STRUCTURAL

 CHEMISTRYVolume 79 (2023)
Supporting information for article:

Dibromomethyl- and bromomethyl- or bromo-substituted benzenes and naphthalenes: $\mathrm{C}-\mathrm{Br} \cdots \mathrm{Br}$ interactions

Piotr Kuś, Peter G. Jones, Joachim Kusz and Maria Książek

```
\({ }^{1} \mathrm{H}\) and \({ }^{13} \mathrm{C}\) NMR data for compounds \(\mathbf{1 - 9}\).
3,5-dibromo-l-(dibromomethyl)benzene \(\mathbf{1}\).
Synthesized from 3,5-dibromotoluene. M.p. 63-65 \({ }^{\circ} \mathrm{C}\) (m.p. lit. \(55^{\circ} \mathrm{C}\) [Xi et al., 1999])
\({ }^{1} \mathrm{H}\) NMR: \(\delta(\mathrm{ppm})=7.66(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=1.6 \mathrm{~Hz}), 7.64(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=1.6 \mathrm{~Hz}), 6.51(\mathrm{~s}, 1 \mathrm{H})\).
\({ }^{13} \mathrm{C}\) NMR: \(\delta(\mathrm{ppm})=144.9,135.4,128.6,122.9,37.5\).
```

1,4-Dibromo-2,5-bis(dibromomethyl)benzene 2.
Synthesized from 2,5-dibromo-para-xylene' M.p. 167-168 ${ }^{\circ} \mathrm{C}$.(m.p. lit. 168-170 ${ }^{\circ} \mathrm{C}[$ Bodzioch et al., 2016]). ${ }^{1} \mathrm{H}$ NMR: $\delta(\mathrm{ppm})=8.15(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 6.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHBr})$.
${ }^{13} \mathrm{C}$ NMR: $\delta(\mathrm{ppm})=142.9,134.9,119.4,37.1$.

2,5-dibromo-l-(dibromomethyl)benzene $\mathbf{3}$.
Synthesized from 2,5-dibromotoluene. M.p. $52-53{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR: $\delta(\mathrm{ppm})=8.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.6 \mathrm{~Hz}), 7.39(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.32\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1}=8 \mathrm{~Hz}, \mathrm{~J}_{2}=1.6 \mathrm{~Hz}\right)$, 7.00 ($\mathrm{s}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR: $\delta(\mathrm{ppm})=142.2,134.2,134.1,134.0,122.3,118.3,38.2$.
Anal.Calcd. for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{Br}_{4}$: C, 20.62; H, 0.99. Found: C, 20.5; H, 0.8.

1,2-bis(dibromomethyl)benzene 4.

Synthesized from ortho-xylene. M.p. 116-118 ${ }^{\circ} \mathrm{C}$ (m.p. lit. 114-116 ${ }^{\circ} \mathrm{C}$ [Doe et al., 1978])
${ }^{1} \mathrm{H}$ NMR: $\left.\delta(\mathrm{ppm})=7.69(\mathrm{bs}, 2 \mathrm{H}, \mathrm{Ar} H), 7.39\left(\mathrm{AA}^{\prime} \mathrm{XX}{ }^{\prime}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.16(\mathrm{bs}, 2 \mathrm{H}, \mathrm{CHBr})_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR: $\delta(\mathrm{ppm})=137.7,130.1,129.6,36.5$.

1-bromomethyl-2-(dibromomethyl)benzene 5.
Synthesized from ortho-xylene. M.p. $41^{\circ} \mathrm{C}$ (DSC) (lit. $40-41^{\circ} \mathrm{C}$ [Halford et al., 1953]).
${ }^{1} \mathrm{H}$ NMR: $\delta(\mathrm{ppm})=7.98(\mathrm{~d}, 1 \mathrm{H}, \operatorname{Ar} H), 7.45(\mathrm{t}, 1 \mathrm{H}, \operatorname{Ar} H), 7.31(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar} H), 7.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar} H), 7.14(\mathrm{bs}$, $1 \mathrm{H}, \mathrm{CHBr} 2$), 4.61 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}$).
${ }^{13}$ C NMR: $\delta(\mathrm{ppm})=140.4,132.4,130.5,130.2,130.0,36.8,29.2$

2-bromomethyl-3-dibromomethylnaphthalene 6.

Synthesized from 2,3-dimethylnaphthalene. M.p. 113-115 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR: $\delta(\mathrm{ppm})=8.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.94-7.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.85-7.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.60-7.56(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{Ar} H$), $7.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHBr} 2), 4.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right)$.
${ }^{13} \mathrm{C}$ NMR: $\delta(\mathrm{ppm})=137.45,133.45,133.32,130.78,130.32,130.17,128.32,127.97,127.62,127.58,37.47$, 30.40.

