

Received 21 August 2022 Accepted 27 September 2022

Edited by T. Roseveare, University of Sheffield, United Kingdom

Keywords: crystal structure; halogen bonding; organoiodine; chalcogen bonding; hydrogen bonding; thione.

CCDC references: 2194060; 2194061; 2194062; 2194063; 2194064; 2194065; 2194066; 2194067; 2194068; 2194069; 2194070; 2194071; 2194072; 2194073; 2194074; 2194075; 2194076; 2194077

Supporting information: this article has supporting information at journals.iucr.org/c

Halogen, chalcogen, and hydrogen bonding in organoiodine cocrystals of heterocyclic thiones: imidazolidine-2-thione, 2-mercaptobenzimidazole, 2-mercapto-5-methylbenzimidazole, 2-mercaptobenzoxazole, and 2-mercaptobenzothiazole

Spencer Watts, Andrew J. Peloquin, Madhushi Bandara, Colin D. McMillen and William T. Pennington*

Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, SC 29634, USA. *Correspondence e-mail: billp@clemson.edu

Through the combination of heterocyclic thiones with variation in the identity of the heterocyclic elements, namely, imidazolidine-2-thione, 2-mercaptobenzimidazole, 2-mercapto-5-methylbenzimidazole, 2-mercaptobenzoxazole, and 2-mercaptobenzothiazole with the common halogen-bond donors 1,2-, 1,3-, and 1,4diiodotetrafluorobenzene, 1,3,5-trifluorotriiodobenzene, and tetraiodoethylene, a series of 18 new crystalline structures were characterized. In most cases, N- $H \cdots S$ hydrogen bonding was observed, with these interactions in imidazolecontaining structures typically resulting in two-dimensional motifs (*i.e.* ribbons). Lacking the second N-H group, the thiazole and oxazole hydrogen bonding resulted in only dimeric pairs. C-I \cdots S and C-I \cdots I halogen bonding, as well as C=S \cdots I chalcogen bonding, served to consolidate the packing by linking the hydrogen-bonding ribbons or dimeric pairs.

1. Introduction

Halogen and chalcogen bonding, defined by IUPAC as 'a net attractive interaction between an electrophilic region associated with...' a halogen or chalcogen atom, respectively, '... in a molecular entity and a nucleophilic region in another, or the same, molecular entity (Desiraju et al., 2013; Aakeroy et al., 2019),' has drawn increasing attention in recent years (Parisini et al., 2011; Zhou et al., 2010; Ajani et al., 2015; Arman et al., 2008; Aakeroy et al., 2015; Metrangolo & Resnati, 2012; Cavallo et al., 2016; Metrangolo et al., 2005; Legon, 1998). Similar to hydrogen bonding, halogen bonding is strong, selective, and directional. Organic iodines are among the most commonly utilized halogen-bond donors (Corradi et al., 2000), largely due to their greater polarizability. When paired with halogen-bond acceptor molecules with a diversity of heteroatoms, the combined effects of halogen, chalcogen, and hydrogen bonding can be revealed. Imidazoles, thiazoles, and oxazoles are ideal systems to study in this regard.

Benzimidazole, and its derivatives, have been investigated for a diverse range of biological applications, including in the treatment of tuberculosis (Foks *et al.*, 2006), as antimicrobial agents (Alasmary *et al.*, 2015), and also as analgesic and antiinflammatory compounds (Achar *et al.*, 2010; Fletcher *et al.*, 2006). These mercaptobenzimidazoles, thiazoles, and oxazoles have also seen significant utilization as ligands in transitionmetal complexes. Providing some insight into the role of heteroatoms in differing positions, of the 31 crystal structures containing 2-mercaptobenzothiazole (MBZTH) and a transition metal currently deposited with the Cambridge Structural Database (CSD; Groom et al., 2016), all demonstrate metal coordination through the thione S atom and not the thiazole S atom. They range from simple species, such as (2-mercaptobenzothiazole)bis(triphenylphosphine)silver(I) iodide (Banti et al., 2014), to more complex copper and ruthenium complexes (Zhou et al., 2013a; Zafar et al., 2019). Similarly, the mercaptobenzimidazole (or benzimidazolethione) derivatives present an interesting field of study for their potential intermolecular interactions in halogen-bonding systems (Fig. 1). In these systems, hydrogen, halogen, and chalcogen bonding are all viable intermolecular interactions, and structural studies of the cocrystals can be useful in determining which interactions are preferred as the organoiodine and the heterocyclic systems are varied.

Our group has recently been interested in the role of the S atom in $I \cdots S$ halogen- and chalcogen-bonding interactions as a crystal design tool, as well as their roles in the formation of deep eutectic solvents derived from halogen bonding (Peloquin *et al.*, 2021*a,b,c,d*, 2022). Herein, we report the solid-state structures of 18 new cocrystals derived from the combination of the heterocyclic molecules imidazolidine-2-thione (**IT**), 2-mercaptobenzimidazole (**MBZIM**), 2-mercapto-5-methyl-

Organoiodines and mercaptoimidazoles utilized in this study.

benzimidazole (**MMBZIM**), 2-mercaptobenzoxazole (**MBZOX**), and 2-mercaptobenzothiazole (**MBZTH**) with the organic halogen-bond donors 1,2-diiodotetrafluorobenzene (1,2-**F**₄**DIB**), 1,3-diiodotetrafluorobenzene (1,3-**F**₄**DIB**), 1,4-tetrafluorobenzene (1,4-F₄**DIB**), 1,3,5-trifluoro-2,4,6-triiodobenzene (1,3,5-**F**₃**I**₃**B**), and tetraiodoethylene (**TIE**). This diverse pool of substrates yielded structures with the crystal packing dominated by N-H···S hydrogen bonding, leading to thioamide dimers, with longer-range packing motifs created through C-I···S and C-I···I halogen bonding, as well as the occasional C=S···I chalcogen bond.

2. Experimental

2.1. Materials and instrumentation

For single-crystal X-ray analysis, crystals were mounted on low background cryogenic loops using paratone oil. Data were collected using Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å) on a Bruker D8 Venture diffractometer with an Incoatec Iµs microfocus source and a Photon 2 detector.

2.2. Preparation of cocrystals

Cocrystals were synthesized using imidazolidine-2-thione (TCI Americas, 98%), 2-mercaptobenzimidazole (Acros, 98%), 2-mercaptobenzosazole (Acros, 99%), 2-mercaptobenzoxazole (Acros, 99%), 2-mercaptobenzothiazole (Acros, 98%), 1,2-diiodotetrafluorobenzene (Synquest Laboratories, 99%), 1,3-diiodotetrafluorobenzene (Synquest Laboratories, 97%), 1,4-tetrafluorobenzene (Synquest Laboratories, 97%), 1,4-tetrafluorobenzene (Synquest Laboratories, 97%), and tetraiodoethylene (Santa Cruz Biotechnologies, 98%). Solvents were obtained from Fisher Scientific. All materials were used as received without further purification. Crystals were formed by slow evaporation under ambient conditions (20–23 °C). Methanol was utilized for the majority of cocrystal preparations; however, if this was not successful, acetone or ethyl acetate was utilized.

2.2.1. 2(IT)·(1,3-F₄DIB). Imidazolidine-2-thione (50 mg, 0.489 mmol) and 1,3-diiodotetrafluorobenzene (196 mg, 0.489 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless needle-like crystals of $2(IT) \cdot (1,3-F_4DIB)$ were obtained after 3 d.

2.2.2. (IT)·(1,3,5-F₃I₃B). Imidazolidine-2-thione (50 mg, 0.489 mmol) and 1,3,5-trifluoro-2,4,6-triiodobenzene (249 mg, 0.489 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless needle-like crystals of (IT)·(1,3,5-F₃I₃B) were obtained after 4 d.

2.2.3. 4(MBZIM)·3(1,3-F₄DIB). 2-Mercaptobenzimidazole (34 mg, 0.227 mmol) and 1,3-diiodotetrafluorobenzene (49 mg, 0.122 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to

Table 1Experimental details.

Experiments were carried out at 100 K with Mo $K\alpha$ radiation using a Bruker D8 Venture Photon 2 diffractometer. Absorption was corrected for by multi-scan methods (*SADABS*; Bruker, 2017). H atoms were treated by a mixture of independent and constrained refinement, except for 3(**MBZTH**)·4(**1,2-F**₄**DIB**), for which H-atom parameters were constrained.

	2(IT)·(1,3-F ₄ DIB)	(IT)·(1,3,5-F ₃ I ₃ B)	4(MBZIM)·3(1,3-F ₄ DIB)	$(MBZIM) \cdot (1,4-F_4DIB)$
Crystal data				
Chemical formula	$C_6F_4I_2 \cdot 2C_3H_6N_2S$	$C_6F_3I_3$ · $C_3H_6N_2S$	$3C_6F_4I_2 \cdot 4C_7H_6N_2S$	$C_6F_4I_2 \cdot C_7H_6N_2S$
M _r	606.18	611.92	1806.37	552.06
Crystal system, space group	Orthorhombic, Pbcn	Orthorhombic, Pbca	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/c$
a, b, c (Å)	15.6704 (7), 8.9924 (4),	18.0407 (14), 7.2816 (6),	8.4573 (14), 17.725 (3),	5.5641 (2), 33.1320 (11),
	26.0573 (10)	22.1250 (19)	18.759 (4)	8.4710 (3)
$lpha,eta,\gamma$ (°)	90, 90, 90	90, 90, 90	106.997 (7), 93.229 (7), 92.034 (7)	90, 92.754 (1), 90
$V(Å^3)$	3671.9 (3)	2906.5 (4)	2680.9 (9)	1559.82 (9)
Ζ	8	8	2	4
$\mu \text{ (mm}^{-1})$	3.69	6.61	3.72	4.20
Crystal size (mm)	$0.18\times0.17\times0.13$	$0.22 \times 0.08 \times 0.04$	$0.34 \times 0.04 \times 0.04$	$0.22 \times 0.18 \times 0.06$
Data collection	0.600.0.746	0.5(2, 0.54)		0.501.0.516
I_{\min}, I_{\max}	0.639, 0.746	0.563, 0.746	0.668, 0.746	0.501, 0.746
No. of measured, indepen- dent and observed $[I > 2\sigma(I)]$ reflections	112821, 5370, 5198	49179, 3013, 3220	118524, 12297, 10558	45583, 4579, 4211
R _{int}	0.035	0.043	0.056	0.050
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.705	0.667	0.651	0.709
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.015, 0.032, 1.25	0.019, 0.040, 1.11	0.021, 0.041, 1.06	0.020, 0.044, 1.12
No. of reflections	5376	3615	12297	4579
No. of parameters	234	172	717	207
No. of restraints	0	2	8	0
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm A}^{-3})$	0.42, -0.37	0.57, -0.77	0.52, -0.75	0.49, -0.68
	(MBZIM)·(TIE)	(MMBZIM)·(1,2-F ₄ DIB)	2(MMBZIM)·(1,4- F ₄ DIB)·2(H ₂ O)	(MMBZIM)·(1,3,5-F ₃ I ₃ B)
Crystal data				
Chemical formula	$C_2I_4 \cdot C_7H_6N_2S$	$C_6F_4I_2 \cdot C_8H_8N_2S$	$C_6F_4I_2 \cdot 2C_8H_8N_2S \cdot 2(H_2O)$	$C_6F_3I_3 \cdot C_8H_8N_2S$
M _r	681.82	566.08	766.34	673.98
Crystal system, space group a, b, c (Å)	Orthorhombic, <i>Pnma</i> 11.7547 (10), 8.3525 (7),	4.5504 (5), 13.2872 (14),	11 0(8) (4)	Monoclinic, $P2_1/c$ 15.191 (2), 5.0074 (7),
$\alpha \beta \alpha (^{\circ})$	13.1077 (13)	13.8004 (14) 04.766 (4) 08.124 (4)	11.9000 (8)	22.713(3)
α, ρ, γ ()	90, 90, 90	94.700 (4), 98.124 (4), 00 588 (4)	00.044(2), 98.038(2), 02.811(2)	90, 97.400 (0), 90
$V(\mathring{A}^3)$	1483.3(2)	99.308 (4)	92.011(2) 636.27(7)	17133(4)
V (A)	1465.5 (2)	2	030.27 (7)	1/15.5 (4)
$\frac{1}{2}$ (mm ⁻¹)	8 52	4 05	2 69	5.62
μ (mm) μ (rystal size (mm)	$0.30 \times 0.14 \times 0.11$	$0.19 \times 0.07 \times 0.04$	$0.31 \times 0.11 \times 0.08$	$0.26 \times 0.04 \times 0.04$
	0.50 × 0.14 × 0.11	0.17 × 0.07 × 0.04	0.51 × 0.11 × 0.06	0.20 × 0.04 × 0.04
Data collection	0.056 0.746	0.000.0740	0.526 0.716	0.500 0.746
T_{\min}, T_{\max}	0.256, 0.746	0.636, 0.746	0.536, 0.746	0.582, 0.746
No. of measured, indepen- dent and observed $[I > 2\sigma(I)]$ reflections	32859, 1993, 1885	21426, 3704, 3174	31584, 3558, 3500	23258, 3971, 3039
Rint	0.055	0.042	0.036	0.069
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.671	0.650	0.696	0.652
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.026, 0.062, 1.26	0.026, 0.055, 1.24	0.014, 0.034, 1.18	0.047, 0.105, 1.22
No. of reflections	1993	3704	3558	3971
No. of parameters	89	217	184	217
No. of restraints	0	1	7	1
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.25, -1.48	1.33, -1.06	0.44, -0.42	2.37, -1.89
	(MBZOX)·(1,2-F ₄ DIB)	(MBZOX)·(1,3-F ₄ DIB)	2(MBZOX)·(1,4-F ₄ DIB)	(MBZOX)·(1,3,5-F ₃ I ₃ B)
Crystal data				
Chemical formula	$C_6F_4I_2 \cdot C_7H_5NOS$	$C_6F_4I_2 \cdot C_7H_5NOS$	$C_6F_4I_2 \cdot 2C_7H_5NOS$	$C_6F_3I_3 \cdot C_7H_5NOS$
M _r	553.04 Managelia - 22 (553.04 Managali i 22 (/04.22 Manageli in <i>C</i> 2/	660.94
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/c$	Monoclinic, $C2/c$	Monoclinic, $P2_1/c$

Table 1 (continued)

	$(MBZOX) \cdot (1,2-F_4DIB)$	(MBZOX)·(1,3-F ₄ DIB)	$2(MBZOX) \cdot (1,4-F_4DIB)$	$(MBZOX) \cdot (1,3,5-F_3I_3B)$
a, b, c (Å)	13.7789 (12), 4.4129 (4), 25.252 (2)	15.1655 (8), 4.3803 (2), 23.0358 (12)	31.025 (4), 4.3159 (5), 19.061 (2)	14.9295 (7), 4.6119 (2), 23.5065 (12)
α, β, γ (°)	90, 96.337 (3), 90	90, 99.923 (2), 90	90, 114.434 (4), 90	90, 92.548 (2), 90
$V(A^3)$	1526.0 (2)	1507.36 (13)	2323.6 (5)	1616.90 (13)
Ζ	4	4	4	4
$\mu \text{ (mm}^{-1})$	4.30	4.35	2.94	5.96
Crystal size (mm)	$0.46 \times 0.06 \times 0.02$	$0.23 \times 0.12 \times 0.09$	$0.29 \times 0.12 \times 0.03$	$0.22 \times 0.06 \times 0.05$
Data collection				
T_{\min}, T_{\max}	0.578, 0.745	0.541, 0.746	0.637, 0.746	0.551, 0.745
No. of measured, indepen- dent and observed $[I > 2\sigma(I)]$ reflections	12498, 3210, 2510	39610, 4625, 4119	25197, 2950, 2571	19413, 3348, 2845
R _{int}	0.066	0.042	0.047	0.050
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.634	0.716	0.675	0.630
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.047, 0.087, 1.11	0.022, 0.048, 1.16	0.028, 0.060, 1.32	0.029, 0.061, 1.22
No. of reflections	3210	4625	2950	3348
No. of parameters	203	203	149	203
No. of restraints	0	0	0	0
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	1.58, -1.52	0.96, -1.35	1.54, -1.15	0.80, -0.77
	3(MBZTH)·4(1,2-F ₄ DIB)	(MBZTH)·(1,3-F ₄ DIB)	(MBZTH)·2(1,3-F ₄ DIB)	2(MBZTH)·(1,4-F ₄ DIB)
Crystal data				
Chemical formula	ACEL3CHNS	CELCHNS	ACEL.2CHNS	C E L 2C H NS
M	2100 16	560 10	1041 02	736 34
Crystal system space group	Triclinic P_1	Triclinic $\overline{P1}$	Monoclinic P2	Monoclinic P2 /m
$a = b = a \begin{pmatrix} A \\ A \end{pmatrix}$	70410(8) 14 8482(15)	7 2175 (4) & 2675 (5)	45591(2), 24259(2)	5 5057 (2) 15 6087 (7)
u, b, c (A)	24.641 (3)	14.4498 (9)	4.5581 (5), 54.558 (2), 15.6075 (10)	13.5194 (6)
$lpha,eta,\gamma(^\circ)$	79.264 (4), 87.104 (4), 82.784 (4)	97.936 (2), 91.297 (2), 109.178 (2)	90, 94.707 (2), 90	90, 94.259 (2), 90
$V(Å^3)$	2830.9 (5)	804.44 (8)	2436.0 (3)	1158.61 (8)
Z	2	2	2	2
$\frac{1}{\mu}$ (mm ⁻¹)	4 69	4 20	5 36	312
(rrystal size (mm))	$0.30 \times 0.13 \times 0.04$	$0.33 \times 0.27 \times 0.06$	$0.18 \times 0.12 \times 0.04$	$0.17 \times 0.09 \times 0.04$
Crystar size (min)	0.50 X 0.15 X 0.01	0.55 / 0.27 / 0.00	0.10 X 0.12 X 0.01	0.17 X 0.09 X 0.01
Data collection				
T_{\min}, T_{\max} No. of measured, indepen- dent and observed $[I > 2\sigma(I)]$ reflections	0.570, 0.746 78566, 12466, 11325	0.496, 0.746 27899, 4701, 4391	0.568, 0.746 56285, 12660, 11766	0.559, 0.746 22270, 3402, 2811
Rint	0.067	0.036	0.050	0.049
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.642	0.706	0.678	0.706
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.067, 0.220, 1.06	0.018, 0.044, 1.09	0.026, 0.046, 1.09	0.027, 0.057, 1.15
No. of reflections	12466	4701	12660	3402
No. of parameters	704	203	622	149
No. of restraints	66	0	2	0
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	2.61, -1.48	1.08, -1.11	1.01, -0.71	0.90, -0.79
Absolute structure		_	Refined as an inversion twin	_
Absolute structure para-	_	_	0.454 (15)	_
meter				

(MBZTH)·(1,3,5-F₃I₃B)

Crystal data Chemical formula M_r Crystal system, space group a, b, c (Å) α, β, γ (°) V (Å³) Z μ (mm⁻¹) Crystal size (mm)

Data collection T_{\min}, T_{\max}

 $\begin{array}{l} C_6F_3I_3{\cdot}C_7H_5NS_2 \\ 677.00 \\ Monoclinic, P2_1/c \\ 15.2665 (6), 4.7380 (2), 23.2215 (10) \\ 90, 93.139 (2), 90 \\ 1677.15 (12) \\ 4 \\ 5.86 \\ 0.16 \times 0.08 \times 0.05 \end{array}$

0.610, 0.746

(MBZTH)·(TIE)

 $\begin{array}{l} C_2 I_4 {\cdot} C_7 H_5 NS_2 \\ 698.86 \\ Triclinic, $P\overline{1}$ \\ 7.4085 (6), 10.8180 (9), 11.1989 (10) \\ 66.616 (3), 70.765 (3), 70.792 (3) \\ 757.20 (11) \\ 2 \\ 8.48 \\ 0.08 \times 0.07 \times 0.07 \end{array}$

0.589, 0.746

Table 1 (continued)

	$(MBZTH) \cdot (1,3,5-F_3I_3B)$	(MBZTH)·(TIE)
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	35222, 4212, 3611	22463, 3484, 3037
R _{int}	0.057	0.052
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.669	0.651
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.024, 0.052, 1.18	0.029, 0.072, 1.13
No. of reflections	4212	3484
No. of parameters	203	159
No. of restraints	1	7
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \; ({\rm e} \; {\rm \AA}^{-3})$	0.67, -0.73	1.43, -1.76

computer programs: APEX3 (Bruker, 2017), SAINT (Bruker, 2017), SHELXT2018 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), Mercury (Macrae et al., 2020), and OLEX2 (Dolomanov et al., 2009).

evaporate slowly and colorless needle-like crystals of $4(MBZIM) \cdot 3(1,3-F_4DIB)$ were obtained after 4 d.

2.2.4. (MBZIM)·(1,4-F₄DIB). 2-Mercaptobenzimidazole (19 mg, 0.126 mmol) and 1,4-diiodotetrafluorobenzene (50 mg, 0.124 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless plate-like crystals of (MBZIM)·(1,4-F₄DIB) were obtained after 3 d.

2.2.5. (MBZIM)·(TIE). 2-Mercaptobenzimidazole (30 mg, 0.200 mmol) and tetraiodoethylene (55 mg, 0.103 mmol) were weighed into a 20 ml glass vial. Ethyl acetate (15 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless tabular crystals of (MBZIM)·(TIE) were obtained after 7 d.

2.2.6. (MMBZIM)·(1,2- F_4 DIB). 2-Mercapto-5-methylbenzimidazole (20 mg, 0.122 mmol) and 1,2-diiodotetrafluorobenzene (48 mg, 0.119 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless columnar crystals of (MMBZIM)·(1,2- F_4 DIB) were obtained after 3 d.

2.2.7. 2(MMBZIM)·(1,4- F_4 DIB)·2(H_2 O). 2-Mercapto-5methylbenzimidazole (40 mg, 0.244 mmol) and 1,4-diiodotetrafluorobenzene (51 mg, 0.127 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless plate-like crystals of 2(MMBZIM)·(1,4- F_4 DIB)·2(H_2 O) were obtained after 3 d.

2.2.8. (MMBZIM)·(1,3,5-F₃I₃B). 2-Mercapto-5-methylbenzimidazole (31 mg, 0.189 mmol) and 1,3,5-trifluoro-2,4,6-triiodobenzene (50 mg, 0.098 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless needle-like crystals of (MMBZIM)·(1,3,5-F₃I₃B) were obtained after 4 d.

2.2.9. (MBZOX)·(1,2- F_4 DIB). 2-Mercaptobenzoxazole (20 mg, 0.132 mmol) and 1,2-diiodotetrafluorobenzene (102 mg, 0.254 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear

solution was obtained. The solvent was allowed to evaporate slowly and colorless needle-like crystals of $(MBZOX) \cdot (1,2-F_4DIB)$ were obtained after 3 d.

2.2.10. (MBZOX)·(1,3-F₄DIB). 2-Mercaptobenzoxazole (19 mg, 0.126 mmol) and 1,3-diiodotetrafluorobenzene (104 mg, 0.259 mmol) were weighed into a 20 ml glass vial. Acetone (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless columnar crystals of (MBZOX)·(1,3-F₄DIB) were obtained after 2 d.

2.2.11. 2(MBZOX)·(1,4-F₄DIB). 2-Mercaptobenzoxazole (40 mg, 0.265 mmol) and 1,4-diiodotetrafluorobenzene (50 mg, 0.124 mmol) were weighed into a 20 ml glass vial. Acetone (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless columnar crystals of 2(MBZOX)·(1,4-F₄DIB) were obtained after 2 d.

2.2.12. (MBZOX)·(1,3,5- F_3I_3B). 2-Mercaptobenzoxazole (15 mg, 0.099 mmol) and 1,3,5-trifluoro-2,4,6-triiodobenzene (50 mg, 0.098 mmol) were weighed into a 20 ml glass vial. Acetone (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless columnar crystals of (MBZOX)·(1,3,5- F_3I_3B) were obtained after 1 d.

2.2.13. 3(MBZTH)·**4(1,2-F₄DIB)**. 2-mercaptobenzothiazole (21 mg, 0.126 mmol) and 1,2-diiodotetrafluorobenzene (103 mg, 0.256 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless plate-like crystals of 3(MBZTH)·4(1,2-F₄DIB) were obtained after 3 d.

2.2.14. (MBZTH)·(1,3- F_4 DIB). 2-Mercaptobenzothiazole (24 mg, 0.143 mmol) and 1,3-diiodotetrafluorobenzene (50 mg, 0.124 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless plate-like crystals of (MBZTH)·(1,3- F_4 DIB) were obtained after 3 d.

2.2.15. (MBZTH)·2(1,3-F₄DIB). 2-Mercaptobenzothiazole (22 mg, 0.132 mmol) and 1,3-diiodotetrafluorobenzene (98 mg, 0.244 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear

Table 2 Hydrogen-bond geometry (Å, °) for $2(IT) \cdot (1,3-F_4DIB)$.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-HN1\cdots S1^i$	0.81 (2)	2.77 (2)	3.5551 (14)	163 (2)
$N2-HN2\cdots S2^{ii}$	0.83 (2)	2.53 (2)	3.3507 (14)	172 (2)
$C2-H2B\cdots F2$	0.99	2.55	3.3392 (19)	136
$C3-H3B\cdots S2$	0.99	2.94	3.7351 (19)	138
$N3-HN3\cdots S2^{iii}$	0.79 (2)	2.54 (2)	3.3171 (15)	167 (2)
$N4-HN4\cdots I2^{iv}$	0.83 (2)	3.31 (2)	3.7383 (14)	114.9 (18)
$N4-HN4\cdots S1^{ii}$	0.83 (2)	2.63 (2)	3.4562 (14)	179 (2)
$C5-H5A\cdots I1^{v}$	0.99	3.20	3.9922 (16)	138
$C5-H5B\cdots F4$	0.99	2.45	3.2774 (19)	140
$C6-H6B\cdots I1^{vi}$	0.99	3.18	3.9223 (16)	133
	2 1	(11)		

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, z; (ii) -x + 1, -y + 2, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, z; (v) -x + 1, y, $-z + \frac{1}{2}$; (vi) $x - \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

solution was obtained. The solvent was allowed to evaporate slowly and colorless tabular crystals of $(MBZTH) \cdot 2(1,3-F_4DIB)$ were obtained after 4 d.

2.2.16. 2(**MBZTH**)·(**1**,**4**-**F**₄**DIB**). 2-Mercaptobenzothiazole (46 mg, 0.275 mmol) and 1,4-diiodotetrafluorobenzene (50 mg, 0.124 mmol) were weighed into a 20 ml glass vial. Acetone (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless needle-like crystals of 2(**MBZTH**)·(**1**,**4**-**F**₄**DIB**) were obtained after 2 d.

2.2.17. (MBZTH)·(1,3,5-F₃I₃B). 2-Mercaptobenzothiazole (32 mg, 0.191 mmol) and 1,3,5-trifluoro-2,4,6-triiodobenzene (50 mg, 0.098 mmol) were weighed into a 20 ml glass vial. Acetone (10 ml) was added and the mixture was stirred until a

Figure 2

Cocrystalline structures containing **IT**. Hydrogen and halogen bonding are indicated by black dotted lines. Displacement ellipsoids are drawn at the 50% probability level. H atoms, except those bound to N atoms, have been omitted for clarity.

2.2.18. (MBZTH)·(TIE). 2-Mercaptobenzothiazole (33 mg, 0.197 mmol) and tetraiodoethylene (50 mg, 0.094 mmol) were weighed into a 20 ml glass vial. Methanol (15 ml) was added and the mixture was stirred with gentle heating until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless block-like crystals of (MBZTH)·(TIE) were obtained after 5 d.

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms on C atoms were calculated in idealized positions riding on their parent atoms, with C-H = 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms, and C-H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for other H atoms. H atoms on heteroatoms were located in difference Fourier maps and refined isotropically, utilizing appropriate restraints [N-H = 0.86 (2) Å] where necessary to maintain chemically reasonable geometries. The H atoms of the water molecule in $2(\text{MMBZIM}) \cdot (1,4-F_4\text{DIB}) \cdot 2(H_2\text{O})$ were modeled in a disordered arrangement due to symmetry considerations.

3. Results and discussion

3.1. Cocrystals of imidazolidine-2-thione (IT)

The smallest of the sulfur-containing compounds within this study, imidazolidine-2-thione, contains a thiourea functionality within a five-membered saturated ring. The first cocrystal formed with this compound in the present study is $2(IT) \cdot (1,3 F_{\perp}DIB$), which was refined in the orthorhombic space group *Pbcn* with two unique molecules of **IT** and one molecule of **1,3-F₄DIB** in the asymmetric unit (Fig. 2). As is common in thiourea-containing structures, a pair of N-H···S hydrogen bonds links thiourea molecules, in this case, into tetrameric units (Table 2) (Peloquin et al., 2021d, 2022). This is in contrast to the formation of hydrogen-bonded ribbons and discrete dimers, which are formed in the previously published 2(IT)·(1,2-F₄DIB) and (IT)·2(1,2-F₄DIB) cocrystals, respectively (Happonen et al., 2021). Tetrameric units align into staggered stacks in the b direction. These stacks are separated by additional tetrameric units, with the planes of the tetramers inclined by approximately 64°. This arrangement of inclined hydrogen-bonding units is also observed in the dimeric units of (IT)·(1,4-F₄DIB) (Happonen et al., 2021). At the end of each tetramer, the remaining N-H hydrogen serves to link to the next inclined tetramer via N-H···S hydrogen bonding. The S atom at this end, S1, acts as a $C-I \cdots S$ halogen-bond acceptor to two different 1,3-F₄DIB molecules (Table 3). These halogen-bonding interactions link adjacent stacks of tetramers in the c direction. The second IT-containing cocrystal of this study, (IT)·(1,3,5-F₃I₃B), was refined in the orthorhombic space group Pbca with one molecule each of IT and 1,3,5-F₃I₃B in the asymmetric unit. This structure represents the only example within this study without $N-H\cdots S$

Table 3

Halogen- and chalcogen-bond geometries (Å, °).

Compound		$d(D \cdot \cdot \cdot A)$	$R_{\rm XB}{}^{\rm i}$	$\theta(\mathbf{C}-D\cdots A)$	$\theta(D \cdots A - C)$	$\theta_1 - \theta_2^{ii}$	$\psi^{ m iii}$
2(IT)·(1,3-F ₄ DIB)	$I1 \cdot \cdot \cdot S1$	3.2265 (6)	0.85	174.51 (4)	113.51 (5)	61.00	0.79
	$I2 \cdot \cdot \cdot S1$	3.2860 (5)	0.87	176.10 (4)	99.67 (5)	76.43	0.03
(IT)·(1,3,5-F ₃ I ₃ B)	$I1 \cdot \cdot \cdot I3$	3.8376 (6)	0.97	162.95 (8)	106.24 (7)	56.71	0.64
	$I2 \cdot \cdot \cdot S1$	3.1505 (8)	0.83	171.86 (7)	101.89 (10)	69.97	0.48
	$I3 \cdot \cdot \cdot S1$	3.1754 (8)	0.84	177.68 (8)	90.59 (9)	87.09	0.18
4(MBZIM)·3(1,3-F ₄ DIB)	$I1 \cdot \cdot \cdot S3$	3.3361 (10)	0.88	172.18 (8)	136.86 (8)	35.32	0.83
	$I6 \cdot \cdot \cdot S2$	3.2150 (9)	0.85	166.06 (8)	134.24 (8)	31.82	0.74
(MBZIM)·(1,4-F ₄ DIB)	$I1 \cdot \cdot \cdot S1$	3.2573 (9)	0.86	168.29 (6)	131.28 (8)	37.01	0.57
(MBZIM)·(TIE)	$I1 \cdot \cdot \cdot S1$	3.5368 (14)	0.94	173.83 (17)	71.37 (16)	102.46	0.66
	$I3 \cdot \cdot \cdot S1$	3.2702 (14)	0.87	177.05 (17)	118.15 (17)	58.90	0.64
(MMBZIM)·(1,2-F ₄ DIB)	$I1 \cdot \cdot \cdot S1$	3.6404 (10)	0.96	154.63 (12)	95.76 (13)	58.87	0.47
	$I2 \cdot \cdot \cdot S1$	3.2307 (11)	0.85	169.63 (11)	106.66 (15)	62.97	0.04
$2(\mathbf{MMBZIM}) \cdot (1,4 \cdot \mathbf{F_4DIB}) \cdot 2(\mathbf{H_2O})$	$I1 \cdot \cdot \cdot S1$	3.2516 (4)	0.86	169.16 (4)	96.12 (4)	73.04	0.37
$(\mathbf{MMBZIM}) \cdot (1, 3, 5 \cdot \mathbf{F}_{3} \mathbf{I}_{3} \mathbf{B})$	$I2 \cdot \cdot \cdot S1$	3.474 (2)	0.92	164.1 (3)	92.1 (3)	72.0	0.71
	$I3 \cdot \cdot \cdot S1$	3.463 (2)	0.92	176.7 (3)	96.5 (3)	80.2	0.50
(MBZOX)·(1,2-F ₄ DIB)	$I2 \cdot \cdot \cdot S1$	3.2853 (19)	0.87	166.65 (19)	105.4 (3)	61.3	0.19
$(MBZOX) \cdot (1, 3 - F_4 DIB)$	$I1 \cdot \cdot \cdot S1$	3.4132 (7)	0.90	174.53 (6)	105.63 (8)	68.90	0.19
	$I2 \cdot \cdot \cdot S1$	3.6787 (6)	0.97	159.40 (6)	92.48 (7)	66.92	0.66
	$S1 \cdot \cdot \cdot I1$	3.7536 (7)	0.99	160.34 (7)	105.80 (6)	54.54	0.53
$2(MBZOX) \cdot (1,4-F_4DIB)$	$I1 \cdot \cdot \cdot S1$	3.2287 (11)	0.85	174.60 (9)	109.39 (13)	65.21	0.74
(MBZOX) (1,3,5-F ₃ I ₃ B)	$I1 \cdot \cdot \cdot S1$	3.4114 (14)	0.90	171.55 (13)	100.14 (19)	71.41	0.14
	I2· · · I3	3.9110 (7)	0.99	147.22 (13)	79.55 (13)	67.67	0.62
	$I3 \cdot \cdot \cdot S1$	3.6774 (13)	0.97	157.67 (15)	95.79 (16)	61.88	0.67
	$S1 \cdot \cdot \cdot I1$	3.7385 (14)	0.99	163.12 (17)	98.99 (14)	64.13	0.44
3(MBZTH)·4(1,2-F ₄ DIB)	$I1 \cdot \cdot \cdot S5$	3.380 (4)	0.89	177.9 (4)	113.3 (5)	64.6	0.81
	$I2 \cdot \cdot \cdot S5$	3.353 (4)	0.89	163.7 (4)	128.9 (5)	34.8	0.61
	I3· · · S3	3.371 (5)	0.89	169.0 (4)	96.4 (7)	72.6	0.02
	$I4 \cdot \cdot \cdot S3$	3.754 (4)	0.99	173.7 (4)	100.5 (6)	73.2	0.76
	$15 \cdot \cdot \cdot S1$	3.380 (4)	0.89	177.9 (4)	113.3 (5)	64.6	0.81
	$I6 \cdot \cdot \cdot I7$	3.8766 (14)	0.95	170.5 (4)	118.1 (4)	52.4	0.73
	$I6 \cdot \cdot \cdot S1$	3.391 (5)	0.90	168.1 (4)	111.3 (6)	56.8	0.76
(MBZTH)·(1.3-F ₄ DIB)	$I1 \cdot \cdot \cdot S1$	3.3724 (5)	0.89	168.06 (6)	120.18 (6)	47.88	0.64
	$12 \cdot \cdot \cdot S1$	3.4140 (5)	0.90	157.68 (4)	106.00 (5)	51.68	0.66
(MBZTH)·2(1,3-F ₄ DIB)	I1S3	3.3426 (17)	0.88	168.34 (18)	103.3 (2)	65.0	0.25
	$12 \cdot \cdot \cdot S2$	3.7429 (17)	0.99	152.94 (18)	$121.7(4)^{iii}$	31.2	0.23
	I3· · · S1	3.3548 (18)	0.89	166.60 (17)	100.3(2)	66.3	0.64
	I4· · · S4	3.6744 (17)	0.97	148.74 (18)	$118.4(4)^{iii}$	30.4	0.65
	1514	3.7971 (10)	0.96	163.30 (19)	82.92 (18)	80.38	0.52
	1812	3,7950 (9)	0.96	170.03 (18)	84.69 (18)	85.34	0.71
2(MBZTH):(1.4-F ₄ DIB)	11	3.3013 (7)	0.87	178.16 (7)	103.84 (10)	74.32	0.60
$(MBZTH) \cdot (1.3.5 - F_{2}I_{2}B)$	11	3.4551 (10)	0.91	169.01 (9)	97.89 (13)	71.12	0.71
() ()	S2···I3	3,7777 (10)	1.00	158.73 (12)	117.64 (10)	41.09	0.52
(MBZTH).(TIE)	1113	3,9459 (7)	1.00	171.07 (14)	70.7 (3)	100.4	0.52
(13	3 2826 (13)	0.87	162 1 (3)	122 51 (19)	39.6	0.33
	13	3 6514 (19)	0.07	161.9 (3)	77.0(2)	84.9	0.41
	14	5.0514 (17)	0.97	101.7 (3)	77.0 (2)	07	0.40

Notes: (i) $R_{XB} = d(X \cdots Y)/\Sigma d(vdW)$, the ratio of the distance between the donor atom (*i.e.* I) and the acceptor atom (*i.e.* S) to the sum of their van der Waals (vdW) radii (S = 1.80 Å and I = 1.98 Å) (Auffinger *et al.*, 2004). (ii) $\theta_1 - \theta_2 = |\{[\theta(C - D \cdots A)] - [\theta(D \cdots A - C)]\}|$. (iii) Linearity parameter (Setter *et al.*, 2020).

hydrogen bonding (Table 4). Instead, $C-I\cdots S$ halogen bonding occurs between alternating molecules of IT and 1,3,5-F₃I₃B to form chains propagating in the *c* direction. The third I atom of 1,3,5-F₃I₃B, which does not participate in significant interactions with sulfur, instead serves to link chains in the *ac* plane *via* $C-I\cdots I$ halogen bonding.

3.2. Cocrystals of 2-mercaptobenzimidazole (MBZIM)

Moving to the larger thiourea-containing molecule 2-mercaptobenzimidazole (**MBZIM**) yielded three new structures dominated by co-operative hydrogen and halogen bonding (Fig. 3). With **1,3-F**₄**DIB**, the cocrystalline structure of 4(**MBZIM**)·3(**1,3-F**₄**DIB**) was obtained in the triclinic space group $P\overline{1}$, with four unique molecules of **MBZIM** and three molecules of **1,3-F**₄**DIB** in the asymmetric unit. In this structure, hydrogen bonding between thiourea molecules contributes to the formation of ribbons propagating along the *a* axis (Table 5). Two of the three **1,3-F₄DIB** molecules are pendants along these chains, linked *via* $C-I\cdots S$. The second I atom of these particular **1,3-F₄DIB** molecules does not contribute to significant halogen- or chalcogen-bonding interactions. This

Table 4					
Hydrogen-bond geometry	(Å, °) for	(\mathbf{IT})	(1,3,5-Fa	I ₃ B).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N2-HN2\cdots I2^{i}$	0.83 (2)	3.10 (3)	3.742 (3)	137 (3)
$C2-H2B\cdots I1^{ii}$	0.99	3.31	3.927 (3)	122
$C2-H2B\cdots F3^{iii}$	0.99	2.47	3.147 (3)	125
Symmetry codes: (i) -	$x + \frac{3}{2}, y + \frac{1}{2}, z;$ (ii) $-x + 1, y - \frac{1}{2}$	$-z + \frac{3}{2}$; (iii) x, -	$-y + \frac{1}{2}, z + \frac{1}{2}.$

hydrogen-bonding thiourea ribbon with halogen-bonding pendants is analogous to that observed in (MBZIM)·(1,2- F_4DIB) (Arman *et al.*, 2008, 2010). The final unique 1,3- F_4DIB molecule lies between the ring planes of the pendant molecules of 1,3- F_4DIB , contributing to only weak C-I···H, C-F···H, and C-F···F-C interactions. The combination of MBZIM and 1,4- F_4DIB resulted in the (MBZIM)·(1,4- F_4DIB) cocrystal, refined in the monoclinic space group $P2_1/c$, with one molecule each of both MBZIM and 1,4- F_4DIB in the asymmetric unit. Just as in 4(MBZIM)·3(1,3- F_4DIB), the structure of (MBZIM)·(1,4- F_4DIB) consists of ribbons of MBZIM molecules propagating in the *c* direction, formed through thiourea hydrogen bonding (Table 6). Molecules of

Table 5	
Hydrogen-bond geometry (Å, $^{\circ}$) for 4(MBZIM)·3(1,3-F₄DIB)	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
N1_HN1\$2 ⁱ	0.85(2)	252(2)	3 357 (2)	172 (3)
$N2 - HN2 \cdots S2$	0.85(2)	2.32(2) 2.46(2)	3.297 (2)	166 (2)
N3-HN3···S1	0.85(2)	2.51(2)	3.348 (2)	173 (3)
$N4-HN4\cdots S1^{ii}$	0.85(2)	2.50(2)	3.326 (2)	166 (2)
$N5-HN5\cdots S4^{i}$	0.85 (2)	2.49 (2)	3.326 (2)	169 (3)
$N6-HN6\cdots S4$	0.85 (2)	2.43 (2)	3.270 (2)	169 (3)
$C17 - H17 \cdots F36^{iii}$	0.95	2.61	3.385 (3)	139
$C20-H20\cdots F36^{iv}$	0.95	2.51	3.235 (3)	133
$N7-HN7\cdots S3$	0.84(2)	2.47 (2)	3.300 (2)	170 (3)
N8-HN8···S3 ⁱⁱ	0.85 (2)	2.48 (2)	3.302 (2)	163 (3)

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x, -y + 1, -z + 1.

Figure 3

 $4(MBZIM) \cdot 3(1,3-F_4DIB)$

Cocrystal structures containing **MBZIM**. Hydrogen and halogen bonding are indicated by black dotted lines. Displacement ellipsoids are drawn at the 50% probability level. H atoms, except those bound to N atoms, have been omitted for clarity.

Table 6 Hydrogen-bond g	eometry (Å,	°) for (MBZ	IM)·(1,4-F ₄ DIB)
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$
$N1 - HN1 \cdots S1^i$	0.84 (3)	2.47 (3)	3.3089 (18)

 $\frac{N2-HN2\cdots S1^{ii}}{Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 1, -y + 1, -z + 1.}$

 $D - H \cdot \cdot \cdot A$

172 (2)

Table 7

Hydrogen-bond geometry (Å, $^{\circ}$) for (**MBZIM**)·(**TIE**).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} N1 {-} HN1 {\cdots} S1^{i} \\ C3 {-} H3 {\cdots} I1^{ii} \end{array}$	0.87 (5)	2.47 (5)	3.335 (3)	178 (5)
	0.95	3.28	3.881 (4)	123

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) $-x + \frac{3}{2}$, -y + 1, $z + \frac{1}{2}$.

Table 8

		. • .						
TT 1 1 1		(A O'	\ C	/ N / N / D /7 I N /)	. /1		DID	
Hvarogen_nona	geometry i	AŬ	I TOT I		1.7	- Z-H		
II yulogon bonu	geometry (11.	, 101		, , ,	1920 - I /	4010/	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-HN1\cdots S1^{i}$	0.88 (5)	2.57 (5)	3.444 (3)	173 (4)
$N2-HN2\cdots I1$	0.85(2)	3.07 (3)	3.780 (3)	142 (3)
$N2-HN2\cdots F4$	0.85(2)	2.56 (3)	3.122 (4)	124 (3)
$C3-H3\cdots I2^{ii}$	0.95	3.06	3.966 (4)	160
$C6-H6\cdots F4$	0.95	2.63	3.262 (4)	125

Symmetry codes: (i) -x, -y + 1, -z + 2; (ii) x, y, z + 1.

1,4-F₄DIB act as pendants along these ribbons, linked *via* C-I···S halogen bonding.

With four I atoms available, tetraiodoethylene (TIE) often enables structural motifs that are different from the typical aromatic halogen-bond donors. The cocrystal (MBZIM)· (TIE) was refined in the orthorhombic space group *Pnma*, with one molecule each of **MBZIM** and **TIE** in the asymmetric unit. As in the previous examples, molecules of **MBZIM** form infinite ribbons through thiourea hydrogen bonding (Table 7). Three of the four I atoms of **TIE** function as $C-I\cdots S$ halogenbond donor atoms to link these ribbons, creating a threedimensional framework through the combination of hydrogen and halogen bonding. The fourth I atom participates in a C- $I\cdots \pi$ interaction $[I\cdots \pi = 3.351 (3) \text{ Å}]$ to reinforce the framework.

3.3. Cocrystals of 2-mercapto-5-methylbenzimidazole (MMBZIM)

Adding a methyl group to **MBZIM**, resulting in 2-mercapto-5-methylbenzimidazole (**MMBZIM**), induces significant changes to the overall hydrogen- and halogen-bonding motifs. The structural literature of this substrate is limited, having only been characterized by single-crystal X-ray diffraction when acting as a ligand for transition metals coordinating through its S atom (Lin *et al.*, 2017; Ozturk *et al.*, 2009; Mitra *et al.*, 2012). The first halogen-bonded cocrystal of **MMBZIM** in this study, (**MMBZIM**)·(**1,2-F**₄**DIB**), was refined in the triclinic space group $P\overline{1}$, with one molecule each of **MMBZIM** and **1,2-F**₄**DIB** in the asymmetric unit (Fig. 4). A discrete hydrogen-bonded dimer of two **MMBZIM** molecules is observed, in contrast to the infinite ribbons in (**MBZIM**)·(**1,2-** **F₄DIB**) and most of the cocrystals in the present study (Table 8). Two molecules of **1,2-F₄DIB** per **MMBZIM** molecule link the dimers *via* $C-I \cdots S$ halogen bonds, leading to the formation of chains along the *c* axis.

Isolated as a hydrated cocrystal from adventitious water, $2(\mathbf{MMBZIM}) \cdot (\mathbf{1,4} \cdot \mathbf{F4DIB}) \cdot 2(\mathbf{H_2O})$ crystallizes in the triclinic space group $P\overline{1}$ with one molecule each of **MMBZIM** and $\mathbf{H_2O}$, as well as half a molecule of $\mathbf{1,4} \cdot \mathbf{F_4DIB}$, in the asymmetric unit. All attempts to obtain an nonhydrated cocrystal

Cocrystalline structures containing **MMBZIM**. Hydrogen and halogen bonding are indicated by black dotted lines. Displacement ellipsoids are drawn at the 50% probability level. H atoms, except those bound to N atoms, have been omitted for clarity.

Table 9	
Hydrogen-bond geometry (Å,	°) for $2(MMBZIM) \cdot (1,4-F_4DIB) \cdot 2(H_2O)$

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$N1 - HN1 \cdots O1$	0.83(2)	2.06(2)	2 8763 (17)	166(2)
$N2-HN2\cdots S1^{i}$	0.88(2)	2.57(2)	3.4211 (13)	160(2) 164(2)
$C4-H4\cdots I1^{ii}$	0.95	3.03	3.9505 (14)	164
$O1-H1AO\cdotsO1^{iii}$	0.88(2)	1.85 (2)	2.708 (3)	163 (4)
$O1-H1BO\cdotsO1^{iv}$	0.88(2)	1.89 (2)	2.759 (3)	167 (4)
O1−H2O1···I1	0.87(2)	3.16 (3)	3.7419 (12)	126 (2)
$O1-H2O1\cdots S1^{iii}$	0.87 (2)	2.65 (2)	3.4251 (13)	149 (3)

Symmetry codes: (i) -x + 2, -y + 2, -z + 1; (ii) x, y + 1, z; (iii) -x + 2, -y + 1, -z + 1; (iv) -x + 1, -y + 1, -z + 1.

Table 10

Hydrogen-bond geometry (Å, °) for $(MMBZIM) \cdot (1,3,5-F_3I_3B)$.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-HN1\cdots S1^{i}$	0.86 (2)	2.57 (3)	3.426 (7)	173 (10)
$N2 - HN2 \cdot \cdot \cdot I2^{ii}$	0.85 (8)	3.02 (8)	3.657 (7)	133 (7)
$C6-H6\cdots I1^{iv}$	0.95	3.12	3.927 (8)	103

Symmetry codes: (i) -x + 1, -y + 3, -z + 1; (ii) x - 1, y + 1, z; (iii) x, y + 1, z; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$.

Table 11Hydrogen-bond geometry (Å, °) for (MBZOX)·(1,2-F4DIB).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-HN1\cdots S1^{i}$ C3-H3···I2 ⁱⁱ	0.85 (8) 0.95	2.50 (8) 3.19	3.335 (6) 4.108 (7)	167 (8) 162
Symmetry codes: (i)	-x, -y, -z + 1;	(ii) $x - \frac{1}{2}, -y + \frac{1}{2}$	$\frac{1}{2}, z = \frac{1}{2}.$	

with **1,4-F₄DIB** were unsuccessful, suggesting the packing arrangement formed strictly by halogen bonding contains small but meaningful voids that must be occupied by the water molecule. Discrete hydrogen-bonded dimers are again observed by hydrogen bonding of the thioamides (Table 9). Differing from (**MMBZIM**)·(**1,2-F₄DIB**), with two halogen bonds to each S atom, 2(**MMBZIM**)·(**1,4-F4DIB**)·2(**H**₂**O**) utilizes one C–I···S halogen bond and one O–H···S hydrogen bond at each S atom. It is the halogen bonding that contributes to the formation of infinite chains by linking the discrete dimers. The water molecule also acts as an N–H···O hydrogen-bond acceptor from the N atom that does not participate in thioamide hydrogen bonding and so is an intermediate linker facilitating the formation of an expanded thioamide ribbon motif.

Finally, the combination of $1,3,5-F_3I_3B$ and **MMBZIM** resulted in the cocrystal (**MMBZIM**)·($1,3,5-F_3I_3B$), refined in the monoclinic space group $P2_1/c$ with one unique molecule of each component in the asymmetric unit. The overall packing motif in this structure is strikingly similar to that in (**MMBZIM**)·($1,2-F_4DIB$). Two molecules of **MMBZIM** form dimeric pairs through hydrogen bonding of the thioamides (Table 10). The remaining N-H hydrogens are involved in weak N-H···I hydrogen bonds [H···I = 3.02 (8) Å]. A pair of C-I···S halogen bonds occurs at each S atom, contributing to chains propagating in the *a* direction. The third I atom is oriented as a potential acceptor for a C-F···I interaction,

Table 12	
Hydrogen-bond geometry $(\text{\AA}, \circ)$ for (MBZOX)·(1,3-F ₄ DIB).	

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
$\begin{array}{l} N1 - HN1 \cdots S1^{i} \\ C3 - H3 \cdots I1^{ii} \end{array}$	0.88 (3) 0.95	2.52 (3) 3.10	3.3906 (19) 4.030 (2)	172 (3) 166		
Symmetry codes: (i) $-x + 2, -y + 2, -z + 1$; (ii) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$.						

Table 13

Hydrogen-bond geometry	(Å,	[°]) for 2(MBZOX)·(1,4-F ₄ DIB).
------------------------	-----	--

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - HN1 \cdots S1^{i}$ $C3 - H3 \cdots I1^{ii}$	0.87 (4) 0.95	2.45 (4) 3.16	3.316 (3) 4.066 (3)	178 (4) 159

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

though the interaction distance is very near the sum of the van der Waals radii and it is unclear if there is a significant attraction to this interaction. Given the similar motifs of $(\mathbf{MMBZIM}) \cdot (\mathbf{1,3,5-F_3I_3B})$ to $(\mathbf{MMBZIM}) \cdot (\mathbf{1,2-F_4DIB})$, it may be that the C-F...I contact is merely coincident within the motif formed by the N-H...S and C-I...S interactions.

3.4. Cocrystals of 2-mercaptobenzoxazole (MBZOX)

While infinite ribbons commonly formed through hydrogen bonding of the thioureas in MBZIM, substituting one secondary N atom for an O atom in 2-mercaptobenzoxazole (MBZOX) allows for the study of the structural motifs when only dimers can form through hydrogen bonding (Fig. 5). The structural literature surrounding MBZOX is sparse, limited to three reports of it acting as a ligand through the S atom in transition-metal complexes (McFarlane et al., 1998; Nakahodo et al., 2000; Mitra et al., 2012) and its reaction with diiodine (Cristiani et al., 1995). Combined with 1,2-F₄DIB, the cocrystalline structure of (MBZOX)·(1,2-F₄DIB) was refined in the monoclinic space group $P2_1/n$, with one unique molecule each of MBZOX and 1,2-F₄DIB in the asymmetric unit. Here, a hydrogen-bonding thioamide dimer is formed (Table 11), with each S atom acting as an acceptor to a single $C-I \cdot \cdot \cdot S$ halogen bond. The second I atom does not contribute to an additional halogen bond, instead being involved in a weak $C-I \cdots \pi$ interaction. This discrete four-molecule unit formed through hydrogen and halogen bonding stands in stark contrast to the infinite hydrogen-bonding ribbon with pendant halogenbonded 1,2-F₄DIB molecules observed in (MBZIM) · (1,2- F_4DIB). The pattern of interactions in (MBZOX)·(1,3- F_4DIB), which crystallizes in the monoclinic space group $P2_1/c$, with one molecule each of **MBZOX** and **1,3-F₄DIB** in the asymmetric unit, is more complex. Thioamide hydrogenbonding dimers are once again observed (Table 12). These dimers stack along the *b* axis. Molecules of $1,3-F_4DIB$ link neighboring stacks of dimers in the *a* direction. One of the I atoms serves as both a C-I···S halogen-bond donor and a C=S...I chalcogen-bond acceptor. The combination of halogen, chalcogen, and hydrogen-bonding results in the formation of a two-dimensional motif of intermolecular

Table 14			
Hydrogen-bond geo	metry (Å, °) for	(MBZOX)·(1,3,5-F ₃ I ₃ B).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - HN1 \cdots S1^{i}$ $C3 - H3 \cdots I1^{ii}$ $C6 - H6 \cdots I2^{iii}$	0.85 (7)	2.53 (7)	3.377 (4)	176 (6)
	0.95	3.04	3.969 (5)	167
	0.95	3.23	4.009 (5)	140

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x + 2, -y + 1, -z + 1; (iii) $x, -y + \frac{5}{2}, z - \frac{1}{2}$.

Table 15 Hydrogen-bond geometry (Å, °) for $3(MBZTH) \cdot 4(1,2-F_4DIB)$.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N2_HN2\$1	0.88	2.45	3 326 (14)	174
$N_1 - HN_1 \cdots S_3$	0.88	2.40	3.266 (14)	169
$C6-H6\cdots F10^{i}$	0.95	2.60	3.29 (2)	130
$N3-HN3\cdots S5^{ii}$	0.88	2.42	3.290 (14)	170
C17-H17···F16	0.95	2.30	3.232 (18)	166
$C20-H20\cdots F2$	0.95	2.53	3.128 (18)	121
$C20-H20\cdots F3$	0.95	2.54	3.181 (17)	125

Symmetry codes: (i) x + 1, y - 1, z; (ii) -x + 1, -y + 1, -z.

interactions. In $2(MBZOX) \cdot (1,4-F_4DIB)$, which was refined in the monoclinic space group C2/c, with one molecule of MBZOX and one-half of a molecule of $1,4-F_4DIB$, the packing motif is more reminiscent of its MMBZIM analogue. Thioamide hydrogen-bonding dimers are linked into chains through C–I···S halogen bonding (Table 13). The final example in the **MBZOX** series, (**MBZOX**)·(**1**,**3**,**5**-**F**₃**I**₃**B**), was refined in the monoclinic space group $P_{2_1/c}$, with one molecule each of **MBZOX** and **1**,**3**,**5**-**F**₃**I**₃**B** in the asymmetric unit. Much of the packing is similar to (**MBZOX**)·(**1**,**3**-**F**₄**DIB**), with thioamide hydrogen-bonding dimers stacking in the *b* direction (Table 14). Neighboring stacks are linked along the *a* axis by both C–I···S halogen bonding and a C=S···I chalcogen bond to again form a two-dimensional substructure. In this instance though, the third I atom of **1**,**3**,**5**-**F**₃**I**₃**B** acts as a C–I···I halogen-bond donor, further consolidating the packing in the *c* direction to form a three-dimensional framework. In all cases of these **MBZOX** cocrystals, hydrogen- and halogen-bonding preference is given toward the thione S atom as the acceptor rather than the O atom of the heterocycle.

3.5. Cocrystals of 2-mercaptobenzothiazole (MBZTH)

As with **MBZOX**, 2-mercaptobenzothiazole lacks the thiourea functionality to allow for the formation of infinite ribbons through hydrogen bonding; however, the additional S atom can potentially act in either halogen- or chalcogenbonding interactions (Fig. 6). Just as with **MBZOX**, the prior structural literature is dominated by examples of **MBZTH** acting as a ligand in transition-metal complexes (Aslanidis *et al.*, 2002; Zhou *et al.*, 2013*b*; Hadjikakou & Kubicki, 2000) or reactions with dihalides (Daga *et al.*, 2002; Koskinen *et al.*,

Figure 5

Cocrystalline structures containing **MBZOX**. Hydrogen and halogen bonding are indicated by black dotted lines. Displacement ellipsoids are drawn at the 50% probability level. H atoms, except those bound to N atoms, have been omitted for clarity.

2015*a*,*b*). The first and most complex of the **MBZTH** structures obtained, $3(\mathbf{MBZTH}) \cdot 4(\mathbf{1,2} \cdot \mathbf{F_4DIB})$, crystallized in the triclinic space group $P\overline{1}$, with three molecules of **MBZTH** and four molecules of $\mathbf{1,2} \cdot \mathbf{F_4DIB}$ in the asymmetric unit. Thioamide dimers stack along the *a* axis (Table 15), with one molecule of $\mathbf{1,2} \cdot \mathbf{F_4DIB}$ within alternating layers. The remaining molecules of $\mathbf{1,2} \cdot \mathbf{F_4DIB}$ are oriented approximately perpendicular to the thioamide dimers, linking layers of the stack through a series of $\mathbf{C} - \mathbf{I} \cdots \mathbf{S}$ halogen bonds. The intrastack molecule of $\mathbf{1,2} \cdot \mathbf{F_4DIB}$ is also linked to a molecule of $\mathbf{1,2} \cdot \mathbf{F_4DIB}$

 F_4DIB on the edge of the stack through a C-I···I halogen bond. This complex series of interactions ultimately forms a three-dimensional framework.

The packing motif of (**MBZTH**)·(**1,3-F**₄**DIB**), refined in the triclinic space group $P\overline{1}$, with one molecule each of **MBZTH** and **1,3-F**₄**DIB** within the asymmetric unit, is similar to that of (**MMBZIM**)·(**1,2-F**₄**DIB**) and (**MMBZIM**)·(**1,3,5-F**₃**I**₃**B**). Thio-amide hydrogen-bonding dimers (Table 16) are linked by a pair of unique C–I···S halogen bonds to the thione S atom, forming chains in the *c* direction. Crystallizing in the monoclinic

Figure 6

Cocrystalline structures containing **MBZTH**. Hydrogen and halogen bonding are indicated by black dotted lines. Displacement ellipsoids are drawn at the 50% probability level. H atoms, except those bound to N atoms, have been omitted for clarity.

Hydrogen-bond geometry (Å, °) for (MBZTH)·(1,3-F₄DIB).								
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$				
$N1 - HN1 \cdots S1^i$	0.87 (3)	2.45 (3)	3.3120 (15)	175 (2)				
Symmetry code: (i) -	-x + 2, -y + 2,	-z + 2.						

Table 17 Hydrogen-bond geometry (Å, °) for (**MBZTH**) $\cdot 2(1,3-F_4DIB)$.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1-HN1···S3	0.89 (6)	2.51 (6)	3.376 (6)	165 (5)
$C3-H3 \cdot \cdot \cdot I1$	0.95	3.10	3.976 (7)	154
$N2-HN2 \cdot \cdot \cdot S1$	0.85 (3)	2.52 (3)	3.360 (6)	169 (7)
$C10{-}H10{\cdot}{\cdot}{\cdot}I3^i$	0.95	3.09	4.006 (6)	161

Symmetry code: (i) x, y, z + 1.

Tabla 10

Table 18 Hydrogen-bond geometry (Å, $^{\circ}$) for 2(**MBZTH**)·(**1,4-F**₄**DIB**).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - HN1 \cdots S1^i$	0.78 (3)	2.60 (3)	3.369 (2)	170 (3)
$C3-H3\cdots F1^{ii}$	0.95	2.50	3.333 (3)	146
$C6\!-\!H6\!\cdot\cdot\!\cdot\!F2^{iii}$	0.95	2.44	3.357 (3)	162
Symmetry codes: (i)	-x - 1, -y +	1, -z + 1; (ii)	-x, -y + 1, -z +	1; (iii) $-x + \frac{3}{2}$

 $v + \frac{1}{2}, -z + \frac{1}{2}$

space group $P2_1$, the asymmetric unit of (MBZTH)·2(1,3-F₄DIB) contains two unique molecules of MBZTH and four molecules of $1,3-F_4DIB$. In this case, the thioamide hydrogenbonding dimers (Table 17) are linked by molecules of 1,3- F_4DIB via C-I···S halogen bonding to form chains. These interactions occur to the thione and thiazole S atoms, with the interaction to the thione S atom occurring at a distance approximately 0.35 Å shorter than to the thiazole S atom. The remaining two molecules of 1,3-F4DIB are located as pendants along the chain, linked by $C-I \cdots I$ halogen bonding.

The packing motif of 2(MBZTH)·(1,4-F₄DIB), refined in the monoclinic space group $P2_1/n$, with one complete molecule of MBZTH and one-half of a molecule of 1,4-F₄DIB in the asymmetric unit, is similar to that of $2(MBZOX) \cdot (1,4-F_4DIB)$. Thioamide hydrogen-bonding dimers (Table 18) are linked into chains *via* $C-I \cdot \cdot \cdot S$ halogen bonding to the thione S atom. As the final example with an aromatic halogen-bond donor, $(MBZTH) \cdot (1,3,5-F_3I_3B)$ was obtained in the monoclinic space group $P2_1/c$, with one unique molecule each of both **MBZTH** and 1,3,5-F₃I₃B in the asymmetric unit. The primary packing motif is similar to that of (MBZTH) 2(1,3-F₄DIB), with the thioamide hydrogen-bonding dimers (Table 19) linked into chains by $C-I \cdots S$ halogen bonds to both the thione and thiazole S atoms. The third I atom serves to link neighboring chains through a weak $C-I \cdots S-C$ interaction to a thiazole S atom; however, the geometry of this interaction $[C-I \cdots S =$ 149.3 (1) and 142.48 (13)°] is indicative of a dispersive Type I interaction and not a true halogen or chalcogen bond. Finally, (**MBZTH**)·(**TIE**) crystallized in the triclinic space group $P\overline{1}$ with one unique molecule of MBZTH and two unique half molecules of TIE in the asymmetric unit. Thioamide hydro-

Table 19	
Hydrogen-bond geometry (Å, $^{\circ}$) for (MBZTH)·(1,3,5-F ₃ I ₃ B).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-HN1\cdots S1^{i}$ $C3-H3\cdots I1^{ii}$	0.86 (2) 0.95	2.54 (2) 3.03	3.389 (3) 3.928 (4)	172 (4) 159
Symmetry codes: (i) -	-x + 2, -y + 2,	-z + 1; (ii) $-x - z = -z + 1$; (iiii) $-x - z = -z + 1$; (iii) $-x - z = -z + 1$; (iii) $-x$	+2, -y + 1, -z +	1.

Table 20

		0			
Judrogon bond	goomotry	(Å -	\circ) f	or	(MD7TU) (TIF)
Tyurogen-bonu	geometry	(A,) 1	.01	$(\mathbf{WID}\mathbf{Z}\mathbf{I}\mathbf{I}\mathbf{I}) \cdot (\mathbf{I}\mathbf{I}\mathbf{E}).$

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-HN1\cdots S1^i$	0.85 (2)	2.43 (2)	3.275 (5)	170 (6)
Symmetry code: (i) -	-x, -v + 1, -z +	- 2.		

gen-bonding dimers (Table 20) are linked into chains by C-I···S halogen bonding to the thione S atom. These chains are linked in the *ab* plane by additional $C-I \cdots S$ halogen bonding to the thione S atom. The second unique TIE molecule serves to consolidate the packing in the c direction via $C-I \cdots I$ halogen bonding, forming a three-dimensional framework.

4. Conclusion

A rich structural chemistry of cocrystals was observed between organoiodine molecules and heterocyclic thiones in the present study of 18 crystal structures. The structures are primarily directed by the co-operative effects of hydrogenand halogen-bonding interactions. Certain features of the long-range structures were controlled through the selection of the heterocyclic thione, where the formation of primarily hydrogen-bonded ribbons in benzimidazoles could be truncated to hydrogen-bonded dimers in benzoxazoles and benzothiazoles. The hydrogen-bonded units were then aggregated into longer-range one- or two-dimensional motifs through $C-I \cdots S$ halogen bonding. Additional $C-I \cdots I$ halogen bonding, either through the stoichiometric excess of organoiodine or through the use of more iodine-rich organoiodine substrates (tetraiodoethylene, for example) extended some structures into three-dimensional frameworks. The $R_{\rm XB}$ value for the majority of the halogen-bonding interactions lies within a typical range from 0.85 to 1.0. The interactions to a thione S atom generally occurred at shorter distances than the thiane S atom, as expected due to the hybridization state. The linearity parameter, ψ , ranges from 0.02 to 0.83. This wide range is supported by the distribution of electron density on S or I acceptor atoms. Occasional C=S····I chalcogen bonding was observed. Halogen-bond preference toward the thione S atom over the heterocyclic O or S atom was observed in both the benzoxazoles and benzothiazoles. However, there were at least some occasional occurrences of $C-I \cdot \cdot \cdot S$ to the thiazole S atom.

References

Aakeroy, C. B., Bryce, D. L., Cavallo, G., Clark, T., Herrebout, W., Hill, J. G., Ho, P. S., Jentzsch, A. V., Legon, A. C., Matile, S., Metrangolo, P., Murray, J. S., Pilati, T., Politzer, P., Resnati, G.,

Spartz, C. L., Terraneo, G., Tew, D. P., Viger-Gravel, J. & Walker, N. R. (2015). In *Topics in Current Chemistry: Halogen Bonding I*. New York: Springer International Publishing.

- Aakeroy, C. B., Bryce, D. L., Desiraju, G. R., Frontera, A., Legon, A. C., Nicotra, F., Rissanen, K., Scheiner, S., Terraneo, G., Metrangolo, P. & Resnati, G. (2019). *Pure Appl. Chem.* **91**, 1889–1892.
- Achar, K. C. S., Hosamani, K. M. & Seetharamareddy, H. R. (2010). *Eur. J. Med. Chem.* 45, 2048–2054.
- Ajani, H., Carlsson, A. C. C., Cavallo, G., Deepa, P., Erdelyi, M., Fourmigue, M., Haukka, M., Hobza, P., Huber, S. M., Jin, W. J., Kolar, M. H., Lieffrig, J., Metrangolo, P., Pang, X., Pecina, A., Priimagi, A., Resnati, G., Rissanen, K., Saccone, M., Schindler, S., Taylor, M. S. & Veiga, A. X. (2015). In *Topics in Current Chemistry: Halogen Bonding II*. New York: Springer International Publishing.
- Alasmary, F. A. S., Snelling, A. M., Zain, M. E., Alafeefy, A. M., Awaad, A. S. & Karodia, N. (2015). *Molecules*, 20, 15206–15223.
- Arman, H. D., Biella, S., Bruce, D. W., Fourmigue, M., Hanks, T. W., Karpfen, A., Kochi, J. K., Legon, A. C., Metrangolo, P., Pennington, W. T., Pilati, T., Resnati, G. & Rosokha, S. V. (2008). In *Structure* and Bonding: Halogen Bonding. New York: Springer International Publishing.
- Arman, H. D., Gieseking, R. L., Hanks, T. W. & Pennington, W. T. (2010). Chem. Commun. 46, 1854–1856.
- Aslanidis, P., Cox, P. J., Karagiannidis, P., Hadjikakou, S. K. & Antoniadis, C. D. (2002). *Eur. J. Inorg. Chem.* **2002**, 2216–2222.
- Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.
- Banti, C. N., Kyros, L., Geromichalos, G. D., Kourkoumelis, N., Kubicki, M. & Hadjikakou, S. K. (2014). *Eur. J. Med. Chem.* 77, 388–399.
- Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). *Chem. Rev.* **116**, 2478–2601.
- Corradi, E., Meille, S. V., Messina, M. T., Metrangolo, P. & Resnati, G. (2000). Angew. Chem. Int. Ed. 39, 1782–1786.
- Cristiani, F., Devillanova, F. A., Isaia, F., Lippolis, V., Verani, G. & Demartin, F. (1995). *Polyhedron*, 14, 2937–2943.
- Daga, V., Hadjikakou, S. K., Hadjiliadis, N., Kubicki, M., Santos, J. & Butler, I. (2002). *Eur. J. Inorg. Chem.* 2002, 1718–1728.
- Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711–1713.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fletcher, S. R., McIver, E., Lewis, S., Burkamp, F., Leech, C., Mason, G., Boyce, S., Morrison, D., Richards, G., Sutton, K. & Jones, A. B. (2006). *Bioorg. Med. Chem. Lett.* 16, 2872–2876.
- Foks, H., Pancechowska-Ksepko, D., Kuzmierkiewicz, W., Zwolska, Z., Augustynowicz-Kopec, E. & Janowiec, M. (2006). *Chem. Heterocycl. Compd.* 42, 611–614.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hadjikakou, S. K. & Kubicki, M. (2000). Polyhedron, 19, 2231-2236.

- Happonen, L., Rautiainen, J. M. & Valkonen, A. (2021). Cryst. Growth Des. 21, 3409–3419.
- Koskinen, L., Hirva, P., Hasu, A., Jääskeläinen, S., Koivistoinen, J., Pettersson, M. & Haukka, M. (2015a). CrystEngComm, 17, 2718– 2727.
- Koskinen, L., Jääskeläinen, S., Hirva, P. & Haukka, M. (2015b). Cryst. Growth Des. 15, 1160–1167.
- Legon, A. C. (1998). Chem. Eur. J. 4, 1890-1897.
- Lin, S., Cui, Y. Z., Qiu, Q. M., Han, H. L., Li, Z. F., Liu, M., Xin, X. L. & Jin, Q. H. (2017). *Polyhedron*, **134**, 319–329.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- McFarlane, W., Akrivos, P. D., Aslanidis, P., Karagiannidis, P., Hatzisymeon, C., Numan, M. & Kokkou, S. (1998). *Inorg. Chim. Acta*, **281**, 121–125.
- Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.
- Metrangolo, P. & Resnati, G. (2012). Cryst. Growth Des. 12, 5835–5838.
- Mitra, R., Das, S., Shinde, S. V., Sinha, S., Somasundaram, K. & Samuelson, A. G. (2012). *Chem. Eur. J.* **18**, 12278–12291.
- Nakahodo, T., Horn, E. & Tiekink, E. R. T. (2000). Acta Cryst. C56, 1316–1318.
- Ozturk, I. I., Hadjikakou, S. K., Hadjiliadis, N., Kourkoumelis, N., Kubicki, M., Tasiopoulos, A. J., Scleiman, H., Barsan, M. M., Butler, I. S. & Balzarini, J. (2009). *Inorg. Chem.* 48, 2233–2245.
- Parisini, E., Metrangolo, P., Pilati, T., Resnati, G. & Terraneo, G. (2011). Chem. Soc. Rev. 40, 2267–2278.
- Peloquin, A. J., Alapati, S., McMillen, C. D., Hanks, T. W. & Pennington, W. T. (2021a). *Molecules*, 26, 4985–4994.
- Peloquin, A. J., Hill, S. C., Arman, H. D., McMillen, C. D., Rabinovich, D. & Pennington, W. T. (2022). J. Chem. Crystallogr. 52, 62–72.
- Peloquin, A. J., McCollum, J. M., McMillen, C. D. & Pennington, W. T. (2021b). Angew. Chem. Int. Ed. 60, 22983–22989.
- Peloquin, A. J., McMillen, C. D., Iacono, S. T. & Pennington, W. T. (2021c). Chem. Eur. J. 27, 8398–8405.
- Peloquin, A. J., Ragusa, A. C., McMillen, C. D. & Pennington, W. T. (2021d). Acta Cryst. C77, 599–609.
- Setter, C. J., Whittaker, J. J., Brock, A. J., Athukorala Arachchige, K. S., McMurtrie, J. C., Clegg, J. K. & Pfrunder, M. C. (2020). *CrystEngComm*, 22, 1687–1690.
- Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.
- Zafar, M., Ramalakshmi, Rongala, Rongala, R., Pradhan, A. N., Pathak, K., Roisnel, T., Halet, J. F. & Ghosh, S. (2019). *Dalton Trans.* **48**, 7413–7424.
- Zhou, P., Tian, F., Zou, J. & Shang, Z. (2010). *Mini Rev. Med. Chem.* **10**, 309–314.
- Zhou, W. X., Yin, B., Li, J., Sun, W. J. & Zhang, F. X. (2013a). *Inorg. Chim. Acta*, **408**, 209–213.
- Zhou, W. X., Yin, B., Li, J., Sun, W. J. & Zhang, F. X. (2013b). Inorg. Chim. Acta, 408, 209–213.

Acta Cryst. (2022). C78, 702-715 [https://doi.org/10.1107/S2053229622009548]

Halogen, chalcogen, and hydrogen bonding in organoiodine cocrystals of heterocyclic thiones: imidazolidine-2-thione, 2-mercaptobenzimidazole, 2mercapto-5-methylbenzimidazole, 2-mercaptobenzoxazole, and 2mercaptobenzothiazole

Spencer Watts, Andrew J. Peloquin, Madhushi Bandara, Colin D. McMillen and William T. Pennington

Computing details

For all structures, data collection: *APEX3* (Bruker, 2017); cell refinement: *SAINT* (Bruker, 2017); data reduction: *SAINT* (Bruker, 2017); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015*b*). Molecular graphics: *Mercury* (Macrae *et al.*, 2020) for 2IT_13F4DIB, 4MBZIM_313F4DIB, MBZIM_14F4DIB, MBZIM_TIE, MMBZIM_12F4DIB, 2MMBZIM_14F4DIB_2H2O, MMBZIM_135F3I3B, MBZOX_12F4DIB, MBZOX_13F4DIB, 2MBZOX_14F4DIB, MBZOX_135F3I3B, 3MBZTH_412F4DIB, MBZTH_13F4DIB, MBZTH_213F4DIB, 2MBZTH_14F4DIB, MBZTH_135F3I3B, MBZTH_12F4DIB, MBZTH_2009) for IT_135F3I3B. For all structures, software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

1,2,3,5-Tetrafluoro-4,6-diiodobenzene-imidazolidine-2-thione (1/2) (2IT_13F4DIB)

$C_6F_4I_2 \cdot 2C_3H_6N_2S$	$D_{\rm x} = 2.193 {\rm Mg m^{-3}}$
$M_r = 606.18$	Mo Ka radiation, $\lambda = 0.71073$ A
Orthorhombic, <i>Pbcn</i>	Cell parameters from 9343 reflections
a = 15.6704(7) A	$\theta = 2.6 - 30.1^{\circ}$
b = 8.9924 (4) Å	$\mu = 3.69 \text{ mm}^{-1}$
c = 26.0573 (10) Å	T = 100 K
$V = 3671.9 (3) Å^3$	Block, colourless
Z = 8	$0.18 \times 0.17 \times 0.13 \text{ mm}$
F(000) = 2288	
Data collection	
Bruker D8 Venture Photon 2	5376 independent reflections
diffractometer	5198 reflections with $I > 2\sigma(I)$
Radiation source: Incoatec $I\mu S$	$R_{\rm int} = 0.035$
φ and ω scans	$\theta_{\text{max}} = 30.1^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -22 \rightarrow 22$
(SADABS; Bruker, 2017)	$k = -12 \rightarrow 12$
$T_{\min} = 0.639, T_{\max} = 0.746$	$l = -36 \rightarrow 31$
112821 measured reflections	

Refinement

Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.015$	$w = 1/[\sigma^2(F_o^2) + (0.0054P)^2 + 3.3158P]$
$wR(F^2) = 0.032$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.25	$(\Delta/\sigma)_{\rm max} = 0.003$
5376 reflections	$\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ Å}^{-3}$
234 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$
0 restraints	Extinction correction: SHELXL2018
Hydrogen site location: mixed	(Sheldrick, 2015 <i>b</i>),
	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
	Extinction coefficient: 0.00082 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.71842 (2)	0.27502 (2)	0.20785 (2)	0.01326 (3)	
I2	0.98485 (2)	0.54110 (2)	0.35028 (2)	0.01761 (3)	
F1	0.89456 (6)	0.34626 (11)	0.26335 (4)	0.01975 (19)	
F2	0.81145 (7)	0.69420 (11)	0.38910 (4)	0.0230 (2)	
F3	0.64754 (6)	0.66108 (12)	0.36116 (4)	0.0232 (2)	
F4	0.60595 (6)	0.48196 (12)	0.28175 (4)	0.0215 (2)	
C7	0.74984 (10)	0.40891 (16)	0.27097 (5)	0.0139 (3)	
C8	0.83358 (10)	0.42536 (17)	0.28725 (6)	0.0145 (3)	
C9	0.85758 (10)	0.51990 (17)	0.32680 (6)	0.0157 (3)	
C10	0.79313 (10)	0.59875 (17)	0.35087 (6)	0.0165 (3)	
C11	0.70856 (10)	0.58350 (18)	0.33669 (6)	0.0172 (3)	
C12	0.68786 (10)	0.49038 (18)	0.29640 (6)	0.0155 (3)	
S1	0.68567 (2)	0.95036 (4)	0.61354 (2)	0.01476 (7)	
N1	0.69251 (9)	0.72075 (15)	0.54616 (5)	0.0166 (3)	
HN1	0.7189 (14)	0.672 (3)	0.5672 (9)	0.027 (6)*	
N2	0.64832 (10)	0.92951 (15)	0.51306 (5)	0.0182 (3)	
HN2	0.6289 (14)	1.015 (2)	0.5136 (8)	0.022 (5)*	
C1	0.67475 (9)	0.86294 (17)	0.55568 (6)	0.0134 (3)	
C2	0.68382 (11)	0.68448 (18)	0.49167 (6)	0.0186 (3)	
H2A	0.644157	0.600134	0.486460	0.022*	
H2B	0.739772	0.659716	0.476228	0.022*	
C3	0.64743 (11)	0.82909 (18)	0.46895 (6)	0.0199 (3)	
H3A	0.683895	0.867131	0.440842	0.024*	
H3B	0.588726	0.814231	0.455882	0.024*	
S2	0.42217 (3)	0.71986 (5)	0.49680 (2)	0.02184 (9)	
N3	0.47631 (10)	0.51791 (16)	0.42741 (5)	0.0199 (3)	
HN3	0.4952 (13)	0.467 (2)	0.4491 (9)	0.020 (5)*	
N4	0.40214 (9)	0.69778 (16)	0.39417 (5)	0.0173 (3)	

HN4	0.3816 (15)	0.783 (3)	0.3921 (9)	0.028 (6)*	
C4	0.43369 (10)	0.64323 (17)	0.43758 (6)	0.0150 (3)	
C5	0.46475 (10)	0.47080 (17)	0.37446 (6)	0.0166 (3)	
H5A	0.423029	0.388469	0.371861	0.020*	
H5B	0.519445	0.439328	0.358855	0.020*	
C6	0.43059 (11)	0.61337 (18)	0.34929 (6)	0.0180 (3)	
H6A	0.476022	0.666661	0.330344	0.022*	
H6B	0.382641	0.591836	0.325695	0.022*	

Atomic displacement parameters ((Ų)	
----------------------------------	-----	--

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
I1	0.01584 (5)	0.01297 (5)	0.01098 (4)	-0.00009 (3)	-0.00092 (3)	0.00036 (3)
I2	0.01801 (5)	0.01630 (5)	0.01853 (5)	-0.00213 (4)	-0.00276 (4)	-0.00185 (4)
F1	0.0169 (4)	0.0213 (5)	0.0210 (5)	0.0041 (4)	0.0008 (4)	-0.0073 (4)
F2	0.0276 (5)	0.0234 (5)	0.0182 (5)	-0.0016 (4)	0.0000 (4)	-0.0098 (4)
F3	0.0216 (5)	0.0265 (5)	0.0215 (5)	0.0042 (4)	0.0058 (4)	-0.0079 (4)
F4	0.0143 (4)	0.0284 (5)	0.0217 (5)	0.0006 (4)	0.0006 (4)	-0.0042 (4)
C7	0.0190 (7)	0.0121 (6)	0.0105 (6)	-0.0010 (5)	0.0006 (5)	0.0002 (5)
C8	0.0170 (7)	0.0124 (6)	0.0141 (6)	0.0019 (5)	0.0012 (5)	-0.0001 (5)
C9	0.0175 (7)	0.0140 (7)	0.0155 (7)	-0.0009 (5)	-0.0013 (5)	0.0000 (5)
C10	0.0222 (8)	0.0144 (7)	0.0128 (6)	-0.0015 (6)	0.0005 (6)	-0.0015 (5)
C11	0.0205 (7)	0.0159 (7)	0.0152 (7)	0.0022 (6)	0.0043 (6)	-0.0010 (6)
C12	0.0150 (7)	0.0167 (7)	0.0146 (6)	-0.0010 (6)	0.0007 (5)	0.0014 (5)
S 1	0.01883 (17)	0.01408 (16)	0.01138 (15)	0.00309 (13)	-0.00079 (13)	0.00015 (13)
N1	0.0220 (7)	0.0127 (6)	0.0150 (6)	0.0032 (5)	-0.0018 (5)	0.0014 (5)
N2	0.0277 (7)	0.0133 (6)	0.0136 (6)	0.0055 (5)	-0.0030 (5)	-0.0008 (5)
C1	0.0119 (6)	0.0140 (6)	0.0142 (6)	0.0004 (5)	0.0011 (5)	0.0008 (5)
C2	0.0259 (8)	0.0148 (7)	0.0152 (7)	0.0014 (6)	0.0001 (6)	-0.0028 (6)
C3	0.0276 (8)	0.0180 (7)	0.0141 (7)	0.0030 (6)	-0.0023 (6)	-0.0026 (6)
S2	0.0339 (2)	0.01651 (18)	0.01508 (17)	0.01055 (16)	-0.00313 (16)	-0.00093 (14)
N3	0.0280 (7)	0.0164 (6)	0.0151 (6)	0.0094 (6)	-0.0051 (5)	0.0000 (5)
N4	0.0212 (7)	0.0146 (6)	0.0161 (6)	0.0054 (5)	-0.0028 (5)	0.0010 (5)
C4	0.0143 (7)	0.0127 (6)	0.0179 (7)	0.0004 (5)	-0.0011 (5)	0.0015 (5)
C5	0.0197 (7)	0.0139 (7)	0.0161 (7)	0.0018 (6)	0.0003 (6)	-0.0003 (5)
C6	0.0221 (8)	0.0167 (7)	0.0153 (7)	0.0043 (6)	-0.0022 (6)	0.0002 (6)

Geometric parameters (Å, °)

I1—C7	2.0969 (14)	N2—C3	1.462 (2)
I2—C9	2.0947 (16)	C2—H2A	0.9900
F1—C8	1.3442 (17)	C2—H2B	0.9900
F2—C10	1.3459 (17)	C2—C3	1.538 (2)
F3—C11	1.3445 (18)	С3—НЗА	0.9900
F4—C12	1.3412 (18)	C3—H3B	0.9900
С7—С8	1.387 (2)	S2—C4	1.6995 (16)
C7—C12	1.385 (2)	N3—HN3	0.79 (2)
С8—С9	1.388 (2)	N3—C4	1.337 (2)

C9—C10	1.384 (2)	N3—C5	1.455 (2)
C10—C11	1.383 (2)	N4—HN4	0.83 (2)
C11—C12	1.382 (2)	N4—C4	1.328 (2)
\$1-C1	1.7088(15)	N4—C6	1464(2)
N1—HN1	0.81 (2)	C5—H5A	0.9900
N1—C1	1 332 (2)	C5—H5B	0.9900
N1—C2	1.352(2) 1 463(2)	C5-C6	1.536(2)
N2 HN2	0.83(2)	C6 H6A	0.9900
$N_2 = C_1$	1.3280(10)	C6 H6B	0.9900
N2-C1	1.5280 (19)	Со—пов	0.9900
C8—C7—I1	121.56 (11)	H2A—C2—H2B	109.1
C12—C7—I1	120.94 (11)	C3—C2—H2A	111.2
C12-C7-C8	117 43 (14)	C3—C2—H2B	111.2
$F_1 - C_8 - C_7$	118 31 (13)	$N^2 - C^2 - C^2$	102.49(12)
F1 - C8 - C9	118.39 (14)	N2 - C3 - H3A	111.3
$C_{7}^{-}C_{8}^{-}C_{9}^{9}$	123.29(14)	N2_C3_H3B	111.5
$C_{1}^{2} = C_{2}^{2} = C_{2}^{2}$	123.25(14) 122.05(11)	$C_2 C_3 H_3 \Lambda$	111.3
$C_{0} = C_{0} = 12$	122.03(11) 121.04(11)	$C_2 = C_3 = H_2 R$	111.5
C10 - C9 - I2	121.04(11) 116.00(14)	$C_2 = C_3 = H_3 D$	111.5
10 - 19 - 18	110.90 (14)	H3A - C3 - H3B	109.2
F2-C10-C9	120.43 (14)	C4 - N3 - HN3	122.5 (16)
F2—C10—C11	117.74 (14)	C4 - N3 - C5	111.80 (13)
C11—C10—C9	121.83 (14)	C5—N3—HN3	124.0 (16)
F3—C11—C10	120.23 (14)	C4—N4—HN4	122.7 (16)
F3—C11—C12	120.52 (15)	C4—N4—C6	112.06 (13)
C12—C11—C10	119.23 (14)	C6—N4—HN4	122.8 (16)
F4—C12—C7	120.34 (14)	N3—C4—S2	125.10 (12)
F4—C12—C11	118.37 (14)	N4—C4—S2	125.73 (12)
C11—C12—C7	121.29 (15)	N4—C4—N3	109.17 (14)
C1—N1—HN1	119.7 (16)	N3—C5—H5A	111.4
C1—N1—C2	112.04 (13)	N3—C5—H5B	111.4
C2—N1—HN1	125.6 (16)	N3—C5—C6	101.85 (12)
C1—N2—HN2	121.3 (15)	H5A—C5—H5B	109.3
C1—N2—C3	112.46 (13)	C6—C5—H5A	111.4
C3—N2—HN2	125.8 (15)	C6—C5—H5B	111.4
N1-C1-S1	125.81 (12)	N4—C6—C5	101.41 (12)
N2-C1-S1	120.01(12) 124.18(12)	N4—C6—H6A	111.5
N2-C1-N1	120.10(12) 11001(14)	N4—C6—H6B	111.5
N1 - C2 - H2A	111.2	C5-C6-H6A	111.5
N1 C2 H2R	111.2	$C_5 C_6 H_{6R}$	111.5
N1 = C2 = C2	102.68 (12)		100.2
NI	102.08 (12)	под—со—пов	109.5
I1—C7—C8—F1	-3.75 (19)	C9—C10—C11—C12	-1.9 (2)
I1—C7—C8—C9	175.92 (12)	C10—C11—C12—F4	-177.15 (14)
I1—C7—C12—F4	1.7 (2)	C10—C11—C12—C7	1.9 (2)
I1-C7-C12-C11	-17734(12)	C12-C7-C8-F1	179 43 (13)
12-C9-C10-F2	19(2)	C12 - C7 - C8 - C9	-0.9(2)
I2-C9-C10-C11	-17845(12)	N1 - C2 - C3 - N2	494(17)
$F_1 = C_8 = C_9 = I_2^2$	-0.4(2)	C1 - N1 - C2 - C3	-5 82 (18)
11 00 07 14	V. I (4)	01 111 02 03	2.02 (10)

F1—C8—C9—C10	-179.48 (14)	C1-N2-C3-C2	-2.96 (19)
F2-C10-C11-F3 F2-C10-C11-C12	-0.8 (2) 177.76 (14)	C2 - N1 - C1 - S1 $C2 - N1 - C1 - N2$	-1/4.62 (12) 4.27 (19)
F3—C11—C12—F4	1.4 (2)	C3—N2—C1—S1	178.31 (12)
F3-C11-C12-C7 C7-C8-C9-I2	-179.58(14) 179.89(11)	C3—N2—C1—N1 N3—C5—C6—N4	-0.6(2) -1818(16)
C7—C8—C9—C10	0.9 (2)	C4—N3—C5—C6	16.94 (18)
C8—C7—C12—F4	178.51 (14)	C4—N4—C6—C5	15.47 (18)
C8—C7—C12—C11 C8—C9—C10—F2	-0.5(2) -179.09(14)	C5-N3-C4-S2 C5-N3-C4-N4	172.13(12) -7.96(19)
C8-C9-C10-C11	0.6 (2)	C6—N4—C4—S2	174.32 (12)
C9—C10—C11—F3	179.53 (14)	C6—N4—C4—N3	-5.59 (19)

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—HN1····S1 ⁱ	0.81 (2)	2.77 (2)	3.5551 (14)	163 (2)
N2—HN2····S2 ⁱⁱ	0.83 (2)	2.53 (2)	3.3507 (14)	172 (2)
C2—H2 <i>B</i> …F2	0.99	2.55	3.3392 (19)	136
C3—H3 <i>B</i> ···S2	0.99	2.94	3.7351 (19)	138
N3—H <i>N</i> 3····S2 ⁱⁱⁱ	0.79 (2)	2.54 (2)	3.3171 (15)	167 (2)
N4—HN4…I2 ^{iv}	0.83 (2)	3.31 (2)	3.7383 (14)	114.9 (18)
N4—HN4····S1 ⁱⁱ	0.83 (2)	2.63 (2)	3.4562 (14)	179 (2)
C5—H5 <i>A</i> …I1 ^v	0.99	3.20	3.9922 (16)	138
C5—H5 <i>B</i> …F4	0.99	2.45	3.2774 (19)	140
C6—H6 <i>B</i> …I1 ^{vi}	0.99	3.18	3.9223 (16)	133

Symmetry codes: (i) -*x*+3/2, *y*-1/2, *z*; (ii) -*x*+1, -*y*+2, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*+3/2, *y*+1/2, *z*; (v) -*x*+1, *y*, -*z*+1/2; (vi) *x*-1/2, *y*+1/2, -*z*+1/2.

