

STRUCTURAL CHEMISTRY

ISSN 2053-2296

Received 23 March 2024
Accepted 16 April 2024

Edited by R. Diniz, Universidade Federal de Minas Gerais, Brazil

Keywords: crystal structure; mixed valence; copper cyanide; ethanolamine; propanolamine; polymeric network; electron spin resonance; ESR; thermogravimetric analysis; TGA.

CCDC references: $2348772 ; 2348771$; 2348770

Supporting information: this article has supporting information at journals.iucr.org/c

Published under a CC BY 4.0 licence

Crystal structures, electron spin resonance, and thermogravimetric analysis of three mixed-valence copper cyanide polymers

Peter W. R. Corfield,* Ahmed Elsayed, Tristan DaCunha and Christopher Bender

Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA. *Correspondence e-mail: pcorfield@fordham.edu

The crystal structures of three mixed-valence copper cyanide alkanolamine polymers are presented, together with thermogravimetric analysis (TGA) and electron spin resonance (ESR) data. In all three structures, a $\mathrm{Cu}^{\text {II }}$ moiety on a crystallographic center of symmetry is coordinated by two alkanolamines and links two $\mathrm{Cu}^{\mathrm{I}} \mathrm{CN}$ chains via cyanide bridging groups to form diperiodic sheets. The sheets are linked together by cuprophilic $\mathrm{Cu}^{\mathrm{I}}-\mathrm{Cu}^{\mathrm{I}}$ interactions to form a three-dimensional network. In poly[bis(μ-3-aminopropanolato)tetra- μ-cyan-ido-dicopper(I)dicopper(II)], $\left[\mathrm{Cu}_{4}(\mathrm{CN})_{4}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{NO}\right)_{2}\right]_{n}, \mathbf{1}$, propanolamine bases have lost their hydroxyl H atoms and coordinate as chelates to two $\mathrm{Cu}^{\mathrm{II}}$ atoms to form a dimeric $\mathrm{Cu}^{\text {II }}$ moiety bridged by the O atoms of the bases with $\mathrm{Cu}^{\mathrm{II}}$ atoms in square-planar coordination. The ESR spectrum is very broad, indicating exchange between the two $\mathrm{Cu}^{\text {II }}$ centers. In poly[bis(2-aminopropanol)tetra-μ-cyanido-dicopper(I)copper(II)], $\left[\mathrm{Cu}_{3}(\mathrm{CN})_{4}\left(\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{NO}\right)_{2}\right]_{n}$, 2, and poly[bis(2-aminoethanol)tetra- μ-cyanido-dicopper(I)copper(II)], $\left[\mathrm{Cu}_{3}(\mathrm{CN})_{4}\left(\mathrm{CH}_{7} \mathrm{NO}\right)_{2}\right]_{n}$, 3, a single $\mathrm{Cu}^{\mathrm{II}}$ atom links the $\mathrm{Cu}^{\mathrm{I}} \mathrm{CN}$ chains together via CN bridges. The chelating alkanolamines are not ionized, and the OH groups form rather long bonds in the axial positions of the octahedrally coordinated $\mathrm{Cu}^{\text {II }}$ atoms. The coordination geometries of $\mathrm{Cu}^{\text {II }}$ in $\mathbf{2}$ and $\mathbf{3}$ are almost identical, except that the $\mathrm{Cu}-\mathrm{O}$ distances are longer in $\mathbf{2}$ than in $\mathbf{3}$, which may explain their somewhat different ESR spectra. Thermal decomposition in $\mathbf{2}$ and $\mathbf{3}$, but not in 1, begins with the loss of $\mathrm{HCN}(\mathrm{g})$, and this can be correlated with the presence of OH protons on the ligands in $\mathbf{2}$ and $\mathbf{3}$, which are not present in $\mathbf{1}$.

1. Chemical context

Polymeric CuCN compounds with organic ligands have continued to excite interest in light of their varied structures (Pike, 2012), the magnetic exchange or photoluminesence exhibited by many of them, and other potentially useful physical properties (Lim et al., 2008). Many hundreds of crystal structures are now known (e.g. Nicholas et al., 2019; Xu et al., 2019; Etaiw et al., 2016). One class of such polymers comprises anionic CuCN frameworks with guest cations providing charge neutrality and we have made systematic studies of such compounds containing cations derived from amines and ethanolamines (Koenigsmann et al., 2020; Corfield et al., 2022). Mixed-valence CuCN polymers containing bases coordinated to the $\mathrm{Cu}^{\mathrm{II}}$ atoms are also well known (Liu et al., 2017; Qin et al., 2016), though fewer in number than the $\mathrm{Cu}^{\mathrm{I}} \mathrm{CN}$ complexes. Such networks would be neutral not anionic, and might therefore be capable of crystallizing with neutral molecules as guests. We have made studies of several such complexes involving diamines (Corfield et al., 2016), but until recently we were less successful at isolating crystalline complexes of mixed-valence CuCN networks involving

N -substituted ethanolamines. In the present article, we describe the isolation and structural characterization of crystals of three such mixed-valence CuCN networks, along with powder ESR data and thermogravimetric analyses: poly[bis $(\mu$ -3-aminopropanolato)tetra- μ-cyanido-dicopper(I)dicopper(II)], $\mathbf{1}$ (Scheme 1), with the base propanolamine, coordinated to $\mathrm{Cu}^{\mathrm{II}}$ as an alkoxide; poly[bis(2-aminopropanol)tetra- μ-cyanido-dicopper(I)copper(II)], 2 (Scheme 2), with the base 2-amino-propan-1-ol; and poly[bis(2-aminoethanol)tetra- μ-cyanidodicopper(I)copper(II)], 3 (Scheme 3), with the base ethanolamine.

Scheme 1

2. Experimental

2.1. Synthesis and crystallization

Syntheses were carried out by air oxidation of solutions containing $\mathrm{NaCN} / \mathrm{CuCN}$ in the presence of the amine ligand. Results varied from batch to batch. Specific details of representative syntheses follow.

For the preparation of $\mathbf{1}, 17 \mathrm{mmol}(0.833 \mathrm{~g})$ of NaCN were dissolved in 25 ml of distilled water and $15 \mathrm{mmol}(1.343 \mathrm{~g})$ of CuCN were added and the mixture stirred and filtered, as not quite all of the CuCN had dissolved. Then 35 mmol of 3 -aminopropan-1-ol (2.629 g) were added with stirring, and the colorless mixture was covered. Red crystals separated after about two weeks (yield: 0.393 g , or 21%, based upon Cu). IR spectra $\left(\mathrm{cm}^{-1}\right): 2124(s), 2135(s)(\mathrm{CN}$ stretch); $3255(s)$, 3298 (s) ($\mathrm{N}-\mathrm{H}$ stretch); 3452 (m) ($\mathrm{O}-\mathrm{H}$ stretch, broad, probably due to moisture contaminant). Preparations under
similar conditions did not always produce homogeneous samples, but crystals of $\mathbf{1}$ were usually present.

For the preparation of $\mathbf{2}, 20 \mathrm{mmol}(0.995 \mathrm{~g})$ of NaCN were dissolved in 20 ml of distilled water and $10 \mathrm{mmol}(0.893 \mathrm{~g})$ of CuCN were added. The mixture was stirred until a clear solution was obtained. $20 \mathrm{mmol}(1.502 \mathrm{~g})$ of 2-aminopropan-1ol were added and the mixture stirred. After about three months, 38 mg of a brown product composed of gold-brown plates were obtained. Based upon a molecular formula of $\mathrm{Cu}_{3}(\mathrm{CN})_{4} L_{2}$, where $L=2$-aminopropan-1-ol, this corresponds to a percentage yield of 2.6%. IR spectra $\left(\mathrm{cm}^{-1}\right): 2104(s)$, 2116 (s) (CN stretch); 3255 (m), 3319 (m), 3347 (w) (N-H stretch); 3506 (m), 3543 (m) ($\mathrm{O}-\mathrm{H}$ stretch). We were surprised to also obtain 184 mg of a crystalline material that gave the same IR spectrum in a separate synthesis designed to give a $\mathrm{Cu}^{\mathrm{I}} \mathrm{CN}$ complex only. In this case, we used the same procedure, with 5.0 mmol of CuCN instead of 10 mmol , but the base was neutralized before addition to the aqueous $\mathrm{NaCN} / \mathrm{CuCN}$ mixture, which we presumed would hinder air oxidation of Cu^{I}. We do not have an explanation for this synthesis when so many other attempts had been unsuccessful.

For the preparation of $\mathbf{3}, 39 \mathrm{mmol}(1.898 \mathrm{~g})$ of NaCN were dissolved in 8 ml of distilled water and $23 \mathrm{mmol}(2.080 \mathrm{~g})$ of CuCN were added, and the mixture stirred until a clear solution was obtained. $21 \mathrm{mmol}(1.293 \mathrm{~g})$ of 2-aminoethanol in 3 ml water were added, and the pale-green mixture stirred. After $5 \mathrm{~d}, 223 \mathrm{mg}$ of black crystals were obtained, corresponding to a 6.9% yield based on Cu . IR spectra $\left(\mathrm{cm}^{-1}\right): 2118$ (s), 2130 (s) (CN stretch); 3266 (m), 3233 (m) ($\mathrm{N}-\mathrm{H}$ stretch); 3524 (m) ($\mathrm{O}-\mathrm{H}$ stretch).