Anal.Calcd. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{Br}_{3}$: C, 36.68; H, 2.31. Found: C, 36.4; H, 2.35.

2,3-bis(dibromomethyl)naphthalene 7.

Synthesized from 2,3-dimethylnaphthalene. M.p. $160-162{ }^{\circ} \mathrm{C}$. (lit. $161^{\circ} \mathrm{C}$ [Riede et al., 1956]). ${ }^{1} \mathrm{H}$ NMR: $\delta(\mathrm{ppm})=8.22(\mathrm{bs}, 2 \mathrm{H}, \mathrm{Ar} H), 8.13,8.06\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 4 \mathrm{H}, \mathrm{Ar} H\right), 7.34(\mathrm{bs}, 2 \mathrm{H}, \mathrm{CHBr})$.
${ }^{13} \mathrm{C}$ NMR: $\delta(\mathrm{ppm})=133.1($ broad peak $), 128.3,128.1,37.1$.

1-bromomethyl-2-dibromomethylnaphthalene 8.

Synthesized from 1,2-dimethylnaphthalene. M.p. 132-133 ${ }^{\circ} \mathrm{C}$. (132-132.5 ${ }^{\circ} \mathrm{C}$ [Gribble et al., 1977])
${ }^{1} \mathrm{H}$ NMR: $\delta(\mathrm{ppm})=8.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Ar} H), 8.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{ArH}), 7.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{ArH})$, $7.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \operatorname{ArH}), 7.68(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \operatorname{ArH}), 7.61(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Ar} H), 7.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHBr})$, 5.03(s, 2H, CH2Br).
${ }^{13} \mathrm{C}$ NMR: $\delta(\mathrm{ppm})=137.7,134.0,130.7,130.1,128.9,127.9,127.4,127.1,126.5,124.0,37.5,24.0$.

1,3-bis(dibromomethyl)benzene 9.

Synthesized from meta-xylene. M.p. 98-100 ${ }^{\circ} \mathrm{C}$ (m.p. lit. $107{ }^{\circ} \mathrm{C}$ [Arbuzov et al., 1976])
${ }^{1} \mathrm{H}$ NMR: $\delta(\mathrm{ppm})=7.76(\mathrm{bs}, 1 \mathrm{H}, \mathrm{Ar} H), 7.58(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}), 7.42(\mathrm{t}, 1 \mathrm{H}, \mathrm{ArH}), 6.67(\mathrm{bs}, 2 \mathrm{H}, \mathrm{CHBr})$.
${ }^{13} \mathrm{C}$ NMR: $\delta(\mathrm{ppm})=142.3,129.3,128.1,124.5,39.7$.

Figure S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 1.

Figure S2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2}$.

Figure S3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3 .

Figure $\mathbf{S 4}$. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 4 .

Figure S5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 5

Figure S6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 6 .

Figure $\mathbf{S 7} 7 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 7.

Figure S8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 8 .

Figure S9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 9 .

Figure S10. Short C-H $\cdots \mathrm{H}-\mathrm{C}$ and C-H \cdots Br intra interactions in the molecule of compounds 1-9. The discussion of individual compounds took place in the main text.

Figure S11.Packing diagram of compound 1. Thick dashed lines represent $\mathrm{Br} \cdots \mathrm{Br}$ interactions. Hydrogen atoms omitted for clarity. Displacement ellipsoids for non-H atoms are shown with 50% probability.

Figure S12. Characteristic column arrangement of molecules of compound 1.

Figure S13. View of the unit cell of compound $1 . \mathrm{Br} \cdots \mathrm{Br}$ and $\pi \cdots \pi$ contacts between molecules are marked by dotted line.

Figure S14. Crystal packing of 1,4-di(bromomethyl)-2,5-dibromobenzene $\mathbf{2}$ (view parallel to the a axis; hydrogen atoms were omitted for clarity). Thick dashed lines represent $\mathrm{Br} \cdots \mathrm{Br}$ interactions between the central molecule and eight adjacent molecules. Displacement ellipsoids for non-H atoms are shown with 50% probability.

Figure S15. Crystal packing of compound 2. The dotted lines show the $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interaction with a length of $2.942 \AA$.

Figure S16. Crystal packing of compound 2 taking into account different $\mathrm{Br} \cdots \mathrm{Br}$ short contacts. The dotted lines on the left picture correspond to the interaction of $\mathrm{Br} \cdots \mathrm{Br}$ with a length of $3.577 \AA$, while on the right picture the interaction of $\mathrm{Br} \cdots \mathrm{Br}$ with a length of $3.491 \AA$.

Figure S17. Packing diagram of compound 3. Hydrogen atoms that not participate in the intermolecular interactions were omitted for clarity. Thick dashed lines represent intermolecular interactions. Displacement ellipsoids for non-H atoms are shown with 50\% probability

Figure S18. Packing diagram of compound 3.