Imidazolidine-2-thione-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1) (IT_135F3I3B)

$C_{6}F_{3}I_{3} \cdot C_{3}H_{6}N_{2}S$ $M_{r} = 611.92$ Orthorhombic, <i>Pbca</i> $a = 18.0407 (14) \text{ Å}$ $b = 7.2816 (6) \text{ Å}$ $c = 22.1250 (19) \text{ Å}$ $V = 2906.5 (4) \text{ Å}^{3}$ $Z = 8$ $F(000) = 2208$	$D_x = 2.797 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9914 reflections $\theta = 2.9-28.3^{\circ}$ $\mu = 6.61 \text{ mm}^{-1}$ T = 100 K Tabular, colourless $0.22 \times 0.08 \times 0.04 \text{ mm}$
Data collection Bruker D8 Venture Photon 2 diffractometer Radiation source: Incoatec LuS	3615 independent reflections 3220 reflections with $I > 2\sigma(I)$ $R_{\perp} = 0.043$
φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2017) $T_{\min} = 0.563, T_{\max} = 0.746$ 49179 measured reflections	$\begin{aligned} \theta_{\text{max}} &= 28.3^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ} \\ h &= -24 \rightarrow 24 \\ k &= -9 \rightarrow 9 \\ l &= -28 \rightarrow 29 \end{aligned}$

Refinement

Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.019$	$w = 1/[\sigma^2(F_o^2) + (0.0114P)^2 + 5.9439P]$
$wR(F^2) = 0.040$	where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.11	$(\Delta/\sigma)_{\rm max} = 0.002$
3615 reflections	$\Delta ho_{ m max} = 0.57$ e Å ⁻³
172 parameters	$\Delta ho_{ m min} = -0.77 \ { m e} \ { m \AA}^{-3}$
2 restraints	Extinction correction: SHELXL2018
Hydrogen site location: mixed	(Sheldrick, 2015 <i>b</i>),
	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
	Extinction coefficient: 0.000108 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.53750 (2)	0.23369 (3)	0.54191 (2)	0.01895 (5)	
I2	0.82382 (2)	0.16514 (2)	0.68496 (2)	0.01507 (5)	
I3	0.83267 (2)	0.32805 (2)	0.41594 (2)	0.01451 (5)	
F1	0.65074 (9)	0.1654 (2)	0.64879 (8)	0.0189 (4)	
F2	0.88045 (8)	0.2474 (2)	0.55242 (8)	0.0197 (4)	
F3	0.65981 (9)	0.3180 (2)	0.44277 (8)	0.0179 (3)	
C4	0.65271 (14)	0.2418 (4)	0.54544 (13)	0.0139 (5)	
C5	0.69034 (15)	0.2057 (4)	0.59879 (13)	0.0146 (5)	
C6	0.76726 (14)	0.2079 (4)	0.60287 (13)	0.0135 (5)	
C7	0.80537 (14)	0.2449 (4)	0.54993 (13)	0.0140 (5)	
C8	0.77196 (14)	0.2814 (4)	0.49545 (13)	0.0133 (5)	
C9	0.69470 (14)	0.2803 (4)	0.49494 (13)	0.0137 (5)	
S1	0.57097 (4)	0.61400 (10)	0.79736 (3)	0.01671 (14)	
N1	0.52694 (14)	0.2877 (4)	0.84174 (13)	0.0228 (6)	
HN1	0.4953 (19)	0.345 (6)	0.8617 (18)	0.057 (14)*	
N2	0.62179 (16)	0.2684 (4)	0.78288 (13)	0.0257 (6)	
HN2	0.6527 (16)	0.308 (5)	0.7585 (14)	0.029 (10)*	
C1	0.57324 (15)	0.3832 (4)	0.80740 (12)	0.0161 (6)	
C2	0.54227 (16)	0.0908 (4)	0.84203 (14)	0.0222 (6)	
H2A	0.498578	0.019283	0.828618	0.027*	
H2B	0.557562	0.048198	0.882651	0.027*	
C3	0.60613 (19)	0.0758 (4)	0.79654 (16)	0.0277 (7)	
H3A	0.649751	0.014419	0.814660	0.033*	
H3B	0.590783	0.007958	0.759844	0.033*	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01058 (8)	0.02130 (10)	0.02496 (11)	0.00013 (7)	0.00038 (7)	-0.00336 (8)
I2	0.01700 (9)	0.01397 (9)	0.01424 (10)	-0.00039 (6)	-0.00190 (7)	0.00115 (7)
I3	0.01480 (8)	0.01468 (9)	0.01405 (9)	0.00001 (6)	0.00204 (7)	0.00044 (7)
F1	0.0176 (8)	0.0235 (9)	0.0157 (9)	-0.0029 (7)	0.0045 (7)	0.0016 (7)
F2	0.0101 (7)	0.0284 (10)	0.0205 (9)	-0.0005 (6)	-0.0003 (6)	0.0023 (8)
F3	0.0170 (7)	0.0204 (9)	0.0163 (9)	0.0018 (7)	-0.0034 (6)	0.0024 (7)
C4	0.0098 (11)	0.0127 (13)	0.0193 (14)	-0.0006 (10)	-0.0004 (10)	-0.0018 (11)
C5	0.0172 (12)	0.0111 (13)	0.0155 (14)	-0.0027 (10)	0.0038 (11)	-0.0007 (11)
C6	0.0161 (12)	0.0118 (13)	0.0124 (13)	0.0014 (10)	-0.0043 (10)	-0.0012 (10)
C7	0.0118 (11)	0.0110 (13)	0.0191 (15)	0.0014 (10)	-0.0010 (10)	0.0000 (11)
C8	0.0141 (12)	0.0111 (13)	0.0148 (14)	0.0003 (10)	0.0033 (10)	-0.0016 (11)
C9	0.0137 (12)	0.0120 (13)	0.0153 (14)	0.0024 (10)	-0.0036 (10)	-0.0001 (11)
S1	0.0211 (3)	0.0144 (3)	0.0146 (3)	0.0003 (3)	0.0002 (3)	0.0002 (3)
N1	0.0236 (13)	0.0181 (13)	0.0267 (15)	-0.0027 (10)	0.0051 (11)	0.0020(11)
N2	0.0321 (14)	0.0158 (13)	0.0292 (16)	0.0020 (11)	0.0127 (12)	0.0046 (12)
C1	0.0168 (13)	0.0223 (15)	0.0092 (14)	-0.0006 (11)	-0.0037 (10)	-0.0001 (11)
C2	0.0244 (14)	0.0209 (15)	0.0213 (16)	-0.0062 (12)	-0.0049 (12)	0.0046 (13)
C3	0.0397 (18)	0.0155 (15)	0.0278 (18)	0.0006 (14)	0.0044 (15)	0.0037 (13)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

I1—C4	2.081 (2)	S1—C1	1.696 (3)	
I2—C6	2.106 (3)	N1—HN1	0.831 (19)	
I3—C8	2.100 (3)	N1—C1	1.326 (4)	
F1—C5	1.349 (3)	N1—C2	1.460 (4)	
F2—C7	1.356 (3)	N2—HN2	0.827 (18)	
F3—C9	1.343 (3)	N2—C1	1.327 (4)	
C4—C5	1.387 (4)	N2—C3	1.462 (4)	
С4—С9	1.379 (4)	C2—H2A	0.9900	
С5—С6	1.391 (4)	C2—H2B	0.9900	
С6—С7	1.385 (4)	C2—C3	1.534 (4)	
С7—С8	1.374 (4)	С3—НЗА	0.9900	
С8—С9	1.394 (4)	С3—Н3В	0.9900	
C5—C4—I1	121.0 (2)	C2—N1—HN1	128 (3)	
C9—C4—I1	121.6 (2)	C1—N2—HN2	119 (3)	
C9—C4—C5	117.4 (2)	C1—N2—C3	113.1 (3)	
F1—C5—C4	118.7 (2)	C3—N2—HN2	127 (3)	
F1—C5—C6	118.5 (3)	N1—C1—S1	125.4 (2)	
C4—C5—C6	122.8 (3)	N1—C1—N2	108.7 (3)	
C5—C6—I2	122.5 (2)	N2—C1—S1	125.9 (2)	
C7—C6—I2	121.18 (19)	N1—C2—H2A	111.4	
C7—C6—C5	116.3 (2)	N1—C2—H2B	111.4	
F2—C7—C6	117.7 (2)	N1—C2—C3	102.1 (2)	
F2—C7—C8	118.1 (2)	H2A—C2—H2B	109.2	

C8—C7—C6 C7—C8—I3 C7—C8—C9 C9—C8—I3 F3—C9—C4 F3—C9—C8 C4—C9—C8 C1—N1—HN1 C1—N1—C2	124.2 (2) 122.51 (19) 116.4 (3) 121.0 (2) 118.7 (2) 118.3 (2) 122.9 (3) 118 (3) 113.5 (3)	C3—C2—H2A C3—C2—H2B N2—C3—C2 N2—C3—H3A N2—C3—H3B C2—C3—H3B C2—C3—H3B H3A—C3—H3B	111.4 111.4 102.3 (3) 111.3 111.3 111.3 111.3 111.3 109.2
I1-C4-C5-F1 $I1-C4-C9-F3$ $I1-C4-C9-F3$ $I2-C6-C7-F2$ $I2-C6-C7-C8$ $I3-C8-C9-F3$ $I3-C8-C9-C4$ $F1-C5-C6-I2$ $F1-C5-C6-I2$ $F2-C7-C8-I3$ $F2-C7-C8-I3$ $F2-C7-C8-C9$ $C4-C5-C6-I2$ $C4-C5-C6-I2$ $C4-C5-C6-I2$ $C5-C4-C9-F3$ $C5-C4-C9-C8$	$\begin{array}{c} -0.2 (3) \\ 179.3 (2) \\ 1.7 (4) \\ -178.1 (2) \\ 1.9 (3) \\ -177.3 (2) \\ -2.9 (3) \\ 176.8 (2) \\ -3.4 (4) \\ 178.2 (2) \\ 2.9 (4) \\ -179.1 (2) \\ 177.1 (2) \\ -1.2 (4) \\ -179.2 (2) \\ 1.0 (4) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -179.8 \ (2) \\ 1.1 \ (4) \\ -177.9 \ (2) \\ 0.1 \ (4) \\ 179.0 \ (2) \\ -1.2 \ (4) \\ -179.2 \ (2) \\ 0.2 \ (4) \\ 5.8 \ (3) \\ -3.7 \ (3) \\ -6.8 \ (4) \\ -179.8 \ (2) \\ -0.4 \ (4) \\ -175.8 \ (2) \\ 4.8 \ (4) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H····A	D····A	<i>D</i> —H··· <i>A</i>
N2—HN2····I2 ⁱ	0.83 (2)	3.10 (3)	3.742 (3)	137 (3)
C2—H2 <i>B</i> ····I1 ⁱⁱ	0.99	3.31	3.927 (3)	122
C2—H2B···F3 ⁱⁱⁱ	0.99	2.47	3.147 (3)	125

Symmetry codes: (i) -*x*+3/2, *y*+1/2, *z*; (ii) -*x*+1, *y*-1/2, -*z*+3/2; (iii) *x*, -*y*+1/2, *z*+1/2.

1H-1,3-Benzodiazole-2-thiol-1,2,3,5-tetrafluoro-4,6-diiodobenzene (4/3) (4MBZIM_313F4DIB)

Crystal data	
$3C_6F_4I_2 \cdot 4C_7H_6N_2S$	Z = 2
$M_r = 1806.37$	F(000) = 1692
Triclinic, $P\overline{1}$	$D_{\rm x} = 2.238 {\rm ~Mg} {\rm ~m}^{-3}$
a = 8.4573 (14) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
b = 17.725 (3) Å	Cell parameters from 9879 reflections
c = 18.759 (4) Å	$\theta = 2.4 - 27.5^{\circ}$
$\alpha = 106.997 \ (7)^{\circ}$	$\mu = 3.72 \text{ mm}^{-1}$
$\beta = 93.229 (7)^{\circ}$	T = 100 K
$\gamma = 92.034 \ (7)^{\circ}$	Needle, colourless
V = 2680.9 (9) Å ³	$0.34 \times 0.04 \times 0.04 \text{ mm}$

Data collection

Bruker D8 Venture Photon 2 diffractometer Radiation source: Incoatec I μ S φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2017) $T_{min} = 0.668, T_{max} = 0.746$ 118524 measured reflections	12297 independent reflections 10558 reflections with $I > 2\sigma(I)$ $R_{int} = 0.056$ $\theta_{max} = 27.6^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -10 \rightarrow 10$ $k = -23 \rightarrow 23$ $l = -24 \rightarrow 24$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.041$ S = 1.06 12297 reflections 717 parameters 8 restraints Primary atom site location: dual	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0068P)^2 + 2.3276P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.52$ e Å ⁻³ $\Delta\rho_{min} = -0.75$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

x	у	Ζ	$U_{ m iso}*/U_{ m eq}$
0.23723 (2)	0.28696 (2)	0.64287 (2)	0.01892 (4)
0.11203 (2)	0.62311 (2)	0.81696 (2)	0.02185 (4)
0.12514 (17)	0.43584 (9)	0.76730 (8)	0.0228 (3)
0.28968 (19)	0.64658 (9)	0.67800 (9)	0.0259 (3)
0.41295 (19)	0.54429 (9)	0.56177 (9)	0.0271 (4)
0.38986 (17)	0.38762 (9)	0.54469 (8)	0.0234 (3)
0.2585 (3)	0.40830 (15)	0.65651 (14)	0.0161 (5)
0.1965 (3)	0.46280 (16)	0.71636 (14)	0.0182 (5)
0.2045 (3)	0.54314 (15)	0.72577 (14)	0.0166 (5)
0.2787 (3)	0.56938 (15)	0.67263 (14)	0.0186 (5)
0.3417 (3)	0.51713 (16)	0.61237 (14)	0.0193 (5)
0.3307 (3)	0.43733 (16)	0.60458 (14)	0.0183 (5)
0.39366 (2)	0.29864 (2)	0.15711 (2)	0.02594 (4)
0.19057 (2)	0.58106 (2)	0.39910 (2)	0.02628 (4)
0.31982 (19)	0.47479 (9)	0.24734 (9)	0.0278 (4)
0.11956 (18)	0.43808 (10)	0.46524 (9)	0.0290 (4)
0.17740 (18)	0.28360 (10)	0.41706 (9)	0.0295 (4)
0.30202 (17)	0.22313 (9)	0.28451 (9)	0.0256 (3)
0.2209 (3)	0.46038 (15)	0.35750 (15)	0.0190 (5)
0.2842 (3)	0.42746 (16)	0.28917 (14)	0.0191 (5)
0.3114 (3)	0.34781 (15)	0.26241 (14)	0.0178 (5)
	x 0.23723 (2) 0.11203 (2) 0.12514 (17) 0.28968 (19) 0.41295 (19) 0.38986 (17) 0.2585 (3) 0.1965 (3) 0.2045 (3) 0.2045 (3) 0.2787 (3) 0.3417 (3) 0.3307 (3) 0.39366 (2) 0.19057 (2) 0.31982 (19) 0.11956 (18) 0.17740 (18) 0.30202 (17) 0.2209 (3) 0.2842 (3) 0.3114 (3)	x y 0.23723 (2) 0.28696 (2) 0.11203 (2) 0.62311 (2) 0.12514 (17) 0.43584 (9) 0.28968 (19) 0.64658 (9) 0.41295 (19) 0.54429 (9) 0.38986 (17) 0.38762 (9) 0.2585 (3) 0.40830 (15) 0.1965 (3) 0.46280 (16) 0.2045 (3) 0.54314 (15) 0.2787 (3) 0.56938 (15) 0.3417 (3) 0.51713 (16) 0.39366 (2) 0.29864 (2) 0.19057 (2) 0.58106 (2) 0.31982 (19) 0.47479 (9) 0.11956 (18) 0.43808 (10) 0.17740 (18) 0.22313 (9) 0.2209 (3) 0.46038 (15) 0.2842 (3) 0.47746 (16) 0.3114 (3) 0.34781 (15)	xyz $0.23723(2)$ $0.28696(2)$ $0.64287(2)$ $0.11203(2)$ $0.62311(2)$ $0.81696(2)$ $0.12514(17)$ $0.43584(9)$ $0.76730(8)$ $0.28968(19)$ $0.64658(9)$ $0.67800(9)$ $0.41295(19)$ $0.54429(9)$ $0.56177(9)$ $0.38986(17)$ $0.38762(9)$ $0.54469(8)$ $0.2585(3)$ $0.40830(15)$ $0.65651(14)$ $0.1965(3)$ $0.46280(16)$ $0.71636(14)$ $0.2045(3)$ $0.54314(15)$ $0.72577(14)$ $0.2787(3)$ $0.56938(15)$ $0.67263(14)$ $0.3307(3)$ $0.43733(16)$ $0.60458(14)$ $0.39366(2)$ $0.29864(2)$ $0.15711(2)$ $0.19057(2)$ $0.58106(2)$ $0.39910(2)$ $0.31982(19)$ $0.47479(9)$ $0.24734(9)$ $0.117740(18)$ $0.28360(10)$ $0.41706(9)$ $0.30202(17)$ $0.22313(9)$ $0.28451(9)$ $0.2209(3)$ $0.46038(15)$ $0.35750(15)$ $0.2842(3)$ $0.42746(16)$ $0.28917(14)$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C38	0.2759 (3)	0.30052 (15)	0.30711 (15)	0.0192 (5)
C39	0.2115 (3)	0.33102 (16)	0.37517 (15)	0.0210 (6)
C40	0.1836 (3)	0.40999 (16)	0.39927 (14)	0.0200 (5)
I5	0.82526 (2)	0.39902 (2)	-0.11345 (2)	0.02532 (4)
I6	0.75419 (2)	0.73973 (2)	0.07191 (2)	0.01718 (4)
F37	0.85766 (18)	0.58847 (9)	-0.05559(8)	0.0244 (3)
F38	0.59562 (17)	0.64129 (9)	0.16783 (8)	0.0218(3)
F39	0.54190(18)	0.48581 (9)	0.14581 (9)	0.0262(4)
F40	0.63996 (18)	0.38040(9)	0.02360(9)	0.0202(1) 0.0255(3)
C41	0.7536 (3)	0.48240(15)	-0.01841(14)	0.0255(5)
C41	0.7550(3) 0.7782(3)	0.56261 (15)	-0.00623(14)	0.0109(5)
C42	0.7762(3) 0.7249(3)	0.50201(15) 0.61822(14)	0.00023(14) 0.05532(14)	0.0104(5) 0.0149(5)
C43	0.7249(3)	0.50054(15)	0.05552(14) 0.10618(14)	0.0149(5)
C44	0.0408(3)	0.59034(15)	0.10013(14) 0.00575(14)	0.0108(5)
C45	0.0198(3)	0.31003(15) 0.45764(15)	0.09373(14) 0.03328(15)	0.0180(5)
C40 S1	0.0721(3) 1 26080(7)	0.43704(13) 0.02071(4)	0.03326(13) 0.13364(4)	0.0162(3)
51 N1	1.20980(7)	0.02971(4)	0.13304(4) 0.10002(11)	0.01038(13)
IN I	1.3937 (2)	-0.08514(15)	0.19002 (11)	0.0155 (4)
HNI	1.487 (2)	-0.0/4/(18)	0.1/88(17)	0.031 (9)*
N2	1.1363 (2)	-0.08180 (12)	0.18912 (11)	0.0153 (4)
HN2	1.041 (2)	-0.0708(15)	0.1806 (14)	0.015 (7)*
CI	1.2668 (3)	-0.04645 (15)	0.17100 (13)	0.0158 (5)
C2	1.3451 (3)	-0.14290 (15)	0.21949 (13)	0.0154 (5)
C3	1.4285 (3)	-0.19430 (15)	0.24861 (14)	0.0188 (5)
H3	1.540814	-0.194912	0.248974	0.023*
C4	1.3406 (3)	-0.24474 (16)	0.27716 (14)	0.0208 (6)
H4	1.393923	-0.280671	0.297743	0.025*
C5	1.1748 (3)	-0.24408 (16)	0.27645 (14)	0.0197 (5)
H5	1.118578	-0.279849	0.296263	0.024*
C6	1.0905 (3)	-0.19247 (15)	0.24751 (14)	0.0182 (5)
H6	0.978144	-0.191915	0.247143	0.022*
C7	1.1792 (3)	-0.14174 (15)	0.21913 (13)	0.0159 (5)
S2	0.76230 (7)	-0.07080(4)	0.13517 (3)	0.01460 (12)
N3	0.8902 (2)	0.04164 (12)	0.07893 (12)	0.0142 (4)
HN3	0.985 (2)	0.0339 (17)	0.0913 (16)	0.026 (8)*
N4	0.6315 (2)	0.03610 (12)	0.07390 (11)	0.0134 (4)
HN4	0.539 (2)	0.0257 (15)	0.0851 (15)	0.016 (7)*
C8	0.7619 (3)	0.00336 (14)	0.09496 (13)	0.0135 (5)
C9	0.8425 (3)	0.10176 (14)	0.04983 (13)	0.0149 (5)
C10	0.9275 (3)	0.15703 (15)	0.02577 (14)	0.0186 (5)
H10	1.040174	0.160378	0.028830	0.022*
C11	0.8386 (3)	0.20721 (15)	-0.00307(15)	0.0199(5)
H11	0.892259	0.246317	-0.019649	0.024*
C12	0.6733(3)	0.20197(15)	-0.00842(14)	0.0185(5)
H12	0.617475	0.236637	-0.029681	0.022*
C13	0 5882 (3)	0.14726 (15)	0.01657 (13)	0.022
H13	0.475508	0 143780	0.013282	0.0108
C14	0.6767 (3)	0.09798 (14)	0.04661(13)	0.017
53	0.0707(3)	1.00011(A)	0.50658 (1)	0.0157(5) 0.01674(12)
55	0.21077(7)	1.02011 (4)	0.59050(4)	0.01074(13)

N5	0.3335 (2)	0.98621 (12)	0.66496 (12)	0.0153 (4)	
HN5	0.427 (2)	0.9957 (18)	0.6541 (17)	0.035 (9)*	
N6	0.0755 (2)	0.98679 (12)	0.66091 (12)	0.0149 (4)	
HN6	-0.020 (2)	0.9958 (16)	0.6501 (15)	0.021 (8)*	
C15	0.2063 (3)	1.02032 (14)	0.64225 (13)	0.0147 (5)	
C16	0.2825 (3)	0.92908 (14)	0.69697 (13)	0.0149 (5)	
C17	0.3645 (3)	0.87884 (15)	0.72898 (14)	0.0196 (5)	
H17	0.477019	0.878891	0.731657	0.024*	
C18	0.2730 (3)	0.82880 (15)	0.75670 (14)	0.0211 (6)	
H18	0.324318	0.793463	0.778775	0.025*	
C19	0.1078 (3)	0.82884 (15)	0.75312 (14)	0.0213 (6)	
H19	0.049812	0.793080	0.772293	0.026*	
C20	0.0256 (3)	0.87954 (15)	0.72240 (14)	0.0186 (5)	
H20	-0.086842	0.880244	0.720810	0.022*	
C21	0.1171 (3)	0.92909 (14)	0.69418 (13)	0.0141 (5)	
S4	-0.29930 (7)	0.99445 (4)	0.61172 (3)	0.01608 (12)	
N7	-0.1672 (2)	1.09905 (13)	0.54729 (12)	0.0157 (4)	
HN7	-0.073 (2)	1.0901 (18)	0.5580 (17)	0.033 (9)*	
N8	-0.4249 (2)	1.09692 (13)	0.54319 (12)	0.0156 (4)	
HN8	-0.519 (2)	1.0848 (17)	0.5511 (17)	0.029 (8)*	
C22	-0.2972 (3)	1.06481 (14)	0.56708 (13)	0.0146 (5)	
C23	-0.2121 (3)	1.15416 (14)	0.51139 (13)	0.0145 (5)	
C24	-0.1251 (3)	1.20294 (15)	0.48049 (14)	0.0186 (5)	
H24	-0.012656	1.203249	0.481615	0.022*	
C25	-0.2099 (3)	1.25129 (15)	0.44782 (14)	0.0189 (5)	
H25	-0.154262	1.285731	0.426292	0.023*	
C26	-0.3758 (3)	1.25043 (15)	0.44591 (14)	0.0189 (5)	
H26	-0.429872	1.284470	0.423194	0.023*	
C27	-0.4633 (3)	1.20121 (15)	0.47629 (14)	0.0185 (5)	
H27	-0.575825	1.200557	0.474834	0.022*	
C28	-0.3778 (3)	1.15290 (14)	0.50896 (13)	0.0147 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01909 (8)	0.01702 (9)	0.02029 (9)	0.00047 (6)	-0.00052 (6)	0.00538 (7)
I2	0.02488 (9)	0.02320 (9)	0.01763 (9)	0.00734 (7)	0.00435 (7)	0.00505 (7)
F29	0.0267 (8)	0.0243 (9)	0.0207 (8)	0.0015 (6)	0.0077 (6)	0.0105 (7)
F30	0.0389 (9)	0.0165 (8)	0.0242 (9)	0.0008 (7)	0.0055 (7)	0.0085 (7)
F31	0.0365 (9)	0.0267 (9)	0.0217 (8)	-0.0001 (7)	0.0121 (7)	0.0112 (7)
F32	0.0259 (8)	0.0241 (9)	0.0192 (8)	0.0051 (6)	0.0067 (6)	0.0034 (7)
C29	0.0157 (12)	0.0150 (13)	0.0176 (13)	0.0003 (9)	-0.0012 (9)	0.0052 (11)
C30	0.0148 (12)	0.0233 (14)	0.0179 (13)	0.0010 (10)	0.0011 (10)	0.0080 (11)
C31	0.0165 (12)	0.0192 (14)	0.0134 (12)	0.0051 (10)	0.0015 (9)	0.0035 (10)
C32	0.0210 (13)	0.0174 (14)	0.0185 (13)	0.0012 (10)	-0.0005 (10)	0.0074 (11)
C33	0.0193 (13)	0.0244 (15)	0.0167 (13)	0.0000 (10)	0.0034 (10)	0.0098 (11)
C34	0.0151 (12)	0.0228 (14)	0.0154 (13)	0.0019 (10)	0.0009 (9)	0.0030 (11)
I3	0.03176 (10)	0.02680 (10)	0.01832 (9)	0.00506 (7)	0.00720 (7)	0.00377 (8)

14	0.02547(0)	0.01005 (0)	0.02067 (10)	0.00413(7)	-0.00068(7)	0.00011(8)
14 E22	0.02347(9)	0.01903(9)	0.02907(10)	0.00413(7)	0.00008(7)	0.00011(8)
F33 E24	0.0380(9)	0.0238(9)	0.0232(9)	0.0027(7)	0.0080(7)	0.0127(7)
Г 34 Г 25	0.0306 (9)	0.0307(10)	0.0185(8)	0.0033(7)	0.0094(7)	0.0040(7)
F33	0.0325(9)	0.0313(10)	0.0308(9)	-0.0031(7)	0.0084(7)	0.0182(8)
F 30	0.0261(8)	0.0155(8)	0.0351(10)	0.0008(6)	0.0060(7)	0.0067(7)
C35	0.0159 (12)	0.01/4 (14)	0.0218 (14)	0.0018(10)	-0.0004 (10)	0.0029 (11)
C36	0.01/8 (12)	0.0221 (14)	0.0190 (13)	-0.0006 (10)	-0.0005 (10)	0.0090 (11)
C37	0.0169 (12)	0.0206 (14)	0.0149 (13)	0.0025 (10)	0.0004 (9)	0.0035 (11)
C38	0.0142 (12)	0.0180 (14)	0.0243 (14)	0.0006 (10)	-0.0012 (10)	0.0048 (11)
C39	0.0181 (13)	0.0272 (15)	0.0201 (14)	-0.0035 (10)	0.0008 (10)	0.0116 (12)
C40	0.0159 (12)	0.0275 (15)	0.0151 (13)	0.0007 (10)	0.0017 (10)	0.0039 (11)
15	0.02794 (9)	0.02317 (10)	0.01987 (9)	0.00810 (7)	0.00031 (7)	-0.00193 (7)
I6	0.01777 (8)	0.01347 (8)	0.02020 (9)	-0.00095 (6)	-0.00012 (6)	0.00532 (7)
F37	0.0293 (8)	0.0248 (9)	0.0215 (8)	0.0003 (7)	0.0103 (6)	0.0092 (7)
F38	0.0267 (8)	0.0201 (8)	0.0186 (8)	0.0047 (6)	0.0078 (6)	0.0039 (7)
F39	0.0332 (9)	0.0240 (9)	0.0274 (9)	0.0000 (7)	0.0085 (7)	0.0158 (7)
F40	0.0338 (9)	0.0131 (8)	0.0291 (9)	-0.0013 (6)	-0.0028 (7)	0.0066 (7)
C41	0.0172 (12)	0.0161 (13)	0.0151 (13)	0.0049 (10)	-0.0016 (9)	0.0011 (10)
C42	0.0149 (12)	0.0198 (14)	0.0155 (13)	0.0007 (10)	0.0013 (9)	0.0064 (11)
C43	0.0149 (12)	0.0125 (12)	0.0174 (13)	0.0015 (9)	-0.0011 (9)	0.0049 (10)
C44	0.0162 (12)	0.0176 (13)	0.0161 (13)	0.0027 (10)	0.0006 (9)	0.0041 (11)
C45	0.0182 (12)	0.0182 (14)	0.0195 (13)	-0.0002 (10)	0.0004 (10)	0.0090 (11)
C46	0.0213 (13)	0.0106 (13)	0.0217 (14)	-0.0014 (10)	-0.0053 (10)	0.0050 (11)
S 1	0.0117 (3)	0.0187 (3)	0.0194 (3)	0.0011 (2)	0.0010 (2)	0.0057 (3)
N1	0.0100 (10)	0.0206 (12)	0.0150 (11)	0.0013 (8)	0.0013 (8)	0.0037 (9)
N2	0.0094 (10)	0.0198 (12)	0.0169 (11)	0.0021 (8)	0.0008 (8)	0.0057 (9)
C1	0.0141 (12)	0.0179 (13)	0.0123 (12)	0.0001 (9)	0.0015 (9)	-0.0002(10)
C2	0.0142 (12)	0.0165 (13)	0.0125 (12)	0.0001 (9)	-0.0003 (9)	0.0001 (10)
C3	0.0141 (12)	0.0223 (14)	0.0182 (13)	0.0028 (10)	0.0003 (10)	0.0029 (11)
C4	0.0229 (13)	0.0214 (14)	0.0178 (13)	0.0037 (11)	-0.0007(10)	0.0052 (11)
C5	0.0235(13)	0.0191 (14)	0.0148 (13)	-0.0021(10)	0.0026 (10)	0.0026(11)
C6	0.0163(12)	0.0203(14)	0.0157(13)	-0.0001(10)	0.0015(10)	0.0019(11)
C7	0.0165(12)	0.0203(11) 0.0174(13)	0.0127(12)	0.00013(10)	-0.0010(9)	0.0029(10)
S2	0.0103(12) 0.0118(3)	0.0130(3)	0.0127(12) 0.0192(3)	0.0013(2)	0.0010(3)	0.0029(10)
N3	0.0110(3)	0.0150(5)	0.0192(3)	0.0016 (8)	0.0003 (8)	0.0054(9)
N4	0.0000(10)	0.0133(11)	0.0153(11)	0.0010(0)	0.0003 (8)	0.0001(9)
C8	0.0112(10) 0.0126(11)	0.0133(11) 0.0128(12)	0.0133(11) 0.0127(12)	0.0017(0)	0.0004 (0)	0.0030(9)
	0.0120(11)	0.0123(12) 0.0147(13)	0.0127(12) 0.0138(12)	0.0017(9)	0.0000(9)	0.0004(10)
C10	0.0134(12)	0.0147(13)	0.0138(12) 0.0208(14)	-0.0003(9)	0.0011(9)	0.0050(10)
C10	0.0146(12)	0.0200(14)	0.0208(14)	-0.0013(10)	0.0018(10)	0.0038(11)
	0.0210(13)	0.0175(14)	0.0221(14)	-0.0012(10)	0.0041(10)	0.00/9(11)
C12	0.0231(13)	0.0154(13)	0.0107(13)	0.0030(10)	-0.0006(10)	0.0045(11)
	0.0146 (12)	0.0104 (13)	0.0147 (12)	0.0044 (9)	0.0019 (9)	0.0003(10)
C14	0.0143(11)	0.0126(12)	0.0132(12)	-0.0006(9)	0.0027(9)	0.0022(10)
S3	0.0129 (3)	0.0165 (3)	0.0224 (3)	0.0008 (2)	0.0024 (2)	0.00/9(3)
N5	0.0123 (10)	0.0155 (11)	0.0178 (11)	0.0017 (8)	0.0011 (8)	0.0042 (9)
N6	0.0103 (10)	0.0145 (11)	0.0194 (11)	0.0007 (8)	0.0007 (8)	0.0043 (9)
C15	0.0139 (11)	0.0145 (13)	0.0142 (12)	0.0017 (9)	0.0023 (9)	0.0015 (10)
C16	0.0165 (12)	0.0135 (13)	0.0118 (12)	0.0002 (9)	-0.0012 (9)	-0.0005 (10)

C17	0.0189 (13)	0.0204 (14)	0.0163 (13)	0.0065 (10)	-0.0022 (10)	0.0003 (11)	
C18	0.0306 (14)	0.0167 (14)	0.0141 (13)	0.0056 (11)	-0.0041 (10)	0.0022 (11)	
C19	0.0300 (14)	0.0166 (14)	0.0179 (14)	-0.0005 (11)	0.0020 (11)	0.0063 (11)	
C20	0.0206 (13)	0.0167 (13)	0.0165 (13)	-0.0009 (10)	0.0015 (10)	0.0020 (11)	
C21	0.0158 (12)	0.0137 (12)	0.0108 (12)	0.0019 (9)	-0.0008 (9)	0.0007 (10)	
S4	0.0130 (3)	0.0184 (3)	0.0182 (3)	-0.0002 (2)	0.0001 (2)	0.0078 (3)	
N7	0.0114 (10)	0.0195 (12)	0.0159 (11)	-0.0007 (8)	-0.0008 (8)	0.0054 (9)	
N8	0.0111 (10)	0.0199 (12)	0.0168 (11)	-0.0001 (8)	0.0016 (8)	0.0070 (9)	
C22	0.0146 (12)	0.0152 (13)	0.0119 (12)	0.0007 (9)	-0.0003 (9)	0.0007 (10)	
C23	0.0166 (12)	0.0127 (12)	0.0110 (12)	0.0000 (9)	0.0001 (9)	-0.0011 (10)	
C24	0.0182 (12)	0.0192 (14)	0.0164 (13)	-0.0050 (10)	0.0018 (10)	0.0028 (11)	
C25	0.0254 (13)	0.0141 (13)	0.0169 (13)	-0.0022 (10)	0.0030 (10)	0.0044 (11)	
C26	0.0242 (13)	0.0166 (13)	0.0153 (13)	0.0017 (10)	0.0009 (10)	0.0037 (11)	
C27	0.0164 (12)	0.0191 (14)	0.0187 (13)	0.0018 (10)	0.0005 (10)	0.0035 (11)	
C28	0.0162 (12)	0.0134 (12)	0.0143 (12)	-0.0012 (9)	0.0016 (9)	0.0037 (10)	

Geometric parameters (Å, °)

I1—C29	2.090 (3)	C6—C7	1.390 (3)
I2—C31	2.088 (2)	S2—C8	1.696 (2)
F29—C30	1.348 (3)	N3—HN3	0.846 (17)
F30—C32	1.342 (3)	N3—C8	1.354 (3)
F31—C33	1.344 (3)	N3—C9	1.394 (3)
F32—C34	1.343 (3)	N4—HN4	0.849 (16)
C29—C30	1.392 (3)	N4—C8	1.356 (3)
С29—С34	1.387 (3)	N4—C14	1.390 (3)
C30—C31	1.382 (4)	C9—C10	1.388 (3)
C31—C32	1.387 (3)	C9—C14	1.398 (3)
С32—С33	1.382 (4)	C10—H10	0.9500
С33—С34	1.378 (4)	C10—C11	1.390 (3)
I3—C37	2.083 (2)	C11—H11	0.9500
I4—C35	2.082 (3)	C11—C12	1.394 (3)
F33—C36	1.343 (3)	C12—H12	0.9500
F34—C40	1.344 (3)	C12—C13	1.391 (4)
F35—C39	1.342 (3)	C13—H13	0.9500
F36—C38	1.342 (3)	C13—C14	1.388 (3)
C35—C36	1.390 (4)	S3—C15	1.699 (2)
C35—C40	1.389 (4)	N5—HN5	0.850 (17)
C36—C37	1.386 (4)	N5-C15	1.360 (3)
С37—С38	1.385 (4)	N5-C16	1.388 (3)
C38—C39	1.383 (4)	N6—HN6	0.851 (17)
C39—C40	1.373 (4)	N6—C15	1.348 (3)
I5—C41	2.092 (2)	N6-C21	1.390 (3)
I6—C43	2.088 (2)	C16—C17	1.394 (3)
F37—C42	1.347 (3)	C16—C21	1.398 (3)
F38—C44	1.345 (3)	C17—H17	0.9500
F39—C45	1.344 (3)	C17—C18	1.386 (4)
F40—C46	1.343 (3)	C18—H18	0.9500

C41—C42	1.379 (4)	C18—C19	1.396 (4)
C41—C46	1.382 (4)	С19—Н19	0.9500
C42—C43	1.390 (3)	C19—C20	1.387 (3)
C43—C44	1.382 (3)	С20—Н20	0.9500
C44—C45	1.377 (4)	C20—C21	1.386 (3)
C45—C46	1.378 (4)	S4—C22	1.693 (2)
S1—C1	1.693 (3)	N7—HN7	0.844 (17)
N1—HN1	0.847 (17)	N7—C22	1.358 (3)
N1—C1	1.358 (3)	N7—C23	1.391 (3)
N1—C2	1.390 (3)	N8—HN8	0.852 (17)
N2—HN2	0.854 (16)	N8—C22	1 353 (3)
N2-C1	1 358 (3)	N8—C28	1.389(3)
N2C7	1 390 (3)	C^{23}	1.385(3)
$C_2 = C_3$	1.395 (3)	C_{23} C_{24} C_{23} C_{28}	1.300(3)
$C_2 = C_3$	1.385(3)	$C_{23} = C_{23}$	0.0500
$C_2 = C_1$	0.0500	C_{24} C_{25}	0.3300
	0.9300	$C_{24} = C_{23}$	1.366 (3)
	1.384 (4)	C25—H25	0.9500
C4—H4	0.9500	C25-C26	1.401 (3)
C4—C5	1.402 (3)	С26—Н26	0.9500
C5—H5	0.9500	C26—C27	1.388 (4)
C5—C6	1.390 (3)	C27—H27	0.9500
С6—Н6	0.9500	C27—C28	1.390 (3)
C30 C29 I1	121 55 (18)	C8 N3 HN3	123 (2)
C_{34} C_{29} I_1	121.55(10) 120.08(10)	$C_8 N_3 C_9$	123(2)
$C_{24} = C_{29} = C_{20}$	120.96(19) 117.4(2)	$C_0 N_2 H_{N_2}$	110.03(19)
$C_{29} = C_{20} = C_{20}$	117.4(2)	C_{9} NA UNA	120(2)
$F_{29} = C_{30} = C_{29}$	118.4(2)	C_{0} N4 C_{14}	122.0(18)
$F_{29} = C_{30} = C_{31}$	118.0 (2)	C_{N4}	109.91 (19)
C31—C30—C29	123.0 (2)	CI4—N4—HN4	126.3 (18)
C30—C31—I2	121.81 (18)	N3—C8—S2	126.82 (17)
C30—C31—C32	117.5 (2)	N3—C8—N4	107.3 (2)
C32—C31—I2	120.72 (19)	N4—C8—S2	125.90 (18)
F30—C32—C31	120.7 (2)	N3—C9—C14	106.2 (2)
F30—C32—C33	118.0 (2)	C10—C9—N3	132.1 (2)
C33—C32—C31	121.3 (2)	C10—C9—C14	121.7 (2)
F31—C33—C32	120.0 (2)	С9—С10—Н10	121.9
F31—C33—C34	120.4 (2)	C9—C10—C11	116.3 (2)
C34—C33—C32	119.6 (2)	C11—C10—H10	121.9
F32—C34—C29	120.3 (2)	C10-C11-H11	119.0
F32—C34—C33	118.5 (2)	C10—C11—C12	122.1 (2)
C33—C34—C29	121.2 (2)	C12—C11—H11	119.0
$C_{36} - C_{35} - I_{4}$	122.13 (19)	С11—С12—Н12	119.2
C40-C35-I4	120 40 (19)	C_{13} C_{12} C_{11}	121.6(2)
C40-C35-C36	117 4 (2)	C13 - C12 - H12	119.2
E33_C36_C35	117.7(2) 118.6(2)	C_{12} C_{12} H_{13} H_{13}	121.8
$F_{23} = C_{36} = C_{37}$	110.0(2) 118.7(2)	C_{12} C_{13} C_{13} C_{12} C_{12}	121.0
133 - 030 - 037	110.7(2)	C14 - C13 - C12	110.4 (2)
$C_{2} = C_{2} = C_{2}$	122.7(2)	C14 - C13 - H13	121.8
C30-C3/-13	121.94 (19)	N4—C14—C9	106.5 (2)

$C_{38} - C_{37} - I_{3}$	120 42 (19)	C13—C14—N4	1315(2)
$C_{38} = C_{37} = C_{36}$	117.6(2)	C_{13} C_{14} C_{9}	121.9(2)
$F_{36} - C_{38} - C_{37}$	1202(2)	C15 - N5 - HN5	121.9(2)
$F_{36} = C_{38} = C_{39}$	120.2(2) 1184(2)	C15 N5 $C16$	122(2) 100 8 (2)
$C_{30} = C_{30} = C_{37}$	110.4(2)	C16 N5 HN5	109.0(2) 128(2)
$E_{33} = E_{33} = E$	121.4(2) 120.0(2)	$C_{10} = N_{0} = M_{0}$	125(2)
$F_{33} = C_{39} = C_{30}$	120.0(2)	C15 N6 C21	123.4(19)
$F_{33} = C_{39} = C_{40}$	120.0(2)	C13 - N0 - C21	110.26(19)
C40 - C39 - C38	119.4(2)	C21—INO—IINO	124.0(19)
$F_{34} = C_{40} = C_{33}$	120.2 (2)	N5-C15-S5	126.48 (18)
F34—C40—C39	118.3 (2)	N6-C15-S3	126.32 (18)
C39—C40—C35	121.5 (2)	N6—C15—N5	107.2 (2)
C42—C41—I5	122.49 (18)	N5—C16—C17	132.2 (2)
C42—C41—C46	117.7 (2)	N5—C16—C21	106.5 (2)
C46—C41—I5	119.79 (19)	C17—C16—C21	121.2 (2)
F37—C42—C41	119.0 (2)	С16—С17—Н17	121.8
F37—C42—C43	118.4 (2)	C18—C17—C16	116.4 (2)
C41—C42—C43	122.6 (2)	C18—C17—H17	121.8
C42—C43—I6	122.78 (18)	C17—C18—H18	119.1
C44—C43—I6	119.64 (18)	C17—C18—C19	121.9 (2)
C44—C43—C42	117.6 (2)	C19—C18—H18	119.1
F38—C44—C43	120.5 (2)	C18—C19—H19	119.0
F38—C44—C45	118.2 (2)	C20-C19-C18	122.0 (2)
C45—C44—C43	121.4 (2)	С20—С19—Н19	119.0
F39—C45—C44	120.0 (2)	С19—С20—Н20	122.0
F39—C45—C46	120.8 (2)	C21—C20—C19	116.1 (2)
C44—C45—C46	119.3 (2)	С21—С20—Н20	122.0
F40—C46—C41	120.7 (2)	N6—C21—C16	106.2 (2)
F40—C46—C45	117.8 (2)	C20—C21—N6	131.4(2)
C45 - C46 - C41	121.5(2)	C_{20} C_{21} C_{16}	122.4(2)
C1-N1-HN1	121.0(2) 123(2)	C22—N7—HN7	122.1(2) 124(2)
C1 - N1 - C2	110.7(2)	$C_{22} = N_{7} = C_{23}$	120(2)
$C_2 = N_1 = H_N_1$	126(2)	C23_N7_HN7	125 (2)
$C1_N2_HN2$	120(2) 1247(18)	$C_{22} = N_{1} = M_{1}$	123(2) 122(2)
C1 = N2 = C7	124.7(10) 110.48(10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122(2)
C7 N2 HN2	124.7(18)	$C_{22} = 100 - C_{20}$	110.0(2)
$C_1 = 1102$	124.7(10) 127.02(10)	N7 C22 S4	127(2) 12672(18)
NI = CI = SI	127.03(19) 106.5(2)	N = C22 = S4	120.72(10)
NI = CI = N2	100.3(2) 12(41 (19)	$N_{0} = C_{22} = S_{1}$	120.38(18)
N2-CI-SI	120.41(18) 10(0(2))	$N_{2} = C_{22} = N_{1}$	106.7(2)
$NI = C_2 = C_7$	100.0(2)	$N = C_{23} = C_{28}$	106.2(2)
$C_3 = C_2 = N_1$	132.4 (2)	$C_{24} = C_{23} = N7$	132.1 (2)
C3-C2-C7	121.6 (2)	C24—C23—C28	121.6 (2)
С2—С3—Н3	121.5	С23—С24—Н24	121.5
C4—C3—C2	116.9 (2)	C23—C24—C25	116.9 (2)
C4—C3—H3	121.5	C25—C24—H24	121.5
C3—C4—H4	119.2	C24—C25—H25	119.3
C3—C4—C5	121.6 (2)	C24—C25—C26	121.4 (2)
C5—C4—H4	119.2	C26—C25—H25	119.3
С4—С5—Н5	119.1	С25—С26—Н26	119.1

C6—C5—C4 C6—C5—H5 C5—C6—H6 C7—C6—C5 C7—C6—H6 N2—C7—C2 N2—C7—C2 C6—C7—C2	121.8 (2) 119.1 121.8 116.5 (2) 121.8 106.3 (2) 132.0 (2) 121.6 (2)	C27—C26—C25 C27—C26—H26 C26—C27—H27 C26—C27—C28 C28—C27—H27 N8—C28—C23 N8—C28—C23 N8—C28—C27 C27—C28—C23	121.8 (2) 119.1 121.7 116.5 (2) 121.7 106.2 (2) 132.1 (2) 121.7 (2)
0-01-02	121.0 (2)	027-020-025	121.7 (2)
I1C29C30F29 I1C29C30C31 I1C29C34F32 I1C29C34C33 I2C31C32F30 I2C31C32C33	1.8 (3) -178.02 (18) -0.7 (3) 178.45 (19) -1.4 (3) 179.38 (19)	N1-C2-C7-C6 $C1-N1-C2-C3$ $C1-N1-C2-C7$ $C1-N2-C7-C2$ $C1-N2-C7-C6$ $C2-N1-C1-S1$	-177.7 (2) -177.6 (3) -0.7 (3) 0.1 (3) 177.9 (3) 179.67 (19)
F_{29} C_{30} C_{31} I_{2}	0.8 (3)	C_2 N1 C_1 N_2	0.8 (3)
F29—C30—C31—C32 F30—C32—C33—F31 F30—C32—C33—C34	179.9 (2) 0.7 (4) -179.2 (2)	$C_2 - C_3 - C_4 - C_5$ $C_3 - C_2 - C_7 - N_2$ $C_3 - C_2 - C_7 - C_6$	0.2 (4) 177.6 (2) -0.5 (4)
F_{31} $-C_{33}$ $-C_{34}$ $-F_{32}$	-1.3(4)	C_{3} C_{4} C_{5} C_{6}	-0.4(4)
F31—C33—C34—C29	179.6 (2)	C4—C5—C6—C7	0.2 (4)
C29—C30—C31—I2	-179.37 (18)	C5—C6—C7—N2	-177.3 (3)
C29—C30—C31—C32	-0.3 (4)	C5—C6—C7—C2	0.2 (4)
C30—C29—C34—F32	-178.6 (2)	C7—N2—C1—S1	-179.44 (19)
C30—C29—C34—C33	0.5 (4)	C7—N2—C1—N1	-0.6 (3)
C30—C31—C32—F30	179.5 (2)	C7—C2—C3—C4	0.2 (4)
C30—C31—C32—C33	0.3 (4)	N3—C9—C10—C11	177.7 (3)
C31—C32—C33—F31	180.0 (2)	N3—C9—C14—N4	0.1 (3)
C31—C32—C33—C34	0.1 (4)	N3-C9-C14-C13	-176.7 (2)
C32—C33—C34—F32	178.6 (2)	C8—N3—C9—C10	179.5 (3)
C32—C33—C34—C29	-0.5(4)	C8—N3—C9—C14	-1.5 (3)
C34—C29—C30—F29	179.7 (2)	C8 - N4 - C14 - C9	1.3 (3)
$C_{34} = C_{29} = C_{30} = C_{31}$	-0.1(4)	$C_8 = N_4 = C_{14} = C_{13}$	1//.6 (3)
$13 - C_3 / - C_{38} - F_{30}$	3.3(3) $-17580(10)$	C9 - N3 - C8 - S2	-1/6.81(19)
$13 - C_3 / - C_{38} - C_{39}$	-1/3.80(19) -2.1(2)	C9 - N3 - C8 - N4	2.3(3)
$14 - C_{35} - C_{36} - C_{37}$	3.1(3) 177 10 (19)	$C_{10} = C_{10} = C_{11} = C_{12}$	1793(2)
14 - C35 - C30 - C37 14 - C35 - C40 - F34	3 5 (3)	C10 - C9 - C14 - C13	25(4)
$14 - C_{35} - C_{40} - C_{39}$	-175.96(19)	C10-C11-C12-C13	1.6(4)
F33—C36—C37—I3	-3.5 (3)	C11—C12—C13—C14	-0.4(4)
F33—C36—C37—C38	179.1 (2)	C12—C13—C14—N4	-177.5 (2)
F35—C39—C40—F34	-0.8 (4)	C12—C13—C14—C9	-1.6 (4)
F35—C39—C40—C35	178.7 (2)	C14—N4—C8—S2	176.89 (18)
F36—C38—C39—F35	0.3 (4)	C14—N4—C8—N3	-2.2 (3)
F36—C38—C39—C40	-179.9 (2)	C14—C9—C10—C11	-1.3 (4)
C35—C36—C37—I3	176.28 (19)	N5-C16-C17-C18	179.3 (3)
C35—C36—C37—C38	-1.2 (4)	N5-C16-C21-N6	-0.4 (3)
C36—C35—C40—F34	-178.9 (2)	N5-C16-C21-C20	-179.2 (2)

C36—C35—C40—C39	1.6 (4)	C15—N5—C16—C17	-179.3 (3)
C36—C37—C38—F36	-179.0 (2)	C15—N5—C16—C21	-0.6 (3)
C36—C37—C38—C39	1.7 (4)	C15—N6—C21—C16	1.2 (3)
C37—C38—C39—F35	179.6 (2)	C15—N6—C21—C20	179.8 (3)
C37—C38—C39—C40	-0.6 (4)	C16—N5—C15—S3	-177.01 (19)
C38—C39—C40—F34	179.4 (2)	C16—N5—C15—N6	1.3 (3)
C38—C39—C40—C35	-1.1 (4)	C16—C17—C18—C19	-0.3 (4)
C40—C35—C36—F33	179.3 (2)	C17—C16—C21—N6	178.5 (2)
C40—C35—C36—C37	-0.4 (4)	C17—C16—C21—C20	-0.3 (4)
I5—C41—C42—F37	-3.0 (3)	C17—C18—C19—C20	-0.7 (4)
I5—C41—C42—C43	177.25 (18)	C18—C19—C20—C21	1.2 (4)
I5—C41—C46—F40	0.8 (3)	C19—C20—C21—N6	-179.1 (2)
I5—C41—C46—C45	-178.55 (18)	C19—C20—C21—C16	-0.7 (4)
I6—C43—C44—F38	-2.9 (3)	C21—N6—C15—S3	176.77 (19)
I6—C43—C44—C45	177.54 (18)	C21—N6—C15—N5	-1.6 (3)
F37—C42—C43—I6	2.7 (3)	C21—C16—C17—C18	0.8 (4)
F37—C42—C43—C44	-178.6 (2)	N7—C23—C24—C25	179.5 (2)
F38—C44—C45—F39	1.2 (3)	N7—C23—C28—N8	-0.2 (3)
F38—C44—C45—C46	-179.6 (2)	N7—C23—C28—C27	-179.8 (2)
F39—C45—C46—F40	1.2 (3)	C22—N7—C23—C24	-179.2 (3)
F39—C45—C46—C41	-179.4 (2)	C22—N7—C23—C28	-0.3 (3)
C41—C42—C43—I6	-177.57 (18)	C22—N8—C28—C23	0.7 (3)
C41—C42—C43—C44	1.1 (4)	C22—N8—C28—C27	-179.8 (3)
C42—C41—C46—F40	178.0 (2)	C23—N7—C22—S4	179.87 (19)
C42—C41—C46—C45	-1.3 (4)	C23—N7—C22—N8	0.8 (3)
C42—C43—C44—F38	178.4 (2)	C23—C24—C25—C26	-0.3 (4)
C42—C43—C44—C45	-1.2 (4)	C24—C23—C28—N8	178.7 (2)
C43—C44—C45—F39	-179.2 (2)	C24—C23—C28—C27	-0.8 (4)
C43—C44—C45—C46	0.0 (4)	C24—C25—C26—C27	-0.2 (4)
C44—C45—C46—F40	-178.1 (2)	C25—C26—C27—C28	0.2 (4)
C44—C45—C46—C41	1.3 (4)	C26—C27—C28—N8	-179.1 (3)
C46—C41—C42—F37	179.8 (2)	C26—C27—C28—C23	0.3 (4)
C46—C41—C42—C43	0.1 (4)	C28—N8—C22—S4	179.97 (19)
N1—C2—C3—C4	176.7 (3)	C28—N8—C22—N7	-1.0 (3)
N1—C2—C7—N2	0.4 (3)	C28—C23—C24—C25	0.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—HN1···S2 ⁱ	0.85 (2)	2.52 (2)	3.357 (2)	172 (3)
N2—H <i>N</i> 2···S2	0.85 (2)	2.46 (2)	3.297 (2)	166 (2)
N3—H <i>N</i> 3····S1	0.85 (2)	2.51 (2)	3.348 (2)	173 (3)
N4—HN4····S1 ⁱⁱ	0.85 (2)	2.50 (2)	3.326 (2)	166 (2)
N5—HN5····S4 ⁱ	0.85 (2)	2.49 (2)	3.326 (2)	169 (3)
N6—H <i>N</i> 6····S4	0.85 (2)	2.43 (2)	3.270 (2)	169 (3)
C17—H17…F36 ⁱⁱⁱ	0.95	2.61	3.385 (3)	139
C20—H20…F36 ^{iv}	0.95	2.51	3.235 (3)	133

N7—H <i>N</i> 7····S3	0.84 (2)	2.47 (2)	3.300 (2)	170 (3)
N8—HN8····S3 ⁱⁱ	0.85 (2)	2.48 (2)	3.302 (2)	163 (3)

F(000) = 1024

 $\theta = 2.5 - 30.2^{\circ}$

 $\mu = 4.20 \text{ mm}^{-1}$ T = 100 K

Plate, colourless

 $0.22\times0.18\times0.06~mm$

Hydrogen site location: mixed

and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0059P)^2 + 1.8833P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta\rho_{\rm max} = 0.49 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$

H atoms treated by a mixture of independent

 $D_{\rm x} = 2.351 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9812 reflections

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*, *z*; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*, -*y*+1, -*z*+1.

1H-1,3-Benzodiazole-2-thiol-1,2,4,5-tetrafluoro-3,6-diiodobenzene (1/1) (MBZIM_14F4DIB)

Crystal data

 $\begin{array}{l} C_{6}F_{4}I_{2}\cdot C_{7}H_{6}N_{2}S\\ M_{r}=552.06\\ \text{Monoclinic, }P2_{1}/c\\ a=5.5641\ (2)\ \text{\AA}\\ b=33.1320\ (11)\ \text{\AA}\\ c=8.4710\ (3)\ \text{\AA}\\ \beta=92.754\ (1)^{\circ}\\ V=1559.82\ (9)\ \text{\AA}^{3}\\ Z=4 \end{array}$

Data collection

Bruker D8 Venture Photon 2	4579 independent reflections
diffractometer	4211 reflections with $I > 2\sigma(I)$
Radiation source: Incoatec I μ S	$R_{\rm int} = 0.050$
φ and ω scans	$\theta_{\rm max} = 30.2^\circ, \theta_{\rm min} = 2.5^\circ$
Absorption correction: multi-scan	$h = -7 \rightarrow 7$
(SADABS; Bruker, 2017)	$k = -46 \rightarrow 46$
$T_{\min} = 0.501, \ T_{\max} = 0.746$	$l = -11 \rightarrow 11$
45583 measured reflections	

Refinement

Refinement on F ²
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.020$
$wR(F^2) = 0.044$
S = 1.12
4579 reflections
207 parameters
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and	isotropic or	equivalent isotropi	ic displacement	parameters ($(Å^2)$)
	1	1 1			· /	

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.61301 (2)	0.38195 (2)	0.76376 (2)	0.01796 (4)	
I2	0.89550 (3)	0.17772 (2)	0.69482 (2)	0.02372 (4)	
F1	1.0451 (2)	0.33570 (4)	0.60867 (16)	0.0251 (3)	
F2	1.1463 (3)	0.25762 (4)	0.57675 (17)	0.0283 (3)	
F3	0.4636 (3)	0.22323 (4)	0.85802 (18)	0.0292 (3)	
F4	0.3576 (2)	0.30171 (4)	0.88704 (18)	0.0285 (3)	

C8	0.6955 (4)	0.32080 (6)	0.7457 (2)	0.0160 (4)
C9	0.8965 (4)	0.30829 (6)	0.6680 (2)	0.0176 (4)
C10	0.9499 (4)	0.26788 (7)	0.6526 (2)	0.0182 (4)
C11	0.8062 (4)	0.23834 (6)	0.7151 (2)	0.0174 (4)
C12	0.6066 (4)	0.25062 (7)	0.7940 (3)	0.0188 (4)
C13	0.5531 (4)	0.29113 (7)	0.8091 (3)	0.0193 (4)
S1	0.58078 (9)	0.48006 (2)	0.75000 (6)	0.01583 (10)
N1	0.2303 (3)	0.52614 (5)	0.8744 (2)	0.0153 (3)
HN1	0.276 (5)	0.5218 (8)	0.969 (3)	0.023 (7)*
N2	0.2252 (3)	0.52735 (5)	0.6175 (2)	0.0149 (3)
HN2	0.276 (5)	0.5229 (8)	0.525 (3)	0.023 (7)*
C1	0.3405 (4)	0.51181 (6)	0.7471 (2)	0.0143 (4)
C2	0.0446 (4)	0.55224 (6)	0.8266 (2)	0.0147 (4)
C3	-0.1194 (4)	0.57380 (6)	0.9113 (2)	0.0180 (4)
H00G	-0.116250	0.573127	1.023460	0.022*
C4	-0.2889 (4)	0.59651 (7)	0.8238 (3)	0.0196 (4)
H00M	-0.404740	0.611727	0.877214	0.024*
C5	-0.2920 (4)	0.59733 (7)	0.6581 (3)	0.0203 (4)
H00J	-0.409996	0.613183	0.602105	0.024*
C6	-0.1275 (4)	0.57565 (6)	0.5737 (2)	0.0186 (4)
H00L	-0.130222	0.576283	0.461502	0.022*
C7	0.0408 (4)	0.55303 (6)	0.6613 (2)	0.0147 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.02099 (7)	0.01539 (7)	0.01731 (7)	0.00072 (5)	-0.00093 (5)	-0.00014 (5)
I2	0.03021 (8)	0.01541 (7)	0.02536 (8)	0.00224 (6)	-0.00059 (6)	-0.00099 (5)
F1	0.0259 (7)	0.0215 (6)	0.0286 (7)	-0.0048 (6)	0.0099 (6)	0.0039 (5)
F2	0.0264 (7)	0.0260 (7)	0.0339 (8)	0.0022 (6)	0.0152 (6)	-0.0012 (6)
F3	0.0255 (7)	0.0191 (7)	0.0440 (9)	-0.0047 (6)	0.0132 (6)	0.0058 (6)
F4	0.0222 (7)	0.0248 (7)	0.0400 (8)	0.0019 (6)	0.0160 (6)	0.0021 (6)
C8	0.0175 (9)	0.0145 (9)	0.0159 (9)	0.0007 (8)	-0.0011 (7)	-0.0006 (7)
C9	0.0195 (10)	0.0183 (10)	0.0151 (9)	-0.0039 (8)	0.0025 (8)	0.0026 (7)
C10	0.0171 (10)	0.0210 (10)	0.0169 (9)	0.0011 (8)	0.0036 (8)	-0.0004 (8)
C11	0.0199 (10)	0.0146 (9)	0.0174 (10)	-0.0004 (8)	-0.0018 (8)	-0.0009(7)
C12	0.0187 (10)	0.0178 (10)	0.0200 (10)	-0.0040(8)	0.0030 (8)	0.0013 (8)
C13	0.0172 (10)	0.0202 (10)	0.0207 (10)	0.0021 (8)	0.0041 (8)	-0.0001 (8)
S1	0.0208 (2)	0.0150 (2)	0.0116 (2)	0.00308 (19)	0.00018 (18)	-0.00025 (16)
N1	0.0177 (8)	0.0184 (8)	0.0096 (8)	0.0020 (7)	-0.0017 (6)	-0.0003 (6)
N2	0.0175 (8)	0.0172 (8)	0.0101 (8)	0.0005 (7)	0.0010 (6)	-0.0007 (6)
C1	0.0180 (9)	0.0129 (9)	0.0119 (8)	-0.0026 (8)	-0.0003 (7)	-0.0004 (7)
C2	0.0150 (9)	0.0152 (9)	0.0139 (9)	-0.0016 (8)	-0.0011 (7)	0.0003 (7)
C3	0.0198 (10)	0.0191 (10)	0.0151 (9)	-0.0017 (8)	0.0010 (8)	-0.0029 (7)
C4	0.0182 (10)	0.0201 (10)	0.0206 (10)	0.0009 (8)	0.0021 (8)	-0.0022 (8)
C5	0.0191 (10)	0.0186 (10)	0.0229 (11)	0.0009 (8)	-0.0017 (8)	0.0021 (8)
C6	0.0203 (10)	0.0212 (10)	0.0139 (9)	0.0000 (8)	-0.0021 (8)	0.0021 (7)
C7	0.0158 (9)	0.0158 (9)	0.0125 (9)	-0.0017 (8)	-0.0006 (7)	-0.0007 (7)

Geometric parameters (Å, °)

I1—C8	2.084 (2)	N1—C2	1.393 (3)
I2—C11	2.078 (2)	N2—HN2	0.86 (3)
F1—C9	1.342 (2)	N2—C1	1.347 (3)
F2—C10	1.338 (2)	N2—C7	1.397 (3)
F3—C12	1.338 (2)	C2—C3	1.385 (3)
F4—C13	1.346 (2)	C2—C7	1.400 (3)
C8—C9	1.388 (3)	C3—H00G	0.9500
C8—C13	1.387 (3)	C3—C4	1.392 (3)
C9—C10	1.379 (3)	C4—H00M	0.9500
C10—C11	1.386 (3)	C4—C5	1.402 (3)
C11—C12	1.384 (3)	C5—H00J	0.9500
C12—C13	1.382 (3)	C5—C6	1.388 (3)
S1—C1	1.700 (2)	C6—H00L	0.9500
N1—HN1	0.84 (3)	C6—C7	1.387 (3)
N1—C1	1.352 (2)		
C9—C8—I1	120.68 (15)	C7—N2—HN2	128.7 (18)
C13—C8—I1	121.91 (15)	N1—C1—S1	126.31 (16)
C13—C8—C9	117.41 (19)	N2—C1—S1	126.27 (15)
F1—C9—C8	120.03 (19)	N2—C1—N1	107.42 (18)
F1—C9—C10	118.85 (18)	N1—C2—C7	106.11 (17)
C10—C9—C8	121.11 (19)	C3—C2—N1	131.90 (19)
F2—C10—C9	118.48 (19)	C3—C2—C7	121.97 (19)
F2	120.25 (19)	C2—C3—H00G	121.6
C9—C10—C11	121.27 (19)	C2—C3—C4	116.70 (19)
C10—C11—I2	120.42 (15)	C4—C3—H00G	121.6
C12—C11—I2	121.65 (16)	C3—C4—H00M	119.4
C12—C11—C10	117.92 (19)	C3—C4—C5	121.2 (2)
F3—C12—C11	120.16 (19)	C5—C4—H00M	119.4
F3—C12—C13	119.09 (19)	C4—C5—H00J	119.0
C13—C12—C11	120.75 (19)	C6—C5—C4	121.9 (2)
F4—C13—C8	119.71 (19)	C6—C5—H00J	119.0
F4—C13—C12	118.75 (19)	C5-C6-H00L	121.7
C12—C13—C8	121.54 (19)	C7—C6—C5	116.65 (19)
C1—N1—HN1	125.0 (18)	C7-C6-H00L	121.7
C1—N1—C2	110.19 (17)	N2	106.19 (17)
C2—N1—HN1	124.6 (18)	C6—C7—N2	132.27 (18)
C1—N2—HN2	121.0 (19)	C6—C7—C2	121.53 (19)
C1—N2—C7	110.07 (17)		
I1—C8—C9—F1	2.5 (3)	C13—C8—C9—F1	-177.88 (19)
I1—C8—C9—C10	-178.66 (16)	C13—C8—C9—C10	1.0 (3)
I1—C8—C13—F4	-1.1 (3)	N1-C2-C3-C4	-178.1 (2)
I1—C8—C13—C12	178.80 (17)	N1—C2—C7—N2	-0.1 (2)
I2—C11—C12—F3	-0.8 (3)	N1-C2-C7-C6	178.62 (19)
I2—C11—C12—C13	178.65 (17)	C1—N1—C2—C3	179.2 (2)

F2 $C10$ $C11$ $C12$ 179.3 (2) $C12$ $F3$ $C12$ $C13$ $F4$ -0.4 (3) $C12$ $F3$ $C12$ $C13$ $F4$ -0.4 (3) $C12$ $F3$ $C12$ $C13$ $C8$ 179.7 (2) $C12$ $C8$ $C9$ $C10$ $F2$ -179.86 (19) $C12$ $C8$ $C9$ $C10$ $C11$ -0.6 (3) $C12$ $C9$ $C8$ $C13$ $C12$ -0.8 (3) $C12$ $C9$ $C10$ $C11$ -178.52 (17) $C12$ $C9$ $C10$ $C11$ -179.3 (2) $C12$ $C10$ $C11$ $C12$ -179.3 (2) $C12$ $C10$ $C11$ $C12$ $C13$ $C2$ $C11$ $C10$ $C11$ $C12$ $C13$ $C2$ $C13$ $C11$ $C12$ $C13$ $C8$ 03 (3) $C12$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$178.30 (15) \\ -1.6 (2) \\ 0.0 (3) \\ -178.50 (19) \\ 0.2 (3) \\ 0.1 (3) \\ 0.0 (3) \\ 178.2 (2) \\ -0.1 (3) \\ -178.36 (15) \\ 1.5 (2) \\ -0.1 (3) $
---	--	--

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1—HN1…S1 ⁱ	0.84 (3)	2.47 (3)	3.3089 (18)	172 (2)
N2—HN2…S1 ⁱⁱ	0.86 (3)	2.50 (3)	3.3527 (17)	172 (2)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) -*x*+1, -*y*+1, -*z*+1.

1H-1,3-Benzodiazole-2-thiol-1,1,2,2-tetraiodoethene (1/1) (MBZIM_TIE)

Crystal data

C₂I₄·C₇H₆N₂S $M_r = 681.82$ Orthorhombic, *Pnma* a = 11.7547 (10) Å b = 8.3525 (7) Å c = 15.1077 (13) Å V = 1483.3 (2) Å³ Z = 4F(000) = 1208

Data collection

Bruker D8 Venture Photon 2 diffractometer Radiation source: Incoatec I μ S φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2017) $T_{\min} = 0.256, T_{\max} = 0.746$ 32859 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.062$ $D_x = 3.053 \text{ Mg m}^{-3}$ Mo *Ka* radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 32859 reflections $\theta = 2.2-28.5^{\circ}$ $\mu = 8.52 \text{ mm}^{-1}$ T = 100 KPlank, colourless $0.30 \times 0.14 \times 0.11 \text{ mm}$

1993 independent reflections 1885 reflections with $I > 2\sigma(I)$ $R_{int} = 0.055$ $\theta_{max} = 28.5^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -15 \rightarrow 15$ $k = -11 \rightarrow 11$ $l = -20 \rightarrow 20$

S = 1.251993 reflections 89 parameters 0 restraints

Hydrogen site location: mixed	$w = 1/[\sigma^2(F_o^2) + (0.0213P)^2 + 6.7951P]$
H atoms treated by a mixture of independent	where $P = (F_o^2 + 2F_c^2)/3$
and constrained refinement	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 1.25 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -1.48 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.71885 (3)	0.250000	0.41396 (2)	0.01158 (9)	
I2	0.48169 (3)	0.250000	0.27066 (2)	0.01399 (9)	
I3	0.29263 (3)	0.250000	0.46197 (2)	0.01401 (9)	
I4	0.52953 (3)	0.250000	0.60280 (2)	0.02001 (10)	
C5	0.5414 (5)	0.250000	0.4030 (4)	0.0165 (11)	
C6	0.4724 (5)	0.250000	0.4721 (4)	0.0174 (11)	
S1	1.01449 (11)	0.250000	0.45747 (8)	0.0100 (2)	
N1	0.9064 (3)	0.3808 (4)	0.5997 (2)	0.0103 (6)	
HN1	0.925 (4)	0.478 (6)	0.586 (3)	0.016 (12)*	
C1	0.9436 (4)	0.250000	0.5556 (3)	0.0113 (10)	
C2	0.8394 (3)	0.3332 (4)	0.6716 (2)	0.0101 (7)	
C3	0.7765 (3)	0.4217 (5)	0.7322 (2)	0.0124 (7)	
Н3	0.776830	0.535466	0.732234	0.015*	
C4	0.7128 (3)	0.3335 (5)	0.7928 (2)	0.0134 (7)	
H4	0.668132	0.388696	0.835332	0.016*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacem	ent parameters (Ų)
------------------	--------------------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
I1	0.00779 (16)	0.01634 (17)	0.01059 (16)	0.000	-0.00164 (11)	0.000
I2	0.01027 (17)	0.02331 (19)	0.00839 (16)	0.000	-0.00137 (11)	0.000
I3	0.00843 (16)	0.01822 (18)	0.01538 (17)	0.000	0.00119 (12)	0.000
I4	0.01263 (18)	0.0392 (2)	0.00821 (17)	0.000	-0.00150 (12)	0.000
C5	0.012 (3)	0.023 (3)	0.014 (3)	0.000	-0.002 (2)	0.000
C6	0.019 (3)	0.025 (3)	0.008 (2)	0.000	-0.004(2)	0.000
S 1	0.0102 (5)	0.0095 (5)	0.0102 (5)	0.000	0.0029 (4)	0.000
N1	0.0103 (14)	0.0088 (14)	0.0117 (14)	-0.0008 (11)	0.0015 (11)	-0.0004 (11)
C1	0.008 (2)	0.014 (2)	0.012 (2)	0.000	-0.0048 (18)	0.000
C2	0.0090 (15)	0.0123 (18)	0.0090 (15)	0.0000 (13)	-0.0024 (12)	-0.0001 (13)
C3	0.0132 (17)	0.0116 (16)	0.0125 (16)	0.0013 (13)	0.0002 (13)	-0.0011 (13)
C4	0.0109 (16)	0.0172 (19)	0.0119 (16)	0.0023 (14)	0.0030 (13)	-0.0017 (14)
Geometric parameters (Å, °)

2.093 (6)	N1—C2	1.400 (4)	
2.119 (6)	$C2-C2^{i}$	1.390 (7)	
2.118 (6)	C2—C3	1.389 (5)	
2.086 (5)	С3—Н3	0.9500	
1.321 (8)	C3—C4	1.393 (5)	
1.701 (6)	$C4$ — $C4^{i}$	1.395 (8)	
0.87 (5)	C4—H4	0.9500	
1.352 (4)			
113.9 (3)	N1 ⁱ —C1—N1	107.8 (5)	
123.3 (4)	$C2^{i}$ — $C2$ — $N1$	106.5 (2)	
122.8 (4)	C3—C2—N1	131.3 (3)	
112.9 (3)	$C3-C2-C2^{i}$	122.2 (2)	
123.7 (4)	С2—С3—Н3	122.1	
123.3 (5)	C2—C3—C4	115.9 (3)	
124 (3)	С4—С3—Н3	122.1	
109.6 (3)	$C3-C4-C4^{i}$	121.9 (2)	
127 (3)	C3—C4—H4	119.0	
126.0 (2)	C4 ⁱ —C4—H4	119.0	
126.0 (2)			
180.000 (1)	C1—N1—C2—C3	-174.9 (4)	
0.000(1)	C2—N1—C1—S1	172.5 (3)	
0.000(1)	$C2$ — $N1$ — $C1$ — $N1^i$	-2.6 (5)	
180.000(1)	$C2^{i}$ — $C2$ — $C3$ — $C4$	-0.3 (4)	
175.8 (4)	C2-C3-C4-C4 ⁱ	0.3 (4)	
1.6 (3)			
	$\begin{array}{c} 2.093 \ (6) \\ 2.119 \ (6) \\ 2.118 \ (6) \\ 2.086 \ (5) \\ 1.321 \ (8) \\ 1.701 \ (6) \\ 0.87 \ (5) \\ 1.352 \ (4) \\ \end{array}$ $\begin{array}{c} 113.9 \ (3) \\ 123.3 \ (4) \\ 122.8 \ (4) \\ 112.9 \ (3) \\ 123.7 \ (4) \\ 123.3 \ (5) \\ 124 \ (3) \\ 109.6 \ (3) \\ 127 \ (3) \\ 126.0 \ (2) \\ 126.0 \ (2) \\ 180.000 \ (1) \\ 0.000 \ (1) \\ 180.000 \ (1) \\ 175.8 \ (4) \\ 1.6 \ (3) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry code: (i) x, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1—HN1····S1 ⁱⁱ	0.87 (5)	2.47 (5)	3.335 (3)	178 (5)
C3—H3…I1 ⁱⁱⁱ	0.95	3.28	3.881 (4)	123

Symmetry codes: (ii) -*x*+2, -*y*+1, -*z*+1; (iii) -*x*+3/2, -*y*+1, *z*+1/2.

5-Methyl-1*H*-1,3-benzodiazole-2-thiol-1,2,3,4-tetrafluoro-5,6-diiodobenzene (1/1) (MMBZIM_12F4DIB)

Crystal data	
$C_6F_4I_2{\cdot}C_8H_8N_2S$	$\gamma = 99.588 \ (4)^{\circ}$
$M_r = 566.08$	$V = 809.97 (15) \text{ A}^3$
Triclinic, P1	Z = 2
a = 4.5504(5) Å	F(000) = 528
b = 13.2872 (14) Å	$D_{\rm x} = 2.321 {\rm ~Mg~m^{-3}}$
c = 13.8064 (14) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\alpha = 94.766 \ (4)^{\circ}$	Cell parameters from 9940 reflections
$\beta = 98.124 \ (4)^{\circ}$	$\theta = 2.3 - 27.5^{\circ}$

$\mu = 4.05 \text{ mm}^{-1}$	Needle, colourless
T = 100 K	$0.19 \times 0.07 \times 0.04 \text{ mm}$
Data collection	
Bruker D8 Venture Photon 2 diffractometer Radiation source: Incoatec I μ S φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2017) $T_{\min} = 0.636, T_{\max} = 0.746$ 21426 measured reflections	3704 independent reflections 3174 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -5 \rightarrow 5$ $k = -17 \rightarrow 17$ $l = -17 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.055$ S = 1.24 3704 reflections 217 parameters 1 restraint Primary atom site location: dual	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + 2.2494P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.33$ e Å ⁻³ $\Delta\rho_{min} = -1.06$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.65636 (6)	0.37716 (2)	0.58352 (2)	0.02050 (7)
I2	0.65659 (5)	0.36653 (2)	0.30961 (2)	0.01661 (7)
F1	0.1607 (5)	0.17992 (18)	0.21872 (16)	0.0254 (5)
F2	-0.2407 (6)	0.04739 (19)	0.29154 (19)	0.0334 (6)
F3	-0.2418 (6)	0.05622 (19)	0.4886 (2)	0.0326 (6)
F4	0.1622 (6)	0.1944 (2)	0.61205 (17)	0.0280 (6)
С9	0.3758 (8)	0.2652 (3)	0.4798 (3)	0.0154 (7)
C10	0.3778 (8)	0.2613 (3)	0.3784 (3)	0.0151 (7)
C11	0.1718 (9)	0.1857 (3)	0.3168 (3)	0.0174 (8)
C12	-0.0361 (9)	0.1169 (3)	0.3527 (3)	0.0206 (8)
C13	-0.0373 (9)	0.1222 (3)	0.4535 (3)	0.0206 (8)
C14	0.1684 (9)	0.1943 (3)	0.5145 (3)	0.0182 (8)
S1	-0.0441 (2)	0.50172 (8)	0.83086 (7)	0.0204 (2)
N1	0.2256 (7)	0.3842 (3)	0.9578 (2)	0.0184 (7)
HN1	0.165 (10)	0.414 (4)	1.008 (4)	0.029 (13)*
N2	0.2606 (7)	0.3443 (2)	0.8049 (2)	0.0165 (7)
HN2	0.254 (9)	0.349 (3)	0.7436 (15)	0.009 (10)*
C1	0.1504 (9)	0.4093 (3)	0.8658 (3)	0.0186 (8)
C2	0.3863 (8)	0.3038 (3)	0.9558 (3)	0.0172 (8)

0.5098 (9)	0.2511 (3)	1.0292 (3)	0.0215 (8)	
0.493986	0.267954	1.096235	0.026*	
0.6580 (9)	0.1726 (3)	1.0008 (3)	0.0222 (8)	
0.745045	0.135500	1.049815	0.027*	
0.6828 (9)	0.1464 (3)	0.9019 (3)	0.0227 (9)	
0.5606 (9)	0.2004 (3)	0.8290 (3)	0.0180 (8)	
0.578792	0.184847	0.761942	0.022*	
0.4108 (9)	0.2782 (3)	0.8579 (3)	0.0176 (8)	
0.8415 (9)	0.0590 (3)	0.8758 (3)	0.0245 (9)	
0.727133	-0.005523	0.890936	0.037*	
1.044903	0.071430	0.914124	0.037*	
0.855211	0.054270	0.805416	0.037*	
	0.5098 (9) 0.493986 0.6580 (9) 0.745045 0.6828 (9) 0.5606 (9) 0.578792 0.4108 (9) 0.8415 (9) 0.727133 1.044903 0.855211	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.02224 (14)	0.02260 (14)	0.01557 (12)	0.00692 (10)	-0.00119 (9)	-0.00285 (10)
I2	0.01925 (13)	0.01578 (12)	0.01588 (12)	0.00435 (9)	0.00466 (9)	0.00245 (9)
F1	0.0295 (13)	0.0253 (13)	0.0173 (11)	-0.0002 (10)	-0.0002 (10)	-0.0036 (10)
F2	0.0269 (14)	0.0274 (14)	0.0386 (15)	-0.0070 (11)	-0.0003 (11)	-0.0060 (11)
F3	0.0246 (13)	0.0283 (14)	0.0489 (17)	0.0016 (11)	0.0171 (12)	0.0143 (12)
F4	0.0320 (14)	0.0389 (15)	0.0181 (12)	0.0110 (11)	0.0106 (10)	0.0116 (11)
C9	0.0157 (18)	0.0167 (18)	0.0136 (17)	0.0051 (15)	0.0014 (14)	-0.0022 (14)
C10	0.0173 (18)	0.0148 (18)	0.0135 (17)	0.0033 (14)	0.0024 (14)	0.0016 (14)
C11	0.0205 (19)	0.0172 (19)	0.0151 (18)	0.0071 (15)	0.0012 (14)	0.0000 (15)
C12	0.0161 (19)	0.0167 (19)	0.027 (2)	0.0010 (15)	0.0000 (15)	-0.0015 (16)
C13	0.0132 (18)	0.0170 (19)	0.035 (2)	0.0052 (15)	0.0101 (16)	0.0061 (17)
C14	0.021 (2)	0.021 (2)	0.0155 (18)	0.0099 (16)	0.0041 (15)	0.0056 (15)
S 1	0.0227 (5)	0.0197 (5)	0.0214 (5)	0.0062 (4)	0.0081 (4)	0.0052 (4)
N1	0.0228 (18)	0.0185 (17)	0.0150 (16)	0.0047 (14)	0.0065 (13)	0.0005 (13)
N2	0.0214 (17)	0.0202 (17)	0.0102 (15)	0.0073 (13)	0.0045 (12)	0.0037 (13)
C1	0.021 (2)	0.0172 (19)	0.0179 (19)	-0.0010 (15)	0.0066 (15)	0.0044 (15)
C2	0.0175 (19)	0.0193 (19)	0.0152 (18)	0.0014 (15)	0.0063 (14)	0.0018 (15)
C3	0.024 (2)	0.029 (2)	0.0122 (18)	0.0037 (17)	0.0042 (15)	0.0039 (16)
C4	0.020 (2)	0.026 (2)	0.019 (2)	0.0011 (17)	-0.0010 (15)	0.0054 (16)
C5	0.0158 (19)	0.025 (2)	0.026 (2)	0.0015 (16)	0.0018 (16)	0.0020 (17)
C6	0.0193 (19)	0.0207 (19)	0.0145 (18)	0.0041 (16)	0.0039 (15)	0.0014 (15)
C7	0.0192 (19)	0.0186 (19)	0.0146 (18)	0.0027 (15)	0.0023 (14)	0.0018 (15)
C8	0.020 (2)	0.026 (2)	0.029 (2)	0.0066 (17)	0.0019 (17)	0.0049 (18)

Geometric parameters (Å, °)

П—С9	2.095 (4)	N2—HN2	0.850 (18)	
I2—C10	2.106 (4)	N2—C1	1.358 (5)	
F1—C11	1.344 (4)	N2—C7	1.393 (5)	
F2—C12	1.340 (4)	C2—C3	1.385 (5)	
F3—C13	1.340 (4)	C2—C7	1.391 (5)	
F4—C14	1.352 (4)	С3—Н3	0.9500	

C9-C10	1 399 (5)	C3—C4	1 392 (6)
C9-C14	1.399(5)	C4—H4	0.9500
C_{10} C_{11}	1.389(5)	C_{4} C_{5}	1.406 (6)
C_{11} C_{12}	1.309(5) 1.277(6)	C_{1}	1.400(0)
C12 - C12	1.377(0)	C_{5}	1.390(3)
	1.369 (0)		1.311 (0)
	1.558 (6)		0.9500
	1.693 (4)		1.391 (5)
NI—HNI	0.88 (5)	C8—H8A	0.9800
NI—CI	1.351 (5)	C8—H8B	0.9800
N1—C2	1.392 (5)	C8—H8C	0.9800
C10-C9-I1	123 8 (3)	N2-C1-S1	125 9 (3)
C_{14} C_{9} 11	123.0(3) 1173(3)	$C_3 C_2 N_1$	123.5(3) 132.5(4)
$C_{14} = C_{10}$	117.5(3) 118.8(3)	$C_3 = C_2 = C_7$	132.3(4) 120.7(4)
$C_{14} = C_{10} = C_{10}$	110.0(3)	$C_{3} - C_{2} - C_{7}$	120.7(4)
$C_{2} = C_{10} = 12$	125.0(3)	$C_{1} = C_{2} = H_{1}$	100.9(3)
$C_{11} = C_{10} = C_{12}$	110.0(3)	$C_2 = C_3 = C_4$	121.5 117.4(4)
	110.3(4)	$C_2 = C_3 = C_4$	117.4 (4)
FI = CII = CI0	120.6(3)	C4 - C3 - H3	121.3
FI = CII = CI2	117.3 (3)	C3-C4-H4	119.0
	122.0 (4)	$C_3 - C_4 - C_5$	122.1 (4)
F2—C12—C11	120.9 (4)	C5—C4—H4	119.0
F2—C12—C13	120.0 (4)	C4—C5—C8	119.4 (4)
C11—C12—C13	119.1 (4)	C6—C5—C4	120.0 (4)
F3—C13—C12	119.2 (4)	C6—C5—C8	120.6 (4)
F3—C13—C14	121.4 (4)	С5—С6—Н6	121.2
C14—C13—C12	119.3 (4)	C5—C6—C7	117.5 (4)
F4—C14—C9	120.6 (3)	С7—С6—Н6	121.2
F4—C14—C13	116.9 (4)	C2—C7—N2	105.5 (3)
C13—C14—C9	122.5 (4)	C6—C7—N2	132.2 (3)
C1—N1—HN1	121 (3)	C6—C7—C2	122.3 (3)
C1—N1—C2	110.4 (3)	С5—С8—Н8А	109.5
C2—N1—HN1	128 (3)	C5—C8—H8B	109.5
C1—N2—HN2	124 (3)	C5—C8—H8C	109.5
C1—N2—C7	111.0 (3)	H8A—C8—H8B	109.5
C7—N2—HN2	125 (3)	H8A—C8—H8C	109.5
N1—C1—S1	127.9 (3)	H8B—C8—H8C	109.5
N1—C1—N2	106.2 (3)		
I1—C9—C10—I2	-0.5 (5)	C14—C9—C10—C11	-0.4 (5)
I1—C9—C10—C11	-177.4 (3)	N1—C2—C3—C4	179.6 (4)
I1—C9—C14—F4	-3.9 (5)	N1-C2-C7-N2	-0.5 (4)
I1—C9—C14—C13	175.8 (3)	N1-C2-C7-C6	179.7 (4)
I2-C10-C11-F1	1.7 (5)	C1—N1—C2—C3	-179.6 (4)
I2—C10—C11—C12	-175.5 (3)	C1—N1—C2—C7	0.0 (4)
F1—C11—C12—F2	-0.1 (5)	C1—N2—C7—C2	0.8 (4)
F1—C11—C12—C13	-178.3 (3)	C1—N2—C7—C6	-179.4 (4)
F2—C12—C13—F3	1.0 (5)	C2—N1—C1—S1	-180.0 (3)
F2—C12—C13—C14	-178.9 (3)	C2—N1—C1—N2	0.5 (4)
-	× /		× /

F3—C13—C14—F4	1.7 (5)	C2—C3—C4—C5	-0.2 (6)
F3—C13—C14—C9	-178.0 (3)	C3—C2—C7—N2	179.2 (4)
C9—C10—C11—F1	178.8 (3)	C3—C2—C7—C6	-0.7 (6)
C9—C10—C11—C12	1.5 (6)	C3—C4—C5—C6	0.8 (6)
C10-C9-C14-F4	179.0 (3)	C3—C4—C5—C8	-178.8 (4)
C10-C9-C14-C13	-1.3 (6)	C4—C5—C6—C7	-1.3 (6)
C10-C11-C12-F2	177.2 (3)	C5—C6—C7—N2	-178.5 (4)
C10-C11-C12-C13	-1.0 (6)	C5—C6—C7—C2	1.3 (6)
C11—C12—C13—F3	179.2 (3)	C7—N2—C1—S1	179.6 (3)
C11—C12—C13—C14	-0.7 (6)	C7—N2—C1—N1	-0.8 (4)
C12-C13-C14-F4	-178.4 (3)	C7—C2—C3—C4	0.1 (6)
C12—C13—C14—C9	1.9 (6)	C8—C5—C6—C7	178.3 (4)
C14—C9—C10—I2	176.4 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
$N1$ — $HN1$ ···· $S1^{i}$	0.88 (5)	2.57 (5)	3.444 (3)	173 (4)
N2—H <i>N</i> 2…I1	0.85 (2)	3.07 (3)	3.780 (3)	142 (3)
N2—H <i>N</i> 2…F4	0.85 (2)	2.56 (3)	3.122 (4)	124 (3)
C3—H3…I2 ⁱⁱ	0.95	3.06	3.966 (4)	160
C6—H6…F4	0.95	2.63	3.262 (4)	125

Symmetry codes: (i) -x, -y+1, -z+2; (ii) x, y, z+1.