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. For structures 2 and 3, the tensor analysis in XABS2 (Parkin et al., 1995) was used to improve the absorption correction, leading to a somewhat less noisy final difference Fourier map. In all structures, $\mathrm{C}-\mathrm{H}$ protons were restrained to the expected geometry, with $\mathrm{C}-\mathrm{H}$ distances of $0.97 \AA$, while positional coordinates for $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ protons were refined. For $\mathrm{C}-\mathrm{H}$ hydrogens, the $U_{\mathrm{iso}}(\mathrm{H})$ values were constrained to $1.2 U_{\text {eq }}$ of the adjacent atoms for $\mathbf{1}$, and $1.5 U_{\text {eq }}$ for $\mathbf{2}$ and $\mathbf{3}$. In $\mathbf{1}$, the low-angle 020 reflection was omitted as it was partially obscured by the beamstop. For 3,

Table 1
Experimental details.
Experiments were carried out at 295 K with Mo $K \alpha$ radiation using an Enraf-Nonius KappaCCD diffractometer. The absorption correction was part of the refinement model (ΔF) (Otwinowski \& Minor, 1997). H atoms were treated by a mixture of independent and constrained refinement.

	(1)	(2)	(3)
Crystal data			
Chemical formula	$\left[\mathrm{Cu}_{4}(\mathrm{CN})_{4}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{NO}\right)_{2}\right]$	$\left[\mathrm{Cu}_{3}(\mathrm{CN})_{4}\left(\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{NO}\right)_{2}\right]$	$\left[\mathrm{Cu}_{3}(\mathrm{CN})_{4}\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$
$M_{\text {r }}$	506.48	444.94	416.88
Crystal system, space group	Monoclinic, C2/c	Monoclinic, $P 2_{1} / \mathrm{c}$	Monoclinic, $P 2_{1} / \mathrm{c}$
$a, b, c(\AA)$	9.6829 (4), 8.2557 (4), 21.4992 (10)	9.3903 (4), 8.9608 (4), 9.7986 (4)	9.5158 (2), 8.8022 (2), 9.3589 (2)
$\beta{ }^{\circ}{ }^{\circ}$)	95.212 (3)	112.134 (3)	117.358 (1)
$V\left(\mathrm{~A}^{3}\right)$	1711.52 (14)	763.74 (6)	696.22 (3)
Z	4	2	2
$\mu\left(\mathrm{mm}^{-1}\right)$	4.91	4.15	4.55
Crystal size (mm)	$0.31 \times 0.15 \times 0.08$	$0.15 \times 0.08 \times 0.02$	$0.37 \times 0.25 \times 0.22$
Data collection			
$T_{\text {min }}, T_{\text {max }}$	0.364, 0.514	0.75, 0.93	0.48, 0.59
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	19341, 1965, 1501	19192, 1350, 855	27010, 1740, 1049
$R_{\text {int }}$	0.048	0.084	0.046
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.649	0.595	0.678
Refinement			
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.025, 0.074, 1.09	0.034, 0.113, 1.16	0.024, 0.077, 1.16
No. of reflections	1965	1350	1740
No. of parameters	124	117	118
No. of restraints	0	28	26
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.46, -0.42	0.84, -0.48	1.07, -0.53

Computer programs: KappaCCD Server Software (Nonius, 1997), SCALEPACK (Otwinowski \& Minor, 1997), DENZO (Otwinowski \& Minor,1997), SHELXT (Sheldrick, 2015a), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015b), ORTEPIII (Burnett \& Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).
data sets from two crystals were merged using SORTAV (Blessing, 1989). The size of the second smaller crystal was $0.15 \times 0.10 \times 0.06 \mathrm{~mm}$.

In all three structures, CN group occupancies were refined, initially set with 50% disorder. The occupancies for all CN
groups bound to $\mathrm{Cu}^{\mathrm{II}}$ clearly indicated that these groups are N-bonded to $\mathrm{Cu}^{\mathrm{II}}$, as expected, while the refined occupancies for the CN groups linking Cu^{I} atoms were not significantly different from 50%. Thus, only the $\mathrm{Cu}^{\mathrm{I}} \mathrm{CN}$ groups were modeled as disordered and were fixed at 50% in all structures.

Figure 1
General scheme for the title compounds.

Table 2
Comparison of selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{1}, 2$ and $\mathbf{3}$.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
	$1.901(2), 1.923(2)$	$2.56(13), 2.64(11)$	$2.439(14), 2.67(3)$
$\mathrm{Cu} 2-\mathrm{NH}_{2}$	$1.976(3)$	$2.054(5)$	$1.963(2)$
$\mathrm{Cu} 2-\mathrm{NC}$	$1.922(2)$	$1.969(5)$	$120.78(11)$
$\mathrm{C} 2-\mathrm{Cu} 1-\mathrm{N} 2$, trans to $\mathrm{Cu} 1-\mathrm{C} 1 / \mathrm{N} 1-\mathrm{Cu} 2$	$111.63(10)$	$121.7(2)$	

In 1, atoms $\mathrm{C} 12, \mathrm{C} 13$, and C 14 of the chelate ring $\mathrm{Cu} 2 / \mathrm{O} 11 /$ $\mathrm{C} 12-\mathrm{C} 14 / \mathrm{N} 15 / \mathrm{Cu} 2$ were treated as disordered above and below the central plane of the six-membered ring, and the A / B occupancies refined to $74(2)$ and $26(2) \%$. In both 2 and $\mathbf{3}$, the chelating ethanolamine ligands were modeled as disordered between λ and δ conformations. All the ligand atoms were counted as disordered, except that the tightly bound NH_{2} atoms of the two disorder mates were constrained in both structures to the same positions, whereas the more loosely bound OH atoms were allowed to refine independently, along with the ligand C atoms, with constraints on the displacement parameters for the O atoms. The A / B occupancies refined to 53.4 (9) and 46.6 (9) \% for 2, and to 64.3 (16) and 35.7 (16) \% for 3.

3. Results and discussion

3.1. Structural commentary

In each of the three title structures, a $\mathrm{Cu}^{\mathrm{II}}$ moiety coordinated by chelated alkanolamine bases links zigzag $\mathrm{Cu}^{\mathrm{I}} \mathrm{CN}$ chains into a diperiodic network via bridging CN groups, with the $\mathrm{Cu}^{\text {II }}$ moiety situated at a crystallographic center of symmetry, as seen in the general scheme (Fig. 1). In every case, the C atoms of the chelated rings are disordered. For convenience, we have labeled Cu^{I} atoms as Cu 1 and $\mathrm{Cu}^{\mathrm{II}}$ atoms as Cu 2 in the discussion that follows.

In the structure of $\mathbf{1}$, shown in Fig. 2, the propanolamine bases have lost their hydroxyl H atoms, and coordinate as chelates to two Cu 2 atoms to form a dimeric $\mathrm{Cu}^{\mathrm{II}}$ moiety bridged by the O atoms of the bases to form a central fouratom ring. The eight central Cu, N, and O atoms of the dimeric moiety are roughly coplanar, with r.m.s. deviation from the

Figure 2
The structure of $\mathbf{1}$, showing the atom numbering and 50% displacement ellipsoids, with H atoms depicted as small spheres. Only the majordisorder component for the chelate ring is shown. Cu atoms are shown in green, N atoms in blue, O atoms in red, and C and H atoms in black. The asymmetric unit is highlighted in bold.
best plane of $0.023 \AA$. The Cu 2 atoms are in a distorted square-planar coordination, with the $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angle in the four-membered ring equal to $76.91(8)^{\circ}$ and the other bond angles ranging from 91.15 (11) to 96.64 (9) ${ }^{\circ}$. The fourth ligand to each Cu 2 atom is a CN group which bridges to a Cu 1 atom bonded to two other CN groups. The bond angles at Cu 1 are 111.63 (10), $122.02(10)$, and $125.89(10)^{\circ}$, with the smallest angle trans to the CN bridging to Cu 2 .

Figs. 3 and 4 show the asymmetric units for structures 2 and $\mathbf{3}$, where single Cu 2 atoms play the role of the dimeric moieties in $\mathbf{1}$ in linking the Cu 1 chains into diperiodic structures. Cu 2 atoms are octahedrally coordinated by two cyanide groups and by two chelating ligands, which are disordered between λ and δ conformations. The coordination is illustrated in Fig. 5, and comparisons of bond lengths and angles with $\mathbf{1}$ are given in Table 2. The coordination geometries are almost identical for compounds 2 and 3. In these two structures, the ligands have not lost their OH protons and the $\mathrm{Cu}-\mathrm{O}$ distances are much longer than in $\mathbf{1}$ where the bonding is to an alkoxide. The $\mathrm{Cu}-\mathrm{NH}_{2}$ and $\mathrm{Cu}-\mathrm{NC}$ bonds are also slightly longer in $\mathbf{2}$ and

Figure 3
The asymmetric unit of $\mathbf{2}$, showing the atom numbering and 50% displacement ellipsoids. The colors are as in Fig. 2.

The asymmetric unit of $\mathbf{3}$, showing the atom numbering and 50% displacement ellipsoids. The colors are as in Fig. 2.

