

Volume 79 (2023)

Supporting information for article:

Dibromomethyl- and bromomethyl- or bromo-substituted benzenes and naphthalenes: C—Br…Br interactions

Piotr Kuś, Peter G. Jones, Joachim Kusz and Maria Książek

¹H and ¹³C NMR data for compounds 1 - 9.

3,5-dibromo-1-(dibromomethyl)benzene 1.

Synthesized from 3,5-dibromotoluene. M.p. 63-65°C (m.p. lit. 55 °C [Xi et al., 1999])

¹H NMR: δ (ppm) = 7.66 (t, 2H, J = 1.6 Hz), 7.64 (t, 1H, J = 1.6 Hz), 6.51 (s, 1H).

¹³C NMR: δ (ppm) = 144.9, 135.4, 128.6, 122.9, 37.5.

1,4-Dibromo-2,5-bis(dibromomethyl)benzene 2.

Synthesized from 2,5-dibromo-*para*-xylene' M.p. 167-168 °C.(m.p. lit. 168-170 °C[Bodzioch *et al.*, 2016]). ¹H NMR: δ (ppm) = 8.15 (s, 2H, Ar*H*), 6.98 (s, 1H, C*H*Br₂). ¹³C NMR: δ (ppm) = 142.9, 134.9, 119.4, 37.1.

2,5-dibromo-1-(dibromomethyl)benzene 3.

Synthesized from 2,5-dibromotoluene. M.p. 52-53 °C.

¹H NMR: δ (ppm) = 8.15 (d, 1H, J = 1.6Hz), 7.39 (d, 1H, J = 8.0Hz), 7.32 (dd, 1H, J₁ = 8 Hz, J₂ = 1.6 Hz), 7.00 (s, 1H).

¹³C NMR: δ (ppm) = 142.2, 134.2, 134.1, 134.0, 122.3, 118.3, 38.2.

Anal.Calcd. for C₇H₄Br₄: C, 20.62; H, 0.99. Found: C, 20.5; H, 0.8.

1,2-bis(dibromomethyl)benzene 4.

Synthesized from *ortho*-xylene. M.p. 116-118 °C (m.p. lit. 114-116°C [Doe *et al.*, 1978]) ¹H NMR: δ (ppm) = 7.69 (bs, 2H, Ar*H*), 7.39(AA'XX', 2H, Ar*H*), 7.16 (bs, 2H, C*H*Br₂). ¹³C NMR: δ (ppm) = 137.7, 130.1, 129.6, 36.5.

1-bromomethyl-2-(dibromomethyl)benzene 5.

Synthesized from *ortho*-xylene. M.p. 41 °C (DSC) (lit. 40-41 °C [Halford *et al.*, 1953]). ¹H NMR: δ (ppm) = 7.98 (d, 1H, Ar*H*), 7.45 (t, 1H, Ar*H*), 7.31 (t, 1H, Ar*H*), 7.28 (d, 1H, Ar*H*), 7.14 (bs, 1H, C*H*Br₂), 4.61 (s, 2H, C*H*₂Br). ¹³C NMR: δ (ppm) = 140.4, 132.4, 130.5, 130.2, 130.0, 36.8, 29.2

2-bromomethyl-3-dibromomethylnaphthalene **6**. Synthesized from 2,3-dimethylnaphthalene. M.p. 113-115 °C. ¹H NMR: δ (ppm) = 8.49 (s, 1H, Ar*H*), 7.94-7.89 (m, 1H, Ar*H*), 7.85-7.82 (m, 2H, Ar*H*), 7.60-7.56 (m, 2H, Ar*H*), 7.29(s, 1H, C*H*Br₂), 4.84 (s, 2H, C*H*₂Br). ¹³C NMR: δ (ppm) = 137.45, 133.45, 133.32, 130.78, 130.32, 130.17, 128.32, 127.97, 127.62, 127.58, 37.47, 30.40.

Anal.Calcd. for C₁₂H₉Br₃: C, 36.68; H, 2.31. Found: C, 36.4; H, 2.35.

2,3-bis(dibromomethyl)naphthalene 7.