5-Methyl-1*H*-1,3-benzodiazole-2-thiol-1,2,4,5-tetrafluoro-3,6-diiodobenzene-water (2/1/2) (2MMBZIM_14F4DIB_2H2O)

Crystal data

$C_6F_4I_2 \cdot 2C_8H_8N_2S \cdot 2(H_2O)$	Z = 1
$M_r = 766.34$	F(000) = 370
Triclinic, $P\overline{1}$	$D_{\rm x} = 2.000 {\rm Mg} {\rm m}^{-3}$
a = 4.9088 (3) Å	Mo K α radiation, $\lambda = 0.71073$ Å
b = 11.4670 (8) Å	Cell parameters from 9704 reflections
c = 11.9686 (8) Å	$\theta = 3.0-29.6^{\circ}$
$\alpha = 106.644(2)^{\circ}$	$\mu = 2.69 \text{ mm}^{-1}$
$\beta = 98.058 \ (2)^{\circ}$	T = 100 K
$\gamma = 92.811 \ (2)^{\circ}$	Plate, colourless
V = 636.27 (7) Å ³	$0.31 \times 0.11 \times 0.08 \text{ mm}$
Data collection	
Bruker D8 Venture Photon 2	3558 independent reflections
diffractometer	3500 reflections with $I > 2\sigma(I)$
Radiation source: Incoatec $I\mu S$	$R_{\rm int} = 0.036$
φ and ω scans	$\theta_{\text{max}} = 29.7^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -6 \rightarrow 6$
(SADABS; Bruker, 2017)	$k = -15 \rightarrow 15$
$T_{\min} = 0.536, T_{\max} = 0.746$	$l = -16 \rightarrow 16$
31584 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.014$	and constrained refinement
$wR(F^2) = 0.034$	$w = 1/[\sigma^2(F_o^2) + 0.4884P]$
<i>S</i> = 1.18	where $P = (F_o^2 + 2F_c^2)/3$
3558 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
184 parameters	$\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$
7 restraints	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
I1	0.44701 (2)	0.37987 (2)	0.76749 (2)	0.01303 (3)	
F1	0.8875 (2)	0.62085 (8)	0.83664 (8)	0.02138 (19)	
F2	1.31349 (19)	0.70566 (8)	1.01073 (9)	0.02069 (19)	
C9	0.7732 (3)	0.45489 (12)	0.90761 (12)	0.0132 (2)	
C10	0.9374 (3)	0.56045 (13)	0.91719 (13)	0.0143 (3)	
C11	1.1591 (3)	0.60420 (12)	1.00759 (13)	0.0145 (3)	
S1	1.03801 (7)	0.78475 (3)	0.43889 (3)	0.01464 (7)	
N1	0.7347 (3)	0.75457 (11)	0.60568 (11)	0.0147 (2)	
HN1	0.770 (4)	0.6828 (15)	0.5977 (19)	0.023 (5)*	
N2	0.7391 (3)	0.93710 (11)	0.58449 (11)	0.0138 (2)	
HN2	0.788 (4)	1.0008 (16)	0.5627 (18)	0.025 (5)*	
C1	0.8342 (3)	0.82603 (13)	0.54519 (12)	0.0136 (2)	
C2	0.5751 (3)	0.82008 (13)	0.68510(13)	0.0136 (2)	
C3	0.5789 (3)	0.93718 (12)	0.67155 (12)	0.0129 (2)	
C4	0.4354 (3)	1.02719 (13)	0.73639 (13)	0.0154 (3)	
H4	0.437594	1.106246	0.725878	0.018*	
C5	0.2880 (3)	0.99734 (13)	0.81756 (13)	0.0157 (3)	
C6	0.2857 (3)	0.87925 (14)	0.83004 (13)	0.0173 (3)	
H6	0.183714	0.860585	0.885580	0.021*	
C7	0.4267 (3)	0.78842 (14)	0.76427 (14)	0.0176 (3)	
H7	0.421629	0.708673	0.773170	0.021*	
C8	0.1331 (3)	1.09189 (15)	0.89265 (14)	0.0207 (3)	
H8A	-0.041876	1.052972	0.901230	0.031*	
H8B	0.095344	1.155912	0.854696	0.031*	
H8C	0.245015	1.128188	0.970784	0.031*	
01	0.7691 (3)	0.49501 (11)	0.54916 (12)	0.0247 (2)	
H1AO	0.936 (5)	0.503 (4)	0.532 (4)	0.023 (10)*	0.5
H1BO	0.594 (5)	0.486 (4)	0.516 (4)	0.034 (13)*	0.5
H2O1	0.778 (6)	0.432 (2)	0.575 (3)	0.063 (9)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

U^{11}	U ²²	U ³³	U ¹²	<i>U</i> ¹³	U^{23}
0.01281 (5)	0.01303 (5)	0.01267 (5)	0.00156 (3)	0.00261 (3)	0.00256 (3)
0.0247 (5)	0.0200 (4)	0.0214 (4)	-0.0027 (4)	-0.0034 (4)	0.0133 (4)
0.0216 (4)	0.0163 (4)	0.0242 (5)	-0.0061 (3)	-0.0011 (4)	0.0096 (4)
0.0124 (6)	0.0130 (6)	0.0129 (6)	0.0018 (5)	0.0027 (5)	0.0016 (5)
0.0160 (6)	0.0138 (6)	0.0145 (6)	0.0027 (5)	0.0034 (5)	0.0058 (5)
0.0152 (6)	0.0114 (6)	0.0171 (6)	0.0000 (5)	0.0044 (5)	0.0037 (5)
0.01389 (15)	0.01446 (15)	0.01405 (15)	0.00125 (12)	0.00305 (12)	0.00144 (12)
0.0158 (6)	0.0114 (5)	0.0165 (6)	0.0028 (4)	0.0036 (5)	0.0031 (4)
0.0140 (5)	0.0117 (5)	0.0161 (6)	0.0008 (4)	0.0037 (4)	0.0039 (4)
0.0117 (6)	0.0133 (6)	0.0136 (6)	0.0005 (5)	-0.0006(5)	0.0021 (5)
0.0126 (6)	0.0123 (6)	0.0156 (6)	0.0012 (5)	0.0011 (5)	0.0042 (5)
0.0112 (6)	0.0125 (6)	0.0138 (6)	-0.0012 (5)	0.0014 (5)	0.0027 (5)
0.0149 (6)	0.0121 (6)	0.0180 (7)	0.0014 (5)	0.0020 (5)	0.0030 (5)
0.0125 (6)	0.0172 (6)	0.0152 (6)	0.0013 (5)	0.0012 (5)	0.0017 (5)
0.0168 (6)	0.0203 (7)	0.0164 (6)	0.0014 (5)	0.0044 (5)	0.0072 (5)
0.0188 (7)	0.0165 (6)	0.0195 (7)	0.0031 (5)	0.0035 (6)	0.0082 (5)
0.0188 (7)	0.0211 (7)	0.0209 (7)	0.0039 (6)	0.0074 (6)	0.0019 (6)
0.0289 (6)	0.0185 (5)	0.0315 (6)	0.0046 (5)	0.0105 (5)	0.0118 (5)
	U^{11} 0.01281 (5) 0.0247 (5) 0.0216 (4) 0.0124 (6) 0.0124 (6) 0.0152 (6) 0.01389 (15) 0.0158 (6) 0.0140 (5) 0.0117 (6) 0.0126 (6) 0.0112 (6) 0.0125 (6) 0.0168 (6) 0.0188 (7) 0.0188 (7) 0.0289 (6)	U^{11} U^{22} $0.01281 (5)$ $0.01303 (5)$ $0.0247 (5)$ $0.0200 (4)$ $0.0216 (4)$ $0.0163 (4)$ $0.0124 (6)$ $0.0130 (6)$ $0.0160 (6)$ $0.0138 (6)$ $0.0152 (6)$ $0.0114 (6)$ $0.0138 (15)$ $0.01446 (15)$ $0.0158 (6)$ $0.0114 (5)$ $0.0140 (5)$ $0.0117 (5)$ $0.017 (6)$ $0.0123 (6)$ $0.0126 (6)$ $0.0125 (6)$ $0.0125 (6)$ $0.0121 (6)$ $0.0125 (6)$ $0.0172 (6)$ $0.0168 (6)$ $0.0203 (7)$ $0.0188 (7)$ $0.0185 (5)$	U^{11} U^{22} U^{33} 0.01281 (5)0.01303 (5)0.01267 (5)0.0247 (5)0.0200 (4)0.0214 (4)0.0216 (4)0.0163 (4)0.0242 (5)0.0124 (6)0.0130 (6)0.0129 (6)0.0160 (6)0.0138 (6)0.0145 (6)0.0152 (6)0.0114 (6)0.0171 (6)0.01389 (15)0.01446 (15)0.01405 (15)0.0158 (6)0.0117 (5)0.0165 (6)0.0117 (6)0.0133 (6)0.0136 (6)0.0126 (6)0.0123 (6)0.0136 (6)0.0112 (6)0.0125 (6)0.0138 (6)0.0149 (6)0.0121 (6)0.0152 (6)0.0168 (6)0.0203 (7)0.0164 (6)0.0188 (7)0.0211 (7)0.0209 (7)0.0289 (6)0.0185 (5)0.0315 (6)	U^{11} U^{22} U^{33} U^{12} 0.01281 (5)0.01303 (5)0.01267 (5)0.00156 (3)0.0247 (5)0.0200 (4)0.0214 (4) -0.0027 (4)0.0216 (4)0.0163 (4)0.0242 (5) -0.0061 (3)0.0124 (6)0.0130 (6)0.0129 (6)0.0018 (5)0.0160 (6)0.0138 (6)0.0145 (6)0.0027 (5)0.0152 (6)0.0114 (6)0.0171 (6)0.0000 (5)0.01389 (15)0.01446 (15)0.0165 (6)0.0028 (4)0.0140 (5)0.0117 (5)0.0161 (6)0.0008 (4)0.0117 (6)0.0133 (6)0.0136 (6)0.0005 (5)0.0126 (6)0.0125 (6)0.0138 (6) -0.0012 (5)0.0112 (6)0.0125 (6)0.0138 (6) -0.0012 (5)0.0125 (6)0.0172 (6)0.0152 (6)0.0013 (5)0.0168 (6)0.0203 (7)0.0164 (6)0.0014 (5)0.0188 (7)0.0165 (6)0.0195 (7)0.0031 (5)0.0188 (7)0.0211 (7)0.0209 (7)0.0039 (6)0.0289 (6)0.0185 (5)0.0315 (6)0.0046 (5)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.01281 (5)0.01303 (5)0.01267 (5)0.00156 (3)0.00261 (3)0.0247 (5)0.0200 (4)0.0214 (4) $-0.0027 (4)$ $-0.0034 (4)$ 0.0216 (4)0.0163 (4)0.0242 (5) $-0.0061 (3)$ $-0.0011 (4)$ 0.0124 (6)0.0130 (6)0.0129 (6)0.0018 (5)0.0027 (5)0.0160 (6)0.0138 (6)0.0145 (6)0.0027 (5)0.0034 (5)0.0152 (6)0.0114 (6)0.0171 (6)0.0000 (5)0.0044 (5)0.0158 (6)0.01446 (15)0.0165 (6)0.0028 (4)0.0036 (5)0.0158 (6)0.0117 (5)0.0161 (6)0.0008 (4)0.0037 (4)0.0117 (6)0.0133 (6)0.0136 (6)0.0005 (5) $-0.0006 (5)$ 0.0126 (6)0.0123 (6)0.0156 (6)0.0012 (5)0.0011 (5)0.0126 (6)0.0123 (6)0.0156 (6)0.0012 (5)0.0014 (5)0.0149 (6)0.0121 (6)0.0152 (6)0.0013 (5)0.0012 (5)0.0125 (6)0.0152 (6)0.0013 (5)0.0012 (5)0.0168 (6)0.0203 (7)0.0164 (6)0.0014 (5)0.0044 (5)0.0188 (7)0.0165 (6)0.0195 (7)0.0031 (5)0.0035 (6)0.0188 (7)0.0211 (7)0.0209 (7)0.0039 (6)0.0074 (6)0.0289 (6)0.0185 (5)0.0315 (6)0.0046 (5)0.0105 (5)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

І1—С9	2.0981 (14)	C3—C4	1.3888 (19)
F1-C10	1.3424 (16)	C4—H4	0.9500
F2—C11	1.3452 (16)	C4—C5	1.396 (2)
C9—C10	1.3882 (19)	C5—C6	1.404 (2)
C9-C11 ⁱ	1.386 (2)	C5—C8	1.509 (2)
C10-C11	1.383 (2)	С6—Н6	0.9500
S1—C1	1.7035 (15)	C6—C7	1.392 (2)
N1—HN1	0.830 (15)	С7—Н7	0.9500
N1—C1	1.3542 (19)	C8—H8A	0.9800
N1—C2	1.3926 (18)	C8—H8B	0.9800
N2—HN2	0.876 (15)	C8—H8C	0.9800
N2—C1	1.3557 (18)	O1—H1AO	0.880 (18)
N2—C3	1.3905 (18)	O1—H1BO	0.883 (18)
С2—С3	1.3975 (19)	O1—H2O1	0.872 (17)
C2—C7	1.387 (2)		
C10—C9—I1	122.63 (11)	C4—C3—N2	131.65 (13)
C11 ⁱ —C9—I1	120.13 (10)	C4—C3—C2	121.84 (13)
C11 ⁱ —C9—C10	117.17 (13)	C3—C4—H4	121.2
F1-C10-C9	120.35 (13)	C3—C4—C5	117.61 (13)
F1-C10-C11	118.48 (12)	C5—C4—H4	121.2
С11—С10—С9	121.15 (13)	C4—C5—C6	119.91 (13)
F2-C11-C9 ⁱ	120.02 (13)	C4—C5—C8	120.20 (14)
F2-C11-C10	118.29 (13)	C6—C5—C8	119.89 (14)

C10-C11-C9 ⁱ	121.68 (13)	С5—С6—Н6	118.7
C1—N1—HN1	124.2 (15)	C7—C6—C5	122.63 (14)
C1—N1—C2	110.28 (12)	С7—С6—Н6	118.7
C2—N1—HN1	125.5 (15)	C2—C7—C6	116.72 (14)
C1—N2—HN2	123.8 (14)	С2—С7—Н7	121.6
C1—N2—C3	110.09 (12)	С6—С7—Н7	121.6
C3—N2—HN2	125.8 (14)	C5—C8—H8A	109.5
N1—C1—S1	126.80 (11)	C5—C8—H8B	109.5
N1—C1—N2	107.02 (12)	С5—С8—Н8С	109.5
N2—C1—S1	126.17 (11)	H8A—C8—H8B	109.5
N1—C2—C3	106.11 (12)	H8A—C8—H8C	109.5
C7—C2—N1	132.60 (13)	H8B—C8—H8C	109.5
C7—C2—C3	121.28 (13)	H1AO-O1-H2O1	101 (3)
N2—C3—C2	106.49 (12)	H1BO—O1—H2O1	101 (3)
I1—C9—C10—F1	1.58 (19)	C1—N2—C3—C4	-178.92 (15)
I1—C9—C10—F1 I1—C9—C10—C11	1.58 (19) -176.86 (10)	C1—N2—C3—C4 C2—N1—C1—S1	-178.92 (15) -179.80 (11)
11—C9—C10—F1 11—C9—C10—C11 F1—C10—C11—F2	1.58 (19) -176.86 (10) 0.3 (2)	C1—N2—C3—C4 C2—N1—C1—S1 C2—N1—C1—N2	-178.92 (15) -179.80 (11) -0.27 (16)
I1—C9—C10—F1 I1—C9—C10—C11 F1—C10—C11—F2 F1—C10—C11—C9 ⁱ	1.58 (19) -176.86 (10) 0.3 (2) -178.58 (13)	C1—N2—C3—C4 C2—N1—C1—S1 C2—N1—C1—N2 C2—C3—C4—C5	-178.92 (15) -179.80 (11) -0.27 (16) 0.7 (2)
I1—C9—C10—F1 I1—C9—C10—C11 F1—C10—C11—F2 F1—C10—C11—C9 ⁱ C9—C10—C11—F2	1.58 (19) -176.86 (10) 0.3 (2) -178.58 (13) 178.75 (13)	C1—N2—C3—C4 C2—N1—C1—S1 C2—N1—C1—N2 C2—C3—C4—C5 C3—N2—C1—S1	-178.92 (15) -179.80 (11) -0.27 (16) 0.7 (2) 179.96 (11)
$\begin{array}{c} 11 &C9 &C10 &F1 \\ 11 &C9 &C10 &C11 \\ F1 &C10 &C11 &F2 \\ F1 &C10 &C11 &C9^{i} \\ C9 &C10 &C11 &F2 \\ C9 &C10 &C11 &C9^{i} \end{array}$	1.58 (19) -176.86 (10) 0.3 (2) -178.58 (13) 178.75 (13) -0.1 (2)	C1—N2—C3—C4 C2—N1—C1—S1 C2—N1—C1—N2 C2—C3—C4—C5 C3—N2—C1—S1 C3—N2—C1—N1	-178.92 (15) -179.80 (11) -0.27 (16) 0.7 (2) 179.96 (11) 0.44 (16)
$\begin{array}{c} 11 &C9 &C10 &F1 \\ 11 &C9 &C10 &C11 \\ F1 &C10 &C11 &F2 \\ F1 &C10 &C11 &C9^{i} \\ C9 &C10 &C11 &F2 \\ C9 &C10 &C11 &C9^{i} \\ C11^{i} &C9 &C10 &F1 \end{array}$	1.58 (19) -176.86 (10) 0.3 (2) -178.58 (13) 178.75 (13) -0.1 (2) 178.54 (12)	C1—N2—C3—C4 C2—N1—C1—S1 C2—N1—C1—N2 C2—C3—C4—C5 C3—N2—C1—S1 C3—N2—C1—N1 C3—C2—C7—C6	-178.92 (15) -179.80 (11) -0.27 (16) 0.7 (2) 179.96 (11) 0.44 (16) -0.8 (2)
$\begin{array}{c} 11 &C9 &C10 &F1 \\ 11 &C9 &C10 &C11 \\ F1 &C10 &C11 &F2 \\ F1 &C10 &C11 &C9^i \\ C9 &C10 &C11 &F2 \\ C9 &C10 &C10 &F1 \\ C11^i &C9 &C10 &C11 \end{array}$	1.58 (19) -176.86 (10) 0.3 (2) -178.58 (13) 178.75 (13) -0.1 (2) 178.54 (12) 0.1 (2)	C1-N2-C3-C4 $C2-N1-C1-S1$ $C2-N1-C1-N2$ $C2-C3-C4-C5$ $C3-N2-C1-S1$ $C3-N2-C1-N1$ $C3-C2-C7-C6$ $C3-C4-C5-C6$	-178.92 (15) -179.80 (11) -0.27 (16) 0.7 (2) 179.96 (11) 0.44 (16) -0.8 (2) -0.9 (2)
$\begin{array}{c} 11 &C9 &C10 &F1 \\ 11 &C9 &C10 &C11 \\ F1 &C10 &C11 &F2 \\ F1 &C10 &C11 &C9^i \\ C9 &C10 &C11 &F2 \\ C9 &C10 &C11 &F1 \\ C11^i &C9 &C10 &C11 \\ N1 &C2 &C3 &N2 \\ \end{array}$	1.58 (19) -176.86 (10) 0.3 (2) -178.58 (13) 178.75 (13) -0.1 (2) 178.54 (12) 0.1 (2) 0.25 (15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.92 (15) -179.80 (11) -0.27 (16) 0.7 (2) 179.96 (11) 0.44 (16) -0.8 (2) -0.9 (2) 178.66 (13)
$\begin{array}{c} 11 &C9 &C10 &F1 \\ 11 &C9 &C10 &C11 \\ F1 &C10 &C11 &F2 \\ F1 &C10 &C11 &C9^i \\ C9 &C10 &C11 &F2 \\ C9 &C10 &C11 &C9^i \\ C11^i &C9 &C10 &C11 \\ N1 &C2 &C3 &N2 \\ N1 &C2 &C3 &C4 \end{array}$	1.58 (19) -176.86 (10) 0.3 (2) -178.58 (13) 178.75 (13) -0.1 (2) 178.54 (12) 0.1 (2) 0.25 (15) 178.92 (13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.92 (15) -179.80 (11) -0.27 (16) 0.7 (2) 179.96 (11) 0.44 (16) -0.8 (2) -0.9 (2) 178.66 (13) 0.2 (2)
$\begin{array}{c} 11 &C9 &C10 &F1 \\ 11 &C9 &C10 &C11 \\ F1 &C10 &C11 &F2 \\ F1 &C10 &C11 &C9^i \\ C9 &C10 &C11 &F2 \\ C9 &C10 &C11 &C9^i \\ C11^i &C9 &C10 &F1 \\ C11^i &C9 &C10 &C11 \\ N1 &C2 &C3 &N2 \\ N1 &C2 &C3 &C4 \\ N1 &C2 &C7 &C6 \end{array}$	1.58 (19) -176.86 (10) 0.3 (2) -178.58 (13) 178.75 (13) -0.1 (2) 178.54 (12) 0.1 (2) 0.25 (15) 178.92 (13) -179.24 (15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.92 (15) -179.80 (11) -0.27 (16) 0.7 (2) 179.96 (11) 0.44 (16) -0.8 (2) -0.9 (2) 178.66 (13) 0.2 (2) 0.6 (2)
$\begin{array}{c} 11 &C9 &C10 &F1 \\ 11 &C9 &C10 &C11 \\ F1 &C10 &C11 &F2 \\ F1 &C10 &C11 &C9^i \\ C9 &C10 &C11 &F2 \\ C9 &C10 &C11 &C9^i \\ C11^i &C9 &C10 &F1 \\ C11^i &C9 &C10 &C11 \\ N1 &C2 &C3 &N2 \\ N1 &C2 &C3 &C4 \\ N1 &C2 &C7 &C6 \\ N2 &C3 &C4 &C5 \\ \end{array}$	$\begin{array}{c} 1.58 \ (19) \\ -176.86 \ (10) \\ 0.3 \ (2) \\ -178.58 \ (13) \\ 178.75 \ (13) \\ -0.1 \ (2) \\ 178.54 \ (12) \\ 0.1 \ (2) \\ 0.25 \ (15) \\ 178.92 \ (13) \\ -179.24 \ (15) \\ 179.03 \ (14) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -178.92 (15) \\ -179.80 (11) \\ -0.27 (16) \\ 0.7 (2) \\ 179.96 (11) \\ 0.44 (16) \\ -0.8 (2) \\ -0.9 (2) \\ 178.66 (13) \\ 0.2 (2) \\ 0.6 (2) \\ -178.58 (13) \end{array}$
$\begin{array}{c} 11 &C9 &C10 &F1 \\ 11 &C9 &C10 &C11 \\ F1 &C10 &C11 &F2 \\ F1 &C10 &C11 &C9^i \\ C9 &C10 &C11 &F2 \\ C9 &C10 &C11 &C9^i \\ C11^i &C9 &C10 &F1 \\ C11^i &C9 &C10 &C11 \\ N1 &C2 &C3 &N2 \\ N1 &C2 &C3 &C4 \\ N1 &C2 &C3 &C4 \\ N2 &C3 &C4 &C5 \\ C1 &N1 &C2 &C3 \\ \end{array}$	$\begin{array}{c} 1.58 \ (19) \\ -176.86 \ (10) \\ 0.3 \ (2) \\ -178.58 \ (13) \\ 178.75 \ (13) \\ -0.1 \ (2) \\ 178.54 \ (12) \\ 0.1 \ (2) \\ 0.25 \ (15) \\ 178.92 \ (13) \\ -179.24 \ (15) \\ 179.03 \ (14) \\ 0.01 \ (16) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.92 (15) -179.80 (11) -0.27 (16) 0.7 (2) 179.96 (11) 0.44 (16) -0.8 (2) -0.9 (2) 178.66 (13) 0.2 (2) 0.6 (2) -178.58 (13) 0.1 (2)
$\begin{array}{c} 11 &C9 &C10 &F1 \\ 11 &C9 &C10 &C11 \\ F1 &C10 &C11 &F2 \\ F1 &C10 &C11 &C9^i \\ C9 &C10 &C11 &F2 \\ C9 &C10 &C11 &C9^i \\ C11^i &C9 &C10 &C11 \\ N1 &C2 &C3 &N2 \\ N1 &C2 &C3 &C4 \\ N1 &C2 &C3 &C4 \\ N1 &C2 &C3 &C4 \\ N2 &C3 &C4 &C5 \\ C1 &N1 &C2 &C7 \\ \end{array}$	$\begin{array}{c} 1.58 \ (19) \\ -176.86 \ (10) \\ 0.3 \ (2) \\ -178.58 \ (13) \\ 178.75 \ (13) \\ -0.1 \ (2) \\ 178.54 \ (12) \\ 0.1 \ (2) \\ 0.25 \ (15) \\ 178.92 \ (13) \\ -179.24 \ (15) \\ 179.03 \ (14) \\ 0.01 \ (16) \\ 178.65 \ (16) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -178.92 (15) \\ -179.80 (11) \\ -0.27 (16) \\ 0.7 (2) \\ 179.96 (11) \\ 0.44 (16) \\ -0.8 (2) \\ -0.9 (2) \\ 178.66 (13) \\ 0.2 (2) \\ 0.6 (2) \\ -178.58 (13) \\ 0.1 (2) \\ -179.33 (14) \end{array}$

Symmetry code: (i) -x+2, -y+1, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—HN1…O1	0.83 (2)	2.06 (2)	2.8763 (17)	166 (2)
N2—HN2····S1 ⁱⁱ	0.88 (2)	2.57 (2)	3.4211 (13)	164 (2)
C4—H4…I1 ⁱⁱⁱ	0.95	3.03	3.9505 (14)	164
O1—H1AO···O1 ^{iv}	0.88 (2)	1.85 (2)	2.708 (3)	163 (4)
O1—H1 <i>BO</i> ···O1 ^v	0.88 (2)	1.89 (2)	2.759 (3)	167 (4)
01—H2 <i>0</i> 1…I1	0.87 (2)	3.16 (3)	3.7419 (12)	126 (2)
$O1$ — $H2O1$ ···S 1^{iv}	0.87 (2)	2.65 (2)	3.4251 (13)	149 (3)

Symmetry codes: (ii) -x+2, -y+2, -z+1; (iii) x, y+1, z; (iv) -x+2, -y+1, -z+1; (v) -x+1, -y+1, -z+1.

5-Methyl-1*H*-1,3-benzodiazole-2-thiol–1,3,5-trifluoro-2,4,6-\ triiodobenzene (1/1) (MMBZIM_135F3I3B)

F(000) = 1232

 $\theta = 2.4 - 27.5^{\circ}$

 $\mu = 5.62 \text{ mm}^{-1}$

Needle, colourless

 $0.26 \times 0.04 \times 0.04$ mm

Hydrogen site location: mixed

and constrained refinement

 $w = 1/[\sigma^2(F_0^2) + 32.9663P]$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 2.36 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -1.89 \ {\rm e} \ {\rm \AA}^{-3}$

where $P = (F_0^2 + 2F_c^2)/3$

H atoms treated by a mixture of independent

T = 100 K

 $D_{\rm x} = 2.613 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9964 reflections

Crystal data

 $C_{6}F_{3}I_{3} \cdot C_{8}H_{8}N_{2}S$ $M_{r} = 673.98$ Monoclinic, $P2_{1}/c$ a = 15.191 (2) Å b = 5.0074 (7) Å c = 22.715 (3) Å $\beta = 97.460$ (6)° V = 1713.3 (4) Å³ Z = 4

Data collection

Bruker D8 Venture Photon 2	3971 independent reflections
diffractometer	3039 reflections with $I > 2\sigma(I)$
Radiation source: Incoatec IµS	$R_{\rm int} = 0.069$
φ and ω scans	$\theta_{\rm max} = 27.6^{\circ}, \theta_{\rm min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -19 \rightarrow 19$
(SADABS; Bruker, 2017)	$k = -6 \rightarrow 6$
$T_{\min} = 0.582, \ T_{\max} = 0.746$	$l = -29 \rightarrow 29$
23258 measured reflections	
Refinement	

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.105$ S = 1.223971 reflections 215 parameters 1 restraint Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Ζ	$U_{\rm iso}*/U_{\rm eq}$
 I1	0.83468 (4)	0.73539 (12)	0.22592 (3)	0.02269 (15)
I2	1.12973 (3)	0.55191 (11)	0.42927 (2)	0.01871 (14)
I3	0.78829 (3)	-0.06392 (11)	0.42073 (2)	0.01766 (13)
F1	1.0160 (3)	0.7879 (10)	0.3105 (2)	0.0238 (11)
F2	0.9829 (3)	0.1538 (10)	0.4578 (2)	0.0217 (11)
F3	0.7534 (3)	0.2862 (11)	0.3013 (2)	0.0226 (11)
C9	0.8839 (5)	0.5360 (16)	0.3041 (4)	0.0161 (16)
C10	0.9672 (5)	0.5984 (17)	0.3334 (4)	0.0166 (17)
C11	1.0030 (5)	0.4712 (18)	0.3850 (4)	0.0190 (17)
C12	0.9504 (5)	0.2824 (17)	0.4079 (3)	0.0146 (16)

C13	0.8652 (5)	0.2139 (17)	0.3811 (4)	0.0178 (17)	
C14	0.8346 (5)	0.3458 (17)	0.3285 (4)	0.0159 (16)	
S1	0.34092 (13)	1.4956 (4)	0.50777 (9)	0.0186 (4)	
N1	0.4563 (5)	1.2204 (15)	0.4472 (3)	0.0196 (15)	
HN1	0.505 (4)	1.302 (17)	0.460 (4)	0.024*	
N2	0.3181 (5)	1.1018 (15)	0.4239 (3)	0.0179 (15)	
HN2	0.264 (7)	1.10(2)	0.427 (4)	0.021*	
C1	0.3721 (5)	1.2703 (16)	0.4592 (4)	0.0160 (16)	
C2	0.4551 (5)	1.0249 (17)	0.4036 (4)	0.0173 (17)	
C3	0.5223 (6)	0.9016 (18)	0.3782 (4)	0.0206 (18)	
H3	0.582456	0.952312	0.389046	0.025*	
C4	0.5000 (5)	0.7020 (17)	0.3364 (4)	0.0204 (18)	
C5	0.4109 (6)	0.6252 (18)	0.3226 (4)	0.0212 (18)	
H5	0.396802	0.484620	0.294924	0.025*	
C6	0.3427 (6)	0.7456 (17)	0.3477 (4)	0.0187 (17)	
H6	0.282540	0.695837	0.336564	0.022*	
C7	0.3663 (5)	0.9433 (18)	0.3902 (4)	0.0183 (17)	
C8	0.5709 (6)	0.561 (2)	0.3080 (4)	0.027 (2)	
H8A	0.588556	0.398157	0.330193	0.041*	
H8B	0.622521	0.679184	0.308275	0.041*	
H8C	0.547999	0.515407	0.266904	0.041*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0241 (3)	0.0236 (3)	0.0196 (3)	0.0058 (2)	0.0002 (2)	0.0034 (2)
I2	0.0134 (2)	0.0228 (3)	0.0198 (3)	-0.0017 (2)	0.0018 (2)	-0.0022 (2)
I3	0.0150 (2)	0.0183 (3)	0.0204 (3)	-0.0014 (2)	0.0050(2)	-0.0012 (2)
F1	0.023 (3)	0.026 (3)	0.024 (3)	-0.008(2)	0.005 (2)	0.007 (2)
F2	0.017 (2)	0.027 (3)	0.019 (3)	0.000 (2)	-0.001 (2)	0.005 (2)
F3	0.012 (2)	0.031 (3)	0.023 (3)	-0.002 (2)	-0.0043 (19)	0.000(2)
C9	0.017 (4)	0.014 (4)	0.017 (4)	0.003 (3)	0.002 (3)	-0.003 (3)
C10	0.011 (4)	0.022 (4)	0.018 (4)	0.000 (3)	0.006 (3)	0.000 (3)
C11	0.015 (4)	0.024 (5)	0.017 (4)	0.002 (3)	-0.001 (3)	-0.003 (3)
C12	0.014 (4)	0.020 (4)	0.009 (4)	0.001 (3)	0.001 (3)	-0.005 (3)
C13	0.015 (4)	0.021 (4)	0.017 (4)	0.001 (3)	0.003 (3)	0.003 (3)
C14	0.012 (4)	0.018 (4)	0.017 (4)	0.000 (3)	0.001 (3)	-0.002 (3)
S 1	0.0153 (9)	0.0217 (11)	0.0185 (10)	-0.0007(8)	0.0010 (8)	-0.0038 (8)
N1	0.017 (3)	0.018 (4)	0.024 (4)	-0.002 (3)	0.002 (3)	-0.002 (3)
N2	0.010 (3)	0.021 (4)	0.022 (4)	0.001 (3)	0.001 (3)	-0.003 (3)
C1	0.019 (4)	0.010 (4)	0.019 (4)	0.002 (3)	0.002 (3)	0.003 (3)
C2	0.017 (4)	0.018 (4)	0.017 (4)	-0.003 (3)	0.005 (3)	0.010 (3)
C3	0.016 (4)	0.021 (4)	0.026 (5)	-0.003 (3)	0.008 (3)	0.003 (4)
C4	0.016 (4)	0.018 (4)	0.028 (5)	-0.002 (3)	0.003 (3)	-0.010 (4)
C5	0.020 (4)	0.021 (4)	0.023 (5)	-0.006 (3)	0.005 (3)	0.002 (4)
C6	0.017 (4)	0.019 (4)	0.019 (4)	-0.002 (3)	0.001 (3)	0.000 (3)
C7	0.009 (3)	0.026 (5)	0.020 (4)	0.004 (3)	0.000 (3)	-0.001 (4)
C8	0.021 (4)	0.032 (5)	0.030 (5)	0.005 (4)	0.010 (4)	-0.003 (4)

Geometric parameters (Å, °)

П1—С9	2.089 (8)	N2—HN2	0.84 (10)	-
I2—C11	2.093 (8)	N2—C1	1.363 (11)	
I3—C13	2.094 (8)	N2—C7	1.378 (11)	
F1—C10	1.349 (9)	C2—C3	1.382 (12)	
F2—C12	1.342 (9)	C2—C7	1.405 (11)	
F3—C14	1.340 (9)	С3—Н3	0.9500	
C9—C10	1.388 (11)	C3—C4	1.390 (12)	
C9—C14	1.372 (12)	C4—C5	1.402 (11)	
C10—C11	1.381 (12)	C4—C8	1.500 (12)	
C11—C12	1.382 (12)	С5—Н5	0.9500	
C12—C13	1.399 (11)	C5—C6	1.384 (12)	
C13—C14	1.391 (11)	С6—Н6	0.9500	
S1—C1	1.688 (8)	C6—C7	1.396 (12)	
N1—HN1	0.86 (2)	C8—H8A	0.9800	
N1—C1	1.365 (11)	C8—H8B	0.9800	
N1—C2	1.391 (11)	C8—H8C	0.9800	
C10—C9—I1	120.3 (6)	N2—C1—N1	106.1 (7)	
C14—C9—I1	121.5 (6)	N1—C2—C7	106.4 (7)	
C14—C9—C10	118.2 (8)	C3—C2—N1	132.1 (8)	
F1—C10—C9	119.0 (7)	C3—C2—C7	121.3 (8)	
F1-C10-C11	118.5 (7)	С2—С3—Н3	120.7	
C11—C10—C9	122.5 (8)	C2—C3—C4	118.7 (8)	
C10—C11—I2	123.7 (6)	C4—C3—H3	120.7	
C10-C11-C12	116.9 (7)	C3—C4—C5	119.4 (8)	
C12—C11—I2	119.5 (6)	C3—C4—C8	120.4 (8)	
F2—C12—C11	118.6 (7)	C5—C4—C8	120.1 (8)	
F2—C12—C13	117.9 (7)	C4—C5—H5	118.6	
C11—C12—C13	123.4 (8)	C6—C5—C4	122.8 (8)	
C12—C13—I3	120.8 (6)	C6—C5—H5	118.6	
C14—C13—I3	122.8 (6)	С5—С6—Н6	121.5	
C14—C13—C12	116.4 (8)	C5—C6—C7	117.1 (8)	
F3—C14—C9	119.0 (7)	C7—C6—H6	121.5	
F3—C14—C13	118.4 (7)	N2—C7—C2	106.1 (7)	
C9—C14—C13	122.6 (8)	N2—C7—C6	133.3 (7)	
C1—N1—HN1	129 (7)	C6—C7—C2	120.6 (8)	
C1—N1—C2	110.2 (7)	C4—C8—H8A	109.5	
C2—N1—HN1	120 (7)	C4—C8—H8B	109.5	
C1—N2—HN2	118 (7)	C4—C8—H8C	109.5	
C1—N2—C7	111.2 (7)	H8A—C8—H8B	109.5	
C7—N2—HN2	131 (7)	H8A—C8—H8C	109.5	
N1—C1—S1	127.0 (6)	H8B—C8—H8C	109.5	
N2—C1—S1	126.9 (6)			
11—C9—C10—F1	-0.4 (10)	C14—C9—C10—C11	1.9 (13)	
11—C9—C10—C11	-179.5(6)	N1—C2—C3—C4	177.5 (9)	

I1—C9—C14—F3	0.4 (11)	N1—C2—C7—N2	2.9 (9)
I1—C9—C14—C13	-178.8 (6)	N1—C2—C7—C6	-179.7 (8)
I2—C11—C12—F2	-0.8 (10)	C1—N1—C2—C3	-177.6 (9)
I2—C11—C12—C13	-179.5 (6)	C1—N1—C2—C7	-2.6 (9)
I3—C13—C14—F3	-2.0 (11)	C1—N2—C7—C2	-2.3 (10)
I3—C13—C14—C9	177.2 (6)	C1—N2—C7—C6	-179.2 (9)
F1-C10-C11-I2	-0.8 (11)	C2-N1-C1-S1	-178.7 (6)
F1-C10-C11-C12	178.6 (7)	C2—N1—C1—N2	1.2 (9)
F2-C12-C13-I3	3.6 (10)	C2—C3—C4—C5	-2.1 (13)
F2-C12-C13-C14	-178.2 (7)	C2—C3—C4—C8	-179.5 (8)
C9—C10—C11—I2	178.3 (6)	C3—C2—C7—N2	178.5 (8)
C9—C10—C11—C12	-2.3 (13)	C3—C2—C7—C6	-4.0 (13)
C10—C9—C14—F3	179.0 (7)	C3—C4—C5—C6	2.0 (14)
C10—C9—C14—C13	-0.2 (13)	C4—C5—C6—C7	-2.7 (13)
C10-C11-C12-F2	179.8 (7)	C5—C6—C7—N2	-179.7 (9)
C10-C11-C12-C13	1.1 (13)	C5—C6—C7—C2	3.7 (13)
C11—C12—C13—I3	-177.6 (6)	C7—N2—C1—S1	-179.4 (6)
C11—C12—C13—C14	0.5 (12)	C7—N2—C1—N1	0.7 (10)
C12—C13—C14—F3	179.9 (7)	C7—C2—C3—C4	3.1 (13)
C12—C13—C14—C9	-0.9 (12)	C8—C4—C5—C6	179.4 (9)
C14—C9—C10—F1	-179.0 (7)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D··· A	D—H···A
N1—HN1····S1 ⁱ	0.86 (2)	2.57 (2)	3.427 (7)	174 (9)
N2—H <i>N</i> 2····I2 ⁱⁱ	0.84 (10)	3.03 (10)	3.657 (7)	133 (8)
С3—Н3…ІЗ ^{ііі}	0.95	3.12	4.035 (9)	163
C6—H6…I1 ^{iv}	0.95	3.14	3.927 (8)	142

Symmetry codes: (i) -x+1, -y+3, -z+1; (ii) x-1, y+1, z; (iii) x, y+1, z; (iv) -x+1, y-1/2, -z+1/2.

1,3-Benzoxazole-2-thiol-1,2,3,4-tetrafluoro-5,6-diiodobenzene (1/1) (MBZOX_12F4DIB)

Crystal data C₆F₄I₂·C₇H₅NOS $M_r = 553.04$ Monoclinic, $P2_1/n$ a = 13.7789 (12) Å b = 4.4129 (4) Å c = 25.252 (2) Å $\beta = 96.337$ (3)° V = 1526.0 (2) Å³ Z = 4

Data collection

Bruker D8 Venture Photon 2 diffractometer Radiation source: Incoatec I μ S φ and ω scans F(000) = 1024 $D_x = 2.407 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5954 reflections $\theta = 3.0-26.8^{\circ}$ $\mu = 4.30 \text{ mm}^{-1}$ T = 100 KNeedle, colourless $0.46 \times 0.06 \times 0.02 \text{ mm}$

Absorption correction: multi-scan (SADABS; Bruker, 2017) $T_{min} = 0.578$, $T_{max} = 0.745$ 12498 measured reflections 3210 independent reflections

$h = -17 \rightarrow 17$
$k = -5 \rightarrow 5$
$l = -31 \rightarrow 31$
Hydrogen site location: mixed
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0191P)^2 + 7.3427P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 1.58 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -1.52 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.30796 (3)	-0.08467 (10)	0.67864 (2)	0.02151 (14)
I2	0.44314 (3)	-0.05194 (10)	0.81380 (2)	0.01770 (13)
F1	0.6245 (3)	0.3640 (9)	0.80387 (17)	0.0263 (10)
F2	0.6876 (3)	0.6765 (10)	0.7230 (2)	0.0339 (11)
F3	0.5903 (3)	0.6411 (10)	0.62370 (19)	0.0350 (11)
F4	0.4320 (3)	0.2897 (10)	0.60463 (17)	0.0298 (10)
C8	0.4399 (5)	0.1468 (15)	0.6957 (3)	0.0158 (15)
C9	0.4896 (5)	0.1682 (14)	0.7472 (3)	0.0158 (15)
C10	0.5749 (5)	0.3417 (15)	0.7561 (3)	0.0180 (16)
C11	0.6078 (5)	0.4963 (15)	0.7141 (3)	0.0250 (17)
C12	0.5583 (6)	0.4836 (16)	0.6629 (3)	0.0273 (18)
C13	0.4767 (5)	0.3023 (16)	0.6542 (3)	0.0209 (16)
S1	0.07783 (13)	0.0388 (4)	0.57938 (7)	0.0193 (4)
O1	0.2157 (3)	0.4196 (10)	0.55679 (19)	0.0193 (11)
N1	0.1100 (4)	0.3227 (13)	0.4874 (2)	0.0152 (13)
HN1	0.068 (6)	0.228 (18)	0.466 (3)	0.03 (2)*
C1	0.1325 (5)	0.2629 (14)	0.5389 (3)	0.0147 (14)
C2	0.1772 (5)	0.5252 (15)	0.4695 (3)	0.0158 (14)
C3	0.1868 (5)	0.6569 (16)	0.4216 (3)	0.0219 (16)
Н3	0.141810	0.617405	0.391053	0.026*
C4	0.2659 (5)	0.8527 (15)	0.4193 (3)	0.0212 (16)
H4	0.274897	0.948201	0.386523	0.025*
C5	0.3316 (6)	0.9111 (16)	0.4637 (3)	0.0229 (16)
Н5	0.384448	1.045851	0.460649	0.028*
C6	0.3218 (5)	0.7761 (15)	0.5130 (3)	0.0193 (16)
H6	0.366596	0.813408	0.543631	0.023*
C7	0.2429 (5)	0.5852 (14)	0.5140 (3)	0.0142 (14)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0210 (3)	0.0213 (2)	0.0210 (3)	-0.0009 (2)	-0.0034 (2)	-0.0037 (2)
I2	0.0223 (2)	0.0177 (2)	0.0130 (2)	0.0024 (2)	0.00165 (18)	-0.00026 (18)
F1	0.018 (2)	0.031 (2)	0.027 (3)	0.0013 (18)	-0.0068 (18)	-0.0058 (19)
F2	0.021 (2)	0.029 (2)	0.052 (3)	-0.0102 (19)	0.010 (2)	-0.003 (2)
F3	0.043 (3)	0.027 (2)	0.039 (3)	-0.001 (2)	0.020 (2)	0.012 (2)
F4	0.041 (3)	0.032 (2)	0.015 (2)	0.005 (2)	-0.001 (2)	0.0042 (19)
C8	0.011 (3)	0.021 (3)	0.016 (4)	0.005 (3)	0.004 (3)	-0.003 (3)
C9	0.016 (3)	0.013 (3)	0.020 (4)	0.005 (3)	0.007 (3)	0.002 (3)
C10	0.016 (4)	0.015 (3)	0.023 (4)	0.004 (3)	-0.001 (3)	-0.006 (3)
C11	0.024 (4)	0.014 (4)	0.038 (5)	0.002 (3)	0.010 (4)	-0.002 (3)
C12	0.037 (5)	0.021 (4)	0.027 (4)	0.005 (3)	0.019 (4)	0.013 (3)
C13	0.027 (4)	0.020 (3)	0.016 (4)	0.010 (3)	0.001 (3)	0.006 (3)
S1	0.0249 (9)	0.0194 (9)	0.0132 (9)	-0.0053 (7)	0.0007 (7)	0.0000(7)
01	0.023 (3)	0.017 (2)	0.017 (3)	0.000(2)	-0.003 (2)	0.003 (2)
N1	0.021 (3)	0.013 (3)	0.010 (3)	0.000(2)	-0.002 (3)	-0.003 (2)
C1	0.013 (3)	0.012 (3)	0.019 (4)	0.004 (3)	0.003 (3)	-0.002 (3)
C2	0.021 (4)	0.016 (3)	0.011 (4)	0.000 (3)	0.004 (3)	-0.002 (3)
C3	0.026 (4)	0.021 (4)	0.018 (4)	0.000 (3)	0.000 (3)	-0.009 (3)
C4	0.029 (4)	0.016 (3)	0.019 (4)	0.002 (3)	0.005 (3)	0.004 (3)
C5	0.029 (4)	0.018 (4)	0.022 (4)	0.000 (3)	0.008 (3)	0.008 (3)
C6	0.017 (4)	0.018 (4)	0.021 (4)	-0.002 (3)	-0.003 (3)	-0.003 (3)
C7	0.022 (4)	0.012 (3)	0.010 (3)	-0.003 (3)	0.005 (3)	-0.002 (3)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

2.088 (7) 2.101 (7) 1.322 (8) 1.355 (8)	O1—C7 N1—HN1 N1—C1	1.390 (8) 0.85 (8) 1.330 (9)
2.101 (7) 1.322 (8) 1.355 (8)	N1—HN1 N1—C1	0.85(8) 1.330(0)
1.322 (8) 1.355 (8)	N1—C1	1,330(0)
1 355 (8)		1.550 (9)
1.555 (0)	N1—C2	1.396 (9)
1.323 (8)	C2—C3	1.364 (10)
1.333 (8)	C2—C7	1.387 (9)
1.406 (10)	С3—Н3	0.9500
1.394 (10)	C3—C4	1.397 (10)
1.400 (9)	C4—H4	0.9500
1.380 (11)	C4—C5	1.385 (10)
1.396 (11)	С5—Н5	0.9500
1.378 (11)	C5—C6	1.399 (10)
1.662 (7)	С6—Н6	0.9500
1.372 (8)	С6—С7	1.378 (9)
123.2 (5)	01—C1—S1	121.1 (5)
117.8 (5)	N1-C1-S1	130.3 (5)
118.9 (6)	N1-C1-O1	108.6 (6)
123.3 (5)	C3—C2—N1	133.8 (6)
116.7 (5)	C3—C2—C7	121.2 (6)
	1.355 (8) 1.323 (8) 1.333 (8) 1.406 (10) 1.394 (10) 1.394 (10) 1.380 (11) 1.396 (11) 1.378 (11) 1.662 (7) 1.372 (8) 123.2 (5) 117.8 (5) 118.9 (6) 123.3 (5) 116.7 (5)	1.322 (8) $N1-C1$ $1.355 (8)$ $N1-C2$ $1.323 (8)$ $C2-C3$ $1.333 (8)$ $C2-C7$ $1.406 (10)$ $C3-H3$ $1.394 (10)$ $C3-C4$ $1.400 (9)$ $C4-H4$ $1.380 (11)$ $C4-C5$ $1.396 (11)$ $C5-H5$ $1.378 (11)$ $C5-C6$ $1.662 (7)$ $C6-H6$ $1.372 (8)$ $C6-C7$ $123.2 (5)$ $O1-C1-S1$ $117.8 (5)$ $N1-C1-O1$ $123.3 (5)$ $C3-C2-N1$ $116.7 (5)$ $C3-C2-C7$

С10—С9—С8	120.0 (6)	C7—C2—N1	104.9 (6)
F1—C10—C9	121.8 (7)	С2—С3—Н3	121.6
F1-C10-C11	118.9 (6)	C2—C3—C4	116.9 (6)
C11—C10—C9	119.3 (7)	С4—С3—Н3	121.6
F2-C11-C10	119.5 (7)	С3—С4—Н4	119.1
F2-C11-C12	118.9 (7)	C5—C4—C3	121.7 (7)
C10-C11-C12	121.6 (7)	С5—С4—Н4	119.1
F3—C12—C11	120.2 (7)	С4—С5—Н5	119.3
F3—C12—C13	121.2 (7)	C4—C5—C6	121.4 (7)
C13—C12—C11	118.6 (7)	С6—С5—Н5	119.3
F4—C13—C8	121.1 (6)	С5—С6—Н6	122.2
F4—C13—C12	117.3 (7)	C7—C6—C5	115.5 (6)
C12—C13—C8	121.5 (7)	С7—С6—Н6	122.2
C1—O1—C7	107.2 (5)	C2C7O1	108.7 (5)
C1—N1—HN1	126 (6)	C6—C7—O1	128.1 (6)
C1—N1—C2	110.5 (6)	C6—C7—C2	123.2 (6)
C2—N1—HN1	123 (6)		
I1—C8—C9—I2	4.0 (8)	C13—C8—C9—I2	179.9 (5)
I1—C8—C9—C10	-176.3 (5)	C13—C8—C9—C10	-0.5 (10)
I1—C8—C13—F4	-3.7 (9)	N1—C2—C3—C4	-179.9 (7)
I1—C8—C13—C12	173.9 (5)	N1—C2—C7—O1	0.7 (7)
I2—C9—C10—F1	0.7 (8)	N1—C2—C7—C6	179.5 (6)
I2—C9—C10—C11	-178.7 (5)	C1—O1—C7—C2	-1.1 (7)
F1-C10-C11-F2	-2.7 (10)	C1—O1—C7—C6	-180.0 (7)
F1-C10-C11-C12	-179.5 (6)	C1—N1—C2—C3	-179.7 (7)
F2-C11-C12-F3	1.3 (10)	C1—N1—C2—C7	0.1 (7)
F2-C11-C12-C13	-179.3 (6)	C2—N1—C1—S1	-179.8 (5)
F3—C12—C13—F4	0.7 (10)	C2-N1-C1-O1	-0.8 (7)
F3—C12—C13—C8	-177.0 (6)	C2—C3—C4—C5	-0.1 (10)
C8—C9—C10—F1	-179.0 (6)	C3—C2—C7—O1	-179.6 (6)
C8—C9—C10—C11	1.6 (10)	C3—C2—C7—C6	-0.7 (11)
C9—C8—C13—F4	-179.8 (6)	C3—C4—C5—C6	0.1 (11)
C9—C8—C13—C12	-2.2 (10)	C4—C5—C6—C7	-0.4 (10)
C9—C10—C11—F2	176.7 (6)	C5—C6—C7—O1	179.3 (6)
C9—C10—C11—C12	-0.1 (10)	C5—C6—C7—C2	0.7 (10)
C10-C11-C12-F3	178.1 (6)	C7—O1—C1—S1	-179.7 (5)
C10-C11-C12-C13	-2.5 (11)	C7—O1—C1—N1	1.2 (7)
C11—C12—C13—F4	-178.7 (6)	C7—C2—C3—C4	0.3 (10)
C11—C12—C13—C8	3.7 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A	
N1—HN1···S1 ⁱ	0.85 (8)	2.50 (8)	3.335 (6)	167 (8)	
C3—H3…I2 ⁱⁱ	0.95	3.19	4.108 (7)	162	

Symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) *x*-1/2, -*y*+1/2, *z*-1/2.

1,3-Benzoxazole-2-thiol-1,2,3,5-tetrafluoro-4,6-diiodobenzene (1/1) (MBZOX_13F4DIB)

F(000) = 1024

 $\theta = 2.7 - 30.6^{\circ}$ $\mu = 4.35 \text{ mm}^{-1}$

T = 100 K

 $D_{\rm x} = 2.437 {\rm Mg} {\rm m}^{-3}$

Needle, colourless

 $0.23 \times 0.12 \times 0.09 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9330 reflections

Crystal data

C₆F₄I₂·C₇H₅NOS $M_r = 553.04$ Monoclinic, $P2_1/c$ a = 15.1655 (8) Å b = 4.3803 (2) Å c = 23.0358 (12) Å $\beta = 99.923$ (2)° V = 1507.36 (13) Å³ Z = 4

Data collection

Bruker D8 Venture Photon 2	4625 independent reflections
diffractometer	4119 reflections with $I > 2\sigma(I)$
Radiation source: Incoatec I μ S	$R_{\rm int} = 0.042$
φ and ω scans	$\theta_{\rm max} = 30.6^\circ, \ \theta_{\rm min} = 2.1^\circ$
Absorption correction: multi-scan	$h = -21 \rightarrow 21$
(SADABS; Bruker, 2017)	$k = -6 \rightarrow 6$
$T_{\min} = 0.541, \ T_{\max} = 0.746$	$l = -32 \rightarrow 32$
39610 measured reflections	
Refinament	

Refinement

Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent $R[F^2 > 2\sigma(F^2)] = 0.022$ and constrained refinement $wR(F^2) = 0.048$ $w = 1/[\sigma^2(F_0^2) + (0.0088P)^2 + 2.2764P]$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.16 $(\Delta/\sigma)_{\rm max} = 0.002$ 4625 reflections $\Delta \rho_{\rm max} = 0.96 \text{ e } \text{\AA}^{-3}$ 203 parameters 0 restraints $\Delta \rho_{\rm min} = -1.35 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Z	$U_{iso}*/U_{eq}$	-
 I1	0 71955 (2)		0.06/83.(2)		
11 12	0.71955(2) 0.36910(2)	0.00881(3) 0.55990(4)	0.00403(2) 0.09449(2)	0.01985(4) 0.02789(5)	
F1	0.50510(2) 0.51550(9)	0.1796 (3)	0.09449 (2)	0.0245(3)	
F2	0.50261 (12)	0.8071 (4)	0.20979 (7)	0.0336 (4)	
F3	0.67787 (12)	0.7060 (4)	0.24932 (7)	0.0422 (4)	
F4	0.77333 (10)	0.3490 (4)	0.18773 (7)	0.0352 (4)	
C8	0.64548 (14)	0.2498 (5)	0.11554 (10)	0.0173 (4)	
C9	0.55516 (14)	0.3056 (5)	0.09648 (10)	0.0171 (4)	
C10	0.50419 (15)	0.4888 (5)	0.12703 (10)	0.0187 (4)	
C11	0.54714 (17)	0.6213 (5)	0.17885 (11)	0.0223 (5)	

C12	0.63676 (18)	0.5704 (6)	0.19943 (10)	0.0250 (5)
C13	0.68526 (16)	0.3866 (6)	0.16770 (11)	0.0226 (5)
S1	0.85453 (4)	0.94524 (12)	0.49409 (2)	0.01660 (10)
01	0.82568 (10)	0.5576 (3)	0.40484 (7)	0.0155 (3)
N1	0.96873 (12)	0.6582 (4)	0.43253 (8)	0.0150 (3)
HN1	1.0171 (19)	0.742 (7)	0.4529 (13)	0.024 (7)*
C1	0.88629 (14)	0.7182 (5)	0.44345 (9)	0.0151 (4)
C2	0.96367 (14)	0.4504 (5)	0.38611 (9)	0.0140 (4)
C3	1.02660 (14)	0.3138 (5)	0.35766 (10)	0.0173 (4)
H3	1.088760	0.354870	0.368581	0.021*
C4	0.99394 (15)	0.1129 (5)	0.31216 (10)	0.0176 (4)
H4	1.035003	0.013545	0.291629	0.021*
C5	0.90240 (15)	0.0533 (5)	0.29583 (10)	0.0182 (4)
Н5	0.882849	-0.085313	0.264531	0.022*
C6	0.83913 (14)	0.1930 (5)	0.32450 (10)	0.0177 (4)
H6	0.776786	0.154860	0.313733	0.021*
C7	0.87317 (14)	0.3897 (5)	0.36943 (9)	0.0141 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01738 (7)	0.02028 (7)	0.02311 (8)	0.00339 (5)	0.00709 (5)	0.00604 (5)
I2	0.01897 (8)	0.03084 (9)	0.03563 (10)	0.00756 (6)	0.00974 (6)	0.00672 (7)
F1	0.0175 (6)	0.0307 (8)	0.0242 (7)	-0.0014 (5)	0.0005 (5)	-0.0107 (6)
F2	0.0534 (10)	0.0242 (8)	0.0266 (8)	0.0077 (7)	0.0170 (7)	-0.0037 (6)
F3	0.0559 (11)	0.0436 (10)	0.0218 (8)	-0.0054 (8)	-0.0080(7)	-0.0099 (7)
F4	0.0236 (7)	0.0491 (10)	0.0282 (8)	0.0008 (7)	-0.0088 (6)	0.0030 (7)
C8	0.0163 (9)	0.0162 (10)	0.0195 (11)	0.0003 (8)	0.0035 (8)	0.0023 (8)
C9	0.0185 (10)	0.0153 (9)	0.0174 (10)	-0.0022 (8)	0.0031 (8)	0.0011 (8)
C10	0.0191 (10)	0.0166 (10)	0.0217 (11)	0.0012 (8)	0.0069 (8)	0.0039 (8)
C11	0.0341 (13)	0.0159 (10)	0.0188 (11)	0.0031 (9)	0.0098 (9)	0.0012 (8)
C12	0.0371 (14)	0.0225 (11)	0.0132 (10)	-0.0046 (10)	-0.0017 (9)	-0.0004 (9)
C13	0.0211 (11)	0.0260 (12)	0.0188 (11)	-0.0016 (9)	-0.0023 (9)	0.0068 (9)
S 1	0.0159 (2)	0.0171 (2)	0.0175 (2)	-0.00208 (18)	0.00487 (19)	-0.00332 (19)
01	0.0127 (7)	0.0170 (7)	0.0166 (7)	-0.0007(5)	0.0023 (6)	-0.0018 (6)
N1	0.0138 (8)	0.0160 (8)	0.0150 (9)	-0.0025 (6)	0.0022 (6)	-0.0024 (7)
C1	0.0147 (9)	0.0138 (9)	0.0159 (10)	-0.0011 (7)	0.0005 (7)	0.0027 (7)
C2	0.0148 (9)	0.0123 (9)	0.0144 (9)	-0.0004 (7)	0.0015 (7)	0.0013 (7)
C3	0.0149 (9)	0.0189 (10)	0.0184 (10)	0.0007 (8)	0.0037 (8)	0.0027 (8)
C4	0.0205 (10)	0.0166 (10)	0.0166 (10)	0.0019 (8)	0.0059 (8)	0.0020 (8)
C5	0.0228 (10)	0.0173 (10)	0.0147 (10)	-0.0019 (8)	0.0034 (8)	0.0000 (8)
C6	0.0153 (9)	0.0180 (10)	0.0187 (11)	-0.0032 (8)	-0.0005 (8)	-0.0010 (8)
C7	0.0151 (9)	0.0144 (9)	0.0134 (9)	0.0007 (7)	0.0038 (7)	0.0016 (7)

Geometric parameters (Å, °)

I1—C8	2.089 (2)	01—C7	1.389 (3)
I2—C10	2.080 (2)	N1—HN1	0.88 (3)

F1—C9	1.339 (3)	N1—C1	1.343 (3)
F2—C11	1.339 (3)	N1—C2	1.396 (3)
F3—C12	1.347 (3)	C2—C3	1.383 (3)
F4—C13	1.346 (3)	C2—C7	1.386 (3)
C8—C9	1.386 (3)	С3—Н3	0.9500
C8—C13	1.384 (3)	C3—C4	1.393 (3)
C9—C10	1.387 (3)	C4—H4	0.9500
C10—C11	1.385 (3)	C4—C5	1,399 (3)
C11-C12	1 378 (4)	С5—Н5	0.9500
C12-C13	1 382 (4)	C5	1 396 (3)
S1	1.666 (2)	С6—Нб	0.9500
01-C1	1.000(2) 1.360(2)	C6C7	1.377(3)
01-01	1.500 (2)	00-07	1.577 (5)
C9—C8—I1	121.04 (17)	01—C1—S1	121.49 (15)
C13—C8—I1	121.61 (17)	N1—C1—S1	129.70 (17)
C13—C8—C9	117.2 (2)	N1-C1-O1	108.82 (18)
F1—C9—C8	118.4 (2)	C3—C2—N1	133.9 (2)
F1-C9-C10	118.4 (2)	C3—C2—C7	121.1 (2)
C8-C9-C10	123.2(2)	C7-C2-N1	104.99 (18)
C9-C10-I2	120.2(2) 120.27(17)	$C^2 - C^3 - H^3$	121.8
$C_{11} - C_{10} - I_{2}$	120.27(17) 122 39(17)	$C_2 - C_3 - C_4$	1164(2)
$C_{11} - C_{10} - C_{9}$	122.39(17) 117.3(2)	$C_4 - C_3 - H_3$	121.8
F_{2}	117.5(2) 120 5 (2)	C_{3} C_{4} H_{4}	110 1
$F_2 = C_{11} = C_{12}$	120.3(2) 118.2(2)	$C_3 = C_4 = C_5$	117.1 121.0(2)
12 - 011 - 012	118.2(2) 121.2(2)	C_{5} C_{4} H_{4}	121.9(2)
C12 - C12 - C11	121.2(2) 120.4(2)	C_{3} C_{4} C_{4} C_{4} C_{5} U_{5}	119.1
$F_3 = C_{12} = C_{13}$	120.4(2)	C4—C5—F15	119.5
F_{3} $-C_{12}$ $-C_{13}$	119.9 (2)	$C_{6} = C_{5} = C_{4}$	121.5 (2)
	119.7 (2)	C6—C5—H5	119.3
F4-C13-C8	120.2 (2)	С5—С6—Н6	122.2
F4—C13—C12	118.5 (2)	C/-C6-C5	115.5 (2)
C12—C13—C8	121.3 (2)	С7—С6—Н6	122.2
C1—O1—C7	107.32 (16)	C2—C7—O1	108.94 (18)
C1—N1—HN1	122.5 (19)	C6—C7—O1	127.43 (19)
C1—N1—C2	109.92 (18)	C6—C7—C2	123.6 (2)
C2—N1—HN1	127.6 (19)		
I1—C8—C9—F1	26(3)	C13-C8-C9-F1	179 0 (2)
11 - C8 - C9 - C10	-17656(17)	C_{13} C_{8} C_{9} C_{10}	-0.1(3)
11 - C8 - C13 - E4	-1.6(3)	N1 - C2 - C3 - C4	1799(2)
$11 - C_0 - C_{13} - 14$	176 58 (18)	N1 = C2 = C3 = C4	175.5(2)
11 - 6 - 613 - 612	-1, 1, (2)	N1 - C2 - C7 - C1	-180.0(2)
$12 - C_{10} - C_{11} - F_2$	1.1(3) 180.00(18)	$C_1 = C_1 = C_1 = C_2$	-0.6(2)
12 - 010 - 011 - 012	100.00(10)	$C_1 = 0_1 = 0_7 = 0_2$	170.6(2)
$F_1 = C_9 = C_10 = I_2$	-178.9(2)	$C_1 = 0_1 = 0_7 = 0_0$	1/9.0(2)
F1 = Cy = C10 = C11 $F2 = C11 = C12 = F2$	1/0.0(2)	C1 = N1 = C2 = C7	-1/9.9(2)
$F_2 = C_{11} = C_{12} = C_{12}$	-0.2(3)	$C_1 - N_1 - C_2 - C_1$	0.3(2)
$F_2 = C_{12} = C_{12} = C_{13}$	-1/8.2(2)	$\begin{array}{c} C_2 \\ \hline \\ \end{array} \\ \begin{array}{c} N_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \end{array} \\ \begin{array}{c} C_1 \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} C_1 \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} C_1 \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C_1 \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C_1 \\ \\ \end{array} $	1/9.30(1/)
F3-C12-C13-F4	-0.3(4)	C2—NI—CI—OI	-0.7 (2)
F3—C12—C13—C8	-178.4 (2)	C2—C3—C4—C5	0.3 (3)

C8—C9—C10—I2	179.72 (17)	C3—C2—C7—O1	-179.62 (19)
C8—C9—C10—C11	0.3 (3)	C3—C2—C7—C6	0.2 (3)
C9—C8—C13—F4	-178.0 (2)	C3—C4—C5—C6	0.0 (3)
C9—C8—C13—C12	0.1 (3)	C4—C5—C6—C7	-0.2 (3)
C9—C10—C11—F2	178.3 (2)	C5—C6—C7—O1	179.9 (2)
C9—C10—C11—C12	-0.6 (3)	C5—C6—C7—C2	0.1 (3)
C10-C11-C12-F3	178.7 (2)	C7—O1—C1—S1	-179.20 (15)
C10-C11-C12-C13	0.7 (4)	C7—O1—C1—N1	0.8 (2)
C11—C12—C13—F4	177.8 (2)	C7—C2—C3—C4	-0.4 (3)
C11—C12—C13—C8	-0.4 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N1—HN1····S1 ⁱ	0.88 (3)	2.52 (3)	3.3906 (19)	172 (3)
С3—Н3…І1іі	0.95	3.10	4.030 (2)	166

F(000) = 1336

 $\theta = 2.4 - 28.7^{\circ}$

 $\mu = 2.94 \text{ mm}^{-1}$

T = 100 K

 $D_{\rm x} = 2.013 {\rm Mg} {\rm m}^{-3}$

Tabular, colourless

 $0.29 \times 0.12 \times 0.03 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9971 reflections

Symmetry codes: (i) -*x*+2, -*y*+2, -*z*+1; (ii) -*x*+2, *y*+1/2, -*z*+1/2.

1,3-Benzoxazole-2-thiol-1,2,4,5-tetrafluoro-3,6-diiodobenzene (2/1) (2MBZOX_14F4DIB)

Crystal data

C₆F₄I₂·2C₇H₅NOS $M_r = 704.22$ Monoclinic, C2/c a = 31.025 (4) Å b = 4.3159 (5) Å c = 19.061 (2) Å $\beta = 114.434$ (4)° V = 2323.6 (5) Å³ Z = 4

Data collection

Bruker D8 Venture Photon 2 diffractometer	2950 independent reflections 2571 reflections with $L > 2\sigma(L)$
Radiation source: Incoatec LuS	$R_{\rm c} = 0.047$
φ and ω scans	$\theta_{\text{max}} = 28.7^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -41 \rightarrow 41$
(SADABS; Bruker, 2017)	$k = -5 \rightarrow 5$
$T_{\min} = 0.637, T_{\max} = 0.746$	$l = -25 \rightarrow 25$
25197 measured reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.060$ S = 1.322950 reflections 149 parameters 0 restraints Primary atom site location: dual Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + 11.7646P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 1.54$ e Å⁻³ $\Delta\rho_{min} = -1.15$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.64136 (2)	0.39079 (5)	0.46092 (2)	0.01937 (7)
F1	0.71102 (7)	0.7954 (5)	0.60381 (11)	0.0276 (5)
F2	0.70741 (7)	0.4164 (5)	0.36823 (11)	0.0273 (5)
C8	0.70659 (11)	0.6029 (8)	0.48500 (19)	0.0189 (6)
C9	0.72975 (11)	0.7707 (8)	0.55172 (19)	0.0194 (7)
C10	0.72770 (12)	0.5825 (8)	0.43364 (19)	0.0201 (7)
S1	0.54594 (3)	0.0194 (2)	0.43700 (5)	0.01964 (17)
01	0.49241 (8)	0.4059 (5)	0.32770 (12)	0.0181 (5)
N1	0.46292 (10)	0.3062 (7)	0.41195 (16)	0.0180 (6)
HN1	0.4609 (14)	0.224 (10)	0.452 (2)	0.028 (11)*
C1	0.49912 (12)	0.2491 (8)	0.39283 (18)	0.0182 (6)
C2	0.43102 (12)	0.5092 (8)	0.35848 (18)	0.0187 (6)
C3	0.38827 (12)	0.6362 (8)	0.35038 (19)	0.0227 (7)
Н3	0.374567	0.592471	0.385578	0.027*
C4	0.36660 (12)	0.8320 (8)	0.2875 (2)	0.0253 (7)
H4	0.337264	0.925746	0.279739	0.030*
C5	0.38649 (13)	0.8950 (8)	0.2355 (2)	0.0251 (7)
Н5	0.370406	1.030939	0.193581	0.030*
C6	0.42930 (12)	0.7643 (8)	0.24340 (19)	0.0224 (7)
H6	0.443055	0.805267	0.208135	0.027*
C7	0.45026 (11)	0.5714 (7)	0.30592 (18)	0.0181 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01700 (11)	0.01887 (11)	0.02288 (11)	-0.00041 (8)	0.00889 (8)	0.00070 (8)
F1	0.0248 (10)	0.0379 (12)	0.0253 (10)	-0.0054 (9)	0.0154 (9)	-0.0045 (9)
F2	0.0246 (10)	0.0342 (12)	0.0238 (10)	-0.0064 (9)	0.0107 (9)	-0.0095 (9)
C8	0.0180 (15)	0.0161 (15)	0.0231 (16)	-0.0009 (12)	0.0092 (13)	0.0014 (13)
C9	0.0178 (15)	0.0229 (17)	0.0198 (16)	0.0016 (13)	0.0101 (13)	0.0002 (13)
C10	0.0196 (16)	0.0197 (16)	0.0190 (15)	0.0010 (13)	0.0061 (13)	-0.0027 (13)
S 1	0.0185 (4)	0.0201 (4)	0.0209 (4)	-0.0009 (3)	0.0089 (3)	0.0015 (3)
01	0.0198 (11)	0.0198 (12)	0.0159 (10)	-0.0014 (9)	0.0087 (9)	0.0002 (9)
N1	0.0202 (14)	0.0190 (14)	0.0166 (13)	0.0002 (11)	0.0092 (11)	0.0030 (11)
C1	0.0217 (16)	0.0163 (16)	0.0172 (15)	-0.0055 (13)	0.0085 (13)	-0.0038 (12)
C2	0.0239 (17)	0.0140 (15)	0.0164 (15)	-0.0035 (13)	0.0064 (13)	-0.0009 (12)
C3	0.0219 (16)	0.0246 (18)	0.0220 (16)	0.0004 (14)	0.0094 (14)	-0.0018 (14)
C4	0.0212 (17)	0.0241 (19)	0.0289 (18)	-0.0004 (14)	0.0088 (15)	-0.0016 (15)
C5	0.0274 (18)	0.0215 (17)	0.0206 (16)	-0.0003 (15)	0.0041 (14)	0.0016 (14)

C6	0.0274 (18)	0.0226 (18)	0.0174 (16)	-0.0048 (14)	0.0097 (14)	0.0001 (13)
C7	0.0185 (15)	0.0158 (16)	0.0194 (15)	-0.0034 (12)	0.0073 (13)	-0.0026 (12)

Geometric parameters (Å, °)

Geometric purumeters (A,)			
I1—C8	2.092 (3)	N1—C2	1.397 (4)
F1—C9	1.346 (4)	C2—C3	1.383 (5)
F2—C10	1.347 (4)	C2—C7	1.388 (4)
C8—C9	1.379 (5)	С3—Н3	0.9500
C8—C10	1.388 (4)	C3—C4	1.391 (5)
C9—C10 ⁱ	1.385 (5)	C4—H4	0.9500
S1—C1	1.670 (3)	C4—C5	1.393 (5)
O1—C1	1.352 (4)	С5—Н5	0.9500
O1—C7	1.394 (4)	C5—C6	1.393 (5)
N1—HN1	0.87 (4)	С6—Н6	0.9500
N1—C1	1.339 (4)	C6—C7	1.376 (5)
C9—C8—I1	121.3 (2)	C3—C2—C7	121.4 (3)
C9—C8—C10	117.8 (3)	C7—C2—N1	105.2 (3)
C10—C8—I1	120.9 (2)	С2—С3—Н3	122.1
F1—C9—C8	120.2 (3)	C2—C3—C4	115.9 (3)
$F1-C9-C10^{i}$	118.8 (3)	С4—С3—Н3	122.1
C8—C9—C10 ⁱ	121.1 (3)	C3—C4—H4	118.9
F2C10C8	120.7 (3)	C3—C4—C5	122.2 (3)
F2—C10—C9 ⁱ	118.1 (3)	С5—С4—Н4	118.9
C9 ⁱ —C10—C8	121.2 (3)	С4—С5—Н5	119.1
C1—O1—C7	107.4 (2)	C6—C5—C4	121.8 (3)
C1—N1—HN1	123 (3)	С6—С5—Н5	119.1
C1—N1—C2	109.7 (3)	С5—С6—Н6	122.4
C2—N1—HN1	128 (3)	C7—C6—C5	115.2 (3)
O1—C1—S1	122.1 (2)	С7—С6—Н6	122.4
N1—C1—S1	128.6 (3)	C2—C7—O1	108.5 (3)
N1-C1-O1	109.2 (3)	C6—C7—O1	128.1 (3)
C3—C2—N1	133.4 (3)	C6—C7—C2	123.5 (3)
I1—C8—C9—F1	1.5 (4)	C1—N1—C2—C7	-0.1 (4)
$I1-C8-C9-C10^{i}$	-178.3 (3)	C2—N1—C1—S1	-179.1 (3)
I1—C8—C10—F2	-2.3 (4)	C2—N1—C1—O1	-0.4 (4)
$I1-C8-C10-C9^{i}$	178.3 (3)	C2—C3—C4—C5	0.4 (5)
C9—C8—C10—F2	178.5 (3)	C3—C2—C7—O1	-178.4 (3)
C9—C8—C10—C9 ⁱ	-0.9 (6)	C3—C2—C7—C6	1.1 (5)
C10—C8—C9—F1	-179.4 (3)	C3—C4—C5—C6	0.3 (6)
C10-C8-C9-C10 ⁱ	0.9 (6)	C4—C5—C6—C7	-0.3 (5)
N1—C2—C3—C4	-179.6 (3)	C5—C6—C7—O1	179.0 (3)
N1—C2—C7—O1	0.5 (3)	C5—C6—C7—C2	-0.4 (5)
N1—C2—C7—C6	180.0 (3)	C7—O1—C1—S1	179.5 (2)
C1—O1—C7—C2	-0.8 (3)	C7—O1—C1—N1	0.8 (3)

C1—O1—C7—C6	179.8 (3)	C7—C2—C3—C4	-1.0 (5)
C1—N1—C2—C3	178.6 (4)		

Symmetry code: (i) -x+3/2, -y+3/2, -z+1.

Hydrogen-bond geometry (Å. °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—HN1····S1 ⁱⁱ	0.87 (4)	2.45 (4)	3.316 (3)	178 (4)
C3—H3…I1 ⁱⁱⁱ	0.95	3.16	4.066 (3)	159

Symmetry codes: (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1.

1,3-Benzoxazole-2-thiol-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1) (MBZOX 135F3I3B)

Crystal data

C₆F₃I₃·C₇H₅NOS $M_r = 660.94$ Monoclinic, $P2_1/c$ *a* = 14.9295 (7) Å b = 4.6119(2) Å c = 23.5065 (12) Å $\beta = 92.548 \ (2)^{\circ}$ $V = 1616.90 (13) \text{ Å}^3$ Z = 4

Data collection

Bruker D8 Venture Photon 2
diffractometer
Radiation source: Incoatec $I\mu S$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
$T_{\min} = 0.551, \ T_{\max} = 0.745$
19413 measured reflections

Refinement

Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ and constrained refinement $wR(F^2) = 0.061$ $w = 1/[\sigma^2(F_o^2) + (0.0015P)^2 + 8.0148P]$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.223348 reflections $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta \rho_{\rm max} = 0.80 \text{ e} \text{ Å}^{-3}$ 203 parameters $\Delta \rho_{\rm min} = -0.77 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 1200 $D_{\rm x} = 2.715 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 9982 reflections $\theta = 2.7 - 26.5^{\circ}$ $\mu = 5.96 \text{ mm}^{-1}$ T = 100 KColumn, colourless $0.22 \times 0.06 \times 0.05 \text{ mm}$

3348 independent reflections 2845 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.050$ $\theta_{\rm max} = 26.6^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$ $h = -18 \rightarrow 18$ $k = -5 \rightarrow 5$ $l = -29 \rightarrow 29$

H atoms treated by a mixture of independent

	x	у	Z	$U_{ m iso}$ $\overline{*/U_{ m eq}}$
I1	0.70807 (2)	0.45232 (7)	0.55419 (2)	0.01748 (9)
I2	0.67869 (2)	1.23515 (8)	0.76030(2)	0.02173 (10)
I3	0.36351 (2)	1.08539 (8)	0.59175 (2)	0.02080 (10)
F1	0.75694 (18)	0.8001 (7)	0.66897 (14)	0.0224 (7)
F2	0.4884 (2)	1.2983 (7)	0.69902 (14)	0.0233 (7)
F3	0.50893 (19)	0.6840 (7)	0.54104 (13)	0.0216 (7)
C8	0.6336 (3)	0.7273 (11)	0.6051 (2)	0.0148 (10)
C9	0.6700 (3)	0.8566 (12)	0.6536 (2)	0.0171 (11)
C10	0.6230 (3)	1.0473 (12)	0.6861 (2)	0.0172 (11)
C11	0.5357 (3)	1.1100 (11)	0.6684 (2)	0.0182 (11)
C12	0.4950 (3)	0.9888 (12)	0.6197 (2)	0.0161 (11)
C13	0.5456 (3)	0.8001 (11)	0.5888 (2)	0.0150 (11)
S1	0.85264 (8)	0.0073 (3)	0.48739 (6)	0.0189 (3)
01	0.8417 (2)	0.3886 (8)	0.40283 (15)	0.0173 (8)
N1	0.9806 (3)	0.3173 (10)	0.43450 (19)	0.0160 (9)
HN1	1.021 (4)	0.235 (15)	0.456 (3)	0.04 (2)*
C1	0.8953 (3)	0.2405 (12)	0.4417 (2)	0.0179 (11)
C2	0.9850 (3)	0.5192 (11)	0.3901 (2)	0.0161 (11)
C3	1.0549 (4)	0.6679 (12)	0.3661 (2)	0.0214 (12)
H3	1.115554	0.640591	0.378875	0.026*
C4	1.0309 (4)	0.8596 (12)	0.3222 (2)	0.0209 (12)
H4	1.076369	0.965301	0.304220	0.025*
C5	0.9402 (4)	0.9002 (12)	0.3038 (2)	0.0215 (12)
Н5	0.926165	1.034052	0.274018	0.026*
C6	0.8718 (3)	0.7504 (12)	0.3281 (2)	0.0194 (11)
H6	0.810884	0.774932	0.315558	0.023*
C7	0.8969 (3)	0.5632 (11)	0.3715 (2)	0.0175 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01571 (16)	0.01825 (18)	0.01870 (18)	0.00147 (13)	0.00332 (13)	0.00178 (14)
I2	0.02249 (18)	0.0226 (2)	0.01963 (19)	-0.00506 (14)	-0.00417 (14)	-0.00151 (15)
I3	0.01328 (16)	0.0296 (2)	0.01939 (19)	0.00433 (14)	-0.00095 (13)	0.00351 (16)
F1	0.0106 (14)	0.0263 (18)	0.0298 (18)	0.0009 (12)	-0.0040 (13)	0.0000 (15)
F2	0.0196 (15)	0.0230 (18)	0.0274 (18)	0.0043 (13)	0.0018 (13)	-0.0061 (15)
F3	0.0164 (15)	0.0279 (18)	0.0201 (16)	0.0002 (13)	-0.0031 (12)	-0.0072 (14)
C8	0.019 (3)	0.006 (2)	0.018 (3)	0.0031 (19)	-0.004 (2)	-0.002 (2)
C9	0.010 (2)	0.021 (3)	0.020 (3)	-0.001 (2)	0.001 (2)	0.007 (2)
C10	0.015 (2)	0.024 (3)	0.012 (3)	-0.003 (2)	0.000 (2)	0.001 (2)
C11	0.018 (3)	0.011 (3)	0.026 (3)	0.001 (2)	0.007 (2)	0.003 (2)
C12	0.011 (2)	0.020 (3)	0.017 (3)	-0.001 (2)	-0.001 (2)	0.002 (2)
C13	0.015 (2)	0.015 (3)	0.014 (3)	-0.0009 (19)	-0.002 (2)	0.001 (2)
S 1	0.0167 (6)	0.0202 (7)	0.0200 (7)	0.0025 (5)	0.0036 (5)	0.0035 (6)
01	0.0153 (17)	0.019 (2)	0.0177 (19)	0.0016 (14)	0.0007 (14)	0.0059 (16)

N1	0.012 (2)	0.023 (3)	0.012 (2)	0.0051 (18)	-0.0012 (17)	0.0016 (19)	
C1	0.016 (2)	0.022 (3)	0.016 (3)	0.006 (2)	-0.002 (2)	-0.005 (2)	
C2	0.014 (2)	0.015 (3)	0.018 (3)	0.004 (2)	-0.001 (2)	-0.004 (2)	
C3	0.018 (3)	0.025 (3)	0.021 (3)	0.002 (2)	0.002 (2)	-0.001 (2)	
C4	0.023 (3)	0.020 (3)	0.020 (3)	-0.002 (2)	0.011 (2)	-0.002 (2)	
C5	0.037 (3)	0.017 (3)	0.011 (3)	0.004 (2)	0.003 (2)	0.002 (2)	
C6	0.016 (3)	0.021 (3)	0.021 (3)	0.005 (2)	-0.002 (2)	-0.002 (2)	
C7	0.018 (3)	0.014 (3)	0.020 (3)	-0.001 (2)	0.002 (2)	-0.004 (2)	

Geometric parameters (Å, °)

I1—C8	2.096 (5)	O1—C7	1.387 (6)
I2—C10	2.086 (5)	N1—HN1	0.85 (7)
I3—C12	2.091 (5)	N1—C1	1.340 (7)
F1—C9	1.356 (5)	N1—C2	1.403 (7)
F2—C11	1.347 (6)	C2—C3	1.389 (8)
F3—C13	1.340 (6)	C2—C7	1.383 (7)
C8—C9	1.378 (7)	С3—Н3	0.9500
C8—C13	1.392 (7)	C3—C4	1.393 (8)
C9—C10	1.378 (8)	C4—H4	0.9500
C10—C11	1.381 (7)	C4—C5	1.415 (8)
C11—C12	1.389 (7)	С5—Н5	0.9500
C12—C13	1.379 (7)	C5—C6	1.377 (8)
S1—C1	1.666 (6)	С6—Н6	0.9500
O1—C1	1.370 (6)	C6—C7	1.376 (8)
C9—C8—I1	122.3 (4)	O1—C1—S1	121.6 (4)
C9—C8—C13	117.1 (5)	N1—C1—S1	130.2 (4)
C13—C8—I1	120.5 (4)	N1-C1-O1	108.3 (5)
F1—C9—C8	118.4 (5)	C3—C2—N1	133.7 (5)
F1—C9—C10	118.7 (5)	C7—C2—N1	104.9 (4)
C10—C9—C8	122.9 (5)	C7—C2—C3	121.4 (5)
C9—C10—I2	122.3 (4)	С2—С3—Н3	121.9
C9—C10—C11	117.7 (5)	C2—C3—C4	116.2 (5)
C11—C10—I2	120.0 (4)	С4—С3—Н3	121.9
F2-C11-C10	119.0 (5)	C3—C4—H4	119.3
F2-C11-C12	118.7 (5)	C3—C4—C5	121.4 (5)
C10-C11-C12	122.4 (5)	C5—C4—H4	119.3
C11—C12—I3	122.9 (4)	С4—С5—Н5	119.2
C13—C12—I3	119.8 (4)	C6—C5—C4	121.6 (5)
C13—C12—C11	117.3 (5)	С6—С5—Н5	119.2
F3—C13—C8	118.6 (4)	С5—С6—Н6	122.0
F3—C13—C12	118.7 (4)	C7—C6—C5	116.1 (5)
C12—C13—C8	122.7 (5)	С7—С6—Н6	122.0
C1—O1—C7	107.6 (4)	C2-C7-O1	109.0 (5)
C1—N1—HN1	117 (5)	C6—C7—O1	127.6 (5)
C1—N1—C2	110.2 (4)	C6—C7—C2	123.4 (5)
C2—N1—HN1	132 (5)		

-0.7 (7)	C13—C8—C9—F1	-177.0 (5)
177.2 (4)	C13—C8—C9—C10	0.9 (8)
2.0 (7)	N1—C2—C3—C4	-178.6 (5)
-177.5 (4)	N1—C2—C7—O1	-1.3 (6)
1.5 (7)	N1—C2—C7—C6	179.5 (5)
-179.3 (4)	C1—O1—C7—C2	1.3 (6)
0.4 (7)	C1—O1—C7—C6	-179.6 (5)
179.9 (4)	C1—N1—C2—C3	179.1 (6)
-3.2 (7)	C1—N1—C2—C7	0.9 (6)
177.6 (5)	C2—N1—C1—S1	179.1 (4)
-0.1 (7)	C2—N1—C1—O1	-0.2 (6)
179.1 (5)	C2—C3—C4—C5	0.5 (8)
178.9 (4)	C3—C2—C7—O1	-179.7 (5)
-0.3 (8)	C3—C2—C7—C6	1.0 (8)
178.3 (5)	C3—C4—C5—C6	-0.6 (8)
-1.1 (8)	C4—C5—C6—C7	0.8 (8)
-179.2 (5)	C5—C6—C7—O1	179.9 (5)
-0.1 (8)	C5—C6—C7—C2	-1.1 (8)
-179.2 (4)	C7—O1—C1—S1	180.0 (4)
-0.1 (8)	C7—O1—C1—N1	-0.7 (6)
-178.7 (5)	C7—C2—C3—C4	-0.7 (8)
0.7 (8)		
	$\begin{array}{c} -0.7 (7) \\ 177.2 (4) \\ 2.0 (7) \\ -177.5 (4) \\ 1.5 (7) \\ -179.3 (4) \\ 0.4 (7) \\ 179.9 (4) \\ -3.2 (7) \\ 177.6 (5) \\ -0.1 (7) \\ 179.1 (5) \\ 178.9 (4) \\ -0.3 (8) \\ 178.3 (5) \\ -1.1 (8) \\ -179.2 (5) \\ -0.1 (8) \\ -179.2 (4) \\ -0.1 (8) \\ -178.7 (5) \\ 0.7 (8) \end{array}$	-0.7 (7) $C13-C8-C9-F1$ $177.2 (4)$ $C13-C8-C9-C10$ $2.0 (7)$ $N1-C2-C3-C4$ $-177.5 (4)$ $N1-C2-C7-01$ $1.5 (7)$ $N1-C2-C7-C6$ $-179.3 (4)$ $C1-O1-C7-C2$ $0.4 (7)$ $C1-O1-C7-C6$ $179.9 (4)$ $C1-N1-C2-C3$ $-3.2 (7)$ $C1-N1-C2-C7$ $177.6 (5)$ $C2-N1-C1-S1$ $-0.1 (7)$ $C2-N1-C1-O1$ $179.9 (4)$ $C3-C2-C7-O1$ $-0.1 (7)$ $C2-C3-C4-C5$ $178.9 (4)$ $C3-C2-C7-O1$ $-0.3 (8)$ $C3-C2-C7-O1$ $-0.3 (8)$ $C3-C2-C7-C6$ $178.3 (5)$ $C3-C4-C5-C6$ $-1.1 (8)$ $C4-C5-C6-C7$ $-179.2 (5)$ $C5-C6-C7-O1$ $-0.1 (8)$ $C7-O1-C1-S1$ $-0.1 (8)$ $C7-O1-C1-N1$ $-178.7 (5)$ $C7-C2-C3-C4$ $0.7 (8)$ $C7-C2-C3-C4$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—HN1····S1 ⁱ	0.85 (7)	2.53 (7)	3.377 (4)	176 (6)
С3—Н3…І1 ^{іі}	0.95	3.04	3.969 (5)	167
C6—H6…I2 ⁱⁱⁱ	0.95	3.23	4.009 (5)	140

Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x, -y+5/2, z-1/2.