Table 3
Hydrogen-bond geometry ($\AA,^{\circ}$) for 2.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 14 A-\mathrm{H} 14 A \cdots \mathrm{O} 11 A^{\mathrm{i}}$	0.89	2.48	$3.21(11)$	140
$\mathrm{O} 11 B-\mathrm{H} 11 B \cdots \mathrm{~N}^{\mathrm{ii}}$	$0.82(2)$	$2.54(13)$	$3.28(11)$	$150(13)$
$\mathrm{C} 12 A-\mathrm{H} 12 A \cdots \mathrm{C}^{\mathrm{ii}}$	0.97	2.54	$3.29(2)$	134

Symmetry codes: (i) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.
$\mathbf{3}$ than in $\mathbf{1}$. The bond angles at Cu 1 in $\mathbf{2}$ range from 113.4 (2) to $121.8(2)^{\circ}$, while in $\mathbf{3}$ they range from 118.33 (12) to $120.78(11)^{\circ}$. In both cases, the largest angle is trans to the CN bridging to $\mathrm{Cu}^{\mathrm{II}}$, in contrast to $\mathbf{1}$, where there is a larger deviation of angles from 120° and the smallest angle is trans to the $\mathrm{CN}-\mathrm{Cu} 2$ bridge.

The structure of $\mathbf{3}$ has been reported previously (Jin et al., 2006), but was redone in our laboratory for consistency. In Jin et al., the space group was given as $C 2 / m$. We chose $C 2 / c$, as in all crystals that we have studied, reflections with $k+l$ odd are present, though systematically weak; in $C 2 / m, k+l$ reflections would be absent, leading to a slightly different structure. Jin et al. did not record the presence of the OH proton, so that database searches based upon ethanolamine do not lead to their structure.

3.2. Supramolecular features

In $\mathbf{1}$, the dimeric Cu 2 moieties bridge monoperiodic $\mathrm{Cu}^{\mathrm{I}} \mathrm{CN}$ chains to form diperiodic networks parallel to (102), as shown in Figs. 6 and 7. The $\mathrm{Cu}^{\mathrm{I}} \mathrm{CN}$ zigzag chains extend in the direction of the b axis, out of the plane of Fig. 7. The plane of the $\mathrm{Cu}^{\mathrm{I}} \mathrm{CN}$ chain network makes an angle of $85.5(1)^{\circ}$ with the eight-atom dimeric Cu 2 plane. Cu 1 atoms from neighboring sheets are within 3.103 (1) \AA of one another, in roughly axial positions with regard to their trigonal planar coordination. Also, the Cu1 atom lies 0.075 (2) \AA out of the plane of its three ligands, which brings it closer to the neighboring Cu 1 atom in the neighboring sheet. This weak cuprophilic interaction links the sheets into a triperiodic network, and is shown as a dashed line in Fig. 7. Atom $\mathrm{H} 14 B$ is found on the other side of the Cu 1 coordination plane, at $3.10 \AA$ from Cu1. Otherwise, there are

Figure 5

The $\mathrm{Cu}^{\mathrm{II}}$ coordination in 3 . The coordination in 2 is the same, with a methyl group added to position C12.

Table 4
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$ for 3.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 14 B-\mathrm{H} 14 D \cdots \mathrm{O} 11 B^{\mathrm{i}}$	0.89	2.20	$3.09(3)$	178
$\mathrm{O} 11 B-\mathrm{H} 11 B \cdots \mathrm{~N} 2 C^{\text {ii }}$	$0.82(1)$	$2.53(6)$	$3.30(3)$	$156(11)$

Symmetry codes: (i) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1,-y,-z$.
no other short intermolecular contacts of note in this structure.

The structures of $\mathbf{2}$ and $\mathbf{3}$ have the same space group and very similar unit-cell dimensions. In both structures, the Cu 2 moieties bridge monoperiodic $\mathrm{Cu}^{\mathrm{I}} \mathrm{CN}$ chains to form diperiodic networks parallel to (102), as shown in Figs. 8 and 9 for 2, and in Figs. 10 and 11 for 3. Inversion-related Cu 1 atoms from neighboring sheets are $2.7400(15) \AA$ apart in 2 and 2.7734 (7) \AA apart in 3. In each structure, Cu 1 atoms are

Figure 6
A diperiodic sheet in 1. The colors are as in Fig. 2.

Figure 7
The packing in $\mathbf{1}$. The sheets shown in Fig. 6 are viewed edge on. Putative cuprophilic bonds are shown as dashed double lines.

Figure 8
A diperiodic sheet in 2. The colors are as in Fig. 2.
pulled out of the plane of their three coordinated atoms towards the neighboring inversion-related Cu 1 atom, 0.302 (4) \AA in 2 and 0.1774 (16) \AA in 3. In 2, the C 2 atom of cyanide C 2 N 2 is also positioned somewhat close to the Cu 1 atom of the neighboring sheet, at 2.502 (6) \AA, which may indicate that the CN group could be regarded as μ_{3}-bonded, with very different $\mathrm{Cu}-\mathrm{C} / \mathrm{N}$ distances, rather than the $\mu_{2^{-}}$ bonding that we have assumed. A similar situation exists for $\mathbf{3}$, although here the $\mathrm{Cu}-\mathrm{C} / \mathrm{N}$ distance to the neighboring sheet is even longer, at 2.686 (3) \AA.

Putative hydrogen bonds based on $D \cdots A \leq 3.30 \AA$ and $D-\mathrm{H} \cdots A>130^{\circ}$ are listed in Tables 3 and 4 for compounds $\mathbf{2}$ and $\mathbf{3}$, respectively. No contacts in $\mathbf{1}$ fit these criteria. For both compounds $\mathbf{2}$ and $\mathbf{3}$, the NH_{2} group is donor to a screwrelated O atom, and one OH disorder component is donor to a $\mathrm{C} \equiv \mathrm{N}$ group.

Figure 9
Packing in 2. The sheets shown in Fig. 8 are viewed edge on. Putative cuprophilic bonds are shown as dashed double lines and putative $\mu_{3^{-}}$ $\mathrm{C}-\mathrm{Cu}$ bonds as blue single-dashed lines.

3.3. Electron spin resonance (ESR)

ESR spectra of the powdered sample materials were recorded at room temperature using a Bruker EMXnano operating at 9.63 GHz (X-band). For all samples reported here, spectral line shape was unaffected by incident microwave power (i.e. no saturable component of the inhomogeneously broadened line), and the general operating parameters were 0.3 mW (incident power); 2 Gauss (field modulation). Spectra were recorded without using the spectrometer's digital filter in 0.5 Gauss steps for a 1000 Gauss field sweep; the receiver signal acquisition time per step corresponded to four time constants.

The structure of $\mathbf{1}$ features two $\mathrm{Cu}^{\text {II }}$ ion centers bridged by oxygen, and the resultant ESR spectrum is a broad asymmetric singlet with a crossing point at $g=2.24$ [Fig. 12(a)]. The absence of discernable g-anisotropy in the line shape is indicative of spin exchange, as is expected for a bridged binuclear center. The shape and g-value determined for this isotropic line is nearly identical to that obtained when a crystal of calcium copper acetate, which ordinarily has a well-defined anisotropic spectrum, is decomposed at $750^{\circ} \mathrm{C}$; the resulting ESR spectrum of this mixed metal oxide is a broad singlet with $g=2.22$ (Bender, unpublished).

In contrast to the structure of $\mathbf{1}$, the $\mathrm{Cu}^{\mathrm{II}}$ centers of both structures $\mathbf{2}$ and $\mathbf{3}$ are mononuclear, and the corresponding polycrystalline ESR spectra possess line shape features that are rhombic in character ($c f$. Hathaway, 1971). The turning points in the spectrum of $\mathbf{2}$ [Fig. 12(b)], corresponding approximately to the diagonal components of the g-tensor, are $g_{1}=2.06, g_{2}=2.09$, and $g_{3}=2.20$. The three unequal pairs of coordinate bonds $[$ i.e. bond lengths: $2.60(\mathrm{Cu}-\mathrm{O}), 2.056$ $(\mathrm{Cu}-\mathrm{N})$, and $1.967 \AA(\mathrm{Cu}-\mathrm{NC})$], lead us to expect an elon-gated-rhombic octahedral configuration, and our data compare favorably with the literature values ($c f$. Hathaway, 1971).

The ESR spectrum of polycrystalline $\mathbf{3}$ [Fig. 12(c)] differs from that of structure 2, presumably due to the reduced

Figure 10
A diperiodic sheet in 3. The colors are as in Fig. 2.

Table 5
Thermogravimetric analysis data.

Compound	$\mathbf{1}$	$\mathbf{2}$	
Molecular formula	$\mathrm{Cu}_{4}(\mathrm{CN})_{4} L_{2}^{\prime}{ }_{2}$	$\mathbf{3}$	
$L^{\prime}, L^{\prime \prime}, L^{\prime \prime \prime}$	$\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{O}^{-}$	$\mathrm{Cu}_{3}(\mathrm{CN})_{4} L^{\prime \prime}{ }_{2}$	$\mathrm{Cu}_{3}(\mathrm{CN})_{4} L^{\prime \prime \prime}{ }_{2}$
Molar mass, u	506.44	$\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$	444.98
$\%$ Mass remaining at $400^{\circ} \mathrm{C}$	68.8	57.4	416.87
			64.6
For Residue at $400^{\circ} \mathrm{C}$	$\mathrm{Cu}, \mathrm{C}, \mathrm{H}, \mathrm{N}$	$\mathrm{Cu}, \mathrm{C}, \mathrm{H}, \mathrm{N}$	
Observed $\mathrm{Cu}, \mathrm{C}, \mathrm{H}, \mathrm{N} \%$	$73.0,16.0,0.17,11.3$	$75.2,14.6,0.24,9.8$	$\mathrm{Cu}, \mathrm{C}, \mathrm{H}, \mathrm{N}$
Calculated $\mathrm{Cu}, \mathrm{C}, \mathrm{H}, \mathrm{N} \%$	$72.8,15.7,0.00,11.5$	$70.8,15.9,0.13,12.6$	
Assumed composition for $\%$ calculation	$5 \mathrm{CuCN}+2 \mathrm{Cu}+3 \mathrm{C}$	$76.0,14.4,0.00,9.6$	$71.3,16.2,0.00,12.6$

$\mathrm{Cu}-\mathrm{O}$ distance. The shape of the line is rhombic in character, but lacks the added feature [labeled in Fig. 12(b) as ' $g_{3}{ }^{\prime}$ '] that is associated with elongation or its counterpart, compression (Hathaway, 1971). The g-values determined from the two turning points are $g^{\prime}=2.06$ and $g^{\prime \prime}=2.16$; the crossing point occurs at $g^{\prime \prime \prime}=2.10$.