Synthesized from 2,3-dimethylnaphthalene. M.p. 160-162 °C. (lit. 161 °C [Riede *et al.*, 1956]). ¹H NMR: δ (ppm) = 8.22 (bs, 2H, Ar*H*), 8.13, 8.06 (AA'BB', 4H, Ar*H*), 7.34 (bs, 2H, C*H*Br₂). ¹³C NMR: δ (ppm) =133.1 (broad peak), 128.3, 128.1, 37.1.

1-bromomethyl-2-dibromomethylnaphthalene 8.

Synthesized from 1,2-dimethylnaphthalene. M.p. 132-133 °C. (132-132.5 °C [Gribble *et al.*, 1977]) ¹H NMR: δ (ppm) = 8.15(d, 1H, J = 8 Hz, Ar*H*), 8.04 (d, 1H, J = 8 Hz, Ar*H*), 7.95 (d, 1H, J = 8 Hz, Ar*H*), 7.89 (d, 1H, J = 8 Hz, Ar*H*), 7.68 (t, 1H, J = 8 Hz, Ar*H*), 7.61 (t, 1H, J = 8 Hz, Ar*H*), 7.32(s, 1H, C*H*Br₂), 5.03(s, 2H, C*H*₂Br).

¹³C NMR: δ (ppm) = 137.7, 134.0, 130.7, 130.1, 128.9, 127.9, 127.4, 127.1, 126.5, 124.0, 37.5, 24.0.

1,3-bis(dibromomethyl)benzene 9.

Synthesized from *meta*-xylene. M.p. 98-100 °C (m.p. lit. 107 °C [Arbuzov *et al.*, 1976]) ¹H NMR: δ (ppm) = 7.76 (bs, 1H, Ar*H*), 7.58(d, 2H, Ar*H*), 7.42 (t, 1H, Ar*H*), 6.67 (bs, 2H, C*H*Br₂). ¹³C NMR: δ (ppm) = 142.3, 129.3, 128.1, 124.5, 39.7.

Figure S1. ¹H and ¹³ C NMR spectra of compound 1.

Figure S2. ¹H and ¹³C NMR spectra of compound 2.

Figure S3. ¹H and ¹³C NMR spectra of compound 3.

Figure S4. ¹H and ¹³C NMR spectra of compound 4.

Figure S5. ¹H and ¹³C NMR spectra of compound 5

Figure S6. ¹H and ¹³C NMR spectra of compound 6.

Figure S7. ¹H and ¹³C NMR spectra of compound 7.

Figure S8. ¹H and ¹³C NMR spectra of compound 8.

Figure S9. ¹H and ¹³C NMR spectra of compound 9.

1

3a

7

Figure S10. Short C-H····H-C and C-H····Br *intra* interactions in the molecule of compounds 1 - 9. The discussion of individual compounds took place in the main text.

Figure S11.Packing diagram of compound 1. Thick dashed lines represent $Br \cdots Br$ interactions. Hydrogen atoms omitted for clarity. Displacement ellipsoids for non-H atoms are shown with 50% probability.

Figure S12. Characteristic column arrangement of molecules of compound 1.

Figure S13. View of the unit cell of compound **1**. Br \cdots Br and $\pi \cdots \pi$ contacts between molecules are marked by dotted line.

Figure S14. Crystal packing of 1,4-di(bromomethyl)-2,5-dibromobenzene **2** (view parallel to the *a* axis; hydrogen atoms were omitted for clarity). Thick dashed lines represent $Br \cdots Br$ interactions between the central molecule and eight adjacent molecules. Displacement ellipsoids for non-H atoms are shown with 50% probability.

Figure S15. Crystal packing of compound **2**. The dotted lines show the C-H···Br interaction with a length of 2.942 Å.

Figure S16. Crystal packing of compound **2** taking into account different Br \cdots Br short contacts. The dotted lines on the left picture correspond to the interaction of Br \cdots Br with a length of 3.577 Å, while on the right picture the interaction of Br \cdots Br with a length of 3.491 Å.

Figure S17. Packing diagram of compound **3**. Hydrogen atoms that not participate in the intermolecular interactions were omitted for clarity. Thick dashed lines represent intermolecular interactions. Displacement ellipsoids for non-H atoms are shown with 50% probability

Figure S18. Packing diagram of compound 3.