1,3-Benzothiazole-2-thiol)–1,2,3,4-tetrafluoro-5,6-diiodobenzene (3/4) (3MBZTH_412F4DIB)

Crystal data	
$\begin{array}{l} 4C_{6}F_{4}I_{2}\cdot 3C_{7}H_{5}NS_{2} \\ M_{r} = 2109.16 \\ \text{Triclinic, } P\overline{1} \\ a = 7.9410 \ (8) \ \text{\AA} \\ b = 14.8483 \ (15) \ \text{\AA} \\ c = 24.641 \ (3) \ \text{\AA} \\ a = 79.264 \ (4)^{\circ} \\ \beta = 87.104 \ (4)^{\circ} \\ \gamma = 82.784 \ (4)^{\circ} \end{array}$	$V = 2830.9 (5) Å^{3}$ Z = 2 F(000) = 1940 $D_{x} = 2.474 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 Å$ $\mu = 4.69 \text{ mm}^{-1}$ T = 100 K Plate, colourless $0.30 \times 0.13 \times 0.04 \text{ mm}$
Data collection	
Bruker D8 Venture Photon 2 diffractometer Radiation source: Incoatec I μ S φ and ω scans	Absorption correction: multi-scan (SADABS; Bruker, 2017) $T_{min} = 0.570, T_{max} = 0.746$ 78566 measured reflections

12466 independent reflections	$h = -10 \rightarrow 10$
11325 reflections with $I > 2\sigma(I)$	$k = -19 \rightarrow 19$
$R_{\rm int} = 0.067$	$l = -31 \rightarrow 31$
$\theta_{\rm max} = 27.2^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.067$	H-atom parameters constrained
$wR(F^2) = 0.220$	$w = 1/[\overline{\sigma^2}(F_o^2) + (0.1285P)^2 + 109.2112P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
12466 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
704 parameters	$\Delta \rho_{\rm max} = 2.61 \text{ e } \text{\AA}^{-3}$
66 restraints	$\Delta \rho_{\rm min} = -1.48 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	<i>x</i>	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.36226 (13)	1.16753 (7)	0.05962 (4)	0.0199 (2)
I2	-0.11193 (13)	1.17703 (7)	0.07045 (4)	0.0192 (2)
S3	0.8569 (5)	0.2851 (3)	0.27854 (18)	0.0222 (8)
S4	0.9358 (5)	0.3501 (3)	0.15807 (18)	0.0219 (8)
F1	-0.1901 (12)	0.9764 (7)	0.0748 (4)	0.023 (2)
F2	0.0046 (12)	0.8143 (6)	0.0705 (4)	0.0210 (18)
F3	0.3454 (12)	0.8083 (6)	0.0614 (4)	0.0218 (19)
F4	0.4959 (11)	0.9599 (7)	0.0585 (4)	0.023 (2)
N2	0.7575 (18)	0.4523 (10)	0.2157 (6)	0.022 (3)
HN2	0.702118	0.472763	0.243675	0.026*
C8	0.8414 (19)	0.3657 (12)	0.2214 (7)	0.022 (3)
С9	0.8613 (18)	0.4590 (11)	0.1256 (8)	0.022 (3)
C10	0.877 (2)	0.5034 (12)	0.0712 (7)	0.025 (3)
H10	0.946102	0.474610	0.045108	0.030*
C11	0.792 (3)	0.5893 (13)	0.0558 (8)	0.033 (3)
H11	0.792908	0.617175	0.017859	0.040*
C12	0.704 (2)	0.6375 (13)	0.0933 (8)	0.029 (3)
H12	0.656903	0.699744	0.081256	0.035*
C13	0.683 (2)	0.5975 (11)	0.1470 (8)	0.024 (3)
H13	0.616999	0.629053	0.172475	0.029*
C14	0.764 (2)	0.5071 (12)	0.1632 (7)	0.021 (3)
C22	0.2314 (19)	1.0522 (10)	0.0647 (6)	0.014 (3)
C23	0.0557 (18)	1.0544 (10)	0.0689 (6)	0.016 (3)
C24	-0.0213 (17)	0.9775 (10)	0.0714 (6)	0.014 (2)
C25	0.0758 (19)	0.8923 (10)	0.0684 (6)	0.015 (2)

C26	0.2483 (19)	0.8892 (10)	0.0642 (6)	0.016 (3)
C27	0.3254 (18)	0.9675 (10)	0.0619 (6)	0.015 (3)
I3	0.64678 (12)	1.13261 (7)	0.23166 (4)	0.0194 (2)
I4	0.18439 (13)	1.10869 (8)	0.23135 (5)	0.0227 (2)
F5	0.1660 (12)	0.9119 (8)	0.2046 (5)	0.028 (2)
F6	0.4004 (14)	0.7773 (7)	0.1803 (5)	0.032 (2)
F7	0.7341 (13)	0.8013 (7)	0.1742 (5)	0.028 (2)
F8	0.8342 (12)	0.9554 (7)	0.1967 (5)	0.027(2)
C28	0.548 (2)	1.0190 (11)	0.2120 (6)	0.019 (3)
C29	0.3765(17)	1.0068 (10)	0.2139 (6)	0.014(3)
C30	0.3703(17) 0.3304(19)	0.9261(12)	0.2137(6)	0.019(3)
C31	0.3301(13) 0.447(2)	0.9201(12) 0.8555(11)	0.2037(0) 0.1910(7)	0.019(3)
C32	0.117(2) 0.618(2)	0.8672 (12)	0.1910(7) 0.1869(7)	0.020(3)
C33	0.6663(18)	0.0072(12) 0.9461(11)	0.1005(7)	0.022(3)
15	0.0003(10) 0.23233(12)	0.7401(11) 0.71850(7)	0.1980(7) 0.32850(4)	0.018(3)
15	-0.23233(12)	0.71339(7) 0.70593(7)	0.32000(4) 0.32425(4)	0.0105(2)
FO	-0.4003(13)	0.70393(7)	0.32423(4) 0.3451(4)	0.0200(2)
F9 E10	-0.4093(13)	0.0931(0)	0.3431(4)	0.028(2)
	-0.2991(13)	1.0414(7) 1.0524(7)	0.3748(3)	0.028(2)
	0.0385(13)	1.0534 (7)	0.3782(5)	0.027(2)
F12	0.2640(12)	0.9152(7)	0.3547 (5)	0.026(2)
C34	0.0485 (19)	0.8268 (10)	0.3394 (6)	0.017(3)
C35	-0.1293 (18)	0.8223 (10)	0.3377(6)	0.015 (2)
C36	-0.2433 (18)	0.8975 (10)	0.3469 (6)	0.016 (2)
C37	-0.1897 (18)	0.9730 (10)	0.3622 (6)	0.015 (2)
C38	-0.016 (2)	0.9776 (11)	0.3644 (7)	0.020 (3)
C39	0.097 (2)	0.9065 (10)	0.3535 (7)	0.019 (3)
I7	0.02233 (13)	0.46575 (7)	0.37019 (4)	0.0196 (2)
18	-0.02757 (15)	0.35978 (8)	0.51719 (5)	0.0269 (3)
F13	0.1440 (16)	0.1570 (8)	0.5289 (4)	0.036 (3)
F14	0.3307 (17)	0.0627 (7)	0.4593 (5)	0.037 (3)
F15	0.3867 (14)	0.1426 (7)	0.3536 (4)	0.030(2)
F16	0.2600 (13)	0.3180 (7)	0.3159 (4)	0.026 (2)
C40	0.1256 (19)	0.3310 (9)	0.4037 (6)	0.015 (3)
C41	0.100 (2)	0.2902 (12)	0.4582 (7)	0.020(3)
C42	0.171 (2)	0.2029 (13)	0.4767 (7)	0.025 (3)
C43	0.263 (2)	0.1486 (12)	0.4419 (7)	0.023 (3)
C44	0.292 (2)	0.1890 (11)	0.3876 (7)	0.022 (3)
C45	0.223 (2)	0.2791 (10)	0.3680 (6)	0.017 (3)
S1	0.5243 (5)	0.5375 (3)	0.31454 (16)	0.0193 (7)
S2	0.4491 (5)	0.4693 (3)	0.43557 (17)	0.0217 (8)
N1	0.6185 (17)	0.3686 (9)	0.3737 (6)	0.020(2)
HN1	0.671175	0.349037	0.345043	0.025*
C1	0.5386 (19)	0.4543 (10)	0.3712 (6)	0.0156 (18)
C2	0.518 (2)	0.3547 (12)	0.4654 (7)	0.022 (3)
C3	0.498 (2)	0.3107 (13)	0.5198 (6)	0.024 (3)
Н3	0.442344	0.342280	0.547045	0.029*
C4	0.566 (3)	0.2171 (16)	0.5328 (9)	0.042 (5)
H4	0.548501	0.183201	0.568902	0.050*

C5	0.659 (3)	0.1730 (14)	0.4927 (8)	0.037 (5)	
Н5	0.705227	0.110313	0.502792	0.044*	
C6	0.684 (2)	0.2196 (12)	0.4377 (8)	0.028 (4)	
H6	0.746640	0.190247	0.410614	0.033*	
C7	0.610 (2)	0.3135 (11)	0.4259 (8)	0.024 (3)	
S5	0.5779 (5)	0.3528 (3)	0.04223 (16)	0.0185 (7)	
S6	0.4242 (5)	0.3654 (3)	0.15534 (16)	0.0196 (7)	
N3	0.3879 (16)	0.4977 (9)	0.0733 (5)	0.016 (2)	
HN3	0.397601	0.531273	0.040138	0.019*	
C15	0.4623 (19)	0.4112 (10)	0.0858 (6)	0.016 (3)	
C16	0.3061 (19)	0.4678 (10)	0.1659 (6)	0.016 (3)	
C17	0.216 (2)	0.4894 (11)	0.2134 (6)	0.021 (3)	
H17	0.215714	0.445412	0.246790	0.025*	
C18	0.128 (2)	0.5768 (12)	0.2101 (7)	0.025 (3)	
H18	0.074519	0.594232	0.242502	0.030*	
C19	0.116 (2)	0.6408 (11)	0.1597 (8)	0.026 (4)	
H19	0.048383	0.698679	0.158241	0.032*	
C20	0.2008 (19)	0.6197 (10)	0.1133 (7)	0.019 (3)	
H20	0.197834	0.663313	0.079745	0.022*	
C21	0.2922 (19)	0.5323 (10)	0.1166 (6)	0.015 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
I1	0.0179 (5)	0.0178 (5)	0.0249 (5)	-0.0061 (4)	0.0017 (4)	-0.0046 (4)
I2	0.0168 (5)	0.0176 (4)	0.0238 (5)	0.0017 (3)	0.0003 (4)	-0.0076 (4)
S3	0.026 (2)	0.0144 (17)	0.026 (2)	0.0011 (14)	0.0023 (16)	-0.0064 (15)
S4	0.0223 (19)	0.0171 (18)	0.027 (2)	-0.0012 (14)	0.0041 (16)	-0.0092 (15)
F1	0.014 (4)	0.025 (5)	0.030 (5)	-0.001 (4)	0.001 (4)	-0.004 (4)
F2	0.021 (2)	0.022 (2)	0.022 (2)	-0.0089 (18)	-0.0027 (18)	-0.0044 (18)
F3	0.016 (4)	0.016 (4)	0.032 (5)	0.004 (3)	0.000 (4)	-0.006 (4)
F4	0.007 (4)	0.024 (5)	0.038 (6)	-0.004 (3)	0.001 (4)	-0.006 (4)
N2	0.020(7)	0.020(7)	0.026 (7)	0.002 (5)	0.001 (5)	-0.009 (6)
C8	0.011 (7)	0.025 (8)	0.032 (9)	-0.002 (6)	-0.011 (6)	-0.011 (7)
С9	0.004 (6)	0.021 (8)	0.043 (10)	0.000 (5)	-0.001 (6)	-0.011 (7)
C10	0.030 (7)	0.021 (7)	0.025 (7)	0.001 (6)	-0.012 (6)	-0.009 (6)
C11	0.042 (7)	0.028 (7)	0.031 (7)	0.011 (6)	-0.019 (6)	-0.013 (6)
C12	0.028 (7)	0.025 (7)	0.034 (7)	0.002 (6)	-0.010 (6)	-0.008 (6)
C13	0.012 (7)	0.019 (8)	0.041 (10)	-0.001 (6)	-0.005 (7)	-0.007 (7)
C14	0.023 (8)	0.024 (8)	0.019 (7)	-0.009 (6)	0.015 (6)	-0.010 (6)
C22	0.018 (7)	0.014 (6)	0.006 (6)	0.004 (5)	0.001 (5)	0.001 (5)
C23	0.009 (5)	0.018 (6)	0.018 (6)	0.001 (5)	0.002 (5)	-0.001 (5)
C24	0.005 (5)	0.016 (5)	0.021 (5)	0.002 (4)	0.004 (4)	-0.004 (4)
C25	0.016 (6)	0.013 (6)	0.016 (6)	0.000 (5)	0.002 (5)	-0.004(5)
C26	0.016 (7)	0.015 (7)	0.017 (7)	0.006 (5)	-0.008 (6)	-0.008 (6)
C27	0.012 (6)	0.012 (6)	0.020 (7)	0.001 (5)	0.004 (5)	-0.005 (6)
I3	0.0164 (5)	0.0180 (5)	0.0230 (5)	-0.0020 (3)	0.0015 (4)	-0.0025 (4)
I4	0.0135 (4)	0.0257 (5)	0.0256 (5)	0.0039 (4)	0.0016 (4)	-0.0007(4)

F5	0.010 (4)	0.041 (6)	0.036 (6)	-0.007 (4)	0.001 (4)	-0.012(5)
F6	0.026 (5)	0.025 (5)	0.049 (7)	-0.004 (4)	-0.003 (5)	-0.013 (5)
F7	0.022 (5)	0.028 (5)	0.036 (6)	0.000 (4)	0.004 (4)	-0.015 (4)
F8	0.009 (4)	0.028 (5)	0.047 (6)	-0.003 (4)	0.001 (4)	-0.013 (5)
C28	0.019 (8)	0.017 (7)	0.016 (7)	0.001 (6)	0.008 (6)	0.001 (6)
C29	0.006 (6)	0.018 (7)	0.022 (7)	-0.003 (5)	-0.001 (5)	-0.010 (6)
C30	0.013 (7)	0.034 (9)	0.008 (6)	-0.003 (6)	-0.005 (5)	-0.001 (6)
C31	0.016 (7)	0.020 (7)	0.025 (8)	0.000 (6)	-0.005 (6)	-0.004 (6)
C32	0.020 (8)	0.027 (8)	0.021 (8)	-0.001 (6)	-0.004 (6)	-0.007 (6)
C33	0.004 (6)	0.022 (8)	0.028 (8)	-0.002(5)	0.003 (6)	-0.007 (6)
15	0.0127 (4)	0.0181 (4)	0.0233 (5)	0.0019 (3)	0.0022 (4)	-0.0047 (4)
I6	0.0161 (5)	0.0194 (5)	0.0249 (5)	-0.0025 (4)	-0.0033 (4)	-0.0039 (4)
F9	0.016 (5)	0.031 (5)	0.032 (5)	0.002 (4)	-0.001 (4)	0.004 (4)
F10	0.022 (5)	0.020 (5)	0.042 (6)	0.008 (4)	0.002 (4)	-0.010 (4)
F11	0.025 (5)	0.022 (5)	0.038 (6)	-0.004 (4)	-0.001 (4)	-0.013 (4)
F12	0.012 (4)	0.020 (5)	0.043 (6)	-0.002 (4)	-0.001 (4)	0.003 (4)
C34	0.014 (7)	0.008 (6)	0.023 (7)	0.003 (5)	0.003 (6)	0.007 (5)
C35	0.008 (5)	0.016 (5)	0.020 (5)	-0.001 (4)	-0.003 (4)	0.004 (4)
C36	0.006 (4)	0.017 (5)	0.020 (5)	0.001 (4)	-0.001 (4)	0.004 (4)
C37	0.006 (5)	0.017 (5)	0.021 (5)	0.001 (4)	0.001 (4)	0.001 (4)
C38	0.021 (8)	0.017 (7)	0.021 (7)	-0.001 (6)	-0.004 (6)	0.003 (6)
C39	0.027 (8)	0.010 (6)	0.019 (7)	-0.004 (6)	0.001 (6)	0.000 (5)
I7	0.0181 (5)	0.0162 (4)	0.0234 (5)	0.0003 (3)	-0.0028 (4)	-0.0016 (4)
18	0.0288 (6)	0.0313 (6)	0.0212 (5)	-0.0007 (4)	0.0039 (4)	-0.0091 (4)
F13	0.048 (7)	0.029 (6)	0.022 (5)	-0.004 (5)	0.001 (5)	0.012 (4)
F14	0.056 (8)	0.018 (5)	0.033 (6)	0.009 (5)	-0.011 (5)	0.000 (4)
F15	0.031 (6)	0.030 (5)	0.030 (5)	0.010 (4)	0.007 (4)	-0.016 (4)
F16	0.026 (5)	0.030 (5)	0.018 (5)	0.003 (4)	0.006 (4)	0.001 (4)
C40	0.019 (7)	0.007 (6)	0.017 (7)	0.003 (5)	0.002 (5)	-0.002(5)
C41	0.015 (6)	0.027 (7)	0.017 (6)	-0.002(5)	-0.006(5)	0.003 (5)
C42	0.019 (6)	0.035 (7)	0.013 (5)	0.009 (5)	0.001 (5)	0.007 (5)
C43	0.022 (6)	0.022 (7)	0.020 (6)	0.004 (6)	-0.008(5)	0.004 (5)
C44	0.024 (8)	0.020 (8)	0.024 (8)	-0.002(6)	0.002 (6)	-0.009 (6)
C45	0.018 (7)	0.014 (7)	0.016 (7)	0.003 (5)	0.002 (6)	0.000 (6)
S 1	0.0186 (17)	0.0161 (17)	0.0224 (18)	0.0004 (14)	0.0010 (14)	-0.0038 (14)
S2	0.0197 (18)	0.0264 (19)	0.0195 (17)	0.0001 (15)	0.0006 (14)	-0.0077 (15)
N1	0.020 (5)	0.021 (5)	0.023 (5)	-0.004 (4)	-0.001 (4)	-0.007 (4)
C1	0.015 (4)	0.019 (4)	0.017 (4)	-0.006(3)	-0.002(3)	-0.010 (3)
C2	0.015 (7)	0.030 (9)	0.021 (8)	-0.008 (6)	0.003 (6)	-0.003 (7)
C3	0.019 (8)	0.042 (10)	0.010(7)	-0.005(7)	0.001 (6)	-0.001(7)
C4	0.041 (12)	0.051 (13)	0.032 (10)	-0.030 (10)	-0.007(9)	0.011 (9)
C5	0.058 (13)	0.026 (9)	0.022 (9)	-0.008(9)	-0.008(8)	0.010(7)
C6	0.031 (9)	0.018 (8)	0.033 (9)	-0.004(7)	-0.012(7)	0.001 (7)
C7	0.026 (8)	0.014 (7)	0.031 (9)	-0.002(6)	-0.009(7)	0.002 (6)
S5	0.0195 (18)	0.0119 (16)	0.0226 (18)	0.0032 (13)	0.0020 (14)	-0.0028 (14)
S6	0.0213 (18)	0.0154 (17)	0.0201 (18)	0.0013 (14)	-0.0005 (14)	-0.0005 (14)
N3	0.016 (6)	0.014 (6)	0.017 (6)	0.004 (5)	0.000 (5)	-0.003 (5)
C15	0.018 (7)	0.011 (6)	0.020 (7)	-0.002 (5)	-0.007 (6)	-0.001 (5)
	× /		× /	~ /	~ /	· · ·

C16	0.013 (7)	0.015 (7)	0.019 (7)	-0.001 (5)	0.002 (5)	-0.002 (6)
C17	0.031 (9)	0.021 (8)	0.009 (6)	0.001 (7)	-0.003 (6)	0.002 (6)
C18	0.016 (7)	0.030 (9)	0.028 (8)	0.004 (6)	0.001 (6)	-0.009 (7)
C19	0.033 (9)	0.012 (7)	0.033 (9)	0.007 (6)	-0.006 (7)	-0.008 (7)
C20	0.016 (7)	0.014 (7)	0.024 (8)	-0.005 (6)	0.013 (6)	0.000 (6)
C21	0.018 (7)	0.012 (6)	0.016 (7)	-0.005 (5)	0.004 (5)	-0.004 (5)

Geometric parameters (Å, °)

I1—C22	2.094 (15)	C35—C36	1.39 (2)
I2—C23	2.121 (15)	C36—C37	1.37 (2)
S3—C8	1.669 (18)	C37—C38	1.40 (2)
S4—C8	1.738 (18)	C38—C39	1.35 (2)
S4—C9	1.711 (17)	I7—C40	2.097 (14)
F1—C24	1.341 (16)	I8—C41	2.086 (17)
F2—C25	1.344 (17)	F13—C42	1.358 (19)
F3—C26	1.355 (16)	F14—C43	1.320 (19)
F4—C27	1.344 (17)	F15—C44	1.328 (18)
N2—HN2	0.8800	F16—C45	1.341 (18)
N2—C8	1.36 (2)	C40—C41	1.38 (2)
N2	1.40 (2)	C40—C45	1.41 (2)
C9—C10	1.39 (3)	C41—C42	1.35 (2)
C9—C14	1.42 (2)	C42—C43	1.40 (2)
C10—H10	0.9500	C43—C44	1.38 (2)
C10—C11	1.36 (2)	C44—C45	1.39 (2)
C11—H11	0.9500	S1—C1	1.680 (16)
C11—C12	1.38 (3)	S2—C1	1.747 (15)
C12—H12	0.9500	S2—C2	1.755 (19)
C12—C13	1.36 (3)	N1—HN1	0.8800
С13—Н13	0.9500	N1—C1	1.34 (2)
C13—C14	1.41 (2)	N1—C7	1.39 (2)
C22—C23	1.39 (2)	C2—C3	1.39 (2)
C22—C27	1.391 (19)	C2—C7	1.38 (2)
C23—C24	1.35 (2)	С3—Н3	0.9500
C24—C25	1.408 (19)	C3—C4	1.41 (3)
C25—C26	1.36 (2)	C4—H4	0.9500
C26—C27	1.37 (2)	C4—C5	1.41 (3)
I3—C28	2.089 (16)	С5—Н5	0.9500
I4—C29	2.097 (14)	C5—C6	1.42 (3)
F5—C30	1.347 (18)	С6—Н6	0.9500
F6—C31	1.336 (19)	C6—C7	1.43 (2)
F7—C32	1.330 (19)	S5—C15	1.671 (16)
F8—C33	1.355 (17)	S6—C15	1.749 (16)
C28—C29	1.40 (2)	S6—C16	1.740 (15)
C28—C33	1.42 (2)	N3—HN3	0.8800
C29—C30	1.37 (2)	N3—C15	1.331 (19)
C30—C31	1.38 (2)	N3—C21	1.416 (19)
C31—C32	1.38 (2)	C16—C17	1.41 (2)

G22 G22	1.2((0))	01(001	1 40 (2)
032-033	1.36 (2)	C16-C21	1.40(2)
15—C34	2.077 (14)	С17—Н17	0.9500
I6—C35	2.092 (15)	C17—C18	1.38 (2)
F9—C36	1.326 (17)	C18—H18	0.9500
F10—C37	1.323 (17)	C18—C19	1.41 (3)
F11—C38	1.359 (19)	С19—Н19	0.9500
F12—C39	1 348 (19)	C19—C20	1 36 (2)
C_{34} C_{35}	1.43(2)	C_{20} H20	0.9500
C_{24} C_{20}	1.43(2)	$C_{20} = C_{21}$	1.40(2)
034-039	1.40 (2)	C20—C21	1.40 (2)
C0 C1 C0	02 5 (0)	C20 C20 F11	100 7 (15)
C9—S4—C8	93.5 (8)	C39—C38—F11	120.7 (15)
C8—N2—HN2	121.8	C39—C38—C37	120.0 (15)
C8—N2—C14	116.5 (14)	F12—C39—C34	119.1 (14)
C14—N2—HN2	121.8	F12—C39—C38	117.8 (14)
S3—C8—S4	123.8 (10)	C38—C39—C34	123.1 (16)
N2—C8—S3	127.4 (14)	C41—C40—I7	123.4 (11)
N2—C8—S4	108.8 (13)	C41—C40—C45	118.8 (14)
C10-C9-S4	131.6 (13)	C45—C40—I7	117.7 (11)
C10-C9-C14	118 2 (15)	C40-C41-18	1235(12)
C_{14} C_{9} S_{4}	110.2(14)	C_{42} C_{41} I_{8}	116.4(12)
$C_{14} = C_{2} = C_{10} = C_$	120.7	$C_{42} = C_{41} = 10$	110.4(12)
C9-C10-H10	120.7	C42 - C41 - C40	119.9(13)
	118.6 (17)	F13-C42-C43	114.0 (15)
С11—С10—Н10	120.7	C41—C42—F13	123.0 (15)
C10—C11—H11	118.7	C41—C42—C43	122.7 (15)
C10-C11-C12	122.6 (19)	F14—C43—C42	123.2 (15)
C12—C11—H11	118.7	F14—C43—C44	118.8 (16)
C11—C12—H12	119.4	C44—C43—C42	117.9 (15)
C13—C12—C11	121.1 (18)	F15—C44—C43	120.7 (15)
C13—C12—H12	119.4	F15—C44—C45	119.1 (15)
C12—C13—H13	121.5	C_{43} — C_{44} — C_{45}	120.3(15)
C_{12} C_{13} C_{14}	116.9 (16)	F_{16} C_{45} C_{40}	120.3(12) 120.7(13)
C12 $C13$ $C14C14$ $C13$ $H13$	121.5	F16 C45 C44	120.7(13)
N2 C14 C0	121.3	$\Gamma_{10} - C_{43} - C_{44}$	110.9(14)
$N_2 = C_1 4 = C_1 2$	111.1 (13)	$C_{44} - C_{43} - C_{40}$	120.3(14)
N2	126.8 (15)		92.1 (8)
C13—C14—C9	122.1 (16)	CI—NI—HNI	123.1
C23—C22—I1	124.6 (10)	C1—N1—C7	113.8 (14)
C23—C22—C27	117.2 (14)	C7—N1—HN1	123.1
C27—C22—I1	118.1 (11)	S1—C1—S2	123.6 (9)
C22—C23—I2	123.4 (11)	N1—C1—S1	125.7 (12)
C24—C23—I2	114.8 (10)	N1—C1—S2	110.7 (12)
C24—C23—C22	121.8 (14)	C3—C2—S2	128.6 (14)
F1-C24-C23	123.9 (13)	C7-C2-S2	108.1 (12)
F1-C24-C25	1158(13)	C7-C2-C3	1231(17)
C^{23}	120.3 (13)	С?_С3_Н3	121.6
$C_{23} = C_{24} = C_{23}$	120.3(13) 122.2(13)	$C_2 C_3 C_4$	121.0 116 0 (17)
$\Gamma_2 = C_2 J = C_2 C_4$	122.3(13) 110.2(12)	$C_4 = C_3 = C_4$	10.9(17)
$r_2 - c_2 - c_2 c_2 c_2 c_2 c_2 c_2 c_2 c_2 c_2 c_2$	119.2 (13)		121.0
C26—C25—C24	118.5 (13)	C3—C4—H4	119.6
F3—C26—C25	120.0 (13)	C3—C4—C5	120.8 (17)

F3—C26—C27	119.2 (13)	С5—С4—Н4	119.6
C25—C26—C27	120.8 (13)	C4—C5—H5	119.0
F4—C27—C22	120.4 (13)	C4—C5—C6	122.0 (19)
F4—C27—C26	118.2 (13)	С6—С5—Н5	119.0
C26—C27—C22	121.4 (14)	С5—С6—Н6	122.2
C29—C28—I3	125.4 (11)	C5—C6—C7	115.5 (18)
C29—C28—C33	117.2 (14)	С7—С6—Н6	122.2
C33—C28—I3	117.3 (11)	N1—C7—C6	123.2 (17)
C28—C29—I4	122.4 (11)	C2	115.2 (15)
C30—C29—I4	118.3 (10)	C2—C7—C6	121.5 (17)
C30—C29—C28	119.3 (14)	C16—S6—C15	91.6 (7)
F5—C30—C29	121.1 (14)	C15—N3—HN3	122.0
F5-C30-C31	116.1 (15)	C15 - N3 - C21	116.0 (13)
C_{29} C_{30} C_{31}	122.7 (14)	C21—N3—HN3	122.0
F6-C31-C30	122.3(14)	S5-C15-S6	123.6 (9)
F6-C31-C32	118.6 (15)	N3-C15-S5	125.8(12)
C_{30} C_{31} C_{32}	119.1 (15)	N3	110.6(12)
F7 - C32 - C31	121.1 (15)	C17 - C16 - S6	129.9(12)
F7 - C32 - C33	121.1(13) 1199(14)	$C_{1} = C_{10} = S_{0}$	129.9(12)
C_{33} C_{32} C_{31}	119.9(14) 119.0(15)	$C_{21} = C_{10} = S_{0}$	110.9(11) 118.9(14)
$F_8 = C_{33} = C_{28}$	119.0 (13)	$C_{16} - C_{17} - H_{17}$	121.0
$F_8 = C_{33} = C_{23}^{-23}$	118.6(14)	C_{18} C_{17} C_{16} C_{17} C_{17} C_{17} C_{16} C_{17} C	121.0 117.9(15)
C_{32} C_{33} C_{28}	122.6(14)	C_{18} C_{17} H_{17}	121.0
$C_{32} = C_{33} = C_{28}$	122.0(14) 123.6(11)	$C_{10} = C_{17} = H_{17}$	121.0
$C_{30} = C_{34} = 15$	123.0(11) 110.6(11)	C17 - C18 - C10	117.0
$C_{39} = C_{34} = C_{35}$	119.0(11) 116.6(14)	$C_{10} = C_{10} = C_{19}$	121.9 (13)
$C_{34} = C_{35} = C_{35}$	110.0(14) 122.6(11)	$C_{19} = C_{10} = H_{10}$	119.0
$C_{34} = C_{35} = 10$	125.0(11) 116.8(10)	$C_{18} - C_{19} - H_{19}$	119.9
$C_{30} = C_{33} = 10$	110.6(10)	$C_{20} = C_{19} = C_{18}$	120.3 (13)
$C_{30} = C_{33} = C_{34}$	119.0(14) 120.7(14)	C10 C20 H20	119.9
F9 - C30 - C33	120.7(14)	C19 - C20 - H20	121.0
F9 - C30 - C37	117.0 (13)	C19 - C20 - C21	118.0 (15)
$C_{3}/-C_{3}0-C_{3}0$	121.5(13)	$C_{21} = C_{20} = H_{20}$	121.0
F10-C37-C36	121.4 (13)	C16 - C21 - N3	110.8 (13)
F10-C37-C38	119.6 (14)	$C_{20} = C_{21} = N_3$	126.5 (14)
$C_{36} - C_{37} - C_{38}$	119.0 (14)	C20—C21—C16	122.6 (14)
F11—C38—C37	119.3 (14)		
I1 - C22 - C23 - I2	0.4(18)	F11-C38-C39-F12	-3(2)
$11 - C^{22} - C^{23} - C^{24}$	1791(11)	F11 - C38 - C39 - C34	179 7 (14)
$11 - C^{22} - C^{27} - F^{4}$	2 9 (19)	C_{34} C_{35} C_{36} F_{9}	179.6(14)
$11 - C^{22} - C^{27} - C^{26}$	-1791(11)	C_{34} C_{35} C_{36} C_{37}	-6(2)
$12 - C^{23} - C^{24} - F^{1}$	0(2)	$C_{35} = C_{34} = C_{39} = F_{12}$	-1787(13)
12 - C23 - C24 - C25	(2)	$C_{35} = C_{34} = C_{39} = C_{38}$	-1(2)
S4-C9-C10-C11	174 9 (14)	C_{35} C_{36} C_{37} $-E_{10}$	-1750(14)
S4_C9_C14_N2	0.4(17)	C_{35} C_{36} C_{37} C_{38}	5(2)
54 - C9 - C14 - C13	-178.2(13)	$C_{36} - C_{37} - C_{38} - E_{11}$	$\frac{5}{178}$ (2)
$F_1 = C_2 - C_1 $	-2(2)	$C_{36} - C_{37} - C_{38} - C_{30}$	-3(2)
$\Gamma_1 - C_2 - C_2 - \Gamma_2$	(2) 170 2 (12)	$C_{30} - C_{37} - C_{30} - C_{39}$	$\frac{3}{2}$
$1^{-1} - 0.24 - 0.23 - 0.20$	1/3.3 (13)	UJ/-UJ0-UJ9-F12	1/0.2 (14)

F2-C25-C26-F3	1 (2)	C37—C38—C39—C34	1 (2)
F2-C25-C26-C27	179.9 (13)	C39—C34—C35—I6	-174.6 (11)
F3—C26—C27—F4	-2(2)	C39—C34—C35—C36	3 (2)
F3—C26—C27—C22	-179.9 (13)	I7—C40—C41—I8	-5.3 (19)
C8—S4—C9—C10	-178.3(16)	I7—C40—C41—C42	179.9 (13)
C8—S4—C9—C14	-0.2(12)	I7—C40—C45—F16	6 (2)
C8—N2—C14—C9	-1(2)	I7—C40—C45—C44	-178.8(12)
C8-N2-C14-C13	178.0 (16)	I8-C41-C42-F13	8 (2)
C9—S4—C8—S3	-179.6(10)	18 - C41 - C42 - C43	-178.7(14)
C9—S4—C8—N2	-0.1(12)	F_{13} C_{42} C_{43} F_{14}	-5(3)
C9-C10-C11-C12	6(3)	F_{13} C_{42} C_{43} C_{44}	1780(15)
C10-C9-C14-N2	178 8 (14)	F_{14} C_{43} C_{44} F_{15}	-1(3)
C10 - C9 - C14 - C13	0(2)	$F_{14} C_{43} C_{44} C_{45}$	-179.9(15)
C10-C11-C12-C13	-7(3)	$F_{15} - C_{44} - C_{45} - F_{16}$	-3(2)
$C_{11} = C_{12} = C_{13} = C_{14}$	1(3)	$F_{15} = C_{44} = C_{45} = 110$	-178.3(15)
C12 C13 C14 N2	-1788(16)	$C_{40} = C_{41} = C_{43} = C_{40}$	-176.5(15)
$C_{12} = C_{13} = C_{14} = C_{12}$	1/8.8(10)	$C_{40} = C_{41} = C_{42} = C_{43}$	-4(3)
C12 - C13 - C14 - C7	0(2) 170.0(12)	$C_{40} = C_{41} = C_{42} = C_{43}$	+(3) -175 7 (14)
C14 N2 C8 S4	1/9.9(12) 0.4(17)	C41 - C40 - C43 - F10	-1/3.7(14)
$C_{14} = N_2 = C_0 = S_4$	-2(2)	C41 - C40 - C43 - C44	0(2) -178 0(17)
C14 - C9 - C10 - C11	-3(2) -170.2(14)	C41 - C42 - C43 - F14	-1/8.9(17)
$C_{22} = C_{23} = C_{24} = C_{14}$	1/9.2(14)	C42 C42 C43 C44 E15	4(3)
$C_{22} = C_{23} = C_{24} = C_{23}$	-1(2) -170 1 (12)	C42 - C43 - C44 - F13	-2(2)
$C_{23} = C_{22} = C_{27} = F_{4}$	-1/9.1(13)	C42 - C43 - C44 - C43	-3(3)
$C_{23} = C_{22} = C_{27} = C_{20}$	-1(2)	C43 - C44 - C43 - F16	1/0.8 (15)
C_{23} C_{24} C_{25} F_{2}	-1/9.8(14)	C43 - C44 - C43 - C40	1(2)
$C_{23} - C_{24} - C_{25} - C_{26}$	1(2)	C45 - C40 - C41 - 18	1/6.1 (11)
$C_{24} = C_{25} = C_{26} = F_{3}$	1/9.9 (13)	C45 - C40 - C41 - C42	1(2)
$C_{24} = C_{25} = C_{26} = C_{27}$	-1(2)	52-02-03-04	1/9./(14)
$C_{25} = C_{26} = C_{27} = F_{4}$	1/9.1 (14)	S2—C2—C7—N1	-3.3(18)
$C_{25} = C_{26} = C_{27} = C_{22}$	1 (2)	S2—C2—C7—C6	179.8 (14)
C27—C22—C23—I2	-17/.4(11)	C1 - S2 - C2 - C3	178.1 (16)
C27—C22—C23—C24	1 (2)	C1—S2—C2—C7	2.8 (13)
13—C28—C29—I4	5.1 (19)	C1—N1—C7—C2	2 (2)
13—C28—C29—C30	-175.4 (11)	C1—N1—C7—C6	179.0 (15)
13—C28—C33—F8	-3(2)	C2—S2—C1—S1	178.3 (10)
13—C28—C33—C32	177.7 (13)	C2—S2—C1—N1	-1.8 (12)
I4—C29—C30—F5	0(2)	C2—C3—C4—C5	4 (3)
I4—C29—C30—C31	179.0 (12)	C3—C2—C7—N1	-178.9 (15)
F5—C30—C31—F6	0(2)	C3—C2—C7—C6	4 (3)
F5—C30—C31—C32	177.2 (14)	C3—C4—C5—C6	-2(3)
F6—C31—C32—F7	-2 (2)	C4—C5—C6—C7	0 (3)
F6—C31—C32—C33	-179.0 (15)	C5—C6—C7—N1	-177.9 (17)
F7—C32—C33—F8	0 (2)	C5—C6—C7—C2	-1 (3)
F7—C32—C33—C28	179.6 (15)	C7—N1—C1—S1	-179.9 (12)
C28—C29—C30—F5	-179.4 (14)	C7—N1—C1—S2	0.2 (16)
C28—C29—C30—C31	0 (2)	C7—C2—C3—C4	-6 (3)
C29—C28—C33—F8	-179.5 (14)	S6—C16—C17—C18	-178.4 (13)
C29—C28—C33—C32	1 (2)	S6-C16-C21-N3	-4.0(16)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-179.1 (15) -2 (2) -179.3 (15) 4 (2) 177.3 (15) -3 (3) -178.6 (11) 1 (2) 0.3 (19) 178.4 (11) 6 (2) -176.1 (12) -2.2 (19) 172.5 (12) 0 (2) -179.9 (14) -1 (2)	$\begin{array}{c} \text{S6C16C21C20} \\ \text{C15S6C16C17} \\ \text{C15S6C16C21} \\ \text{C15N3C21C20} \\ \text{C16S6C15S5} \\ \text{C16S6C15N3} \\ \text{C16C17C18C19} \\ \text{C17C16C21C20} \\ \text{C17C16C21C20} \\ \text{C17C18C19C20} \\ \text{C18C19C20} \\ \text{C18C19C20} \\ \text{C18C19C20} \\ \text{C18C19C20} \\ \text{C18C19C21} \\ \text{C19C20C21} \\ \text{C19C20C21C16} \\ \text{C21N3C15S6} \\ \text{C21C16C17C18} \\ \end{array}$	178.7 (12) $176.4 (16)$ $2.5 (12)$ $4.0 (19)$ $-178.8 (15)$ $179.3 (10)$ $-0.3 (12)$ $5 (3)$ $-178.6 (14)$ $4 (2)$ $-4 (3)$ $3 (3)$ $-180.0 (15)$ $-3 (2)$ $178.4 (11)$ $-2.0 (17)$ $-5 (2)$
F9—C36—C37—C38 F10—C37—C38—F11 F10—C37—C38—C39	-179.9 (14) -1 (2) 177.6 (15)	C21—N3—C15—S6 C21—C16—C17—C18	-2.0 (17) -5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A
N2—HN2…S1	0.88	2.45	3.326 (14)	174
N1—H <i>N</i> 1····S3	0.88	2.40	3.266 (14)	169
C6—H6…F10 ⁱ	0.95	2.60	3.29 (2)	130
N3—HN3····S5 ⁱⁱ	0.88	2.42	3.290 (14)	170
C17—H17…F16	0.95	2.30	3.232 (18)	166
C20—H20…F2	0.95	2.53	3.128 (18)	121
C20—H20…F3	0.95	2.54	3.181 (17)	125

Symmetry codes: (i) *x*+1, *y*-1, *z*; (ii) -*x*+1, -*y*+1, -*z*.

1,3-Benzothiazole-2-thiol-1,2,3,5-tetrafluoro-4,6-diiodobenzene (1/1) (MBZTH_13F4DIB)

Crystal data	
$C_6F_4I_2$ · $C_7H_5NS_2$	Z = 2
$M_r = 569.10$	F(000) = 528
Triclinic, $P\overline{1}$	$D_{\rm x} = 2.349 {\rm Mg} {\rm m}^{-3}$
a = 7.2175 (4) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
b = 8.2675(5) Å	Cell parameters from 9969 reflections
c = 14.4498 (9) Å	$\theta = 2.6 - 30.1^{\circ}$
$\alpha = 97.936 \ (2)^{\circ}$	$\mu = 4.20 \text{ mm}^{-1}$
$\beta = 91.297 \ (2)^{\circ}$	T = 100 K
$\gamma = 109.178 \ (2)^{\circ}$	Plate, colourless
V = 804.44 (8) Å ³	$0.33 \times 0.27 \times 0.06 \text{ mm}$
Data collection	
Bruker D8 Venture Photon 2 diffractometer	Absorption correction: multi-scan (SADABS; Bruker, 2017)
Radiation source: Incoatec $I\mu S$	$T_{\min} = 0.496, \ T_{\max} = 0.746$
φ and ω scans	27899 measured reflections

$h = -10 \rightarrow 10$
$k = -11 \rightarrow 11$
$l = -20 \rightarrow 20$
Hydrogen site location: mixed
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0115P)^2 + 0.801P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.002$
$\Delta \rho_{\rm max} = 1.08 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -1.11 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.21928 (2)	0.04578 (2)	0.73577 (2)	0.02046 (4)	
I2	0.40359 (2)	0.24728 (2)	0.35536 (2)	0.02203 (4)	
F1	0.17793 (18)	0.11993 (18)	0.52937 (9)	0.0275 (3)	
F2	0.83758 (19)	0.35764 (19)	0.45929 (9)	0.0317 (3)	
F3	0.95882 (18)	0.33437 (18)	0.63449 (9)	0.0304 (3)	
F4	0.69486 (18)	0.19590 (15)	0.75449 (8)	0.0219 (2)	
C8	0.4287 (3)	0.1563 (2)	0.64457 (13)	0.0174 (3)	
C9	0.3711 (3)	0.1745 (3)	0.55526 (13)	0.0192 (4)	
C10	0.5038 (3)	0.2421 (2)	0.49121 (13)	0.0184 (3)	
C11	0.7028 (3)	0.2946 (3)	0.51885 (14)	0.0207 (4)	
C12	0.7664 (3)	0.2813 (3)	0.60795 (14)	0.0209 (4)	
C13	0.6289 (3)	0.2109 (2)	0.66928 (12)	0.0180 (3)	
S1	0.82694 (7)	0.91230 (6)	0.86324 (3)	0.01549 (8)	
S2	0.65916 (6)	0.53019 (5)	0.86630 (3)	0.01339 (8)	
N1	0.8612 (2)	0.74012 (19)	1.00562 (10)	0.0127 (3)	
HN1	0.938 (4)	0.835 (4)	1.0386 (19)	0.027 (7)*	
C1	0.7938 (2)	0.7398 (2)	0.91829 (12)	0.0126 (3)	
C2	0.7006 (2)	0.4453 (2)	0.96579 (12)	0.0127 (3)	
C3	0.6389 (3)	0.2736 (2)	0.98130 (13)	0.0165 (3)	
H3	0.563536	0.182216	0.934125	0.020*	
C4	0.6913 (3)	0.2405 (2)	1.06823 (14)	0.0185 (3)	
H4	0.650289	0.124547	1.080638	0.022*	
C5	0.8032 (3)	0.3749 (2)	1.13778 (13)	0.0172 (3)	
Н5	0.836221	0.348582	1.196613	0.021*	
C6	0.8667 (3)	0.5457 (2)	1.12210 (13)	0.0150 (3)	
H6	0.943886	0.636838	1.168951	0.018*	

<u>C7</u>	0.8134 (2)) 0.57	792 (2)	1.03532 (12)	0.0128 (3)	
Atomic displacement parameters $(Å^2)$						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.02600 (7)	0.02230 (6)	0.01536 (6)	0.00997 (5)	0.00446 (4)	0.00537 (4)
I2	0.03060 (7)	0.02527 (7)	0.01257 (6)	0.01186 (5)	-0.00081 (5)	0.00492 (4)
F1	0.0198 (6)	0.0426 (7)	0.0197 (6)	0.0086 (5)	-0.0015 (4)	0.0078 (5)
F2	0.0252 (6)	0.0391 (7)	0.0221 (6)	-0.0032 (5)	0.0029 (5)	0.0105 (5)
F3	0.0199 (6)	0.0372 (7)	0.0270 (7)	0.0003 (5)	-0.0064 (5)	0.0059 (5)
F4	0.0294 (6)	0.0222 (6)	0.0134 (5)	0.0085 (5)	-0.0059 (4)	0.0017 (4)
C8	0.0223 (9)	0.0171 (8)	0.0132 (8)	0.0072 (7)	0.0010 (6)	0.0024 (6)
C9	0.0202 (9)	0.0214 (9)	0.0149 (8)	0.0064 (7)	-0.0019 (6)	0.0009 (7)
C10	0.0242 (9)	0.0171 (8)	0.0126 (8)	0.0055 (7)	-0.0027 (7)	0.0023 (6)
C11	0.0232 (9)	0.0190 (9)	0.0163 (9)	0.0019 (7)	0.0018 (7)	0.0037 (7)
C12	0.0196 (9)	0.0196 (9)	0.0194 (9)	0.0020 (7)	-0.0037 (7)	0.0020 (7)
C13	0.0275 (9)	0.0147 (8)	0.0107 (8)	0.0066 (7)	-0.0029 (7)	-0.0005 (6)
S 1	0.0184 (2)	0.01360 (18)	0.01265 (19)	0.00228 (15)	-0.00070 (15)	0.00408 (15)
S2	0.01404 (19)	0.01277 (18)	0.01164 (18)	0.00286 (14)	-0.00167 (14)	0.00058 (14)
N1	0.0128 (7)	0.0128 (6)	0.0110 (6)	0.0022 (5)	-0.0004 (5)	0.0018 (5)
C1	0.0124 (7)	0.0134 (7)	0.0117 (7)	0.0041 (6)	0.0017 (6)	0.0017 (6)
C2	0.0105 (7)	0.0143 (7)	0.0137 (7)	0.0044 (6)	0.0014 (6)	0.0029 (6)
C3	0.0145 (8)	0.0126 (7)	0.0209 (9)	0.0030 (6)	0.0001 (6)	0.0021 (6)
C4	0.0183 (8)	0.0150 (8)	0.0232 (9)	0.0052 (7)	0.0026 (7)	0.0073 (7)
C5	0.0158 (8)	0.0205 (8)	0.0184 (8)	0.0078 (7)	0.0020 (6)	0.0082 (7)
C6	0.0116 (7)	0.0184 (8)	0.0158 (8)	0.0055 (6)	0.0003 (6)	0.0039 (6)
C7	0.0115 (7)	0.0128 (7)	0.0142 (8)	0.0038 (6)	0.0018 (6)	0.0026 (6)

Geometric parameters (Å, °)

2.0910 (19)	S2—C2	1.7452 (18)	
2.0875 (18)	N1—HN1	0.87 (3)	
1.343 (2)	N1—C1	1.342 (2)	
1.337 (2)	N1—C7	1.391 (2)	
1.341 (2)	C2—C3	1.393 (2)	
1.346 (2)	C2—C7	1.401 (2)	
1.390 (3)	С3—Н3	0.9500	
1.387 (3)	C3—C4	1.392 (3)	
1.385 (3)	C4—H4	0.9500	
1.388 (3)	C4—C5	1.401 (3)	
1.388 (3)	С5—Н5	0.9500	
1.383 (3)	C5—C6	1.387 (3)	
1.6799 (18)	С6—Н6	0.9500	
1.7355 (18)	C6—C7	1.393 (2)	
120.65 (14)	S1—C1—S2	122.60 (10)	
122.00 (14)	N1—C1—S1	127.05 (13)	
117.34 (18)	N1—C1—S2	110.35 (13)	
	2.0910 (19) 2.0875 (18) 1.343 (2) 1.337 (2) 1.341 (2) 1.346 (2) 1.390 (3) 1.387 (3) 1.385 (3) 1.388 (3) 1.388 (3) 1.388 (3) 1.383 (3) 1.6799 (18) 1.7355 (18) 120.65 (14) 122.00 (14) 117.34 (18)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
F1	118.30 (18)	C3—C2—S2	129.26 (14)
----------------------	--------------	--	-------------
F1	118.70 (17)	C3—C2—C7	120.78 (16)
C10—C9—C8	122.97 (18)	C7—C2—S2	109.95 (13)
C9—C10—I2	120.15 (14)	С2—С3—Н3	121.1
C9—C10—C11	117.73 (17)	C4—C3—C2	117.77 (17)
C11—C10—I2	121.99 (14)	C4—C3—H3	121.1
F2-C11-C10	120.33 (17)	C3—C4—H4	119.4
F2-C11-C12	118.58 (18)	C3—C4—C5	121.28 (17)
C12—C11—C10	121.09 (18)	C5—C4—H4	119.4
F3—C12—C11	120.72 (18)	C4—C5—H5	119.5
F3—C12—C13	120.01 (17)	C6—C5—C4	121.03 (17)
C13—C12—C11	119.27 (18)	С6—С5—Н5	119.5
F4—C13—C8	120.41 (17)	С5—С6—Н6	121.1
F4—C13—C12	118.00 (17)	C5—C6—C7	117.75 (16)
C12—C13—C8	121.59 (17)	С7—С6—Н6	121.1
C1—S2—C2	91.89 (8)	N1—C7—C2	111.76 (15)
C1—N1—HN1	120.5 (18)	N1—C7—C6	126.87 (16)
C1—N1—C7	116.05 (15)	C6—C7—C2	121.37 (16)
C7—N1—HN1	123.3 (18)		
I1—C8—C9—F1	0 2 (2)	C13—C8—C9—F1	178 96 (17)
11 - C8 - C9 - C10	-178.06(15)	C13 - C8 - C9 - C10	0.7(3)
11 - C8 - C13 - F4	-0.8(2)	S2-C2-C3-C4	-179.54(14)
I1—C8—C13—C12	178.95 (15)	S2—C2—C7—N1	-0.38(18)
12-C10-C11-F2	2.8 (3)	<u>\$2</u> — <u>C2</u> — <u>C7</u> — <u>C6</u>	179.86 (13)
12 - C10 - C11 - C12	-176.43(15)	C1 - S2 - C2 - C3	-179.18(17)
F1-C9-C10-I2	-2.9(3)	C1 - S2 - C2 - C7	0.60 (13)
F1—C9—C10—C11	-178.78(18)	C1—N1—C7—C2	-0.2(2)
F2-C11-C12-F3	1.6 (3)	C1—N1—C7—C6	179.60 (17)
F2—C11—C12—C13	-177.81 (18)	C2 - S2 - C1 - S1	179.93 (12)
F3—C12—C13—F4	-0.9(3)	C2—S2—C1—N1	-0.69(13)
F3—C12—C13—C8	179.31 (17)	C2—C3—C4—C5	-0.4(3)
C8—C9—C10—I2	175.43 (15)	C3—C2—C7—N1	179.42 (15)
C8—C9—C10—C11	-0.5 (3)	C3—C2—C7—C6	-0.3 (3)
C9—C8—C13—F4	-179.55 (16)	C3—C4—C5—C6	-0.4(3)
C9—C8—C13—C12	0.2 (3)	C4—C5—C6—C7	0.7 (3)
C9—C10—C11—F2	178.66 (18)	C5—C6—C7—N1	179.90 (17)
C9—C10—C11—C12	-0.6 (3)	C5—C6—C7—C2	-0.4 (3)
C10—C11—C12—F3	-179.14 (18)	C7—N1—C1—S1	179.95 (13)
C10—C11—C12—C13	1.5 (3)	C7—N1—C1—S2	0.61 (19)
C11—C12—C13—F4	178.52 (17)	C7—C2—C3—C4	0.7 (3)
C11—C12—C13—C8	-1.3 (3)		× /

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—HN1····S1 ⁱ	0.87 (3)	2.45 (3)	3.3120 (15)	175 (2)

Symmetry code: (i) -x+2, -y+2, -z+2.

1,3-Benzothiazole-2-thiol-1,2,3,5-tetrafluoro-4,6-diiodobenzene (1/2) (MBZTH 213F4DIB)

F(000) = 1768

 $\theta = 2.4 - 28.8^{\circ}$

 $\mu = 5.36 \text{ mm}^{-1}$

Prism. colourless

 $0.18 \times 0.12 \times 0.04 \text{ mm}$

 $\theta_{\text{max}} = 28.8^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$

12660 independent reflections 11766 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.050$

 $h = -6 \rightarrow 6$ $k = -46 \rightarrow 46$

 $D_{\rm x} = 2.647 {\rm Mg m^{-3}}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å

Cell parameters from 9841 reflections

Crystal data

 $4C_6F_4I_2 \cdot 2C_7H_5NS_2$ $M_r = 1941.92$ Monoclinic, $P2_1$ a = 4.5581 (3) Å b = 34.358(2) Å *c* = 15.6075 (10) Å $\beta = 94.707 \ (2)^{\circ}$ V = 2436.0 (3) Å³ Z = 2

Data collection

Bruker D8 Venture Photon 2	
diffractometer	
Radiation source: Incoatec $I\mu S$	
φ and ω scans	
Absorption correction: multi-scan	n
(SADABS; Bruker, 2017)	
$T_{\min} = 0.568, T_{\max} = 0.746$	
56285 measured reflections	

Refinement

S = 1.09

 $l = -21 \rightarrow 21$ Refinement on F^2 H atoms treated by a mixture of independent Least-squares matrix: full and constrained refinement $R[F^2 > 2\sigma(F^2)] = 0.026$ $w = 1/[\sigma^2(F_o^2) + (0.0071P)^2 + 0.5877P]$ $wR(F^2) = 0.046$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.002$ 12660 reflections $\Delta \rho_{\rm max} = 1.01 \ {\rm e} \ {\rm \AA}^{-3}$ 622 parameters $\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$ Absolute structure: Refined as an inversion twin 2 restraints Primary atom site location: dual Absolute structure parameter: 0.454 (15) Hydrogen site location: mixed

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	1.31057 (9)	0.37856 (2)	0.44709 (3)	0.01694 (9)	
I2	0.58291 (10)	0.34353 (2)	0.11336 (3)	0.02224 (10)	
13	0.13207 (9)	0.44552 (2)	0.04395 (3)	0.01659 (9)	
I4	0.84342 (11)	0.47934 (2)	0.38106 (3)	0.02660 (11)	
F1	1.0269 (9)	0.38363 (11)	0.2525 (2)	0.0233 (9)	
F2	0.4263 (9)	0.27169 (12)	0.2331 (3)	0.0284 (10)	

F3	0.6051 (10)	0.25383 (12)	0.3971 (3)	0.0324 (10)
F4	0.9918 (10)	0.29933 (12)	0.4890 (2)	0.0276 (10)
F5	0.3945 (8)	0.44111 (11)	0.2407 (2)	0.0205 (8)
F6	1.0552 (9)	0.54664 (12)	0.2573 (3)	0.0301 (10)
F7	0.9034 (9)	0.56331 (12)	0.0915 (3)	0.0331 (10)
F8	0.4927 (9)	0.52114 (12)	0.0003 (2)	0.0247 (9)
C15	1.0262 (13)	0.34210 (19)	0.3717 (4)	0.0147 (13)
C16	0.9275 (14)	0.35093 (18)	0.2876 (4)	0.0163 (13)
C17	0.7260 (13)	0.32806 (19)	0.2383 (4)	0.0150 (13)
C18	0.6246 (14)	0.2950 (2)	0.2766(4)	0.0181 (14)
C19	0.7144(15)	0.2853(2)	0.3607(4)	0.0197(14)
C20	0.9139(15)	0.2000(2) 0.3087(2)	0.3007(1) 0.4070(4)	0.0197(14)
C21	0.9139(13) 0.4273(13)	0.3007(2) 0.48043(17)	0.1070(1) 0.1192(4)	0.0107(11) 0.0118(12)
C21	0.4273(13) 0.5141(14)	0.40043(17) 0.47193(19)	0.1192(4) 0.2048(4)	0.0110(12) 0.0160(13)
C22	0.5141(14) 0.7212(14)	0.47193(19) 0.40307(10)	0.2538(4)	0.0100(13)
C23	0.7212(14) 0.8475(14)	0.49397(19) 0.5248(2)	0.2338(4) 0.2137(5)	0.0170(15)
C24	0.8473(14) 0.7600(15)	0.5240(2) 0.53442(10)	0.2137(3) 0.1202(5)	0.0204(13)
C25	0.7090(13)	0.53442(19)	0.1293(3)	0.0207(13)
C20	0.5582(14)	0.51219(19)	0.0829 (4)	0.0164(13)
15	0.00231 (10)	0.58298(2)	0.42231(3)	0.02000 (11)
16	-0.04120(12)	0.6/426(2)	0.6/9/9(3)	0.03213 (12)
F13	0.3626 (9)	0.61104 (13)	0.5966 (2)	0.0298 (9)
F14	-0.1966 (10)	0.72120 (12)	0.5061 (3)	0.0340 (11)
F15	-0.0233 (11)	0.71370 (13)	0.3475 (3)	0.0379 (11)
F16	0.3387 (10)	0.65460 (13)	0.3104 (3)	0.0340 (10)
C33	0.3592 (15)	0.63148 (19)	0.4533 (4)	0.0215 (14)
C34	0.2700 (15)	0.63678 (19)	0.5348 (4)	0.0212 (14)
C35	0.0859 (15)	0.6674 (2)	0.5562 (4)	0.0215 (15)
C36	-0.0098 (16)	0.6922 (2)	0.4907 (5)	0.0241 (15)
C37	0.0756 (16)	0.6885 (2)	0.4086 (5)	0.0267 (16)
C38	0.2587 (16)	0.6584 (2)	0.3901 (4)	0.0241 (15)
I7	0.27675 (10)	0.60812 (2)	-0.10563 (3)	0.02281 (10)
I8	1.08854 (10)	0.74677 (2)	-0.05335 (3)	0.02152 (10)
F9	0.6582 (9)	0.68287 (11)	-0.1413 (2)	0.0239 (9)
F10	1.0852 (9)	0.71219 (12)	0.1364 (2)	0.0286 (10)
F11	0.7847 (10)	0.65341 (14)	0.2015 (2)	0.0365 (11)
F12	0.4105 (9)	0.61029 (12)	0.0985 (3)	0.0293 (9)
C27	0.5318 (14)	0.64475 (18)	-0.0249 (4)	0.0164 (13)
C28	0.6884 (14)	0.67579 (19)	-0.0565 (4)	0.0166 (13)
C29	0.8730 (13)	0.69920 (18)	-0.0044 (4)	0.0165 (13)
C30	0.9054 (15)	0.6911 (2)	0.0830 (4)	0.0219 (15)
C31	0.7507 (16)	0.6609 (2)	0.1168 (4)	0.0233 (15)
C32	0.5630 (14)	0.63862 (19)	0.0628 (4)	0.0202 (14)
S1	0.6754 (4)	0.40568 (5)	0.88863 (11)	0.0189 (3)
S2	1.0703 (4)	0.33606 (5)	0.91405 (10)	0.0186 (3)
N1	0.9694 (12)	0.36855 (16)	0.7688 (3)	0.0152 (11)
HN1	0.905 (14)	0.3871 (19)	0.732 (4)	0.007 (16)*
C1	0.8985 (13)	0.37204 (18)	0.8506 (4)	0.0151 (13)
C2	1.1602 (14)	0.33784 (19)	0.7534 (4)	0.0162 (13)
-	(= .)	······································		

C3	1.2632 (16)	0.3281 (2)	0.6749 (4)	0.0236 (15)
Н3	1.206730	0.342708	0.624462	0.028*
C4	1.4504 (15)	0.2966 (2)	0.6723 (4)	0.0261 (16)
H4	1.525655	0.289582	0.619464	0.031*
C5	1.5310 (15)	0.2748 (2)	0.7462 (5)	0.0262 (16)
Н5	1.657929	0.253028	0.742875	0.031*
C6	1.4270 (15)	0.28477 (19)	0.8243 (4)	0.0201 (14)
H6	1.483893	0.270321	0.874871	0.024*
C7	1.2378 (14)	0.31638 (19)	0.8270 (4)	0.0168 (13)
S3	0.7312 (4)	0.42496 (5)	0.60016 (10)	0.0190 (3)
S4	0.3357 (4)	0.49495 (5)	0.57647 (10)	0.0180 (3)
N2	0.4180 (12)	0.45945 (16)	0.7190 (3)	0.0164 (12)
HN2	0.497 (15)	0.449 (2)	0.764 (3)	0.03 (2)*
C8	0.4996 (14)	0.45745 (19)	0.6383 (4)	0.0162 (13)
С9	0.2219 (14)	0.48927 (19)	0.7357 (4)	0.0174 (13)
C10	0.1004 (14)	0.4970 (2)	0.8131 (4)	0.0190 (14)
H10	0.149370	0.481541	0.862699	0.023*
C11	-0.0915 (15)	0.5276 (2)	0.8154 (4)	0.0221 (15)
H11	-0.179266	0.533075	0.867172	0.027*
C12	-0.1615 (15)	0.5510(2)	0.7427 (4)	0.0208 (14)
H12	-0.295108	0.572001	0.746348	0.025*
C13	-0.0391 (14)	0.5439 (2)	0.6659 (4)	0.0220 (15)
H13	-0.083511	0.560008	0.617145	0.026*
C14	0.1515 (13)	0.51230 (19)	0.6627 (4)	0.0158 (13)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0177 (2)	0.0159 (2)	0.01700 (19)	0.00011 (16)	0.00007 (16)	-0.00234 (17)
I2	0.0263 (2)	0.0245 (2)	0.0153 (2)	0.00547 (19)	-0.00254 (18)	-0.00115 (18)
I3	0.0171 (2)	0.0170 (2)	0.01558 (19)	0.00146 (16)	0.00089 (16)	-0.00224 (17)
I4	0.0313 (3)	0.0303 (3)	0.0169 (2)	0.0123 (2)	-0.00624 (19)	-0.00536 (19)
F1	0.032 (2)	0.019 (2)	0.0194 (19)	-0.0084 (17)	0.0019 (17)	0.0046 (17)
F2	0.028 (2)	0.029 (2)	0.027 (2)	-0.0075 (18)	-0.0056 (18)	-0.0054 (19)
F3	0.041 (3)	0.023 (2)	0.033 (2)	-0.0147 (19)	-0.001 (2)	0.0100 (19)
F4	0.040 (3)	0.025 (2)	0.0168 (19)	-0.0053 (19)	-0.0029 (18)	0.0056 (17)
F5	0.029 (2)	0.016 (2)	0.0167 (18)	-0.0053 (17)	0.0061 (16)	0.0037 (16)
F6	0.019 (2)	0.029 (2)	0.042 (3)	-0.0079 (18)	-0.0024 (19)	-0.010 (2)
F7	0.032 (2)	0.024 (2)	0.044 (3)	-0.0084 (19)	0.011 (2)	0.010 (2)
F8	0.029 (2)	0.028 (2)	0.0170 (19)	-0.0002 (18)	0.0002 (17)	0.0100 (17)
C15	0.010(3)	0.016 (3)	0.019 (3)	0.000 (2)	0.002 (2)	-0.001 (3)
C16	0.017 (3)	0.013 (3)	0.020 (3)	0.001 (2)	0.005 (3)	0.003 (3)
C17	0.013 (3)	0.021 (4)	0.011 (3)	0.002 (3)	0.000 (2)	-0.001 (3)
C18	0.016 (3)	0.019 (4)	0.018 (3)	-0.002 (3)	-0.001 (3)	-0.002 (3)
C19	0.021 (4)	0.017 (4)	0.021 (3)	-0.004 (3)	0.004 (3)	-0.001 (3)
C20	0.024 (4)	0.017 (4)	0.014 (3)	0.004 (3)	0.001 (3)	0.001 (3)
C21	0.017 (3)	0.009 (3)	0.010 (3)	0.001 (2)	0.003 (2)	-0.001 (2)
C22	0.018 (3)	0.015 (3)	0.016 (3)	0.001 (3)	0.007 (3)	0.001 (3)

C23	0.017(3)	0.016 (3)	0.016 (3)	0.004 (3)	-0.003(3)	-0.002(3)
C24	0.012 (3)	0.021 (4)	0.028 (4)	0.000 (3)	0.000 (3)	-0.008(3)
C25	0.012(3)	0.009(3)	0.035(4)	-0.002(3)	0.007(3)	0.006(3)
C26	0.014(3)	0.017(3)	0.018(3)	-0.001(3)	0.004(3)	0.002(3)
15	0.0251(2)	0.0252(3)	0.0291(2)	0.001(0)	-0.00180(19)	-0.0083(2)
16	0.0231(2) 0.0376(3)	0.0202(3) 0.0383(3)	0.0291(2)	0.0001(2)	0.0099(2)	-0.0023(2)
F13	0.037(2)	0.029(2)	0.0210(2) 0.024(2)	0.0001(2)	0.0000(2)	0.0023(2)
F14	0.034(3)	0.023(2)	0.021(2) 0.038(2)	0.002(2)	0.0010(1))	0.0000(2)
F15	0.037(3)	0.031(3)	0.030(2) 0.032(2)	0.014(2) 0.005(2)	-0.002(2)	0.000(2)
F16	0.017(3)	0.035(3)	0.032(2) 0.021(2)	0.009(2)	0.002(2)	0.019(2)
C33	0.030(3)	0.045(3)	0.021(2) 0.027(4)	0.009(2)	0.0075(1)	-0.0024(1))
C34	0.022(4)	0.010(3)	0.027(4) 0.021(3)	-0.001(3)	-0.001(3)	0.004(3)
C35	0.024(4)	0.017(4)	0.021(3)	-0.002(3)	0.001(3)	-0.003(3)
C36	0.024(4)	0.021(4)	0.021(3)	-0.002(3)	0.011(3)	-0.003(3)
C30	0.021(4)	0.020(4)	0.031(4)	0.001(3)	0.002(3)	0.002(3)
C_{38}	0.023(4)	0.030(4)	0.028(4)	-0.001(3)	0.000(3)	0.008(3)
C38	0.027(4)	0.030(4)	0.010(3)	-0.0001(3)	-0.000(3)	-0.002(3)
1/	0.0204(2)	0.0188(2)	0.0290(2)	-0.00083(18)	-0.00007(19)	-0.00340(19)
18	0.0220(2)	0.0161(2)	0.0263(2)	-0.0012/(17)	0.00103(18)	0.00192(18)
F9	0.029(2)	0.025(2)	0.01/1(19)	-0.0009(17)	-0.0005(17)	-0.0004(10)
F10	0.028(2)	0.036(3)	0.021(2)	-0.0123(19)	0.0001(18)	-0.0051(18)
	0.039(3)	0.052 (3)	0.018(2)	-0.013(2)	0.0041 (19)	0.004(2)
F12	0.026 (2)	0.030(2)	0.034 (2)	-0.0084 (19)	0.0099 (19)	0.006 (2)
C27	0.015 (3)	0.009 (3)	0.025 (3)	-0.001(2)	-0.002(3)	-0.005(3)
C28	0.018 (3)	0.016 (3)	0.015 (3)	0.003 (3)	0.001 (3)	0.002 (3)
C29	0.010 (3)	0.012 (3)	0.027 (3)	-0.001 (2)	0.004 (3)	-0.003 (3)
C30	0.018 (3)	0.027 (4)	0.021 (3)	-0.002 (3)	0.001 (3)	-0.005 (3)
C31	0.025 (4)	0.030 (4)	0.015 (3)	0.002 (3)	0.002 (3)	0.000 (3)
C32	0.017 (3)	0.016 (3)	0.030 (4)	0.000 (3)	0.010 (3)	0.000 (3)
S 1	0.0189 (8)	0.0203 (9)	0.0175 (8)	0.0005 (7)	0.0009 (7)	-0.0035 (7)
S2	0.0224 (8)	0.0197 (9)	0.0134 (7)	-0.0011 (7)	-0.0004 (6)	0.0024 (6)
N1	0.022 (3)	0.014 (3)	0.010 (2)	0.000 (2)	0.000 (2)	0.002 (2)
C1	0.013 (3)	0.016 (3)	0.016 (3)	-0.004(2)	0.000 (2)	-0.001 (3)
C2	0.015 (3)	0.017 (3)	0.016 (3)	-0.004 (3)	-0.002 (3)	-0.003 (3)
C3	0.024 (4)	0.030 (4)	0.016 (3)	0.001 (3)	0.002 (3)	0.001 (3)
C4	0.019 (4)	0.035 (4)	0.023 (4)	0.003 (3)	-0.003 (3)	-0.008 (3)
C5	0.017 (4)	0.027 (4)	0.033 (4)	0.004 (3)	-0.004 (3)	-0.008 (3)
C6	0.021 (4)	0.019 (4)	0.020 (3)	0.000 (3)	-0.003 (3)	-0.002 (3)
C7	0.016 (3)	0.018 (3)	0.015 (3)	-0.002 (3)	-0.004 (3)	-0.004 (3)
S3	0.0190 (8)	0.0206 (9)	0.0172 (8)	-0.0007 (7)	0.0001 (7)	-0.0018 (7)
S4	0.0191 (8)	0.0217 (9)	0.0129 (7)	-0.0017 (7)	0.0002 (6)	0.0016 (6)
N2	0.013 (3)	0.020 (3)	0.015 (3)	-0.001 (2)	-0.002 (2)	0.003 (2)
C8	0.017 (3)	0.018 (3)	0.013 (3)	-0.007 (3)	-0.001 (3)	-0.001 (2)
C9	0.017 (3)	0.019 (3)	0.015 (3)	-0.005 (3)	-0.004 (3)	-0.002 (3)
C10	0.021 (3)	0.022 (4)	0.014 (3)	-0.006 (3)	0.003 (3)	0.001 (3)
C11	0.026 (4)	0.025 (4)	0.016 (3)	-0.006 (3)	0.007 (3)	-0.008 (3)
C12	0.018 (3)	0.019 (4)	0.025 (4)	0.000 (3)	0.003 (3)	-0.006 (3)
C13	0.017 (3)	0.022 (4)	0.026 (4)	-0.003 (3)	-0.004 (3)	0.003 (3)
C14	0.011 (3)	0.020 (3)	0.015 (3)	-0.004 (3)	-0.002 (3)	-0.003 (3)
	× /	× /			× /	× /

Geometric parameters (Å, °)

I1—C15	2.094 (6)	F11—C31	1.344 (7)
I2—C17	2.075 (6)	F12—C32	1.343 (7)
I3—C21	2.090 (6)	C27—C28	1.396 (9)
I4—C23	2.080 (6)	C27—C32	1.381 (9)
F1—C16	1.345 (7)	C28—C29	1.379 (9)
F2—C18	1.349 (8)	C29—C30	1.387 (9)
F3—C19	1.336 (7)	C30—C31	1.383 (9)
F4—C20	1.338 (7)	C31—C32	1.382 (10)
F5—C22	1.335 (7)	S1—C1	1.679 (6)
F6—C24	1.348 (8)	S2—C1	1.730 (7)
F7—C25	1.330 (7)	S2—C7	1.748 (7)
F8—C26	1.336 (7)	N1—HN1	0.89 (6)
C15—C16	1.386 (9)	N1—C1	1.347 (7)
C15—C20	1.389 (9)	N1—C2	1.401 (8)
C16—C17	1.391 (9)	C2—C3	1.389 (9)
C17—C18	1.381 (9)	C2—C7	1.385 (9)
C18—C19	1.383 (9)	С3—Н3	0.9500
C19—C20	1.373 (10)	C3—C4	1.382 (10)
C21—C22	1.393 (8)	C4—H4	0.9500
C21—C26	1.387 (8)	C4—C5	1.398 (10)
C22—C23	1.389 (9)	С5—Н5	0.9500
C23—C24	1.380 (10)	C5—C6	1.387 (9)
C24—C25	1.377 (10)	С6—Н6	0.9500
C25—C26	1.384 (9)	C6—C7	1.390 (9)
I5—C33	2.080 (6)	S3—C8	1.679 (7)
I6—C35	2.073 (6)	S4—C8	1.741 (7)
F13—C34	1.351 (8)	S4—C14	1.748 (6)
F14—C36	1.346 (8)	N2—HN2	0.85 (3)
F15—C37	1.339 (8)	N2—C8	1.343 (8)
F16—C38	1.331 (7)	N2—C9	1.398 (8)
C33—C34	1.380 (9)	C9—C10	1.396 (9)
C33—C38	1.400 (10)	C9—C14	1.403 (9)
C34—C35	1.402 (9)	C10—H10	0.9500
C35—C36	1.373 (10)	C10—C11	1.369 (10)
C36—C37	1.375 (10)	C11—H11	0.9500
C37—C38	1.375 (10)	C11—C12	1.405 (9)
I7—C27	2.069 (6)	C12—H12	0.9500
I8—C29	2.085 (6)	C12—C13	1.384 (9)
F9—C28	1.342 (7)	C13—H13	0.9500
F10—C30	1.334 (8)	C13—C14	1.394 (9)
C16—C15—I1	122.6 (5)	C28—C29—C30	118.2 (6)
C16—C15—C20	117.1 (6)	C30—C29—I8	120.1 (5)
C20—C15—I1	120.2 (5)	F10-C30-C29	121.1 (6)
F1-C16-C15	118.3 (6)	F10-C30-C31	118.4 (6)
F1-C16-C17	118.4 (6)	C31—C30—C29	120.6 (6)

C15—C16—C17	123.2 (6)	F11—C31—C30	119.9 (6)
C16—C17—I2	121.1 (5)	F11—C31—C32	120.5 (6)
C18—C17—I2	121.8 (5)	C32—C31—C30	119.6 (6)
C18—C17—C16	117.1 (6)	F12—C32—C27	120.5 (6)
F2-C18-C17	120.3 (6)	F12—C32—C31	117.7 (6)
F2-C18-C19	118.0 (6)	C27—C32—C31	121.8 (6)
C17—C18—C19	121.7 (6)	C1—S2—C7	92.2 (3)
F3—C19—C18	120.4 (6)	C1—N1—HN1	117 (4)
F3—C19—C20	120.2 (6)	C1—N1—C2	115.5 (5)
C20—C19—C18	119.3 (6)	C2—N1—HN1	127 (4)
F4—C20—C15	120.0 (6)	S1-C1-S2	1233(4)
F4-C20-C19	118 3 (6)	N1 - C1 - S1	126.5(1)
$C_{19} - C_{20} - C_{15}$	121 6 (6)	N1 - C1 - S2	120.2(5)
$C_{22} = C_{21} = C_{13}$	122.5 (5)	$C_3 - C_2 - N_1$	126.3 (6)
$C_{22} C_{21} I_{3}$	122.3(3)	C_{7} C_{2} N_{1}	112 2 (6)
$C_{20} = C_{21} = 15$	117 3 (6)	$C_7 - C_2 - C_3$	112.2 (0)
$C_{20} - C_{21} - C_{22}$	117.5 (0)	$C_{1} = C_{2} = C_{3}$	121.5 (0)
F_{3} C_{22} C_{21}	118.4 (0)	$C_2 = C_3 = H_3$	121.1
F_{3} — C_{22} — C_{23}	118.9 (6)	C4 - C3 - C2	117.9(0)
$C_{23} - C_{22} - C_{21}$	122.7 (6)	C4 - C3 - H3	121.1
$C_{22} - C_{23} - I_{4}$	120.7 (5)	$C_3 - C_4 - H_4$	119.4
$C_{24} - C_{23} - I_{4}$	122.0 (5)	$C_3 - C_4 - C_5$	121.1 (7)
C24—C23—C22	117.3 (6)	C5—C4—H4	119.4
F6—C24—C23	120.0 (6)	C4—C5—H5	119.8
F6—C24—C25	117.8 (6)	C6—C5—C4	120.5 (7)
C25—C24—C23	122.2 (6)	C6—C5—H5	119.8
F7—C25—C24	120.7 (6)	С5—С6—Н6	120.8
F7—C25—C26	120.3 (6)	C5—C6—C7	118.5 (6)
C24—C25—C26	118.9 (6)	С7—С6—Н6	120.8
F8-C26-C21	120.4 (6)	C2—C7—S2	109.9 (5)
F8—C26—C25	117.9 (6)	C2—C7—C6	120.5 (6)
C25—C26—C21	121.6 (6)	C6—C7—S2	129.6 (5)
C34—C33—I5	121.5 (5)	C8—S4—C14	92.1 (3)
C34—C33—C38	117.3 (6)	C8—N2—HN2	129 (5)
C38—C33—I5	121.0 (5)	C8—N2—C9	116.3 (6)
F13—C34—C33	118.3 (6)	C9—N2—HN2	113 (5)
F13—C34—C35	118.6 (6)	S3—C8—S4	123.3 (4)
C33—C34—C35	123.1 (6)	N2—C8—S3	126.7 (5)
C34 - C35 - I6	121.7 (5)	N2-C8-S4	110.0 (5)
$C_{36} - C_{35} - I_{6}$	121.7 (5)	N2-C9-C14	111.7 (6)
$C_{36} - C_{35} - C_{34}$	116.6 (6)	C10-C9-N2	127 3 (6)
F14 - C36 - C35	119.6 (6)	C10-C9-C14	127.5(6) 121.0(6)
F14 - C36 - C37	117.8 (6)	C9 - C10 - H10	121.0 (0)
C35 C36 C37	122 6 (7)	C_{11} C_{10} C_{9}	117 9 (6)
E15_C37_C36	122.0(7) 120.0(6)	C_{11} C_{10} H_{10}	121.0
$F_{15} = C_{37} = C_{30}$	120.0 (0)	$C_{10} = C_{10} = H_{10}$	121.0
$C_{38} = C_{37} = C_{36}$	120.0(0) 110.2(7)	$C_{10} - C_{11} - C_{11}$	119.3 191 A (6)
$E_{16} = C_{28} = C_{22}$	117.2 (/)	C_{10} C_{11} C_{12} C_{11} C_{12} C_{11} C_{11} C_{11} C_{11} C_{11} C_{12} C_{12} C_{11} C_{12} C	121.4(0)
F10 - C30 - C33	119.7 (0)	C_{12} $-C_{11}$ $-\Pi_{11}$	119.5
F10-U30-U3/	119.1(0)	UII—UI2—HI2	119.4

C37—C38—C33	121.2 (6)	C13—C12—C11	121.2 (6)
C28—C27—I7	121.9 (5)	C13—C12—H12	119.4
C32—C27—I7	121.2 (5)	C12—C13—H13	121.1
C32—C27—C28	116.9 (6)	C12—C13—C14	117.7 (6)
F9—C28—C27	118.2 (6)	C14—C13—H13	121.1
F9—C28—C29	118.9 (6)	C9—C14—S4	109.9 (5)
C29—C28—C27	122.9 (6)	C13—C14—S4	129.3 (5)
C28—C29—I8	121.6 (5)	C13—C14—C9	120.7 (6)
I1—C15—C16—F1	2.2 (8)	C35—C36—C37—C38	1.5 (11)
I1—C15—C16—C17	-176.3 (5)	C36—C37—C38—F16	179.3 (6)
I1—C15—C20—F4	-1.3 (8)	C36—C37—C38—C33	0.0 (11)
I1—C15—C20—C19	176.4 (5)	C38—C33—C34—F13	179.5 (6)
I2—C17—C18—F2	-0.2 (9)	C38—C33—C34—C35	0.1 (10)
I2—C17—C18—C19	-178.3 (5)	I7—C27—C28—F9	3.5 (8)
I3—C21—C22—F5	-2.7 (8)	I7—C27—C28—C29	-176.2 (5)
I3—C21—C22—C23	176.7 (5)	I7—C27—C32—F12	-4.9 (9)
I3—C21—C26—F8	1.3 (8)	I7—C27—C32—C31	174.8 (5)
I3—C21—C26—C25	-175.7 (5)	I8—C29—C30—F10	-3.5 (9)
I4—C23—C24—F6	-0.5 (9)	I8—C29—C30—C31	176.4 (5)
I4—C23—C24—C25	179.5 (5)	F9—C28—C29—I8	3.1 (8)
F1-C16-C17-I2	0.4 (8)	F9—C28—C29—C30	-179.0 (6)
F1-C16-C17-C18	-179.0 (6)	F10-C30-C31-F11	-0.2 (10)
F2-C18-C19-F3	-0.4 (10)	F10-C30-C31-C32	-179.9 (6)
F2-C18-C19-C20	-179.4 (6)	F11—C31—C32—F12	2.2 (10)
F3-C19-C20-F4	-0.8 (10)	F11—C31—C32—C27	-177.6 (6)
F3—C19—C20—C15	-178.5 (6)	C27—C28—C29—I8	-177.3 (5)
F5—C22—C23—I4	-0.1 (8)	C27—C28—C29—C30	0.6 (10)
F5-C22-C23-C24	177.8 (6)	C28—C27—C32—F12	177.4 (6)
F6-C24-C25-F7	2.8 (10)	C28—C27—C32—C31	-2.9 (10)
F6-C24-C25-C26	179.4 (6)	C28-C29-C30-F10	178.6 (6)
F7—C25—C26—F8	-1.0 (10)	C28—C29—C30—C31	-1.5 (10)
F7—C25—C26—C21	176.0 (6)	C29—C30—C31—F11	179.9 (6)
C15—C16—C17—I2	179.0 (5)	C29—C30—C31—C32	0.2 (10)
C15—C16—C17—C18	-0.4 (10)	C30-C31-C32-F12	-178.1 (6)
C16—C15—C20—F4	-177.5 (6)	C30—C31—C32—C27	2.1 (10)
C16—C15—C20—C19	0.2 (10)	C32—C27—C28—F9	-178.8 (6)
C16—C17—C18—F2	179.2 (6)	C32—C27—C28—C29	1.5 (10)
C16—C17—C18—C19	1.2 (10)	N1—C2—C3—C4	-179.8 (6)
C17—C18—C19—F3	177.7 (6)	N1—C2—C7—S2	-0.7 (7)
C17—C18—C19—C20	-1.3 (11)	N1—C2—C7—C6	-179.7 (6)
C18—C19—C20—F4	178.3 (6)	C1—S2—C7—C2	0.5 (5)
C18—C19—C20—C15	0.6 (10)	C1—S2—C7—C6	179.4 (7)
C20-C15-C16-F1	178.3 (5)	C1—N1—C2—C3	179.5 (6)
C20-C15-C16-C17	-0.2 (10)	C1—N1—C2—C7	0.6 (8)
C21—C22—C23—I4	-179.5 (5)	C2—N1—C1—S1	-179.8 (5)
C21—C22—C23—C24	-1.5 (10)	C2—N1—C1—S2	-0.2 (7)
C22—C21—C26—F8	177.6 (6)	C2—C3—C4—C5	0.8 (11)

C22—C21—C26—C25	0.7 (9)	C3—C2—C7—S2	-179.7 (5)
C22—C23—C24—F6	-178.3 (6)	C3—C2—C7—C6	1.3 (10)
C22—C23—C24—C25	1.6 (10)	C3—C4—C5—C6	-0.8 (11)
C23—C24—C25—F7	-177.2 (6)	C4—C5—C6—C7	1.1 (10)
C23—C24—C25—C26	-0.6 (10)	C5—C6—C7—S2	179.9 (5)
C24—C25—C26—F8	-177.7 (6)	C5—C6—C7—C2	-1.3 (10)
C24—C25—C26—C21	-0.6 (10)	C7—S2—C1—S1	179.5 (4)
C26—C21—C22—F5	-178.9 (5)	C7—S2—C1—N1	-0.2 (5)
C26—C21—C22—C23	0.4 (9)	C7—C2—C3—C4	-1.0 (10)
I5—C33—C34—F13	4.8 (9)	N2-C9-C10-C11	-179.2 (6)
I5—C33—C34—C35	-174.6 (5)	N2-C9-C14-S4	0.3 (7)
I5—C33—C38—F16	-5.4 (9)	N2-C9-C14-C13	-179.4 (6)
I5—C33—C38—C37	174.0 (6)	C8—S4—C14—C9	0.4 (5)
I6—C35—C36—F14	-1.7 (10)	C8—S4—C14—C13	-180.0 (6)
I6—C35—C36—C37	178.9 (6)	C8—N2—C9—C10	178.6 (6)
F13—C34—C35—I6	0.9 (9)	C8—N2—C9—C14	-1.1 (8)
F13—C34—C35—C36	-178.2 (6)	C9—N2—C8—S3	179.9 (5)
F14—C36—C37—F15	1.1 (10)	C9—N2—C8—S4	1.4 (7)
F14—C36—C37—C38	-177.9 (7)	C9-C10-C11-C12	-1.0 (10)
F15-C37-C38-F16	0.4 (11)	C10—C9—C14—S4	-179.5 (5)
F15—C37—C38—C33	-179.0 (7)	C10-C9-C14-C13	0.8 (10)
C33—C34—C35—I6	-179.8 (5)	C10-C11-C12-C13	0.2 (11)
C33—C34—C35—C36	1.2 (10)	C11—C12—C13—C14	1.2 (10)
C34—C33—C38—F16	179.9 (6)	C12—C13—C14—S4	178.7 (5)
C34—C33—C38—C37	-0.8 (11)	C12—C13—C14—C9	-1.7 (10)
C34—C35—C36—F14	177.3 (6)	C14—S4—C8—S3	-179.6 (4)
C34—C35—C36—C37	-2.0 (11)	C14—S4—C8—N2	-1.0 (5)
C35—C36—C37—F15	-179.5 (7)	C14—C9—C10—C11	0.5 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—HN1…S3	0.89 (6)	2.51 (6)	3.376 (6)	165 (5)
С3—Н3…I1	0.95	3.10	3.976 (7)	154
N2—HN2…S1	0.85 (3)	2.52 (3)	3.360 (6)	169 (7)
C10—H10…I3 ⁱ	0.95	3.09	4.006 (6)	161

Symmetry code: (i) x, y, z+1.