3.4. Thermogravimetric analysis (TGA)

TGA was carried out with a TA Instruments Q500 device. Samples of each compound weighing $5-20 \mathrm{mg}$ were heated under nitrogen gas at $3^{\circ} \mathrm{min}^{-1}$ to $600^{\circ} \mathrm{C}$ or more. The TGA plots up to $500^{\circ} \mathrm{C}$ for the three compounds are shown in Fig. 13. (For 1, analyses were complicated, as most samples were heterogeneous. The plot shown is for crystals handsorted under the microscope.) In all three compounds, there is a sharp drop in mass of $10-15 \%$ at $150-200^{\circ} \mathrm{C}$, followed by slower rates of mass loss. The absence of clear steps in the decomposition curves indicates overlapping of incremental decomposition changes. Not shown in the figure are the continued slow mass losses after $500^{\circ} \mathrm{C}$ and the occasional subsequent mass increase, presumably due to the formation of an oxide of copper by reaction with residual oxygen in the system. Microscopic examination of residues obtained at the higher temperatures appeared to show mixtures of a black substance and metallic copper.
The decomposition curves for $\mathbf{2}$ and $\mathbf{3}$ differ more from each other than might have been expected from the similarity of the structures. In particular, there is a clear change in slope after a

Figure 11
The packing in 3. The sheets shown in Fig. 10 are viewed edge on. Putative cuprophilic bonds are shown as dashed double lines and putative $\mu_{3}-\mathrm{C}-\mathrm{Cu}$ bonds as blue single-dashed lines.
mass loss of about 8% for $\mathbf{2}$, while the corresponding change is more gradual for $\mathbf{3}$, and also the mass differences in the $350-$ $400^{\circ} \mathrm{C}$ range are more than would be anticipated based upon their molecular formulae.

From previous experiments in our laboratory, we expect any $\mathrm{CuCN}(\mathrm{s})$ formed to decompose to $\mathrm{Cu}(\mathrm{s})$ in the temperature range $400-500^{\circ} \mathrm{C}$. For this reason, each experiment was repeated with termination at $400^{\circ} \mathrm{C}$, in every case leaving black powdery residues. We obtained IR spectra and elemental analyses for each residue at this point, and the results are given in Table 5. All of the $400^{\circ} \mathrm{C}$ residues showed IR peaks indicating the presence of $\mathrm{CuCN}(\mathrm{s})$ and, in all cases, the residues were richer in both Cu and C than expected for pure $\mathrm{CuCN}(\mathrm{s})$, while showing negligible presence of H . Total percentages ranged from 99.3 to 100.4%, precluding the presence of any significant amount of O . We have interpreted the residue composition in terms of mixtures of $\mathrm{CuCN}(\mathrm{s})$, $\mathrm{C}(\mathrm{s})$, and $\mathrm{Cu}(\mathrm{s})$, since it is assumed that any copper(I) acetylide formed would have decomposed by this tempera-

Figure 12
Electron spin resonance (ESR) spectra.

Figure 13
The thermal analysis results for the three compounds. The mass percentage remaining is plotted as a function of temperature.
ture, and the percentages calculated from the assumed mixtures are also given in Table 5. The observed $\% \mathrm{Cu}$ values were calculated by dividing the $\% \mathrm{Cu}$ expected from the molecular formula by the fraction of mass remaining at $400^{\circ} \mathrm{C}$. This, of course, assumes that the starting material was pure.

To check for $\mathrm{HCN}(\mathrm{g})$ emission at the initial stage, we heated $15-20 \mathrm{mg}$ samples of each of the compounds in turn in a test tube, and looked for cloudiness in a drop of $\mathrm{AgNO}_{3}(\mathrm{aq})$ held over the mouth of the tube. Cloudiness in the AgNO_{3} drop was clearly seen at sand-bath temperatures of $190-200^{\circ} \mathrm{C}$ for $\mathbf{2}$ and $205-215^{\circ} \mathrm{C}$ for $\mathbf{3}$, but no evidence for $\mathrm{HCN}(\mathrm{g})$ emission was noted for $\mathbf{1}$, even when the sample was held at or above $250^{\circ} \mathrm{C}$ for several minutes.

It is possible that the CN groups bridging Cu 1 and Cu 2 in 2 and $\mathbf{3}$ are lost first, combining with the OH protons from the ligands coordinated to Cu 2 to form $\mathrm{HCN}(\mathrm{g})$, which is not possible in $\mathbf{1}$. This would leave the $\mathrm{Cu}^{\mathrm{I}} \mathrm{CN}$ chains intact, while the deprotonated ligands would bind to Cu 2 more tightly, as they do in $\mathbf{1}$. Thereafter, for all three compounds, the bound ligands apparently lose their O and N moieties, while leaving at least some of the carbon present in elemental form. Apparently, this begins to happen in $\mathbf{1}$ before any cyanide loss.

3.5. Database survey

The neutral diperiodic mixed-valence CuCN network of the three structures described here has not often been noted. A search in the Cambridge Structural Database (CSD, Version 5.35; Groom et al., 2016) found two similar structures (Kim et al., 2005; Trivedi et al., 2014). The first involves a CuCN network with $\mathrm{Cu}^{\mathrm{II}}$ atoms coordinated by cyclam units and the second a more complex cyanide/azide network with $\mathrm{Cu}^{\mathrm{II}}$ coordinated by NH_{3}.

A search for Cu compounds containing propanolamine, with or without the OH proton, yielded 48 hits. None of these structures involved Cu bonded to cyanide, however. Of these structures, 44 involved $\mathrm{Cu}_{2} \mathrm{O}_{2}$ units with chelating propanolate chelates, as found in $\mathbf{1}$. Only seven of the structures contained the propanolamine ligand with the OH group intact bonded to Cu , with three of these also containing the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ unit. A separate, more general, search of the CSD for dimeric $\mathrm{Cu}_{2} \mathrm{O}_{2}$ moieties with Cu bonded to two O and two N atoms yielded 258 hits, so that the four-membered ring of $\mathrm{Cu}_{2} \mathrm{O}_{2}$ is not uncommon.

A search for Cu coordinated by 2-aminopropan-1-ol gave seven hits. In all but one case (CSD refcode BOYPIO; Nieuwpoort et al., 1983; Marsh, 2005), the base coordinates with the OH proton intact, as in Podjed et al. (2022).

A search for Cu coordinated by two ethanolamine ligands, with or without the OH proton, produced only three examples, i.e. Tudor et al. (2006), Vasileva et al. (1994), and the work by Jin et al. (2006) cited earlier.

Acknowledgements

We gratefully acknowledge support from the Chemistry Department at Fordham University and acknowledge assistance from Fordham student Nurul Eisha.

References

Blessing, R. H. (1989). J. Appl. Cryst. 22, 396-397.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.
Corfield, P., Carlson, A., DaCunha, T., Eisha, N., Varona, A. M. F. \& Garcia, D. (2022). Acta Cryst. A78, a192.
Corfield, P. W. R., Cleary, E. \& Michalski, J. F. (2016). Acta Cryst. E72, 892-896.

Etaiw, S. E. H., Badr El-din, A. S. \& Abdou, S. N. (2016). Transition Met. Chem. 41, 413-425.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hathaway, B. J. (1971). Essays in Chemistry, Vol. 2, edited by J. N. Bradley, R. D. Gillard \& R. F. Hudson, pp. 61-92. London: Academic Press.
Jin, Y., Che, Y. \& Zheng, J. (2006). J. Coord. Chem. 59, 691-698.
Kim, D. H., Koo, J. E., Hong, C. S., Oh, S. \& Do, Y. (2005). Inorg. Chem. 44, 4383-4390.
Koenigsmann, C., Rachid, L. N., Sheedy, C. M. \& Corfield, P. W. R. (2020). Acta Cryst. C76, 405-411.

Lim, M. J., Murray, C. A., Tronic, T. A., deKrafft, K. E., Ley, A. N., deButts, J. C., Pike, R. D., Lu, H. \& Patterson, H. H. (2008). Inorg. Chem. 47, 6931-6947.
Liu, D. S., Chen, W. T., Ye, G.-M., Zhang, J. \& Sui, Y. (2017). J. Solid State Chem. 256, 14-18.
Marsh, R. E. (2005). Acta Cryst. B61, 359.
Nicholas, A. D., Bullard, R. M., Wheaton, A. M., Streep, M., Nicholas, V. A., Pike, R. D. \& Patte, H. H. (2019). Materials, 12, 1211.

