11^{\mathrm{i}}$	0.95	3.20	$4.046(9)$	149.8
	$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{Br} 13^{\mathrm{ii}}$	0.95	3.24	$3.927(8)$	131.8
$\mathbf{5}$	$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Br}^{\mathrm{i}}$	0.95	2.985	3.786	142.93
	$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Br}^{\mathrm{i}}$	0.95	3.015	3.809	141.91

3.3.2. Halogen bonding and other $\mathrm{Br} \cdots \mathrm{Br}$ interactions. In the discussion of halogen bonding, a distinction is usually made between XB Type I and XB Type II. According to the IUPAC and IUCr classifications, Type I contacts are geometry based, arising from close-packing requirements, while Type II arise from interactions between an electron-rich region on one halogen atom and an electron-deficient region on the other. The distinction can be made on the basis of the angles $\Theta 1$ and $\Theta 2$, which occur at halogen atoms X and X^{\prime} of $R-X \cdots X^{\prime}-R^{\prime}$, and their difference (Scheme 3).

Usually it is assumed that for $0<|\Theta 1-\Theta 2|<15^{\circ}$, a Type I contact is formed, while for Type II contacts, $30<|\Theta 1-\Theta 2|<$ 105° is found, and only the latter are regarded as real halogen bonds (Cavallo et al., 2016). In a more recent article, a distinction into Types I-IV was suggested, but was still based on these angles (Ibrahim et al., 2022): Type I: $90<\Theta 1 \simeq \Theta 2<$ 180°; Type II: $\Theta 1=180^{\circ}$ and $\Theta 2=90^{\circ}$; Type III: $\Theta 1 \simeq \Theta 2=$ 180°; Type IV: $\Theta 1 \simeq \Theta 2=90^{\circ}$ (obviously, Types III and IV are only extrema of the more general Type I). The forces behind these attractions are either van der Waals (Type I), electrostatic (Type II) or dispersion (Types III and IV) forces. It was further found that 'the Type I interactions were more frequent at the shortest distances' (Cavallo et al., 2016). Table 6 collects

Figure 8
Packing plot of compound $\mathbf{3}$, viewed along c. Colour codes as defined by Mercury: carbon dark grey, hydrogen light grey, iron orange and bromine brown; the red lines are unexpanded contacts and the cyan lines are expanded contacts.

Figure 9
Packing plot of compound 5, viewed along b. Colour codes as defined by Mercury: carbon dark grey, hydrogen light grey, iron orange and bromine brown; the red lines are unexpanded contacts and the cyan lines are expanded contacts.
the structural parameters of compounds $\mathbf{3}, \mathbf{5}$ and $\mathbf{8}$, while Figs. S9-S11 show Mercury representations of these interactions.

All the listed $\mathrm{Br} \cdots \mathrm{Br}$ contacts in Table 6 are well below the sum of the van der Waals radii ($3.70 \AA$; Bondi, 1964). When using the $|\Theta 1-\Theta 2|$ criterion, most interactions classified as Type II are also 'real' halogen bonds. To look at the structural consequences of this halogen bonding, a visualization of the packing plots should be helpful.

Fig. 8 shows how the $\mathrm{Br} \cdots \mathrm{Br}$ interactions join the individual molecules of compound $\mathbf{3}$ in the direction of the $x y$ diagonal ($b-a$ vector). It can also be seen that there are two intramolmolecular $\mathrm{Br} \cdots \mathrm{Br}$ contacts of Type IV, emphasized in italic in Table 5. Two Br atoms (Br 12 and Br 22) are not involved in $\mathrm{Br} \cdots \mathrm{Br}$ interactions. Fig. 9 shows that in compound 5 the
$\mathrm{Br} \cdots \mathrm{Br}$ contacts join the individual molecules in the z direction. All eight Br atoms are involved in $\mathrm{Br} \cdots \mathrm{Br}$ interactions. In addition, there is also some $\pi-\pi$ stacking in the x direction; the centroids of two adjacent Cp rings are only $3.773 \AA$ apart, while the ring planes have an interplanar distance of $3.507 \AA$ (corresponding to an angle of 21.6° between the $\mathrm{Ct}-\mathrm{Ct}^{\prime}$ vector and the plane normal).

In bromomercurio compound 8, matters are a bit more complicated. Fig. 10 shows that $\mathrm{Br} \cdots \mathrm{Br}$ contacts join the individual molecules in all directions. All Br atoms, except for $\mathrm{Br} 2, \mathrm{Br} 5$ and Br 8 , are involved in $\mathrm{Br} \cdots \mathrm{Br}$ contacts.

But there are more interactions involving Br atoms. First there are $\mathrm{Hg} \cdots \mathrm{Br}$ contacts, shown in Fig. 11. The $\mathrm{Hg} 1 \cdots \mathrm{Hg} 1$ distance is 4.4944 (6) \AA and therefore any mercurophilic

Figure 10
Packing plots of compound $\mathbf{8}$, viewed along a (left) and along b (right). Colour codes as defined by Mercury: carbon dark grey, hydrogen light grey, iron orange and bromine brown; the red lines are unexpanded contacts and the cyan lines are expanded contacts.

Figure 11
The $\mathrm{Hg}_{2} \mathrm{Br}_{2}$ ring in compound $\mathbf{8}$. Colour codes as defined by Mercury: carbon dark grey, hydrogen light grey, iron orange and bromine brown; the red lines are unexpanded contacts and the cyan lines are expanded contacts. Generic atom labels without symmetry codes ahve been used.
interactions (Schmidbaur \& Schier, 2015) can be excluded. In the crystal of the ferricenium complex $\mathbf{8}^{+} \cdot \mathrm{AsF}_{6}{ }^{-}$, there is also a $\mathrm{Hg}_{2} \mathrm{Br}_{2}$ ring with significantly shortened intermolecular $\mathrm{Hg} \cdots \mathrm{Br}$ contacts of $3.061 \AA$ and a $\mathrm{Hg} \cdots \mathrm{Hg}$ distance of $3.993 \AA$ (Rupf et al., 2022). Furthermore, there are $\mathrm{Br} \cdots \pi$ contacts of $3.543 \AA$ to a close Cp ring, in addition to a weak $\pi-\pi$ interaction between two Cp rings (Fig. 12); $\pi-\pi$ stacking occurs between two inversion-related $\mathrm{C}_{5} \mathrm{Br}_{5}$ rings. Since the difference between the $\mathrm{Ct}-\mathrm{Ct}^{\prime}$ distance of $3.756 \AA$ and the perpendicular distance between the Cp ring planes ($3.690 \AA$) is rather small (corresponding to an angle of 10.8° between the $\mathrm{Ct}-\mathrm{Ct}^{\prime}$ vector and the plane normal), it can be regarded as a 'true' $\pi-\pi$ interaction (though rather weak).

A similar $\mathrm{Br} \cdots \pi$ interaction was found in the structure of FdBr_{2}; however, it was, with a $\mathrm{Br} \cdots$ centroid distance of 3.824 Å, substantially weaker (Shimizu \& Ferreira da Silva, 2018).
3.3.3. Co-operativity between $\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{Br} \cdots \mathrm{Br}$ contacts. The importance of co-operativity in noncovalent interactions in general (Mahadevi \& Sastry, 2016) and for the interplay of halogen and hydrogen bonds (Decato et al., 2021; Portela \& Fernández, 2021) in particular has been recognized in recent years and has been modelled by DFT calculations. This interplay has also been discussed for the $1,1^{\prime}$-dihaloferrocenes (Shimizu \& Ferreira da Silva, 2018). In the preceding sections, we have discussed the individual contributions in compounds 3 and 5, and a look at Fig. 13 (and Tables 4 and 5) shows that also in these compounds HB and XB work together on the same halogen atoms.
3.3.4. Energetics of the intermolecular interactions found in compounds 3, 5 and 8 . The program CrystalExplorer allows for the calculation of interaction energies using the DFT program TONTO at the HF/3-21G level (Mackenzie et al., 2017). Fig. 14 shows the results of calculations for compounds 3 and 5 (apparently, due to the presence of Hg , the program cannot calculate wavefunctions for compound $\mathbf{8}$).

Inspection of the numerical values shows that the total interaction energies are stronger for compound 3. This is apparently due to the larger repulsion terms for $\mathbf{5}$, because both the largest dispersion and the largest electrostatic terms are found in compound 5. Another graphical representation ('energy frameworks') of the individual contributions can be seen in Fig. 15.