Figure S19. Packing diagram of compound **4** viewed parallel to [111]. Hydrogen atoms that do not participate in the intermolecular interactions were omitted for clarity. Thick dashed lines represent intermolecular interactions. Displacement ellipsoids for non-H atoms are shown with 50% probability.

Figure S20. Packing diagram of compound **5** viewed parallel to the *a* axis, showing short $Br \cdots \pi$ and $Br \cdots H$ -C distances. Hydrogen atoms that do not participate in the intermolecular interactions were omitted for clarity. Thick dashed lines represent intermolecular interactions. Displacement ellipsoids for non-H atoms are shown with 50% probability.

Figure S21. Packing diagram of compound **6** viewed parallel to *a* axis, showing short $Br \cdots Br$ and $Br \cdots C_{Ar}$ distances. Hydrogen atoms that do not participate in the intermolecular interactions were omitted for clarity. Thick dashed lines represent intermolecular interactions. Displacement ellipsoids for non-H atoms are shown with 50% probability.

Figure S22. Partial packing diagram of compound **7** showing intermolecular $\pi \cdots \pi$ and C-H $\cdots \pi$ interactions (marked by dashed lines). Displacement ellipsoids for non-H atoms are shown with 50% probability.

Figure S23. Partial packing diagram of compound **7** showing intermolecular $Br \cdots Br$ interactions (marked by dashed lines). Hydrogen atoms that do not participate in the intermolecular interactions were omitted for clarity. Displacement ellipsoids for non-H atoms are shown with 50% probability.

Figure S24. Packing diagram of compound **8** viewed parallel to *b* axis, showing short distances between bromine atoms (marked by thick dashed lines). Hydrogen atoms that do not participate in the intermolecular interactions were omitted for clarity. Displacement ellipsoids for non-H atoms are shown with 50% probability.

Figure S25. Packing diagram of compound 8, showing the three-dimensional network of the interactions. Dashed lines represent $Br \cdots Br$, $Br \cdots H$ -C and C-H \cdots H-C interactions.

Figure S26. Packing diagram of compound **9** viewed parallel to the *a* axis. Thick dashed lines represent all interactions that occur in the crystal structure. Hydrogen atoms that do not participate in the intermolecular interactions were omitted for clarity. Displacement ellipsoids for non-H atoms are shown with 50% probability.

Figure S27. Packing diagram of compound 9. Hydrogen atoms were omitted for clarity.

		Contribution of the interaction to the surface [%]							
Compounds		Br∙∙∙Br	Br···C	Br···H	C····C	С…Н	н…н		
			C…Br	H∙∙∙Br		Н⊷С			
1		31.9	1.8	45.8	9.4	4.0	7.1		
2		44.1	10.9	34.0	2.2	3.8	5.0		
3	24 24 22 20 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.5 0.8 10 1.2 1.4 1.5 1.8 20 22 2.4	24.8	7.4	51.1	3.9	9.3	3.6		
		24.0	8.2	50.7	2.9	10.6	3.6		
4	24 22 20 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.8 1.2 1.4 1.6 1.4 1.2 1.0 0.8 0.6 0.8 0.6 0.8 0.0 1.2 1.4 1.6 1.8 0.2 1.4 1.6 1.8 0.2 1.4 1.6 1.4 1.2 1.0 0.8 0.8 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	21.6	0.0	54.0	6.2	7.9	10.3		

Table S1. The contribution of individual interactions to the Hirshfeld surface of compounds 1-9.

		Contribution of the interaction to the surface [%]								
Compounds		Br…Br	Br···C	Br···H	C····C	С…Н	н…н			
			C···Br	H···Br		Н…С				
5		9.4	5.8	51.8	2.7	9.6	20.7			
6		4.9	2.0	50.7	4.4	20.3	17.7			
7	24 22 20 18 16 14 12 10 08 06 08 10 12 14 16 18 20 22 24	16.6	1.1	46.0	4.9	17.8	13.6			
8	24 22 20 18 16 14 12 10 08 06 08 10 12 14 16 18 20 22 24	9.2	0.0	46.2	9.3	12.9	22.3			
9		13.5	13.2	56.1	0.0	5.7	11.5			