Nieuwpoort, G., Verschoor, G. C. \& Reedijk, J. (1983). J. Chem. Soc. Dalton Trans. pp. 531-538.

Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Parkin, S., Moezzi, B. \& Hope, H. (1995). J. Appl. Cryst. 28, 53-56.
Pike, R. D. (2012). Organometallics, 31, 7647-7660.
Podjed, N., Modec, B., Clérac, R., Rouzières, M., Alcaide, M. M. \& López-Serrano, J. (2022). New J. Chem. 46, 6899-6920.
Qin, Y., Wu, Y.-Q., Hou, J. J. \& Zhang, X.-M. (2016). Inorg. Chem. Commun. 63, 101-106.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Trivedi, M., Singh, G., Kumar, A. \& Rath, N. P. (2014). RSC Adv. 4, 34110-34116.
Tudor, V., Marin, G., Kavtsov, V., Simonov, Y. A., Julve, M., Lloet, F. \& Andruh, M. (2006). Rev. Roum. Chim. 51, 367-371.
Vasileva, O. Y., Kokozeii, V. N. \& Skopenko, V. V. (1994). Ukr. Khim. Zh. 60, 227.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Xu, H., Zhou, B.-Y., Yu, K., Su, Z.-H., Zhou, B.-B. \& Su, Z.-M. (2019). CrystEngComm, 21, 1242-1249.

supporting information

Acta Cryst. (2024). C80, 212-220 [https://doi.org/10.1107/S2053229624003371]

Crystal structures, electron spin resonance, and thermogravimetric analysis of three mixed-valence copper cyanide polymers

Peter W. R. Corfield, Ahmed Elsayed, Tristan DaCunha and Christopher Bender

Computing details

Poly[bis(μ-3-aminopropanolato)tetra- μ-cyanido-dicopper(I)dicopper(II)] (1)

Crystal data

$\left[\mathrm{Cu}_{4}(\mathrm{CN})_{4}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{NO}\right)_{2}\right]$
$M_{r}=506.48$
Monoclinic, $C 2 / c$
$a=9.6829$ (4) \AA
$b=8.2557$ (4) \AA
$c=21.4992(10) \AA$
$\beta=95.212$ (3) ${ }^{\circ}$
$V=1711.52(14) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 9 pixels mm^{-1}
combination of ω and φ scans
Absorption correction: part of the refinement model (ΔF)
(Otwinowski \& Minor, 1997)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.074$
$S=1.09$
1965 reflections
124 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=1000$
$D_{\mathrm{x}}=1.965 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.7107 \AA$
Cell parameters from 2094 reflections
$\theta=27.5-1.0^{\circ}$
$\mu=4.91 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Plate
$0.31 \times 0.15 \times 0.08 \mathrm{~mm}$
$T_{\text {min }}=0.364, T_{\text {max }}=0.514$
19341 measured reflections
1965 independent reflections
1501 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=1.9^{\circ}$
$h=0 \rightarrow 12$
$k=0 \rightarrow 10$
$l=-27 \rightarrow 27$

Secondary atom site location: structure-
invariant direct methods
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.041 P)^{2}+0.370 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.020$
$\Delta \rho_{\text {max }}=0.46 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.42 \mathrm{e}^{-3}$

supporting information

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Cu 1	0.64077 (3)	0.16386 (4)	0.29070 (2)	0.04609 (13)	
Cu 2	0.27238 (3)	0.20602 (4)	0.43411 (2)	0.04478 (13)	
C1	0.5120 (3)	0.1789 (3)	0.35164 (13)	0.0487 (6)	
N1	0.4319 (2)	0.1869 (3)	0.38758 (11)	0.0549 (6)	
C2	0.7821 (2)	0.4657 (3)	0.23949 (11)	0.0482 (5)	0.5
N2	0.7298 (2)	0.3539 (3)	0.25912 (12)	0.0463 (5)	0.5
NC2	0.7821 (2)	0.4657 (3)	0.23949 (11)	0.0482 (5)	0.5
CN2	0.7298 (2)	0.3539 (3)	0.25912 (12)	0.0463 (5)	0.5
O11	0.12834 (17)	0.2377 (3)	0.48735 (8)	0.0542 (5)	
C12A	-0.0129 (16)	0.256 (2)	0.4727 (7)	0.062 (2)	0.743 (16)
H12A	-0.033862	0.368849	0.463114	0.074*	0.743 (16)
H12B	-0.062111	0.225074	0.508155	0.074*	0.743 (16)
C13A	-0.0623 (7)	0.1465 (11)	0.4143 (3)	0.0593 (17)	0.743 (16)
H13A	-0.040420	0.034439	0.424504	0.071*	0.743 (16)
H13B	-0.162217	0.155092	0.406362	0.071*	0.743 (16)
C14A	0.0032 (6)	0.1907 (11)	0.3548 (3)	0.0529 (14)	0.743 (16)
H14A	-0.004587	0.306501	0.347761	0.063*	0.743 (16)
H14B	-0.045675	0.135899	0.319475	0.063*	0.743 (16)
C12B	-0.025 (5)	0.234 (6)	0.464 (2)	0.062 (2)	0.257 (16)
H12C	-0.063636	0.137926	0.481483	0.074*	0.257 (16)
H12D	-0.067645	0.326126	0.482029	0.074*	0.257 (16)
C13B	-0.067 (2)	0.234 (4)	0.4077 (9)	0.066 (5)	0.257 (16)
H13C	-0.058832	0.343607	0.392293	0.079*	0.257 (16)
H13D	-0.165077	0.207764	0.404492	0.079*	0.257 (16)
C14B	-0.003 (2)	0.129 (3)	0.3666 (9)	0.0529 (14)	0.257 (16)
H14C	-0.050693	0.142574	0.325337	0.063*	0.257 (16)
H14D	-0.019577	0.018880	0.379565	0.063*	0.257 (16)
N15	0.1478 (3)	0.1439 (5)	0.36007 (13)	0.0648 (8)	
H15A	0.187 (5)	0.183 (6)	0.334 (2)	0.13 (2)*	
H15B	0.156 (4)	0.036 (6)	0.358 (2)	0.123 (18)*	

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0428(2)$	$0.0498(2)$	$0.0478(2)$	$-0.00036(13)$	$0.01545(14)$	$-0.00198(14)$
Cu 2	$0.03929(19)$	$0.0620(2)$	$0.03434(19)$	$-0.00205(13)$	$0.01053(13)$	$-0.00526(14)$
C 1	$0.0483(15)$	$0.0485(16)$	$0.0508(16)$	$-0.0018(11)$	$0.0133(13)$	$-0.0066(12)$
N 1	$0.0472(12)$	$0.0756(17)$	$0.0439(13)$	$-0.0008(11)$	$0.0156(10)$	$-0.0081(11)$
C 2	$0.0504(12)$	$0.0466(14)$	$0.0491(13)$	$0.0002(11)$	$0.0125(10)$	$-0.0030(12)$

supporting information

N2	$0.0484(13)$	$0.0426(13)$	$0.0495(14)$	$-0.0010(11)$	$0.0141(11)$	$-0.0026(11)$
NC2	$0.0504(12)$	$0.0466(14)$	$0.0491(13)$	$0.0002(11)$	$0.0125(10)$	$-0.0030(12)$
CN2	$0.0484(13)$	$0.0426(13)$	$0.0495(14)$	$-0.0010(11)$	$0.0141(11)$	$-0.0026(11)$
O11	$0.0337(9)$	$0.0941(14)$	$0.0356(10)$	$-0.0013(9)$	$0.0082(7)$	$-0.0105(10)$
C12A	$0.038(4)$	$0.097(5)$	$0.048(5)$	$0.000(3)$	$-0.002(3)$	$-0.018(4)$
C13A	$0.041(2)$	$0.078(4)$	$0.057(3)$	$-0.008(3)$	$0.000(2)$	$-0.003(3)$
C14A	$0.0490(17)$	$0.067(4)$	$0.041(3)$	$-0.004(3)$	$-0.0046(18)$	$0.007(3)$
C12B	$0.038(4)$	$0.097(5)$	$0.048(5)$	$0.000(3)$	$-0.002(3)$	$-0.018(4)$
C13B	$0.054(8)$	$0.095(15)$	$0.046(8)$	$0.020(11)$	$-0.007(6)$	$-0.002(10)$
C14B	$0.0490(17)$	$0.067(4)$	$0.041(3)$	$-0.004(3)$	$-0.0046(18)$	$0.007(3)$
N15	$0.0593(16)$	$0.096(2)$	$0.0393(14)$	$-0.0091(15)$	$0.0055(12)$	$-0.0123(15)$

Geometric parameters (\AA, ${ }^{\circ}$)