Figure 12
Partial packing diagram of compound $\mathbf{8}$, showing the $\mathrm{Br} \cdots \pi$ and $\pi-\pi$ contacts (\AA). Colour codes as defined by Mercury: carbon dark grey, hydrogen light grey, iron orange, mercury blue and bromine brown; the red lines are unexpanded contacts and the cyan lines are expanded contacts. $\mathrm{Ct}^{\prime} / \mathrm{Ct1}^{\prime \prime}$ and $\mathrm{Ct} 2^{\prime} /$ $\mathrm{Ct}^{\prime \prime}$ are the centroids of inversion-related cyclopentadienyl rings, with one Fe atom between Ct^{\prime} and Ct^{\prime}, and another between $\mathrm{Ct}^{\prime \prime}$ and $\mathrm{Ct}^{\prime \prime}$.

Figure 13
Co-operativity of hydrogen and halogen bonding in compounds $\mathbf{3}$ and $\mathbf{5}$. Colour codes as defined by Mercury: carbon dark grey, hydrogen light grey, iron orange and bromine brown; the red lines are unexpanded contacts and the cyan lines are expanded contacts.
3.3.5. Comparison with halogen bonding in other haloferrocenes $\operatorname{Fd} X_{n}$ with $X \neq \mathrm{Br}$ and $n>2$. At this point, it seems worthwhile to look at the occurrence of halogen bonding in
the other polyhaloferrocenes mentioned in Table 2. As mentioned already, this study has been performed for the $1,1^{\prime}-$ dihaloferrocenes before, and therefore these structures will

Figure 14
Interaction energies (HF/3-21G) for compounds $\mathbf{3}$ (left) and 5 (right) (standard program settings). The colour codes in the images refer to the tables below them.

Table 6
Characteristics of the $\mathrm{Br} \cdots \mathrm{Br}$ interactions found in compounds $\mathbf{1}, \mathbf{3}, \mathbf{5}, \mathbf{8}$ and FdBr_{2}.

Compound	$R-\mathrm{Br} \cdots \mathrm{Br}^{\prime}-R^{\prime}$	$\mathrm{Br} \cdots \mathrm{Br}(\mathrm{A})$	$\Theta 1\left({ }^{\circ}\right)$	$\Theta 2\left({ }^{\circ}\right)$	$\|\Theta 1-\Theta 2\|{ }^{\circ}{ }^{\circ}$	XB Type
$\mathrm{FdBr}_{2}{ }^{*}$	$\mathrm{C} 1-\mathrm{Br} 1 \cdots \mathrm{Br} 2-\mathrm{C} 6$	3.586	89.7	153.1	63.2	II
1**	$\mathrm{C} 1-\mathrm{Br} 1 \cdots \mathrm{Br} 2-\mathrm{C} 2$	3.564	145.2	156.4	11.2	I
3	C13-Br13 $\cdots \mathrm{Br} 11-\mathrm{C} 11$	3.617	135.2	153.8	18.6	Quasi-Type I/Type II
	C23-Br23 $\cdots \mathrm{Br} 11-\mathrm{C} 11$	3.582	137.3	143.3	6.0	I
	C23-Br23.. $\mathrm{Br} 21-\mathrm{C} 21$	3.594	146.9	141.8	5.1	I
	C13-Br13 \cdots Br23-C23	3.656	84.7	85.1	0.4	IV
	C11-Br11 \cdots Br21-C21	3.657	85.2	84.4	0.8	IV
5	$\mathrm{C} 1-\mathrm{Br} 1 \cdots \mathrm{Br} 3-\mathrm{C} 3$	3.518	160.8	124.8	36.0	II
	$\mathrm{C} 2-\mathrm{Br} 2 \cdots \mathrm{Br} 4-\mathrm{C} 4$	3.538	128.9	163.8	34.9	II
8	C1-Br1 $\cdots \mathrm{Br} 9-\mathrm{C} 9$	3.545	154.8	117.4	37.4	II
	C4-Br4 \cdots - ${ }^{\text {rr6 }}$ - 6	3.634	117.7	113.1	4.6	I
	C4-Br4 $\cdots \mathrm{Br} 7-\mathrm{C} 7$	3.657	171.4	112.5	58.9	II
	C3-Br3 \cdots - ${ }^{\text {rr6 }}-\mathrm{C} 6$	3.521	174.1	65.9	108.2	II
	$\mathrm{C} 7-\mathrm{Br} 7 \cdots \mathrm{Br} 10-\mathrm{Hg} 1$	3.658	167.0	97.9	69.1	II
	$\mathrm{C} 9-\mathrm{Br} 9 \cdots \mathrm{Br} 10-\mathrm{Hg} 1$	3.642	109.4	163.4	54.0	II

Notes: $\left({ }^{*}\right)$ taken from Shimizu \& Ferreira da Silva (2018); $\left({ }^{* *}\right)$ calculated from the downloaded CIF file, available from the CCDC as CSD refcode UTOBUB.
not be considered here again. Instead, the structure of the homoannularly substituted pentabromoferrocene $\left(\mathrm{FcBr}_{5}\right.$; Sünkel \& Bernhartzeder, 2011) is included (Table 7). All the listed $X \cdots X$ contacts are below the sum of the van der Waals radii and of Type II except for the chloro compound ($0.004 \AA$ longer than this sum and Type I). This result (the increasing importance of $X \cdots X$ contacts when going from $X=\mathrm{Cl}$ to $X=$ I) parallels the observations in the $\operatorname{Fd} X_{2}$ sytems. In addition to the $X \cdots X$ interactions, $\mathrm{C}-\mathrm{H} \cdots X$ hydrogen bonds are important for all compounds, especially the chloro compound. $\pi-\pi$ interactions are very strong for FdI_{4} (virtually no displacement of the Cp rings of different molecules), while in FdCl_{4}, the shift between the perpendicular projection of one
centroid to the centroid of a neighbouring molecule is quite substantial. In $\mathrm{FdI}_{3}, \mathrm{C}-\mathrm{H} \cdots \pi$ interactions seem to be of some importance, while in FcBr_{5}, a weak $\mathrm{C}-\mathrm{Br} \cdots \pi$ interaction can be observed.

4. Conclusion

Both stepwise deprotonation/electrophilic bromination starting from $1,1^{\prime}, 2,2^{\prime}$-tetrabromoferrocene and permercuration/bromination of ferrocene lead to mixtures of polybrominated ferrocenes. However, by a combination of chromatography and recrystallization, it was possible to obtain crystals of hexa- and octabromoferrocene, as well as of nonabromo(bromomercur-

Figure 15
Energy frameworks (Coulombic energy in red, dispersion energy in green and total energy in blue) for compounds $\mathbf{3}$ (top) and $\mathbf{5}$ (bottom).

Table 7
Characteristics of the $X \cdots X$ interactions in $\mathrm{FdCl}_{4}, \mathrm{FdI}_{3}, \mathrm{FdI}_{4}$ and FcBr_{5}.

	$R-X \cdots X^{\prime}-R^{\prime}$	$X \cdots X$ $(\mathrm{~A})$	$\Theta 1$ $\left({ }^{\circ}\right)$	$\Theta 2$ $\left({ }^{\circ}\right)$	$\left({ }^{\circ}\right)$	XB Type
FdI_{3}	$\mathrm{C} 1-\mathrm{I} 1 \cdots \mathrm{Br} 2-\mathrm{C} 2$	3.74 p	90.5	172.6	82.1	II
	$\mathrm{C} 1-\mathrm{I} 1 \cdots \mathrm{I} 3-\mathrm{C} 6$	3.728	174.4	115.1	59.3	II
FdI_{4}	$\mathrm{C} 1-\mathrm{I} 1 \cdots \mathrm{I} 3-\mathrm{C} 6$	3.679	165.1	79.9	85.2	II
	$\mathrm{C} 2-\mathrm{I} 2 \cdots \mathrm{I} 12-\mathrm{C} 12$	3.933	159.6	97.1	62.5	II
	$\mathrm{C} 6-\mathrm{I} 3 \cdots \mathrm{I} 13-\mathrm{C} 16$	3.756	99.4	169.3	69.9	II
	$\mathrm{C} 7-\mathrm{I} 4 \cdots \mathrm{I} 12-\mathrm{C} 12$	3.823	83.0	165.8	82.8	II
	$\mathrm{C} 11-\mathrm{I} 11 \cdots \mathrm{I} 13-\mathrm{C} 16$	3.823	163.0	70.3	92.7	II
FdCl_{4}	$\mathrm{C} 11-\mathrm{Cl} 1 \cdots \mathrm{Cl} 2-\mathrm{C} 21$	3.504	165.5	161.5	4.0	I
FcBr_{5}	$\mathrm{C} 2 A-\mathrm{Br} 2 A \cdots \mathrm{Br} 3 B-\mathrm{C} 3 B$	3.352	137.3	168.4	31.1	II
	$\mathrm{C} 2 B-\mathrm{Br} 2 B \cdots \mathrm{Br} 3 B-\mathrm{C} 3 B$	3.656	164.7	123.2	41.5	II

io)ferrocene. Hexabromoferrocene shows an eclipsed conformation of the Cp rings, as was also found for the already known structures of 1,1'-dibromo- and 1,1',2,2'-tetrabromoferrocene. Ferrocenes with a higher bromine content apparently prefer a staggered conformation, as was observed before for nona- and decabromoferrocene. All three title compounds show a combination of halogen bonding with either hydrogen bonding or $\pi-\pi$ interactions. Dispersion interactions appear to be stronger than electrostatic interactions.