1,3-Benzothiazole-2-thiol-1,2,4,5-tetrafluoro-3,6-diiodobenzene (2/1) (2MBZTH_14F4DIB)

$V = 1158.61 (8) Å^3$
Z = 2
F(000) = 700
$D_{\rm x} = 2.111 { m Mg m}^{-3}$
Ao $K\alpha$ radiation, $\lambda = 0.71073$ Å
Cell parameters from 9937 reflections
$0 = 2.6 - 30.1^{\circ}$

$\mu = 3.12 \text{ mm}^{-1}$	Needle, colourless
T = 100 K	$0.17 \times 0.09 \times 0.04 \text{ mm}$
Data collection	
Bruker D8 Venture Photon 2 diffractometer Radiation source: Incoatec I μ S φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2017) $T_{\min} = 0.559, T_{\max} = 0.746$ 22270 measured reflections	3402 independent reflections 2811 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{max} = 30.1^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -7 \rightarrow 7$ $k = -22 \rightarrow 21$ $l = -18 \rightarrow 19$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.057$ S = 1.15 3402 reflections 149 parameters 0 restraints Primary atom site location: dual	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0092P)^2 + 1.689P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.90$ e Å ⁻³ $\Delta\rho_{min} = -0.78$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.09620(3)	0.50667 (2)	0.18841 (2)	0.01843 (6)
F1	0.4987 (3)	0.36936 (10)	0.13226 (14)	0.0285 (4)
F2	0.8063 (3)	0.36478 (10)	-0.00971 (13)	0.0267 (4)
C8	0.3371 (5)	0.50280 (17)	0.0761 (2)	0.0179 (5)
C9	0.4956 (5)	0.43488 (17)	0.0673 (2)	0.0210 (6)
C10	0.6546 (5)	0.43202 (17)	-0.0070(2)	0.0190 (5)
S1	-0.29400 (12)	0.50758 (4)	0.36239 (5)	0.01927 (14)
S2	0.07419 (13)	0.64355 (4)	0.42496 (5)	0.02067 (15)
N1	-0.2698 (4)	0.60239 (14)	0.52996 (18)	0.0175 (5)
HN1	-0.379 (6)	0.577 (2)	0.548 (3)	0.024 (9)*
C1	-0.1812 (5)	0.58112 (16)	0.4433 (2)	0.0166 (5)
C2	-0.1450 (5)	0.66593 (16)	0.5855 (2)	0.0173 (5)
C3	-0.2004 (5)	0.69814 (17)	0.6767 (2)	0.0225 (6)
H3	-0.337581	0.678027	0.708502	0.027*
C4	-0.0491 (6)	0.76050 (19)	0.7197 (2)	0.0271 (7)
H4	-0.083090	0.783531	0.782261	0.032*
C5	0.1516 (6)	0.79028 (19)	0.6737 (2)	0.0269 (7)
Н5	0.253410	0.832708	0.705534	0.032*
C6	0.2060 (5)	0.75900 (17)	0.5816 (2)	0.0237 (6)

H6	0.342177	0.779762	0.549629	0.028*	
C7	0.0542 (5)	0.69629 (16)	0.5379 (2)	0.0178 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01632 (9)	0.02275 (9)	0.01671 (10)	0.00025 (7)	0.00446 (6)	-0.00296 (6)
F1	0.0349 (10)	0.0250 (8)	0.0273 (10)	0.0077 (7)	0.0135 (8)	0.0069 (7)
F2	0.0284 (9)	0.0247 (8)	0.0283 (10)	0.0099 (7)	0.0107 (8)	0.0003 (7)
C8	0.0152 (12)	0.0226 (13)	0.0162 (14)	-0.0007 (10)	0.0035 (10)	-0.0063 (10)
C9	0.0216 (14)	0.0217 (13)	0.0200 (15)	-0.0003 (11)	0.0031 (12)	-0.0003 (10)
C10	0.0169 (12)	0.0196 (12)	0.0207 (15)	0.0022 (10)	0.0019 (11)	-0.0047 (10)
S1	0.0194 (3)	0.0228 (3)	0.0161 (3)	-0.0054 (3)	0.0047 (3)	-0.0013 (2)
S2	0.0195 (3)	0.0236 (3)	0.0198 (4)	-0.0062(3)	0.0071 (3)	-0.0005 (3)
N1	0.0170 (11)	0.0165 (10)	0.0196 (13)	-0.0033 (9)	0.0057 (9)	0.0011 (9)
C1	0.0154 (12)	0.0176 (12)	0.0170 (14)	-0.0002 (10)	0.0030 (10)	0.0036 (9)
C2	0.0189 (13)	0.0148 (11)	0.0184 (14)	-0.0022 (10)	0.0016 (11)	0.0020 (9)
C3	0.0227 (14)	0.0226 (13)	0.0230 (16)	0.0016 (11)	0.0061 (12)	0.0009 (11)
C4	0.0322 (16)	0.0254 (14)	0.0238 (17)	0.0003 (12)	0.0036 (13)	-0.0066 (12)
C5	0.0273 (15)	0.0221 (14)	0.0307 (18)	-0.0041 (12)	-0.0022 (13)	-0.0029 (12)
C6	0.0232 (14)	0.0194 (13)	0.0286 (17)	-0.0051 (11)	0.0023 (12)	0.0013 (11)
C7	0.0173 (12)	0.0170 (12)	0.0193 (15)	-0.0007 (10)	0.0027 (11)	0.0026 (10)

Geometric parameters (Å, °)

I1—C8	2.090 (3)	N1—C2	1.394 (4)
F1—C9	1.348 (3)	C2—C3	1.386 (4)
F2-C10	1.344 (3)	C2—C7	1.395 (4)
С8—С9	1.384 (4)	С3—Н3	0.9500
C8-C10 ⁱ	1.385 (4)	C3—C4	1.381 (4)
C9—C10	1.381 (4)	C4—H4	0.9500
S1—C1	1.673 (3)	C4—C5	1.388 (4)
S2—C1	1.743 (3)	С5—Н5	0.9500
S2—C7	1.746 (3)	C5—C6	1.390 (4)
N1—HN1	0.78 (3)	С6—Н6	0.9500
N1-C1	1.344 (3)	C6—C7	1.390 (4)
C9—C8—I1	121.6 (2)	C3—C2—N1	127.2 (2)
C9-C8-C10 ⁱ	116.8 (2)	C3—C2—C7	121.3 (3)
C10 ⁱ —C8—I1	121.59 (19)	С2—С3—Н3	121.2
F1—C9—C8	120.2 (2)	C4—C3—C2	117.7 (3)
F1-C9-C10	118.1 (2)	С4—С3—Н3	121.2
С10—С9—С8	121.7 (3)	C3—C4—H4	119.3
F2-C10-C8 ⁱ	120.2 (2)	C3—C4—C5	121.5 (3)
F2-C10-C9	118.3 (2)	C5—C4—H4	119.3
C9-C10-C8 ⁱ	121.4 (2)	C4—C5—H5	119.5
C1—S2—C7	92.03 (13)	C4—C5—C6	121.0 (3)
C1—N1—HN1	119 (3)	С6—С5—Н5	119.5

C1—N1—C2 C2—N1—HN1 S1—C1—S2 N1—C1—S1 N1—C1—S2 N1—C1—S2 N1—C2—C7	116.7 (2) 124 (3) 123.72 (16) 126.7 (2) 109.5 (2) 111.5 (2)	C5—C6—H6 C7—C6—C5 C7—C6—H6 C2—C7—S2 C6—C7—S2 C6—C7—C2	121.1 117.7 (3) 121.1 110.2 (2) 128.9 (2) 120.8 (3)
$I1-C8-C9-F1$ $I1-C8-C9-C10$ $F1-C9-C10-F2$ $F1-C9-C10-C8^{i}$ $C8-C9-C10-F2$ $C8-C9-C10-C8^{i}$ $C10^{i}-C8-C9-F1$ $C10^{i}-C8-C9-C10$	-0.5 (4) 179.8 (2) -0.9 (4) -179.6 (3) 178.7 (3) 0.0 (5) 179.6 (3) 0.0 (5)	C1—N1—C2—C7 C2—N1—C1—S1 C2—N1—C1—S2 C2—C3—C4—C5 C3—C2—C7—S2 C3—C2—C7—C6 C3—C4—C5—C6 C4—C5—C6—C7	0.3 (3) -180.0 (2) -0.7 (3) 0.1 (5) -179.8 (2) 1.1 (4) 0.8 (5) -0.7 (5)
N1—C2—C3—C4 N1—C2—C7—S2 N1—C2—C7—C6 C1—S2—C7—C2 C1—S2—C7—C6 C1—N1—C2—C3	179.0 (3) 0.2 (3) -178.9 (3) -0.5 (2) 178.5 (3) -179.7 (3)	C5-C6-C7-S2 C5-C6-C7-C2 C7-S2-C1-S1 C7-S2-C1-N1 C7-C2-C3-C4	-179.2 (2) -0.2 (4) 180.00 (19) 0.7 (2) -1.0 (4)

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A	
N1—HN1····S1 ⁱⁱ	0.78 (3)	2.60 (3)	3.369 (2)	170 (3)	
C3—H3···F1 ⁱⁱⁱ	0.95	2.50	3.333 (3)	146	
C6—H6…F2 ^{iv}	0.95	2.44	3.357 (3)	162	

Symmetry codes: (ii) -*x*-1, -*y*+1, -*z*+1; (iii) -*x*, -*y*+1, -*z*+1; (iv) -*x*+3/2, *y*+1/2, -*z*+1/2.

1,3-Benzothiazole-2-thiol-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1) (MBZTH_135F3I3B)

Crystal data	
$C_6F_3I_3$ · $C_7H_5NS_2$	F(000) = 1232
$M_r = 677.00$	$D_{\rm x} = 2.681 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 15.2665 (6) Å	Cell parameters from 9894 reflections
b = 4.7380(2)Å	$\theta = 3.1 - 28.4^{\circ}$
c = 23.2215 (10) Å	$\mu = 5.86 \text{ mm}^{-1}$
$\beta = 93.139(2)^{\circ}$	T = 100 K
$V = 1677.15 (12) Å^3$	Plate, colourless
Z = 4	$0.16 \times 0.08 \times 0.05 \text{ mm}$
Data collection	
Bruker D8 Venture Photon 2	Absorption correction: multi-scan
diffractometer	(SADABS; Bruker, 2017)
Radiation source: Incoatec $I\mu S$	$T_{\rm min} = 0.610, T_{\rm max} = 0.746$
φ and ω scans	35222 measured reflections
	4212 independent reflections

3611 reflections with $I > 2\sigma(I)$	$h = -19 \rightarrow 20$
$R_{\rm int} = 0.057$	$k = -6 \rightarrow 6$
$\theta_{\rm max} = 28.4^{\circ}, \theta_{\rm min} = 2.2^{\circ}$	$l = -30 \rightarrow 31$
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.024$	and constrained refinement
$wR(F^2) = 0.052$	$w = 1/[\sigma^2(F_o^2) + 4.0997P]$
<i>S</i> = 1.18	where $P = (F_o^2 + 2F_c^2)/3$
4212 reflections	$(\Delta/\sigma)_{\rm max} = 0.003$
203 parameters	$\Delta \rho_{\rm max} = 0.67 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.73 \text{ e} \text{ Å}^{-3}$
Primary atom site location: dual	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.70161 (2)	0.58105 (5)	0.55847 (2)	0.01897 (6)
I2	0.68104 (2)	-0.18871 (6)	0.76567 (2)	0.02456 (7)
I3	0.37648 (2)	-0.11384 (6)	0.58903 (2)	0.02243 (6)
F1	0.75133 (13)	0.2505 (5)	0.67513 (9)	0.0224 (5)
F2	0.49679 (14)	-0.2816 (5)	0.70076 (9)	0.0247 (5)
F3	0.51145 (13)	0.3138 (5)	0.54048 (9)	0.0224 (5)
C8	0.6317 (2)	0.2972 (7)	0.60769 (15)	0.0161 (7)
C9	0.6683 (2)	0.1805 (8)	0.65793 (15)	0.0168 (7)
C10	0.6242 (2)	-0.0129 (8)	0.69039 (15)	0.0170 (7)
C11	0.5404 (2)	-0.0910 (8)	0.67047 (15)	0.0195 (7)
C12	0.5008 (2)	0.0172 (8)	0.62016 (15)	0.0170 (7)
C13	0.5477 (2)	0.2102 (8)	0.58980 (15)	0.0177 (7)
S1	0.85079 (6)	1.0132 (2)	0.49475 (4)	0.02217 (19)
S2	0.81182 (6)	0.6044 (2)	0.39819 (4)	0.02095 (19)
N1	0.9677 (2)	0.7071 (7)	0.43672 (13)	0.0205 (6)
HN1	1.011 (2)	0.777 (10)	0.4571 (18)	0.040 (14)*
C1	0.8842 (2)	0.7835 (8)	0.44595 (15)	0.0185 (7)
C2	0.9777 (2)	0.5076 (8)	0.39362 (16)	0.0203 (7)
C3	1.0556 (3)	0.3935 (9)	0.37636 (18)	0.0278 (9)
Н3	1.110354	0.453291	0.393589	0.033*
C4	1.0518 (3)	0.1913 (9)	0.33364 (18)	0.0303 (9)
H4	1.104619	0.107792	0.322010	0.036*
C5	0.9720 (3)	0.1072 (9)	0.30721 (18)	0.0304 (9)
Н5	0.971216	-0.031349	0.277614	0.036*
C6	0.8934 (3)	0.2228 (8)	0.32348 (17)	0.0260 (8)
H6	0.838874	0.165478	0.305463	0.031*
C7	0.8970 (2)	0.4256 (8)	0.36705 (15)	0.0194 (7)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01882 (12)	0.01952 (12)	0.01885 (12)	-0.00162 (9)	0.00346 (9)	-0.00136 (9)
I2	0.02741 (13)	0.02835 (14)	0.01735 (12)	0.00846 (10)	-0.00403 (9)	0.00139 (10)
I3	0.01542 (11)	0.03132 (14)	0.02042 (12)	-0.00464 (9)	-0.00022 (9)	-0.00501 (10)
F1	0.0151 (10)	0.0285 (12)	0.0230 (11)	-0.0008 (9)	-0.0039 (8)	-0.0038 (9)
F2	0.0261 (11)	0.0259 (12)	0.0221 (11)	-0.0066 (9)	0.0014 (9)	0.0078 (9)
F3	0.0198 (10)	0.0286 (12)	0.0184 (10)	0.0021 (9)	-0.0027 (8)	0.0066 (9)
C8	0.0174 (16)	0.0146 (17)	0.0163 (16)	-0.0009 (13)	0.0025 (13)	-0.0019 (13)
C9	0.0137 (16)	0.0191 (17)	0.0175 (17)	0.0018 (13)	-0.0010 (13)	-0.0058 (14)
C10	0.0180 (17)	0.0184 (17)	0.0142 (16)	0.0044 (13)	-0.0036 (13)	-0.0014 (14)
C11	0.0206 (18)	0.0202 (18)	0.0180 (17)	-0.0001 (14)	0.0032 (14)	-0.0004 (14)
C12	0.0130 (16)	0.0198 (18)	0.0180 (17)	-0.0001 (13)	0.0000 (13)	-0.0020 (14)
C13	0.0159 (16)	0.0208 (18)	0.0163 (16)	0.0037 (14)	0.0007 (13)	-0.0005 (14)
S1	0.0217 (5)	0.0233 (5)	0.0217 (5)	-0.0019 (4)	0.0019 (4)	-0.0025 (4)
S2	0.0158 (4)	0.0237 (5)	0.0229 (5)	-0.0027 (3)	-0.0021 (3)	-0.0020 (4)
N1	0.0183 (15)	0.0251 (17)	0.0178 (15)	-0.0035 (13)	-0.0019 (12)	-0.0011 (13)
C1	0.0178 (17)	0.0183 (18)	0.0191 (17)	-0.0026 (14)	-0.0004 (14)	0.0025 (14)
C2	0.0218 (18)	0.0196 (18)	0.0194 (18)	0.0014 (14)	-0.0019 (14)	0.0022 (15)
C3	0.0201 (19)	0.033 (2)	0.030 (2)	0.0003 (16)	-0.0023 (16)	0.0032 (18)
C4	0.033 (2)	0.031 (2)	0.028 (2)	0.0097 (18)	0.0072 (17)	0.0002 (18)
C5	0.043 (3)	0.022 (2)	0.026 (2)	0.0013 (18)	0.0067 (18)	-0.0007 (17)
C6	0.033 (2)	0.022 (2)	0.0223 (19)	-0.0059 (16)	-0.0037 (16)	0.0010 (16)
C7	0.0198 (18)	0.0199 (18)	0.0183 (17)	-0.0008 (14)	0.0004 (14)	0.0026 (14)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

I1—C8	2.095 (3)	S2—C7	1.742 (4)
I2—C10	2.082 (3)	N1—HN1	0.857 (19)
I3—C12	2.088 (3)	N1—C1	1.353 (5)
F1—C9	1.349 (4)	N1—C2	1.391 (5)
F2—C11	1.343 (4)	C2—C3	1.386 (5)
F3—C13	1.338 (4)	C2—C7	1.402 (5)
С8—С9	1.381 (5)	С3—Н3	0.9500
C8—C13	1.389 (5)	C3—C4	1.378 (6)
C9—C10	1.384 (5)	C4—H4	0.9500
C10-C11	1.388 (5)	C4—C5	1.393 (6)
C11—C12	1.384 (5)	С5—Н5	0.9500
C12—C13	1.379 (5)	C5—C6	1.390 (6)
S1—C1	1.671 (4)	С6—Н6	0.9500
S2—C1	1.743 (4)	C6—C7	1.394 (5)
C9—C8—I1	121.6 (3)	S1—C1—S2	122.8 (2)
C9—C8—C13	117.3 (3)	N1—C1—S1	127.4 (3)
C13—C8—I1	121.1 (3)	N1—C1—S2	109.8 (3)
F1—C9—C8	118.8 (3)	N1—C2—C7	112.1 (3)
F1—C9—C10	118.6 (3)	C3—C2—N1	127.1 (4)

C8—C9—C10	122.6 (3)	C3—C2—C7	120.8 (4)
C9—C10—I2	122.0 (3)	С2—С3—Н3	120.8
C9—C10—C11	117.5 (3)	C4—C3—C2	118.5 (4)
C11—C10—I2	120.5 (3)	С4—С3—Н3	120.8
F2-C11-C10	118.6 (3)	С3—С4—Н4	119.4
F2-C11-C12	119.0 (3)	C3—C4—C5	121.1 (4)
C12—C11—C10	122.3 (3)	С5—С4—Н4	119.4
C11—C12—I3	121.9 (3)	С4—С5—Н5	119.5
C13—C12—I3	120.5 (3)	C6—C5—C4	121.0 (4)
C13—C12—C11	117.6 (3)	С6—С5—Н5	119.5
F3—C13—C8	118.7 (3)	С5—С6—Н6	121.0
F3—C13—C12	118.6 (3)	C5—C6—C7	117.9 (4)
C12—C13—C8	122.7 (3)	С7—С6—Н6	121.0
C7—S2—C1	92.24 (18)	C2—C7—S2	109.9 (3)
C1—N1—HN1	121 (3)	C6—C7—S2	129.5 (3)
C1—N1—C2	115.9 (3)	C6—C7—C2	120.6 (3)
C2—N1—HN1	123 (3)		
I1—C8—C9—F1	-0.5 (4)	C13—C8—C9—F1	177.0 (3)
I1—C8—C9—C10	-178.3 (3)	C13—C8—C9—C10	-0.8 (5)
I1—C8—C13—F3	-0.7 (4)	N1—C2—C3—C4	178.2 (4)
I1—C8—C13—C12	178.0 (3)	N1—C2—C7—S2	-0.2 (4)
I2—C10—C11—F2	0.1 (5)	N1—C2—C7—C6	-178.7 (3)
I2—C10—C11—C12	-178.9 (3)	C1—S2—C7—C2	-0.2 (3)
I3—C12—C13—F3	0.8 (5)	C1—S2—C7—C6	178.1 (4)
I3—C12—C13—C8	-177.9 (3)	C1—N1—C2—C3	-179.4 (4)
F1—C9—C10—I2	1.7 (4)	C1—N1—C2—C7	0.8 (5)
F1—C9—C10—C11	-177.2 (3)	C2—N1—C1—S1	179.2 (3)
F2-C11-C12-I3	-1.4 (5)	C2—N1—C1—S2	-0.9 (4)
F2-C11-C12-C13	-179.3 (3)	C2—C3—C4—C5	1.5 (6)
C8—C9—C10—I2	179.5 (3)	C3—C2—C7—S2	179.9 (3)
C8—C9—C10—C11	0.6 (5)	C3—C2—C7—C6	1.4 (6)
C9—C8—C13—F3	-178.2 (3)	C3—C4—C5—C6	-0.6 (6)
C9—C8—C13—C12	0.4 (5)	C4—C5—C6—C7	0.0 (6)
C9—C10—C11—F2	179.0 (3)	C5—C6—C7—S2	-178.6 (3)
C9—C10—C11—C12	0.0 (5)	C5—C6—C7—C2	-0.4 (6)
C10-C11-C12-I3	177.6 (3)	C7—S2—C1—S1	-179.5 (2)
C10-C11-C12-C13	-0.4 (5)	C7—S2—C1—N1	0.6 (3)
C11—C12—C13—F3	178.8 (3)	C7—C2—C3—C4	-1.9 (6)
C11—C12—C13—C8	0.1 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A	
N1—HN1····S1 ⁱ	0.86 (2)	2.54 (2)	3.389 (3)	172 (4)	
С3—Н3…І1 ^{іі}	0.95	3.03	3.928 (4)	159	

Symmetry codes: (i) -*x*+2, -*y*+2, -*z*+1; (ii) -*x*+2, -*y*+1, -*z*+1.

1,3-Benzothiazole-2-thiol-1,1,2,2-tetraiodoethene (1/1) (MBZTH_TIE)

Crystal data

 $\begin{array}{l} C_2 I_4 \cdot C_7 H_5 NS_2 \\ M_r = 698.86 \\ \text{Triclinic, } P\overline{1} \\ a = 7.4085 \ (6) \ \text{\AA} \\ b = 10.8180 \ (9) \ \text{\AA} \\ c = 11.1989 \ (10) \ \text{\AA} \\ a = 66.616 \ (3)^\circ \\ \beta = 70.765 \ (3)^\circ \\ \gamma = 70.792 \ (3)^\circ \\ V = 757.20 \ (11) \ \text{\AA}^3 \end{array}$

Data collection

Bruker D8 Venture Photon 2	3484 independent reflections
diffractometer	3037 reflections with $I > 2\sigma(I)$
Radiation source: Incoatec I μ S	$R_{\rm int} = 0.052$
φ and ω scans	$\theta_{\rm max} = 27.6^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Bruker, 2017)	$k = -14 \rightarrow 14$
$T_{\min} = 0.589, \ T_{\max} = 0.746$	$l = -14 \rightarrow 14$
22463 measured reflections	
Definement	

Refinement

Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent $R[F^2 > 2\sigma(F^2)] = 0.029$ and constrained refinement $wR(F^2) = 0.072$ $w = 1/[\sigma^2(F_o^2) + (0.0264P)^2 + 3.2353P]$ S = 1.13where $P = (F_0^2 + 2F_c^2)/3$ 3484 reflections $(\Delta/\sigma)_{\rm max} = 0.002$ 159 parameters $\Delta \rho_{\rm max} = 1.43 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -1.76 \text{ e} \text{ Å}^{-3}$ 7 restraints Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Z = 2

F(000) = 620

 $\theta = 2.4 - 27.6^{\circ}$

 $\mu = 8.48 \text{ mm}^{-1}$

Block, yellow

 $0.08 \times 0.07 \times 0.07$ mm

T = 100 K

 $D_{\rm x} = 3.065 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9908 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$	Occ. (<1)
I1	0.18703 (5)	0.90012 (3)	0.68231 (3)	0.02172 (9)	
I2	0.32280 (5)	0.95731 (4)	0.33480 (3)	0.02290 (9)	
C8	0.0936 (8)	0.9743 (5)	0.5033 (6)	0.0239 (11)	
I3	0.72172 (6)	0.21253 (4)	0.95745 (4)	0.03285 (11)	
I4	0.76779 (5)	-0.15110 (4)	1.05340 (4)	0.02545 (10)	
C9A	0.9080 (15)	0.0083 (10)	1.0028 (9)	0.016 (3)	0.529 (19)
C9B	0.9990 (16)	-0.0669 (12)	1.0232 (11)	0.016 (3)	0.471 (19)
S1	0.33205 (18)	0.46883 (15)	0.92558 (14)	0.0257 (3)	
S2	0.34982 (18)	0.53599 (14)	0.63493 (13)	0.0224 (3)	

N1	0.0271 (6)	0.5607 (5)	0.8065 (4)	0.0207 (9)
HN1	-0.057 (8)	0.555 (7)	0.881 (4)	0.036 (19)*
C1	0.2213 (7)	0.5214 (5)	0.7989 (5)	0.0193 (10)
C2	0.1323 (7)	0.6027 (5)	0.5783 (5)	0.0189 (10)
C3	0.1076 (8)	0.6481 (6)	0.4478 (6)	0.0245 (11)
Н3	0.217056	0.642904	0.374510	0.029*
C4	-0.0808 (9)	0.7004 (6)	0.4295 (6)	0.0270 (12)
H4	-0.101730	0.733475	0.341722	0.032*
C5	-0.2416 (8)	0.7059 (6)	0.5370 (6)	0.0272 (12)
Н5	-0.369991	0.742518	0.520859	0.033*
C6	-0.2192 (8)	0.6593 (5)	0.6671 (6)	0.0233 (11)
H6	-0.329217	0.662174	0.740411	0.028*
C7	-0.0280 (7)	0.6081 (5)	0.6852 (5)	0.0187 (10)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
I1	0.01984 (17)	0.02418 (18)	0.02146 (18)	-0.00095 (13)	-0.00713 (13)	-0.00908 (13)
I2	0.01628 (16)	0.02862 (19)	0.02166 (18)	-0.00312 (13)	-0.00118 (13)	-0.01016 (14)
C8	0.024 (3)	0.020 (2)	0.025 (3)	0.002 (2)	-0.006 (2)	-0.009 (2)
I3	0.0351 (2)	0.0308 (2)	0.0316 (2)	0.01363 (16)	-0.01664 (17)	-0.01885 (16)
I4	0.02582 (18)	0.02565 (18)	0.02593 (19)	-0.01160 (14)	-0.00886 (14)	-0.00245 (14)
C9A	0.020 (5)	0.005 (4)	0.016 (4)	0.003 (4)	-0.004 (3)	-0.001 (3)
C9B	0.009 (5)	0.012 (6)	0.019 (5)	0.003 (4)	-0.004 (4)	-0.003 (4)
S 1	0.0144 (6)	0.0329 (7)	0.0213 (6)	0.0021 (5)	-0.0034 (5)	-0.0067 (6)
S2	0.0158 (6)	0.0261 (6)	0.0215 (6)	-0.0002 (5)	-0.0008 (5)	-0.0105 (5)
N1	0.017 (2)	0.021 (2)	0.019 (2)	-0.0026 (17)	-0.0031 (17)	-0.0042 (18)
C1	0.016 (2)	0.015 (2)	0.024 (3)	-0.0034 (18)	-0.004 (2)	-0.005 (2)
C2	0.017 (2)	0.018 (2)	0.022 (3)	-0.0040 (19)	-0.0020 (19)	-0.008 (2)
C3	0.026 (3)	0.026 (3)	0.022 (3)	-0.005 (2)	-0.002 (2)	-0.012 (2)
C4	0.031 (3)	0.024 (3)	0.025 (3)	-0.009 (2)	-0.005 (2)	-0.005 (2)
C5	0.025 (3)	0.021 (3)	0.034 (3)	0.000 (2)	-0.012 (2)	-0.006 (2)
C6	0.019 (2)	0.020 (2)	0.029 (3)	-0.002 (2)	-0.004 (2)	-0.008 (2)
C7	0.020 (2)	0.015 (2)	0.018 (2)	-0.0022 (18)	-0.002 (2)	-0.0051 (19)

Geometric parameters (Å, °)

I1—C8	2.101 (6)	N1—C1	1.343 (6)
I2—C8	2.106 (6)	N1—C7	1.396 (7)
C8-C8 ⁱ	1.329 (11)	C2—C3	1.400 (8)
I3—C9A	2.146 (10)	C2—C7	1.386 (7)
I3—C9B ⁱⁱ	2.166 (11)	С3—Н3	0.9500
I4—C9A	2.095 (10)	C3—C4	1.373 (8)
I4—C9B	2.069 (11)	C4—H4	0.9500
C9A—C9A ⁱⁱ	1.30 (2)	C4—C5	1.392 (8)
C9B—C9B ⁱⁱ	1.33 (2)	C5—H5	0.9500
S1—C1	1.682 (5)	C5—C6	1.388 (8)
S2—C1	1.738 (5)	С6—Н6	0.9500

S2—C2 N1—HN1	1.750 (5) 0.85 (2)	C6—C7	1.392 (7)
I1—C8—I2	114.1 (2)	C7—C2—S2	109.9 (4)
C8 ⁱ —C8—I1	123.2 (6)	C7—C2—C3	121.0 (5)
C8 ⁱ —C8—I2	122.8 (6)	С2—С3—Н3	121.2
C9A—I3—C9B ⁱⁱ	26.4 (4)	C4—C3—C2	117.6 (5)
I4—C9A—I3	114.6 (5)	С4—С3—Н3	121.2
C9A ⁱⁱ —C9A—I3	120.0 (10)	C3—C4—H4	119.4
C9A ⁱⁱ —C9A—I4	125.3 (10)	C3—C4—C5	121.3 (6)
I4—C9B—I3 ⁱⁱ	115.8 (5)	С5—С4—Н4	119.4
C9B ⁱⁱ —C9B—I4	127.1 (11)	С4—С5—Н5	119.2
C1—S2—C2	91.8 (2)	C6—C5—C4	121.7 (5)
C1—N1—HN1	122 (5)	С6—С5—Н5	119.2
C1—N1—C7	115.7 (4)	С5—С6—Н6	121.5
C7—N1—HN1	122 (5)	C5—C6—C7	116.9 (5)
S1—C1—S2	123.1 (3)	С7—С6—Н6	121.5
N1—C1—S1	126.6 (4)	C2—C7—N1	112.4 (4)
N1—C1—S2	110.2 (4)	C2—C7—C6	121.5 (5)
C3—C2—S2	129.1 (4)	C6—C7—N1	126.1 (5)
S2—C2—C3—C4	-178.0 (4)	C3—C2—C7—N1	-178.9 (5)
S2—C2—C7—N1	0.4 (5)	C3—C2—C7—C6	-0.3 (8)
S2—C2—C7—C6	179.0 (4)	C3—C4—C5—C6	0.2 (9)
C1—S2—C2—C3	177.8 (5)	C4—C5—C6—C7	0.7 (8)
C1—S2—C2—C7	-1.4 (4)	C5-C6-C7-N1	177.7 (5)
C1—N1—C7—C2	1.3 (6)	C5—C6—C7—C2	-0.7 (8)
C1—N1—C7—C6	-177.3 (5)	C7—N1—C1—S1	176.2 (4)
C2—S2—C1—S1	-176.4 (3)	C7—N1—C1—S2	-2.3 (6)
C2—S2—C1—N1	2.1 (4)	C7—C2—C3—C4	1.2 (8)
C2—C3—C4—C5	-1.1 (8)		

Symmetry codes: (i) -*x*, -*y*+2, -*z*+1; (ii) -*x*+2, -*y*, -*z*+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—HN1···S1 ⁱⁱⁱ	0.85 (2)	2.43 (2)	3.275 (5)	170 (6)

Symmetry code: (iii) -x, -y+1, -z+2.

Acta Cryst. (2022). C78, 702-715 [https://doi.org/10.1107/S2053229622009548]

Halogen, chalcogen, and hydrogen bonding in organoiodine cocrystals of heterocyclic thiones: imidazolidine-2-thione, 2-mercaptobenzimidazole, 2mercapto-5-methylbenzimidazole, 2-mercaptobenzoxazole, and 2mercaptobenzothiazole

Spencer Watts, Andrew J. Peloquin, Madhushi Bandara, Colin D. McMillen and William T. Pennington

Computing details

For all structures, data collection: *APEX3* (Bruker, 2017); cell refinement: *SAINT* (Bruker, 2017); data reduction: *SAINT* (Bruker, 2017); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015*b*). Molecular graphics: *Mercury* (Macrae *et al.*, 2020) for 2IT_13F4DIB, 4MBZIM_313F4DIB, MBZIM_14F4DIB, MBZIM_TIE, MMBZIM_12F4DIB, 2MMBZIM_14F4DIB_2H2O, MMBZIM_135F3I3B, MBZOX_12F4DIB, MBZOX_13F4DIB, 2MBZOX_14F4DIB, MBZOX_135F3I3B, 3MBZTH_412F4DIB, MBZTH_13F4DIB, MBZTH_213F4DIB, 2MBZTH_14F4DIB, MBZTH_135F3I3B, MBZTH_12F4DIB, MBZTH_2009) for IT_135F3I3B. For all structures, software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

1,2,3,5-Tetrafluoro-4,6-diiodobenzene-imidazolidine-2-thione (1/2) (2IT_13F4DIB)

$C_6F_4I_2 \cdot 2C_3H_6N_2S$	$D_{\rm x} = 2.193 {\rm Mg m^{-3}}$
$M_r = 606.18$	Mo Ka radiation, $\lambda = 0.71073$ A
Orthorhombic, <i>Pbcn</i>	Cell parameters from 9343 reflections
a = 15.6704(7) A	$\theta = 2.6 - 30.1^{\circ}$
b = 8.9924 (4) Å	$\mu = 3.69 \text{ mm}^{-1}$
c = 26.0573 (10) Å	T = 100 K
$V = 3671.9 (3) Å^3$	Block, colourless
Z = 8	$0.18 \times 0.17 \times 0.13 \text{ mm}$
F(000) = 2288	
Data collection	
Bruker D8 Venture Photon 2	5376 independent reflections
diffractometer	5198 reflections with $I > 2\sigma(I)$
Radiation source: Incoatec $I\mu S$	$R_{\rm int} = 0.035$
φ and ω scans	$\theta_{\text{max}} = 30.1^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -22 \rightarrow 22$
(SADABS; Bruker, 2017)	$k = -12 \rightarrow 12$
$T_{\min} = 0.639, T_{\max} = 0.746$	$l = -36 \rightarrow 31$
112821 measured reflections	

Refinement

Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.015$	$w = 1/[\sigma^2(F_o^2) + (0.0054P)^2 + 3.3158P]$
$wR(F^2) = 0.032$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.25	$(\Delta/\sigma)_{\rm max} = 0.003$
5376 reflections	$\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ Å}^{-3}$
234 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$
0 restraints	Extinction correction: SHELXL2018
Hydrogen site location: mixed	(Sheldrick, 2015 <i>b</i>),
	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
	Extinction coefficient: 0.00082 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.71842 (2)	0.27502 (2)	0.20785 (2)	0.01326 (3)	
I2	0.98485 (2)	0.54110 (2)	0.35028 (2)	0.01761 (3)	
F1	0.89456 (6)	0.34626 (11)	0.26335 (4)	0.01975 (19)	
F2	0.81145 (7)	0.69420 (11)	0.38910 (4)	0.0230 (2)	
F3	0.64754 (6)	0.66108 (12)	0.36116 (4)	0.0232 (2)	
F4	0.60595 (6)	0.48196 (12)	0.28175 (4)	0.0215 (2)	
C7	0.74984 (10)	0.40891 (16)	0.27097 (5)	0.0139 (3)	
C8	0.83358 (10)	0.42536 (17)	0.28725 (6)	0.0145 (3)	
C9	0.85758 (10)	0.51990 (17)	0.32680 (6)	0.0157 (3)	
C10	0.79313 (10)	0.59875 (17)	0.35087 (6)	0.0165 (3)	
C11	0.70856 (10)	0.58350 (18)	0.33669 (6)	0.0172 (3)	
C12	0.68786 (10)	0.49038 (18)	0.29640 (6)	0.0155 (3)	
S1	0.68567 (2)	0.95036 (4)	0.61354 (2)	0.01476 (7)	
N1	0.69251 (9)	0.72075 (15)	0.54616 (5)	0.0166 (3)	
HN1	0.7189 (14)	0.672 (3)	0.5672 (9)	0.027 (6)*	
N2	0.64832 (10)	0.92951 (15)	0.51306 (5)	0.0182 (3)	
HN2	0.6289 (14)	1.015 (2)	0.5136 (8)	0.022 (5)*	
C1	0.67475 (9)	0.86294 (17)	0.55568 (6)	0.0134 (3)	
C2	0.68382 (11)	0.68448 (18)	0.49167 (6)	0.0186 (3)	
H2A	0.644157	0.600134	0.486460	0.022*	
H2B	0.739772	0.659716	0.476228	0.022*	
C3	0.64743 (11)	0.82909 (18)	0.46895 (6)	0.0199 (3)	
H3A	0.683895	0.867131	0.440842	0.024*	
H3B	0.588726	0.814231	0.455882	0.024*	
S2	0.42217 (3)	0.71986 (5)	0.49680 (2)	0.02184 (9)	
N3	0.47631 (10)	0.51791 (16)	0.42741 (5)	0.0199 (3)	
HN3	0.4952 (13)	0.467 (2)	0.4491 (9)	0.020 (5)*	
N4	0.40214 (9)	0.69778 (16)	0.39417 (5)	0.0173 (3)	

HN4	0.3816 (15)	0.783 (3)	0.3921 (9)	0.028 (6)*	
C4	0.43369 (10)	0.64323 (17)	0.43758 (6)	0.0150 (3)	
C5	0.46475 (10)	0.47080 (17)	0.37446 (6)	0.0166 (3)	
H5A	0.423029	0.388469	0.371861	0.020*	
H5B	0.519445	0.439328	0.358855	0.020*	
C6	0.43059 (11)	0.61337 (18)	0.34929 (6)	0.0180 (3)	
H6A	0.476022	0.666661	0.330344	0.022*	
H6B	0.382641	0.591836	0.325695	0.022*	

Atomic displacement parameters ((Ų)	
----------------------------------	-----	--

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
I1	0.01584 (5)	0.01297 (5)	0.01098 (4)	-0.00009 (3)	-0.00092 (3)	0.00036 (3)
I2	0.01801 (5)	0.01630 (5)	0.01853 (5)	-0.00213 (4)	-0.00276 (4)	-0.00185 (4)
F1	0.0169 (4)	0.0213 (5)	0.0210 (5)	0.0041 (4)	0.0008 (4)	-0.0073 (4)
F2	0.0276 (5)	0.0234 (5)	0.0182 (5)	-0.0016 (4)	0.0000 (4)	-0.0098 (4)
F3	0.0216 (5)	0.0265 (5)	0.0215 (5)	0.0042 (4)	0.0058 (4)	-0.0079 (4)
F4	0.0143 (4)	0.0284 (5)	0.0217 (5)	0.0006 (4)	0.0006 (4)	-0.0042 (4)
C7	0.0190 (7)	0.0121 (6)	0.0105 (6)	-0.0010 (5)	0.0006 (5)	0.0002 (5)
C8	0.0170 (7)	0.0124 (6)	0.0141 (6)	0.0019 (5)	0.0012 (5)	-0.0001 (5)
C9	0.0175 (7)	0.0140 (7)	0.0155 (7)	-0.0009 (5)	-0.0013 (5)	0.0000 (5)
C10	0.0222 (8)	0.0144 (7)	0.0128 (6)	-0.0015 (6)	0.0005 (6)	-0.0015 (5)
C11	0.0205 (7)	0.0159 (7)	0.0152 (7)	0.0022 (6)	0.0043 (6)	-0.0010 (6)
C12	0.0150 (7)	0.0167 (7)	0.0146 (6)	-0.0010 (6)	0.0007 (5)	0.0014 (5)
S 1	0.01883 (17)	0.01408 (16)	0.01138 (15)	0.00309 (13)	-0.00079 (13)	0.00015 (13)
N1	0.0220 (7)	0.0127 (6)	0.0150 (6)	0.0032 (5)	-0.0018 (5)	0.0014 (5)
N2	0.0277 (7)	0.0133 (6)	0.0136 (6)	0.0055 (5)	-0.0030 (5)	-0.0008 (5)
C1	0.0119 (6)	0.0140 (6)	0.0142 (6)	0.0004 (5)	0.0011 (5)	0.0008 (5)
C2	0.0259 (8)	0.0148 (7)	0.0152 (7)	0.0014 (6)	0.0001 (6)	-0.0028 (6)
C3	0.0276 (8)	0.0180 (7)	0.0141 (7)	0.0030 (6)	-0.0023 (6)	-0.0026 (6)
S2	0.0339 (2)	0.01651 (18)	0.01508 (17)	0.01055 (16)	-0.00313 (16)	-0.00093 (14)
N3	0.0280 (7)	0.0164 (6)	0.0151 (6)	0.0094 (6)	-0.0051 (5)	0.0000 (5)
N4	0.0212 (7)	0.0146 (6)	0.0161 (6)	0.0054 (5)	-0.0028 (5)	0.0010 (5)
C4	0.0143 (7)	0.0127 (6)	0.0179 (7)	0.0004 (5)	-0.0011 (5)	0.0015 (5)
C5	0.0197 (7)	0.0139 (7)	0.0161 (7)	0.0018 (6)	0.0003 (6)	-0.0003 (5)
C6	0.0221 (8)	0.0167 (7)	0.0153 (7)	0.0043 (6)	-0.0022 (6)	0.0002 (6)

Geometric parameters (Å, °)

I1—C7	2.0969 (14)	N2—C3	1.462 (2)
I2—C9	2.0947 (16)	C2—H2A	0.9900
F1—C8	1.3442 (17)	C2—H2B	0.9900
F2—C10	1.3459 (17)	C2—C3	1.538 (2)
F3—C11	1.3445 (18)	С3—НЗА	0.9900
F4—C12	1.3412 (18)	C3—H3B	0.9900
С7—С8	1.387 (2)	S2—C4	1.6995 (16)
C7—C12	1.385 (2)	N3—HN3	0.79 (2)
С8—С9	1.388 (2)	N3—C4	1.337 (2)

C9—C10	1.384 (2)	N3—C5	1.455 (2)
C10—C11	1.383 (2)	N4—HN4	0.83 (2)
C11—C12	1.382 (2)	N4—C4	1.328 (2)
\$1-C1	1.7088(15)	N4—C6	1464(2)
N1—HN1	0.81 (2)	C5—H5A	0.9900
N1—C1	1 332 (2)	C5—H5B	0.9900
N1—C2	1.352(2) 1 463(2)	C5-C6	1.536(2)
N2 HN2	0.83(2)	C6 H6A	0.9900
$N_2 = C_1$	1.3280(10)	C6 H6B	0.9900
N2-C1	1.5280 (19)	Со—пов	0.9900
C8—C7—I1	121.56 (11)	H2A—C2—H2B	109.1
C12—C7—I1	120.94 (11)	C3—C2—H2A	111.2
C12-C7-C8	117 43 (14)	C3—C2—H2B	111.2
$F_1 - C_8 - C_7$	118 31 (13)	$N^2 - C^2 - C^2$	102.49(12)
F1 - C8 - C9	118.39 (14)	N2 - C3 - H3A	111.3
$C_{7}^{-}C_{8}^{-}C_{9}^{9}$	123.29(14)	N2_C3_H3B	111.5
$C_{1}^{2} = C_{2}^{2} = C_{2}^{2}$	123.25(14) 122.05(11)	$C_2 C_3 H_3 \Lambda$	111.3
$C_{0} = C_{0} = 12$	122.03(11) 121.04(11)	$C_2 = C_3 = H_2 R$	111.5
C10 - C9 - I2	121.04(11) 116.00(14)	$C_2 = C_3 = H_3 D$	111.5
10 - 19 - 18	110.90 (14)	H3A - C3 - H3B	109.2
F2-C10-C9	120.43 (14)	C4 - N3 - HN3	122.5 (16)
F2—C10—C11	117.74 (14)	C4 - N3 - C5	111.80 (13)
C11—C10—C9	121.83 (14)	C5—N3—HN3	124.0 (16)
F3—C11—C10	120.23 (14)	C4—N4—HN4	122.7 (16)
F3—C11—C12	120.52 (15)	C4—N4—C6	112.06 (13)
C12—C11—C10	119.23 (14)	C6—N4—HN4	122.8 (16)
F4—C12—C7	120.34 (14)	N3—C4—S2	125.10 (12)
F4—C12—C11	118.37 (14)	N4—C4—S2	125.73 (12)
C11—C12—C7	121.29 (15)	N4—C4—N3	109.17 (14)
C1—N1—HN1	119.7 (16)	N3—C5—H5A	111.4
C1—N1—C2	112.04 (13)	N3—C5—H5B	111.4
C2—N1—HN1	125.6 (16)	N3—C5—C6	101.85 (12)
C1—N2—HN2	121.3 (15)	H5A—C5—H5B	109.3
C1—N2—C3	112.46 (13)	C6—C5—H5A	111.4
C3—N2—HN2	125.8 (15)	C6—C5—H5B	111.4
N1-C1-S1	125.81 (12)	N4—C6—C5	101.41 (12)
N2-C1-S1	124 18 (12)	N4—C6—H6A	111 5
N2-C1-N1	120.10(12) 11001(14)	N4—C6—H6B	111.5
N1 - C2 - H2A	111.2	C5-C6-H6A	111.5
N1 C2 H2R	111.2	$C_5 C_6 H_{6R}$	111.5
N1 = C2 = C2	102.68 (12)		100.2
NI	102.08 (12)	под—со—пов	109.5
I1—C7—C8—F1	-3.75 (19)	C9—C10—C11—C12	-1.9 (2)
I1—C7—C8—C9	175.92 (12)	C10—C11—C12—F4	-177.15 (14)
I1—C7—C12—F4	1.7 (2)	C10—C11—C12—C7	1.9 (2)
I1-C7-C12-C11	-17734(12)	C12-C7-C8-F1	179 43 (13)
12-C9-C10-F2	19(2)	C12 - C7 - C8 - C9	-0.9(2)
I2-C9-C10-C11	-17845(12)	N1 - C2 - C3 - N2	494(17)
$F_1 = C_8 = C_9 = I_2^2$	-0.4(2)	C1 - N1 - C2 - C3	-5 82 (18)
11 00 07 14	V. I (4)	01 111 02 03	2.02 (10)

F1—C8—C9—C10	-179.48 (14)	C1-N2-C3-C2	-2.96 (19)
F2-C10-C11-F3 F2-C10-C11-C12	-0.8 (2) 177.76 (14)	C2 - N1 - C1 - S1 $C2 - N1 - C1 - N2$	-1/4.62 (12) 4.27 (19)
F3—C11—C12—F4	1.4 (2)	C3—N2—C1—S1	178.31 (12)
F3-C11-C12-C7 C7-C8-C9-I2	-179.58(14) 179.89(11)	C3—N2—C1—N1 N3—C5—C6—N4	-0.6(2) -1818(16)
C7—C8—C9—C10	0.9 (2)	C4—N3—C5—C6	16.94 (18)
C8—C7—C12—F4	178.51 (14)	C4—N4—C6—C5	15.47 (18)
C8—C7—C12—C11 C8—C9—C10—F2	-0.5(2) -179.09(14)	C5-N3-C4-S2 C5-N3-C4-N4	172.13(12) -7.96(19)
C8-C9-C10-C11	0.6 (2)	C6—N4—C4—S2	174.32 (12)
C9—C10—C11—F3	179.53 (14)	C6—N4—C4—N3	-5.59 (19)

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—HN1····S1 ⁱ	0.81 (2)	2.77 (2)	3.5551 (14)	163 (2)
N2—HN2····S2 ⁱⁱ	0.83 (2)	2.53 (2)	3.3507 (14)	172 (2)
C2—H2 <i>B</i> …F2	0.99	2.55	3.3392 (19)	136
C3—H3 <i>B</i> ···S2	0.99	2.94	3.7351 (19)	138
N3—H <i>N</i> 3····S2 ⁱⁱⁱ	0.79 (2)	2.54 (2)	3.3171 (15)	167 (2)
N4—HN4…I2 ^{iv}	0.83 (2)	3.31 (2)	3.7383 (14)	114.9 (18)
N4—HN4····S1 ⁱⁱ	0.83 (2)	2.63 (2)	3.4562 (14)	179 (2)
C5—H5 <i>A</i> …I1 ^v	0.99	3.20	3.9922 (16)	138
C5—H5 <i>B</i> …F4	0.99	2.45	3.2774 (19)	140
C6—H6 <i>B</i> ····I1 ^{vi}	0.99	3.18	3.9223 (16)	133

Symmetry codes: (i) -*x*+3/2, *y*-1/2, *z*; (ii) -*x*+1, -*y*+2, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*+3/2, *y*+1/2, *z*; (v) -*x*+1, *y*, -*z*+1/2; (vi) *x*-1/2, *y*+1/2, -*z*+1/2.

Imidazolidine-2-thione-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1) (IT_135F3I3B)

$C_{6}F_{3}I_{3} \cdot C_{3}H_{6}N_{2}S$ $M_{r} = 611.92$ Orthorhombic, <i>Pbca</i> $a = 18.0407 (14) \text{ Å}$ $b = 7.2816 (6) \text{ Å}$ $c = 22.1250 (19) \text{ Å}$ $V = 2906.5 (4) \text{ Å}^{3}$ $Z = 8$ $F(000) = 2208$	$D_x = 2.797 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9914 reflections $\theta = 2.9-28.3^{\circ}$ $\mu = 6.61 \text{ mm}^{-1}$ T = 100 K Tabular, colourless $0.22 \times 0.08 \times 0.04 \text{ mm}$
Data collection Bruker D8 Venture Photon 2 diffractometer Radiation source: Incoatec LuS	3615 independent reflections 3220 reflections with $I > 2\sigma(I)$ $R_{\perp} = 0.043$
φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2017) $T_{\min} = 0.563, T_{\max} = 0.746$ 49179 measured reflections	$\begin{aligned} \theta_{\text{max}} &= 28.3^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ} \\ h &= -24 \rightarrow 24 \\ k &= -9 \rightarrow 9 \\ l &= -28 \rightarrow 29 \end{aligned}$

Refinement

Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.019$	$w = 1/[\sigma^2(F_o^2) + (0.0114P)^2 + 5.9439P]$
$wR(F^2) = 0.040$	where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.11	$(\Delta/\sigma)_{\rm max} = 0.002$
3615 reflections	$\Delta ho_{ m max} = 0.57$ e Å ⁻³
172 parameters	$\Delta ho_{ m min} = -0.77 \ { m e} \ { m \AA}^{-3}$
2 restraints	Extinction correction: SHELXL2018
Hydrogen site location: mixed	(Sheldrick, 2015 <i>b</i>),
	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
	Extinction coefficient: 0.000108 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.53750 (2)	0.23369 (3)	0.54191 (2)	0.01895 (5)	
I2	0.82382 (2)	0.16514 (2)	0.68496 (2)	0.01507 (5)	
I3	0.83267 (2)	0.32805 (2)	0.41594 (2)	0.01451 (5)	
F1	0.65074 (9)	0.1654 (2)	0.64879 (8)	0.0189 (4)	
F2	0.88045 (8)	0.2474 (2)	0.55242 (8)	0.0197 (4)	
F3	0.65981 (9)	0.3180 (2)	0.44277 (8)	0.0179 (3)	
C4	0.65271 (14)	0.2418 (4)	0.54544 (13)	0.0139 (5)	
C5	0.69034 (15)	0.2057 (4)	0.59879 (13)	0.0146 (5)	
C6	0.76726 (14)	0.2079 (4)	0.60287 (13)	0.0135 (5)	
C7	0.80537 (14)	0.2449 (4)	0.54993 (13)	0.0140 (5)	
C8	0.77196 (14)	0.2814 (4)	0.49545 (13)	0.0133 (5)	
C9	0.69470 (14)	0.2803 (4)	0.49494 (13)	0.0137 (5)	
S1	0.57097 (4)	0.61400 (10)	0.79736 (3)	0.01671 (14)	
N1	0.52694 (14)	0.2877 (4)	0.84174 (13)	0.0228 (6)	
HN1	0.4953 (19)	0.345 (6)	0.8617 (18)	0.057 (14)*	
N2	0.62179 (16)	0.2684 (4)	0.78288 (13)	0.0257 (6)	
HN2	0.6527 (16)	0.308 (5)	0.7585 (14)	0.029 (10)*	
C1	0.57324 (15)	0.3832 (4)	0.80740 (12)	0.0161 (6)	
C2	0.54227 (16)	0.0908 (4)	0.84203 (14)	0.0222 (6)	
H2A	0.498578	0.019283	0.828618	0.027*	
H2B	0.557562	0.048198	0.882651	0.027*	
C3	0.60613 (19)	0.0758 (4)	0.79654 (16)	0.0277 (7)	
H3A	0.649751	0.014419	0.814660	0.033*	
H3B	0.590783	0.007958	0.759844	0.033*	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01058 (8)	0.02130 (10)	0.02496 (11)	0.00013 (7)	0.00038 (7)	-0.00336 (8)
I2	0.01700 (9)	0.01397 (9)	0.01424 (10)	-0.00039 (6)	-0.00190 (7)	0.00115 (7)
I3	0.01480 (8)	0.01468 (9)	0.01405 (9)	0.00001 (6)	0.00204 (7)	0.00044 (7)
F1	0.0176 (8)	0.0235 (9)	0.0157 (9)	-0.0029 (7)	0.0045 (7)	0.0016 (7)
F2	0.0101 (7)	0.0284 (10)	0.0205 (9)	-0.0005 (6)	-0.0003 (6)	0.0023 (8)
F3	0.0170 (7)	0.0204 (9)	0.0163 (9)	0.0018 (7)	-0.0034 (6)	0.0024 (7)
C4	0.0098 (11)	0.0127 (13)	0.0193 (14)	-0.0006 (10)	-0.0004 (10)	-0.0018 (11)
C5	0.0172 (12)	0.0111 (13)	0.0155 (14)	-0.0027 (10)	0.0038 (11)	-0.0007 (11)
C6	0.0161 (12)	0.0118 (13)	0.0124 (13)	0.0014 (10)	-0.0043 (10)	-0.0012 (10)
C7	0.0118 (11)	0.0110 (13)	0.0191 (15)	0.0014 (10)	-0.0010 (10)	0.0000 (11)
C8	0.0141 (12)	0.0111 (13)	0.0148 (14)	0.0003 (10)	0.0033 (10)	-0.0016 (11)
C9	0.0137 (12)	0.0120 (13)	0.0153 (14)	0.0024 (10)	-0.0036 (10)	-0.0001 (11)
S1	0.0211 (3)	0.0144 (3)	0.0146 (3)	0.0003 (3)	0.0002 (3)	0.0002 (3)
N1	0.0236 (13)	0.0181 (13)	0.0267 (15)	-0.0027 (10)	0.0051 (11)	0.0020(11)
N2	0.0321 (14)	0.0158 (13)	0.0292 (16)	0.0020 (11)	0.0127 (12)	0.0046 (12)
C1	0.0168 (13)	0.0223 (15)	0.0092 (14)	-0.0006 (11)	-0.0037 (10)	-0.0001 (11)
C2	0.0244 (14)	0.0209 (15)	0.0213 (16)	-0.0062 (12)	-0.0049 (12)	0.0046 (13)
C3	0.0397 (18)	0.0155 (15)	0.0278 (18)	0.0006 (14)	0.0044 (15)	0.0037 (13)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

I1—C4	2.081 (2)	S1—C1	1.696 (3)	
I2—C6	2.106 (3)	N1—HN1	0.831 (19)	
I3—C8	2.100 (3)	N1—C1	1.326 (4)	
F1—C5	1.349 (3)	N1—C2	1.460 (4)	
F2—C7	1.356 (3)	N2—HN2	0.827 (18)	
F3—C9	1.343 (3)	N2—C1	1.327 (4)	
C4—C5	1.387 (4)	N2—C3	1.462 (4)	
С4—С9	1.379 (4)	C2—H2A	0.9900	
С5—С6	1.391 (4)	C2—H2B	0.9900	
С6—С7	1.385 (4)	C2—C3	1.534 (4)	
С7—С8	1.374 (4)	С3—НЗА	0.9900	
С8—С9	1.394 (4)	С3—Н3В	0.9900	
C5—C4—I1	121.0 (2)	C2—N1—HN1	128 (3)	
C9—C4—I1	121.6 (2)	C1—N2—HN2	119 (3)	
C9—C4—C5	117.4 (2)	C1—N2—C3	113.1 (3)	
F1—C5—C4	118.7 (2)	C3—N2—HN2	127 (3)	
F1—C5—C6	118.5 (3)	N1—C1—S1	125.4 (2)	
C4—C5—C6	122.8 (3)	N1—C1—N2	108.7 (3)	
C5—C6—I2	122.5 (2)	N2—C1—S1	125.9 (2)	
C7—C6—I2	121.18 (19)	N1—C2—H2A	111.4	
C7—C6—C5	116.3 (2)	N1—C2—H2B	111.4	
F2—C7—C6	117.7 (2)	N1—C2—C3	102.1 (2)	
F2—C7—C8	118.1 (2)	H2A—C2—H2B	109.2	

C8—C7—C6 C7—C8—I3 C7—C8—C9 C9—C8—I3 F3—C9—C4 F3—C9—C8 C4—C9—C8 C1—N1—HN1 C1—N1—C2	124.2 (2) 122.51 (19) 116.4 (3) 121.0 (2) 118.7 (2) 118.3 (2) 122.9 (3) 118 (3) 113.5 (3)	C3—C2—H2A C3—C2—H2B N2—C3—C2 N2—C3—H3A N2—C3—H3B C2—C3—H3B C2—C3—H3B H3A—C3—H3B	111.4 111.4 102.3 (3) 111.3 111.3 111.3 111.3 111.3 109.2
I1-C4-C5-F1 $I1-C4-C9-F3$ $I1-C4-C9-F3$ $I2-C6-C7-F2$ $I2-C6-C7-C8$ $I3-C8-C9-F3$ $I3-C8-C9-C4$ $F1-C5-C6-I2$ $F1-C5-C6-I2$ $F2-C7-C8-I3$ $F2-C7-C8-I3$ $F2-C7-C8-C9$ $C4-C5-C6-I2$ $C4-C5-C6-I2$ $C4-C5-C6-I2$ $C5-C4-C9-F3$ $C5-C4-C9-C8$	$\begin{array}{c} -0.2 (3) \\ 179.3 (2) \\ 1.7 (4) \\ -178.1 (2) \\ 1.9 (3) \\ -177.3 (2) \\ -2.9 (3) \\ 176.8 (2) \\ -3.4 (4) \\ 178.2 (2) \\ 2.9 (4) \\ -179.1 (2) \\ 177.1 (2) \\ -1.2 (4) \\ -179.2 (2) \\ 1.0 (4) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-179.8(2) 1.1(4) -177.9(2) 0.1(4) 179.0(2) -1.2(4) -179.2(2) 0.2(4) 5.8(3) -3.7(3) -6.8(4) -179.8(2) -0.4(4) -175.8(2) 4.8(4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H····A	D····A	<i>D</i> —H··· <i>A</i>
N2—HN2····I2 ⁱ	0.83 (2)	3.10 (3)	3.742 (3)	137 (3)
C2—H2 <i>B</i> ····I1 ⁱⁱ	0.99	3.31	3.927 (3)	122
C2—H2B···F3 ⁱⁱⁱ	0.99	2.47	3.147 (3)	125

Symmetry codes: (i) -*x*+3/2, *y*+1/2, *z*; (ii) -*x*+1, *y*-1/2, -*z*+3/2; (iii) *x*, -*y*+1/2, *z*+1/2.

1H-1,3-Benzodiazole-2-thiol-1,2,3,5-tetrafluoro-4,6-diiodobenzene (4/3) (4MBZIM_313F4DIB)

Crystal data	
$3C_6F_4I_2 \cdot 4C_7H_6N_2S$	Z = 2
$M_r = 1806.37$	F(000) = 1692
Triclinic, $P\overline{1}$	$D_{\rm x} = 2.238 {\rm ~Mg} {\rm ~m}^{-3}$
a = 8.4573 (14) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
b = 17.725 (3) Å	Cell parameters from 9879 reflections
c = 18.759 (4) Å	$\theta = 2.4 - 27.5^{\circ}$
$\alpha = 106.997 \ (7)^{\circ}$	$\mu = 3.72 \text{ mm}^{-1}$
$\beta = 93.229 (7)^{\circ}$	T = 100 K
$\gamma = 92.034 \ (7)^{\circ}$	Needle, colourless
V = 2680.9 (9) Å ³	$0.34 \times 0.04 \times 0.04 \text{ mm}$

Data collection

Bruker D8 Venture Photon 2 diffractometer Radiation source: Incoatec I μ S φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2017) $T_{min} = 0.668, T_{max} = 0.746$ 118524 measured reflections	12297 independent reflections 10558 reflections with $I > 2\sigma(I)$ $R_{int} = 0.056$ $\theta_{max} = 27.6^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -10 \rightarrow 10$ $k = -23 \rightarrow 23$ $l = -24 \rightarrow 24$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.041$ S = 1.06 12297 reflections 717 parameters 8 restraints Primary atom site location: dual	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0068P)^2 + 2.3276P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.52$ e Å ⁻³ $\Delta\rho_{min} = -0.75$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

x	у	Ζ	$U_{ m iso}*/U_{ m eq}$
0.23723 (2)	0.28696 (2)	0.64287 (2)	0.01892 (4)
0.11203 (2)	0.62311 (2)	0.81696 (2)	0.02185 (4)
0.12514 (17)	0.43584 (9)	0.76730 (8)	0.0228 (3)
0.28968 (19)	0.64658 (9)	0.67800 (9)	0.0259 (3)
0.41295 (19)	0.54429 (9)	0.56177 (9)	0.0271 (4)
0.38986 (17)	0.38762 (9)	0.54469 (8)	0.0234 (3)
0.2585 (3)	0.40830 (15)	0.65651 (14)	0.0161 (5)
0.1965 (3)	0.46280 (16)	0.71636 (14)	0.0182 (5)
0.2045 (3)	0.54314 (15)	0.72577 (14)	0.0166 (5)
0.2787 (3)	0.56938 (15)	0.67263 (14)	0.0186 (5)
0.3417 (3)	0.51713 (16)	0.61237 (14)	0.0193 (5)
0.3307 (3)	0.43733 (16)	0.60458 (14)	0.0183 (5)
0.39366 (2)	0.29864 (2)	0.15711 (2)	0.02594 (4)
0.19057 (2)	0.58106 (2)	0.39910 (2)	0.02628 (4)
0.31982 (19)	0.47479 (9)	0.24734 (9)	0.0278 (4)
0.11956 (18)	0.43808 (10)	0.46524 (9)	0.0290 (4)
0.17740 (18)	0.28360 (10)	0.41706 (9)	0.0295 (4)
0.30202 (17)	0.22313 (9)	0.28451 (9)	0.0256 (3)
0.2209 (3)	0.46038 (15)	0.35750 (15)	0.0190 (5)
0.2842 (3)	0.42746 (16)	0.28917 (14)	0.0191 (5)
0.3114 (3)	0.34781 (15)	0.26241 (14)	0.0178 (5)
	x 0.23723 (2) 0.11203 (2) 0.12514 (17) 0.28968 (19) 0.41295 (19) 0.38986 (17) 0.2585 (3) 0.1965 (3) 0.2045 (3) 0.2045 (3) 0.2787 (3) 0.3417 (3) 0.3307 (3) 0.39366 (2) 0.19057 (2) 0.31982 (19) 0.11956 (18) 0.17740 (18) 0.30202 (17) 0.2209 (3) 0.2842 (3) 0.3114 (3)	xy 0.23723 (2) 0.28696 (2) 0.11203 (2) 0.62311 (2) 0.12514 (17) 0.43584 (9) 0.28968 (19) 0.64658 (9) 0.41295 (19) 0.54429 (9) 0.38986 (17) 0.38762 (9) 0.2585 (3) 0.40830 (15) 0.1965 (3) 0.46280 (16) 0.2045 (3) 0.54314 (15) 0.2787 (3) 0.56938 (15) 0.3417 (3) 0.51713 (16) 0.3307 (3) 0.43733 (16) 0.39366 (2) 0.29864 (2) 0.19057 (2) 0.58106 (2) 0.31982 (19) 0.47479 (9) 0.11956 (18) 0.43808 (10) 0.17740 (18) 0.22313 (9) 0.2209 (3) 0.46038 (15) 0.2842 (3) 0.42746 (16) 0.3114 (3) 0.34781 (15)	xyz $0.23723(2)$ $0.28696(2)$ $0.64287(2)$ $0.11203(2)$ $0.62311(2)$ $0.81696(2)$ $0.12514(17)$ $0.43584(9)$ $0.76730(8)$ $0.28968(19)$ $0.64658(9)$ $0.67800(9)$ $0.41295(19)$ $0.54429(9)$ $0.56177(9)$ $0.38986(17)$ $0.38762(9)$ $0.54469(8)$ $0.2585(3)$ $0.40830(15)$ $0.65651(14)$ $0.1965(3)$ $0.46280(16)$ $0.71636(14)$ $0.2045(3)$ $0.54314(15)$ $0.72577(14)$ $0.2787(3)$ $0.56938(15)$ $0.67263(14)$ $0.3307(3)$ $0.43733(16)$ $0.60458(14)$ $0.39366(2)$ $0.29864(2)$ $0.15711(2)$ $0.19057(2)$ $0.58106(2)$ $0.39910(2)$ $0.31982(19)$ $0.47479(9)$ $0.24734(9)$ $0.117740(18)$ $0.28360(10)$ $0.41706(9)$ $0.30202(17)$ $0.22313(9)$ $0.28451(9)$ $0.2209(3)$ $0.46038(15)$ $0.35750(15)$ $0.2842(3)$ $0.42746(16)$ $0.28917(14)$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C38	0.2759 (3)	0.30052 (15)	0.30711 (15)	0.0192 (5)
C39	0.2115 (3)	0.33102 (16)	0.37517 (15)	0.0210 (6)
C40	0.1836 (3)	0.40999 (16)	0.39927 (14)	0.0200 (5)
15	0.82526 (2)	0.39902 (2)	-0.11345 (2)	0.02532 (4)
I6	0.75419 (2)	0.73973 (2)	0.07191 (2)	0.01718 (4)
F37	0.85766 (18)	0.58847 (9)	-0.05559(8)	0.0244 (3)
F38	0.59562 (17)	0.64129 (9)	0.16783 (8)	0.0218(3)
F39	0.54190(18)	0.48581 (9)	0.14581 (9)	0.0262(4)
F40	0.63996 (18)	0.38040(9)	0.02360(9)	0.0202(1) 0.0255(3)
C41	0.7536(3)	0.48240(15)	-0.01841(14)	0.0255(5)
C41	0.7550(3) 0.7782(3)	0.56261 (15)	-0.00623(14)	0.0109(5)
C42	0.7762(3)	0.50201(15) 0.61822(14)	0.00023(14) 0.05532(14)	0.0104(5) 0.0149(5)
C43	0.7249(3)	0.50054(15)	0.05552(14) 0.10618(14)	0.0149(5)
C44	0.0408(3)	0.59034(15)	0.10013(14) 0.00575(14)	0.0108(5)
C45	0.0198(3)	0.31003(15) 0.45764(15)	0.09373(14) 0.03328(15)	0.0180(5)
C40 S1	0.0721(3) 1 26080(7)	0.43704(13) 0.02071(4)	0.03326(13) 0.13364(4)	0.0162(3)
51 N1	1.20980(7)	0.02971(4)	0.13304(4) 0.10002(11)	0.01038(13)
IN I	1.3937 (2)	-0.08514(15)	0.19002 (11)	0.0155 (4)
HNI	1.487 (2)	-0.0/4/(18)	0.1/88(17)	0.031 (9)*
N2	1.1363 (2)	-0.08180 (12)	0.18912 (11)	0.0153 (4)
HN2	1.041 (2)	-0.0708(15)	0.1806 (14)	0.015 (7)*
CI	1.2668 (3)	-0.04645 (15)	0.17100 (13)	0.0158 (5)
C2	1.3451 (3)	-0.14290 (15)	0.21949 (13)	0.0154 (5)
C3	1.4285 (3)	-0.19430 (15)	0.24861 (14)	0.0188 (5)
H3	1.540814	-0.194912	0.248974	0.023*
C4	1.3406 (3)	-0.24474 (16)	0.27716 (14)	0.0208 (6)
H4	1.393923	-0.280671	0.297743	0.025*
C5	1.1748 (3)	-0.24408 (16)	0.27645 (14)	0.0197 (5)
H5	1.118578	-0.279849	0.296263	0.024*
C6	1.0905 (3)	-0.19247 (15)	0.24751 (14)	0.0182 (5)
H6	0.978144	-0.191915	0.247143	0.022*
C7	1.1792 (3)	-0.14174 (15)	0.21913 (13)	0.0159 (5)
S2	0.76230 (7)	-0.07080(4)	0.13517 (3)	0.01460 (12)
N3	0.8902 (2)	0.04164 (12)	0.07893 (12)	0.0142 (4)
HN3	0.985 (2)	0.0339 (17)	0.0913 (16)	0.026 (8)*
N4	0.6315 (2)	0.03610 (12)	0.07390 (11)	0.0134 (4)
HN4	0.539 (2)	0.0257 (15)	0.0851 (15)	0.016 (7)*
C8	0.7619 (3)	0.00336 (14)	0.09496 (13)	0.0135 (5)
C9	0.8425 (3)	0.10176 (14)	0.04983 (13)	0.0149 (5)
C10	0.9275 (3)	0.15703 (15)	0.02577 (14)	0.0186 (5)
H10	1.040174	0.160378	0.028830	0.022*
C11	0.8386 (3)	0.20721 (15)	-0.00307(15)	0.0199(5)
H11	0.892259	0.246317	-0.019649	0.024*
C12	0.6733(3)	0.20197(15)	-0.00842(14)	0.0185(5)
H12	0.617475	0.236637	-0.029681	0.022*
C13	0 5882 (3)	0.14726 (15)	0.01657 (13)	0.022
H13	0.475508	0 143780	0.013282	0.0108
C14	0.6767 (3)	0.09798 (14)	0.04661(13)	0.017
53	0.0707(3)	1.00011(A)	0.50658 (1)	0.0157(5) 0.01674(12)
55	0.21077(7)	1.02011 (4)	0.59050(4)	0.01074(13)

N5	0.3335 (2)	0.98621 (12)	0.66496 (12)	0.0153 (4)	
HN5	0.427 (2)	0.9957 (18)	0.6541 (17)	0.035 (9)*	
N6	0.0755 (2)	0.98679 (12)	0.66091 (12)	0.0149 (4)	
HN6	-0.020 (2)	0.9958 (16)	0.6501 (15)	0.021 (8)*	
C15	0.2063 (3)	1.02032 (14)	0.64225 (13)	0.0147 (5)	
C16	0.2825 (3)	0.92908 (14)	0.69697 (13)	0.0149 (5)	
C17	0.3645 (3)	0.87884 (15)	0.72898 (14)	0.0196 (5)	
H17	0.477019	0.878891	0.731657	0.024*	
C18	0.2730 (3)	0.82880 (15)	0.75670 (14)	0.0211 (6)	
H18	0.324318	0.793463	0.778775	0.025*	
C19	0.1078 (3)	0.82884 (15)	0.75312 (14)	0.0213 (6)	
H19	0.049812	0.793080	0.772293	0.026*	
C20	0.0256 (3)	0.87954 (15)	0.72240 (14)	0.0186 (5)	
H20	-0.086842	0.880244	0.720810	0.022*	
C21	0.1171 (3)	0.92909 (14)	0.69418 (13)	0.0141 (5)	
S4	-0.29930 (7)	0.99445 (4)	0.61172 (3)	0.01608 (12)	
N7	-0.1672 (2)	1.09905 (13)	0.54729 (12)	0.0157 (4)	
HN7	-0.073 (2)	1.0901 (18)	0.5580 (17)	0.033 (9)*	
N8	-0.4249 (2)	1.09692 (13)	0.54319 (12)	0.0156 (4)	
HN8	-0.519 (2)	1.0848 (17)	0.5511 (17)	0.029 (8)*	
C22	-0.2972 (3)	1.06481 (14)	0.56708 (13)	0.0146 (5)	
C23	-0.2121 (3)	1.15416 (14)	0.51139 (13)	0.0145 (5)	
C24	-0.1251 (3)	1.20294 (15)	0.48049 (14)	0.0186 (5)	
H24	-0.012656	1.203249	0.481615	0.022*	
C25	-0.2099 (3)	1.25129 (15)	0.44782 (14)	0.0189 (5)	
H25	-0.154262	1.285731	0.426292	0.023*	
C26	-0.3758 (3)	1.25043 (15)	0.44591 (14)	0.0189 (5)	
H26	-0.429872	1.284470	0.423194	0.023*	
C27	-0.4633 (3)	1.20121 (15)	0.47629 (14)	0.0185 (5)	
H27	-0.575825	1.200557	0.474834	0.022*	
C28	-0.3778 (3)	1.15290 (14)	0.50896 (13)	0.0147 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01909 (8)	0.01702 (9)	0.02029 (9)	0.00047 (6)	-0.00052 (6)	0.00538 (7)
I2	0.02488 (9)	0.02320 (9)	0.01763 (9)	0.00734 (7)	0.00435 (7)	0.00505 (7)
F29	0.0267 (8)	0.0243 (9)	0.0207 (8)	0.0015 (6)	0.0077 (6)	0.0105 (7)
F30	0.0389 (9)	0.0165 (8)	0.0242 (9)	0.0008 (7)	0.0055 (7)	0.0085 (7)
F31	0.0365 (9)	0.0267 (9)	0.0217 (8)	-0.0001 (7)	0.0121 (7)	0.0112 (7)
F32	0.0259 (8)	0.0241 (9)	0.0192 (8)	0.0051 (6)	0.0067 (6)	0.0034 (7)
C29	0.0157 (12)	0.0150 (13)	0.0176 (13)	0.0003 (9)	-0.0012 (9)	0.0052 (11)
C30	0.0148 (12)	0.0233 (14)	0.0179 (13)	0.0010 (10)	0.0011 (10)	0.0080 (11)
C31	0.0165 (12)	0.0192 (14)	0.0134 (12)	0.0051 (10)	0.0015 (9)	0.0035 (10)
C32	0.0210 (13)	0.0174 (14)	0.0185 (13)	0.0012 (10)	-0.0005 (10)	0.0074 (11)
C33	0.0193 (13)	0.0244 (15)	0.0167 (13)	0.0000 (10)	0.0034 (10)	0.0098 (11)
C34	0.0151 (12)	0.0228 (14)	0.0154 (13)	0.0019 (10)	0.0009 (9)	0.0030 (11)
I3	0.03176 (10)	0.02680 (10)	0.01832 (9)	0.00506 (7)	0.00720 (7)	0.00377 (8)

14	0.02547(0)	0.01005 (0)	0.02067 (10)	0.00413(7)	-0.00068(7)	0.00011(8)
14 E22	0.02347(9)	0.01903(9)	0.02907(10)	0.00413(7)	0.00008(7)	0.00011(8)
F33 E24	0.0380(9)	0.0238(9)	0.0232(9)	0.0027(7)	0.0080(7)	0.0127(7)
Г 34 Г 25	0.0306 (9)	0.0307(10)	0.0185(8)	0.0033(7)	0.0094(7)	0.0040(7)
F33	0.0325(9)	0.0313(10)	0.0308(9)	-0.0031(7)	0.0084(7)	0.0182(8)
F 30	0.0261(8)	0.0155(8)	0.0351(10)	0.0008(6)	0.0060(7)	0.0067(7)
C35	0.0159 (12)	0.01/4 (14)	0.0218 (14)	0.0018(10)	-0.0004 (10)	0.0029 (11)
C36	0.01/8 (12)	0.0221 (14)	0.0190 (13)	-0.0006 (10)	-0.0005 (10)	0.0090 (11)
C37	0.0169 (12)	0.0206 (14)	0.0149 (13)	0.0025 (10)	0.0004 (9)	0.0035 (11)
C38	0.0142 (12)	0.0180 (14)	0.0243 (14)	0.0006 (10)	-0.0012 (10)	0.0048 (11)
C39	0.0181 (13)	0.0272 (15)	0.0201 (14)	-0.0035 (10)	0.0008 (10)	0.0116 (12)
C40	0.0159 (12)	0.0275 (15)	0.0151 (13)	0.0007 (10)	0.0017 (10)	0.0039 (11)
15	0.02794 (9)	0.02317 (10)	0.01987 (9)	0.00810 (7)	0.00031 (7)	-0.00193 (7)
I6	0.01777 (8)	0.01347 (8)	0.02020 (9)	-0.00095 (6)	-0.00012 (6)	0.00532 (7)
F37	0.0293 (8)	0.0248 (9)	0.0215 (8)	0.0003 (7)	0.0103 (6)	0.0092 (7)
F38	0.0267 (8)	0.0201 (8)	0.0186 (8)	0.0047 (6)	0.0078 (6)	0.0039 (7)
F39	0.0332 (9)	0.0240 (9)	0.0274 (9)	0.0000 (7)	0.0085 (7)	0.0158 (7)
F40	0.0338 (9)	0.0131 (8)	0.0291 (9)	-0.0013 (6)	-0.0028 (7)	0.0066 (7)
C41	0.0172 (12)	0.0161 (13)	0.0151 (13)	0.0049 (10)	-0.0016 (9)	0.0011 (10)
C42	0.0149 (12)	0.0198 (14)	0.0155 (13)	0.0007 (10)	0.0013 (9)	0.0064 (11)
C43	0.0149 (12)	0.0125 (12)	0.0174 (13)	0.0015 (9)	-0.0011 (9)	0.0049 (10)
C44	0.0162 (12)	0.0176 (13)	0.0161 (13)	0.0027 (10)	0.0006 (9)	0.0041 (11)
C45	0.0182 (12)	0.0182 (14)	0.0195 (13)	-0.0002 (10)	0.0004 (10)	0.0090 (11)
C46	0.0213 (13)	0.0106 (13)	0.0217 (14)	-0.0014 (10)	-0.0053 (10)	0.0050 (11)
S 1	0.0117 (3)	0.0187 (3)	0.0194 (3)	0.0011 (2)	0.0010 (2)	0.0057 (3)
N1	0.0100 (10)	0.0206 (12)	0.0150 (11)	0.0013 (8)	0.0013 (8)	0.0037 (9)
N2	0.0094 (10)	0.0198 (12)	0.0169 (11)	0.0021 (8)	0.0008 (8)	0.0057 (9)
C1	0.0141 (12)	0.0179 (13)	0.0123 (12)	0.0001 (9)	0.0015 (9)	-0.0002(10)
C2	0.0142 (12)	0.0165 (13)	0.0125 (12)	0.0001 (9)	-0.0003 (9)	0.0001 (10)
C3	0.0141 (12)	0.0223 (14)	0.0182 (13)	0.0028 (10)	0.0003 (10)	0.0029 (11)
C4	0.0229 (13)	0.0214 (14)	0.0178 (13)	0.0037 (11)	-0.0007(10)	0.0052 (11)
C5	0.0235(13)	0.0191 (14)	0.0148 (13)	-0.0021(10)	0.0026 (10)	0.0026(11)
C6	0.0163(12)	0.0203(14)	0.0157(13)	-0.0001(10)	0.0015(10)	0.0019(11)
C7	0.0165(12)	0.0203(11) 0.0174(13)	0.0127(12)	0.00013(10)	-0.0010(9)	0.0029(10)
S2	0.0103(12) 0.0118(3)	0.0130(3)	0.0127(12) 0.0192(3)	0.0013(2)	0.0010(3)	0.0029(10)
N3	0.0110(3)	0.0150(5)	0.0192(3)	0.0016 (8)	0.0003 (8)	0.0054(9)
N4	0.0000(10)	0.0133(11)	0.0153(11)	0.0010(0)	0.0003 (8)	0.0001(9)
C8	0.0112(10) 0.0126(11)	0.0133(11) 0.0128(12)	0.0133(11) 0.0127(12)	0.0017(0)	0.0004 (0)	0.0030(9)
	0.0120(11)	0.0123(12) 0.0147(13)	0.0127(12) 0.0138(12)	0.0017(9)	0.0000(9)	0.0004(10)
C10	0.0134(12)	0.0147(13)	0.0138(12) 0.0208(14)	-0.0003(9)	0.0011(9)	0.0050(10)
C10	0.0146(12)	0.0200(14)	0.0208(14)	-0.0013(10)	0.0018(10)	0.0038(11)
	0.0210(13)	0.0175(14)	0.0221(14)	-0.0012(10)	0.0041(10)	0.00/9(11)
C12	0.0231(13)	0.0154(13)	0.0107(13)	0.0030(10)	-0.0006(10)	0.0045(11)
	0.0146 (12)	0.0104 (13)	0.0147 (12)	0.0044 (9)	0.0019 (9)	0.0003(10)
C14	0.0143(11)	0.0126(12)	0.0132(12)	-0.0006(9)	0.0027(9)	0.0022(10)
S3	0.0129 (3)	0.0165 (3)	0.0224 (3)	0.0008 (2)	0.0024 (2)	0.00/9(3)
N5	0.0123 (10)	0.0155 (11)	0.0178 (11)	0.0017 (8)	0.0011 (8)	0.0042 (9)
N6	0.0103 (10)	0.0145 (11)	0.0194 (11)	0.0007 (8)	0.0007 (8)	0.0043 (9)
C15	0.0139 (11)	0.0145 (13)	0.0142 (12)	0.0017 (9)	0.0023 (9)	0.0015 (10)
C16	0.0165 (12)	0.0135 (13)	0.0118 (12)	0.0002 (9)	-0.0012 (9)	-0.0005 (10)