Figure S19. Packing diagram of compound 4 viewed parallel to [111]. Hydrogen atoms that do not participate in the intermolecular interactions were omitted for clarity. Thick dashed lines represent intermolecular interactions. Displacement ellipsoids for non-H atoms are shown with 50% probability.

Figure S20. Packing diagram of compound 5 viewed parallel to the a axis, showing short $\operatorname{Br} \cdots \pi$ and
$\mathrm{Br} \cdots \mathrm{H}-\mathrm{C}$ distances. Hydrogen atoms that do not participate in the intermolecular interactions were omitted for clarity. Thick dashed lines represent intermolecular interactions. Displacement ellipsoids for non-H atoms are shown with 50% probability.

Figure S21. Packing diagram of compound 6 viewed parallel to a axis, showing short $\mathrm{Br} \cdots \mathrm{Br}$ and $\mathrm{Br} \cdots \mathrm{C}_{\mathrm{Ar}}$ distances. Hydrogen atoms that do not participate in the intermolecular interactions were omitted for clarity. Thick dashed lines represent intermolecular interactions. Displacement ellipsoids for non-H atoms are shown with 50% probability.

Figure S22. Partial packing diagram of compound 7 showing intermolecular $\pi \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (marked by dashed lines). Displacement ellipsoids for non-H atoms are shown with 50% probability.

Figure S23. Partial packing diagram of compound 7 showing intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ interactions (marked by dashed lines). Hydrogen atoms that do not participate in the intermolecular interactions were omitted for clarity. Displacement ellipsoids for non-H atoms are shown with 50% probability.

Figure S24. Packing diagram of compound $\mathbf{8}$ viewed parallel to b axis, showing short distances between bromine atoms (marked by thick dashed lines). Hydrogen atoms that do not participate in the intermolecular interactions were omitted for clarity. Displacement ellipsoids for non-H atoms are shown with 50% probability.

Figure S25. Packing diagram of compound $\mathbf{8}$, showing the three-dimensional network of the interactions. Dashed lines represent $\mathrm{Br} \cdots \mathrm{Br}, \mathrm{Br} \cdots \mathrm{H}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{H}-\mathrm{C}$ interactions.

Figure S26. Packing diagram of compound 9 viewed parallel to the a axis. Thick dashed lines represent all interactions that occur in the crystal structure. Hydrogen atoms that do not participate in the intermolecular interactions were omitted for clarity. Displacement ellipsoids for non-H atoms are shown with 50\% probability.

Figure S27. Packing diagram of compound 9. Hydrogen atoms were omitted for clarity.

Table S1. The contribution of individual interactions to the Hirshfeld surface of compounds $\mathbf{1} \mathbf{- 9}$.

		Contribution of the interaction to the surface [\%]					
Compounds		$\mathrm{Br} \cdots \mathrm{Br}$	$\begin{gathered} \mathrm{Br} \cdots \mathrm{C} \\ \mathrm{C} \cdots \mathrm{Br} \end{gathered}$	$\begin{aligned} & \mathrm{Br} \cdots \mathrm{H} \\ & \mathrm{H} \cdots \mathrm{Br} \end{aligned}$	C...C	$\begin{aligned} & \mathbf{C} \cdots \mathbf{H} \\ & \mathbf{H} \cdots \mathbf{C} \end{aligned}$	H $\cdots \mathrm{H}$
1		31.9	1.8	45.8	9.4	4.0	7.1
2		44.1	10.9	34.0	2.2	3.8	5.0
3		24.8	7.4	51.1	3.9	9.3	3.6
		24.0	8.2	50.7	2.9	10.6	3.6
4		21.6	0.0	54.0	6.2	7.9	10.3

		Contribution of the interaction to the surface [\%]					
Compounds		Br $\cdots \mathrm{Br}$	$\begin{aligned} & \mathrm{Br} \cdots \mathrm{C} \\ & \mathrm{C} \cdots \mathrm{Br} \end{aligned}$	$\begin{aligned} & \mathrm{Br} \cdots \mathrm{H} \\ & \mathrm{H} \cdots \mathrm{Br} \end{aligned}$	C... ${ }^{\text {C }}$	$\begin{aligned} & \mathbf{C} \cdots \mathrm{H} \\ & \mathrm{H} \cdots \mathrm{C} \end{aligned}$	H $\cdots \mathrm{H}$
5		9.4	5.8	51.8	2.7	9.6	20.7
6		4.9	2.0	50.7	4.4	20.3	17.7
7		16.6	1.1	46.0	4.9	17.8	13.6
8		9.2	0.0	46.2	9.3	12.9	22.3
9		13.5	13.2	56.1	0.0	5.7	11.5