Acknowledgements

Open access funding enabled and organized by Projekt DEAL.

References

Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
Boev, V. I. \& Dombrovskii, A. V. (1977). Zh. Obshch. Khim. 47, 727728.

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Bourke, J. D., Islam, M. T., Best, S. P., Tran, C. Q., Wang, F. \& Chantler, C. T. (2016). J. Phys. Chem. Lett. 7, 2792-2796.
Brammer, L., Mínguez Espallargas, G. \& Libri, S. (2008). CrystEngComm, 10, 1712-1727.
Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2012). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bryan, R. F. \& Leadbetter, A. J. (1986). American Crystallographic Association, Abstracts (Winter), 14, 28b.
Butenschön, H. (2018). Synthesis, 50, 3787-3808.
Butler, I. R. (2021). Organometallics, 40, 3240-3244.
Butler, I. R., Beaumont, M., Bruce, M. I., Zaitseva, N. N., Iggo, J. A., Robertson, C., Horton, P. N. \& Coles, S. J. (2021). Aust. J. Chem. 74, 204-210.
Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. \& Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.
Decato, D. A., Riel, A. M. S., May, J. H., Bryantsev, V. S. \& Berryman, O. B. (2021). Angew. Chem. Int. Ed. 60, 3685-3692.

Evans, D. M., Hughes, D. D., Murphy, P. J., Horton, P. N., Coles, S. J., de Biani, F. F., Corsini, M. \& Butler, I. R. (2021). Organometallics, 40, 2496-2503.
Fischer, E. O. \& Pfab, W. (1952). Z. Naturforsch. 7, 377-379.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Han, Y.-H., Heeg, M. J. \& Winter, C. H. (1994). Organometallics, 13, 3009-3019.
Hnetinka, C. A., Hunter, A. D., Zeller, M. \& Lesley, M. J. G. (2004). Acta Cryst. E60, m1806-m1807.
Hobza, P. \& Řezáć, J. (2016). Chem. Rev. 116, 4911-4912.
Ibrahim, M. A. A., Saeed, R. R. A., Shehata, M. N. I., Ahmed, M. N., Shawky, A. M., Khowdiary, M. M., Elkaeed, E. B., Soliman, M. E. S. \& Moussa, N. A. M. (2022). Int. J. Mol. Sci. 23, 3114-3130.
Inkpen, M. S., Du, S., Hildebrand, M., White, A. J. P., Harrison, N. M., Albrecht, T. \& Long, N. J. (2015). Organometallics, 34, 54615469.

Kelly, A. W. \& Holman, K. T. (2022). Angew. Chem. Int. Ed. 61, e202115556.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. \& Spackman, M. A. (2017). IUCrJ, 4, 575-587.

Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
Mahadevi, A. S. \& Sastry, G. N. (2016). Chem. Rev. 116, 2775-2825.
Mukherjee, A., Tothadi, S. \& Desiraju, G. R. (2014). Acc. Chem. Res. 47, 2514-2524.
Neto, A. F., Borges, A. D. L., de Arruda Campos, P. \& Miller, J. (1997). Synth. React. Inorg. Met.-Org. Chem. 27, 1543-1551.

Portela, S. \& Fernández, I. (2021). Molecules, 26, 1885-1894.
Roemer, M. \& Nijhuis, C. A. (2014). Dalton Trans. 43, 11815-11818.
Rupf, S. M., Dimitrova, I. S., Schröder, G. \& Malischewski, M. (2022). Organometallics, 41, 1261-1267.
Sato, K., Konno, M. \& Sano, H. (1984). Chem. Lett. 13, 17-20.
Schmidbaur, H. \& Schier, A. (2015). Organometallics, 34, 2048-2066.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Shimizu, K. \& Ferreira da Silva, J. (2018). Molecules, 23, 2959-2977.
Silva, P. A., Maria, T. M. R., Nunes, C. M., Eusébio, M. E. S. \& Fausto, R. (2014). J. Mol. Struct. 1078, 90-105.

Spackman, M. A. \& Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
Spackman, M. A. \& McKinnon, J. J. (2002). CrystEngComm, 4, 378392.

Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. \& Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.
Spek, A. L. (2020). Acta Cryst. E76, 1-11.
Sünkel, K. \& Bernhartzeder, S. (2011). J. Organomet. Chem. 696, 1536-1540.
Sünkel, K. \& Hofmann, J. (1992). Organometallics, 11, 3923-3925.
Sünkel, K., Kempinger, W. \& Hofmann, J. (1994). J. Organomet. Chem. 475, 201-209.
Sünkel, K. \& Motz, D. (1988). Angew. Chem. Int. Ed. Engl. 27, 939941.

Sünkel, K., Weigand, S., Hoffmann, A., Blomeyer, S., Reuter, C. G., Vishnevskiy, Y. V. \& Mitzel, N. (2015). J. Am. Chem. Soc. 137, 126129.

supporting information

Acta Cryst. (2022). C78, 578-590 [https://doi.org/10.1107/S205322962200955X]
Isolation and crystal and molecular structures of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{Br}_{3}\right)_{2} \mathrm{Fe}\right],\left[\left(\mathrm{C}_{5} \mathrm{HBr}_{4}\right)_{2} \mathrm{Fe}\right]$ and $\left[\left(\mathrm{C}_{5} \mathrm{Br}_{5}\right)\left(\mathrm{C}_{5} \mathrm{Br}_{4} \mathrm{HgBr}\right) \mathrm{Fe}\right]$

Tobias Blockhaus and Karlheinz Sünkel

Computing details

Data collection: CrysAlis PRO (Agilent, 2014) for compd_3; APEX2 (Bruker, 2012) for compd_5, compd_8. Cell refinement: Crys_Alis PRO (Agilent, 2014) for compd_3; APEX2 (Bruker, 2012) for compd_5, compd_8. Data reduction: CrysAlis PRO (Agilent, 2014) for compd_3; SAINT (Bruker, 2011) for compd_5, compd_8. Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for compd_3, compd_5; SHELXT2014 (Sheldrick, 2015a) for compd_8. For all structures, program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b).

Bis(1,2,3-tribromocyclopentadienyl)iron(II) (compd_3)

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{Br}_{3}\right)_{2}\right]$
$M_{r}=656.69$
Triclinic, $P \overline{1}$
$a=7.0903$ (3) \AA
$b=7.4318$ (5) \AA
$c=13.8071(5) \AA$
$\alpha=88.745$ (4) ${ }^{\circ}$
$\beta=84.993(3)^{\circ}$
$\gamma=77.728(4)^{\circ}$
$V=708.21(6) \AA^{3}$

Data collection

Agilent XCalibur 2
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 15.9809 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
$T_{\text {min }}=0.434, T_{\text {max }}=1.000$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.090$
$S=1.09$
3234 reflections
162 parameters
$Z=2$
$F(000)=598$
$D_{\mathrm{x}}=3.079 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2222 reflections
$\theta=4.4-29.1^{\circ}$
$\mu=17.86 \mathrm{~mm}^{-1}$
$T=153 \mathrm{~K}$
Rod, yellow
$0.49 \times 0.15 \times 0.05 \mathrm{~mm}$

9297 measured reflections
3234 independent reflections
2496 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=4.4^{\circ}$
$h=-9 \rightarrow 9$
$k=-9 \rightarrow 9$
$l=-17 \rightarrow 17$