Cu1-C1	1.893 (3)	C13A-H13A	0.9700
$\mathrm{Cu}-\mathrm{C}^{\text {i }}$	1.935 (3)	C13A-H13B	0.9700
$\mathrm{Cu} 1-\mathrm{N} 2$	1.943 (2)	C14A-N15	1.447 (7)
$\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {ii }}$	3.1030 (6)	C14A-H14A	0.9700
Cu2-O11	1.9011 (17)	C14A-H14B	0.9700
$\mathrm{Cu} 2-\mathrm{O} 11^{\text {iii }}$	1.9225 (18)	C12B-C13B	1.23 (5)
Cu2-N1	1.922 (2)	C12B-H12C	0.9700
$\mathrm{Cu} 2-\mathrm{N} 15$	1.976 (3)	C12B-H12D	0.9700
C1-N1	1.145 (4)	C13B-C14B	1.42 (3)
C2-N2	1.151 (3)	C13B-H13C	0.9700
O11-C12A	1.384 (16)	C13B-H13D	0.9700
O11-C12B	1.53 (5)	C14B-N15	1.48 (2)
C12A-C13A	1.586 (14)	C14B-H14C	0.9700
C12A-H12A	0.9700	C14B-H14D	0.9700
C12A-H12B	0.9700	N15-H15A	0.78 (5)
C13A-C14A	1.521 (12)	N15-H15B	0.90 (5)
C1-Cu1-C2 ${ }^{\text {i }}$	125.89 (10)	C13A-C14A-H14A	109.6
$\mathrm{C} 1-\mathrm{Cu} 1-\mathrm{N} 2$	122.02 (10)	N15-C14A-H14A	109.6
$\mathrm{C} 2-\mathrm{Cu} 1-\mathrm{N} 2$	111.63 (10)	C13A-C14A-H14B	109.6
$\mathrm{C} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {ii }}$	77.89 (9)	N15-C14A-H14B	109.6
$\mathrm{C} 2{ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {ii }}$	99.02 (7)	H14A-C14A-H14B	108.1
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{Cu}^{\text {ii }}$	101.42 (8)	C13B-C12B-O11	124 (4)
O11-Cu2-O11 ${ }^{\text {iii }}$	76.91 (8)	C13B-C12B-H12C	106.4
$\mathrm{O} 11-\mathrm{Cu} 2-\mathrm{N} 1$	173.31 (9)	O11-C12B-H12C	106.5
$\mathrm{O} 11{ }^{\text {iii- }} \mathrm{Cu} 2-\mathrm{N} 1$	96.64 (9)	C13B-C12B-H12D	106.4
O11-Cu2-N15	95.35 (10)	O11-C12B-H12D	106.5
$\mathrm{O} 11^{\text {iii- }} \mathrm{Cu} 2-\mathrm{N} 15$	172.04 (11)	H12C-C12B-H12D	106.5
N1-Cu2-N15	91.15 (11)	C12B-C13B-C14B	119 (3)
N1-C1-Cu1	178.5 (3)	C12B-C13B-H13C	107.6
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 2$	169.0 (2)	C14B-C13B-H13C	107.6
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{Cu} 1^{\text {iv }}$	175.5 (2)	C12B-C13B-H13D	107.7
C2-N2-Cu1	178.9 (2)	C14B-C13B-H13D	107.6
C12A-O11-Cu2	129.9 (6)	H13C-C13B-H13D	107.1

C12B-O11-Cu2	122.6 (18)	C13B-C14B-N15	120 (2)
$\mathrm{C} 12 \mathrm{~A}-\mathrm{O} 11-\mathrm{Cu} 2^{\text {iii }}$	125.4 (6)	C13B-C14B-H14C	107.3
$\mathrm{Cu} 2-\mathrm{O} 11-\mathrm{Cu} 2{ }^{\text {iii }}$	103.09 (8)	N15-C14B-H14C	107.3
$\mathrm{O} 11-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}$	109.8 (11)	C13B-C14B-H14D	107.3
$\mathrm{O} 11-\mathrm{C} 12 \mathrm{~A}-\mathrm{H} 12 \mathrm{~A}$	109.7	N15-C14B-H14D	107.3
$\mathrm{C} 13 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{H} 12 \mathrm{~A}$	109.7	H14C-C14B-H14D	106.9
$\mathrm{O} 11-\mathrm{C} 12 \mathrm{~A}-\mathrm{H} 12 \mathrm{~B}$	109.7	C14B-N15-Cu2	118.6 (8)
C13A-C12A-H12B	109.7	C14A-N15-Cu2	120.6 (3)
H12A-C12A-H12B	108.2	C14B-N15-H15A	131 (4)
$\mathrm{C} 14 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}$	114.2 (9)	C14A-N15-H15A	112 (4)
C14A-C13A-H13A	108.7	$\mathrm{Cu} 2-\mathrm{N} 15-\mathrm{H} 15 \mathrm{~A}$	100 (4)
C12A-C13A-H13A	108.7	C14B-N15-H15B	91 (3)
C14A-C13A-H13B	108.7	C14A-N15-H15B	111 (3)
C12A-C13A-H13B	108.7	$\mathrm{Cu} 2-\mathrm{N} 15-\mathrm{H} 15 \mathrm{~B}$	104 (3)
H13A-C13A-H13B	107.6	H15A-N15-H15B	109 (4)
C13A-C14A-N15	110.2 (7)		
$\mathrm{Cu} 2-\mathrm{O} 11-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}$	35.5 (16)	$\mathrm{Cu} 2{ }^{\text {iii] }}-\mathrm{O} 11-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}$	161 (3)
$\mathrm{Cu} 2 \mathrm{iii}-\mathrm{O} 11-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}$	-161.6 (6)	$\mathrm{O} 11-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}-\mathrm{C} 14 \mathrm{~B}$	46 (6)
$\mathrm{O} 11-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}-\mathrm{C} 14 \mathrm{~A}$	-62.3 (15)	$\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}-\mathrm{C} 14 \mathrm{~B}-\mathrm{N} 15$	-59 (5)
$\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}-\mathrm{C} 14 \mathrm{~A}-\mathrm{N} 15$	71.6 (13)	C13B-C14B-N15-Cu2	34 (3)
$\mathrm{Cu} 2-\mathrm{O} 11-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}$	-11(6)	$\mathrm{C} 13 \mathrm{~A}-\mathrm{C} 14 \mathrm{~A}-\mathrm{N} 15-\mathrm{Cu} 2$	-50.0 (9)

Symmetry codes: (i) $-x+3 / 2, y-1 / 2,-z+1 / 2$; (ii) $-x+1, y,-z+1 / 2$; (iii) $-x+1 / 2,-y+1 / 2,-z+1$; (iv) $-x+3 / 2, y+1 / 2,-z+1 / 2$.
Poly[bis(2-aminopropanol)tetra- μ-cyanido-tricopper(I,II)] (2)

Crystal data

$\left[\mathrm{Cu}_{3}(\mathrm{CN})_{4}\left(\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{NO}\right)_{2}\right]$
$M_{r}=444.94$
Monoclinic, $P 2_{1} / c$
$a=9.3903$ (4) \AA
$b=8.9608$ (4) \AA
$c=9.7986$ (4) \AA
$\beta=112.134$ (3) ${ }^{\circ}$
$V=763.74(6) \AA^{3}$
$Z=2$

Data collection

Enraf-Nonius KappaCCD diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 9 pixels mm^{-1}
combination of ω and φ scans
Absorption correction: part of the refinement
model (ΔF)
(Otwinowski \& Minor,1997)
$F(000)=446$
$D_{\mathrm{x}}=1.935 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.7107 \AA$
Cell parameters from 1863 reflections
$\theta=1.0-25.0^{\circ}$
$\mu=4.15 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Plate
$0.15 \times 0.08 \times 0.02 \mathrm{~mm}$
$T_{\text {min }}=0.75, T_{\text {max }}=0.93$
19192 measured reflections
1350 independent reflections
855 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.084$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-11 \rightarrow 10$
$k=0 \rightarrow 10$
$l=0 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.113$
$S=1.16$
1350 reflections
117 parameters
28 restraints
Primary atom site location: heavy-atom method

Secondary atom site location: difference Fourier map

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.048 P)^{2}+1.2 P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.84 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.48$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. ($<1)$
Cu1	$0.45669(8)$	$-0.02366(8)$	$-0.14833(8)$	$0.0433(3)$	
Cu2	0.000000	0.000000	0.000000	$0.0405(3)$	
C1	$0.2964(7)$	$-0.0113(5)$	$-0.0678(6)$	$0.0394(13)$	
N1	$0.1857(6)$	$-0.0090(5)$	$-0.0474(5)$	$0.0416(11)$	$0.0482(14)$
C2	$0.4991(6)$	$0.2789(6)$	$-0.2877(6)$	$0.0425(13)$	0.5
N2	$0.4823(6)$	$0.1628(6)$	$-0.2454(6)$	$0.0482(14)$	0.5
C2N	$0.4991(6)$	$0.2789(6)$	$-0.2877(6)$	$0.0425(13)$	0.5
N2C	$0.4823(6)$	$0.1628(6)$	$-0.2454(6)$	$0.055(9)$	$0.537(8)$
O11A	$0.121(10)$	$0.212(11)$	$0.196(7)$	0.065^{*}	$0.537(8)$
H11A	$0.190(14)$	$0.272(13)$	$0.207(16)$	$0.053(3)$	$0.463(8)$
C12A	$0.222(2)$	$0.126(2)$	$0.325(2)$	0.080^{*}	$0.463(8)$
H12A	0.315574	0.094938	0.312100	0.080^{*}	$0.463(8)$
H12B	0.248953	0.182727	0.415081	$0.0373(19)$	$0.537(8)$
C13A	$0.1207(13)$	$-0.0068(11)$	$0.3227(11)$	0.056^{*}	$0.537(8)$
H13A	0.017617	0.026093	0.312321	$0.0448(12)$	$0.537(8)$
N14A	$0.1135(5)$	$-0.1060(5)$	$0.1972(5)$	0.067^{*}	$0.537(8)$
H14A	0.064638	-0.190114	0.200746	0.067^{*}	$0.537(8)$
H14B	0.208310	-0.129292	0.204899	$0.075(7)$	$0.537(8)$
C15A	$0.199(3)$	$-0.092(4)$	$0.467(4)$	0.113^{*}	$0.537(8)$
H15A	0.204104	-0.029338	0.548490	0.113^{*}	$0.537(8)$
H15B	0.140548	-0.180008	0.466991	0.113^{*}	$0.537(8)$
H15C	0.300891	-0.119842	0.476832	$0.055(9)$	$0.463(8)$
O11B	$0.132(12)$	$0.213(13)$	$0.175(8)$	0.065^{*}	$0.463(8)$
H11B	$0.211(14)$	$0.232(17)$	$0.162(16)$	$0.053(3)$	$0.537(8)$
C12B	$0.1572(18)$	$0.137(2)$	$0.316(2)$	0.080^{*}	$0.537(8)$
H12C	0.060844	0.130492	0.330578	0.080^{*}	$0.463(8)$
H12D	0.228706	0.194823	0.396615	$0.3157(13)$	$0.0373(19)$
C13B	$0.2200(15)$	$-0.0148(12)$		0	