C17	0.0189 (13)	0.0204 (14)	0.0163 (13)	0.0065 (10)	-0.0022 (10)	0.0003 (11)	
C18	0.0306 (14)	0.0167 (14)	0.0141 (13)	0.0056 (11)	-0.0041 (10)	0.0022 (11)	
C19	0.0300 (14)	0.0166 (14)	0.0179 (14)	-0.0005 (11)	0.0020 (11)	0.0063 (11)	
C20	0.0206 (13)	0.0167 (13)	0.0165 (13)	-0.0009 (10)	0.0015 (10)	0.0020 (11)	
C21	0.0158 (12)	0.0137 (12)	0.0108 (12)	0.0019 (9)	-0.0008 (9)	0.0007 (10)	
S4	0.0130 (3)	0.0184 (3)	0.0182 (3)	-0.0002 (2)	0.0001 (2)	0.0078 (3)	
N7	0.0114 (10)	0.0195 (12)	0.0159 (11)	-0.0007 (8)	-0.0008 (8)	0.0054 (9)	
N8	0.0111 (10)	0.0199 (12)	0.0168 (11)	-0.0001 (8)	0.0016 (8)	0.0070 (9)	
C22	0.0146 (12)	0.0152 (13)	0.0119 (12)	0.0007 (9)	-0.0003 (9)	0.0007 (10)	
C23	0.0166 (12)	0.0127 (12)	0.0110 (12)	0.0000 (9)	0.0001 (9)	-0.0011 (10)	
C24	0.0182 (12)	0.0192 (14)	0.0164 (13)	-0.0050 (10)	0.0018 (10)	0.0028 (11)	
C25	0.0254 (13)	0.0141 (13)	0.0169 (13)	-0.0022 (10)	0.0030 (10)	0.0044 (11)	
C26	0.0242 (13)	0.0166 (13)	0.0153 (13)	0.0017 (10)	0.0009 (10)	0.0037 (11)	
C27	0.0164 (12)	0.0191 (14)	0.0187 (13)	0.0018 (10)	0.0005 (10)	0.0035 (11)	
C28	0.0162 (12)	0.0134 (12)	0.0143 (12)	-0.0012 (9)	0.0016 (9)	0.0037 (10)	

Geometric parameters (Å, °)

I1—C29	2.090 (3)	C6—C7	1.390 (3)
I2—C31	2.088 (2)	S2—C8	1.696 (2)
F29—C30	1.348 (3)	N3—HN3	0.846 (17)
F30—C32	1.342 (3)	N3—C8	1.354 (3)
F31—C33	1.344 (3)	N3—C9	1.394 (3)
F32—C34	1.343 (3)	N4—HN4	0.849 (16)
C29—C30	1.392 (3)	N4—C8	1.356 (3)
С29—С34	1.387 (3)	N4—C14	1.390 (3)
C30—C31	1.382 (4)	C9—C10	1.388 (3)
C31—C32	1.387 (3)	C9—C14	1.398 (3)
С32—С33	1.382 (4)	C10—H10	0.9500
С33—С34	1.378 (4)	C10—C11	1.390 (3)
I3—C37	2.083 (2)	C11—H11	0.9500
I4—C35	2.082 (3)	C11—C12	1.394 (3)
F33—C36	1.343 (3)	C12—H12	0.9500
F34—C40	1.344 (3)	C12—C13	1.391 (4)
F35—C39	1.342 (3)	C13—H13	0.9500
F36—C38	1.342 (3)	C13—C14	1.388 (3)
C35—C36	1.390 (4)	S3—C15	1.699 (2)
C35—C40	1.389 (4)	N5—HN5	0.850 (17)
C36—C37	1.386 (4)	N5-C15	1.360 (3)
С37—С38	1.385 (4)	N5-C16	1.388 (3)
C38—C39	1.383 (4)	N6—HN6	0.851 (17)
C39—C40	1.373 (4)	N6—C15	1.348 (3)
I5—C41	2.092 (2)	N6-C21	1.390 (3)
I6—C43	2.088 (2)	C16—C17	1.394 (3)
F37—C42	1.347 (3)	C16—C21	1.398 (3)
F38—C44	1.345 (3)	C17—H17	0.9500
F39—C45	1.344 (3)	C17—C18	1.386 (4)
F40—C46	1.343 (3)	C18—H18	0.9500

C41—C42	1.379 (4)	C18—C19	1.396 (4)
C41—C46	1.382 (4)	С19—Н19	0.9500
C42—C43	1.390 (3)	C19—C20	1.387 (3)
C43—C44	1.382 (3)	С20—Н20	0.9500
C44—C45	1.377 (4)	C20—C21	1.386 (3)
C45—C46	1.378 (4)	S4—C22	1.693 (2)
S1—C1	1.693 (3)	N7—HN7	0.844 (17)
N1—HN1	0.847 (17)	N7—C22	1.358 (3)
N1—C1	1.358 (3)	N7—C23	1.391 (3)
N1—C2	1.390 (3)	N8—HN8	0.852 (17)
N2—HN2	0.854 (16)	N8—C22	1353(3)
N2-C1	1 358 (3)	N8—C28	1.389(3)
N2C7	1 390 (3)	C^{23}	1.385(3)
$C_2 = C_3$	1.395 (3)	C_{23} C_{24} C_{23} C_{28}	1.300(3) 1.398(3)
$C_2 = C_3$	1.385(3)	$C_{23} = C_{23}$	0.0500
$C_2 = C_1$	0.0500	C_{24} C_{25}	0.3300
	0.9300	$C_{24} = C_{23}$	1.366 (3)
	1.384 (4)	C25—H25	0.9500
C4—H4	0.9500	C25-C26	1.401 (3)
C4—C5	1.402 (3)	С26—Н26	0.9500
C5—H5	0.9500	C26—C27	1.388 (4)
C5—C6	1.390 (3)	C27—H27	0.9500
С6—Н6	0.9500	C27—C28	1.390 (3)
C30 C29 I1	121 55 (18)	C8 N3 HN3	123 (2)
C_{34} C_{29} I_1	121.55(10) 120.08(10)	$C_8 N_3 C_9$	123(2)
$C_{24} = C_{29} = C_{20}$	120.96(19) 117.4(2)	$C_0 N_2 H_{N_2}$	110.03(19)
$C_{29} = C_{20} = C_{20}$	117.4(2)	C_{9} NA UNA	120(2)
$F_{29} = C_{30} = C_{29}$	118.4(2)	C_{0} N4 C_{14}	122.0(18)
$F_{29} = C_{30} = C_{31}$	118.0 (2)	C_{N4}	109.91 (19)
C31—C30—C29	123.0 (2)	CI4—N4—HN4	126.3 (18)
C30—C31—I2	121.81 (18)	N3—C8—S2	126.82 (17)
C30—C31—C32	117.5 (2)	N3—C8—N4	107.3 (2)
C32—C31—I2	120.72 (19)	N4—C8—S2	125.90 (18)
F30—C32—C31	120.7 (2)	N3—C9—C14	106.2 (2)
F30—C32—C33	118.0 (2)	C10—C9—N3	132.1 (2)
C33—C32—C31	121.3 (2)	C10—C9—C14	121.7 (2)
F31—C33—C32	120.0 (2)	С9—С10—Н10	121.9
F31—C33—C34	120.4 (2)	C9—C10—C11	116.3 (2)
C34—C33—C32	119.6 (2)	C11—C10—H10	121.9
F32—C34—C29	120.3 (2)	C10-C11-H11	119.0
F32—C34—C33	118.5 (2)	C10—C11—C12	122.1 (2)
C33—C34—C29	121.2 (2)	C12—C11—H11	119.0
$C_{36} - C_{35} - I_{4}$	122.13 (19)	С11—С12—Н12	119.2
C40-C35-I4	120 40 (19)	C_{13} C_{12} C_{11}	121.6(2)
C40-C35-C36	117 4 (2)	C13 - C12 - H12	119.2
E33_C36_C35	117.7(2) 118.6(2)	C_{12} C_{12} H_{13} H_{13}	121.8
$F_{23} = C_{36} = C_{37}$	110.0(2) 118.7(2)	C_{12} C_{13} C_{13} C_{12} C_{12}	121.0
133 - 030 - 037	110.7(2)	C14 - C13 - C12	110.4 (2)
$C_{2} = C_{2} = C_{2}$	122.7(2)	C14 - C13 - H13	121.8
C30-C3/-13	121.94 (19)	N4—C14—C9	106.5 (2)

$C_{38} - C_{37} - I_{3}$	120 42 (19)	C13—C14—N4	1315(2)
$C_{38} = C_{37} = C_{36}$	117.6(2)	C_{13} C_{14} C_{9}	121.9(2)
$F_{36} - C_{38} - C_{37}$	1202(2)	C15 - N5 - HN5	121.9(2)
$F_{36} = C_{38} = C_{39}$	120.2(2) 1184(2)	C15 N5 $C16$	122(2) 100 8 (2)
$C_{30} = C_{30} = C_{37}$	110.4(2)	C_{16} N5 HN5	109.0(2) 128(2)
$E_{33} = E_{33} = E$	121.4(2) 120.0(2)	$C_{10} = N_{0} = M_{0}$	125(2)
$F_{33} = C_{39} = C_{30}$	120.0(2)	C15 N6 C21	123.4(19)
$F_{33} = C_{39} = C_{40}$	120.0(2)	C13 - N0 - C21	110.26(19)
$E_{40} = C_{39} = C_{38}$	119.4(2)	C21—INO—IINO	124.0(19)
$F_{34} = C_{40} = C_{33}$	120.2 (2)	N5-C15-S5	126.48 (18)
F34—C40—C39	118.3 (2)	N6-C15-S3	126.32 (18)
C39—C40—C35	121.5 (2)	N6—C15—N5	107.2 (2)
C42—C41—I5	122.49 (18)	N5—C16—C17	132.2 (2)
C42—C41—C46	117.7 (2)	N5—C16—C21	106.5 (2)
C46—C41—I5	119.79 (19)	C17—C16—C21	121.2 (2)
F37—C42—C41	119.0 (2)	С16—С17—Н17	121.8
F37—C42—C43	118.4 (2)	C18—C17—C16	116.4 (2)
C41—C42—C43	122.6 (2)	C18—C17—H17	121.8
C42—C43—I6	122.78 (18)	C17—C18—H18	119.1
C44—C43—I6	119.64 (18)	C17—C18—C19	121.9 (2)
C44—C43—C42	117.6 (2)	C19—C18—H18	119.1
F38—C44—C43	120.5 (2)	C18—C19—H19	119.0
F38—C44—C45	118.2 (2)	C20-C19-C18	122.0 (2)
C45—C44—C43	121.4 (2)	С20—С19—Н19	119.0
F39—C45—C44	120.0 (2)	С19—С20—Н20	122.0
F39—C45—C46	120.8 (2)	C21—C20—C19	116.1 (2)
C44—C45—C46	119.3 (2)	С21—С20—Н20	122.0
F40—C46—C41	120.7 (2)	N6—C21—C16	106.2 (2)
F40—C46—C45	117.8 (2)	C20—C21—N6	131.4(2)
C45 - C46 - C41	121.5(2)	C_{20} C_{21} C_{16}	122.4(2)
C1-N1-HN1	121.0(2) 123(2)	C22—N7—HN7	122.1(2) 124(2)
C1 - N1 - C2	110.7(2)	$C_{22} = N_{7} = C_{23}$	120(2)
$C_2 = N_1 = H_N_1$	126(2)	C23_N7_HN7	125 (2)
$C1_N2_HN2$	120(2) 1247(18)	$C_{22} = N_{1} = M_{1}$	123(2) 122(2)
C1 = N2 = C7	124.7(10) 110.48(10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122(2)
C7 N2 HN2	124.7(18)	$C_{22} = 100 - C_{20}$	110.0(2)
$C_1 = 1102$	124.7(10) 127.02(10)	N7 C22 S4	127(2) 12672(18)
NI = CI = SI	127.03(19) 106.5(2)	N = C22 = S4	120.72(10)
NI = CI = N2	100.3(2) 12(41 (19)	$N_{0} = C_{22} = S_{1}$	120.38(18)
N2-CI-SI	120.41(18) 10(0(2))	$N_{2} = C_{22} = N_{1}$	106.7(2)
$NI = C_2 = C_7$	100.0(2)	$N = C_{23} = C_{28}$	106.2(2)
$C_3 = C_2 = N_1$	132.4 (2)	$C_{24} = C_{23} = N7$	132.1 (2)
C3-C2-C7	121.6 (2)	C24—C23—C28	121.6 (2)
С2—С3—Н3	121.5	С23—С24—Н24	121.5
C4—C3—C2	116.9 (2)	C23—C24—C25	116.9 (2)
C4—C3—H3	121.5	C25—C24—H24	121.5
C3—C4—H4	119.2	C24—C25—H25	119.3
C3—C4—C5	121.6 (2)	C24—C25—C26	121.4 (2)
C5—C4—H4	119.2	C26—C25—H25	119.3
С4—С5—Н5	119.1	С25—С26—Н26	119.1

C6—C5—C4 C6—C5—H5 C5—C6—H6 C7—C6—C5 C7—C6—H6 N2—C7—C2 N2—C7—C2 C6—C7—C2	121.8 (2) 119.1 121.8 116.5 (2) 121.8 106.3 (2) 132.0 (2) 121.6 (2)	C27—C26—C25 C27—C26—H26 C26—C27—H27 C26—C27—C28 C28—C27—H27 N8—C28—C23 N8—C28—C23 N8—C28—C27 C27—C28—C23	121.8 (2) 119.1 121.7 116.5 (2) 121.7 106.2 (2) 132.1 (2) 121.7 (2)
0-01-02	121.0 (2)	027-020-025	121.7 (2)
I1C29C30F29 I1C29C30C31 I1C29C34F32 I1C29C34C33 I2C31C32F30 I2C31C32C33	1.8 (3) -178.02 (18) -0.7 (3) 178.45 (19) -1.4 (3) 179.38 (19)	N1-C2-C7-C6C1-N1-C2-C3C1-N1-C2-C7C1-N2-C7-C2C1-N2-C7-C6C2-N1-C1-S1	-177.7 (2) -177.6 (3) -0.7 (3) 0.1 (3) 177.9 (3) 179.67 (19)
F_{29} C_{30} C_{31} I_{2}	0.8 (3)	C_2 N1 C_1 N_2	0.8 (3)
F29—C30—C31—C32 F30—C32—C33—F31 F30—C32—C33—C34	179.9 (2) 0.7 (4) -179.2 (2)	$C_2 - C_3 - C_4 - C_5$ $C_3 - C_2 - C_7 - N_2$ $C_3 - C_2 - C_7 - C_6$	0.2 (4) 177.6 (2) -0.5 (4)
F_{31} C_{33} C_{34} F_{32}	-1.3(4)	C_{3} C_{4} C_{5} C_{6}	-0.4(4)
F31—C33—C34—C29	179.6 (2)	C4—C5—C6—C7	0.2 (4)
C29—C30—C31—I2	-179.37 (18)	C5—C6—C7—N2	-177.3 (3)
C29—C30—C31—C32	-0.3 (4)	C5—C6—C7—C2	0.2 (4)
C30—C29—C34—F32	-178.6 (2)	C7—N2—C1—S1	-179.44 (19)
C30—C29—C34—C33	0.5 (4)	C7—N2—C1—N1	-0.6 (3)
C30—C31—C32—F30	179.5 (2)	C7—C2—C3—C4	0.2 (4)
C30—C31—C32—C33	0.3 (4)	N3—C9—C10—C11	177.7 (3)
C31—C32—C33—F31	180.0 (2)	N3—C9—C14—N4	0.1 (3)
C31—C32—C33—C34	0.1 (4)	N3-C9-C14-C13	-176.7 (2)
C32—C33—C34—F32	178.6 (2)	C8—N3—C9—C10	179.5 (3)
C32—C33—C34—C29	-0.5(4)	C8—N3—C9—C14	-1.5 (3)
C34—C29—C30—F29	179.7 (2)	C8 - N4 - C14 - C9	1.3 (3)
$C_{34} = C_{29} = C_{30} = C_{31}$	-0.1(4)	$C_8 = N_4 = C_{14} = C_{13}$	1//.6 (3)
$13 - C_3 / - C_{38} - F_{30}$	3.3(3) $-17580(10)$	C9 - N3 - C8 - S2	-1/6.81(19)
$13 - C_3 / - C_{38} - C_{39}$	-1/3.80(19) -2.1(2)	C9 - N3 - C8 - N4	2.3(3)
$14 - C_{35} - C_{36} - C_{37}$	3.1(3) 177 10 (19)	$C_{10} = C_{10} = C_{11} = C_{12}$	1793(2)
14 - C35 - C30 - C37 14 - C35 - C40 - F34	3 5 (3)	C10 - C9 - C14 - C13	25(4)
$14 - C_{35} - C_{40} - C_{39}$	-175.96(19)	C10-C11-C12-C13	1.6(4)
F33—C36—C37—I3	-3.5 (3)	C11—C12—C13—C14	-0.4(4)
F33—C36—C37—C38	179.1 (2)	C12—C13—C14—N4	-177.5 (2)
F35—C39—C40—F34	-0.8 (4)	C12—C13—C14—C9	-1.6 (4)
F35—C39—C40—C35	178.7 (2)	C14—N4—C8—S2	176.89 (18)
F36—C38—C39—F35	0.3 (4)	C14—N4—C8—N3	-2.2 (3)
F36—C38—C39—C40	-179.9 (2)	C14—C9—C10—C11	-1.3 (4)
C35—C36—C37—I3	176.28 (19)	N5-C16-C17-C18	179.3 (3)
C35—C36—C37—C38	-1.2 (4)	N5-C16-C21-N6	-0.4 (3)
C36—C35—C40—F34	-178.9 (2)	N5-C16-C21-C20	-179.2 (2)

C36—C35—C40—C39	1.6 (4)	C15—N5—C16—C17	-179.3 (3)
C36—C37—C38—F36	-179.0 (2)	C15—N5—C16—C21	-0.6 (3)
C36—C37—C38—C39	1.7 (4)	C15—N6—C21—C16	1.2 (3)
C37—C38—C39—F35	179.6 (2)	C15—N6—C21—C20	179.8 (3)
C37—C38—C39—C40	-0.6 (4)	C16—N5—C15—S3	-177.01 (19)
C38—C39—C40—F34	179.4 (2)	C16—N5—C15—N6	1.3 (3)
C38—C39—C40—C35	-1.1 (4)	C16—C17—C18—C19	-0.3 (4)
C40—C35—C36—F33	179.3 (2)	C17—C16—C21—N6	178.5 (2)
C40—C35—C36—C37	-0.4 (4)	C17—C16—C21—C20	-0.3 (4)
I5—C41—C42—F37	-3.0 (3)	C17—C18—C19—C20	-0.7 (4)
I5—C41—C42—C43	177.25 (18)	C18—C19—C20—C21	1.2 (4)
I5—C41—C46—F40	0.8 (3)	C19—C20—C21—N6	-179.1 (2)
I5—C41—C46—C45	-178.55 (18)	C19—C20—C21—C16	-0.7 (4)
I6—C43—C44—F38	-2.9 (3)	C21—N6—C15—S3	176.77 (19)
I6—C43—C44—C45	177.54 (18)	C21—N6—C15—N5	-1.6 (3)
F37—C42—C43—I6	2.7 (3)	C21—C16—C17—C18	0.8 (4)
F37—C42—C43—C44	-178.6 (2)	N7—C23—C24—C25	179.5 (2)
F38—C44—C45—F39	1.2 (3)	N7—C23—C28—N8	-0.2 (3)
F38—C44—C45—C46	-179.6 (2)	N7—C23—C28—C27	-179.8 (2)
F39—C45—C46—F40	1.2 (3)	C22—N7—C23—C24	-179.2 (3)
F39—C45—C46—C41	-179.4 (2)	C22—N7—C23—C28	-0.3 (3)
C41—C42—C43—I6	-177.57 (18)	C22—N8—C28—C23	0.7 (3)
C41—C42—C43—C44	1.1 (4)	C22—N8—C28—C27	-179.8 (3)
C42—C41—C46—F40	178.0 (2)	C23—N7—C22—S4	179.87 (19)
C42—C41—C46—C45	-1.3 (4)	C23—N7—C22—N8	0.8 (3)
C42—C43—C44—F38	178.4 (2)	C23—C24—C25—C26	-0.3 (4)
C42—C43—C44—C45	-1.2 (4)	C24—C23—C28—N8	178.7 (2)
C43—C44—C45—F39	-179.2 (2)	C24—C23—C28—C27	-0.8 (4)
C43—C44—C45—C46	0.0 (4)	C24—C25—C26—C27	-0.2 (4)
C44—C45—C46—F40	-178.1 (2)	C25—C26—C27—C28	0.2 (4)
C44—C45—C46—C41	1.3 (4)	C26—C27—C28—N8	-179.1 (3)
C46—C41—C42—F37	179.8 (2)	C26—C27—C28—C23	0.3 (4)
C46—C41—C42—C43	0.1 (4)	C28—N8—C22—S4	179.97 (19)
N1—C2—C3—C4	176.7 (3)	C28—N8—C22—N7	-1.0 (3)
N1—C2—C7—N2	0.4 (3)	C28—C23—C24—C25	0.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—HN1···S2 ⁱ	0.85 (2)	2.52 (2)	3.357 (2)	172 (3)
N2—H <i>N</i> 2···S2	0.85 (2)	2.46 (2)	3.297 (2)	166 (2)
N3—H <i>N</i> 3····S1	0.85 (2)	2.51 (2)	3.348 (2)	173 (3)
N4—HN4····S1 ⁱⁱ	0.85 (2)	2.50 (2)	3.326 (2)	166 (2)
N5—HN5····S4 ⁱ	0.85 (2)	2.49 (2)	3.326 (2)	169 (3)
N6—H <i>N</i> 6····S4	0.85 (2)	2.43 (2)	3.270 (2)	169 (3)
C17—H17…F36 ⁱⁱⁱ	0.95	2.61	3.385 (3)	139
C20—H20…F36 ^{iv}	0.95	2.51	3.235 (3)	133

N7—H <i>N</i> 7····S3	0.84 (2)	2.47 (2)	3.300 (2)	170 (3)
N8—HN8····S3 ⁱⁱ	0.85 (2)	2.48 (2)	3.302 (2)	163 (3)

F(000) = 1024

 $\theta = 2.5 - 30.2^{\circ}$

 $\mu = 4.20 \text{ mm}^{-1}$ T = 100 K

Plate, colourless

 $0.22\times0.18\times0.06~mm$

Hydrogen site location: mixed

and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0059P)^2 + 1.8833P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta\rho_{\rm max} = 0.49 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$

H atoms treated by a mixture of independent

 $D_{\rm x} = 2.351 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9812 reflections

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*, *z*; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*, -*y*+1, -*z*+1.

1H-1,3-Benzodiazole-2-thiol-1,2,4,5-tetrafluoro-3,6-diiodobenzene (1/1) (MBZIM_14F4DIB)

Crystal data

 $C_{6}F_{4}I_{2}\cdot C_{7}H_{6}N_{2}S$ $M_{r} = 552.06$ Monoclinic, $P2_{1}/c$ a = 5.5641 (2) Å b = 33.1320 (11) Å c = 8.4710 (3) Å $\beta = 92.754 (1)^{\circ}$ $V = 1559.82 (9) \text{ Å}^{3}$ Z = 4

Data collection

Bruker D8 Venture Photon 2	4579 independent reflections
diffractometer	4211 reflections with $I > 2\sigma(I)$
Radiation source: Incoatec I μ S	$R_{\rm int} = 0.050$
φ and ω scans	$\theta_{\rm max} = 30.2^\circ, \theta_{\rm min} = 2.5^\circ$
Absorption correction: multi-scan	$h = -7 \rightarrow 7$
(SADABS; Bruker, 2017)	$k = -46 \rightarrow 46$
$T_{\min} = 0.501, \ T_{\max} = 0.746$	$l = -11 \rightarrow 11$
45583 measured reflections	

Refinement

Refinement on F ²
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.020$
$wR(F^2) = 0.044$
S = 1.12
4579 reflections
207 parameters
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and	isotropic or	equivalent isotropi	ic displacement	parameters ($(Å^2)$)
	1	1 1			· /	

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.61301 (2)	0.38195 (2)	0.76376 (2)	0.01796 (4)	
I2	0.89550 (3)	0.17772 (2)	0.69482 (2)	0.02372 (4)	
F1	1.0451 (2)	0.33570 (4)	0.60867 (16)	0.0251 (3)	
F2	1.1463 (3)	0.25762 (4)	0.57675 (17)	0.0283 (3)	
F3	0.4636 (3)	0.22323 (4)	0.85802 (18)	0.0292 (3)	
F4	0.3576 (2)	0.30171 (4)	0.88704 (18)	0.0285 (3)	
C8	0.6955 (4)	0.32080 (6)	0.7457 (2)	0.0160 (4)	
------	-------------	-------------	-------------	--------------	
C9	0.8965 (4)	0.30829 (6)	0.6680 (2)	0.0176 (4)	
C10	0.9499 (4)	0.26788 (7)	0.6526 (2)	0.0182 (4)	
C11	0.8062 (4)	0.23834 (6)	0.7151 (2)	0.0174 (4)	
C12	0.6066 (4)	0.25062 (7)	0.7940 (3)	0.0188 (4)	
C13	0.5531 (4)	0.29113 (7)	0.8091 (3)	0.0193 (4)	
S1	0.58078 (9)	0.48006 (2)	0.75000 (6)	0.01583 (10)	
N1	0.2303 (3)	0.52614 (5)	0.8744 (2)	0.0153 (3)	
HN1	0.276 (5)	0.5218 (8)	0.969 (3)	0.023 (7)*	
N2	0.2252 (3)	0.52735 (5)	0.6175 (2)	0.0149 (3)	
HN2	0.276 (5)	0.5229 (8)	0.525 (3)	0.023 (7)*	
C1	0.3405 (4)	0.51181 (6)	0.7471 (2)	0.0143 (4)	
C2	0.0446 (4)	0.55224 (6)	0.8266 (2)	0.0147 (4)	
C3	-0.1194 (4)	0.57380 (6)	0.9113 (2)	0.0180 (4)	
H00G	-0.116250	0.573127	1.023460	0.022*	
C4	-0.2889 (4)	0.59651 (7)	0.8238 (3)	0.0196 (4)	
H00M	-0.404740	0.611727	0.877214	0.024*	
C5	-0.2920 (4)	0.59733 (7)	0.6581 (3)	0.0203 (4)	
H00J	-0.409996	0.613183	0.602105	0.024*	
C6	-0.1275 (4)	0.57565 (6)	0.5737 (2)	0.0186 (4)	
H00L	-0.130222	0.576283	0.461502	0.022*	
C7	0.0408 (4)	0.55303 (6)	0.6613 (2)	0.0147 (4)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.02099 (7)	0.01539 (7)	0.01731 (7)	0.00072 (5)	-0.00093 (5)	-0.00014 (5)
I2	0.03021 (8)	0.01541 (7)	0.02536 (8)	0.00224 (6)	-0.00059 (6)	-0.00099 (5)
F1	0.0259 (7)	0.0215 (6)	0.0286 (7)	-0.0048 (6)	0.0099 (6)	0.0039 (5)
F2	0.0264 (7)	0.0260 (7)	0.0339 (8)	0.0022 (6)	0.0152 (6)	-0.0012 (6)
F3	0.0255 (7)	0.0191 (7)	0.0440 (9)	-0.0047 (6)	0.0132 (6)	0.0058 (6)
F4	0.0222 (7)	0.0248 (7)	0.0400 (8)	0.0019 (6)	0.0160 (6)	0.0021 (6)
C8	0.0175 (9)	0.0145 (9)	0.0159 (9)	0.0007 (8)	-0.0011 (7)	-0.0006 (7)
C9	0.0195 (10)	0.0183 (10)	0.0151 (9)	-0.0039 (8)	0.0025 (8)	0.0026 (7)
C10	0.0171 (10)	0.0210 (10)	0.0169 (9)	0.0011 (8)	0.0036 (8)	-0.0004 (8)
C11	0.0199 (10)	0.0146 (9)	0.0174 (10)	-0.0004 (8)	-0.0018 (8)	-0.0009(7)
C12	0.0187 (10)	0.0178 (10)	0.0200 (10)	-0.0040(8)	0.0030 (8)	0.0013 (8)
C13	0.0172 (10)	0.0202 (10)	0.0207 (10)	0.0021 (8)	0.0041 (8)	-0.0001 (8)
S1	0.0208 (2)	0.0150 (2)	0.0116 (2)	0.00308 (19)	0.00018 (18)	-0.00025 (16)
N1	0.0177 (8)	0.0184 (8)	0.0096 (8)	0.0020 (7)	-0.0017 (6)	-0.0003 (6)
N2	0.0175 (8)	0.0172 (8)	0.0101 (8)	0.0005 (7)	0.0010 (6)	-0.0007 (6)
C1	0.0180 (9)	0.0129 (9)	0.0119 (8)	-0.0026 (8)	-0.0003 (7)	-0.0004 (7)
C2	0.0150 (9)	0.0152 (9)	0.0139 (9)	-0.0016 (8)	-0.0011 (7)	0.0003 (7)
C3	0.0198 (10)	0.0191 (10)	0.0151 (9)	-0.0017 (8)	0.0010 (8)	-0.0029 (7)
C4	0.0182 (10)	0.0201 (10)	0.0206 (10)	0.0009 (8)	0.0021 (8)	-0.0022 (8)
C5	0.0191 (10)	0.0186 (10)	0.0229 (11)	0.0009 (8)	-0.0017 (8)	0.0021 (8)
C6	0.0203 (10)	0.0212 (10)	0.0139 (9)	0.0000 (8)	-0.0021 (8)	0.0021 (7)
C7	0.0158 (9)	0.0158 (9)	0.0125 (9)	-0.0017 (8)	-0.0006 (7)	-0.0007 (7)

Geometric parameters (Å, °)

I1—C8	2.084 (2)	N1—C2	1.393 (3)
I2—C11	2.078 (2)	N2—HN2	0.86 (3)
F1—C9	1.342 (2)	N2—C1	1.347 (3)
F2—C10	1.338 (2)	N2—C7	1.397 (3)
F3—C12	1.338 (2)	C2—C3	1.385 (3)
F4—C13	1.346 (2)	C2—C7	1.400 (3)
C8—C9	1.388 (3)	C3—H00G	0.9500
C8—C13	1.387 (3)	C3—C4	1.392 (3)
C9—C10	1.379 (3)	C4—H00M	0.9500
C10—C11	1.386 (3)	C4—C5	1.402 (3)
C11—C12	1.384 (3)	C5—H00J	0.9500
C12—C13	1.382 (3)	C5—C6	1.388 (3)
S1—C1	1.700 (2)	C6—H00L	0.9500
N1—HN1	0.84 (3)	C6—C7	1.387 (3)
N1—C1	1.352 (2)		
C9—C8—I1	120.68 (15)	C7—N2—HN2	128.7 (18)
C13—C8—I1	121.91 (15)	N1—C1—S1	126.31 (16)
C13—C8—C9	117.41 (19)	N2—C1—S1	126.27 (15)
F1—C9—C8	120.03 (19)	N2—C1—N1	107.42 (18)
F1—C9—C10	118.85 (18)	N1—C2—C7	106.11 (17)
C10—C9—C8	121.11 (19)	C3—C2—N1	131.90 (19)
F2—C10—C9	118.48 (19)	C3—C2—C7	121.97 (19)
F2	120.25 (19)	C2—C3—H00G	121.6
C9—C10—C11	121.27 (19)	C2—C3—C4	116.70 (19)
C10—C11—I2	120.42 (15)	C4—C3—H00G	121.6
C12—C11—I2	121.65 (16)	C3—C4—H00M	119.4
C12—C11—C10	117.92 (19)	C3—C4—C5	121.2 (2)
F3—C12—C11	120.16 (19)	C5—C4—H00M	119.4
F3—C12—C13	119.09 (19)	C4—C5—H00J	119.0
C13—C12—C11	120.75 (19)	C6—C5—C4	121.9 (2)
F4—C13—C8	119.71 (19)	C6—C5—H00J	119.0
F4—C13—C12	118.75 (19)	C5-C6-H00L	121.7
C12—C13—C8	121.54 (19)	C7—C6—C5	116.65 (19)
C1—N1—HN1	125.0 (18)	C7—C6—H00L	121.7
C1—N1—C2	110.19 (17)	N2	106.19 (17)
C2—N1—HN1	124.6 (18)	C6—C7—N2	132.27 (18)
C1—N2—HN2	121.0 (19)	C6—C7—C2	121.53 (19)
C1—N2—C7	110.07 (17)		
I1—C8—C9—F1	2.5 (3)	C13—C8—C9—F1	-177.88 (19)
I1—C8—C9—C10	-178.66 (16)	C13—C8—C9—C10	1.0 (3)
I1—C8—C13—F4	-1.1 (3)	N1-C2-C3-C4	-178.1 (2)
I1—C8—C13—C12	178.80 (17)	N1—C2—C7—N2	-0.1 (2)
I2—C11—C12—F3	-0.8 (3)	N1-C2-C7-C6	178.62 (19)
I2—C11—C12—C13	178.65 (17)	C1—N1—C2—C3	179.2 (2)

F2 $C10$ $C11$ $C12$ 179.3 (2) $C12$ $F3$ $C12$ $C13$ $F4$ -0.4 (3) $C12$ $F3$ $C12$ $C13$ $F4$ -0.4 (3) $C12$ $F3$ $C12$ $C13$ $C8$ 179.7 (2) $C12$ $C8$ $C9$ $C10$ $F2$ -179.86 (19) $C12$ $C8$ $C9$ $C10$ $C11$ -0.6 (3) $C12$ $C9$ $C8$ $C13$ $C12$ -0.8 (3) $C12$ $C9$ $C10$ $C11$ -178.52 (17) $C12$ $C9$ $C10$ $C11$ -179.3 (2) $C12$ $C10$ $C11$ $C12$ -179.3 (2) $C12$ $C10$ $C11$ $C12$ $C13$ $C2$ $C11$ $C10$ $C11$ $C12$ $C13$ $C2$ $C13$ $C11$ $C12$ $C13$ $C8$ $03(3)$ $C12$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$178.30 (15) \\ -1.6 (2) \\ 0.0 (3) \\ -178.50 (19) \\ 0.2 (3) \\ 0.1 (3) \\ 0.0 (3) \\ 178.2 (2) \\ -0.1 (3) \\ -178.36 (15) \\ 1.5 (2) \\ -0.1 (3) $
--	--	--

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1—HN1…S1 ⁱ	0.84 (3)	2.47 (3)	3.3089 (18)	172 (2)
N2—HN2…S1 ⁱⁱ	0.86 (3)	2.50 (3)	3.3527 (17)	172 (2)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) -*x*+1, -*y*+1, -*z*+1.

1H-1,3-Benzodiazole-2-thiol-1,1,2,2-tetraiodoethene (1/1) (MBZIM_TIE)

Crystal data

C₂I₄·C₇H₆N₂S $M_r = 681.82$ Orthorhombic, *Pnma* a = 11.7547 (10) Å b = 8.3525 (7) Å c = 15.1077 (13) Å V = 1483.3 (2) Å³ Z = 4F(000) = 1208

Data collection

Bruker D8 Venture Photon 2 diffractometer Radiation source: Incoatec I μ S φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2017) $T_{\min} = 0.256, T_{\max} = 0.746$ 32859 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.062$ $D_x = 3.053 \text{ Mg m}^{-3}$ Mo *Ka* radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 32859 reflections $\theta = 2.2-28.5^{\circ}$ $\mu = 8.52 \text{ mm}^{-1}$ T = 100 KPlank, colourless $0.30 \times 0.14 \times 0.11 \text{ mm}$

1993 independent reflections 1885 reflections with $I > 2\sigma(I)$ $R_{int} = 0.055$ $\theta_{max} = 28.5^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -15 \rightarrow 15$ $k = -11 \rightarrow 11$ $l = -20 \rightarrow 20$

S = 1.251993 reflections 89 parameters 0 restraints

Hydrogen site location: mixed	$w = 1/[\sigma^2(F_o^2) + (0.0213P)^2 + 6.7951P]$
H atoms treated by a mixture of independent	where $P = (F_o^2 + 2F_c^2)/3$
and constrained refinement	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 1.25 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -1.48 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.71885 (3)	0.250000	0.41396 (2)	0.01158 (9)	
I2	0.48169 (3)	0.250000	0.27066 (2)	0.01399 (9)	
I3	0.29263 (3)	0.250000	0.46197 (2)	0.01401 (9)	
I4	0.52953 (3)	0.250000	0.60280 (2)	0.02001 (10)	
C5	0.5414 (5)	0.250000	0.4030 (4)	0.0165 (11)	
C6	0.4724 (5)	0.250000	0.4721 (4)	0.0174 (11)	
S1	1.01449 (11)	0.250000	0.45747 (8)	0.0100 (2)	
N1	0.9064 (3)	0.3808 (4)	0.5997 (2)	0.0103 (6)	
HN1	0.925 (4)	0.478 (6)	0.586 (3)	0.016 (12)*	
C1	0.9436 (4)	0.250000	0.5556 (3)	0.0113 (10)	
C2	0.8394 (3)	0.3332 (4)	0.6716 (2)	0.0101 (7)	
C3	0.7765 (3)	0.4217 (5)	0.7322 (2)	0.0124 (7)	
Н3	0.776830	0.535466	0.732234	0.015*	
C4	0.7128 (3)	0.3335 (5)	0.7928 (2)	0.0134 (7)	
H4	0.668132	0.388696	0.835332	0.016*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacem	ent parameters (Å	ĺ²)
------------------	-------------------	-----

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.00779 (16)	0.01634 (17)	0.01059 (16)	0.000	-0.00164 (11)	0.000
I2	0.01027 (17)	0.02331 (19)	0.00839 (16)	0.000	-0.00137 (11)	0.000
I3	0.00843 (16)	0.01822 (18)	0.01538 (17)	0.000	0.00119 (12)	0.000
I4	0.01263 (18)	0.0392 (2)	0.00821 (17)	0.000	-0.00150 (12)	0.000
C5	0.012 (3)	0.023 (3)	0.014 (3)	0.000	-0.002 (2)	0.000
C6	0.019 (3)	0.025 (3)	0.008 (2)	0.000	-0.004(2)	0.000
S1	0.0102 (5)	0.0095 (5)	0.0102 (5)	0.000	0.0029 (4)	0.000
N1	0.0103 (14)	0.0088 (14)	0.0117 (14)	-0.0008 (11)	0.0015 (11)	-0.0004 (11)
C1	0.008 (2)	0.014 (2)	0.012 (2)	0.000	-0.0048 (18)	0.000
C2	0.0090 (15)	0.0123 (18)	0.0090 (15)	0.0000 (13)	-0.0024 (12)	-0.0001 (13)
C3	0.0132 (17)	0.0116 (16)	0.0125 (16)	0.0013 (13)	0.0002 (13)	-0.0011 (13)
C4	0.0109 (16)	0.0172 (19)	0.0119 (16)	0.0023 (14)	0.0030 (13)	-0.0017 (14)

Geometric parameters (Å, °)

2.093 (6)	N1—C2	1.400 (4)	
2.119 (6)	$C2-C2^{i}$	1.390 (7)	
2.118 (6)	C2—C3	1.389 (5)	
2.086 (5)	С3—Н3	0.9500	
1.321 (8)	C3—C4	1.393 (5)	
1.701 (6)	$C4$ — $C4^{i}$	1.395 (8)	
0.87 (5)	C4—H4	0.9500	
1.352 (4)			
113.9 (3)	N1 ⁱ —C1—N1	107.8 (5)	
123.3 (4)	$C2^{i}$ — $C2$ — $N1$	106.5 (2)	
122.8 (4)	C3—C2—N1	131.3 (3)	
112.9 (3)	$C3-C2-C2^{i}$	122.2 (2)	
123.7 (4)	С2—С3—Н3	122.1	
123.3 (5)	C2—C3—C4	115.9 (3)	
124 (3)	С4—С3—Н3	122.1	
109.6 (3)	$C3-C4-C4^{i}$	121.9 (2)	
127 (3)	C3—C4—H4	119.0	
126.0 (2)	C4 ⁱ —C4—H4	119.0	
126.0 (2)			
180.000 (1)	C1—N1—C2—C3	-174.9 (4)	
0.000(1)	C2—N1—C1—S1	172.5 (3)	
0.000(1)	$C2$ — $N1$ — $C1$ — $N1^i$	-2.6 (5)	
180.000(1)	$C2^{i}$ — $C2$ — $C3$ — $C4$	-0.3 (4)	
175.8 (4)	C2-C3-C4-C4 ⁱ	0.3 (4)	
1.6 (3)			
	$\begin{array}{c} 2.093 \ (6) \\ 2.119 \ (6) \\ 2.118 \ (6) \\ 2.086 \ (5) \\ 1.321 \ (8) \\ 1.701 \ (6) \\ 0.87 \ (5) \\ 1.352 \ (4) \\ \end{array}$ $\begin{array}{c} 113.9 \ (3) \\ 123.3 \ (4) \\ 122.8 \ (4) \\ 112.9 \ (3) \\ 123.7 \ (4) \\ 123.3 \ (5) \\ 124 \ (3) \\ 109.6 \ (3) \\ 127 \ (3) \\ 126.0 \ (2) \\ 126.0 \ (2) \\ 180.000 \ (1) \\ 0.000 \ (1) \\ 180.000 \ (1) \\ 175.8 \ (4) \\ 1.6 \ (3) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry code: (i) x, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—HN1····S1 ⁱⁱ	0.87 (5)	2.47 (5)	3.335 (3)	178 (5)
C3—H3…I1 ⁱⁱⁱ	0.95	3.28	3.881 (4)	123

Symmetry codes: (ii) -*x*+2, -*y*+1, -*z*+1; (iii) -*x*+3/2, -*y*+1, *z*+1/2.

5-Methyl-1*H*-1,3-benzodiazole-2-thiol-1,2,3,4-tetrafluoro-5,6-diiodobenzene (1/1) (MMBZIM_12F4DIB)

Crystal data	
$C_6F_4I_2{\cdot}C_8H_8N_2S$	$\gamma = 99.588 \ (4)^{\circ}$
$M_r = 566.08$	$V = 809.97 (15) \text{ A}^3$
Triclinic, P1	Z = 2
a = 4.5504(5) Å	F(000) = 528
b = 13.2872 (14) Å	$D_{\rm x} = 2.321 {\rm ~Mg~m^{-3}}$
c = 13.8064 (14) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\alpha = 94.766 \ (4)^{\circ}$	Cell parameters from 9940 reflections
$\beta = 98.124 \ (4)^{\circ}$	$\theta = 2.3 - 27.5^{\circ}$

$\mu = 4.05 \text{ mm}^{-1}$	Needle, colourless
T = 100 K	$0.19 \times 0.07 \times 0.04 \text{ mm}$
Data collection	
Bruker D8 Venture Photon 2 diffractometer Radiation source: Incoatec I μ S φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2017) $T_{\min} = 0.636, T_{\max} = 0.746$ 21426 measured reflections	3704 independent reflections 3174 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -5 \rightarrow 5$ $k = -17 \rightarrow 17$ $l = -17 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.055$ S = 1.24 3704 reflections 217 parameters 1 restraint Primary atom site location: dual	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + 2.2494P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.33$ e Å ⁻³ $\Delta\rho_{min} = -1.06$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.65636 (6)	0.37716 (2)	0.58352 (2)	0.02050 (7)
I2	0.65659 (5)	0.36653 (2)	0.30961 (2)	0.01661 (7)
F1	0.1607 (5)	0.17992 (18)	0.21872 (16)	0.0254 (5)
F2	-0.2407 (6)	0.04739 (19)	0.29154 (19)	0.0334 (6)
F3	-0.2418 (6)	0.05622 (19)	0.4886 (2)	0.0326 (6)
F4	0.1622 (6)	0.1944 (2)	0.61205 (17)	0.0280 (6)
С9	0.3758 (8)	0.2652 (3)	0.4798 (3)	0.0154 (7)
C10	0.3778 (8)	0.2613 (3)	0.3784 (3)	0.0151 (7)
C11	0.1718 (9)	0.1857 (3)	0.3168 (3)	0.0174 (8)
C12	-0.0361 (9)	0.1169 (3)	0.3527 (3)	0.0206 (8)
C13	-0.0373 (9)	0.1222 (3)	0.4535 (3)	0.0206 (8)
C14	0.1684 (9)	0.1943 (3)	0.5145 (3)	0.0182 (8)
S1	-0.0441 (2)	0.50172 (8)	0.83086 (7)	0.0204 (2)
N1	0.2256 (7)	0.3842 (3)	0.9578 (2)	0.0184 (7)
HN1	0.165 (10)	0.414 (4)	1.008 (4)	0.029 (13)*
N2	0.2606 (7)	0.3443 (2)	0.8049 (2)	0.0165 (7)
HN2	0.254 (9)	0.349 (3)	0.7436 (15)	0.009 (10)*
C1	0.1504 (9)	0.4093 (3)	0.8658 (3)	0.0186 (8)
C2	0.3863 (8)	0.3038 (3)	0.9558 (3)	0.0172 (8)

0.5098 (9)	0.2511 (3)	1.0292 (3)	0.0215 (8)	
0.493986	0.267954	1.096235	0.026*	
0.6580 (9)	0.1726 (3)	1.0008 (3)	0.0222 (8)	
0.745045	0.135500	1.049815	0.027*	
0.6828 (9)	0.1464 (3)	0.9019 (3)	0.0227 (9)	
0.5606 (9)	0.2004 (3)	0.8290 (3)	0.0180 (8)	
0.578792	0.184847	0.761942	0.022*	
0.4108 (9)	0.2782 (3)	0.8579 (3)	0.0176 (8)	
0.8415 (9)	0.0590 (3)	0.8758 (3)	0.0245 (9)	
0.727133	-0.005523	0.890936	0.037*	
1.044903	0.071430	0.914124	0.037*	
0.855211	0.054270	0.805416	0.037*	
	0.5098 (9) 0.493986 0.6580 (9) 0.745045 0.6828 (9) 0.5606 (9) 0.578792 0.4108 (9) 0.8415 (9) 0.727133 1.044903 0.855211	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.02224 (14)	0.02260 (14)	0.01557 (12)	0.00692 (10)	-0.00119 (9)	-0.00285 (10)
I2	0.01925 (13)	0.01578 (12)	0.01588 (12)	0.00435 (9)	0.00466 (9)	0.00245 (9)
F1	0.0295 (13)	0.0253 (13)	0.0173 (11)	-0.0002 (10)	-0.0002 (10)	-0.0036 (10)
F2	0.0269 (14)	0.0274 (14)	0.0386 (15)	-0.0070 (11)	-0.0003 (11)	-0.0060 (11)
F3	0.0246 (13)	0.0283 (14)	0.0489 (17)	0.0016 (11)	0.0171 (12)	0.0143 (12)
F4	0.0320 (14)	0.0389 (15)	0.0181 (12)	0.0110 (11)	0.0106 (10)	0.0116 (11)
C9	0.0157 (18)	0.0167 (18)	0.0136 (17)	0.0051 (15)	0.0014 (14)	-0.0022 (14)
C10	0.0173 (18)	0.0148 (18)	0.0135 (17)	0.0033 (14)	0.0024 (14)	0.0016 (14)
C11	0.0205 (19)	0.0172 (19)	0.0151 (18)	0.0071 (15)	0.0012 (14)	0.0000 (15)
C12	0.0161 (19)	0.0167 (19)	0.027 (2)	0.0010 (15)	0.0000 (15)	-0.0015 (16)
C13	0.0132 (18)	0.0170 (19)	0.035 (2)	0.0052 (15)	0.0101 (16)	0.0061 (17)
C14	0.021 (2)	0.021 (2)	0.0155 (18)	0.0099 (16)	0.0041 (15)	0.0056 (15)
S 1	0.0227 (5)	0.0197 (5)	0.0214 (5)	0.0062 (4)	0.0081 (4)	0.0052 (4)
N1	0.0228 (18)	0.0185 (17)	0.0150 (16)	0.0047 (14)	0.0065 (13)	0.0005 (13)
N2	0.0214 (17)	0.0202 (17)	0.0102 (15)	0.0073 (13)	0.0045 (12)	0.0037 (13)
C1	0.021 (2)	0.0172 (19)	0.0179 (19)	-0.0010 (15)	0.0066 (15)	0.0044 (15)
C2	0.0175 (19)	0.0193 (19)	0.0152 (18)	0.0014 (15)	0.0063 (14)	0.0018 (15)
C3	0.024 (2)	0.029 (2)	0.0122 (18)	0.0037 (17)	0.0042 (15)	0.0039 (16)
C4	0.020 (2)	0.026 (2)	0.019 (2)	0.0011 (17)	-0.0010 (15)	0.0054 (16)
C5	0.0158 (19)	0.025 (2)	0.026 (2)	0.0015 (16)	0.0018 (16)	0.0020 (17)
C6	0.0193 (19)	0.0207 (19)	0.0145 (18)	0.0041 (16)	0.0039 (15)	0.0014 (15)
C7	0.0192 (19)	0.0186 (19)	0.0146 (18)	0.0027 (15)	0.0023 (14)	0.0018 (15)
C8	0.020 (2)	0.026 (2)	0.029 (2)	0.0066 (17)	0.0019 (17)	0.0049 (18)

Geometric parameters (Å, °)

П—С9	2.095 (4)	N2—HN2	0.850 (18)	
I2—C10	2.106 (4)	N2—C1	1.358 (5)	
F1—C11	1.344 (4)	N2—C7	1.393 (5)	
F2—C12	1.340 (4)	C2—C3	1.385 (5)	
F3—C13	1.340 (4)	C2—C7	1.391 (5)	
F4—C14	1.352 (4)	С3—Н3	0.9500	

C9-C10	1 399 (5)	C3—C4	1 392 (6)
C9-C14	1.399(5) 1 383(5)	C4H4	0.9500
C_{10} C_{11}	1.389(5)	C_{4} C_{5}	1.406 (6)
C_{11} C_{12}	1.309(5) 1.277(6)	C_{1}	1.400(0)
C12 - C12	1.377(0)	C_{5}	1.390(3)
	1.369 (0)		1.311 (0)
	1.558 (6)		0.9500
	1.693 (4)		1.391 (5)
NI—HNI	0.88 (5)	C8—H8A	0.9800
NI—CI	1.351 (5)	C8—H8B	0.9800
N1—C2	1.392 (5)	C8—H8C	0.9800
C10-C9-I1	123 8 (3)	N2-C1-S1	125 9 (3)
C_{14} C_{9} 11	123.0(3) 1173(3)	$C_3 C_2 N_1$	123.5(3) 132.5(4)
$C_{14} = C_{10}$	117.5(3) 118.8(3)	$C_3 = C_2 = C_7$	132.3(4) 120.7(4)
$C_{1} = C_{10} = C_{10}$	110.0(3)	$C_{3} - C_{2} - C_{7}$	120.7(4)
$C_{2} = C_{10} = 12$	125.0(3)	$C_{1} = C_{2} = H_{1}$	100.9(3)
$C_{11} = C_{10} = C_{12}$	110.0(3)	$C_2 = C_3 = C_4$	121.5 117.4(4)
	110.3(4)	$C_2 = C_3 = C_4$	117.4 (4)
FI = CII = CI0	120.6(3)	C4 - C3 - H3	121.3
FI = CII = CI2	117.3 (3)	C3-C4-H4	119.0
	122.0 (4)	$C_3 - C_4 - C_5$	122.1 (4)
F2—C12—C11	120.9 (4)	C5—C4—H4	119.0
F2—C12—C13	120.0 (4)	C4—C5—C8	119.4 (4)
C11—C12—C13	119.1 (4)	C6—C5—C4	120.0 (4)
F3—C13—C12	119.2 (4)	C6—C5—C8	120.6 (4)
F3—C13—C14	121.4 (4)	С5—С6—Н6	121.2
C14—C13—C12	119.3 (4)	C5—C6—C7	117.5 (4)
F4—C14—C9	120.6 (3)	С7—С6—Н6	121.2
F4—C14—C13	116.9 (4)	C2—C7—N2	105.5 (3)
C13—C14—C9	122.5 (4)	C6—C7—N2	132.2 (3)
C1—N1—HN1	121 (3)	C6—C7—C2	122.3 (3)
C1—N1—C2	110.4 (3)	С5—С8—Н8А	109.5
C2—N1—HN1	128 (3)	C5—C8—H8B	109.5
C1—N2—HN2	124 (3)	C5—C8—H8C	109.5
C1—N2—C7	111.0 (3)	H8A—C8—H8B	109.5
C7—N2—HN2	125 (3)	H8A—C8—H8C	109.5
N1—C1—S1	127.9 (3)	H8B—C8—H8C	109.5
N1—C1—N2	106.2 (3)		
I1—C9—C10—I2	-0.5 (5)	C14—C9—C10—C11	-0.4 (5)
I1—C9—C10—C11	-177.4 (3)	N1—C2—C3—C4	179.6 (4)
I1—C9—C14—F4	-3.9 (5)	N1-C2-C7-N2	-0.5 (4)
I1—C9—C14—C13	175.8 (3)	N1-C2-C7-C6	179.7 (4)
I2-C10-C11-F1	1.7 (5)	C1—N1—C2—C3	-179.6 (4)
I2—C10—C11—C12	-175.5 (3)	C1—N1—C2—C7	0.0 (4)
F1—C11—C12—F2	-0.1 (5)	C1—N2—C7—C2	0.8 (4)
F1-C11-C12-C13	-178.3 (3)	C1—N2—C7—C6	-179.4 (4)
F2—C12—C13—F3	1.0 (5)	C2—N1—C1—S1	-180.0 (3)
F2—C12—C13—C14	-178.9 (3)	C2—N1—C1—N2	0.5 (4)
-	× /		× /

F3—C13—C14—F4	1.7 (5)	C2—C3—C4—C5	-0.2 (6)
F3—C13—C14—C9	-178.0 (3)	C3—C2—C7—N2	179.2 (4)
C9—C10—C11—F1	178.8 (3)	C3—C2—C7—C6	-0.7 (6)
C9—C10—C11—C12	1.5 (6)	C3—C4—C5—C6	0.8 (6)
C10-C9-C14-F4	179.0 (3)	C3—C4—C5—C8	-178.8 (4)
C10-C9-C14-C13	-1.3 (6)	C4—C5—C6—C7	-1.3 (6)
C10-C11-C12-F2	177.2 (3)	C5—C6—C7—N2	-178.5 (4)
C10-C11-C12-C13	-1.0 (6)	C5—C6—C7—C2	1.3 (6)
C11—C12—C13—F3	179.2 (3)	C7—N2—C1—S1	179.6 (3)
C11—C12—C13—C14	-0.7 (6)	C7—N2—C1—N1	-0.8 (4)
C12-C13-C14-F4	-178.4 (3)	C7—C2—C3—C4	0.1 (6)
C12—C13—C14—C9	1.9 (6)	C8—C5—C6—C7	178.3 (4)
C14—C9—C10—I2	176.4 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
$N1$ — $HN1$ ···· $S1^{i}$	0.88 (5)	2.57 (5)	3.444 (3)	173 (4)
N2—H <i>N</i> 2…I1	0.85 (2)	3.07 (3)	3.780 (3)	142 (3)
N2—H <i>N</i> 2…F4	0.85 (2)	2.56 (3)	3.122 (4)	124 (3)
C3—H3…I2 ⁱⁱ	0.95	3.06	3.966 (4)	160
C6—H6…F4	0.95	2.63	3.262 (4)	125

Symmetry codes: (i) -x, -y+1, -z+2; (ii) x, y, z+1.

5-Methyl-1*H*-1,3-benzodiazole-2-thiol-1,2,4,5-tetrafluoro-3,6-diiodobenzene-water (2/1/2) (2MMBZIM_14F4DIB_2H2O)

Crystal data

$C_6F_4I_2 \cdot 2C_8H_8N_2S \cdot 2(H_2O)$	Z = 1
$M_r = 766.34$	F(000) = 370
Triclinic, $P\overline{1}$	$D_{\rm x} = 2.000 {\rm Mg} {\rm m}^{-3}$
a = 4.9088 (3) Å	Mo K α radiation, $\lambda = 0.71073$ Å
b = 11.4670 (8) Å	Cell parameters from 9704 reflections
c = 11.9686 (8) Å	$\theta = 3.0-29.6^{\circ}$
$\alpha = 106.644(2)^{\circ}$	$\mu = 2.69 \text{ mm}^{-1}$
$\beta = 98.058 \ (2)^{\circ}$	T = 100 K
$\gamma = 92.811 \ (2)^{\circ}$	Plate, colourless
V = 636.27 (7) Å ³	$0.31 \times 0.11 \times 0.08 \text{ mm}$
Data collection	
Bruker D8 Venture Photon 2	3558 independent reflections
diffractometer	3500 reflections with $I > 2\sigma(I)$
Radiation source: Incoatec $I\mu S$	$R_{\rm int} = 0.036$
φ and ω scans	$\theta_{\text{max}} = 29.7^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -6 \rightarrow 6$
(SADABS; Bruker, 2017)	$k = -15 \rightarrow 15$
$T_{\min} = 0.536, T_{\max} = 0.746$	$l = -16 \rightarrow 16$
31584 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.014$	and constrained refinement
$wR(F^2) = 0.034$	$w = 1/[\sigma^2(F_o^2) + 0.4884P]$
<i>S</i> = 1.18	where $P = (F_o^2 + 2F_c^2)/3$
3558 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
184 parameters	$\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$
7 restraints	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
I1	0.44701 (2)	0.37987 (2)	0.76749 (2)	0.01303 (3)	
F1	0.8875 (2)	0.62085 (8)	0.83664 (8)	0.02138 (19)	
F2	1.31349 (19)	0.70566 (8)	1.01073 (9)	0.02069 (19)	
C9	0.7732 (3)	0.45489 (12)	0.90761 (12)	0.0132 (2)	
C10	0.9374 (3)	0.56045 (13)	0.91719 (13)	0.0143 (3)	
C11	1.1591 (3)	0.60420 (12)	1.00759 (13)	0.0145 (3)	
S1	1.03801 (7)	0.78475 (3)	0.43889 (3)	0.01464 (7)	
N1	0.7347 (3)	0.75457 (11)	0.60568 (11)	0.0147 (2)	
HN1	0.770 (4)	0.6828 (15)	0.5977 (19)	0.023 (5)*	
N2	0.7391 (3)	0.93710 (11)	0.58449 (11)	0.0138 (2)	
HN2	0.788 (4)	1.0008 (16)	0.5627 (18)	0.025 (5)*	
C1	0.8342 (3)	0.82603 (13)	0.54519 (12)	0.0136 (2)	
C2	0.5751 (3)	0.82008 (13)	0.68510(13)	0.0136 (2)	
C3	0.5789 (3)	0.93718 (12)	0.67155 (12)	0.0129 (2)	
C4	0.4354 (3)	1.02719 (13)	0.73639 (13)	0.0154 (3)	
H4	0.437594	1.106246	0.725878	0.018*	
C5	0.2880 (3)	0.99734 (13)	0.81756 (13)	0.0157 (3)	
C6	0.2857 (3)	0.87925 (14)	0.83004 (13)	0.0173 (3)	
H6	0.183714	0.860585	0.885580	0.021*	
C7	0.4267 (3)	0.78842 (14)	0.76427 (14)	0.0176 (3)	
H7	0.421629	0.708673	0.773170	0.021*	
C8	0.1331 (3)	1.09189 (15)	0.89265 (14)	0.0207 (3)	
H8A	-0.041876	1.052972	0.901230	0.031*	
H8B	0.095344	1.155912	0.854696	0.031*	
H8C	0.245015	1.128188	0.970784	0.031*	
01	0.7691 (3)	0.49501 (11)	0.54916 (12)	0.0247 (2)	
H1AO	0.936 (5)	0.503 (4)	0.532 (4)	0.023 (10)*	0.5
H1BO	0.594 (5)	0.486 (4)	0.516 (4)	0.034 (13)*	0.5
H2O1	0.778 (6)	0.432 (2)	0.575 (3)	0.063 (9)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

U^{11}	U ²²	<i>U</i> ³³	U ¹²	<i>U</i> ¹³	U^{23}
0.01281 (5)	0.01303 (5)	0.01267 (5)	0.00156 (3)	0.00261 (3)	0.00256 (3)
0.0247 (5)	0.0200 (4)	0.0214 (4)	-0.0027 (4)	-0.0034 (4)	0.0133 (4)
0.0216 (4)	0.0163 (4)	0.0242 (5)	-0.0061 (3)	-0.0011 (4)	0.0096 (4)
0.0124 (6)	0.0130 (6)	0.0129 (6)	0.0018 (5)	0.0027 (5)	0.0016 (5)
0.0160 (6)	0.0138 (6)	0.0145 (6)	0.0027 (5)	0.0034 (5)	0.0058 (5)
0.0152 (6)	0.0114 (6)	0.0171 (6)	0.0000 (5)	0.0044 (5)	0.0037 (5)
0.01389 (15)	0.01446 (15)	0.01405 (15)	0.00125 (12)	0.00305 (12)	0.00144 (12)
0.0158 (6)	0.0114 (5)	0.0165 (6)	0.0028 (4)	0.0036 (5)	0.0031 (4)
0.0140 (5)	0.0117 (5)	0.0161 (6)	0.0008 (4)	0.0037 (4)	0.0039 (4)
0.0117 (6)	0.0133 (6)	0.0136 (6)	0.0005 (5)	-0.0006(5)	0.0021 (5)
0.0126 (6)	0.0123 (6)	0.0156 (6)	0.0012 (5)	0.0011 (5)	0.0042 (5)
0.0112 (6)	0.0125 (6)	0.0138 (6)	-0.0012 (5)	0.0014 (5)	0.0027 (5)
0.0149 (6)	0.0121 (6)	0.0180 (7)	0.0014 (5)	0.0020 (5)	0.0030 (5)
0.0125 (6)	0.0172 (6)	0.0152 (6)	0.0013 (5)	0.0012 (5)	0.0017 (5)
0.0168 (6)	0.0203 (7)	0.0164 (6)	0.0014 (5)	0.0044 (5)	0.0072 (5)
0.0188 (7)	0.0165 (6)	0.0195 (7)	0.0031 (5)	0.0035 (6)	0.0082 (5)
0.0188 (7)	0.0211 (7)	0.0209 (7)	0.0039 (6)	0.0074 (6)	0.0019 (6)
0.0289 (6)	0.0185 (5)	0.0315 (6)	0.0046 (5)	0.0105 (5)	0.0118 (5)
	U^{11} 0.01281 (5) 0.0247 (5) 0.0216 (4) 0.0124 (6) 0.0124 (6) 0.0152 (6) 0.01389 (15) 0.0158 (6) 0.0140 (5) 0.0117 (6) 0.0126 (6) 0.0112 (6) 0.0125 (6) 0.0168 (6) 0.0188 (7) 0.0188 (7) 0.0289 (6)	U^{11} U^{22} $0.01281 (5)$ $0.01303 (5)$ $0.0247 (5)$ $0.0200 (4)$ $0.0216 (4)$ $0.0163 (4)$ $0.0124 (6)$ $0.0130 (6)$ $0.0160 (6)$ $0.0138 (6)$ $0.0152 (6)$ $0.0114 (6)$ $0.0138 (15)$ $0.01446 (15)$ $0.0158 (6)$ $0.0114 (5)$ $0.0140 (5)$ $0.0117 (5)$ $0.017 (6)$ $0.0123 (6)$ $0.0126 (6)$ $0.0125 (6)$ $0.0125 (6)$ $0.0172 (6)$ $0.0168 (6)$ $0.0203 (7)$ $0.0188 (7)$ $0.0185 (5)$	U^{11} U^{22} U^{33} 0.01281 (5)0.01303 (5)0.01267 (5)0.0247 (5)0.0200 (4)0.0214 (4)0.0216 (4)0.0163 (4)0.0242 (5)0.0124 (6)0.0130 (6)0.0129 (6)0.0160 (6)0.0138 (6)0.0145 (6)0.0152 (6)0.0114 (6)0.0171 (6)0.01389 (15)0.01446 (15)0.01405 (15)0.0158 (6)0.0117 (5)0.0165 (6)0.0117 (6)0.0133 (6)0.0136 (6)0.0126 (6)0.0123 (6)0.0136 (6)0.0112 (6)0.0125 (6)0.0138 (6)0.0149 (6)0.0121 (6)0.0152 (6)0.0168 (6)0.0203 (7)0.0164 (6)0.0188 (7)0.0211 (7)0.0209 (7)0.0289 (6)0.0185 (5)0.0315 (6)	U^{11} U^{22} U^{33} U^{12} 0.01281 (5)0.01303 (5)0.01267 (5)0.00156 (3)0.0247 (5)0.0200 (4)0.0214 (4) -0.0027 (4)0.0216 (4)0.0163 (4)0.0242 (5) -0.0061 (3)0.0124 (6)0.0130 (6)0.0129 (6)0.0018 (5)0.0160 (6)0.0138 (6)0.0145 (6)0.0027 (5)0.0152 (6)0.0114 (6)0.0171 (6)0.0000 (5)0.01389 (15)0.01446 (15)0.0165 (6)0.0028 (4)0.0140 (5)0.0117 (5)0.0161 (6)0.0008 (4)0.0117 (6)0.0133 (6)0.0136 (6)0.0005 (5)0.0126 (6)0.0125 (6)0.0138 (6) -0.0012 (5)0.0112 (6)0.0125 (6)0.0138 (6) -0.0012 (5)0.0125 (6)0.0172 (6)0.0152 (6)0.0013 (5)0.0168 (6)0.0203 (7)0.0164 (6)0.0014 (5)0.0188 (7)0.0165 (6)0.0195 (7)0.0031 (5)0.0188 (7)0.0211 (7)0.0209 (7)0.0039 (6)0.0289 (6)0.0185 (5)0.0315 (6)0.0046 (5)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.01281 (5)0.01303 (5)0.01267 (5)0.00156 (3)0.00261 (3)0.0247 (5)0.0200 (4)0.0214 (4) $-0.0027 (4)$ $-0.0034 (4)$ 0.0216 (4)0.0163 (4)0.0242 (5) $-0.0061 (3)$ $-0.0011 (4)$ 0.0124 (6)0.0130 (6)0.0129 (6)0.0018 (5)0.0027 (5)0.0160 (6)0.0138 (6)0.0145 (6)0.0027 (5)0.0034 (5)0.0152 (6)0.0114 (6)0.0171 (6)0.0000 (5)0.0044 (5)0.0158 (6)0.01446 (15)0.0165 (6)0.0028 (4)0.0036 (5)0.0158 (6)0.0117 (5)0.0161 (6)0.0008 (4)0.0037 (4)0.0117 (6)0.0133 (6)0.0136 (6)0.0005 (5) $-0.0006 (5)$ 0.0126 (6)0.0123 (6)0.0156 (6)0.0012 (5)0.0011 (5)0.0126 (6)0.0123 (6)0.0156 (6)0.0012 (5)0.0014 (5)0.0149 (6)0.0121 (6)0.0152 (6)0.0013 (5)0.0012 (5)0.0125 (6)0.0152 (6)0.0013 (5)0.0012 (5)0.0168 (6)0.0203 (7)0.0164 (6)0.0014 (5)0.0044 (5)0.0188 (7)0.0165 (6)0.0195 (7)0.0031 (5)0.0035 (6)0.0188 (7)0.0211 (7)0.0209 (7)0.0039 (6)0.0074 (6)0.0289 (6)0.0185 (5)0.0315 (6)0.0046 (5)0.0105 (5)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

І1—С9	2.0981 (14)	C3—C4	1.3888 (19)
F1-C10	1.3424 (16)	C4—H4	0.9500
F2—C11	1.3452 (16)	C4—C5	1.396 (2)
C9—C10	1.3882 (19)	C5—C6	1.404 (2)
C9-C11 ⁱ	1.386 (2)	C5—C8	1.509 (2)
C10-C11	1.383 (2)	С6—Н6	0.9500
S1—C1	1.7035 (15)	C6—C7	1.392 (2)
N1—HN1	0.830 (15)	С7—Н7	0.9500
N1—C1	1.3542 (19)	C8—H8A	0.9800
N1—C2	1.3926 (18)	C8—H8B	0.9800
N2—HN2	0.876 (15)	C8—H8C	0.9800
N2—C1	1.3557 (18)	O1—H1AO	0.880 (18)
N2—C3	1.3905 (18)	O1—H1BO	0.883 (18)
С2—С3	1.3975 (19)	O1—H2O1	0.872 (17)
C2—C7	1.387 (2)		
C10—C9—I1	122.63 (11)	C4—C3—N2	131.65 (13)
C11 ⁱ —C9—I1	120.13 (10)	C4—C3—C2	121.84 (13)
C11 ⁱ —C9—C10	117.17 (13)	C3—C4—H4	121.2
F1-C10-C9	120.35 (13)	C3—C4—C5	117.61 (13)
F1-C10-C11	118.48 (12)	C5—C4—H4	121.2
С11—С10—С9	121.15 (13)	C4—C5—C6	119.91 (13)
F2-C11-C9 ⁱ	120.02 (13)	C4—C5—C8	120.20 (14)
F2-C11-C10	118.29 (13)	C6—C5—C8	119.89 (14)

C10-C11-C9 ⁱ	121.68 (13)	С5—С6—Н6	118.7
C1—N1—HN1	124.2 (15)	C7—C6—C5	122.63 (14)
C1—N1—C2	110.28 (12)	С7—С6—Н6	118.7
C2—N1—HN1	125.5 (15)	C2—C7—C6	116.72 (14)
C1—N2—HN2	123.8 (14)	С2—С7—Н7	121.6
C1—N2—C3	110.09 (12)	С6—С7—Н7	121.6
C3—N2—HN2	125.8 (14)	С5—С8—Н8А	109.5
N1—C1—S1	126.80 (11)	C5—C8—H8B	109.5
N1—C1—N2	107.02 (12)	С5—С8—Н8С	109.5
N2—C1—S1	126.17 (11)	H8A—C8—H8B	109.5
N1—C2—C3	106.11 (12)	H8A—C8—H8C	109.5
C7—C2—N1	132.60 (13)	H8B—C8—H8C	109.5
C7—C2—C3	121.28 (13)	H1AO-O1-H2O1	101 (3)
N2—C3—C2	106.49 (12)	H1BO—O1—H2O1	101 (3)
I1—C9—C10—F1	1.58 (19)	C1—N2—C3—C4	-178.92 (15)
I1—C9—C10—F1 I1—C9—C10—C11	1.58 (19) -176.86 (10)	C1—N2—C3—C4 C2—N1—C1—S1	-178.92 (15) -179.80 (11)
11—C9—C10—F1 11—C9—C10—C11 F1—C10—C11—F2	1.58 (19) -176.86 (10) 0.3 (2)	C1—N2—C3—C4 C2—N1—C1—S1 C2—N1—C1—N2	-178.92 (15) -179.80 (11) -0.27 (16)
I1—C9—C10—F1 I1—C9—C10—C11 F1—C10—C11—F2 F1—C10—C11—C9 ⁱ	1.58 (19) -176.86 (10) 0.3 (2) -178.58 (13)	C1—N2—C3—C4 C2—N1—C1—S1 C2—N1—C1—N2 C2—C3—C4—C5	-178.92 (15) -179.80 (11) -0.27 (16) 0.7 (2)
I1—C9—C10—F1 I1—C9—C10—C11 F1—C10—C11—F2 F1—C10—C11—C9 ⁱ C9—C10—C11—F2	1.58 (19) -176.86 (10) 0.3 (2) -178.58 (13) 178.75 (13)	C1—N2—C3—C4 C2—N1—C1—S1 C2—N1—C1—N2 C2—C3—C4—C5 C3—N2—C1—S1	-178.92 (15) -179.80 (11) -0.27 (16) 0.7 (2) 179.96 (11)
$\begin{array}{c} 11 &C9 &C10 &F1 \\ 11 &C9 &C10 &C11 \\ F1 &C10 &C11 &F2 \\ F1 &C10 &C11 &C9^{i} \\ C9 &C10 &C11 &F2 \\ C9 &C10 &C11 &C9^{i} \end{array}$	1.58 (19) -176.86 (10) 0.3 (2) -178.58 (13) 178.75 (13) -0.1 (2)	C1—N2—C3—C4 C2—N1—C1—S1 C2—N1—C1—N2 C2—C3—C4—C5 C3—N2—C1—S1 C3—N2—C1—N1	-178.92 (15) -179.80 (11) -0.27 (16) 0.7 (2) 179.96 (11) 0.44 (16)
$\begin{array}{c} 11 &C9 &C10 &F1 \\ 11 &C9 &C10 &C11 \\ F1 &C10 &C11 &F2 \\ F1 &C10 &C11 &C9^{i} \\ C9 &C10 &C11 &F2 \\ C9 &C10 &C11 &C9^{i} \\ C11^{i} &C9 &C10 &F1 \end{array}$	1.58 (19) -176.86 (10) 0.3 (2) -178.58 (13) 178.75 (13) -0.1 (2) 178.54 (12)	C1—N2—C3—C4 C2—N1—C1—S1 C2—N1—C1—N2 C2—C3—C4—C5 C3—N2—C1—S1 C3—N2—C1—N1 C3—C2—C7—C6	-178.92 (15) -179.80 (11) -0.27 (16) 0.7 (2) 179.96 (11) 0.44 (16) -0.8 (2)
$\begin{array}{c} 11 &C9 &C10 &F1 \\ 11 &C9 &C10 &C11 \\ F1 &C10 &C11 &F2 \\ F1 &C10 &C11 &C9^i \\ C9 &C10 &C11 &F2 \\ C9 &C10 &C10 &F1 \\ C11^i &C9 &C10 &C11 \end{array}$	1.58 (19) -176.86 (10) 0.3 (2) -178.58 (13) 178.75 (13) -0.1 (2) 178.54 (12) 0.1 (2)	C1-N2-C3-C4 $C2-N1-C1-S1$ $C2-N1-C1-N2$ $C2-C3-C4-C5$ $C3-N2-C1-S1$ $C3-N2-C1-N1$ $C3-C2-C7-C6$ $C3-C4-C5-C6$	-178.92 (15) -179.80 (11) -0.27 (16) 0.7 (2) 179.96 (11) 0.44 (16) -0.8 (2) -0.9 (2)
$\begin{array}{c} 11 &C9 &C10 &F1 \\ 11 &C9 &C10 &C11 \\ F1 &C10 &C11 &F2 \\ F1 &C10 &C11 &C9^i \\ C9 &C10 &C11 &F2 \\ C9 &C10 &C11 &F1 \\ C11^i &C9 &C10 &C11 \\ N1 &C2 &C3 &N2 \\ \end{array}$	1.58 (19) -176.86 (10) 0.3 (2) -178.58 (13) 178.75 (13) -0.1 (2) 178.54 (12) 0.1 (2) 0.25 (15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.92 (15) -179.80 (11) -0.27 (16) 0.7 (2) 179.96 (11) 0.44 (16) -0.8 (2) -0.9 (2) 178.66 (13)
$\begin{array}{c} 11 &C9 &C10 &F1 \\ 11 &C9 &C10 &C11 \\ F1 &C10 &C11 &F2 \\ F1 &C10 &C11 &C9^i \\ C9 &C10 &C11 &F2 \\ C9 &C10 &C11 &C9^i \\ C11^i &C9 &C10 &C11 \\ N1 &C2 &C3 &N2 \\ N1 &C2 &C3 &C4 \end{array}$	1.58 (19) -176.86 (10) 0.3 (2) -178.58 (13) 178.75 (13) -0.1 (2) 178.54 (12) 0.1 (2) 0.25 (15) 178.92 (13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.92 (15) -179.80 (11) -0.27 (16) 0.7 (2) 179.96 (11) 0.44 (16) -0.8 (2) -0.9 (2) 178.66 (13) 0.2 (2)
$\begin{array}{c} 11 &C9 &C10 &F1 \\ 11 &C9 &C10 &C11 \\ F1 &C10 &C11 &F2 \\ F1 &C10 &C11 &C9^i \\ C9 &C10 &C11 &F2 \\ C9 &C10 &C11 &C9^i \\ C11^i &C9 &C10 &F1 \\ C11^i &C9 &C10 &C11 \\ N1 &C2 &C3 &N2 \\ N1 &C2 &C3 &C4 \\ N1 &C2 &C7 &C6 \end{array}$	1.58 (19) -176.86 (10) 0.3 (2) -178.58 (13) 178.75 (13) -0.1 (2) 178.54 (12) 0.1 (2) 0.25 (15) 178.92 (13) -179.24 (15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.92 (15) -179.80 (11) -0.27 (16) 0.7 (2) 179.96 (11) 0.44 (16) -0.8 (2) -0.9 (2) 178.66 (13) 0.2 (2) 0.6 (2)
$\begin{array}{c} 11 &C9 &C10 &F1 \\ 11 &C9 &C10 &C11 \\ F1 &C10 &C11 &F2 \\ F1 &C10 &C11 &C9^i \\ C9 &C10 &C11 &F2 \\ C9 &C10 &C11 &C9^i \\ C11^i &C9 &C10 &F1 \\ C11^i &C9 &C10 &C11 \\ N1 &C2 &C3 &N2 \\ N1 &C2 &C3 &C4 \\ N1 &C2 &C7 &C6 \\ N2 &C3 &C4 &C5 \\ \end{array}$	$\begin{array}{c} 1.58 \ (19) \\ -176.86 \ (10) \\ 0.3 \ (2) \\ -178.58 \ (13) \\ 178.75 \ (13) \\ -0.1 \ (2) \\ 178.54 \ (12) \\ 0.1 \ (2) \\ 0.25 \ (15) \\ 178.92 \ (13) \\ -179.24 \ (15) \\ 179.03 \ (14) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -178.92 (15) \\ -179.80 (11) \\ -0.27 (16) \\ 0.7 (2) \\ 179.96 (11) \\ 0.44 (16) \\ -0.8 (2) \\ -0.9 (2) \\ 178.66 (13) \\ 0.2 (2) \\ 0.6 (2) \\ -178.58 (13) \end{array}$
$\begin{array}{c} 11 &C9 &C10 &F1 \\ 11 &C9 &C10 &C11 \\ F1 &C10 &C11 &F2 \\ F1 &C10 &C11 &C9^i \\ C9 &C10 &C11 &F2 \\ C9 &C10 &C11 &C9^i \\ C11^i &C9 &C10 &F1 \\ C11^i &C9 &C10 &C11 \\ N1 &C2 &C3 &N2 \\ N1 &C2 &C3 &C4 \\ N1 &C2 &C3 &C4 \\ N2 &C3 &C4 &C5 \\ C1 &N1 &C2 &C3 \\ \end{array}$	$\begin{array}{c} 1.58 \ (19) \\ -176.86 \ (10) \\ 0.3 \ (2) \\ -178.58 \ (13) \\ 178.75 \ (13) \\ -0.1 \ (2) \\ 178.54 \ (12) \\ 0.1 \ (2) \\ 0.25 \ (15) \\ 178.92 \ (13) \\ -179.24 \ (15) \\ 179.03 \ (14) \\ 0.01 \ (16) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.92 (15) -179.80 (11) -0.27 (16) 0.7 (2) 179.96 (11) 0.44 (16) -0.8 (2) -0.9 (2) 178.66 (13) 0.2 (2) 0.6 (2) -178.58 (13) 0.1 (2)
$\begin{array}{c} 11 &C9 &C10 &F1 \\ 11 &C9 &C10 &C11 \\ F1 &C10 &C11 &F2 \\ F1 &C10 &C11 &C9^i \\ C9 &C10 &C11 &F2 \\ C9 &C10 &C11 &C9^i \\ C11^i &C9 &C10 &C11 \\ N1 &C2 &C3 &N2 \\ N1 &C2 &C3 &C4 \\ N1 &C2 &C3 &C4 \\ N1 &C2 &C3 &C4 \\ N2 &C3 &C4 &C5 \\ C1 &N1 &C2 &C7 \\ \end{array}$	$\begin{array}{c} 1.58 \ (19) \\ -176.86 \ (10) \\ 0.3 \ (2) \\ -178.58 \ (13) \\ 178.75 \ (13) \\ -0.1 \ (2) \\ 178.54 \ (12) \\ 0.1 \ (2) \\ 0.25 \ (15) \\ 178.92 \ (13) \\ -179.24 \ (15) \\ 179.03 \ (14) \\ 0.01 \ (16) \\ 178.65 \ (16) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -178.92 (15) \\ -179.80 (11) \\ -0.27 (16) \\ 0.7 (2) \\ 179.96 (11) \\ 0.44 (16) \\ -0.8 (2) \\ -0.9 (2) \\ 178.66 (13) \\ 0.2 (2) \\ 0.6 (2) \\ -178.58 (13) \\ 0.1 (2) \\ -179.33 (14) \end{array}$

Symmetry code: (i) -x+2, -y+1, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—HN1…O1	0.83 (2)	2.06 (2)	2.8763 (17)	166 (2)
N2—HN2····S1 ⁱⁱ	0.88 (2)	2.57 (2)	3.4211 (13)	164 (2)
C4—H4…I1 ⁱⁱⁱ	0.95	3.03	3.9505 (14)	164
O1—H1AO···O1 ^{iv}	0.88 (2)	1.85 (2)	2.708 (3)	163 (4)
O1—H1 <i>BO</i> ···O1 ^v	0.88 (2)	1.89 (2)	2.759 (3)	167 (4)
01—H2 <i>0</i> 1…I1	0.87 (2)	3.16 (3)	3.7419 (12)	126 (2)
$O1$ — $H2O1$ ···S 1^{iv}	0.87 (2)	2.65 (2)	3.4251 (13)	149 (3)

Symmetry codes: (ii) -x+2, -y+2, -z+1; (iii) x, y+1, z; (iv) -x+2, -y+1, -z+1; (v) -x+1, -y+1, -z+1.