2 restraints

Primary atom site location: dual
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0263 P)^{2}+2.1323 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

supporting information

$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=2.31 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.97 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Br11	0.18791 (10)	0.93782 (10)	0.66385 (5)	0.03293 (18)	0.964
Br12	0.70467 (10)	0.82612 (11)	0.59801 (5)	0.0373 (2)	0.964
Br13	0.85028 (10)	0.33022 (11)	0.57625 (4)	0.0392 (2)	
Br21	0.28443 (10)	0.90368 (10)	0.92101 (5)	0.03273 (18)	0.962
Br22	0.80318 (10)	0.77138 (11)	0.86137 (5)	0.03604 (18)	
Br23	0.92650 (9)	0.27609 (10)	0.83466 (5)	0.03364 (18)	
Br14	0.434 (2)	0.195 (3)	0.6369 (13)	0.035 (4)*	0.036
Br24	0.468 (2)	0.154 (3)	0.8634 (13)	0.034 (4)*	0.038
Fel	0.48302 (12)	0.53419 (13)	0.75694 (6)	0.0237 (2)	
C11	0.3423 (9)	0.7001 (9)	0.6536 (4)	0.0261 (14)	
H11	0.264311	0.820193	0.663236	0.031*	0.036
C12	0.5467 (9)	0.6582 (9)	0.6273 (4)	0.0271 (15)	
H12	0.628980	0.743553	0.616656	0.033*	0.036
C13	0.6018 (9)	0.4628 (9)	0.6202 (4)	0.0284 (15)	
C14	0.4345 (10)	0.3851 (10)	0.6407 (4)	0.0326 (16)	
H14	0.430543	0.258235	0.639497	0.039*	0.964
C15	0.2755 (10)	0.5343 (10)	0.6631 (4)	0.0317 (16)	
H15	0.145828	0.524053	0.681342	0.038*	
C21	0.4231 (8)	0.6678 (9)	0.8879 (4)	0.0259 (14)	
H21	0.351021	0.789982	0.898573	0.031*	0.038
C22	0.6274 (9)	0.6154 (9)	0.8647 (4)	0.0237 (13)	
C23	0.6743 (8)	0.4208 (9)	0.8548 (4)	0.0233 (14)	
C24	0.5032 (10)	0.3515 (10)	0.8713 (4)	0.0332 (16)	
H24	0.493556	0.226119	0.868992	0.040*	0.962
C25	0.3465 (9)	0.5074 (10)	0.8921 (4)	0.0293 (15)	
H25	0.214046	0.502975	0.906335	0.035*	

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
$\operatorname{Br} 11$	$0.0307(4)$	$0.0358(4)$	$0.0253(3)$	$0.0076(3)$	$-0.0012(3)$	$0.0037(3)$
$\operatorname{Br} 12$	$0.0340(4)$	$0.0432(5)$	$0.0328(4)$	$-0.0084(3)$	$0.0071(3)$	$0.0079(3)$
$\operatorname{Br} 13$	$0.0371(4)$	$0.0508(5)$	$0.0200(3)$	$0.0122(3)$	$-0.0003(3)$	$-0.0041(3)$
$\operatorname{Br} 21$	$0.0323(4)$	$0.0359(4)$	$0.0232(3)$	$0.0067(3)$	$0.0014(3)$	$-0.0041(3)$
$\operatorname{Br} 22$	$0.0313(4)$	$0.0408(4)$	$0.0375(4)$	$-0.0107(3)$	$-0.0017(3)$	$-0.0080(3)$
$\operatorname{Br23}$	$0.0294(4)$	$0.0380(4)$	$0.0277(3)$	$0.0063(3)$	$-0.0045(3)$	$0.0020(3)$
$\operatorname{Fe} 1$	$0.0240(5)$	$0.0314(5)$	$0.0143(4)$	$-0.0022(4)$	$-0.0029(3)$	$0.0016(4)$

C11	$0.028(3)$	$0.031(4)$	$0.016(3)$	$0.002(3)$	$-0.003(2)$	$0.003(3)$
C12	$0.031(3)$	$0.031(4)$	$0.016(3)$	$0.000(3)$	$-0.001(3)$	$-0.001(3)$
C13	$0.032(3)$	$0.036(4)$	$0.015(3)$	$-0.002(3)$	$-0.004(3)$	$-0.003(3)$
C14	$0.040(4)$	$0.038(4)$	$0.021(3)$	$-0.010(3)$	$-0.008(3)$	$-0.004(3)$
C15	$0.030(4)$	$0.047(5)$	$0.021(3)$	$-0.014(3)$	$-0.009(3)$	$0.007(3)$
C21	$0.019(3)$	$0.033(4)$	$0.021(3)$	$0.002(3)$	$0.001(2)$	$0.004(3)$
C22	$0.023(3)$	$0.033(4)$	$0.015(3)$	$-0.005(3)$	$-0.003(2)$	$-0.001(3)$
C23	$0.018(3)$	$0.037(4)$	$0.013(3)$	$-0.001(3)$	$-0.003(2)$	$0.001(3)$
C24	$0.044(4)$	$0.037(4)$	$0.018(3)$	$-0.007(3)$	$-0.006(3)$	$0.006(3)$
C25	$0.024(3)$	$0.045(4)$	$0.017(3)$	$-0.003(3)$	$-0.003(2)$	$0.002(3)$

Geometric parameters (\AA, ${ }^{\circ}$)

Br11-C11	1.871 (6)	C11-C15	1.411 (9)
$\mathrm{Br} 12-\mathrm{C} 12$	1.862 (7)	C11-C12	1.432 (9)
Br13-C13	1.883 (6)	C11-H11	0.9500
$\mathrm{Br} 21-\mathrm{C} 21$	1.863 (6)	C12-C13	1.424 (9)
Br22-C22	1.871 (7)	C12-H12	0.9500
Br23-C23	1.881 (6)	C13-C14	1.430 (9)
Br14-C14	1.41 (2)	C14-C15	1.421 (9)
Br24-C24	1.55 (2)	C14-H14	0.9500
Fe1-C13	2.033 (6)	C15-H15	0.9500
Fe1-C23	2.039 (6)	C21-C25	1.409 (9)
Fe1-C15	2.044 (6)	C21-C22	1.427 (8)
Fe1-C22	2.048 (6)	C21-H21	0.9500
Fe1-C11	2.049 (6)	C22-C23	1.420 (9)
Fe1-C21	2.049 (6)	C23-C24	1.415 (9)
Fe1-C25	2.052 (6)	C24-C25	1.439 (9)
Fe1-C24	2.054 (6)	C24-H24	0.9500
Fe1-C12	2.055 (6)	C25-H25	0.9500
Fel-C14	2.064 (6)		
C13-Fe1-C23	109.3 (2)	C13-C12-H12	126.9
C13-Fel-C15	68.3 (3)	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	126.9
C23-Fel-C15	155.3 (3)	Fel-C12-H12	126.5
$\mathrm{C} 13-\mathrm{Fe} 1-\mathrm{C} 22$	124.8 (3)	C12-C13-C14	109.4 (6)
$\mathrm{C} 23-\mathrm{Fe} 1-\mathrm{C} 22$	40.7 (2)	C12-C13-Br13	125.0 (5)
C15-Fel-C22	160.6 (3)	C14-C13-Br13	125.2 (5)
C13-Fel-C11	68.1 (2)	C12-C13-Fel	70.4 (3)
C23-Fel-C11	163.6 (3)	C14-C13-Fel	70.7 (4)
C15-Fel-C11	40.3 (3)	$\mathrm{Br} 13-\mathrm{C} 13-\mathrm{Fe} 1$	130.6 (3)
C22-Fel-C11	126.5 (3)	Br14-C14-C15	128.3 (8)
$\mathrm{C} 13-\mathrm{Fe} 1-\mathrm{C} 21$	160.7 (3)	Br14-C14-C13	124.9 (8)
$\mathrm{C} 23-\mathrm{Fe} 1-\mathrm{C} 21$	68.2 (2)	C15-C14-C13	106.8 (6)
C15-Fel-C21	122.3 (3)	Br14-C14-Fel	128.2 (9)
C22-Fel-C21	40.8 (2)	C15-C14-Fel	69.0 (4)
$\mathrm{C} 11-\mathrm{Fe} 1-\mathrm{C} 21$	108.6 (2)	C13-C14-Fe1	68.4 (4)
C13-Fel-C25	158.4 (3)	C15-C14-H14	126.6

C23-Fe1-C25	68.1 (2)
C15-Fe1-C25	104.6 (3)
C22-Fe1-C25	68.2 (2)
C11-Fe1-C25	120.6 (2)
$\mathrm{C} 21-\mathrm{Fe} 1-\mathrm{C} 25$	40.2 (3)
C13-Fe1-C24	122.9 (3)
C23-Fe1-C24	40.4 (3)
C15-Fe1-C24	118.6 (3)
C22-Fe1-C24	68.6 (3)
C11-Fe1-C24	155.0 (3)
$\mathrm{C} 21-\mathrm{Fe} 1-\mathrm{C} 24$	68.5 (3)
$\mathrm{C} 25-\mathrm{Fe} 1-\mathrm{C} 24$	41.0 (3)
C13-Fe1-C12	40.8 (2)
C23-Fe1-C12	126.6 (2)
C15-Fe1-C12	68.8 (3)
$\mathrm{C} 22-\mathrm{Fe} 1-\mathrm{C} 12$	110.6 (3)
C11-Fe1-C12	40.8 (2)
C21-Fe1-C12	124.2 (3)
C25-Fe1-C12	157.7 (3)
C24-Fe1-C12	161.0 (3)
C13-Fe1-C14	40.9 (3)
C23-Fe1-C14	121.4 (3)
C15-Fe1-C14	40.5 (3)
C22-Fe1-C14	158.8 (3)
C11-Fe1-C14	68.0 (3)
C21-Fe1-C14	157.3 (3)
C25-Fe1-C14	120.7 (3)
C24-Fe1-C14	104.6 (3)
C12-Fe1-C14	68.9 (3)
C15-C11-C12	109.0 (6)
C15-C11-Br11	125.9 (5)
C12-C11-Br11	124.9 (5)
C15-C11-Fe1	69.6 (3)
C12-C11-Fe1	69.8 (3)
Br11-C11-Fe1	130.3 (3)
C15-C11-H11	125.5
C12-C11-H11	125.5
Fe1-C11-H11	126.7
C13-C12-C11	106.2 (6)
C13-C12-Br12	126.8 (5)
C11-C12-Br12	126.8 (5)
C13-C12-Fe1	68.8 (3)
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{Fe} 1$	69.4 (3)
Br12-C12-Fel	130.2 (3)
C15-C11-C12-C13	0.5 (6)
Br11-C11-C12-C13	-175.1 (4)
Fe1-C11-C12-C13	59.2 (4)