H13B	0.312585	-0.002539	0.293205	0.056^{*}	$0.463(8)$
N14B	$0.1135(5)$	$-0.1060(5)$	$0.1972(5)$	$0.0448(12)$	$0.463(8)$
H14C	0.043546	-0.143775	0.228563	0.067^{*}	$0.463(8)$
H14D	0.165766	-0.182183	0.180980	0.067^{*}	$0.463(8)$
C15B	$0.271(3)$	$-0.088(4)$	$0.464(5)$	$0.075(7)$	$0.463(8)$
H15D	0.310254	-0.185476	0.458921	0.113^{*}	$0.463(8)$
H15E	0.349447	-0.028548	0.534644	0.113^{*}	$0.463(8)$
H15F	0.184552	-0.096094	0.493930	0.113^{*}	$0.463(8)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu 1	$0.0462(5)$	$0.0420(4)$	$0.0483(5)$	$-0.0008(3)$	$0.0252(4)$	$-0.0008(3)$
Cu 2	$0.0340(6)$	$0.0501(6)$	$0.0400(6)$	$0.0018(4)$	$0.0168(4)$	$0.0005(4)$
C 1	$0.041(3)$	$0.033(3)$	$0.053(4)$	$0.001(2)$	$0.027(3)$	$0.005(2)$
N 1	$0.036(3)$	$0.049(3)$	$0.042(3)$	$0.002(2)$	$0.018(2)$	$0.002(2)$
C 2	$0.044(3)$	$0.051(4)$	$0.050(4)$	$0.000(3)$	$0.019(3)$	$0.001(3)$
N 2	$0.046(3)$	$0.035(3)$	$0.047(3)$	$-0.004(2)$	$0.019(3)$	$0.004(2)$
C 2 N	$0.044(3)$	$0.051(4)$	$0.050(4)$	$0.000(3)$	$0.019(3)$	$0.001(3)$
N 2 C	$0.046(3)$	$0.035(3)$	$0.047(3)$	$-0.004(2)$	$0.019(3)$	$0.004(2)$
O 11 A	$0.066(10)$	$0.045(3)$	$0.059(14)$	$-0.008(6)$	$0.031(10)$	$0.004(11)$
C 12 A	$0.058(8)$	$0.045(4)$	$0.056(4)$	$0.002(6)$	$0.019(6)$	$0.001(3)$
C 13 A	$0.042(4)$	$0.040(4)$	$0.036(3)$	$0.001(4)$	$0.022(4)$	$-0.004(3)$
N 14 A	$0.047(3)$	$0.044(3)$	$0.043(3)$	$-0.001(2)$	$0.016(2)$	$-0.002(2)$
C 15 A	$0.10(2)$	$0.056(5)$	$0.048(5)$	$-0.001(13)$	$0.003(15)$	$0.003(4)$
O 11 B	$0.066(10)$	$0.045(3)$	$0.059(14)$	$-0.008(6)$	$0.031(10)$	$0.004(11)$
C12B	$0.058(8)$	$0.045(4)$	$0.056(4)$	$0.002(6)$	$0.019(6)$	$0.001(3)$
C13B	$0.042(4)$	$0.040(4)$	$0.036(3)$	$0.001(4)$	$0.022(4)$	$-0.004(3)$
N 14 B	$0.047(3)$	$0.044(3)$	$0.043(3)$	$-0.001(2)$	$0.016(2)$	$-0.002(2)$
C15B	$0.10(2)$	$0.056(5)$	$0.048(5)$	$-0.001(13)$	$0.003(15)$	$0.003(4)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Cu} 1-\mathrm{C} 1$	$1.948(6)$	$\mathrm{C} 13 \mathrm{~A}-\mathrm{H} 13 \mathrm{~A}$	0.9800
$\mathrm{Cu} 1-\mathrm{C} 2^{\mathrm{i}}$	$1.973(5)$	$\mathrm{N} 14 \mathrm{~A}-\mathrm{H} 14 \mathrm{~A}$	0.8900
$\mathrm{Cu} 1-\mathrm{N} 2$	$1.982(5)$	$\mathrm{N} 14 \mathrm{~A}-\mathrm{H} 14 \mathrm{~B}$	0.8900
$\mathrm{Cu} 1-\mathrm{Cl}^{\mathrm{ii}}$	$2.502(6)$	$\mathrm{C} 15 \mathrm{~A}-\mathrm{H} 15 \mathrm{~A}$	0.9600
$\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{ii}}$	$2.7403(14)$	$\mathrm{C} 15 \mathrm{~A}-\mathrm{H} 15 \mathrm{~B}$	0.9600
$\mathrm{Cu} 2-\mathrm{N} 1$	$1.969(5)$	$\mathrm{C} 15 \mathrm{~A}-\mathrm{H} 15 \mathrm{C}$	0.9600
$\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~B}$	$2.054(5)$	$\mathrm{O} 11 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}$	$1.47(3)$
$\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~A}$	$2.054(5)$	$\mathrm{O} 11 \mathrm{~B}-\mathrm{H} 11 \mathrm{~B}$	$0.82(2)$
$\mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~A}$	$2.64(11)$	$\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}$	$1.49(2)$
$\mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~B}$	$2.56(13)$	$\mathrm{C} 12 \mathrm{~B}-\mathrm{H} 12 \mathrm{C}$	0.9700
$\mathrm{C} 1-\mathrm{N} 1$	$1.130(8)$	$\mathrm{C} 12 \mathrm{~B}-\mathrm{H} 12 \mathrm{D}$	0.9700
$\mathrm{C} 2-\mathrm{N} 2$	$1.152(7)$	$\mathrm{C} 13 \mathrm{~B}-\mathrm{C} 15 \mathrm{~B}$	$1.50(4)$
$\mathrm{O} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}$	$1.47(3)$	$\mathrm{C} 13 \mathrm{~B}-\mathrm{N} 14 \mathrm{~B}$	$1.463(13)$
$\mathrm{O} 11 \mathrm{~A}-\mathrm{H} 11 \mathrm{~A}$	$0.82(2)$	$\mathrm{C} 13 \mathrm{~B}-\mathrm{H} 13 \mathrm{~B}$	0.9800
$\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}$	$1.52(2)$	$\mathrm{N} 14 \mathrm{~B}-\mathrm{H} 14 \mathrm{C}$	0.8900

$\mathrm{C} 12 \mathrm{~A}-\mathrm{H} 12 \mathrm{~A}$	0.9700
C12A-H12B	0.9700
C13A-N14A	1.497 (10)
C13A-C15A	1.53 (4)
$\mathrm{C} 1-\mathrm{Cu} 1-\mathrm{C}^{2}{ }^{\text {i }}$	117.8 (2)
C1-Cu1-N2	113.5 (2)
C 2 - $\mathrm{Cu} 1-\mathrm{N} 2$	121.7 (2)
$\mathrm{C} 1-\mathrm{Cu} 1-\mathrm{C} 1^{\text {ii }}$	105.1 (2)
$\mathrm{C} 2{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{Cl}^{\text {ii }}$	98.19 (19)
N2-Cu1-C1 ${ }^{\text {ii }}$	93.39 (19)
$\mathrm{C} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {ii }}$	61.80 (18)
$\mathrm{C} 2 \mathrm{i}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {ii }}$	117.51 (16)
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{Cu1}{ }^{\text {ii }}$	109.72 (16)
$\mathrm{C} 1{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {ii }}$	43.34 (13)
$\mathrm{N} 1{ }^{\text {iii }}-\mathrm{Cu} 2-\mathrm{N} 1$	180.0 (2)
$\mathrm{N} 1^{\text {iii }}-\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~A}^{\text {iii }}$	90.66 (18)
$\mathrm{N} 1-\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~A}^{\text {iii }}$	89.34 (18)
N1 $1^{\text {iii }}-\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~B}$	89.34 (18)
N1-Cu2-N14B	90.66 (18)
N1 ${ }^{\text {iii- }} \mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~A}$	89.34 (18)
$\mathrm{N} 1-\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~A}$	90.66 (18)
N14A ${ }^{\text {iiii }}$ - $\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~A}$	180.0
N1 ${ }^{\text {iii }}-\mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~A}$	89 (2)
$\mathrm{N} 1-\mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~A}$	91 (2)
N14A ${ }^{\text {iii }}$-Cu2-O11A	106.4 (8)
N14A-Cu2-O11A	73.6 (8)
$\mathrm{N} 1^{\text {iiii }}$ - $\mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~B}$	93 (3)
N1-Cu2-O11B	87 (3)
N14B-Cu2-O11B	76.5 (8)
N1-C1-Cu1	167.2 (6)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{Cu1}{ }^{\text {ii }}$	118.0 (5)
$\mathrm{Cu} 1-\mathrm{C} 1-\mathrm{Cu} 1^{\text {ii }}$	74.9 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 2$	176.5 (5)
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{Cu1}{ }^{\text {iv }}$	176.0 (5)
C2-N2-Cu1	172.6 (5)
C12A-O11A-Cu2	102 (5)
C12A-O11A-H11A	91 (10)
$\mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~A}-\mathrm{H} 11 \mathrm{~A}$	132 (10)
C13A-C12A-O11A	101 (4)
$\mathrm{C} 13 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{H} 12 \mathrm{~A}$	111.5
O11A-C12A-H12A	111.5
C13A-C12A-H12B	111.5
O11A-C12A-H12B	111.5
H12A-C12A-H12B	109.3
N14A-C13A-C12A	108.0 (10)
N14A-C13A-C15A	108.8 (14)
C12A-C13A-C15A	107.4 (14)