5-Methyl-1*H*-1,3-benzodiazole-2-thiol–1,3,5-trifluoro-2,4,6-\ triiodobenzene (1/1) (MMBZIM_135F3I3B)

F(000) = 1232

 $\theta = 2.4 - 27.5^{\circ}$

 $\mu = 5.62 \text{ mm}^{-1}$

Needle, colourless

 $0.26 \times 0.04 \times 0.04$ mm

Hydrogen site location: mixed

and constrained refinement

 $w = 1/[\sigma^2(F_0^2) + 32.9663P]$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 2.36 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -1.89 \ {\rm e} \ {\rm \AA}^{-3}$

where $P = (F_0^2 + 2F_c^2)/3$

H atoms treated by a mixture of independent

T = 100 K

 $D_{\rm x} = 2.613 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9964 reflections

Crystal data

 $C_{6}F_{3}I_{3} \cdot C_{8}H_{8}N_{2}S$ $M_{r} = 673.98$ Monoclinic, $P2_{1}/c$ a = 15.191 (2) Å b = 5.0074 (7) Å c = 22.715 (3) Å $\beta = 97.460$ (6)° V = 1713.3 (4) Å³ Z = 4

Data collection

Bruker D8 Venture Photon 2	3971 independent reflections
diffractometer	3039 reflections with $I > 2\sigma(I)$
Radiation source: Incoatec $I\mu S$	$R_{\rm int} = 0.069$
φ and ω scans	$\theta_{\rm max} = 27.6^{\circ}, \theta_{\rm min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -19 \rightarrow 19$
(SADABS; Bruker, 2017)	$k = -6 \rightarrow 6$
$T_{\min} = 0.582, \ T_{\max} = 0.746$	$l = -29 \rightarrow 29$
23258 measured reflections	
Refinement	

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.105$ S = 1.223971 reflections 215 parameters 1 restraint Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Ζ	$U_{\rm iso}*/U_{\rm eq}$
 I1	0.83468 (4)	0.73539 (12)	0.22592 (3)	0.02269 (15)
I2	1.12973 (3)	0.55191 (11)	0.42927 (2)	0.01871 (14)
I3	0.78829 (3)	-0.06392 (11)	0.42073 (2)	0.01766 (13)
F1	1.0160 (3)	0.7879 (10)	0.3105 (2)	0.0238 (11)
F2	0.9829 (3)	0.1538 (10)	0.4578 (2)	0.0217 (11)
F3	0.7534 (3)	0.2862 (11)	0.3013 (2)	0.0226 (11)
C9	0.8839 (5)	0.5360 (16)	0.3041 (4)	0.0161 (16)
C10	0.9672 (5)	0.5984 (17)	0.3334 (4)	0.0166 (17)
C11	1.0030 (5)	0.4712 (18)	0.3850 (4)	0.0190 (17)
C12	0.9504 (5)	0.2824 (17)	0.4079 (3)	0.0146 (16)

C13	0.8652 (5)	0.2139 (17)	0.3811 (4)	0.0178 (17)	
C14	0.8346 (5)	0.3458 (17)	0.3285 (4)	0.0159 (16)	
S1	0.34092 (13)	1.4956 (4)	0.50777 (9)	0.0186 (4)	
N1	0.4563 (5)	1.2204 (15)	0.4472 (3)	0.0196 (15)	
HN1	0.505 (4)	1.302 (17)	0.460 (4)	0.024*	
N2	0.3181 (5)	1.1018 (15)	0.4239 (3)	0.0179 (15)	
HN2	0.264 (7)	1.10(2)	0.427 (4)	0.021*	
C1	0.3721 (5)	1.2703 (16)	0.4592 (4)	0.0160 (16)	
C2	0.4551 (5)	1.0249 (17)	0.4036 (4)	0.0173 (17)	
C3	0.5223 (6)	0.9016 (18)	0.3782 (4)	0.0206 (18)	
H3	0.582456	0.952312	0.389046	0.025*	
C4	0.5000 (5)	0.7020 (17)	0.3364 (4)	0.0204 (18)	
C5	0.4109 (6)	0.6252 (18)	0.3226 (4)	0.0212 (18)	
H5	0.396802	0.484620	0.294924	0.025*	
C6	0.3427 (6)	0.7456 (17)	0.3477 (4)	0.0187 (17)	
H6	0.282540	0.695837	0.336564	0.022*	
C7	0.3663 (5)	0.9433 (18)	0.3902 (4)	0.0183 (17)	
C8	0.5709 (6)	0.561 (2)	0.3080 (4)	0.027 (2)	
H8A	0.588556	0.398157	0.330193	0.041*	
H8B	0.622521	0.679184	0.308275	0.041*	
H8C	0.547999	0.515407	0.266904	0.041*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0241 (3)	0.0236 (3)	0.0196 (3)	0.0058 (2)	0.0002 (2)	0.0034 (2)
I2	0.0134 (2)	0.0228 (3)	0.0198 (3)	-0.0017 (2)	0.0018 (2)	-0.0022 (2)
I3	0.0150 (2)	0.0183 (3)	0.0204 (3)	-0.0014 (2)	0.0050(2)	-0.0012 (2)
F1	0.023 (3)	0.026 (3)	0.024 (3)	-0.008(2)	0.005 (2)	0.007 (2)
F2	0.017 (2)	0.027 (3)	0.019 (3)	0.000 (2)	-0.001 (2)	0.005 (2)
F3	0.012 (2)	0.031 (3)	0.023 (3)	-0.002 (2)	-0.0043 (19)	0.000(2)
C9	0.017 (4)	0.014 (4)	0.017 (4)	0.003 (3)	0.002 (3)	-0.003 (3)
C10	0.011 (4)	0.022 (4)	0.018 (4)	0.000 (3)	0.006 (3)	0.000 (3)
C11	0.015 (4)	0.024 (5)	0.017 (4)	0.002 (3)	-0.001 (3)	-0.003 (3)
C12	0.014 (4)	0.020 (4)	0.009 (4)	0.001 (3)	0.001 (3)	-0.005 (3)
C13	0.015 (4)	0.021 (4)	0.017 (4)	0.001 (3)	0.003 (3)	0.003 (3)
C14	0.012 (4)	0.018 (4)	0.017 (4)	0.000 (3)	0.001 (3)	-0.002 (3)
S 1	0.0153 (9)	0.0217 (11)	0.0185 (10)	-0.0007(8)	0.0010 (8)	-0.0038 (8)
N1	0.017 (3)	0.018 (4)	0.024 (4)	-0.002 (3)	0.002 (3)	-0.002 (3)
N2	0.010 (3)	0.021 (4)	0.022 (4)	0.001 (3)	0.001 (3)	-0.003 (3)
C1	0.019 (4)	0.010 (4)	0.019 (4)	0.002 (3)	0.002 (3)	0.003 (3)
C2	0.017 (4)	0.018 (4)	0.017 (4)	-0.003 (3)	0.005 (3)	0.010 (3)
C3	0.016 (4)	0.021 (4)	0.026 (5)	-0.003 (3)	0.008 (3)	0.003 (4)
C4	0.016 (4)	0.018 (4)	0.028 (5)	-0.002 (3)	0.003 (3)	-0.010 (4)
C5	0.020 (4)	0.021 (4)	0.023 (5)	-0.006 (3)	0.005 (3)	0.002 (4)
C6	0.017 (4)	0.019 (4)	0.019 (4)	-0.002 (3)	0.001 (3)	0.000 (3)
C7	0.009 (3)	0.026 (5)	0.020 (4)	0.004 (3)	0.000 (3)	-0.001 (4)
C8	0.021 (4)	0.032 (5)	0.030 (5)	0.005 (4)	0.010 (4)	-0.003 (4)

Geometric parameters (Å, °)

П1—С9	2.089 (8)	N2—HN2	0.84 (10)	-
I2—C11	2.093 (8)	N2—C1	1.363 (11)	
I3—C13	2.094 (8)	N2—C7	1.378 (11)	
F1—C10	1.349 (9)	C2—C3	1.382 (12)	
F2—C12	1.342 (9)	C2—C7	1.405 (11)	
F3—C14	1.340 (9)	С3—Н3	0.9500	
C9—C10	1.388 (11)	C3—C4	1.390 (12)	
C9—C14	1.372 (12)	C4—C5	1.402 (11)	
C10—C11	1.381 (12)	C4—C8	1.500 (12)	
C11—C12	1.382 (12)	С5—Н5	0.9500	
C12—C13	1.399 (11)	C5—C6	1.384 (12)	
C13—C14	1.391 (11)	С6—Н6	0.9500	
S1—C1	1.688 (8)	C6—C7	1.396 (12)	
N1—HN1	0.86 (2)	C8—H8A	0.9800	
N1—C1	1.365 (11)	C8—H8B	0.9800	
N1—C2	1.391 (11)	C8—H8C	0.9800	
C10—C9—I1	120.3 (6)	N2—C1—N1	106.1 (7)	
C14—C9—I1	121.5 (6)	N1—C2—C7	106.4 (7)	
C14—C9—C10	118.2 (8)	C3—C2—N1	132.1 (8)	
F1—C10—C9	119.0 (7)	C3—C2—C7	121.3 (8)	
F1-C10-C11	118.5 (7)	С2—С3—Н3	120.7	
C11—C10—C9	122.5 (8)	C2—C3—C4	118.7 (8)	
C10—C11—I2	123.7 (6)	C4—C3—H3	120.7	
C10-C11-C12	116.9 (7)	C3—C4—C5	119.4 (8)	
C12—C11—I2	119.5 (6)	C3—C4—C8	120.4 (8)	
F2—C12—C11	118.6 (7)	C5—C4—C8	120.1 (8)	
F2—C12—C13	117.9 (7)	C4—C5—H5	118.6	
C11—C12—C13	123.4 (8)	C6—C5—C4	122.8 (8)	
C12—C13—I3	120.8 (6)	C6—C5—H5	118.6	
C14—C13—I3	122.8 (6)	С5—С6—Н6	121.5	
C14—C13—C12	116.4 (8)	C5—C6—C7	117.1 (8)	
F3—C14—C9	119.0 (7)	C7—C6—H6	121.5	
F3—C14—C13	118.4 (7)	N2—C7—C2	106.1 (7)	
C9—C14—C13	122.6 (8)	N2—C7—C6	133.3 (7)	
C1—N1—HN1	129 (7)	C6—C7—C2	120.6 (8)	
C1—N1—C2	110.2 (7)	C4—C8—H8A	109.5	
C2—N1—HN1	120 (7)	C4—C8—H8B	109.5	
C1—N2—HN2	118 (7)	C4—C8—H8C	109.5	
C1—N2—C7	111.2 (7)	H8A—C8—H8B	109.5	
C7—N2—HN2	131 (7)	H8A—C8—H8C	109.5	
N1—C1—S1	127.0 (6)	H8B—C8—H8C	109.5	
N2—C1—S1	126.9 (6)			
11—C9—C10—F1	-0.4 (10)	C14—C9—C10—C11	1.9 (13)	
11—C9—C10—C11	-179.5(6)	N1—C2—C3—C4	177.5 (9)	

I1—C9—C14—F3	0.4 (11)	N1—C2—C7—N2	2.9 (9)
I1—C9—C14—C13	-178.8 (6)	N1—C2—C7—C6	-179.7 (8)
I2—C11—C12—F2	-0.8 (10)	C1—N1—C2—C3	-177.6 (9)
I2—C11—C12—C13	-179.5 (6)	C1—N1—C2—C7	-2.6 (9)
I3—C13—C14—F3	-2.0 (11)	C1—N2—C7—C2	-2.3 (10)
I3—C13—C14—C9	177.2 (6)	C1—N2—C7—C6	-179.2 (9)
F1-C10-C11-I2	-0.8 (11)	C2-N1-C1-S1	-178.7 (6)
F1-C10-C11-C12	178.6 (7)	C2—N1—C1—N2	1.2 (9)
F2-C12-C13-I3	3.6 (10)	C2—C3—C4—C5	-2.1 (13)
F2-C12-C13-C14	-178.2 (7)	C2—C3—C4—C8	-179.5 (8)
C9—C10—C11—I2	178.3 (6)	C3—C2—C7—N2	178.5 (8)
C9—C10—C11—C12	-2.3 (13)	C3—C2—C7—C6	-4.0 (13)
C10—C9—C14—F3	179.0 (7)	C3—C4—C5—C6	2.0 (14)
C10—C9—C14—C13	-0.2 (13)	C4—C5—C6—C7	-2.7 (13)
C10-C11-C12-F2	179.8 (7)	C5—C6—C7—N2	-179.7 (9)
C10-C11-C12-C13	1.1 (13)	C5—C6—C7—C2	3.7 (13)
C11—C12—C13—I3	-177.6 (6)	C7—N2—C1—S1	-179.4 (6)
C11—C12—C13—C14	0.5 (12)	C7—N2—C1—N1	0.7 (10)
C12—C13—C14—F3	179.9 (7)	C7—C2—C3—C4	3.1 (13)
C12—C13—C14—C9	-0.9 (12)	C8—C4—C5—C6	179.4 (9)
C14—C9—C10—F1	-179.0 (7)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D··· A	D—H···A
N1—HN1····S1 ⁱ	0.86 (2)	2.57 (2)	3.427 (7)	174 (9)
N2—H <i>N</i> 2····I2 ⁱⁱ	0.84 (10)	3.03 (10)	3.657 (7)	133 (8)
С3—Н3…ІЗ ^{ііі}	0.95	3.12	4.035 (9)	163
C6—H6…I1 ^{iv}	0.95	3.14	3.927 (8)	142

Symmetry codes: (i) -x+1, -y+3, -z+1; (ii) x-1, y+1, z; (iii) x, y+1, z; (iv) -x+1, y-1/2, -z+1/2.

1,3-Benzoxazole-2-thiol-1,2,3,4-tetrafluoro-5,6-diiodobenzene (1/1) (MBZOX_12F4DIB)

Crystal data C₆F₄I₂·C₇H₅NOS $M_r = 553.04$ Monoclinic, $P2_1/n$ a = 13.7789 (12) Å b = 4.4129 (4) Å c = 25.252 (2) Å $\beta = 96.337$ (3)° V = 1526.0 (2) Å³ Z = 4

Data collection

Bruker D8 Venture Photon 2 diffractometer Radiation source: Incoatec I μ S φ and ω scans F(000) = 1024 $D_x = 2.407 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5954 reflections $\theta = 3.0-26.8^{\circ}$ $\mu = 4.30 \text{ mm}^{-1}$ T = 100 KNeedle, colourless $0.46 \times 0.06 \times 0.02 \text{ mm}$

Absorption correction: multi-scan (SADABS; Bruker, 2017) $T_{min} = 0.578$, $T_{max} = 0.745$ 12498 measured reflections 3210 independent reflections

$h = -17 \rightarrow 17$
$k = -5 \rightarrow 5$
$l = -31 \rightarrow 31$
Hydrogen site location: mixed
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0191P)^2 + 7.3427P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 1.58 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -1.52 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.30796 (3)	-0.08467 (10)	0.67864 (2)	0.02151 (14)
I2	0.44314 (3)	-0.05194 (10)	0.81380 (2)	0.01770 (13)
F1	0.6245 (3)	0.3640 (9)	0.80387 (17)	0.0263 (10)
F2	0.6876 (3)	0.6765 (10)	0.7230 (2)	0.0339 (11)
F3	0.5903 (3)	0.6411 (10)	0.62370 (19)	0.0350 (11)
F4	0.4320 (3)	0.2897 (10)	0.60463 (17)	0.0298 (10)
C8	0.4399 (5)	0.1468 (15)	0.6957 (3)	0.0158 (15)
C9	0.4896 (5)	0.1682 (14)	0.7472 (3)	0.0158 (15)
C10	0.5749 (5)	0.3417 (15)	0.7561 (3)	0.0180 (16)
C11	0.6078 (5)	0.4963 (15)	0.7141 (3)	0.0250 (17)
C12	0.5583 (6)	0.4836 (16)	0.6629 (3)	0.0273 (18)
C13	0.4767 (5)	0.3023 (16)	0.6542 (3)	0.0209 (16)
S1	0.07783 (13)	0.0388 (4)	0.57938 (7)	0.0193 (4)
O1	0.2157 (3)	0.4196 (10)	0.55679 (19)	0.0193 (11)
N1	0.1100 (4)	0.3227 (13)	0.4874 (2)	0.0152 (13)
HN1	0.068 (6)	0.228 (18)	0.466 (3)	0.03 (2)*
C1	0.1325 (5)	0.2629 (14)	0.5389 (3)	0.0147 (14)
C2	0.1772 (5)	0.5252 (15)	0.4695 (3)	0.0158 (14)
C3	0.1868 (5)	0.6569 (16)	0.4216 (3)	0.0219 (16)
H3	0.141810	0.617405	0.391053	0.026*
C4	0.2659 (5)	0.8527 (15)	0.4193 (3)	0.0212 (16)
H4	0.274897	0.948201	0.386523	0.025*
C5	0.3316 (6)	0.9111 (16)	0.4637 (3)	0.0229 (16)
Н5	0.384448	1.045851	0.460649	0.028*
C6	0.3218 (5)	0.7761 (15)	0.5130 (3)	0.0193 (16)
H6	0.366596	0.813408	0.543631	0.023*
C7	0.2429 (5)	0.5852 (14)	0.5140 (3)	0.0142 (14)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0210 (3)	0.0213 (2)	0.0210 (3)	-0.0009 (2)	-0.0034 (2)	-0.0037 (2)
I2	0.0223 (2)	0.0177 (2)	0.0130 (2)	0.0024 (2)	0.00165 (18)	-0.00026 (18)
F1	0.018 (2)	0.031 (2)	0.027 (3)	0.0013 (18)	-0.0068 (18)	-0.0058 (19)
F2	0.021 (2)	0.029 (2)	0.052 (3)	-0.0102 (19)	0.010 (2)	-0.003 (2)
F3	0.043 (3)	0.027 (2)	0.039 (3)	-0.001 (2)	0.020 (2)	0.012 (2)
F4	0.041 (3)	0.032 (2)	0.015 (2)	0.005 (2)	-0.001 (2)	0.0042 (19)
C8	0.011 (3)	0.021 (3)	0.016 (4)	0.005 (3)	0.004 (3)	-0.003 (3)
C9	0.016 (3)	0.013 (3)	0.020 (4)	0.005 (3)	0.007 (3)	0.002 (3)
C10	0.016 (4)	0.015 (3)	0.023 (4)	0.004 (3)	-0.001 (3)	-0.006 (3)
C11	0.024 (4)	0.014 (4)	0.038 (5)	0.002 (3)	0.010 (4)	-0.002 (3)
C12	0.037 (5)	0.021 (4)	0.027 (4)	0.005 (3)	0.019 (4)	0.013 (3)
C13	0.027 (4)	0.020 (3)	0.016 (4)	0.010 (3)	0.001 (3)	0.006 (3)
S1	0.0249 (9)	0.0194 (9)	0.0132 (9)	-0.0053 (7)	0.0007 (7)	0.0000(7)
01	0.023 (3)	0.017 (2)	0.017 (3)	0.000(2)	-0.003 (2)	0.003 (2)
N1	0.021 (3)	0.013 (3)	0.010 (3)	0.000(2)	-0.002 (3)	-0.003 (2)
C1	0.013 (3)	0.012 (3)	0.019 (4)	0.004 (3)	0.003 (3)	-0.002 (3)
C2	0.021 (4)	0.016 (3)	0.011 (4)	0.000 (3)	0.004 (3)	-0.002 (3)
C3	0.026 (4)	0.021 (4)	0.018 (4)	0.000 (3)	0.000 (3)	-0.009 (3)
C4	0.029 (4)	0.016 (3)	0.019 (4)	0.002 (3)	0.005 (3)	0.004 (3)
C5	0.029 (4)	0.018 (4)	0.022 (4)	0.000 (3)	0.008 (3)	0.008 (3)
C6	0.017 (4)	0.018 (4)	0.021 (4)	-0.002 (3)	-0.003 (3)	-0.003 (3)
C7	0.022 (4)	0.012 (3)	0.010 (3)	-0.003 (3)	0.005 (3)	-0.002 (3)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

2.088 (7) 2.101 (7) 1.322 (8) 1.355 (8)	O1—C7 N1—HN1 N1—C1	1.390 (8) 0.85 (8) 1.330 (9)
2.101 (7) 1.322 (8) 1.355 (8)	N1—HN1 N1—C1	0.85(8) 1.330(0)
1.322 (8) 1.355 (8)	N1—C1	1,330(0)
1 355 (8)		1.550 (9)
1.555 (0)	N1—C2	1.396 (9)
1.323 (8)	C2—C3	1.364 (10)
1.333 (8)	C2—C7	1.387 (9)
1.406 (10)	С3—Н3	0.9500
1.394 (10)	C3—C4	1.397 (10)
1.400 (9)	C4—H4	0.9500
1.380 (11)	C4—C5	1.385 (10)
1.396 (11)	С5—Н5	0.9500
1.378 (11)	C5—C6	1.399 (10)
1.662 (7)	С6—Н6	0.9500
1.372 (8)	С6—С7	1.378 (9)
123.2 (5)	01—C1—S1	121.1 (5)
117.8 (5)	N1-C1-S1	130.3 (5)
118.9 (6)	N1-C1-O1	108.6 (6)
123.3 (5)	C3—C2—N1	133.8 (6)
116.7 (5)	C3—C2—C7	121.2 (6)
	1.355 (8) 1.323 (8) 1.333 (8) 1.406 (10) 1.394 (10) 1.394 (10) 1.380 (11) 1.396 (11) 1.378 (11) 1.662 (7) 1.372 (8) 123.2 (5) 117.8 (5) 118.9 (6) 123.3 (5) 116.7 (5)	1.322 (8) $N1-C1$ $1.355 (8)$ $N1-C2$ $1.323 (8)$ $C2-C3$ $1.333 (8)$ $C2-C7$ $1.406 (10)$ $C3-H3$ $1.394 (10)$ $C3-C4$ $1.400 (9)$ $C4-H4$ $1.380 (11)$ $C4-C5$ $1.396 (11)$ $C5-H5$ $1.378 (11)$ $C5-C6$ $1.662 (7)$ $C6-H6$ $1.372 (8)$ $C6-C7$ $123.2 (5)$ $O1-C1-S1$ $117.8 (5)$ $N1-C1-O1$ $123.3 (5)$ $C3-C2-N1$ $116.7 (5)$ $C3-C2-C7$

С10—С9—С8	120.0 (6)	C7—C2—N1	104.9 (6)
F1C10C9	121.8 (7)	С2—С3—Н3	121.6
F1-C10-C11	118.9 (6)	C2—C3—C4	116.9 (6)
C11—C10—C9	119.3 (7)	С4—С3—Н3	121.6
F2-C11-C10	119.5 (7)	С3—С4—Н4	119.1
F2-C11-C12	118.9 (7)	C5—C4—C3	121.7 (7)
C10-C11-C12	121.6 (7)	С5—С4—Н4	119.1
F3—C12—C11	120.2 (7)	С4—С5—Н5	119.3
F3—C12—C13	121.2 (7)	C4—C5—C6	121.4 (7)
C13—C12—C11	118.6 (7)	С6—С5—Н5	119.3
F4—C13—C8	121.1 (6)	С5—С6—Н6	122.2
F4—C13—C12	117.3 (7)	C7—C6—C5	115.5 (6)
C12—C13—C8	121.5 (7)	С7—С6—Н6	122.2
C1—O1—C7	107.2 (5)	C2C7O1	108.7 (5)
C1—N1—HN1	126 (6)	C6—C7—O1	128.1 (6)
C1—N1—C2	110.5 (6)	C6—C7—C2	123.2 (6)
C2—N1—HN1	123 (6)		
I1—C8—C9—I2	4.0 (8)	C13—C8—C9—I2	179.9 (5)
I1—C8—C9—C10	-176.3 (5)	C13—C8—C9—C10	-0.5 (10)
I1—C8—C13—F4	-3.7 (9)	N1—C2—C3—C4	-179.9 (7)
I1—C8—C13—C12	173.9 (5)	N1—C2—C7—O1	0.7 (7)
I2—C9—C10—F1	0.7 (8)	N1—C2—C7—C6	179.5 (6)
I2—C9—C10—C11	-178.7 (5)	C1—O1—C7—C2	-1.1 (7)
F1-C10-C11-F2	-2.7 (10)	C1—O1—C7—C6	-180.0 (7)
F1-C10-C11-C12	-179.5 (6)	C1—N1—C2—C3	-179.7 (7)
F2-C11-C12-F3	1.3 (10)	C1—N1—C2—C7	0.1 (7)
F2-C11-C12-C13	-179.3 (6)	C2—N1—C1—S1	-179.8 (5)
F3—C12—C13—F4	0.7 (10)	C2-N1-C1-O1	-0.8 (7)
F3—C12—C13—C8	-177.0 (6)	C2—C3—C4—C5	-0.1 (10)
C8—C9—C10—F1	-179.0 (6)	C3—C2—C7—O1	-179.6 (6)
C8—C9—C10—C11	1.6 (10)	C3—C2—C7—C6	-0.7 (11)
C9—C8—C13—F4	-179.8 (6)	C3—C4—C5—C6	0.1 (11)
C9—C8—C13—C12	-2.2 (10)	C4—C5—C6—C7	-0.4 (10)
C9—C10—C11—F2	176.7 (6)	C5—C6—C7—O1	179.3 (6)
C9—C10—C11—C12	-0.1 (10)	C5—C6—C7—C2	0.7 (10)
C10-C11-C12-F3	178.1 (6)	C7—O1—C1—S1	-179.7 (5)
C10-C11-C12-C13	-2.5 (11)	C7—O1—C1—N1	1.2 (7)
C11—C12—C13—F4	-178.7 (6)	C7—C2—C3—C4	0.3 (10)
C11—C12—C13—C8	3.7 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A	
N1—HN1···S1 ⁱ	0.85 (8)	2.50 (8)	3.335 (6)	167 (8)	
C3—H3…I2 ⁱⁱ	0.95	3.19	4.108 (7)	162	

Symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) *x*-1/2, -*y*+1/2, *z*-1/2.

1,3-Benzoxazole-2-thiol-1,2,3,5-tetrafluoro-4,6-diiodobenzene (1/1) (MBZOX_13F4DIB)

F(000) = 1024

 $\theta = 2.7 - 30.6^{\circ}$ $\mu = 4.35 \text{ mm}^{-1}$

T = 100 K

 $D_{\rm x} = 2.437 {\rm Mg} {\rm m}^{-3}$

Needle, colourless

 $0.23 \times 0.12 \times 0.09 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9330 reflections

Crystal data

C₆F₄I₂·C₇H₅NOS $M_r = 553.04$ Monoclinic, $P2_1/c$ a = 15.1655 (8) Å b = 4.3803 (2) Å c = 23.0358 (12) Å $\beta = 99.923$ (2)° V = 1507.36 (13) Å³ Z = 4

Data collection

Bruker D8 Venture Photon 2	4625 independent reflections
diffractometer	4119 reflections with $I > 2\sigma(I)$
Radiation source: Incoatec I μ S	$R_{\rm int} = 0.042$
φ and ω scans	$\theta_{\rm max} = 30.6^\circ, \ \theta_{\rm min} = 2.1^\circ$
Absorption correction: multi-scan	$h = -21 \rightarrow 21$
(SADABS; Bruker, 2017)	$k = -6 \rightarrow 6$
$T_{\min} = 0.541, \ T_{\max} = 0.746$	$l = -32 \rightarrow 32$
39610 measured reflections	
Refinament	

Refinement

Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent $R[F^2 > 2\sigma(F^2)] = 0.022$ and constrained refinement $wR(F^2) = 0.048$ $w = 1/[\sigma^2(F_0^2) + (0.0088P)^2 + 2.2764P]$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.16 $(\Delta/\sigma)_{\rm max} = 0.002$ 4625 reflections $\Delta \rho_{\rm max} = 0.96 \text{ e } \text{\AA}^{-3}$ 203 parameters 0 restraints $\Delta \rho_{\rm min} = -1.35 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Z	$U_{iso}*/U_{eq}$	-
 I1	0 71955 (2)		0.06/83.(2)		
11 12	0.71955(2) 0.36910(2)	0.00881(3) 0.55990(4)	0.00403(2) 0.09449(2)	0.01985(4) 0.02789(5)	
F1	0.50510(2) 0.51550(9)	0.1796 (3)	0.09449 (2)	0.0245(3)	
F2	0.50261 (12)	0.8071 (4)	0.20979 (7)	0.0336 (4)	
F3	0.67787 (12)	0.7060 (4)	0.24932 (7)	0.0422 (4)	
F4	0.77333 (10)	0.3490 (4)	0.18773 (7)	0.0352 (4)	
C8	0.64548 (14)	0.2498 (5)	0.11554 (10)	0.0173 (4)	
C9	0.55516 (14)	0.3056 (5)	0.09648 (10)	0.0171 (4)	
C10	0.50419 (15)	0.4888 (5)	0.12703 (10)	0.0187 (4)	
C11	0.54714 (17)	0.6213 (5)	0.17885 (11)	0.0223 (5)	

C12	0.63676 (18)	0.5704 (6)	0.19943 (10)	0.0250 (5)
C13	0.68526 (16)	0.3866 (6)	0.16770 (11)	0.0226 (5)
S1	0.85453 (4)	0.94524 (12)	0.49409 (2)	0.01660 (10)
01	0.82568 (10)	0.5576 (3)	0.40484 (7)	0.0155 (3)
N1	0.96873 (12)	0.6582 (4)	0.43253 (8)	0.0150 (3)
HN1	1.0171 (19)	0.742 (7)	0.4529 (13)	0.024 (7)*
C1	0.88629 (14)	0.7182 (5)	0.44345 (9)	0.0151 (4)
C2	0.96367 (14)	0.4504 (5)	0.38611 (9)	0.0140 (4)
C3	1.02660 (14)	0.3138 (5)	0.35766 (10)	0.0173 (4)
H3	1.088760	0.354870	0.368581	0.021*
C4	0.99394 (15)	0.1129 (5)	0.31216 (10)	0.0176 (4)
H4	1.035003	0.013545	0.291629	0.021*
C5	0.90240 (15)	0.0533 (5)	0.29583 (10)	0.0182 (4)
Н5	0.882849	-0.085313	0.264531	0.022*
C6	0.83913 (14)	0.1930 (5)	0.32450 (10)	0.0177 (4)
H6	0.776786	0.154860	0.313733	0.021*
C7	0.87317 (14)	0.3897 (5)	0.36943 (9)	0.0141 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01738 (7)	0.02028 (7)	0.02311 (8)	0.00339 (5)	0.00709 (5)	0.00604 (5)
I2	0.01897 (8)	0.03084 (9)	0.03563 (10)	0.00756 (6)	0.00974 (6)	0.00672 (7)
F1	0.0175 (6)	0.0307 (8)	0.0242 (7)	-0.0014 (5)	0.0005 (5)	-0.0107 (6)
F2	0.0534 (10)	0.0242 (8)	0.0266 (8)	0.0077 (7)	0.0170 (7)	-0.0037 (6)
F3	0.0559 (11)	0.0436 (10)	0.0218 (8)	-0.0054 (8)	-0.0080(7)	-0.0099 (7)
F4	0.0236 (7)	0.0491 (10)	0.0282 (8)	0.0008 (7)	-0.0088 (6)	0.0030 (7)
C8	0.0163 (9)	0.0162 (10)	0.0195 (11)	0.0003 (8)	0.0035 (8)	0.0023 (8)
C9	0.0185 (10)	0.0153 (9)	0.0174 (10)	-0.0022 (8)	0.0031 (8)	0.0011 (8)
C10	0.0191 (10)	0.0166 (10)	0.0217 (11)	0.0012 (8)	0.0069 (8)	0.0039 (8)
C11	0.0341 (13)	0.0159 (10)	0.0188 (11)	0.0031 (9)	0.0098 (9)	0.0012 (8)
C12	0.0371 (14)	0.0225 (11)	0.0132 (10)	-0.0046 (10)	-0.0017 (9)	-0.0004 (9)
C13	0.0211 (11)	0.0260 (12)	0.0188 (11)	-0.0016 (9)	-0.0023 (9)	0.0068 (9)
S 1	0.0159 (2)	0.0171 (2)	0.0175 (2)	-0.00208 (18)	0.00487 (19)	-0.00332 (19)
01	0.0127 (7)	0.0170 (7)	0.0166 (7)	-0.0007(5)	0.0023 (6)	-0.0018 (6)
N1	0.0138 (8)	0.0160 (8)	0.0150 (9)	-0.0025 (6)	0.0022 (6)	-0.0024 (7)
C1	0.0147 (9)	0.0138 (9)	0.0159 (10)	-0.0011 (7)	0.0005 (7)	0.0027 (7)
C2	0.0148 (9)	0.0123 (9)	0.0144 (9)	-0.0004 (7)	0.0015 (7)	0.0013 (7)
C3	0.0149 (9)	0.0189 (10)	0.0184 (10)	0.0007 (8)	0.0037 (8)	0.0027 (8)
C4	0.0205 (10)	0.0166 (10)	0.0166 (10)	0.0019 (8)	0.0059 (8)	0.0020 (8)
C5	0.0228 (10)	0.0173 (10)	0.0147 (10)	-0.0019 (8)	0.0034 (8)	0.0000 (8)
C6	0.0153 (9)	0.0180 (10)	0.0187 (11)	-0.0032 (8)	-0.0005 (8)	-0.0010 (8)
C7	0.0151 (9)	0.0144 (9)	0.0134 (9)	0.0007 (7)	0.0038 (7)	0.0016 (7)

Geometric parameters (Å, °)

I1—C8	2.089 (2)	01—C7	1.389 (3)
I2—C10	2.080 (2)	N1—HN1	0.88 (3)

F1—C9	1.339 (3)	N1—C1	1.343 (3)
F2—C11	1.339 (3)	N1—C2	1.396 (3)
F3—C12	1.347 (3)	C2—C3	1.383 (3)
F4—C13	1.346 (3)	C2—C7	1.386 (3)
C8—C9	1.386 (3)	С3—Н3	0.9500
C8—C13	1.384 (3)	C3—C4	1.393 (3)
C9—C10	1.387 (3)	C4—H4	0.9500
C10—C11	1.385 (3)	C4—C5	1,399 (3)
C11-C12	1 378 (4)	С5—Н5	0.9500
C12-C13	1 382 (4)	C5	1 396 (3)
S1	1.666 (2)	С6—Нб	0.9500
01-C1	1.000(2) 1.360(2)	C6C7	1.377(3)
01-01	1.500 (2)	00-07	1.577 (5)
C9—C8—I1	121.04 (17)	01—C1—S1	121.49 (15)
C13—C8—I1	121.61 (17)	N1—C1—S1	129.70 (17)
C13—C8—C9	117.2 (2)	N1-C1-O1	108.82 (18)
F1—C9—C8	118.4 (2)	C3—C2—N1	133.9 (2)
F1-C9-C10	118.4 (2)	C3—C2—C7	121.1 (2)
C8-C9-C10	123.2(2)	C7-C2-N1	104.99 (18)
C9-C10-I2	120.2(2) 120.27(17)	$C^2 - C^3 - H^3$	121.8
$C_{11} - C_{10} - I_{2}$	120.27(17) 122 39(17)	$C_2 - C_3 - C_4$	1164(2)
$C_{11} - C_{10} - C_{9}$	122.39(17) 117.3(2)	C4 - C3 - H3	121.8
F_{2}	117.5(2) 120 5 (2)	$C_3 - C_4 - H_4$	110 1
$F_2 = C_{11} = C_{12}$	120.3(2) 118.2(2)	$C_3 = C_4 = C_5$	117.1 121.0(2)
12 - 011 - 012	118.2(2) 121.2(2)	C_{5} C_{4} H_{4}	121.9(2)
C12 - C12 - C11	121.2(2) 120.4(2)	$C_3 - C_4 - H_4$	119.1
$F_3 = C_{12} = C_{13}$	120.4(2)	С4—С5—П3	119.5
F_{3} $-C_{12}$ $-C_{13}$	119.9 (2)	$C_{6} = C_{5} = C_{4}$	121.5 (2)
	119.7 (2)	C6—C5—H5	119.3
F4—C13—C8	120.2 (2)	С5—С6—Н6	122.2
F4—C13—C12	118.5 (2)	C/-C6-C5	115.5 (2)
C12—C13—C8	121.3 (2)	С7—С6—Н6	122.2
C1—O1—C7	107.32 (16)	C2—C7—O1	108.94 (18)
C1—N1—HN1	122.5 (19)	C6—C7—O1	127.43 (19)
C1—N1—C2	109.92 (18)	C6—C7—C2	123.6 (2)
C2—N1—HN1	127.6 (19)		
I1—C8—C9—F1	26(3)	C13-C8-C9-F1	179 0 (2)
11 - C8 - C9 - C10	-17656(17)	C_{13} C_{8} C_{9} C_{10}	-0.1(3)
11 - C8 - C13 - F4	-1.6(3)	N1 - C2 - C3 - C4	1799(2)
$11 - C_0 - C_{13} - 14$	176 58 (18)	N1 = C2 = C3 = C4	175.5(2)
11 - 6 - 613 - 612	-1, 1, (2)	N1 - C2 - C7 - C1	-180.0(2)
$12 - C_{10} - C_{11} - F_2$	1.1(3) 180.00(18)	$C_1 = C_2 = C_7 = C_0$	-0.6(2)
12 - 010 - 011 - 012	100.00(10)	$C_1 = 0_1 = 0_7 = 0_2$	170.6(2)
$F_1 = C_9 = C_10 = I_2$	-178.9(2)	$C_1 = 0_1 = 0_7 = 0_0$	1/9.0(2)
F1 = Cy = C10 = C11 $F2 = C11 = C12 = F2$	1/0.0(2)	C1 = N1 = C2 = C7	-1/9.9(2)
$F_2 = C_{11} = C_{12} = C_{12}$	-0.2(3)	$C_1 - N_1 - C_2 - C_1$	0.3(2)
$F_2 = C_{12} = C_{12} = C_{13}$	-1/8.2(2)	$\begin{array}{c} C_2 \\ \hline \\ \end{array} \\ \begin{array}{c} N_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \end{array} \\ \begin{array}{c} C_1 \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \hline \\ \end{array} \\ \begin{array}{c} C_1 \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} C_1 \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} C_1 \\ \\ \end{array} \\ \begin{array}{c} S_1 \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} C_1 \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C_1 \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C_1 \\ \\ \end{array} \\ \begin{array}{c} C_1 \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} $	1/9.30(1/)
F3-C12-C13-F4	-0.3(4)	C2—NI—CI—OI	-0.7 (2)
F3—C12—C13—C8	-178.4 (2)	C2—C3—C4—C5	0.3 (3)

C8—C9—C10—I2	179.72 (17)	C3—C2—C7—O1	-179.62 (19)
C8—C9—C10—C11	0.3 (3)	C3—C2—C7—C6	0.2 (3)
C9—C8—C13—F4	-178.0 (2)	C3—C4—C5—C6	0.0 (3)
C9—C8—C13—C12	0.1 (3)	C4—C5—C6—C7	-0.2 (3)
C9—C10—C11—F2	178.3 (2)	C5-C6-C7-O1	179.9 (2)
C9—C10—C11—C12	-0.6 (3)	C5—C6—C7—C2	0.1 (3)
C10-C11-C12-F3	178.7 (2)	C7—O1—C1—S1	-179.20 (15)
C10-C11-C12-C13	0.7 (4)	C7—O1—C1—N1	0.8 (2)
C11—C12—C13—F4	177.8 (2)	C7—C2—C3—C4	-0.4 (3)
C11—C12—C13—C8	-0.4 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N1—HN1····S1 ⁱ	0.88 (3)	2.52 (3)	3.3906 (19)	172 (3)
С3—Н3…І1іі	0.95	3.10	4.030 (2)	166

F(000) = 1336

 $\theta = 2.4 - 28.7^{\circ}$

 $\mu = 2.94 \text{ mm}^{-1}$

T = 100 K

 $D_{\rm x} = 2.013 {\rm Mg} {\rm m}^{-3}$

Tabular, colourless

 $0.29 \times 0.12 \times 0.03 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9971 reflections

Symmetry codes: (i) -*x*+2, -*y*+2, -*z*+1; (ii) -*x*+2, *y*+1/2, -*z*+1/2.

1,3-Benzoxazole-2-thiol-1,2,4,5-tetrafluoro-3,6-diiodobenzene (2/1) (2MBZOX_14F4DIB)

Crystal data

C₆F₄I₂·2C₇H₅NOS $M_r = 704.22$ Monoclinic, C2/c a = 31.025 (4) Å b = 4.3159 (5) Å c = 19.061 (2) Å $\beta = 114.434$ (4)° V = 2323.6 (5) Å³ Z = 4

Data collection

Bruker D8 Venture Photon 2 diffractometer	2950 independent reflections 2571 reflections with $L > 2\sigma(L)$
Radiation source: Incoatec LuS	$R_{\rm c} = 0.047$
φ and ω scans	$\theta_{\text{max}} = 28.7^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -41 \rightarrow 41$
(SADABS; Bruker, 2017)	$k = -5 \rightarrow 5$
$T_{\min} = 0.637, T_{\max} = 0.746$	$l = -25 \rightarrow 25$
25197 measured reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.060$ S = 1.322950 reflections 149 parameters 0 restraints Primary atom site location: dual Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + 11.7646P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 1.54$ e Å⁻³ $\Delta\rho_{min} = -1.15$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.64136 (2)	0.39079 (5)	0.46092 (2)	0.01937 (7)
F1	0.71102 (7)	0.7954 (5)	0.60381 (11)	0.0276 (5)
F2	0.70741 (7)	0.4164 (5)	0.36823 (11)	0.0273 (5)
C8	0.70659 (11)	0.6029 (8)	0.48500 (19)	0.0189 (6)
C9	0.72975 (11)	0.7707 (8)	0.55172 (19)	0.0194 (7)
C10	0.72770 (12)	0.5825 (8)	0.43364 (19)	0.0201 (7)
S1	0.54594 (3)	0.0194 (2)	0.43700 (5)	0.01964 (17)
01	0.49241 (8)	0.4059 (5)	0.32770 (12)	0.0181 (5)
N1	0.46292 (10)	0.3062 (7)	0.41195 (16)	0.0180 (6)
HN1	0.4609 (14)	0.224 (10)	0.452 (2)	0.028 (11)*
C1	0.49912 (12)	0.2491 (8)	0.39283 (18)	0.0182 (6)
C2	0.43102 (12)	0.5092 (8)	0.35848 (18)	0.0187 (6)
C3	0.38827 (12)	0.6362 (8)	0.35038 (19)	0.0227 (7)
Н3	0.374567	0.592471	0.385578	0.027*
C4	0.36660 (12)	0.8320 (8)	0.2875 (2)	0.0253 (7)
H4	0.337264	0.925746	0.279739	0.030*
C5	0.38649 (13)	0.8950 (8)	0.2355 (2)	0.0251 (7)
Н5	0.370406	1.030939	0.193581	0.030*
C6	0.42930 (12)	0.7643 (8)	0.24340 (19)	0.0224 (7)
H6	0.443055	0.805267	0.208135	0.027*
C7	0.45026 (11)	0.5714 (7)	0.30592 (18)	0.0181 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01700 (11)	0.01887 (11)	0.02288 (11)	-0.00041 (8)	0.00889 (8)	0.00070 (8)
F1	0.0248 (10)	0.0379 (12)	0.0253 (10)	-0.0054 (9)	0.0154 (9)	-0.0045 (9)
F2	0.0246 (10)	0.0342 (12)	0.0238 (10)	-0.0064 (9)	0.0107 (9)	-0.0095 (9)
C8	0.0180 (15)	0.0161 (15)	0.0231 (16)	-0.0009 (12)	0.0092 (13)	0.0014 (13)
C9	0.0178 (15)	0.0229 (17)	0.0198 (16)	0.0016 (13)	0.0101 (13)	0.0002 (13)
C10	0.0196 (16)	0.0197 (16)	0.0190 (15)	0.0010 (13)	0.0061 (13)	-0.0027 (13)
S 1	0.0185 (4)	0.0201 (4)	0.0209 (4)	-0.0009 (3)	0.0089 (3)	0.0015 (3)
01	0.0198 (11)	0.0198 (12)	0.0159 (10)	-0.0014 (9)	0.0087 (9)	0.0002 (9)
N1	0.0202 (14)	0.0190 (14)	0.0166 (13)	0.0002 (11)	0.0092 (11)	0.0030 (11)
C1	0.0217 (16)	0.0163 (16)	0.0172 (15)	-0.0055 (13)	0.0085 (13)	-0.0038 (12)
C2	0.0239 (17)	0.0140 (15)	0.0164 (15)	-0.0035 (13)	0.0064 (13)	-0.0009 (12)
C3	0.0219 (16)	0.0246 (18)	0.0220 (16)	0.0004 (14)	0.0094 (14)	-0.0018 (14)
C4	0.0212 (17)	0.0241 (19)	0.0289 (18)	-0.0004 (14)	0.0088 (15)	-0.0016 (15)
C5	0.0274 (18)	0.0215 (17)	0.0206 (16)	-0.0003 (15)	0.0041 (14)	0.0016 (14)

C6	0.0274 (18)	0.0226 (18)	0.0174 (16)	-0.0048 (14)	0.0097 (14)	0.0001 (13)
C7	0.0185 (15)	0.0158 (16)	0.0194 (15)	-0.0034 (12)	0.0073 (13)	-0.0026 (12)

Geometric parameters (Å, °)

Geometric purumeters (A,)			
I1—C8	2.092 (3)	N1—C2	1.397 (4)
F1—C9	1.346 (4)	C2—C3	1.383 (5)
F2—C10	1.347 (4)	C2—C7	1.388 (4)
C8—C9	1.379 (5)	С3—Н3	0.9500
C8—C10	1.388 (4)	C3—C4	1.391 (5)
C9—C10 ⁱ	1.385 (5)	C4—H4	0.9500
S1—C1	1.670 (3)	C4—C5	1.393 (5)
O1—C1	1.352 (4)	С5—Н5	0.9500
O1—C7	1.394 (4)	C5—C6	1.393 (5)
N1—HN1	0.87 (4)	С6—Н6	0.9500
N1—C1	1.339 (4)	C6—C7	1.376 (5)
C9—C8—I1	121.3 (2)	C3—C2—C7	121.4 (3)
C9—C8—C10	117.8 (3)	C7—C2—N1	105.2 (3)
C10—C8—I1	120.9 (2)	С2—С3—Н3	122.1
F1—C9—C8	120.2 (3)	C2—C3—C4	115.9 (3)
$F1-C9-C10^{i}$	118.8 (3)	С4—С3—Н3	122.1
C8—C9—C10 ⁱ	121.1 (3)	C3—C4—H4	118.9
F2C10C8	120.7 (3)	C3—C4—C5	122.2 (3)
F2—C10—C9 ⁱ	118.1 (3)	С5—С4—Н4	118.9
C9 ⁱ —C10—C8	121.2 (3)	С4—С5—Н5	119.1
C1—O1—C7	107.4 (2)	C6—C5—C4	121.8 (3)
C1—N1—HN1	123 (3)	С6—С5—Н5	119.1
C1—N1—C2	109.7 (3)	С5—С6—Н6	122.4
C2—N1—HN1	128 (3)	C7—C6—C5	115.2 (3)
O1—C1—S1	122.1 (2)	С7—С6—Н6	122.4
N1—C1—S1	128.6 (3)	C2—C7—O1	108.5 (3)
N1-C1-O1	109.2 (3)	C6—C7—O1	128.1 (3)
C3—C2—N1	133.4 (3)	C6—C7—C2	123.5 (3)
I1—C8—C9—F1	1.5 (4)	C1—N1—C2—C7	-0.1 (4)
$I1-C8-C9-C10^{i}$	-178.3 (3)	C2—N1—C1—S1	-179.1 (3)
I1—C8—C10—F2	-2.3 (4)	C2—N1—C1—O1	-0.4 (4)
$I1-C8-C10-C9^{i}$	178.3 (3)	C2—C3—C4—C5	0.4 (5)
C9—C8—C10—F2	178.5 (3)	C3—C2—C7—O1	-178.4 (3)
C9—C8—C10—C9 ⁱ	-0.9 (6)	C3—C2—C7—C6	1.1 (5)
C10—C8—C9—F1	-179.4 (3)	C3—C4—C5—C6	0.3 (6)
C10-C8-C9-C10 ⁱ	0.9 (6)	C4—C5—C6—C7	-0.3 (5)
N1—C2—C3—C4	-179.6 (3)	C5—C6—C7—O1	179.0 (3)
N1—C2—C7—O1	0.5 (3)	C5—C6—C7—C2	-0.4 (5)
N1—C2—C7—C6	180.0 (3)	C7—O1—C1—S1	179.5 (2)
C1—O1—C7—C2	-0.8 (3)	C7—O1—C1—N1	0.8 (3)

C1—O1—C7—C6	179.8 (3)	C7—C2—C3—C4	-1.0 (5)
C1—N1—C2—C3	178.6 (4)		

Symmetry code: (i) -x+3/2, -y+3/2, -z+1.

Hydrogen-bond geometry (Å. °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—HN1····S1 ⁱⁱ	0.87 (4)	2.45 (4)	3.316 (3)	178 (4)
C3—H3…I1 ⁱⁱⁱ	0.95	3.16	4.066 (3)	159

Symmetry codes: (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1.

1,3-Benzoxazole-2-thiol-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1) (MBZOX 135F3I3B)

Crystal data

C₆F₃I₃·C₇H₅NOS $M_r = 660.94$ Monoclinic, $P2_1/c$ *a* = 14.9295 (7) Å b = 4.6119(2) Å c = 23.5065 (12) Å $\beta = 92.548 \ (2)^{\circ}$ $V = 1616.90 (13) \text{ Å}^3$ Z = 4

Data collection

Bruker D8 Venture Photon 2
diffractometer
Radiation source: Incoatec $I\mu S$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
$T_{\min} = 0.551, \ T_{\max} = 0.745$
19413 measured reflections

Refinement

Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ and constrained refinement $wR(F^2) = 0.061$ $w = 1/[\sigma^2(F_o^2) + (0.0015P)^2 + 8.0148P]$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.223348 reflections $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta \rho_{\rm max} = 0.80 \text{ e} \text{ Å}^{-3}$ 203 parameters $\Delta \rho_{\rm min} = -0.77 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 1200 $D_{\rm x} = 2.715 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 9982 reflections $\theta = 2.7 - 26.5^{\circ}$ $\mu = 5.96 \text{ mm}^{-1}$ T = 100 KColumn, colourless $0.22 \times 0.06 \times 0.05 \text{ mm}$

3348 independent reflections 2845 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.050$ $\theta_{\rm max} = 26.6^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$ $h = -18 \rightarrow 18$ $k = -5 \rightarrow 5$ $l = -29 \rightarrow 29$

H atoms treated by a mixture of independent

	x	у	Z	$U_{ m iso}$ $\overline{*/U_{ m eq}}$
I1	0.70807 (2)	0.45232 (7)	0.55419 (2)	0.01748 (9)
I2	0.67869 (2)	1.23515 (8)	0.76030(2)	0.02173 (10)
I3	0.36351 (2)	1.08539 (8)	0.59175 (2)	0.02080 (10)
F1	0.75694 (18)	0.8001 (7)	0.66897 (14)	0.0224 (7)
F2	0.4884 (2)	1.2983 (7)	0.69902 (14)	0.0233 (7)
F3	0.50893 (19)	0.6840 (7)	0.54104 (13)	0.0216 (7)
C8	0.6336 (3)	0.7273 (11)	0.6051 (2)	0.0148 (10)
C9	0.6700 (3)	0.8566 (12)	0.6536 (2)	0.0171 (11)
C10	0.6230 (3)	1.0473 (12)	0.6861 (2)	0.0172 (11)
C11	0.5357 (3)	1.1100 (11)	0.6684 (2)	0.0182 (11)
C12	0.4950 (3)	0.9888 (12)	0.6197 (2)	0.0161 (11)
C13	0.5456 (3)	0.8001 (11)	0.5888 (2)	0.0150 (11)
S1	0.85264 (8)	0.0073 (3)	0.48739 (6)	0.0189 (3)
01	0.8417 (2)	0.3886 (8)	0.40283 (15)	0.0173 (8)
N1	0.9806 (3)	0.3173 (10)	0.43450 (19)	0.0160 (9)
HN1	1.021 (4)	0.235 (15)	0.456 (3)	0.04 (2)*
C1	0.8953 (3)	0.2405 (12)	0.4417 (2)	0.0179 (11)
C2	0.9850 (3)	0.5192 (11)	0.3901 (2)	0.0161 (11)
C3	1.0549 (4)	0.6679 (12)	0.3661 (2)	0.0214 (12)
H3	1.115554	0.640591	0.378875	0.026*
C4	1.0309 (4)	0.8596 (12)	0.3222 (2)	0.0209 (12)
H4	1.076369	0.965301	0.304220	0.025*
C5	0.9402 (4)	0.9002 (12)	0.3038 (2)	0.0215 (12)
Н5	0.926165	1.034052	0.274018	0.026*
C6	0.8718 (3)	0.7504 (12)	0.3281 (2)	0.0194 (11)
H6	0.810884	0.774932	0.315558	0.023*
C7	0.8969 (3)	0.5632 (11)	0.3715 (2)	0.0175 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01571 (16)	0.01825 (18)	0.01870 (18)	0.00147 (13)	0.00332 (13)	0.00178 (14)
I2	0.02249 (18)	0.0226 (2)	0.01963 (19)	-0.00506 (14)	-0.00417 (14)	-0.00151 (15)
I3	0.01328 (16)	0.0296 (2)	0.01939 (19)	0.00433 (14)	-0.00095 (13)	0.00351 (16)
F1	0.0106 (14)	0.0263 (18)	0.0298 (18)	0.0009 (12)	-0.0040 (13)	0.0000 (15)
F2	0.0196 (15)	0.0230 (18)	0.0274 (18)	0.0043 (13)	0.0018 (13)	-0.0061 (15)
F3	0.0164 (15)	0.0279 (18)	0.0201 (16)	0.0002 (13)	-0.0031 (12)	-0.0072 (14)
C8	0.019 (3)	0.006 (2)	0.018 (3)	0.0031 (19)	-0.004 (2)	-0.002 (2)
C9	0.010 (2)	0.021 (3)	0.020 (3)	-0.001 (2)	0.001 (2)	0.007 (2)
C10	0.015 (2)	0.024 (3)	0.012 (3)	-0.003 (2)	0.000 (2)	0.001 (2)
C11	0.018 (3)	0.011 (3)	0.026 (3)	0.001 (2)	0.007 (2)	0.003 (2)
C12	0.011 (2)	0.020 (3)	0.017 (3)	-0.001 (2)	-0.001 (2)	0.002 (2)
C13	0.015 (2)	0.015 (3)	0.014 (3)	-0.0009 (19)	-0.002 (2)	0.001 (2)
S 1	0.0167 (6)	0.0202 (7)	0.0200 (7)	0.0025 (5)	0.0036 (5)	0.0035 (6)
01	0.0153 (17)	0.019 (2)	0.0177 (19)	0.0016 (14)	0.0007 (14)	0.0059 (16)

N1	0.012 (2)	0.023 (3)	0.012 (2)	0.0051 (18)	-0.0012 (17)	0.0016 (19)	
C1	0.016 (2)	0.022 (3)	0.016 (3)	0.006 (2)	-0.002 (2)	-0.005 (2)	
C2	0.014 (2)	0.015 (3)	0.018 (3)	0.004 (2)	-0.001 (2)	-0.004 (2)	
C3	0.018 (3)	0.025 (3)	0.021 (3)	0.002 (2)	0.002 (2)	-0.001 (2)	
C4	0.023 (3)	0.020 (3)	0.020 (3)	-0.002 (2)	0.011 (2)	-0.002 (2)	
C5	0.037 (3)	0.017 (3)	0.011 (3)	0.004 (2)	0.003 (2)	0.002 (2)	
C6	0.016 (3)	0.021 (3)	0.021 (3)	0.005 (2)	-0.002 (2)	-0.002 (2)	
C7	0.018 (3)	0.014 (3)	0.020 (3)	-0.001 (2)	0.002 (2)	-0.004 (2)	

Geometric parameters (Å, °)

I1—C8	2.096 (5)	O1—C7	1.387 (6)
I2—C10	2.086 (5)	N1—HN1	0.85 (7)
I3—C12	2.091 (5)	N1—C1	1.340 (7)
F1—C9	1.356 (5)	N1—C2	1.403 (7)
F2—C11	1.347 (6)	C2—C3	1.389 (8)
F3—C13	1.340 (6)	C2—C7	1.383 (7)
C8—C9	1.378 (7)	С3—Н3	0.9500
C8—C13	1.392 (7)	C3—C4	1.393 (8)
C9—C10	1.378 (8)	C4—H4	0.9500
C10—C11	1.381 (7)	C4—C5	1.415 (8)
C11—C12	1.389 (7)	С5—Н5	0.9500
C12—C13	1.379 (7)	C5—C6	1.377 (8)
S1—C1	1.666 (6)	С6—Н6	0.9500
O1—C1	1.370 (6)	C6—C7	1.376 (8)
C9—C8—I1	122.3 (4)	O1—C1—S1	121.6 (4)
C9—C8—C13	117.1 (5)	N1—C1—S1	130.2 (4)
C13—C8—I1	120.5 (4)	N1-C1-O1	108.3 (5)
F1—C9—C8	118.4 (5)	C3—C2—N1	133.7 (5)
F1—C9—C10	118.7 (5)	C7—C2—N1	104.9 (4)
C10—C9—C8	122.9 (5)	C7—C2—C3	121.4 (5)
C9—C10—I2	122.3 (4)	С2—С3—Н3	121.9
C9—C10—C11	117.7 (5)	C2—C3—C4	116.2 (5)
C11—C10—I2	120.0 (4)	С4—С3—Н3	121.9
F2-C11-C10	119.0 (5)	C3—C4—H4	119.3
F2-C11-C12	118.7 (5)	C3—C4—C5	121.4 (5)
C10-C11-C12	122.4 (5)	C5—C4—H4	119.3
C11—C12—I3	122.9 (4)	С4—С5—Н5	119.2
C13—C12—I3	119.8 (4)	C6—C5—C4	121.6 (5)
C13—C12—C11	117.3 (5)	С6—С5—Н5	119.2
F3—C13—C8	118.6 (4)	С5—С6—Н6	122.0
F3—C13—C12	118.7 (4)	C7—C6—C5	116.1 (5)
C12—C13—C8	122.7 (5)	С7—С6—Н6	122.0
C1—O1—C7	107.6 (4)	C2-C7-O1	109.0 (5)
C1—N1—HN1	117 (5)	C6—C7—O1	127.6 (5)
C1—N1—C2	110.2 (4)	C6—C7—C2	123.4 (5)
C2—N1—HN1	132 (5)		

-0.7 (7)	C13—C8—C9—F1	-177.0 (5)
177.2 (4)	C13—C8—C9—C10	0.9 (8)
2.0 (7)	N1—C2—C3—C4	-178.6 (5)
-177.5 (4)	N1-C2-C7-O1	-1.3 (6)
1.5 (7)	N1—C2—C7—C6	179.5 (5)
-179.3 (4)	C1—O1—C7—C2	1.3 (6)
0.4 (7)	C1—O1—C7—C6	-179.6 (5)
179.9 (4)	C1—N1—C2—C3	179.1 (6)
-3.2 (7)	C1—N1—C2—C7	0.9 (6)
177.6 (5)	C2—N1—C1—S1	179.1 (4)
-0.1 (7)	C2—N1—C1—O1	-0.2 (6)
179.1 (5)	C2—C3—C4—C5	0.5 (8)
178.9 (4)	C3—C2—C7—O1	-179.7 (5)
-0.3 (8)	C3—C2—C7—C6	1.0 (8)
178.3 (5)	C3—C4—C5—C6	-0.6 (8)
-1.1 (8)	C4—C5—C6—C7	0.8 (8)
-179.2 (5)	C5—C6—C7—O1	179.9 (5)
-0.1 (8)	C5—C6—C7—C2	-1.1 (8)
-179.2 (4)	C7—O1—C1—S1	180.0 (4)
-0.1 (8)	C7—O1—C1—N1	-0.7 (6)
-178.7 (5)	C7—C2—C3—C4	-0.7 (8)
0.7 (8)		
	$\begin{array}{c} -0.7 (7) \\ 177.2 (4) \\ 2.0 (7) \\ -177.5 (4) \\ 1.5 (7) \\ -179.3 (4) \\ 0.4 (7) \\ 179.9 (4) \\ -3.2 (7) \\ 177.6 (5) \\ -0.1 (7) \\ 179.1 (5) \\ 178.9 (4) \\ -0.3 (8) \\ 178.3 (5) \\ -1.1 (8) \\ -179.2 (5) \\ -0.1 (8) \\ -179.2 (4) \\ -0.1 (8) \\ -178.7 (5) \\ 0.7 (8) \end{array}$	-0.7 (7) $C13-C8-C9-F1$ $177.2 (4)$ $C13-C8-C9-C10$ $2.0 (7)$ $N1-C2-C3-C4$ $-177.5 (4)$ $N1-C2-C7-01$ $1.5 (7)$ $N1-C2-C7-C6$ $-179.3 (4)$ $C1-O1-C7-C2$ $0.4 (7)$ $C1-O1-C7-C6$ $179.9 (4)$ $C1-N1-C2-C3$ $-3.2 (7)$ $C1-N1-C2-C7$ $177.6 (5)$ $C2-N1-C1-S1$ $-0.1 (7)$ $C2-N1-C1-O1$ $179.9 (4)$ $C3-C2-C7-O1$ $-0.1 (7)$ $C2-C3-C4-C5$ $178.9 (4)$ $C3-C2-C7-O1$ $-0.3 (8)$ $C3-C2-C7-O1$ $-0.3 (8)$ $C3-C2-C7-C6$ $178.3 (5)$ $C3-C4-C5-C6$ $-1.1 (8)$ $C4-C5-C6-C7$ $-179.2 (5)$ $C5-C6-C7-O1$ $-0.1 (8)$ $C7-O1-C1-S1$ $-0.1 (8)$ $C7-O1-C1-N1$ $-178.7 (5)$ $C7-C2-C3-C4$ $0.7 (8)$ $C7-C2-C3-C4$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—HN1····S1 ⁱ	0.85 (7)	2.53 (7)	3.377 (4)	176 (6)
С3—Н3…І1 ^{іі}	0.95	3.04	3.969 (5)	167
C6—H6…I2 ⁱⁱⁱ	0.95	3.23	4.009 (5)	140

Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x, -y+5/2, z-1/2.

1,3-Benzothiazole-2-thiol)–1,2,3,4-tetrafluoro-5,6-diiodobenzene (3/4) (3MBZTH_412F4DIB)

Crystal data	
$\begin{array}{l} 4C_{6}F_{4}I_{2}\cdot 3C_{7}H_{5}NS_{2} \\ M_{r} = 2109.16 \\ \text{Triclinic, } P\overline{1} \\ a = 7.9410 \ (8) \ \text{\AA} \\ b = 14.8483 \ (15) \ \text{\AA} \\ c = 24.641 \ (3) \ \text{\AA} \\ a = 79.264 \ (4)^{\circ} \\ \beta = 87.104 \ (4)^{\circ} \\ \gamma = 82.784 \ (4)^{\circ} \end{array}$	$V = 2830.9 (5) Å^{3}$ Z = 2 F(000) = 1940 $D_{x} = 2.474 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 Å$ $\mu = 4.69 \text{ mm}^{-1}$ T = 100 K Plate, colourless $0.30 \times 0.13 \times 0.04 \text{ mm}$
Data collection	
Bruker D8 Venture Photon 2 diffractometer Radiation source: Incoatec I μ S φ and ω scans	Absorption correction: multi-scan (SADABS; Bruker, 2017) $T_{min} = 0.570, T_{max} = 0.746$ 78566 measured reflections

12466 independent reflections	$h = -10 \rightarrow 10$
11325 reflections with $I > 2\sigma(I)$	$k = -19 \rightarrow 19$
$R_{\rm int} = 0.067$	$l = -31 \rightarrow 31$
$\theta_{\rm max} = 27.2^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.067$	H-atom parameters constrained
$wR(F^2) = 0.220$	$w = 1/[\overline{\sigma^2}(F_o^2) + (0.1285P)^2 + 109.2112P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
12466 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
704 parameters	$\Delta \rho_{\rm max} = 2.61 \text{ e } \text{\AA}^{-3}$
66 restraints	$\Delta \rho_{\rm min} = -1.48 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	<i>x</i>	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.36226 (13)	1.16753 (7)	0.05962 (4)	0.0199 (2)
I2	-0.11193 (13)	1.17703 (7)	0.07045 (4)	0.0192 (2)
S3	0.8569 (5)	0.2851 (3)	0.27854 (18)	0.0222 (8)
S4	0.9358 (5)	0.3501 (3)	0.15807 (18)	0.0219 (8)
F1	-0.1901 (12)	0.9764 (7)	0.0748 (4)	0.023 (2)
F2	0.0046 (12)	0.8143 (6)	0.0705 (4)	0.0210 (18)
F3	0.3454 (12)	0.8083 (6)	0.0614 (4)	0.0218 (19)
F4	0.4959 (11)	0.9599 (7)	0.0585 (4)	0.023 (2)
N2	0.7575 (18)	0.4523 (10)	0.2157 (6)	0.022 (3)
HN2	0.702118	0.472763	0.243675	0.026*
C8	0.8414 (19)	0.3657 (12)	0.2214 (7)	0.022 (3)
С9	0.8613 (18)	0.4590 (11)	0.1256 (8)	0.022 (3)
C10	0.877 (2)	0.5034 (12)	0.0712 (7)	0.025 (3)
H10	0.946102	0.474610	0.045108	0.030*
C11	0.792 (3)	0.5893 (13)	0.0558 (8)	0.033 (3)
H11	0.792908	0.617175	0.017859	0.040*
C12	0.704 (2)	0.6375 (13)	0.0933 (8)	0.029 (3)
H12	0.656903	0.699744	0.081256	0.035*
C13	0.683 (2)	0.5975 (11)	0.1470 (8)	0.024 (3)
H13	0.616999	0.629053	0.172475	0.029*
C14	0.764 (2)	0.5071 (12)	0.1632 (7)	0.021 (3)
C22	0.2314 (19)	1.0522 (10)	0.0647 (6)	0.014 (3)
C23	0.0557 (18)	1.0544 (10)	0.0689 (6)	0.016 (3)
C24	-0.0213 (17)	0.9775 (10)	0.0714 (6)	0.014 (2)
C25	0.0758 (19)	0.8923 (10)	0.0684 (6)	0.015 (2)

C26	0.2483 (19)	0.8892 (10)	0.0642 (6)	0.016 (3)
C27	0.3254 (18)	0.9675 (10)	0.0619 (6)	0.015 (3)
I3	0.64678 (12)	1.13261 (7)	0.23166 (4)	0.0194 (2)
I4	0.18439 (13)	1.10869 (8)	0.23135 (5)	0.0227(2)
F5	0.1660 (12)	0.9119 (8)	0.2046 (5)	0.028 (2)
F6	0.4004 (14)	0.7773 (7)	0.1803 (5)	0.032 (2)
F7	0.7341 (13)	0.8013 (7)	0.1742 (5)	0.028 (2)
F8	0.8342 (12)	0.9554 (7)	0.1967 (5)	0.027(2)
C28	0.548 (2)	1.0190 (11)	0.2120 (6)	0.019 (3)
C29	0.3765(17)	1.0068 (10)	0.2139 (6)	0.014(3)
C30	0.3703(17) 0.3304(19)	0.9261(12)	0.2137(6)	0.019(3)
C31	0.3301(13) 0.447(2)	0.9201(12) 0.8555(11)	0.2037(0) 0.1910(7)	0.019(3)
C32	0.117(2) 0.618(2)	0.8672 (12)	0.1910(7) 0.1869(7)	0.020(3)
C33	0.6663(18)	0.0072(12) 0.9461(11)	0.1005(7)	0.022(3)
15	0.0003(10) 0.23233(12)	0.7401(11) 0.71850(7)	0.1980(7) 0.32850(4)	0.018(3)
15	-0.23233(12)	0.71339(7) 0.70593(7)	0.32000(4) 0.32425(4)	0.0105(2)
FO	-0.4003(13)	0.70393(7)	0.32423(4) 0.3451(4)	0.0200(2)
F9 E10	-0.4093(13)	0.0931(0)	0.3431(4)	0.028(2)
	-0.2991(13)	1.0414(7) 1.0524(7)	0.3748(3)	0.028(2)
	0.0385(13)	1.0534 (7)	0.3782(5)	0.027(2)
F12	0.2640(12)	0.9152(7)	0.3547 (5)	0.026(2)
C34	0.0485 (19)	0.8268 (10)	0.3394 (6)	0.017(3)
C35	-0.1293 (18)	0.8223 (10)	0.3377(6)	0.015 (2)
C36	-0.2433 (18)	0.8975 (10)	0.3469 (6)	0.016 (2)
C37	-0.1897 (18)	0.9730 (10)	0.3622 (6)	0.015 (2)
C38	-0.016 (2)	0.9776 (11)	0.3644 (7)	0.020 (3)
C39	0.097 (2)	0.9065 (10)	0.3535 (7)	0.019 (3)
I7	0.02233 (13)	0.46575 (7)	0.37019 (4)	0.0196 (2)
18	-0.02757 (15)	0.35978 (8)	0.51719 (5)	0.0269 (3)
F13	0.1440 (16)	0.1570 (8)	0.5289 (4)	0.036 (3)
F14	0.3307 (17)	0.0627 (7)	0.4593 (5)	0.037 (3)
F15	0.3867 (14)	0.1426 (7)	0.3536 (4)	0.030(2)
F16	0.2600 (13)	0.3180 (7)	0.3159 (4)	0.026 (2)
C40	0.1256 (19)	0.3310 (9)	0.4037 (6)	0.015 (3)
C41	0.100 (2)	0.2902 (12)	0.4582 (7)	0.020(3)
C42	0.171 (2)	0.2029 (13)	0.4767 (7)	0.025 (3)
C43	0.263 (2)	0.1486 (12)	0.4419 (7)	0.023 (3)
C44	0.292 (2)	0.1890 (11)	0.3876 (7)	0.022 (3)
C45	0.223 (2)	0.2791 (10)	0.3680 (6)	0.017 (3)
S1	0.5243 (5)	0.5375 (3)	0.31454 (16)	0.0193 (7)
S2	0.4491 (5)	0.4693 (3)	0.43557 (17)	0.0217 (8)
N1	0.6185 (17)	0.3686 (9)	0.3737 (6)	0.020(2)
HN1	0.671175	0.349037	0.345043	0.025*
C1	0.5386 (19)	0.4543 (10)	0.3712 (6)	0.0156 (18)
C2	0.518 (2)	0.3547 (12)	0.4654 (7)	0.022 (3)
C3	0.498 (2)	0.3107 (13)	0.5198 (6)	0.024 (3)
Н3	0.442344	0.342280	0.547045	0.029*
C4	0.566 (3)	0.2171 (16)	0.5328 (9)	0.042 (5)
H4	0.548501	0.183201	0.568902	0.050*

C5	0.659 (3)	0.1730 (14)	0.4927 (8)	0.037 (5)	
Н5	0.705227	0.110313	0.502792	0.044*	
C6	0.684 (2)	0.2196 (12)	0.4377 (8)	0.028 (4)	
H6	0.746640	0.190247	0.410614	0.033*	
C7	0.610 (2)	0.3135 (11)	0.4259 (8)	0.024 (3)	
S5	0.5779 (5)	0.3528 (3)	0.04223 (16)	0.0185 (7)	
S6	0.4242 (5)	0.3654 (3)	0.15534 (16)	0.0196 (7)	
N3	0.3879 (16)	0.4977 (9)	0.0733 (5)	0.016 (2)	
HN3	0.397601	0.531273	0.040138	0.019*	
C15	0.4623 (19)	0.4112 (10)	0.0858 (6)	0.016 (3)	
C16	0.3061 (19)	0.4678 (10)	0.1659 (6)	0.016 (3)	
C17	0.216 (2)	0.4894 (11)	0.2134 (6)	0.021 (3)	
H17	0.215714	0.445412	0.246790	0.025*	
C18	0.128 (2)	0.5768 (12)	0.2101 (7)	0.025 (3)	
H18	0.074519	0.594232	0.242502	0.030*	
C19	0.116 (2)	0.6408 (11)	0.1597 (8)	0.026 (4)	
H19	0.048383	0.698679	0.158241	0.032*	
C20	0.2008 (19)	0.6197 (10)	0.1133 (7)	0.019 (3)	
H20	0.197834	0.663313	0.079745	0.022*	
C21	0.2922 (19)	0.5323 (10)	0.1166 (6)	0.015 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
I1	0.0179 (5)	0.0178 (5)	0.0249 (5)	-0.0061 (4)	0.0017 (4)	-0.0046 (4)
I2	0.0168 (5)	0.0176 (4)	0.0238 (5)	0.0017 (3)	0.0003 (4)	-0.0076 (4)
S3	0.026 (2)	0.0144 (17)	0.026 (2)	0.0011 (14)	0.0023 (16)	-0.0064 (15)
S4	0.0223 (19)	0.0171 (18)	0.027 (2)	-0.0012 (14)	0.0041 (16)	-0.0092 (15)
F1	0.014 (4)	0.025 (5)	0.030 (5)	-0.001 (4)	0.001 (4)	-0.004 (4)
F2	0.021 (2)	0.022 (2)	0.022 (2)	-0.0089 (18)	-0.0027 (18)	-0.0044 (18)
F3	0.016 (4)	0.016 (4)	0.032 (5)	0.004 (3)	0.000 (4)	-0.006 (4)
F4	0.007 (4)	0.024 (5)	0.038 (6)	-0.004 (3)	0.001 (4)	-0.006 (4)
N2	0.020 (7)	0.020(7)	0.026 (7)	0.002 (5)	0.001 (5)	-0.009 (6)
C8	0.011 (7)	0.025 (8)	0.032 (9)	-0.002 (6)	-0.011 (6)	-0.011 (7)
С9	0.004 (6)	0.021 (8)	0.043 (10)	0.000 (5)	-0.001 (6)	-0.011 (7)
C10	0.030 (7)	0.021 (7)	0.025 (7)	0.001 (6)	-0.012 (6)	-0.009 (6)
C11	0.042 (7)	0.028 (7)	0.031 (7)	0.011 (6)	-0.019 (6)	-0.013 (6)
C12	0.028 (7)	0.025 (7)	0.034 (7)	0.002 (6)	-0.010 (6)	-0.008 (6)
C13	0.012 (7)	0.019 (8)	0.041 (10)	-0.001 (6)	-0.005 (7)	-0.007 (7)
C14	0.023 (8)	0.024 (8)	0.019 (7)	-0.009 (6)	0.015 (6)	-0.010 (6)
C22	0.018 (7)	0.014 (6)	0.006 (6)	0.004 (5)	0.001 (5)	0.001 (5)
C23	0.009 (5)	0.018 (6)	0.018 (6)	0.001 (5)	0.002 (5)	-0.001 (5)
C24	0.005 (5)	0.016 (5)	0.021 (5)	0.002 (4)	0.004 (4)	-0.004 (4)
C25	0.016 (6)	0.013 (6)	0.016 (6)	0.000 (5)	0.002 (5)	-0.004(5)
C26	0.016 (7)	0.015 (7)	0.017 (7)	0.006 (5)	-0.008 (6)	-0.008 (6)
C27	0.012 (6)	0.012 (6)	0.020 (7)	0.001 (5)	0.004 (5)	-0.005 (6)
I3	0.0164 (5)	0.0180 (5)	0.0230 (5)	-0.0020 (3)	0.0015 (4)	-0.0025 (4)
I4	0.0135 (4)	0.0257 (5)	0.0256 (5)	0.0039 (4)	0.0016 (4)	-0.0007(4)

F5	0.010 (4)	0.041 (6)	0.036 (6)	-0.007(4)	0.001 (4)	-0.012(5)
F6	0.026 (5)	0.025 (5)	0.049 (7)	-0.004 (4)	-0.003 (5)	-0.013 (5)
F7	0.022 (5)	0.028 (5)	0.036 (6)	0.000 (4)	0.004 (4)	-0.015 (4)
F8	0.009 (4)	0.028 (5)	0.047 (6)	-0.003 (4)	0.001 (4)	-0.013 (5)
C28	0.019 (8)	0.017 (7)	0.016 (7)	0.001 (6)	0.008 (6)	0.001 (6)
C29	0.006 (6)	0.018 (7)	0.022 (7)	-0.003 (5)	-0.001 (5)	-0.010 (6)
C30	0.013 (7)	0.034 (9)	0.008 (6)	-0.003 (6)	-0.005 (5)	-0.001 (6)
C31	0.016 (7)	0.020 (7)	0.025 (8)	0.000 (6)	-0.005 (6)	-0.004 (6)
C32	0.020 (8)	0.027 (8)	0.021 (8)	-0.001 (6)	-0.004 (6)	-0.007 (6)
C33	0.004 (6)	0.022 (8)	0.028 (8)	-0.002(5)	0.003 (6)	-0.007 (6)
15	0.0127 (4)	0.0181 (4)	0.0233 (5)	0.0019 (3)	0.0022 (4)	-0.0047 (4)
I6	0.0161 (5)	0.0194 (5)	0.0249 (5)	-0.0025 (4)	-0.0033 (4)	-0.0039 (4)
F9	0.016 (5)	0.031 (5)	0.032 (5)	0.002 (4)	-0.001 (4)	0.004 (4)
F10	0.022 (5)	0.020 (5)	0.042 (6)	0.008 (4)	0.002 (4)	-0.010 (4)
F11	0.025 (5)	0.022 (5)	0.038 (6)	-0.004 (4)	-0.001 (4)	-0.013 (4)
F12	0.012 (4)	0.020 (5)	0.043 (6)	-0.002 (4)	-0.001 (4)	0.003 (4)
C34	0.014 (7)	0.008 (6)	0.023 (7)	0.003 (5)	0.003 (6)	0.007 (5)
C35	0.008 (5)	0.016 (5)	0.020 (5)	-0.001 (4)	-0.003 (4)	0.004 (4)
C36	0.006 (4)	0.017 (5)	0.020 (5)	0.001 (4)	-0.001 (4)	0.004 (4)
C37	0.006 (5)	0.017 (5)	0.021 (5)	0.001 (4)	0.001 (4)	0.001 (4)
C38	0.021 (8)	0.017 (7)	0.021 (7)	-0.001 (6)	-0.004 (6)	0.003 (6)
C39	0.027 (8)	0.010 (6)	0.019 (7)	-0.004 (6)	0.001 (6)	0.000 (5)
I7	0.0181 (5)	0.0162 (4)	0.0234 (5)	0.0003 (3)	-0.0028 (4)	-0.0016 (4)
18	0.0288 (6)	0.0313 (6)	0.0212 (5)	-0.0007 (4)	0.0039 (4)	-0.0091 (4)
F13	0.048 (7)	0.029 (6)	0.022 (5)	-0.004 (5)	0.001 (5)	0.012 (4)
F14	0.056 (8)	0.018 (5)	0.033 (6)	0.009 (5)	-0.011 (5)	0.000 (4)
F15	0.031 (6)	0.030 (5)	0.030 (5)	0.010 (4)	0.007 (4)	-0.016 (4)
F16	0.026 (5)	0.030 (5)	0.018 (5)	0.003 (4)	0.006 (4)	0.001 (4)
C40	0.019 (7)	0.007 (6)	0.017 (7)	0.003 (5)	0.002 (5)	-0.002(5)
C41	0.015 (6)	0.027 (7)	0.017 (6)	-0.002(5)	-0.006(5)	0.003 (5)
C42	0.019 (6)	0.035 (7)	0.013 (5)	0.009 (5)	0.001 (5)	0.007 (5)
C43	0.022 (6)	0.022 (7)	0.020 (6)	0.004 (6)	-0.008(5)	0.004 (5)
C44	0.024 (8)	0.020 (8)	0.024 (8)	-0.002(6)	0.002 (6)	-0.009 (6)
C45	0.018 (7)	0.014 (7)	0.016 (7)	0.003 (5)	0.002 (6)	0.000 (6)
S 1	0.0186 (17)	0.0161 (17)	0.0224 (18)	0.0004 (14)	0.0010 (14)	-0.0038 (14)
S2	0.0197 (18)	0.0264 (19)	0.0195 (17)	0.0001 (15)	0.0006 (14)	-0.0077 (15)
N1	0.020 (5)	0.021 (5)	0.023 (5)	-0.004 (4)	-0.001 (4)	-0.007 (4)
C1	0.015 (4)	0.019 (4)	0.017 (4)	-0.006(3)	-0.002(3)	-0.010 (3)
C2	0.015 (7)	0.030 (9)	0.021 (8)	-0.008(6)	0.003 (6)	-0.003 (7)
C3	0.019 (8)	0.042 (10)	0.010(7)	-0.005(7)	0.001 (6)	-0.001(7)
C4	0.041 (12)	0.051 (13)	0.032 (10)	-0.030 (10)	-0.007(9)	0.011 (9)
C5	0.058 (13)	0.026 (9)	0.022 (9)	-0.008(9)	-0.008(8)	0.010(7)
C6	0.031 (9)	0.018 (8)	0.033 (9)	-0.004(7)	-0.012(7)	0.001 (7)
C7	0.026 (8)	0.014 (7)	0.031 (9)	-0.002(6)	-0.009(7)	0.002 (6)
S5	0.0195 (18)	0.0119 (16)	0.0226 (18)	0.0032 (13)	0.0020 (14)	-0.0028 (14)
S6	0.0213 (18)	0.0154 (17)	0.0201 (18)	0.0013 (14)	-0.0005 (14)	-0.0005 (14)
N3	0.016 (6)	0.014 (6)	0.017 (6)	0.004 (5)	0.000 (5)	-0.003 (5)
C15	0.018 (7)	0.011 (6)	0.020 (7)	-0.002 (5)	-0.007 (6)	-0.001 (5)
	× /		× /	~ /	~ /	· · ·

C16	0.013 (7)	0.015 (7)	0.019 (7)	-0.001 (5)	0.002 (5)	-0.002 (6)
C17	0.031 (9)	0.021 (8)	0.009 (6)	0.001 (7)	-0.003 (6)	0.002 (6)
C18	0.016 (7)	0.030 (9)	0.028 (8)	0.004 (6)	0.001 (6)	-0.009 (7)
C19	0.033 (9)	0.012 (7)	0.033 (9)	0.007 (6)	-0.006 (7)	-0.008 (7)
C20	0.016 (7)	0.014 (7)	0.024 (8)	-0.005 (6)	0.013 (6)	0.000 (6)
C21	0.018 (7)	0.012 (6)	0.016 (7)	-0.005 (5)	0.004 (5)	-0.004 (5)

Geometric parameters (Å, °)

I1—C22	2.094 (15)	C35—C36	1.39 (2)
I2—C23	2.121 (15)	C36—C37	1.37 (2)
S3—C8	1.669 (18)	C37—C38	1.40 (2)
S4—C8	1.738 (18)	C38—C39	1.35 (2)
S4—C9	1.711 (17)	I7—C40	2.097 (14)
F1—C24	1.341 (16)	I8—C41	2.086 (17)
F2—C25	1.344 (17)	F13—C42	1.358 (19)
F3—C26	1.355 (16)	F14—C43	1.320 (19)
F4—C27	1.344 (17)	F15—C44	1.328 (18)
N2—HN2	0.8800	F16—C45	1.341 (18)
N2—C8	1.36 (2)	C40—C41	1.38 (2)
N2	1.40 (2)	C40—C45	1.41 (2)
C9—C10	1.39 (3)	C41—C42	1.35 (2)
C9—C14	1.42 (2)	C42—C43	1.40 (2)
C10—H10	0.9500	C43—C44	1.38 (2)
C10—C11	1.36 (2)	C44—C45	1.39 (2)
C11—H11	0.9500	S1—C1	1.680 (16)
C11—C12	1.38 (3)	S2—C1	1.747 (15)
C12—H12	0.9500	S2—C2	1.755 (19)
C12—C13	1.36 (3)	N1—HN1	0.8800
С13—Н13	0.9500	N1—C1	1.34 (2)
C13—C14	1.41 (2)	N1—C7	1.39 (2)
C22—C23	1.39 (2)	C2—C3	1.39 (2)
C22—C27	1.391 (19)	C2—C7	1.38 (2)
C23—C24	1.35 (2)	С3—Н3	0.9500
C24—C25	1.408 (19)	C3—C4	1.41 (3)
C25—C26	1.36 (2)	C4—H4	0.9500
C26—C27	1.37 (2)	C4—C5	1.41 (3)
I3—C28	2.089 (16)	С5—Н5	0.9500
I4—C29	2.097 (14)	C5—C6	1.42 (3)
F5—C30	1.347 (18)	С6—Н6	0.9500
F6—C31	1.336 (19)	C6—C7	1.43 (2)
F7—C32	1.330 (19)	S5—C15	1.671 (16)
F8—C33	1.355 (17)	S6—C15	1.749 (16)
C28—C29	1.40 (2)	S6—C16	1.740 (15)
C28—C33	1.42 (2)	N3—HN3	0.8800
C29—C30	1.37 (2)	N3—C15	1.331 (19)
C30—C31	1.38 (2)	N3—C21	1.416 (19)
C31—C32	1.38 (2)	C16—C17	1.41 (2)

G22 G22	1.2((0))	01(001	1 40 (2)
032-033	1.36 (2)	C16-C21	1.40(2)
15—C34	2.077 (14)	С17—Н17	0.9500
I6—C35	2.092 (15)	C17—C18	1.38 (2)
F9—C36	1.326 (17)	C18—H18	0.9500
F10—C37	1.323 (17)	C18—C19	1.41 (3)
F11—C38	1.359 (19)	С19—Н19	0.9500
F12—C39	1 348 (19)	C19—C20	1 36 (2)
C_{34} C_{35}	1.43(2)	C_{20} H20	0.9500
C_{24} C_{20}	1.43(2)	$C_{20} = C_{21}$	1.40(2)
034-039	1.40 (2)	C20—C21	1.40 (2)
CO CA CO	02 5 (0)	C20 C20 F11	100 7 (15)
C9—S4—C8	93.5 (8)	C39—C38—F11	120.7 (15)
C8—N2—HN2	121.8	C39—C38—C37	120.0 (15)
C8—N2—C14	116.5 (14)	F12—C39—C34	119.1 (14)
C14—N2—HN2	121.8	F12—C39—C38	117.8 (14)
S3—C8—S4	123.8 (10)	C38—C39—C34	123.1 (16)
N2—C8—S3	127.4 (14)	C41—C40—I7	123.4 (11)
N2—C8—S4	108.8 (13)	C41—C40—C45	118.8 (14)
C10-C9-S4	131.6 (13)	C45—C40—I7	117.7 (11)
C10-C9-C14	118 2 (15)	C40-C41-18	1235(12)
C14-C9-S4	110.2(14)	C_{42} C_{41} I_{8}	116.4(12)
$C_{14} = C_{2} = C_{10} = C_$	120.7	$C_{42} = C_{41} = 10$	110.4(12)
C9-C10-H10	120.7	C42 - C41 - C40	119.9 (13)
	118.6 (17)	F13-C42-C43	114.0 (15)
С11—С10—Н10	120.7	C41—C42—F13	123.0 (15)
C10—C11—H11	118.7	C41—C42—C43	122.7 (15)
C10-C11-C12	122.6 (19)	F14—C43—C42	123.2 (15)
C12—C11—H11	118.7	F14—C43—C44	118.8 (16)
C11—C12—H12	119.4	C44—C43—C42	117.9 (15)
C13—C12—C11	121.1 (18)	F15—C44—C43	120.7 (15)
C13—C12—H12	119.4	F15—C44—C45	119.1 (15)
C12—C13—H13	121.5	C_{43} — C_{44} — C_{45}	120.3(15)
C_{12} C_{13} C_{14}	116.9 (16)	F_{16} C_{45} C_{40}	120.3(12) 120.7(13)
C12 $C13$ $C14C14$ $C13$ $H13$	121.5	F16 C45 C44	120.7(13)
N2 C14 C0	121.3	$\Gamma_{10} - C_{43} - C_{44}$	110.9(14)
$N_2 = C_1 4 = C_1 2$	111.1 (13)	$C_{44} - C_{43} - C_{40}$	120.3(14)
N2	126.8 (15)		92.1 (8)
C13—C14—C9	122.1 (16)	CI—NI—HNI	123.1
C23—C22—I1	124.6 (10)	C1—N1—C7	113.8 (14)
C23—C22—C27	117.2 (14)	C7—N1—HN1	123.1
C27—C22—I1	118.1 (11)	S1—C1—S2	123.6 (9)
C22—C23—I2	123.4 (11)	N1—C1—S1	125.7 (12)
C24—C23—I2	114.8 (10)	N1—C1—S2	110.7 (12)
C24—C23—C22	121.8 (14)	C3—C2—S2	128.6 (14)
F1-C24-C23	123.9 (13)	C7-C2-S2	108.1 (12)
F1-C24-C25	1158(13)	C7-C2-C3	1231(17)
C^{23}	120.3 (13)	С?_С3_Н3	121.6
$C_{23} = C_{24} = C_{23}$	120.3(13) 122.2(13)	$C_2 C_3 C_4$	121.0 116 0 (17)
$\Gamma_2 = C_2 J = C_2 C_4$	122.3(13) 110.2(12)	$C_4 = C_3 = C_4$	10.9(17)
$r_2 - c_2 - c_2 c_2 c_2 c_2 c_2 c_2 c_2 c_2 c_2 c_2$	119.2 (13)		121.0
C26—C25—C24	118.5 (13)	C3—C4—H4	119.6
F3—C26—C25	120.0 (13)	C3—C4—C5	120.8 (17)

F3—C26—C27	119.2 (13)	C5—C4—H4	119.6
C25—C26—C27	120.8 (13)	C4—C5—H5	119.0
F4—C27—C22	120.4 (13)	C4—C5—C6	122.0 (19)
F4—C27—C26	118.2 (13)	С6—С5—Н5	119.0
C26—C27—C22	121.4 (14)	С5—С6—Н6	122.2
C29—C28—I3	125.4 (11)	C5—C6—C7	115.5 (18)
C29—C28—C33	117.2 (14)	С7—С6—Н6	122.2
C33—C28—I3	117.3 (11)	N1—C7—C6	123.2 (17)
C28—C29—I4	122.4 (11)	C2	115.2 (15)
C30—C29—I4	118.3 (10)	C2—C7—C6	121.5 (17)
C30—C29—C28	119.3 (14)	C16—S6—C15	91.6 (7)
F5—C30—C29	121.1 (14)	C15—N3—HN3	122.0
F5-C30-C31	116.1 (15)	C15 - N3 - C21	116.0 (13)
C_{29} C_{30} C_{31}	122.7 (14)	C21—N3—HN3	122.0
F6-C31-C30	122.3(14)	S5-C15-S6	123.6 (9)
F6-C31-C32	118.6 (15)	N3-C15-S5	125.8(12)
C_{30} C_{31} C_{32}	119.1 (15)	N3-C15-S6	110.6(12)
F7 - C32 - C31	121.1 (15)	C17 - C16 - S6	129.9(12)
F7 - C32 - C33	121.1(13) 1199(14)	$C_{11} = C_{10} = S_{0}$	129.9(12)
C_{33} C_{32} C_{31}	119.9(14) 119.0(15)	$C_{21} - C_{16} - C_{17}$	110.9(11) 118.9(14)
$F_8 = C_{33} = C_{28}$	119.0 (13)	$C_{16} - C_{17} - H_{17}$	121.0
$F_8 = C_{33} = C_{23}^{-23}$	118.6 (14)	$C_{10} - C_{17} - C_{16}$	121.0 117.9(15)
C_{32} C_{33} C_{28}	110.0(14) 122.6(14)	C_{18} C_{17} H_{17}	121.0
$C_{32} = C_{33} = C_{28}$	122.0(14) 123.6(11)	$C_{10} = C_{17} = M_{17}$	121.0
$C_{30} = C_{34} = 15$	123.0(11) 110.6(11)	$C_{17} = C_{18} = C_{10}$	117.0
$C_{39} = C_{34} = C_{35}$	119.0(11) 116.6(14)	$C_{10} = C_{10} = C_{19}$	121.9 (13)
$C_{34} = C_{35} = C_{35}$	110.0(14) 122.6(11)	$C_{19} = C_{10} = H_{10}$	119.0
$C_{34} = C_{35} = 10$	125.0(11) 116.8(10)	$C_{18} - C_{19} - H_{19}$	119.9
$C_{30} = C_{33} = 10$	110.6(10)	$C_{20} = C_{19} = C_{18}$	120.3 (13)
$C_{30} = C_{33} = C_{34}$	119.0(14)	C10 C20 H20	119.9
F9 - C30 - C33	120.7(14)	C19 - C20 - H20	121.0
F9 - C30 - C37	11/.0(13)	C19 - C20 - C21	118.0 (15)
$C_3/-C_{30}$	121.5(13)	$C_{21} = C_{20} = H_{20}$	121.0
F10-C37-C36	121.4 (13)	C16-C21-N3	110.8 (13)
F10-C37-C38	119.6 (14)	$C_{20} = C_{21} = N_3$	126.5 (14)
$C_{36} - C_{37} - C_{38}$	119.0 (14)	C20—C21—C16	122.6 (14)
F11—C38—C37	119.3 (14)		
I1 - C22 - C23 - I2	0.4(18)	F11-C38-C39-F12	-3(2)
$11 - C^{22} - C^{23} - C^{24}$	1791(11)	F11 - C38 - C39 - C34	179 7 (14)
$11 - C^{22} - C^{27} - F^{4}$	2 9 (19)	C_{34} C_{35} C_{36} F_{9}	179.6 (14)
$11 - C^{22} - C^{27} - C^{26}$	-1791(11)	C_{34} C_{35} C_{36} C_{37}	-6(2)
$12 - C^{23} - C^{24} - F^{1}$	0(2)	$C_{35} = C_{34} = C_{39} = F_{12}$	-1787(13)
12 - C23 - C24 - C25	(2)	C_{35} C_{34} C_{39} C_{38}	-1(2)
S4-C9-C10-C11	17749(14)	$C_{35} - C_{36} - C_{37} - F_{10}$	-1750(14)
S4_C9_C14_N2	0.4(17)	C_{35} C_{36} C_{37} C_{38}	5 (2)
54 - C9 - C14 - C13	-178.2(13)	$C_{36} = C_{37} = C_{38} = E_{11}$	$\frac{5}{178}$ (2)
$F_1 = C_2 - C_1 $	-2(2)	$C_{36} - C_{37} - C_{38} - C_{30}$	-3(2)
$\Gamma_1 - C_2 - C_2 - \Gamma_2$	(2)	$C_{30} - C_{37} - C_{30} - C_{39}$	$\frac{3}{2}$
$1^{-1} - 0.24 - 0.23 - 0.20$	1/3.3 (13)	C3/-C30-C39-F12	1/0.2 (14)
F2-C25-C26-F3	1 (2)	C37—C38—C39—C34	1 (2)
-------------------------------------	----------------------	-------------------------------------	---------------------
F2-C25-C26-C27	179.9 (13)	C39—C34—C35—I6	-174.6 (11)
F3—C26—C27—F4	-2(2)	C39—C34—C35—C36	3 (2)
F3—C26—C27—C22	-179.9 (13)	I7—C40—C41—I8	-5.3 (19)
C8—S4—C9—C10	-178.3(16)	I7—C40—C41—C42	179.9 (13)
C8—S4—C9—C14	-0.2(12)	I7—C40—C45—F16	6 (2)
C8—N2—C14—C9	-1(2)	I7—C40—C45—C44	-178.8(12)
C8-N2-C14-C13	178.0 (16)	I8-C41-C42-F13	8 (2)
C9—S4—C8—S3	-179.6(10)	18 - C41 - C42 - C43	-178.7(14)
C9—S4—C8—N2	-0.1(12)	F_{13} C_{42} C_{43} F_{14}	-5(3)
C9-C10-C11-C12	6(3)	F_{13} C_{42} C_{43} C_{44}	1780(15)
C10-C9-C14-N2	178 8 (14)	F_{14} C_{43} C_{44} F_{15}	-1(3)
C10 - C9 - C14 - C13	0(2)	$F_{14} C_{43} C_{44} C_{45}$	-179.9(15)
C10-C11-C12-C13	-7(3)	$F_{15} - C_{44} - C_{45} - F_{16}$	-3(2)
$C_{11} = C_{12} = C_{13} = C_{14}$	1(3)	$F_{15} = C_{44} = C_{45} = 110$	-178.3(15)
C12 C13 C14 N2	-1788(16)	$C_{40} = C_{41} = C_{43} = C_{40}$	-176.5(15)
$C_{12} = C_{13} = C_{14} = C_{12}$	1/8.8(10)	$C_{40} = C_{41} = C_{42} = C_{43}$	-4(3)
C12 - C13 - C14 - C7	0(2) 170.0(12)	$C_{40} = C_{41} = C_{42} = C_{43}$	+(3) -175 7 (14)
C14 N2 C8 S4	1/9.9(12) 0.4(17)	C41 - C40 - C43 - F10	-1/3.7(14)
$C_{14} = N_2 = C_0 = S_4$	-2(2)	C41 - C40 - C43 - C44	0(2) -178 0(17)
C14 - C9 - C10 - C11	-3(2) -170.2(14)	C41 - C42 - C43 - F14	-1/8.9(17)
$C_{22} = C_{23} = C_{24} = C_{14}$	1/9.2(14)	C42 C42 C43 C44 E15	4(3)
$C_{22} = C_{23} = C_{24} = C_{23}$	-1(2) -170 1 (12)	C42 - C43 - C44 - F13	-2(2)
$C_{23} = C_{22} = C_{27} = F_{4}$	-1/9.1(13)	C42 - C43 - C44 - C43	-3(3)
$C_{23} = C_{22} = C_{27} = C_{20}$	-1(2)	C43 - C44 - C43 - F16	1/0.8 (15)
C_{23} C_{24} C_{25} F_{2}	-1/9.8(14)	C43 - C44 - C43 - C40	1(2)
$C_{23} - C_{24} - C_{25} - C_{26}$	1(2)	C45 - C40 - C41 - 18	1/6.1 (11)
$C_{24} = C_{25} = C_{26} = F_{3}$	1/9.9 (13)	C45 - C40 - C41 - C42	1(2)
$C_{24} = C_{25} = C_{26} = C_{27}$	-1(2)	52-02-03-04	1/9./(14)
$C_{25} - C_{26} - C_{27} - F_{4}$	1/9.1 (14)	S2—C2—C7—N1	-3.3(18)
C25—C26—C27—C22	1 (2)	S2—C2—C7—C6	179.8 (14)
C27—C22—C23—I2	-17/.4(11)	C1 - S2 - C2 - C3	178.1 (16)
C27—C22—C23—C24	1 (2)	C1—S2—C2—C7	2.8 (13)
13—C28—C29—I4	5.1 (19)	C1—N1—C7—C2	2 (2)
13—C28—C29—C30	-175.4 (11)	C1—N1—C7—C6	179.0 (15)
13—C28—C33—F8	-3(2)	C2—S2—C1—S1	178.3 (10)
13—C28—C33—C32	177.7 (13)	C2—S2—C1—N1	-1.8 (12)
I4—C29—C30—F5	0(2)	C2—C3—C4—C5	4 (3)
I4—C29—C30—C31	179.0 (12)	C3—C2—C7—N1	-178.9 (15)
F5—C30—C31—F6	0(2)	C3—C2—C7—C6	4 (3)
F5—C30—C31—C32	177.2 (14)	C3—C4—C5—C6	-2 (3)
F6—C31—C32—F7	-2 (2)	C4—C5—C6—C7	0 (3)
F6—C31—C32—C33	-179.0 (15)	C5—C6—C7—N1	-177.9 (17)
F7—C32—C33—F8	0 (2)	C5—C6—C7—C2	-1 (3)
F7—C32—C33—C28	179.6 (15)	C7—N1—C1—S1	-179.9 (12)
C28—C29—C30—F5	-179.4 (14)	C7—N1—C1—S2	0.2 (16)
C28—C29—C30—C31	0 (2)	C7—C2—C3—C4	-6 (3)
C29—C28—C33—F8	-179.5 (14)	S6—C16—C17—C18	-178.4 (13)
C29—C28—C33—C32	1 (2)	S6-C16-C21-N3	-4.0(16)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-179.1 (15) -2 (2) -179.3 (15) 4 (2) 177.3 (15) -3 (3) -178.6 (11) 1 (2) 0.3 (19) 178.4 (11) 6 (2) -176.1 (12) -2.2 (19) 172.5 (12) 0 (2) -179.9 (14) -1 (2)	$\begin{array}{c} \text{S6C16C21C20} \\ \text{C15S6C16C17} \\ \text{C15S6C16C21} \\ \text{C15N3C21C20} \\ \text{C16S6C15S5} \\ \text{C16S6C15N3} \\ \text{C16C17C18C19} \\ \text{C17C16C21C20} \\ \text{C17C16C21C20} \\ \text{C17C18C19C20} \\ \text{C18C19C20} \\ \text{C18C19C20} \\ \text{C18C19C20} \\ \text{C18C19C20} \\ \text{C18C19C21} \\ \text{C19C20C21} \\ \text{C19C20C21C16} \\ \text{C21N3C15S6} \\ \text{C21C16C17C18} \\ \end{array}$	178.7 (12) $176.4 (16)$ $2.5 (12)$ $4.0 (19)$ $-178.8 (15)$ $179.3 (10)$ $-0.3 (12)$ $5 (3)$ $-178.6 (14)$ $4 (2)$ $-4 (3)$ $3 (3)$ $-180.0 (15)$ $-3 (2)$ $178.4 (11)$ $-2.0 (17)$ $-5 (2)$
F9—C36—C37—C38 F10—C37—C38—F11 F10—C37—C38—C39	-179.9 (14) -1 (2) 177.6 (15)	C21—N3—C15—S6 C21—C16—C17—C18	-2.0 (17) -5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A
N2—HN2…S1	0.88	2.45	3.326 (14)	174
N1—H <i>N</i> 1····S3	0.88	2.40	3.266 (14)	169
C6—H6…F10 ⁱ	0.95	2.60	3.29 (2)	130
N3—HN3····S5 ⁱⁱ	0.88	2.42	3.290 (14)	170
C17—H17…F16	0.95	2.30	3.232 (18)	166
C20—H20…F2	0.95	2.53	3.128 (18)	121
C20—H20…F3	0.95	2.54	3.181 (17)	125

Symmetry codes: (i) *x*+1, *y*-1, *z*; (ii) -*x*+1, -*y*+1, -*z*.