C13-C14-H14	126.6
Fe1-C14-H14	127.5
C11-C15-C14	108.6 (6)
$\mathrm{C} 11-\mathrm{C} 15-\mathrm{Fe} 1$	70.0 (4)
C14-C15-Fe1	70.5 (4)
C11-C15-H15	125.7
C14-C15-H15	125.7
Fe1-C15-H15	125.3
C25-C21-C22	108.3 (5)
$\mathrm{C} 25-\mathrm{C} 21-\mathrm{Br} 21$	125.3 (4)
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{Br} 21$	126.0 (5)
C25-C21-Fe1	70.0 (4)
C22-C21-Fe1	69.5 (3)
$\mathrm{Br} 21-\mathrm{C} 21-\mathrm{Fe} 1$	131.4 (3)
C25-C21-H21	125.8
C22-C21-H21	125.8
Fe1-C21-H21	126.2
C23-C22-C21	107.3 (6)
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{Br} 22$	126.3 (4)
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{Br} 22$	126.1 (5)
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{Fe} 1$	69.3 (3)
C21-C22-Fe1	69.7 (4)
$\mathrm{Br} 22-\mathrm{C} 22-\mathrm{Fe} 1$	131.0 (3)
C24-C23-C22	109.2 (5)
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{Br} 23$	125.2 (5)
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{Br} 23$	125.3 (5)
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{Fe} 1$	70.3 (3)
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{Fe} 1$	70.0 (3)
$\mathrm{Br} 23-\mathrm{C} 23-\mathrm{Fe} 1$	130.2 (3)
C23-C24-C25	106.8 (6)
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{Br} 24$	131.1 (8)
C25-C24-Br24	121.9 (8)
C23-C24-Fe1	69.2 (4)
C25-C24-Fe1	69.4 (4)
$\mathrm{Br} 24-\mathrm{C} 24-\mathrm{Fe} 1$	123.0 (7)
C23-C24-H24	126.6
C25-C24-H24	126.6
Fe1-C24-H24	126.3
C21-C25-C24	108.4 (6)
$\mathrm{C} 21-\mathrm{C} 25-\mathrm{Fe} 1$	69.8 (4)
C24-C25-Fe1	69.6 (3)
C21-C25-H25	125.8
C24-C25-H25	125.8
Fe1-C25-H25	126.4
C25-C21-C22-C23	0.1 (6)
$\mathrm{Br} 21-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	173.6 (4)
Fe1-C21-C22-C23	-59.4 (4)

C15-C11-C12-Br12	175.8 (4)	C25-C21-C22-Br22	-173.9 (4)
$\mathrm{Br} 11-\mathrm{C} 11-\mathrm{C} 12-\mathrm{Br} 12$	0.3 (8)	$\mathrm{Br} 21-\mathrm{C} 21-\mathrm{C} 22-\mathrm{Br} 22$	-0.4 (8)
Fel-C11-C12-Br12	-125.4 (5)	Fe1-C21-C22-Br22	126.6 (5)
C15-C11-C12-Fe1	-58.7 (4)	C25-C21-C22-Fe1	59.5 (4)
$\mathrm{Br} 11-\mathrm{C} 11-\mathrm{C} 12-\mathrm{Fe} 1$	125.7 (4)	$\mathrm{Br} 21-\mathrm{C} 21-\mathrm{C} 22-\mathrm{Fe} 1$	-127.0 (5)
C11-C12-C13-C14	0.7 (6)	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	0.1 (6)
Br12-C12-C13-C14	-174.7 (4)	$\mathrm{Br} 22-\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	174.0 (4)
Fe1-C12-C13-C14	60.2 (4)	$\mathrm{Fe} 1-\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	-59.6 (4)
C11-C12-C13-Br13	174.0 (4)	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23-\mathrm{Br} 23$	-174.6 (4)
$\mathrm{Br} 12-\mathrm{C} 12-\mathrm{C} 13-\mathrm{Br} 13$	-1.4 (8)	$\mathrm{Br} 22-\mathrm{C} 22-\mathrm{C} 23-\mathrm{Br} 23$	-0.7 (7)
Fe1-C12-C13-Br13	-126.5 (4)	Fe1-C22-C23-Br23	125.7 (4)
C11-C12-C13-Fe1	-59.6 (4)	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23-\mathrm{Fe} 1$	59.6 (4)
$\mathrm{Br} 12-\mathrm{C} 12-\mathrm{C} 13-\mathrm{Fe} 1$	125.1 (5)	$\mathrm{Br} 22-\mathrm{C} 22-\mathrm{C} 23-\mathrm{Fe} 1$	-126.4 (4)
C12-C13-C14-Br14	177.6 (11)	C22-C23-C24-C25	-0.1 (6)
$\mathrm{Br} 13-\mathrm{C} 13-\mathrm{C} 14-\mathrm{Br} 14$	4.3 (13)	Br23-C23-C24-C25	174.6 (4)
Fe1-C13-C14-Br14	-122.3 (11)	Fe1-C23-C24-C25	-59.5 (4)
C12-C13-C14-C15	-1.5 (7)	$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24-\mathrm{Br} 24$	175.6 (10)
Br13-C13-C14-C15	-174.8 (4)	Br23-C23-C24-Br24	-9.7 (12)
Fe1-C13-C14-C15	58.5 (4)	Fe1-C23-C24-Br24	116.2 (10)
C12-C13-C14-Fe1	-60.0 (4)	$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24-\mathrm{Fe} 1$	59.3 (4)
$\mathrm{Br} 13-\mathrm{C} 13-\mathrm{C} 14-\mathrm{Fe} 1$	126.7 (5)	$\mathrm{Br} 23-\mathrm{C} 23-\mathrm{C} 24-\mathrm{Fe} 1$	-126.0 (4)
C12-C11-C15-C14	-1.4 (7)	C22-C21-C25-C24	-0.1 (7)
Br11-C11-C15-C14	174.1 (4)	$\mathrm{Br} 21-\mathrm{C} 21-\mathrm{C} 25-\mathrm{C} 24$	-173.7 (4)
Fe1-C11-C15-C14	-60.2 (4)	Fe1-C21-C25-C24	59.0 (4)
C12-C11-C15-Fe1	58.8 (4)	C22-C21-C25-Fe1	-59.2 (4)
$\mathrm{Br} 11-\mathrm{C} 11-\mathrm{C} 15-\mathrm{Fe} 1$	-125.7 (4)	$\mathrm{Br} 21-\mathrm{C} 21-\mathrm{C} 25-\mathrm{Fe} 1$	127.3 (5)
Br14-C14-C15-C11	-177.3 (11)	C23-C24-C25-C21	0.2 (6)
C13-C14-C15-C11	1.8 (7)	$\mathrm{Br} 24-\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 21$	-176.0 (9)
Fe1-C14-C15-C11	59.9 (4)	Fe1-C24-C25-C21	-59.2 (4)
Br14-C14-C15-Fe1	122.8 (12)	C23-C24-C25-Fe1	59.4 (4)
C13-C14-C15-Fe1	-58.2 (4)	Br24-C24-C25-Fe1	-116.8 (9)

Bis(1,2,3,4-tetrabromocyclopentadienyl)iron(II) (compd_5)
Crystal data
[$\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{HBr}_{4}\right)_{2}$]
$M_{r}=817.25$
Triclinic, $P \overline{1}$
$a=6.9395$ (2) Å
$b=7.0548$ (2) \AA
$c=8.9271$ (3) \AA
$\alpha=67.577(1)^{\circ}$
$\beta=76.160(1)^{\circ}$
$\gamma=86.461(1)^{\circ}$
$V=392.06(2) \AA^{3}$
$Z=1$
$F(000)=368$
$D_{\mathrm{x}}=3.461 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7252 reflections
$\theta=3.0-36.2^{\circ}$
$\mu=21.33 \mathrm{~mm}^{-1}$
$T=103 \mathrm{~K}$
Rod, yellow
$0.03 \times 0.01 \times 0.01 \mathrm{~mm}$

supporting information

Data collection

D8 Venture

diffractometer
Radiation source: rotating anode generator
Detector resolution: 7.4074 pixels mm^{-1}
mix of ω and phi scans
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
$T_{\text {min }}=0.180, T_{\text {max }}=0.344$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.076$
$S=1.06$
3772 reflections
89 parameters
0 restraints
Primary atom site location: dual

> 3772 measured reflections
> 3772 independent reflections
> 3107 reflections with $I>2 \sigma(I)$
> $\theta_{\max }=36.3^{\circ}, \theta_{\min }=3.0^{\circ}$
> $h=-11 \rightarrow 11$
> $k=-10 \rightarrow 11$
> $l=0 \rightarrow 14$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.2630(5)$	$0.5035(5)$	$0.3994(4)$	$0.0110(5)$
C2	$0.2568(5)$	$0.6705(5)$	$0.4545(4)$	$0.0100(5)$
C3	$0.2493(5)$	$0.5846(5)$	$0.6289(4)$	$0.0095(5)$
C4	$0.2505(5)$	$0.3669(5)$	$0.6804(4)$	$0.0094(5)$
C5	$0.2606(5)$	$0.3150(5)$	$0.5389(4)$	$0.0094(5)$
H5	0.264990	0.180813	0.537579	0.011^{*}
Br1	$0.26938(5)$	$0.52654(6)$	$0.18277(4)$	$0.01451(7)$
Br2	$0.24350(5)$	$0.94767(5)$	$0.32428(4)$	$0.01363(7)$
Br3	$0.22892(5)$	$0.73434(5)$	$0.76565(4)$	$0.01270(7)$
Br4	$0.23435(5)$	$0.17894(5)$	$0.89794(4)$	$0.01490(7)$
Fe1	0.500000	0.500000	0.500000	$0.00706(11)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0120(12)$	$0.0147(14)$	$0.0079(12)$	$0.0016(10)$	$-0.0035(10)$	$-0.0054(11)$
C2	$0.0112(11)$	$0.0101(13)$	$0.0088(12)$	$0.0018(10)$	$-0.0030(9)$	$-0.0036(10)$
C3	$0.0109(12)$	$0.0098(13)$	$0.0070(12)$	$-0.0002(10)$	$-0.0006(9)$	$-0.0033(10)$
C4	$0.0099(11)$	$0.0095(13)$	$0.0076(12)$	$-0.0002(9)$	$-0.0010(9)$	$-0.0024(10)$
C5	$0.0112(12)$	$0.0092(13)$	$0.0076(12)$	$0.0006(10)$	$-0.0019(10)$	$-0.0032(10)$

Br 1	$0.01640(14)$	$0.01897(17)$	$0.01080(14)$	$0.00160(12)$	$-0.00560(11)$	$-0.00720(12)$
Br 2	$0.01950(15)$	$0.00938(14)$	$0.01115(14)$	$0.00466(11)$	$-0.00569(11)$	$-0.00231(11)$
Br 3	$0.01718(15)$	$0.01280(15)$	$0.01024(14)$	$0.00378(11)$	$-0.00345(11)$	$-0.00702(11)$
Br 4	$0.01921(15)$	$0.01260(15)$	$0.00856(14)$	$-0.00057(11)$	$-0.00061(11)$	$-0.00070(11)$
Fe 1	$0.0084(2)$	$0.0070(3)$	$0.0056(2)$	$0.00118(19)$	$-0.0021(2)$	$-0.0021(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

C1-C5	1.431 (5)	C3-Br3	1.874 (3)
$\mathrm{C} 1-\mathrm{C} 2$	1.434 (5)	$\mathrm{C} 3-\mathrm{Fe} 1$	2.036 (3)
C1—Br1	1.868 (3)	C4-C5	1.429 (5)
$\mathrm{C} 1-\mathrm{Fe} 1$	2.048 (3)	$\mathrm{C} 4-\mathrm{Br} 4$	1.869 (3)
$\mathrm{C} 2-\mathrm{C} 3$	1.427 (5)	$\mathrm{C} 4-\mathrm{Fe} 1$	2.046 (3)
$\mathrm{C} 2-\mathrm{Br} 2$	1.865 (3)	C5-Fe1	2.056 (3)
$\mathrm{C} 2-\mathrm{Fe} 1$	2.041 (3)	C5-H5	0.9500
$\mathrm{C} 3-\mathrm{C} 4$	1.426 (5)		
C5-C1-C2	108.6 (3)	$\mathrm{C} 2 \mathrm{i}-\mathrm{Fe} 1-\mathrm{C} 4$	111.21 (13)
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{Br} 1$	125.4 (3)	$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{C} 4$	68.79 (13)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	125.9 (2)	$\mathrm{C} 3{ }^{\text {i }}$-Fe1- $4^{\text {i }}$	40.88 (13)
C5-C1-Fe1	69.90 (18)	$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{C} 4{ }^{\text {i }}$	139.12 (13)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Fe} 1$	69.19 (18)	$\mathrm{C} 2{ }^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{C} 4^{\mathrm{i}}$	68.79 (13)
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{Fe} 1$	127.49 (17)	$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{C} 4{ }^{\text {i }}$	111.21 (13)
C3-C2-C1	107.5 (3)	$\mathrm{C} 4-\mathrm{Fe} 1-\mathrm{C} 4{ }^{\text {i }}$	180.0
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Br} 2$	126.5 (2)	$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{Cl}^{1}$	68.80 (13)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 2$	125.9 (2)	$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{C} 1^{\text {i }}$	111.20 (13)
C3-C2-Fe1	69.33 (18)	$\mathrm{C} 2{ }^{\text {i }}$-Fe1- $\mathrm{Cl}^{1}{ }^{\text {i }}$	41.06 (14)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Fe} 1$	69.75 (18)	$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{Cl}^{\text {i }}$	138.94 (14)
$\mathrm{Br} 2-\mathrm{C} 2-\mathrm{Fe} 1$	129.31 (17)	$\mathrm{C} 4-\mathrm{Fe} 1-\mathrm{Cl}^{\text {i }}$	111.66 (13)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	108.0 (3)	$\mathrm{C} 4{ }^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{Cl}^{\text {i }}$	68.34 (13)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Br} 3$	126.6 (2)	C3i-Fe1-C1	111.20 (13)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 3$	125.3 (2)	$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{C} 1$	68.80 (13)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Fe} 1$	69.94 (18)	C2 ${ }^{\text {i }}$ - $\mathrm{Fe} 1-\mathrm{C} 1$	138.94 (14)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Fe} 1$	69.68 (18)	$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{C} 1$	41.06 (14)
Br3-C3-Fe1	128.15 (17)	$\mathrm{C} 4-\mathrm{Fe} 1-\mathrm{C} 1$	68.34 (13)
C3-C4-C5	108.8 (3)	C4i-Fe1-C1	111.66 (13)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 4$	125.8 (2)	C1 ${ }^{\text {i }}$ - $\mathrm{Fe} 1-\mathrm{C} 1$	180.00 (8)
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Br} 4$	125.4 (2)	C3i-Fe1-C5	110.92 (12)
C3-C4-Fe1	69.18 (17)	$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{C} 5$	69.08 (13)
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Fe} 1$	70.00 (17)	$\mathrm{C} 2 \mathrm{i}-\mathrm{Fe} 1-\mathrm{C} 5$	110.77 (13)
$\mathrm{Br} 4-\mathrm{C} 4-\mathrm{Fe} 1$	128.05 (17)	$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{C} 5$	69.23 (13)
C4-C5-C1	107.1 (3)	$\mathrm{C} 4-\mathrm{Fe} 1-\mathrm{C} 5$	40.76 (13)
C4-C5-Fe1	69.24 (18)	C 4 - $\mathrm{Fe} 1-\mathrm{C} 5$	139.24 (13)
C1-C5-Fe1	69.29 (18)	C1- ${ }^{\text {i }}$ - $1-\mathrm{C} 5$	139.19 (13)
C4-C5-H5	126.5	C1-Fe1-C5	40.81 (13)
C1-C5-H5	126.5	$\mathrm{C} 3{ }^{\text {i }}$-Fe1- $\mathrm{C}^{\text {i }}$	69.08 (13)
Fe1-C5-H5	126.6	$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{C} 5{ }^{\text {i }}$	110.92 (13)
C3i-Fe1-C3	180.0	$\mathrm{C} 2{ }^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{C} 5^{\text {i }}$	69.23 (13)