1,3-Benzothiazole-2-thiol-1,2,3,5-tetrafluoro-4,6-diiodobenzene (1/1) (MBZTH_13F4DIB)

Crystal data	
$C_6F_4I_2$ · $C_7H_5NS_2$	Z = 2
$M_r = 569.10$	F(000) = 528
Triclinic, $P\overline{1}$	$D_{\rm x} = 2.349 {\rm Mg} {\rm m}^{-3}$
a = 7.2175 (4) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
b = 8.2675(5) Å	Cell parameters from 9969 reflections
c = 14.4498 (9) Å	$\theta = 2.6 - 30.1^{\circ}$
$\alpha = 97.936 \ (2)^{\circ}$	$\mu = 4.20 \text{ mm}^{-1}$
$\beta = 91.297 \ (2)^{\circ}$	T = 100 K
$\gamma = 109.178 \ (2)^{\circ}$	Plate, colourless
V = 804.44 (8) Å ³	$0.33 \times 0.27 \times 0.06 \text{ mm}$
Data collection	
Bruker D8 Venture Photon 2 diffractometer	Absorption correction: multi-scan (SADABS; Bruker, 2017)
Radiation source: Incoatec $I\mu S$	$T_{\min} = 0.496, \ T_{\max} = 0.746$
φ and ω scans	27899 measured reflections

$h = -10 \rightarrow 10$
$k = -11 \rightarrow 11$
$l = -20 \rightarrow 20$
Hydrogen site location: mixed
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0115P)^2 + 0.801P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.002$
$\Delta \rho_{\rm max} = 1.08 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -1.11 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.21928 (2)	0.04578 (2)	0.73577 (2)	0.02046 (4)	
I2	0.40359 (2)	0.24728 (2)	0.35536 (2)	0.02203 (4)	
F1	0.17793 (18)	0.11993 (18)	0.52937 (9)	0.0275 (3)	
F2	0.83758 (19)	0.35764 (19)	0.45929 (9)	0.0317 (3)	
F3	0.95882 (18)	0.33437 (18)	0.63449 (9)	0.0304 (3)	
F4	0.69486 (18)	0.19590 (15)	0.75449 (8)	0.0219 (2)	
C8	0.4287 (3)	0.1563 (2)	0.64457 (13)	0.0174 (3)	
C9	0.3711 (3)	0.1745 (3)	0.55526 (13)	0.0192 (4)	
C10	0.5038 (3)	0.2421 (2)	0.49121 (13)	0.0184 (3)	
C11	0.7028 (3)	0.2946 (3)	0.51885 (14)	0.0207 (4)	
C12	0.7664 (3)	0.2813 (3)	0.60795 (14)	0.0209 (4)	
C13	0.6289 (3)	0.2109 (2)	0.66928 (12)	0.0180 (3)	
S1	0.82694 (7)	0.91230 (6)	0.86324 (3)	0.01549 (8)	
S2	0.65916 (6)	0.53019 (5)	0.86630 (3)	0.01339 (8)	
N1	0.8612 (2)	0.74012 (19)	1.00562 (10)	0.0127 (3)	
HN1	0.938 (4)	0.835 (4)	1.0386 (19)	0.027 (7)*	
C1	0.7938 (2)	0.7398 (2)	0.91829 (12)	0.0126 (3)	
C2	0.7006 (2)	0.4453 (2)	0.96579 (12)	0.0127 (3)	
C3	0.6389 (3)	0.2736 (2)	0.98130 (13)	0.0165 (3)	
H3	0.563536	0.182216	0.934125	0.020*	
C4	0.6913 (3)	0.2405 (2)	1.06823 (14)	0.0185 (3)	
H4	0.650289	0.124547	1.080638	0.022*	
C5	0.8032 (3)	0.3749 (2)	1.13778 (13)	0.0172 (3)	
Н5	0.836221	0.348582	1.196613	0.021*	
C6	0.8667 (3)	0.5457 (2)	1.12210 (13)	0.0150 (3)	
H6	0.943886	0.636838	1.168951	0.018*	

<u>C7</u>	0.8134 (2)) 0.57	792 (2)	1.03532 (12)	0.0128 (3)		
Atomic of	Atomic displacement parameters $(Å^2)$						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
I1	0.02600 (7)	0.02230 (6)	0.01536 (6)	0.00997 (5)	0.00446 (4)	0.00537 (4)	
I2	0.03060 (7)	0.02527 (7)	0.01257 (6)	0.01186 (5)	-0.00081 (5)	0.00492 (4)	
F1	0.0198 (6)	0.0426 (7)	0.0197 (6)	0.0086 (5)	-0.0015 (4)	0.0078 (5)	
F2	0.0252 (6)	0.0391 (7)	0.0221 (6)	-0.0032 (5)	0.0029 (5)	0.0105 (5)	
F3	0.0199 (6)	0.0372 (7)	0.0270 (7)	0.0003 (5)	-0.0064 (5)	0.0059 (5)	
F4	0.0294 (6)	0.0222 (6)	0.0134 (5)	0.0085 (5)	-0.0059 (4)	0.0017 (4)	
C8	0.0223 (9)	0.0171 (8)	0.0132 (8)	0.0072 (7)	0.0010 (6)	0.0024 (6)	
C9	0.0202 (9)	0.0214 (9)	0.0149 (8)	0.0064 (7)	-0.0019 (6)	0.0009 (7)	
C10	0.0242 (9)	0.0171 (8)	0.0126 (8)	0.0055 (7)	-0.0027 (7)	0.0023 (6)	
C11	0.0232 (9)	0.0190 (9)	0.0163 (9)	0.0019 (7)	0.0018 (7)	0.0037 (7)	
C12	0.0196 (9)	0.0196 (9)	0.0194 (9)	0.0020 (7)	-0.0037 (7)	0.0020 (7)	
C13	0.0275 (9)	0.0147 (8)	0.0107 (8)	0.0066 (7)	-0.0029 (7)	-0.0005 (6)	
S 1	0.0184 (2)	0.01360 (18)	0.01265 (19)	0.00228 (15)	-0.00070 (15)	0.00408 (15)	
S2	0.01404 (19)	0.01277 (18)	0.01164 (18)	0.00286 (14)	-0.00167 (14)	0.00058 (14)	
N1	0.0128 (7)	0.0128 (6)	0.0110 (6)	0.0022 (5)	-0.0004 (5)	0.0018 (5)	
C1	0.0124 (7)	0.0134 (7)	0.0117 (7)	0.0041 (6)	0.0017 (6)	0.0017 (6)	
C2	0.0105 (7)	0.0143 (7)	0.0137 (7)	0.0044 (6)	0.0014 (6)	0.0029 (6)	
C3	0.0145 (8)	0.0126 (7)	0.0209 (9)	0.0030 (6)	0.0001 (6)	0.0021 (6)	
C4	0.0183 (8)	0.0150 (8)	0.0232 (9)	0.0052 (7)	0.0026 (7)	0.0073 (7)	
C5	0.0158 (8)	0.0205 (8)	0.0184 (8)	0.0078 (7)	0.0020 (6)	0.0082 (7)	
C6	0.0116 (7)	0.0184 (8)	0.0158 (8)	0.0055 (6)	0.0003 (6)	0.0039 (6)	
C7	0.0115 (7)	0.0128 (7)	0.0142 (8)	0.0038 (6)	0.0018 (6)	0.0026 (6)	

Geometric parameters (Å, °)

2.0910 (19)	S2—C2	1.7452 (18)
2.0875 (18)	N1—HN1	0.87 (3)
1.343 (2)	N1—C1	1.342 (2)
1.337 (2)	N1—C7	1.391 (2)
1.341 (2)	C2—C3	1.393 (2)
1.346 (2)	C2—C7	1.401 (2)
1.390 (3)	С3—Н3	0.9500
1.387 (3)	C3—C4	1.392 (3)
1.385 (3)	C4—H4	0.9500
1.388 (3)	C4—C5	1.401 (3)
1.388 (3)	С5—Н5	0.9500
1.383 (3)	C5—C6	1.387 (3)
1.6799 (18)	С6—Н6	0.9500
1.7355 (18)	C6—C7	1.393 (2)
120.65 (14)	S1—C1—S2	122.60 (10)
122.00 (14)	N1—C1—S1	127.05 (13)
117.34 (18)	N1—C1—S2	110.35 (13)
	2.0910 (19) 2.0875 (18) 1.343 (2) 1.337 (2) 1.341 (2) 1.346 (2) 1.390 (3) 1.387 (3) 1.385 (3) 1.388 (3) 1.388 (3) 1.388 (3) 1.383 (3) 1.6799 (18) 1.7355 (18) 120.65 (14) 122.00 (14) 117.34 (18)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

F1	118.30 (18)	C3—C2—S2	129.26 (14)
F1	118.70 (17)	C3—C2—C7	120.78 (16)
C10—C9—C8	122.97 (18)	C7—C2—S2	109.95 (13)
C9—C10—I2	120.15 (14)	С2—С3—Н3	121.1
C9—C10—C11	117.73 (17)	C4—C3—C2	117.77 (17)
C11—C10—I2	121.99 (14)	C4—C3—H3	121.1
F2-C11-C10	120.33 (17)	C3—C4—H4	119.4
F2-C11-C12	118.58 (18)	C3—C4—C5	121.28 (17)
C12—C11—C10	121.09 (18)	C5—C4—H4	119.4
F3—C12—C11	120.72 (18)	C4—C5—H5	119.5
F3—C12—C13	120.01 (17)	C6—C5—C4	121.03 (17)
C13—C12—C11	119.27 (18)	С6—С5—Н5	119.5
F4—C13—C8	120.41 (17)	С5—С6—Н6	121.1
F4—C13—C12	118.00 (17)	C5—C6—C7	117.75 (16)
C12—C13—C8	121.59 (17)	С7—С6—Н6	121.1
C1—S2—C2	91.89 (8)	N1—C7—C2	111.76 (15)
C1—N1—HN1	120.5 (18)	N1—C7—C6	126.87 (16)
C1—N1—C7	116.05 (15)	C6—C7—C2	121.37 (16)
C7—N1—HN1	123.3 (18)		
I1—C8—C9—F1	0 2 (2)	C13—C8—C9—F1	178 96 (17)
11 - C8 - C9 - C10	-178.06(15)	C13 - C8 - C9 - C10	0.7(3)
11 - C8 - C13 - F4	-0.8(2)	S2-C2-C3-C4	-179.54(14)
I1—C8—C13—C12	178.95 (15)	S2—C2—C7—N1	-0.38(18)
12-C10-C11-F2	2.8 (3)	<u>\$2</u> _ <u>C2</u> _ <u>C7</u> _ <u>C6</u>	179.86 (13)
12 - C10 - C11 - C12	-176.43(15)	C1 - S2 - C2 - C3	-179.18(17)
F1-C9-C10-I2	-2.9(3)	C1 - S2 - C2 - C7	0.60 (13)
F1—C9—C10—C11	-178.78(18)	C1—N1—C7—C2	-0.2(2)
F2-C11-C12-F3	1.6 (3)	C1 - N1 - C7 - C6	179.60 (17)
F2—C11—C12—C13	-177.81 (18)	C2 - S2 - C1 - S1	179.93 (12)
F3—C12—C13—F4	-0.9(3)	C2—S2—C1—N1	-0.69(13)
F3—C12—C13—C8	179.31 (17)	C2—C3—C4—C5	-0.4(3)
C8—C9—C10—I2	175.43 (15)	C3—C2—C7—N1	179.42 (15)
C8—C9—C10—C11	-0.5 (3)	C3—C2—C7—C6	-0.3 (3)
C9—C8—C13—F4	-179.55 (16)	C3—C4—C5—C6	-0.4(3)
C9—C8—C13—C12	0.2 (3)	C4—C5—C6—C7	0.7 (3)
C9—C10—C11—F2	178.66 (18)	C5—C6—C7—N1	179.90 (17)
C9—C10—C11—C12	-0.6 (3)	C5—C6—C7—C2	-0.4 (3)
C10—C11—C12—F3	-179.14 (18)	C7—N1—C1—S1	179.95 (13)
C10—C11—C12—C13	1.5 (3)	C7—N1—C1—S2	0.61 (19)
C11—C12—C13—F4	178.52 (17)	C7—C2—C3—C4	0.7 (3)
C11—C12—C13—C8	-1.3 (3)		× /

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—HN1····S1 ⁱ	0.87 (3)	2.45 (3)	3.3120 (15)	175 (2)

Symmetry code: (i) -x+2, -y+2, -z+2.

1,3-Benzothiazole-2-thiol-1,2,3,5-tetrafluoro-4,6-diiodobenzene (1/2) (MBZTH 213F4DIB)

F(000) = 1768

 $\theta = 2.4 - 28.8^{\circ}$

 $\mu = 5.36 \text{ mm}^{-1}$

Prism. colourless

 $0.18 \times 0.12 \times 0.04 \text{ mm}$

 $\theta_{\text{max}} = 28.8^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$

12660 independent reflections 11766 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.050$

 $h = -6 \rightarrow 6$ $k = -46 \rightarrow 46$

 $D_{\rm x} = 2.647 {\rm Mg m^{-3}}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å

Cell parameters from 9841 reflections

Crystal data

 $4C_6F_4I_2 \cdot 2C_7H_5NS_2$ $M_r = 1941.92$ Monoclinic, $P2_1$ a = 4.5581 (3) Å b = 34.358(2) Å *c* = 15.6075 (10) Å $\beta = 94.707 \ (2)^{\circ}$ V = 2436.0 (3) Å³ Z = 2

Data collection

Bruker D8 Venture Photon 2	
diffractometer	
Radiation source: Incoatec $I\mu S$	
φ and ω scans	
Absorption correction: multi-scan	n
(SADABS; Bruker, 2017)	
$T_{\min} = 0.568, T_{\max} = 0.746$	
56285 measured reflections	

Refinement

S = 1.09

 $l = -21 \rightarrow 21$ Refinement on F^2 H atoms treated by a mixture of independent Least-squares matrix: full and constrained refinement $R[F^2 > 2\sigma(F^2)] = 0.026$ $w = 1/[\sigma^2(F_o^2) + (0.0071P)^2 + 0.5877P]$ $wR(F^2) = 0.046$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.002$ 12660 reflections $\Delta \rho_{\rm max} = 1.01 \ {\rm e} \ {\rm \AA}^{-3}$ 622 parameters $\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$ Absolute structure: Refined as an inversion twin 2 restraints Primary atom site location: dual Absolute structure parameter: 0.454 (15) Hydrogen site location: mixed

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	1.31057 (9)	0.37856 (2)	0.44709 (3)	0.01694 (9)	
I2	0.58291 (10)	0.34353 (2)	0.11336 (3)	0.02224 (10)	
13	0.13207 (9)	0.44552 (2)	0.04395 (3)	0.01659 (9)	
I4	0.84342 (11)	0.47934 (2)	0.38106 (3)	0.02660 (11)	
F1	1.0269 (9)	0.38363 (11)	0.2525 (2)	0.0233 (9)	
F2	0.4263 (9)	0.27169 (12)	0.2331 (3)	0.0284 (10)	

F3	0.6051 (10)	0.25383 (12)	0.3971 (3)	0.0324 (10)
F4	0.9918 (10)	0.29933 (12)	0.4890 (2)	0.0276 (10)
F5	0.3945 (8)	0.44111 (11)	0.2407 (2)	0.0205 (8)
F6	1.0552 (9)	0.54664 (12)	0.2573 (3)	0.0301 (10)
F7	0.9034 (9)	0.56331 (12)	0.0915 (3)	0.0331 (10)
F8	0.4927 (9)	0.52114 (12)	0.0003 (2)	0.0247 (9)
C15	1.0262 (13)	0.34210 (19)	0.3717 (4)	0.0147 (13)
C16	0.9275 (14)	0.35093 (18)	0.2876 (4)	0.0163 (13)
C17	0.7260 (13)	0.32806 (19)	0.2383 (4)	0.0150 (13)
C18	0.6246 (14)	0.2950 (2)	0.2766(4)	0.0181 (14)
C19	0.7144(15)	0.2853(2)	0.3607(4)	0.0197(14)
C20	0.9139(15)	0.2000(2) 0.3087(2)	0.3007(1) 0.4070(4)	0.0197(14)
C21	0.9139(13) 0.4273(13)	0.3007(2) 0.48043(17)	0.1070(1) 0.1192(4)	0.0107(11) 0.0118(12)
C21	0.4273(13) 0.5141(14)	0.40043(17) 0.47193(19)	0.1192(4) 0.2048(4)	0.0110(12) 0.0160(13)
C22	0.5141(14) 0.7212(14)	0.47193(19) 0.40307(10)	0.2538(4)	0.0100(13)
C23	0.7212(14) 0.8475(14)	0.49397(19) 0.5248(2)	0.2338(4) 0.2137(5)	0.0170(15)
C24	0.8473(14) 0.7600(15)	0.5240(2) 0.53442(10)	0.2137(3) 0.1202(5)	0.0204(13)
C25	0.7090(13)	0.53442(19)	0.1293(3)	0.0207(13)
C20	0.5582(14)	0.51219(19)	0.0829 (4)	0.0164(13)
15	0.00231 (10)	0.58298(2)	0.42231(3)	0.02000 (11)
16	-0.04120(12)	0.6/426(2)	0.6/9/9(3)	0.03213 (12)
F13	0.3626 (9)	0.61104 (13)	0.5966 (2)	0.0298 (9)
F14	-0.1966 (10)	0.72120 (12)	0.5061 (3)	0.0340 (11)
F15	-0.0233 (11)	0.71370 (13)	0.3475 (3)	0.0379 (11)
F16	0.3387 (10)	0.65460 (13)	0.3104 (3)	0.0340 (10)
C33	0.3592 (15)	0.63148 (19)	0.4533 (4)	0.0215 (14)
C34	0.2700 (15)	0.63678 (19)	0.5348 (4)	0.0212 (14)
C35	0.0859 (15)	0.6674 (2)	0.5562 (4)	0.0215 (15)
C36	-0.0098 (16)	0.6922 (2)	0.4907 (5)	0.0241 (15)
C37	0.0756 (16)	0.6885 (2)	0.4086 (5)	0.0267 (16)
C38	0.2587 (16)	0.6584 (2)	0.3901 (4)	0.0241 (15)
I7	0.27675 (10)	0.60812 (2)	-0.10563 (3)	0.02281 (10)
I8	1.08854 (10)	0.74677 (2)	-0.05335 (3)	0.02152 (10)
F9	0.6582 (9)	0.68287 (11)	-0.1413 (2)	0.0239 (9)
F10	1.0852 (9)	0.71219 (12)	0.1364 (2)	0.0286 (10)
F11	0.7847 (10)	0.65341 (14)	0.2015 (2)	0.0365 (11)
F12	0.4105 (9)	0.61029 (12)	0.0985 (3)	0.0293 (9)
C27	0.5318 (14)	0.64475 (18)	-0.0249 (4)	0.0164 (13)
C28	0.6884 (14)	0.67579 (19)	-0.0565 (4)	0.0166 (13)
C29	0.8730 (13)	0.69920 (18)	-0.0044 (4)	0.0165 (13)
C30	0.9054 (15)	0.6911 (2)	0.0830 (4)	0.0219 (15)
C31	0.7507 (16)	0.6609 (2)	0.1168 (4)	0.0233 (15)
C32	0.5630 (14)	0.63862 (19)	0.0628 (4)	0.0202 (14)
S1	0.6754 (4)	0.40568 (5)	0.88863 (11)	0.0189 (3)
S2	1.0703 (4)	0.33606 (5)	0.91405 (10)	0.0186 (3)
N1	0.9694 (12)	0.36855 (16)	0.7688 (3)	0.0152 (11)
HN1	0.905 (14)	0.3871 (19)	0.732 (4)	0.007 (16)*
C1	0.8985 (13)	0.37204 (18)	0.8506 (4)	0.0151 (13)
C2	1.1602 (14)	0.33784 (19)	0.7534 (4)	0.0162 (13)
-	(= .)	······································		

C3	1.2632 (16)	0.3281 (2)	0.6749 (4)	0.0236 (15)
Н3	1.206730	0.342708	0.624462	0.028*
C4	1.4504 (15)	0.2966 (2)	0.6723 (4)	0.0261 (16)
H4	1.525655	0.289582	0.619464	0.031*
C5	1.5310 (15)	0.2748 (2)	0.7462 (5)	0.0262 (16)
Н5	1.657929	0.253028	0.742875	0.031*
C6	1.4270 (15)	0.28477 (19)	0.8243 (4)	0.0201 (14)
H6	1.483893	0.270321	0.874871	0.024*
C7	1.2378 (14)	0.31638 (19)	0.8270 (4)	0.0168 (13)
S3	0.7312 (4)	0.42496 (5)	0.60016 (10)	0.0190 (3)
S4	0.3357 (4)	0.49495 (5)	0.57647 (10)	0.0180 (3)
N2	0.4180 (12)	0.45945 (16)	0.7190 (3)	0.0164 (12)
HN2	0.497 (15)	0.449 (2)	0.764 (3)	0.03 (2)*
C8	0.4996 (14)	0.45745 (19)	0.6383 (4)	0.0162 (13)
С9	0.2219 (14)	0.48927 (19)	0.7357 (4)	0.0174 (13)
C10	0.1004 (14)	0.4970 (2)	0.8131 (4)	0.0190 (14)
H10	0.149370	0.481541	0.862699	0.023*
C11	-0.0915 (15)	0.5276 (2)	0.8154 (4)	0.0221 (15)
H11	-0.179266	0.533075	0.867172	0.027*
C12	-0.1615 (15)	0.5510(2)	0.7427 (4)	0.0208 (14)
H12	-0.295108	0.572001	0.746348	0.025*
C13	-0.0391 (14)	0.5439 (2)	0.6659 (4)	0.0220 (15)
H13	-0.083511	0.560008	0.617145	0.026*
C14	0.1515 (13)	0.51230 (19)	0.6627 (4)	0.0158 (13)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0177 (2)	0.0159 (2)	0.01700 (19)	0.00011 (16)	0.00007 (16)	-0.00234 (17)
I2	0.0263 (2)	0.0245 (2)	0.0153 (2)	0.00547 (19)	-0.00254 (18)	-0.00115 (18)
I3	0.0171 (2)	0.0170 (2)	0.01558 (19)	0.00146 (16)	0.00089 (16)	-0.00224 (17)
I4	0.0313 (3)	0.0303 (3)	0.0169 (2)	0.0123 (2)	-0.00624 (19)	-0.00536 (19)
F1	0.032 (2)	0.019 (2)	0.0194 (19)	-0.0084 (17)	0.0019 (17)	0.0046 (17)
F2	0.028 (2)	0.029 (2)	0.027 (2)	-0.0075 (18)	-0.0056 (18)	-0.0054 (19)
F3	0.041 (3)	0.023 (2)	0.033 (2)	-0.0147 (19)	-0.001 (2)	0.0100 (19)
F4	0.040 (3)	0.025 (2)	0.0168 (19)	-0.0053 (19)	-0.0029 (18)	0.0056 (17)
F5	0.029 (2)	0.016 (2)	0.0167 (18)	-0.0053 (17)	0.0061 (16)	0.0037 (16)
F6	0.019 (2)	0.029 (2)	0.042 (3)	-0.0079 (18)	-0.0024 (19)	-0.010 (2)
F7	0.032 (2)	0.024 (2)	0.044 (3)	-0.0084 (19)	0.011 (2)	0.010 (2)
F8	0.029 (2)	0.028 (2)	0.0170 (19)	-0.0002 (18)	0.0002 (17)	0.0100 (17)
C15	0.010 (3)	0.016 (3)	0.019 (3)	0.000 (2)	0.002 (2)	-0.001 (3)
C16	0.017 (3)	0.013 (3)	0.020 (3)	0.001 (2)	0.005 (3)	0.003 (3)
C17	0.013 (3)	0.021 (4)	0.011 (3)	0.002 (3)	0.000 (2)	-0.001 (3)
C18	0.016 (3)	0.019 (4)	0.018 (3)	-0.002 (3)	-0.001 (3)	-0.002 (3)
C19	0.021 (4)	0.017 (4)	0.021 (3)	-0.004 (3)	0.004 (3)	-0.001 (3)
C20	0.024 (4)	0.017 (4)	0.014 (3)	0.004 (3)	0.001 (3)	0.001 (3)
C21	0.017 (3)	0.009 (3)	0.010 (3)	0.001 (2)	0.003 (2)	-0.001 (2)
C22	0.018 (3)	0.015 (3)	0.016 (3)	0.001 (3)	0.007 (3)	0.001 (3)

C23	0.017(3)	0.016 (3)	0.016 (3)	0.004 (3)	-0.003(3)	-0.002(3)
C24	0.012 (3)	0.021 (4)	0.028 (4)	0.000 (3)	0.000 (3)	-0.008(3)
C25	0.012(3)	0.009(3)	0.035(4)	-0.002(3)	0.007(3)	0.006(3)
C26	0.014(3)	0.017(3)	0.018(3)	-0.001(3)	0.004(3)	0.002(3)
15	0.0251(2)	0.0252(3)	0.0291(2)	0.001(0)	-0.00180(19)	-0.0083(2)
16	0.0231(2) 0.0376(3)	0.0202(3) 0.0383(3)	0.0291(2)	0.0001(2)	0.0099(2)	-0.0023(2)
F13	0.037(2)	0.029(2)	0.0210(2) 0.024(2)	0.0001(2)	0.0000(2)	0.0023(2)
F14	0.034(3)	0.023(2)	0.021(2) 0.038(2)	0.002(2)	0.0010(1))	0.0000(2)
F15	0.037(3)	0.031(3)	0.030(2) 0.032(2)	0.014(2) 0.005(2)	-0.002(2)	0.000(2)
F16	0.017(3)	0.035(3)	0.032(2) 0.021(2)	0.009(2)	0.002(2)	0.019(2)
C33	0.030(3)	0.045(3)	0.021(2) 0.027(4)	0.009(2)	0.0075(1)	-0.0024(1))
C34	0.022(4)	0.010(3)	0.027(4) 0.021(3)	-0.001(3)	-0.001(3)	0.004(3)
C35	0.024(4)	0.017(4)	0.021(3)	-0.002(3)	0.001(3)	-0.003(3)
C36	0.024(4)	0.021(4)	0.021(3)	-0.002(3)	0.011(3) 0.002(3)	-0.003(3)
C37	0.021(4)	0.020(4)	0.031(4)	0.001(3)	0.002(3)	0.002(3)
C_{38}	0.023(4)	0.030(4)	0.028(4)	-0.001(3)	0.000(3)	0.008(3)
C38	0.027(4)	0.030(4)	0.010(3)	-0.0001(3)	-0.000(3)	-0.002(3)
1/	0.0204(2)	0.0188(2)	0.0290(2)	-0.00083(18)	-0.00007(19)	-0.00340(19)
18 E0	0.0220(2)	0.0161(2)	0.0263(2)	-0.0012/(17)	0.00103(18)	0.00192(18)
F9	0.029(2)	0.025(2)	0.01/1(19)	-0.0009(17)	-0.0005(17)	-0.0004(10)
F10	0.028(2)	0.036(3)	0.021(2)	-0.0123(19)	0.0001(18)	-0.0051(18)
	0.039(3)	0.052 (3)	0.018(2)	-0.013(2)	0.0041 (19)	0.004(2)
F12	0.026 (2)	0.030(2)	0.034 (2)	-0.0084 (19)	0.0099 (19)	0.006 (2)
C27	0.015 (3)	0.009 (3)	0.025 (3)	-0.001(2)	-0.002(3)	-0.005(3)
C28	0.018 (3)	0.016 (3)	0.015 (3)	0.003 (3)	0.001 (3)	0.002 (3)
C29	0.010 (3)	0.012 (3)	0.027 (3)	-0.001 (2)	0.004 (3)	-0.003 (3)
C30	0.018 (3)	0.027 (4)	0.021 (3)	-0.002 (3)	0.001 (3)	-0.005 (3)
C31	0.025 (4)	0.030 (4)	0.015 (3)	0.002 (3)	0.002 (3)	0.000 (3)
C32	0.017 (3)	0.016 (3)	0.030 (4)	0.000 (3)	0.010 (3)	0.000 (3)
S 1	0.0189 (8)	0.0203 (9)	0.0175 (8)	0.0005 (7)	0.0009 (7)	-0.0035 (7)
S2	0.0224 (8)	0.0197 (9)	0.0134 (7)	-0.0011 (7)	-0.0004 (6)	0.0024 (6)
N1	0.022 (3)	0.014 (3)	0.010 (2)	0.000 (2)	0.000 (2)	0.002 (2)
C1	0.013 (3)	0.016 (3)	0.016 (3)	-0.004(2)	0.000 (2)	-0.001 (3)
C2	0.015 (3)	0.017 (3)	0.016 (3)	-0.004 (3)	-0.002 (3)	-0.003 (3)
C3	0.024 (4)	0.030 (4)	0.016 (3)	0.001 (3)	0.002 (3)	0.001 (3)
C4	0.019 (4)	0.035 (4)	0.023 (4)	0.003 (3)	-0.003 (3)	-0.008 (3)
C5	0.017 (4)	0.027 (4)	0.033 (4)	0.004 (3)	-0.004 (3)	-0.008 (3)
C6	0.021 (4)	0.019 (4)	0.020 (3)	0.000 (3)	-0.003 (3)	-0.002 (3)
C7	0.016 (3)	0.018 (3)	0.015 (3)	-0.002 (3)	-0.004 (3)	-0.004 (3)
S3	0.0190 (8)	0.0206 (9)	0.0172 (8)	-0.0007 (7)	0.0001 (7)	-0.0018 (7)
S4	0.0191 (8)	0.0217 (9)	0.0129 (7)	-0.0017 (7)	0.0002 (6)	0.0016 (6)
N2	0.013 (3)	0.020 (3)	0.015 (3)	-0.001 (2)	-0.002 (2)	0.003 (2)
C8	0.017 (3)	0.018 (3)	0.013 (3)	-0.007 (3)	-0.001 (3)	-0.001 (2)
C9	0.017 (3)	0.019 (3)	0.015 (3)	-0.005 (3)	-0.004 (3)	-0.002 (3)
C10	0.021 (3)	0.022 (4)	0.014 (3)	-0.006 (3)	0.003 (3)	0.001 (3)
C11	0.026 (4)	0.025 (4)	0.016 (3)	-0.006 (3)	0.007 (3)	-0.008 (3)
C12	0.018 (3)	0.019 (4)	0.025 (4)	0.000 (3)	0.003 (3)	-0.006 (3)
C13	0.017 (3)	0.022 (4)	0.026 (4)	-0.003 (3)	-0.004 (3)	0.003 (3)
C14	0.011 (3)	0.020 (3)	0.015 (3)	-0.004 (3)	-0.002 (3)	-0.003 (3)
	× /	× /	× /		× /	× /

Geometric parameters (Å, °)

I1—C15	2.094 (6)	F11—C31	1.344 (7)
I2—C17	2.075 (6)	F12—C32	1.343 (7)
I3—C21	2.090 (6)	C27—C28	1.396 (9)
I4—C23	2.080 (6)	C27—C32	1.381 (9)
F1—C16	1.345 (7)	C28—C29	1.379 (9)
F2—C18	1.349 (8)	C29—C30	1.387 (9)
F3—C19	1.336 (7)	C30—C31	1.383 (9)
F4—C20	1.338 (7)	C31—C32	1.382 (10)
F5—C22	1.335 (7)	S1—C1	1.679 (6)
F6—C24	1.348 (8)	S2—C1	1.730 (7)
F7—C25	1.330 (7)	S2—C7	1.748 (7)
F8—C26	1.336 (7)	N1—HN1	0.89 (6)
C15—C16	1.386 (9)	N1—C1	1.347 (7)
C15—C20	1.389 (9)	N1—C2	1.401 (8)
C16—C17	1.391 (9)	C2—C3	1.389 (9)
C17—C18	1.381 (9)	C2—C7	1.385 (9)
C18—C19	1.383 (9)	С3—Н3	0.9500
C19—C20	1.373 (10)	C3—C4	1.382 (10)
C21—C22	1.393 (8)	C4—H4	0.9500
C21—C26	1.387 (8)	C4—C5	1.398 (10)
C22—C23	1.389 (9)	С5—Н5	0.9500
C23—C24	1.380 (10)	C5—C6	1.387 (9)
C24—C25	1.377 (10)	С6—Н6	0.9500
C25—C26	1.384 (9)	C6—C7	1.390 (9)
I5—C33	2.080 (6)	S3—C8	1.679 (7)
I6—C35	2.073 (6)	S4—C8	1.741 (7)
F13—C34	1.351 (8)	S4—C14	1.748 (6)
F14—C36	1.346 (8)	N2—HN2	0.85 (3)
F15—C37	1.339 (8)	N2—C8	1.343 (8)
F16—C38	1.331 (7)	N2—C9	1.398 (8)
C33—C34	1.380 (9)	C9—C10	1.396 (9)
C33—C38	1.400 (10)	C9—C14	1.403 (9)
C34—C35	1.402 (9)	C10—H10	0.9500
C35—C36	1.373 (10)	C10—C11	1.369 (10)
C36—C37	1.375 (10)	C11—H11	0.9500
C37—C38	1.375 (10)	C11—C12	1.405 (9)
I7—C27	2.069 (6)	C12—H12	0.9500
I8—C29	2.085 (6)	C12—C13	1.384 (9)
F9—C28	1.342 (7)	C13—H13	0.9500
F10—C30	1.334 (8)	C13—C14	1.394 (9)
C16—C15—I1	122.6 (5)	C28—C29—C30	118.2 (6)
C16-C15-C20	117.1 (6)	C30—C29—I8	120.1 (5)
C20—C15—I1	120.2 (5)	F10-C30-C29	121.1 (6)
F1-C16-C15	118.3 (6)	F10-C30-C31	118.4 (6)
F1-C16-C17	118.4 (6)	C31—C30—C29	120.6 (6)

C15—C16—C17	123.2 (6)	F11—C31—C30	119.9 (6)
C16—C17—I2	121.1 (5)	F11—C31—C32	120.5 (6)
C18—C17—I2	121.8 (5)	C32—C31—C30	119.6 (6)
C18—C17—C16	117.1 (6)	F12—C32—C27	120.5 (6)
F2-C18-C17	120.3 (6)	F12—C32—C31	117.7 (6)
F2-C18-C19	118.0 (6)	C27—C32—C31	121.8 (6)
C17—C18—C19	121.7 (6)	C1—S2—C7	92.2 (3)
F3—C19—C18	120.4 (6)	C1—N1—HN1	117 (4)
F3—C19—C20	120.2 (6)	C1—N1—C2	115.5 (5)
C20—C19—C18	119.3 (6)	C2—N1—HN1	127 (4)
F4—C20—C15	120.0 (6)	S1-C1-S2	1233(4)
F4-C20-C19	118 3 (6)	N1 - C1 - S1	126.5(1)
$C_{19} - C_{20} - C_{15}$	121 6 (6)	N1 - C1 - S2	120.2(5)
$C_{22} = C_{21} = C_{13}$	122.5 (5)	$C_3 - C_2 - N_1$	126.3 (6)
$C_{22} C_{21} I_{3}$	122.3(3)	C_{7} C_{2} N_{1}	112 2 (6)
$C_{20} = C_{21} = 15$	117 3 (6)	$C_7 - C_2 - C_3$	112.2 (0)
$C_{20} - C_{21} - C_{22}$	117.5 (0)	$C_{1} = C_{2} = C_{3}$	121.5 (0)
F_{3} C_{22} C_{21}	118.4 (0)	$C_2 = C_3 = H_3$	121.1
F_{3} — C_{22} — C_{23}	118.9 (6)	C4 - C3 - C2	117.9(0)
$C_{23} - C_{22} - C_{21}$	122.7 (6)	C4 - C3 - H3	121.1
$C_{22} - C_{23} - I_{4}$	120.7 (5)	$C_3 - C_4 - H_4$	119.4
$C_{24} - C_{23} - I_{4}$	122.0 (5)	$C_3 - C_4 - C_5$	121.1 (7)
C24—C23—C22	117.3 (6)	C5—C4—H4	119.4
F6—C24—C23	120.0 (6)	C4—C5—H5	119.8
F6—C24—C25	117.8 (6)	C6—C5—C4	120.5 (7)
C25—C24—C23	122.2 (6)	C6—C5—H5	119.8
F7—C25—C24	120.7 (6)	С5—С6—Н6	120.8
F7—C25—C26	120.3 (6)	C5—C6—C7	118.5 (6)
C24—C25—C26	118.9 (6)	С7—С6—Н6	120.8
F8-C26-C21	120.4 (6)	C2—C7—S2	109.9 (5)
F8—C26—C25	117.9 (6)	C2—C7—C6	120.5 (6)
C25—C26—C21	121.6 (6)	C6—C7—S2	129.6 (5)
C34—C33—I5	121.5 (5)	C8—S4—C14	92.1 (3)
C34—C33—C38	117.3 (6)	C8—N2—HN2	129 (5)
C38—C33—I5	121.0 (5)	C8—N2—C9	116.3 (6)
F13—C34—C33	118.3 (6)	C9—N2—HN2	113 (5)
F13—C34—C35	118.6 (6)	S3—C8—S4	123.3 (4)
C33—C34—C35	123.1 (6)	N2—C8—S3	126.7 (5)
C34 - C35 - I6	121.7 (5)	N2-C8-S4	110.0 (5)
$C_{36} - C_{35} - I_{6}$	121.7 (5)	N2-C9-C14	111.7 (6)
$C_{36} - C_{35} - C_{34}$	116.6 (6)	C10-C9-N2	127 3 (6)
F14 - C36 - C35	119.6 (6)	C10-C9-C14	127.5(6) 121.0(6)
F14 - C36 - C37	117.8 (6)	C9 - C10 - H10	121.0 (0)
C35 C36 C37	122 6 (7)	C_{11} C_{10} C_{9}	117 9 (6)
E15_C37_C36	122.0(7) 120.0(6)	C_{11} C_{10} H_{10}	121.0
$F_{15} = C_{37} = C_{30}$	120.0 (0)	$C_{10} = C_{10} = H_{10}$	121.0
$C_{38} = C_{37} = C_{36}$	120.0(0) 110.2(7)	$C_{10} = C_{11} =$	119.3 191 A (6)
$E_{16} = C_{28} = C_{22}$	117.2 (/)	C_{10} C_{11} C_{12} C_{11} C_{12} C_{11} C_{11} C_{11} C_{11} C_{11} C_{12} C_{12} C_{11} C_{12} C	121.4(0)
F10 - C30 - C33	119.7 (0)	C_{12} C_{11} C_{12} U_{12}	119.5
F10-U30-U3/	119.1(0)	UII—UI2—HI2	119.4

C37—C38—C33	121.2 (6)	C13—C12—C11	121.2 (6)
C28—C27—I7	121.9 (5)	C13—C12—H12	119.4
C32—C27—I7	121.2 (5)	C12—C13—H13	121.1
C32—C27—C28	116.9 (6)	C12—C13—C14	117.7 (6)
F9—C28—C27	118.2 (6)	C14—C13—H13	121.1
F9—C28—C29	118.9 (6)	C9—C14—S4	109.9 (5)
C29—C28—C27	122.9 (6)	C13—C14—S4	129.3 (5)
C28—C29—I8	121.6 (5)	C13—C14—C9	120.7 (6)
I1—C15—C16—F1	2.2 (8)	C35—C36—C37—C38	1.5 (11)
I1—C15—C16—C17	-176.3 (5)	C36—C37—C38—F16	179.3 (6)
I1—C15—C20—F4	-1.3 (8)	C36—C37—C38—C33	0.0 (11)
I1—C15—C20—C19	176.4 (5)	C38—C33—C34—F13	179.5 (6)
I2—C17—C18—F2	-0.2 (9)	C38—C33—C34—C35	0.1 (10)
I2—C17—C18—C19	-178.3 (5)	I7—C27—C28—F9	3.5 (8)
I3—C21—C22—F5	-2.7 (8)	I7—C27—C28—C29	-176.2 (5)
I3—C21—C22—C23	176.7 (5)	I7—C27—C32—F12	-4.9 (9)
I3—C21—C26—F8	1.3 (8)	I7—C27—C32—C31	174.8 (5)
I3—C21—C26—C25	-175.7 (5)	I8—C29—C30—F10	-3.5 (9)
I4—C23—C24—F6	-0.5 (9)	I8—C29—C30—C31	176.4 (5)
I4—C23—C24—C25	179.5 (5)	F9—C28—C29—I8	3.1 (8)
F1-C16-C17-I2	0.4 (8)	F9—C28—C29—C30	-179.0 (6)
F1-C16-C17-C18	-179.0 (6)	F10-C30-C31-F11	-0.2 (10)
F2-C18-C19-F3	-0.4 (10)	F10-C30-C31-C32	-179.9 (6)
F2-C18-C19-C20	-179.4 (6)	F11—C31—C32—F12	2.2 (10)
F3-C19-C20-F4	-0.8 (10)	F11—C31—C32—C27	-177.6 (6)
F3—C19—C20—C15	-178.5 (6)	C27—C28—C29—I8	-177.3 (5)
F5—C22—C23—I4	-0.1 (8)	C27—C28—C29—C30	0.6 (10)
F5-C22-C23-C24	177.8 (6)	C28—C27—C32—F12	177.4 (6)
F6-C24-C25-F7	2.8 (10)	C28—C27—C32—C31	-2.9 (10)
F6-C24-C25-C26	179.4 (6)	C28-C29-C30-F10	178.6 (6)
F7—C25—C26—F8	-1.0 (10)	C28—C29—C30—C31	-1.5 (10)
F7—C25—C26—C21	176.0 (6)	C29—C30—C31—F11	179.9 (6)
C15—C16—C17—I2	179.0 (5)	C29—C30—C31—C32	0.2 (10)
C15—C16—C17—C18	-0.4 (10)	C30—C31—C32—F12	-178.1 (6)
C16—C15—C20—F4	-177.5 (6)	C30—C31—C32—C27	2.1 (10)
C16—C15—C20—C19	0.2 (10)	C32—C27—C28—F9	-178.8 (6)
C16—C17—C18—F2	179.2 (6)	C32—C27—C28—C29	1.5 (10)
C16—C17—C18—C19	1.2 (10)	N1—C2—C3—C4	-179.8 (6)
C17—C18—C19—F3	177.7 (6)	N1—C2—C7—S2	-0.7 (7)
C17—C18—C19—C20	-1.3 (11)	N1—C2—C7—C6	-179.7 (6)
C18—C19—C20—F4	178.3 (6)	C1—S2—C7—C2	0.5 (5)
C18—C19—C20—C15	0.6 (10)	C1—S2—C7—C6	179.4 (7)
C20-C15-C16-F1	178.3 (5)	C1—N1—C2—C3	179.5 (6)
C20-C15-C16-C17	-0.2 (10)	C1—N1—C2—C7	0.6 (8)
C21—C22—C23—I4	-179.5 (5)	C2—N1—C1—S1	-179.8 (5)
C21—C22—C23—C24	-1.5 (10)	C2—N1—C1—S2	-0.2 (7)
C22—C21—C26—F8	177.6 (6)	C2—C3—C4—C5	0.8 (11)

0.7 (9)	C3—C2—C7—S2	-179.7 (5)
-178.3 (6)	C3—C2—C7—C6	1.3 (10)
1.6 (10)	C3—C4—C5—C6	-0.8 (11)
-177.2 (6)	C4—C5—C6—C7	1.1 (10)
-0.6 (10)	C5—C6—C7—S2	179.9 (5)
-177.7 (6)	C5—C6—C7—C2	-1.3 (10)
-0.6 (10)	C7—S2—C1—S1	179.5 (4)
-178.9 (5)	C7—S2—C1—N1	-0.2 (5)
0.4 (9)	C7—C2—C3—C4	-1.0 (10)
4.8 (9)	N2-C9-C10-C11	-179.2 (6)
-174.6 (5)	N2-C9-C14-S4	0.3 (7)
-5.4 (9)	N2-C9-C14-C13	-179.4 (6)
174.0 (6)	C8—S4—C14—C9	0.4 (5)
-1.7 (10)	C8—S4—C14—C13	-180.0 (6)
178.9 (6)	C8—N2—C9—C10	178.6 (6)
0.9 (9)	C8—N2—C9—C14	-1.1 (8)
-178.2 (6)	C9—N2—C8—S3	179.9 (5)
1.1 (10)	C9—N2—C8—S4	1.4 (7)
-177.9 (7)	C9-C10-C11-C12	-1.0 (10)
0.4 (11)	C10-C9-C14-S4	-179.5 (5)
-179.0 (7)	C10-C9-C14-C13	0.8 (10)
-179.8 (5)	C10-C11-C12-C13	0.2 (11)
1.2 (10)	C11—C12—C13—C14	1.2 (10)
179.9 (6)	C12—C13—C14—S4	178.7 (5)
-0.8 (11)	C12—C13—C14—C9	-1.7 (10)
177.3 (6)	C14—S4—C8—S3	-179.6 (4)
-2.0 (11)	C14—S4—C8—N2	-1.0 (5)
-179.5 (7)	C14—C9—C10—C11	0.5 (10)
	0.7 (9) -178.3 (6) 1.6 (10) -177.2 (6) -0.6 (10) -177.7 (6) -0.6 (10) -178.9 (5) 0.4 (9) 4.8 (9) -174.6 (5) -5.4 (9) 174.0 (6) -1.7 (10) 178.9 (6) 0.9 (9) -178.2 (6) 1.1 (10) -177.9 (7) 0.4 (11) -179.8 (5) 1.2 (10) 179.9 (6) -0.8 (11) 177.3 (6) -2.0 (11) -179.5 (7)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—HN1…S3	0.89 (6)	2.51 (6)	3.376 (6)	165 (5)
С3—Н3…I1	0.95	3.10	3.976 (7)	154
N2—HN2…S1	0.85 (3)	2.52 (3)	3.360 (6)	169 (7)
C10—H10…I3 ⁱ	0.95	3.09	4.006 (6)	161

Symmetry code: (i) x, y, z+1.

1,3-Benzothiazole-2-thiol-1,2,4,5-tetrafluoro-3,6-diiodobenzene (2/1) (2MBZTH_14F4DIB)

$V = 1158.61 (8) Å^3$
Z = 2
F(000) = 700
$D_{\rm x} = 2.111 { m Mg m}^{-3}$
Ao $K\alpha$ radiation, $\lambda = 0.71073$ Å
Cell parameters from 9937 reflections
$0 = 2.6 - 30.1^{\circ}$

$\mu = 3.12 \text{ mm}^{-1}$	Needle, colourless
T = 100 K	$0.17 \times 0.09 \times 0.04 \text{ mm}$
Data collection	
Bruker D8 Venture Photon 2 diffractometer Radiation source: Incoatec I μ S φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2017) $T_{\min} = 0.559, T_{\max} = 0.746$ 22270 measured reflections	3402 independent reflections 2811 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{max} = 30.1^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -7 \rightarrow 7$ $k = -22 \rightarrow 21$ $l = -18 \rightarrow 19$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.057$ S = 1.15 3402 reflections 149 parameters 0 restraints Primary atom site location: dual	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0092P)^2 + 1.689P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.90$ e Å ⁻³ $\Delta\rho_{min} = -0.78$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.09620(3)	0.50667 (2)	0.18841 (2)	0.01843 (6)
F1	0.4987 (3)	0.36936 (10)	0.13226 (14)	0.0285 (4)
F2	0.8063 (3)	0.36478 (10)	-0.00971 (13)	0.0267 (4)
C8	0.3371 (5)	0.50280 (17)	0.0761 (2)	0.0179 (5)
C9	0.4956 (5)	0.43488 (17)	0.0673 (2)	0.0210 (6)
C10	0.6546 (5)	0.43202 (17)	-0.0070(2)	0.0190 (5)
S1	-0.29400 (12)	0.50758 (4)	0.36239 (5)	0.01927 (14)
S2	0.07419 (13)	0.64355 (4)	0.42496 (5)	0.02067 (15)
N1	-0.2698 (4)	0.60239 (14)	0.52996 (18)	0.0175 (5)
HN1	-0.379 (6)	0.577 (2)	0.548 (3)	0.024 (9)*
C1	-0.1812 (5)	0.58112 (16)	0.4433 (2)	0.0166 (5)
C2	-0.1450 (5)	0.66593 (16)	0.5855 (2)	0.0173 (5)
C3	-0.2004 (5)	0.69814 (17)	0.6767 (2)	0.0225 (6)
H3	-0.337581	0.678027	0.708502	0.027*
C4	-0.0491 (6)	0.76050 (19)	0.7197 (2)	0.0271 (7)
H4	-0.083090	0.783531	0.782261	0.032*
C5	0.1516 (6)	0.79028 (19)	0.6737 (2)	0.0269 (7)
Н5	0.253410	0.832708	0.705534	0.032*
C6	0.2060 (5)	0.75900 (17)	0.5816 (2)	0.0237 (6)

H6	0.342177	0.779762	0.549629	0.028*	
C7	0.0542 (5)	0.69629 (16)	0.5379 (2)	0.0178 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01632 (9)	0.02275 (9)	0.01671 (10)	0.00025 (7)	0.00446 (6)	-0.00296 (6)
F1	0.0349 (10)	0.0250 (8)	0.0273 (10)	0.0077 (7)	0.0135 (8)	0.0069 (7)
F2	0.0284 (9)	0.0247 (8)	0.0283 (10)	0.0099 (7)	0.0107 (8)	0.0003 (7)
C8	0.0152 (12)	0.0226 (13)	0.0162 (14)	-0.0007 (10)	0.0035 (10)	-0.0063 (10)
C9	0.0216 (14)	0.0217 (13)	0.0200 (15)	-0.0003 (11)	0.0031 (12)	-0.0003 (10)
C10	0.0169 (12)	0.0196 (12)	0.0207 (15)	0.0022 (10)	0.0019 (11)	-0.0047 (10)
S1	0.0194 (3)	0.0228 (3)	0.0161 (3)	-0.0054 (3)	0.0047 (3)	-0.0013 (2)
S2	0.0195 (3)	0.0236 (3)	0.0198 (4)	-0.0062(3)	0.0071 (3)	-0.0005 (3)
N1	0.0170 (11)	0.0165 (10)	0.0196 (13)	-0.0033 (9)	0.0057 (9)	0.0011 (9)
C1	0.0154 (12)	0.0176 (12)	0.0170 (14)	-0.0002 (10)	0.0030 (10)	0.0036 (9)
C2	0.0189 (13)	0.0148 (11)	0.0184 (14)	-0.0022 (10)	0.0016 (11)	0.0020 (9)
C3	0.0227 (14)	0.0226 (13)	0.0230 (16)	0.0016 (11)	0.0061 (12)	0.0009 (11)
C4	0.0322 (16)	0.0254 (14)	0.0238 (17)	0.0003 (12)	0.0036 (13)	-0.0066 (12)
C5	0.0273 (15)	0.0221 (14)	0.0307 (18)	-0.0041 (12)	-0.0022 (13)	-0.0029 (12)
C6	0.0232 (14)	0.0194 (13)	0.0286 (17)	-0.0051 (11)	0.0023 (12)	0.0013 (11)
C7	0.0173 (12)	0.0170 (12)	0.0193 (15)	-0.0007 (10)	0.0027 (11)	0.0026 (10)

Geometric parameters (Å, °)

I1—C8	2.090 (3)	N1—C2	1.394 (4)
F1—C9	1.348 (3)	C2—C3	1.386 (4)
F2-C10	1.344 (3)	C2—C7	1.395 (4)
С8—С9	1.384 (4)	С3—Н3	0.9500
C8-C10 ⁱ	1.385 (4)	C3—C4	1.381 (4)
C9—C10	1.381 (4)	C4—H4	0.9500
S1—C1	1.673 (3)	C4—C5	1.388 (4)
S2—C1	1.743 (3)	С5—Н5	0.9500
S2—C7	1.746 (3)	C5—C6	1.390 (4)
N1—HN1	0.78 (3)	С6—Н6	0.9500
N1-C1	1.344 (3)	C6—C7	1.390 (4)
C9—C8—I1	121.6 (2)	C3—C2—N1	127.2 (2)
C9-C8-C10 ⁱ	116.8 (2)	C3—C2—C7	121.3 (3)
C10 ⁱ —C8—I1	121.59 (19)	С2—С3—Н3	121.2
F1—C9—C8	120.2 (2)	C4—C3—C2	117.7 (3)
F1-C9-C10	118.1 (2)	С4—С3—Н3	121.2
С10—С9—С8	121.7 (3)	C3—C4—H4	119.3
F2-C10-C8 ⁱ	120.2 (2)	C3—C4—C5	121.5 (3)
F2-C10-C9	118.3 (2)	C5—C4—H4	119.3
C9-C10-C8 ⁱ	121.4 (2)	C4—C5—H5	119.5
C1—S2—C7	92.03 (13)	C4—C5—C6	121.0 (3)
C1—N1—HN1	119 (3)	С6—С5—Н5	119.5

C1—N1—C2	116.7 (2)	С5—С6—Н6	121.1
C2—N1—HN1	124 (3)	C7—C6—C5	117.7 (3)
S1—C1—S2	123.72 (16)	С7—С6—Н6	121.1
N1—C1—S1	126.7 (2)	C2—C7—S2	110.2 (2)
N1—C1—S2	109.5 (2)	C6—C7—S2	128.9 (2)
N1—C2—C7	111.5 (2)	C6—C7—C2	120.8 (3)
I1—C8—C9—F1	-0.5 (4)	C1—N1—C2—C7	0.3 (3)
I1—C8—C9—C10	179.8 (2)	C2—N1—C1—S1	-180.0 (2)
F1	-0.9 (4)	C2—N1—C1—S2	-0.7 (3)
F1-C9-C10-C8 ⁱ	-179.6 (3)	C2—C3—C4—C5	0.1 (5)
C8—C9—C10—F2	178.7 (3)	C3—C2—C7—S2	-179.8 (2)
C8—C9—C10—C8 ⁱ	0.0 (5)	C3—C2—C7—C6	1.1 (4)
C10 ⁱ —C8—C9—F1	179.6 (3)	C3—C4—C5—C6	0.8 (5)
C10 ⁱ —C8—C9—C10	0.0 (5)	C4—C5—C6—C7	-0.7 (5)
N1—C2—C3—C4	179.0 (3)	C5—C6—C7—S2	-179.2 (2)
N1—C2—C7—S2	0.2 (3)	C5—C6—C7—C2	-0.2 (4)
N1—C2—C7—C6	-178.9 (3)	C7—S2—C1—S1	180.00 (19)
C1—S2—C7—C2	-0.5 (2)	C7—S2—C1—N1	0.7 (2)
C1—S2—C7—C6	178.5 (3)	C7—C2—C3—C4	-1.0 (4)
C1—N1—C2—C3	-179.7 (3)		

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A	
N1—HN1····S1 ⁱⁱ	0.78 (3)	2.60 (3)	3.369 (2)	170 (3)	
C3—H3···F1 ⁱⁱⁱ	0.95	2.50	3.333 (3)	146	
C6—H6…F2 ^{iv}	0.95	2.44	3.357 (3)	162	

Symmetry codes: (ii) -*x*-1, -*y*+1, -*z*+1; (iii) -*x*, -*y*+1, -*z*+1; (iv) -*x*+3/2, *y*+1/2, -*z*+1/2.

1,3-Benzothiazole-2-thiol-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1) (MBZTH_135F3I3B)

Crystal data	
$C_6F_3I_3$ · $C_7H_5NS_2$	F(000) = 1232
$M_r = 677.00$	$D_{\rm x} = 2.681 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 15.2665 (6) Å	Cell parameters from 9894 reflections
b = 4.7380(2)Å	$\theta = 3.1 - 28.4^{\circ}$
c = 23.2215 (10) Å	$\mu = 5.86 \text{ mm}^{-1}$
$\beta = 93.139(2)^{\circ}$	T = 100 K
$V = 1677.15 (12) Å^3$	Plate, colourless
Z = 4	$0.16 \times 0.08 \times 0.05 \text{ mm}$
Data collection	
Bruker D8 Venture Photon 2	Absorption correction: multi-scan
diffractometer	(SADABS; Bruker, 2017)
Radiation source: Incoatec $I\mu S$	$T_{\rm min} = 0.610, T_{\rm max} = 0.746$
φ and ω scans	35222 measured reflections
	4212 independent reflections

3611 reflections with $I > 2\sigma(I)$	$h = -19 \rightarrow 20$
$R_{\rm int} = 0.057$	$k = -6 \rightarrow 6$
$\theta_{\rm max} = 28.4^{\circ}, \theta_{\rm min} = 2.2^{\circ}$	$l = -30 \rightarrow 31$
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.024$	and constrained refinement
$wR(F^2) = 0.052$	$w = 1/[\sigma^2(F_o^2) + 4.0997P]$
S = 1.18	where $P = (F_o^2 + 2F_c^2)/3$
4212 reflections	$(\Delta/\sigma)_{\rm max} = 0.003$
203 parameters	$\Delta \rho_{\rm max} = 0.67 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.73 \text{ e } \text{\AA}^{-3}$
Primary atom site location: dual	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.70161 (2)	0.58105 (5)	0.55847 (2)	0.01897 (6)
I2	0.68104 (2)	-0.18871 (6)	0.76567 (2)	0.02456 (7)
I3	0.37648 (2)	-0.11384 (6)	0.58903 (2)	0.02243 (6)
F1	0.75133 (13)	0.2505 (5)	0.67513 (9)	0.0224 (5)
F2	0.49679 (14)	-0.2816 (5)	0.70076 (9)	0.0247 (5)
F3	0.51145 (13)	0.3138 (5)	0.54048 (9)	0.0224 (5)
C8	0.6317 (2)	0.2972 (7)	0.60769 (15)	0.0161 (7)
C9	0.6683 (2)	0.1805 (8)	0.65793 (15)	0.0168 (7)
C10	0.6242 (2)	-0.0129 (8)	0.69039 (15)	0.0170 (7)
C11	0.5404 (2)	-0.0910 (8)	0.67047 (15)	0.0195 (7)
C12	0.5008 (2)	0.0172 (8)	0.62016 (15)	0.0170 (7)
C13	0.5477 (2)	0.2102 (8)	0.58980 (15)	0.0177 (7)
S1	0.85079 (6)	1.0132 (2)	0.49475 (4)	0.02217 (19)
S2	0.81182 (6)	0.6044 (2)	0.39819 (4)	0.02095 (19)
N1	0.9677 (2)	0.7071 (7)	0.43672 (13)	0.0205 (6)
HN1	1.011 (2)	0.777 (10)	0.4571 (18)	0.040 (14)*
C1	0.8842 (2)	0.7835 (8)	0.44595 (15)	0.0185 (7)
C2	0.9777 (2)	0.5076 (8)	0.39362 (16)	0.0203 (7)
C3	1.0556 (3)	0.3935 (9)	0.37636 (18)	0.0278 (9)
H3	1.110354	0.453291	0.393589	0.033*
C4	1.0518 (3)	0.1913 (9)	0.33364 (18)	0.0303 (9)
H4	1.104619	0.107792	0.322010	0.036*
C5	0.9720 (3)	0.1072 (9)	0.30721 (18)	0.0304 (9)
H5	0.971216	-0.031349	0.277614	0.036*
C6	0.8934 (3)	0.2228 (8)	0.32348 (17)	0.0260 (8)
H6	0.838874	0.165478	0.305463	0.031*
C7	0.8970 (2)	0.4256 (8)	0.36705 (15)	0.0194 (7)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01882 (12)	0.01952 (12)	0.01885 (12)	-0.00162 (9)	0.00346 (9)	-0.00136 (9)
I2	0.02741 (13)	0.02835 (14)	0.01735 (12)	0.00846 (10)	-0.00403 (9)	0.00139 (10)
I3	0.01542 (11)	0.03132 (14)	0.02042 (12)	-0.00464 (9)	-0.00022 (9)	-0.00501 (10)
F1	0.0151 (10)	0.0285 (12)	0.0230 (11)	-0.0008 (9)	-0.0039 (8)	-0.0038 (9)
F2	0.0261 (11)	0.0259 (12)	0.0221 (11)	-0.0066 (9)	0.0014 (9)	0.0078 (9)
F3	0.0198 (10)	0.0286 (12)	0.0184 (10)	0.0021 (9)	-0.0027 (8)	0.0066 (9)
C8	0.0174 (16)	0.0146 (17)	0.0163 (16)	-0.0009 (13)	0.0025 (13)	-0.0019 (13)
C9	0.0137 (16)	0.0191 (17)	0.0175 (17)	0.0018 (13)	-0.0010 (13)	-0.0058 (14)
C10	0.0180 (17)	0.0184 (17)	0.0142 (16)	0.0044 (13)	-0.0036 (13)	-0.0014 (14)
C11	0.0206 (18)	0.0202 (18)	0.0180 (17)	-0.0001 (14)	0.0032 (14)	-0.0004 (14)
C12	0.0130 (16)	0.0198 (18)	0.0180 (17)	-0.0001 (13)	0.0000 (13)	-0.0020 (14)
C13	0.0159 (16)	0.0208 (18)	0.0163 (16)	0.0037 (14)	0.0007 (13)	-0.0005 (14)
S1	0.0217 (5)	0.0233 (5)	0.0217 (5)	-0.0019 (4)	0.0019 (4)	-0.0025 (4)
S2	0.0158 (4)	0.0237 (5)	0.0229 (5)	-0.0027 (3)	-0.0021 (3)	-0.0020 (4)
N1	0.0183 (15)	0.0251 (17)	0.0178 (15)	-0.0035 (13)	-0.0019 (12)	-0.0011 (13)
C1	0.0178 (17)	0.0183 (18)	0.0191 (17)	-0.0026 (14)	-0.0004 (14)	0.0025 (14)
C2	0.0218 (18)	0.0196 (18)	0.0194 (18)	0.0014 (14)	-0.0019 (14)	0.0022 (15)
C3	0.0201 (19)	0.033 (2)	0.030 (2)	0.0003 (16)	-0.0023 (16)	0.0032 (18)
C4	0.033 (2)	0.031 (2)	0.028 (2)	0.0097 (18)	0.0072 (17)	0.0002 (18)
C5	0.043 (3)	0.022 (2)	0.026 (2)	0.0013 (18)	0.0067 (18)	-0.0007 (17)
C6	0.033 (2)	0.022 (2)	0.0223 (19)	-0.0059 (16)	-0.0037 (16)	0.0010 (16)
C7	0.0198 (18)	0.0199 (18)	0.0183 (17)	-0.0008 (14)	0.0004 (14)	0.0026 (14)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

I1—C8	2.095 (3)	S2—C7	1.742 (4)
I2—C10	2.082 (3)	N1—HN1	0.857 (19)
I3—C12	2.088 (3)	N1—C1	1.353 (5)
F1—C9	1.349 (4)	N1—C2	1.391 (5)
F2—C11	1.343 (4)	C2—C3	1.386 (5)
F3—C13	1.338 (4)	C2—C7	1.402 (5)
С8—С9	1.381 (5)	С3—Н3	0.9500
C8—C13	1.389 (5)	C3—C4	1.378 (6)
C9—C10	1.384 (5)	C4—H4	0.9500
C10-C11	1.388 (5)	C4—C5	1.393 (6)
C11—C12	1.384 (5)	С5—Н5	0.9500
C12—C13	1.379 (5)	C5—C6	1.390 (6)
S1—C1	1.671 (4)	С6—Н6	0.9500
S2—C1	1.743 (4)	C6—C7	1.394 (5)
C9—C8—I1	121.6 (3)	S1—C1—S2	122.8 (2)
C9—C8—C13	117.3 (3)	N1—C1—S1	127.4 (3)
C13—C8—I1	121.1 (3)	N1—C1—S2	109.8 (3)
F1—C9—C8	118.8 (3)	N1—C2—C7	112.1 (3)
F1—C9—C10	118.6 (3)	C3—C2—N1	127.1 (4)

C8—C9—C10	122.6 (3)	C3—C2—C7	120.8 (4)
C9—C10—I2	122.0 (3)	С2—С3—Н3	120.8
C9—C10—C11	117.5 (3)	C4—C3—C2	118.5 (4)
C11—C10—I2	120.5 (3)	С4—С3—Н3	120.8
F2-C11-C10	118.6 (3)	С3—С4—Н4	119.4
F2-C11-C12	119.0 (3)	C3—C4—C5	121.1 (4)
C12—C11—C10	122.3 (3)	С5—С4—Н4	119.4
C11—C12—I3	121.9 (3)	С4—С5—Н5	119.5
C13—C12—I3	120.5 (3)	C6—C5—C4	121.0 (4)
C13—C12—C11	117.6 (3)	С6—С5—Н5	119.5
F3—C13—C8	118.7 (3)	С5—С6—Н6	121.0
F3—C13—C12	118.6 (3)	C5—C6—C7	117.9 (4)
C12—C13—C8	122.7 (3)	С7—С6—Н6	121.0
C7—S2—C1	92.24 (18)	C2—C7—S2	109.9 (3)
C1—N1—HN1	121 (3)	C6—C7—S2	129.5 (3)
C1—N1—C2	115.9 (3)	C6—C7—C2	120.6 (3)
C2—N1—HN1	123 (3)		
I1—C8—C9—F1	-0.5 (4)	C13—C8—C9—F1	177.0 (3)
I1—C8—C9—C10	-178.3 (3)	C13—C8—C9—C10	-0.8 (5)
I1—C8—C13—F3	-0.7 (4)	N1—C2—C3—C4	178.2 (4)
I1—C8—C13—C12	178.0 (3)	N1—C2—C7—S2	-0.2 (4)
I2—C10—C11—F2	0.1 (5)	N1—C2—C7—C6	-178.7 (3)
I2—C10—C11—C12	-178.9 (3)	C1—S2—C7—C2	-0.2 (3)
I3—C12—C13—F3	0.8 (5)	C1—S2—C7—C6	178.1 (4)
I3—C12—C13—C8	-177.9 (3)	C1—N1—C2—C3	-179.4 (4)
F1—C9—C10—I2	1.7 (4)	C1—N1—C2—C7	0.8 (5)
F1—C9—C10—C11	-177.2 (3)	C2—N1—C1—S1	179.2 (3)
F2-C11-C12-I3	-1.4 (5)	C2—N1—C1—S2	-0.9 (4)
F2-C11-C12-C13	-179.3 (3)	C2—C3—C4—C5	1.5 (6)
C8—C9—C10—I2	179.5 (3)	C3—C2—C7—S2	179.9 (3)
C8—C9—C10—C11	0.6 (5)	C3—C2—C7—C6	1.4 (6)
C9—C8—C13—F3	-178.2 (3)	C3—C4—C5—C6	-0.6 (6)
C9—C8—C13—C12	0.4 (5)	C4—C5—C6—C7	0.0 (6)
C9—C10—C11—F2	179.0 (3)	C5—C6—C7—S2	-178.6 (3)
C9—C10—C11—C12	0.0 (5)	C5—C6—C7—C2	-0.4 (6)
C10-C11-C12-I3	177.6 (3)	C7—S2—C1—S1	-179.5 (2)
C10-C11-C12-C13	-0.4 (5)	C7—S2—C1—N1	0.6 (3)
C11—C12—C13—F3	178.8 (3)	C7—C2—C3—C4	-1.9 (6)
C11—C12—C13—C8	0.1 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A	
N1—HN1····S1 ⁱ	0.86 (2)	2.54 (2)	3.389 (3)	172 (4)	
С3—Н3…І1 ^{іі}	0.95	3.03	3.928 (4)	159	

Symmetry codes: (i) -*x*+2, -*y*+2, -*z*+1; (ii) -*x*+2, -*y*+1, -*z*+1.

1,3-Benzothiazole-2-thiol-1,1,2,2-tetraiodoethene (1/1) (MBZTH_TIE)

Crystal data

 $\begin{array}{l} C_2 I_4 \cdot C_7 H_5 NS_2 \\ M_r = 698.86 \\ \text{Triclinic, } P\overline{1} \\ a = 7.4085 \ (6) \ \text{\AA} \\ b = 10.8180 \ (9) \ \text{\AA} \\ c = 11.1989 \ (10) \ \text{\AA} \\ a = 66.616 \ (3)^\circ \\ \beta = 70.765 \ (3)^\circ \\ \gamma = 70.792 \ (3)^\circ \\ V = 757.20 \ (11) \ \text{\AA}^3 \end{array}$

Data collection

Bruker D8 Venture Photon 2	3484 independent reflections
diffractometer	3037 reflections with $I > 2\sigma(I)$
Radiation source: Incoatec I μ S	$R_{\rm int} = 0.052$
φ and ω scans	$\theta_{\rm max} = 27.6^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Bruker, 2017)	$k = -14 \rightarrow 14$
$T_{\min} = 0.589, \ T_{\max} = 0.746$	$l = -14 \rightarrow 14$
22463 measured reflections	
Definement	

Refinement

Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent $R[F^2 > 2\sigma(F^2)] = 0.029$ and constrained refinement $wR(F^2) = 0.072$ $w = 1/[\sigma^2(F_o^2) + (0.0264P)^2 + 3.2353P]$ S = 1.13where $P = (F_0^2 + 2F_c^2)/3$ 3484 reflections $(\Delta/\sigma)_{\rm max} = 0.002$ 159 parameters $\Delta \rho_{\rm max} = 1.43 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -1.76 \text{ e} \text{ Å}^{-3}$ 7 restraints Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Z = 2

F(000) = 620

 $\theta = 2.4 - 27.6^{\circ}$

 $\mu = 8.48 \text{ mm}^{-1}$

Block, yellow

 $0.08 \times 0.07 \times 0.07$ mm

T = 100 K

 $D_{\rm x} = 3.065 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9908 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
I1	0.18703 (5)	0.90012 (3)	0.68231 (3)	0.02172 (9)	
I2	0.32280 (5)	0.95731 (4)	0.33480 (3)	0.02290 (9)	
C8	0.0936 (8)	0.9743 (5)	0.5033 (6)	0.0239 (11)	
I3	0.72172 (6)	0.21253 (4)	0.95745 (4)	0.03285 (11)	
I4	0.76779 (5)	-0.15110 (4)	1.05340 (4)	0.02545 (10)	
C9A	0.9080 (15)	0.0083 (10)	1.0028 (9)	0.016 (3)	0.529 (19)
C9B	0.9990 (16)	-0.0669 (12)	1.0232 (11)	0.016 (3)	0.471 (19)
S1	0.33205 (18)	0.46883 (15)	0.92558 (14)	0.0257 (3)	
S2	0.34982 (18)	0.53599 (14)	0.63493 (13)	0.0224 (3)	

N1	0.0271 (6)	0.5607 (5)	0.8065 (4)	0.0207 (9)
HN1	-0.057 (8)	0.555 (7)	0.881 (4)	0.036 (19)*
C1	0.2213 (7)	0.5214 (5)	0.7989 (5)	0.0193 (10)
C2	0.1323 (7)	0.6027 (5)	0.5783 (5)	0.0189 (10)
C3	0.1076 (8)	0.6481 (6)	0.4478 (6)	0.0245 (11)
Н3	0.217056	0.642904	0.374510	0.029*
C4	-0.0808 (9)	0.7004 (6)	0.4295 (6)	0.0270 (12)
H4	-0.101730	0.733475	0.341722	0.032*
C5	-0.2416 (8)	0.7059 (6)	0.5370 (6)	0.0272 (12)
Н5	-0.369991	0.742518	0.520859	0.033*
C6	-0.2192 (8)	0.6593 (5)	0.6671 (6)	0.0233 (11)
H6	-0.329217	0.662174	0.740411	0.028*
C7	-0.0280 (7)	0.6081 (5)	0.6852 (5)	0.0187 (10)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
I1	0.01984 (17)	0.02418 (18)	0.02146 (18)	-0.00095 (13)	-0.00713 (13)	-0.00908 (13)
I2	0.01628 (16)	0.02862 (19)	0.02166 (18)	-0.00312 (13)	-0.00118 (13)	-0.01016 (14)
C8	0.024 (3)	0.020 (2)	0.025 (3)	0.002 (2)	-0.006 (2)	-0.009 (2)
I3	0.0351 (2)	0.0308 (2)	0.0316 (2)	0.01363 (16)	-0.01664 (17)	-0.01885 (16)
I4	0.02582 (18)	0.02565 (18)	0.02593 (19)	-0.01160 (14)	-0.00886 (14)	-0.00245 (14)
C9A	0.020 (5)	0.005 (4)	0.016 (4)	0.003 (4)	-0.004 (3)	-0.001 (3)
C9B	0.009 (5)	0.012 (6)	0.019 (5)	0.003 (4)	-0.004 (4)	-0.003 (4)
S 1	0.0144 (6)	0.0329 (7)	0.0213 (6)	0.0021 (5)	-0.0034 (5)	-0.0067 (6)
S2	0.0158 (6)	0.0261 (6)	0.0215 (6)	-0.0002 (5)	-0.0008 (5)	-0.0105 (5)
N1	0.017 (2)	0.021 (2)	0.019 (2)	-0.0026 (17)	-0.0031 (17)	-0.0042 (18)
C1	0.016 (2)	0.015 (2)	0.024 (3)	-0.0034 (18)	-0.004 (2)	-0.005 (2)
C2	0.017 (2)	0.018 (2)	0.022 (3)	-0.0040 (19)	-0.0020 (19)	-0.008 (2)
C3	0.026 (3)	0.026 (3)	0.022 (3)	-0.005 (2)	-0.002 (2)	-0.012 (2)
C4	0.031 (3)	0.024 (3)	0.025 (3)	-0.009 (2)	-0.005 (2)	-0.005 (2)
C5	0.025 (3)	0.021 (3)	0.034 (3)	0.000 (2)	-0.012 (2)	-0.006 (2)
C6	0.019 (2)	0.020 (2)	0.029 (3)	-0.002 (2)	-0.004 (2)	-0.008 (2)
C7	0.020 (2)	0.015 (2)	0.018 (2)	-0.0022 (18)	-0.002 (2)	-0.0051 (19)

Geometric parameters (Å, °)

I1—C8	2.101 (6)	N1—C1	1.343 (6)
I2—C8	2.106 (6)	N1—C7	1.396 (7)
C8-C8 ⁱ	1.329 (11)	C2—C3	1.400 (8)
I3—C9A	2.146 (10)	C2—C7	1.386 (7)
I3—C9B ⁱⁱ	2.166 (11)	С3—Н3	0.9500
I4—C9A	2.095 (10)	C3—C4	1.373 (8)
I4—C9B	2.069 (11)	C4—H4	0.9500
C9A—C9A ⁱⁱ	1.30 (2)	C4—C5	1.392 (8)
C9B—C9B ⁱⁱ	1.33 (2)	C5—H5	0.9500
S1—C1	1.682 (5)	C5—C6	1.388 (8)
S2—C1	1.738 (5)	С6—Н6	0.9500

S2—C2 N1—HN1	1.750 (5) 0.85 (2)	C6—C7	1.392 (7)
I1—C8—I2	114.1 (2)	C7—C2—S2	109.9 (4)
C8 ⁱ —C8—I1	123.2 (6)	C7—C2—C3	121.0 (5)
C8 ⁱ —C8—I2	122.8 (6)	С2—С3—Н3	121.2
C9A—I3—C9B ⁱⁱ	26.4 (4)	C4—C3—C2	117.6 (5)
I4—C9A—I3	114.6 (5)	С4—С3—Н3	121.2
C9A ⁱⁱ —C9A—I3	120.0 (10)	C3—C4—H4	119.4
C9A ⁱⁱ —C9A—I4	125.3 (10)	C3—C4—C5	121.3 (6)
I4—C9B—I3 ⁱⁱ	115.8 (5)	C5—C4—H4	119.4
C9B ⁱⁱ —C9B—I4	127.1 (11)	C4—C5—H5	119.2
C1—S2—C2	91.8 (2)	C6—C5—C4	121.7 (5)
C1—N1—HN1	122 (5)	С6—С5—Н5	119.2
C1—N1—C7	115.7 (4)	С5—С6—Н6	121.5
C7—N1—HN1	122 (5)	C5—C6—C7	116.9 (5)
S1—C1—S2	123.1 (3)	С7—С6—Н6	121.5
N1—C1—S1	126.6 (4)	C2—C7—N1	112.4 (4)
N1—C1—S2	110.2 (4)	C2—C7—C6	121.5 (5)
C3—C2—S2	129.1 (4)	C6—C7—N1	126.1 (5)
S2—C2—C3—C4	-178.0 (4)	C3—C2—C7—N1	-178.9 (5)
S2—C2—C7—N1	0.4 (5)	C3—C2—C7—C6	-0.3 (8)
S2—C2—C7—C6	179.0 (4)	C3—C4—C5—C6	0.2 (9)
C1—S2—C2—C3	177.8 (5)	C4—C5—C6—C7	0.7 (8)
C1—S2—C2—C7	-1.4 (4)	C5-C6-C7-N1	177.7 (5)
C1—N1—C7—C2	1.3 (6)	C5—C6—C7—C2	-0.7 (8)
C1—N1—C7—C6	-177.3 (5)	C7—N1—C1—S1	176.2 (4)
C2—S2—C1—S1	-176.4 (3)	C7—N1—C1—S2	-2.3 (6)
C2—S2—C1—N1	2.1 (4)	C7—C2—C3—C4	1.2 (8)
C2—C3—C4—C5	-1.1 (8)		

Symmetry codes: (i) -*x*, -*y*+2, -*z*+1; (ii) -*x*+2, -*y*, -*z*+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—HN1···S1 ⁱⁱⁱ	0.85 (2)	2.43 (2)	3.275 (5)	170 (6)

Symmetry code: (iii) -x, -y+1, -z+2.