$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{C} 2^{\text {i }}$	40.99 (13)	C2-Fe1-C5 ${ }^{\text {i }}$	110.77 (13)
$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{C} 2{ }^{\text {i }}$	139.01 (13)	$\mathrm{C} 4-\mathrm{Fe} 1-\mathrm{C} 5^{\text {i }}$	139.24 (13)
C 3 - $\mathrm{Fe} 1-\mathrm{C} 2$	139.01 (13)	C4i-Fe1-C5 ${ }^{\text {i }}$	40.76 (13)
$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{C} 2$	40.99 (13)	$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{C} 5{ }^{\text {i }}$	40.81 (13)
C 2 - $\mathrm{Fe} 1-\mathrm{C} 2$	180.0	$\mathrm{C} 1-\mathrm{Fe} 1-\mathrm{C} 5{ }^{\text {i }}$	139.19 (13)
C3--Fe1-C4	139.12 (13)	C5-Fe1-C5 ${ }^{\text {i }}$	180.0
$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{C} 4$	40.88 (13)		
C5- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.4 (4)	$\mathrm{Br} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	177.8 (2)
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	178.8 (2)	$\mathrm{Fe} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	-59.0 (2)
$\mathrm{Fe} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-59.3 (2)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 4$	-177.9 (2)
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 2$	-176.6 (2)	$\mathrm{Br} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 4$	-0.6 (4)
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 2$	2.6 (4)	$\mathrm{Fe} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 4$	122.6 (2)
$\mathrm{Fe} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 2$	124.5 (3)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Fe} 1$	59.5 (2)
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Fe} 1$	58.9 (2)	$\mathrm{Br} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Fe} 1$	-123.2 (3)
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Fe} 1$	-121.9 (3)	C3-C4-C5-C1	-0.8 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-0.1 (4)	$\mathrm{Br} 4-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 1$	177.7 (2)
$\mathrm{Br} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	176.1 (2)	$\mathrm{Fe} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 1$	-59.2 (2)
$\mathrm{Fe} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-59.7 (2)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Fe} 1$	58.5 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 3$	-177.4 (2)	$\mathrm{Br} 4-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Fe} 1$	-123.1 (2)
$\mathrm{Br} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 3$	-1.3 (4)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 4$	0.7 (4)
$\mathrm{Fe} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 3$	123.0 (2)	$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 4$	-178.5 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Fe} 1$	59.6 (2)	$\mathrm{Fe} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 4$	59.2 (2)
$\mathrm{Br} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Fe} 1$	-124.3 (3)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5-\mathrm{Fe} 1$	-58.5 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	0.5 (4)	$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{Fe} 1$	122.4 (3)

Symmetry code: (i) $-x+1,-y+1,-z+1$.
(1-Bromomercurio-2,3,4,5-tetrabromocyclopentadienyl)(1,2,3,4,5-pentabromocyclopentadienyl)iron(II)
(compd_8)

Crystal data

$\left[\mathrm{FeHgBr}\left(\mathrm{C}_{5} \mathrm{Br}_{4}\right)\left(\mathrm{C}_{5} \mathrm{Br}_{5}\right)\right]$
$M_{r}=1175.64$
Monoclinic, $P 2{ }_{1} / n$
$a=8.9784$ (3) Å
$b=14.0971$ (4) \AA
$c=15.8485$ (4) \AA
$\beta=90.689(1)^{\circ}$
$V=2005.79(10) \AA^{3}$
$Z=4$

Data collection

D8 Venture

diffractometer
Radiation source: rotating anode generator
Detector resolution: 7.4074 pixels mm^{-1}
mix of ω and phi scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.193, T_{\text {max }}=0.332$
$F(000)=2064$
$D_{\mathrm{x}}=3.893 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9571 reflections
$\theta=2.6-26.1^{\circ}$
$\mu=28.28 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Rod, yellow
$0.06 \times 0.02 \times 0.02 \mathrm{~mm}$

33353 measured reflections
4098 independent reflections
3154 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-11 \rightarrow 11$
$k=-17 \rightarrow 17$
$l=-19 \rightarrow 19$

supporting information

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.092$
$S=1.06$
4098 reflections
199 parameters

0 restraints
Primary atom site location: dual
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0321 P)^{2}+17.6846 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.63 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.24$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.3728(11)$	$0.6144(7)$	$0.4691(5)$	$0.048(2)$
C2	$0.3219(10)$	$0.5425(6)$	$0.4119(6)$	$0.046(2)$
C3	$0.4378(9)$	$0.5238(6)$	$0.3545(6)$	$0.0386(19)$
C4	$0.5618(9)$	$0.5838(6)$	$0.3754(5)$	$0.0376(19)$
C5	$0.5205(10)$	$0.6401(6)$	$0.4451(5)$	$0.041(2)$
C6	$0.1984(9)$	$0.7471(6)$	$0.3246(5)$	$0.0372(19)$
C7	$0.2227(9)$	$0.6896(6)$	$0.2538(5)$	$0.0381(19)$
C8	$0.3692(10)$	$0.7103(6)$	$0.2257(5)$	$0.0387(19)$
C9	$0.4324(9)$	$0.7793(6)$	$0.2789(5)$	$0.0360(18)$
C10	$0.3276(9)$	$0.8041(6)$	$0.3418(5)$	$0.0374(19)$
Br1	$0.27025(16)$	$0.66542(10)$	$0.55928(7)$	$0.0828(4)$
Br2	$0.13919(12)$	$0.48144(10)$	$0.41585(10)$	$0.0881(5)$
Br3	$0.43841(15)$	$0.43142(8)$	$0.27139(8)$	$0.0744(4)$
Br4	$0.74361(11)$	$0.58160(8)$	$0.32153(8)$	$0.0633(3)$
Br5	$0.64199(14)$	$0.73095(8)$	$0.49869(7)$	$0.0657(3)$
Br6	$0.02030(11)$	$0.75651(8)$	$0.38521(7)$	$0.0565(3)$
Br7	$0.08463(12)$	$0.61035(8)$	$0.20025(7)$	$0.0584(3)$
Br8	$0.45641(13)$	$0.65863(9)$	$0.12890(6)$	$0.0664(3)$
Br9	$0.61817(11)$	$0.83682(8)$	$0.26468(6)$	$0.0561(3)$
Br10	$0.30895(15)$	$1.00135(9)$	$0.56050(8)$	$0.0737(3)$
Fe1	$0.37661(12)$	$0.66252(8)$	$0.34720(7)$	$0.0310(2)$
Hg1	$0.33752(4)$	$0.89788(3)$	$0.44073(2)$	$0.04929(13)$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.055(6)$	$0.053(6)$	$0.035(5)$	$0.012(5)$	$0.013(4)$	$0.018(4)$
C2	$0.038(5)$	$0.039(5)$	$0.061(6)$	$0.001(4)$	$0.000(4)$	$0.024(4)$
C3	$0.038(5)$	$0.029(4)$	$0.049(5)$	$0.000(4)$	$-0.009(4)$	$0.000(4)$
C4	$0.036(4)$	$0.035(5)$	$0.042(5)$	$0.001(4)$	$0.003(4)$	$0.002(4)$
C5	$0.052(5)$	$0.037(5)$	$0.035(4)$	$0.003(4)$	$-0.007(4)$	$0.001(4)$
C6	$0.037(4)$	$0.038(5)$	$0.037(4)$	$0.006(4)$	$0.000(4)$	$0.009(4)$

C7	$0.042(5)$	$0.039(5)$	$0.033(4)$	$0.002(4)$	$-0.004(4)$	$0.006(4)$
C8	$0.046(5)$	$0.040(5)$	$0.030(4)$	$0.002(4)$	$0.003(4)$	$0.002(4)$
C9	$0.039(5)$	$0.035(5)$	$0.033(4)$	$-0.002(4)$	$0.001(3)$	$0.011(4)$
C10	$0.042(5)$	$0.028(4)$	$0.042(5)$	$-0.001(4)$	$-0.003(4)$	$0.006(4)$
Br1	$0.0975(9)$	$0.1086(10)$	$0.0430(6)$	$0.0443(8)$	$0.0300(6)$	$0.0162(6)$
Br2	$0.0453(6)$	$0.0826(9)$	$0.1366(12)$	$-0.0178(6)$	$0.0029(7)$	$0.0531(9)$
Br3	$0.0965(9)$	$0.0442(6)$	$0.0819(8)$	$0.0015(6)$	$-0.0275(7)$	$-0.0233(6)$
Br4	$0.0380(5)$	$0.0672(7)$	$0.0849(8)$	$0.0044(5)$	$0.0131(5)$	$-0.0040(6)$
Br5	$0.0853(8)$	$0.0504(6)$	$0.0606(6)$	$0.0006(5)$	$-0.0303(6)$	$-0.0166(5)$
Br6	$0.0387(5)$	$0.0638(6)$	$0.0673(6)$	$0.0041(4)$	$0.0110(5)$	$0.0041(5)$
Br7	$0.0510(6)$	$0.0672(7)$	$0.0566(6)$	$-0.0122(5)$	$-0.0081(5)$	$-0.0058(5)$
Br8	$0.0728(7)$	$0.0840(8)$	$0.0426(5)$	$-0.0054(6)$	$0.0139(5)$	$-0.0096(5)$
Br9	$0.0541(6)$	$0.0614(6)$	$0.0532(6)$	$-0.0209(5)$	$0.0129(5)$	$0.0008(5)$
Br10	$0.0875(9)$	$0.0667(7)$	$0.0670(7)$	$-0.0043(6)$	$0.0120(6)$	$-0.0210(6)$
Fe1	$0.0313(6)$	$0.0302(6)$	$0.0316(6)$	$0.0001(5)$	$0.0034(4)$	$0.0027(5)$
Hg1	$0.0585(2)$	$0.0407(2)$	$0.0488(2)$	$-0.00033(17)$	$0.00521(17)$	$-0.00432(17)$

Geometric parameters ($\AA,{ }^{\circ}$)

C1-C5	1.431 (13)	C6-C10	1.434 (12)
$\mathrm{C} 1-\mathrm{C} 2$	1.432 (14)	C6-Br6	1.880 (8)
$\mathrm{C} 1-\mathrm{Br} 1$	1.855 (9)	C6-Fe1	2.024 (8)
$\mathrm{C} 1-\mathrm{Fe} 1$	2.049 (8)	C7-C8	1.424 (12)
C2-C3	1.415 (13)	C7-Br7	1.866 (9)
$\mathrm{C} 2-\mathrm{Br} 2$	1.855 (9)	$\mathrm{C} 7-\mathrm{Fe} 1$	2.048 (8)
$\mathrm{C} 2-\mathrm{Fe} 1$	2.041 (8)	C8-C9	1.404 (12)
C3-C4	1.434 (11)	C8-Br8	1.877 (8)
$\mathrm{C} 3-\mathrm{Br} 3$	1.852 (9)	C8-Fe1	2.041 (8)
$\mathrm{C} 3-\mathrm{Fe} 1$	2.034 (8)	C9-C10	1.422 (11)
C4-C5	1.413 (12)	C9-Br9	1.870 (8)
$\mathrm{C} 4-\mathrm{Br} 4$	1.852 (8)	C9-Fel	2.037 (8)
$\mathrm{C} 4-\mathrm{Fe} 1$	2.044 (8)	C10-Fe1	2.045 (8)
$\mathrm{C} 5-\mathrm{Br} 5$	1.879 (9)	$\mathrm{C} 10-\mathrm{Hg} 1$	2.052 (9)
C5-Fe1	2.032 (8)	$\mathrm{Br} 10-\mathrm{Hg} 1$	2.4101 (12)
C6-C7	1.403 (12)		
C5- $\mathrm{C} 1-\mathrm{C} 2$	107.5 (8)	Br9-C9-Fe1	129.8 (4)
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{Br} 1$	125.3 (8)	C9-C10-C6	105.6 (7)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	127.3 (7)	C9-C10-Fe1	69.3 (5)
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{Fe} 1$	68.9 (5)	C6-C10-Fe1	68.6 (5)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Fe} 1$	69.2 (5)	C9- $\mathrm{C} 10-\mathrm{Hg} 1$	132.1 (6)
$\mathrm{Br} 1-\mathrm{Cl}-\mathrm{Fe} 1$	127.8 (5)	C6- $\mathrm{C} 10-\mathrm{Hg} 1$	122.3 (6)
C3-C2-C1	107.9 (8)	$\mathrm{Fe} 1-\mathrm{C} 10-\mathrm{Hg} 1$	126.1 (4)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Br} 2$	126.4 (7)	C6-Fe1-C5	136.1 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 2$	125.6 (7)	C6-Fe1-C3	142.1 (3)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Fe} 1$	69.4 (5)	$\mathrm{C} 5-\mathrm{Fe} 1-\mathrm{C} 3$	68.8 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Fe} 1$	69.8 (5)	C6-Fe1-C9	68.2 (3)
$\mathrm{Br} 2-\mathrm{C} 2-\mathrm{Fe} 1$	128.3 (5)	C5-Fe1-C9	111.9 (4)

C2-C3-C4	108.4 (8)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 3$	126.6 (7)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Br} 3$	124.8 (6)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Fe} 1$	69.9 (5)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Fe} 1$	69.8 (5)
$\mathrm{Br} 3-\mathrm{C} 3-\mathrm{Fe} 1$	129.7 (5)
C5-C4-C3	107.6 (7)
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Br} 4$	127.6 (7)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 4$	124.7 (6)
C5-C4-Fe1	69.3 (5)
C3-C4-Fe1	69.1 (5)
$\mathrm{Br} 4-\mathrm{C} 4-\mathrm{Fe} 1$	128.9 (4)
C4-C5-C1	108.6 (8)
C4-C5-Br5	125.5 (7)
C1-C5-Br5	126.0 (7)
C4-C5-Fe1	70.2 (5)
C1-C5-Fe1	70.1 (5)
Br5-C5-Fe1	126.8 (5)
C7-C6-C10	110.0 (7)
C7-C6-Br6	126.2 (7)
C10-C6-Br6	123.7 (6)
C7-C6-Fe1	70.8 (5)
C10-C6-Fe1	70.2 (5)
Br6-C6-Fe1	128.8 (4)
C6-C7-C8	106.6 (7)
C6-C7-Br7	126.9 (6)
C8-C7-Br7	126.2 (6)
C6-C7-Fe1	68.9 (5)
C8-C7-Fe1	69.3 (5)
Br7-C7-Fe1	131.0 (5)
C9-C8-C7	108.8 (7)
C9-C8-Br8	126.2 (6)
C7-C8-Br8	124.9 (6)
C9-C8-Fe1	69.7 (5)
C7-C8-Fe1	69.9 (5)
Br8-C8-Fe1	129.4 (5)
C8-C9-C10	109.0 (7)
C8-C9- Br 9	125.6 (6)
C10-C9-Br9	125.2 (6)
C8-C9-Fe1	70.0 (5)
C10-C9-Fe1	69.9 (5)

C3-Fe1-C9	137.7 (4)
C6-Fe1-C8	67.8 (3)
C5-Fe1-C8	141.7 (4)
C3-Fe1-C8	112.1 (3)
C9-Fe1-C8	40.3 (3)
C6-Fe1-C2	112.5 (3)
$\mathrm{C} 5-\mathrm{Fe} 1-\mathrm{C} 2$	69.0 (4)
$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{C} 2$	40.6 (4)
C9-Fe1-C2	177.9 (4)
$\mathrm{C} 8-\mathrm{Fe} 1-\mathrm{C} 2$	137.9 (4)
C6-Fe1-C4	176.2 (4)
C5-Fel-C4	40.6 (3)
$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{C} 4$	41.2 (3)
C9-Fe1-C4	110.5 (3)
$\mathrm{C} 8-\mathrm{Fe} 1-\mathrm{C} 4$	113.7 (3)
$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{C} 4$	68.9 (3)
C6-Fe1-C10	41.3 (3)
C5-Fe1-C10	108.6 (3)
C3-Fe1-C10	176.6 (3)
C9-Fe1-C10	40.8 (3)
C8-Fe1-C10	68.5 (3)
C2-Fe1-C10	141.0 (4)
$\mathrm{C} 4-\mathrm{Fe} 1-\mathrm{C} 10$	135.5 (3)
C6-Fe1-C7	40.3 (3)
C5-Fe1-C7	176.3 (4)
C3-Fe1-C7	113.6 (3)
C9-Fe1-C7	68.5 (3)
$\mathrm{C} 8-\mathrm{Fe} 1-\mathrm{C} 7$	40.8 (3)
C2-Fe1-C7	110.7 (4)
$\mathrm{C} 4-\mathrm{Fe} 1-\mathrm{C} 7$	143.0 (3)
C10-Fel-C7	69.2 (3)
C6-Fe1-C1	109.9 (3)
$\mathrm{C} 5-\mathrm{Fe} 1-\mathrm{C} 1$	41.0 (4)
$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{C} 1$	68.6 (4)
C9-Fe1-C1	140.9 (4)
$\mathrm{C} 8-\mathrm{Fe} 1-\mathrm{C} 1$	177.2 (4)
$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{C} 1$	41.0 (4)
$\mathrm{C} 4-\mathrm{Fe} 1-\mathrm{C} 1$	68.7 (3)
$\mathrm{C} 10-\mathrm{Fe} 1-\mathrm{C} 1$	110.9 (4)
$\mathrm{C} 7-\mathrm{Fe} 1-\mathrm{C} 1$	136.4 (4)
$\mathrm{C} 10-\mathrm{Hg} 1-\mathrm{Br} 10$	171.0 (2)