N14B-H14D	0.8900
C15B-H15D	0.9600
C15B-H15E	0.9600
C15B-H15F	0.9600
$\mathrm{N} 14 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}-\mathrm{H} 13 \mathrm{~A}$	110.9
C12A-C13A-H13A	110.9
C15A-C13A-H13A	110.9
C13A-N14A-Cu2	110.2 (5)
C13A-N14A-H14A	109.6
$\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~A}-\mathrm{H} 14 \mathrm{~A}$	109.6
C13A-N14A-H14B	109.6
Cu2-N14A-H14B	109.6
H14A-N14A-H14B	108.1
C13A-C15A-H15A	109.5
C13A-C15A-H15B	109.5
H15A-C15A-H15B	109.5
C13A-C15A-H15C	109.5
H15A-C15A-H15C	109.5
H15B-C15A-H15C	109.5
C12B-O11B-Cu2	99 (6)
C12B-O11B-H11B	114 (10)
Cu2-O11B-H11B	106 (10)
O11B-C12B-C13B	110 (5)
O11B-C12B-H12C	109.6
C13B-C12B-H12C	109.6
O11B-C12B-H12D	109.6
C13B-C12B-H12D	109.6
H12C-C12B-H12D	108.1
C15B-C13B-C12B	112.3 (18)
C15B-C13B-N14B	113.5 (16)
C12B-C13B-N14B	111.1 (10)
C15B-C13B-H13B	106.5
C12B-C13B-H13B	106.5
N14B-C13B-H13B	106.5
C13B-N14B-Cu2	116.5 (5)
C13B-N14B-H14C	108.2
$\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~B}-\mathrm{H} 14 \mathrm{C}$	108.2
C13B-N14B-H14D	108.2
$\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~B}-\mathrm{H} 14 \mathrm{D}$	108.2
H14C-N14B-H14D	107.3
C13B-C15B-H15D	109.5
C13B-C15B-H15E	109.5
H15D-C15B-H15E	109.5
C13B-C15B-H15F	109.5
H15D-C15B-H15F	109.5
H15E-C15B-H15F	109.5

$\mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}$	$-42(4)$
$\mathrm{O} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}-\mathrm{N} 14 \mathrm{~A}$	$73(4)$
$\mathrm{O} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}-\mathrm{C} 15 \mathrm{~A}$	$-169(5)$
$\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}-\mathrm{N} 14 \mathrm{~A}-\mathrm{Cu} 2$	$-66.5(10)$
$\mathrm{C} 15 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}-\mathrm{N} 14 \mathrm{~A}-\mathrm{Cu} 2$	$177.3(10)$

$\mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}$	$46(5)$
$\mathrm{O} 11 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}-\mathrm{C} 15 \mathrm{~B}$	$171(5)$
$\mathrm{O} 11 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}-\mathrm{N} 14 \mathrm{~B}$	$-61(5)$
$\mathrm{C} 15 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}-\mathrm{N} 14 \mathrm{~B}-\mathrm{Cu} 2$	$166.7(14)$
$\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}-\mathrm{N} 14 \mathrm{~B}-\mathrm{Cu} 2$	$39.0(12)$

Symmetry codes: (i) $-x+1, y-1 / 2,-z-1 / 2$; (ii) $-x+1,-y,-z$; (iii) $-x,-y,-z$; (iv) $-x+1, y+1 / 2,-z-1 / 2$.

Hydrogen-bond geometry ($A,{ }^{o}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 14 A-\mathrm{H} 14 A \cdots \mathrm{O} 11 A^{v}$	0.89	2.48	$3.21(11)$	140
$\mathrm{O} 11 B-\mathrm{H} 11 B \cdots \mathrm{~N} 2 \mathrm{vi}$	$0.82(2)$	$2.54(13)$	$3.28(11)$	$150(13)$
$\mathrm{C} 12 A-\mathrm{H} 12 A \cdots \mathrm{C}^{\text {vi }}$				

Symmetry codes: (v) $-x, y-1 / 2,-z+1 / 2$; (vi) $x,-y+1 / 2, z+1 / 2$.
Poly[bis(2-aminoethanol)tetra- μ-cyanido-tricopper(II)] (3)

Crystal data

$\left[\mathrm{Cu}_{3}(\mathrm{CN})_{4}\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$
$M_{r}=416.88$
Monoclinic, $P 2{ }_{1} / c$
$a=9.5158$ (2) \AA
$b=8.8022(2) \AA$
$c=9.3589(2) \AA$
$\beta=117.358(1)^{\circ}$
$V=696.22(3) \AA^{3}$
$Z=2$

Data collection

Enraf-Nonius KappaCCD diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 9 pixels mm^{-1}
combination of ω and φ scans
Absorption correction: part of the refinement
model (ΔF)
(Otwinowski \& Minor,1997)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.077$
$S=1.16$
1740 reflections
118 parameters
26 restraints
Primary atom site location: heavy-atom method
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
$F(000)=414$
$D_{\mathrm{x}}=1.989 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.7107 \AA$
Cell parameters from 2164 reflections
$\theta=1.0-28.8^{\circ}$
$\mu=4.55 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Block
$0.37 \times 0.25 \times 0.22 \mathrm{~mm}$
$T_{\text {min }}=0.48, T_{\text {max }}=0.59$
27010 measured reflections
1740 independent reflections
1049 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=28.8^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-11 \rightarrow 11$
$k=0 \rightarrow 11$
$l=0 \rightarrow 12$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0263 P)^{2}+0.630 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.006$
$\Delta \rho_{\text {max }}=1.07 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.53$ e \AA^{-3}
Extinction correction: SHELXL2018
(Sheldrick, 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0030 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Cu 1	0.43137 (4)	-0.00194 (4)	-0.16664 (4)	0.03507 (14)	
Cu 2	0.000000	0.000000	0.000000	0.02951 (14)	
C1	0.2785 (3)	0.0024 (3)	-0.0860 (3)	0.0351 (5)	
N1	0.1773 (3)	0.0056 (3)	-0.0525 (3)	0.0369 (5)	
C2	0.5179 (3)	0.3029 (3)	-0.2702 (3)	0.0378 (6)	0.5
N2	0.4816 (3)	0.1875 (3)	-0.2405 (3)	0.0398 (6)	0.5
N2C	0.5179 (3)	0.3029 (3)	-0.2702 (3)	0.0378 (6)	0.5
C2N	0.4816 (3)	0.1875 (3)	-0.2405 (3)	0.0398 (6)	0.5
O11A	0.1498 (19)	-0.1514 (11)	0.241 (2)	0.0534 (15)	0.643 (14)
H11A	0.202 (8)	-0.226 (5)	0.243 (10)	0.051 (15)*	0.643 (14)
C12A	0.2544 (10)	-0.0467 (8)	0.3618 (7)	0.0484 (19)	0.643 (14)
H12A	0.290950	-0.088854	0.468798	0.073*	0.643 (14)
H12B	0.345489	-0.023671	0.345150	0.073*	0.643 (14)
C13A	0.1569 (11)	0.0924 (7)	0.3410 (6)	0.0475 (19)	0.643 (14)
H13A	0.063915	0.066997	0.353403	0.071*	0.643 (14)
H13B	0.217945	0.167214	0.421944	0.071*	0.643 (14)
N14A	0.1096 (3)	0.1541 (3)	0.1812 (3)	0.0448 (6)	0.643 (14)
H14A	0.195028	0.189574	0.176700	0.067*	0.643 (14)
H14B	0.044412	0.232000	0.165357	0.067*	0.643 (14)
O11B	0.143 (4)	-0.189 (2)	0.249 (4)	0.0534 (15)	0.357 (14)
H11B	0.220 (11)	-0.197 (13)	0.232 (17)	0.051 (15)*	0.357 (14)
C12B	0.171 (2)	-0.0648 (17)	0.3598 (13)	0.058 (3)	0.357 (14)
H12C	0.241443	-0.100736	0.467296	0.087*	0.357 (14)
H12D	0.071231	-0.039347	0.358141	0.087*	0.357 (14)
C13B	0.2362 (19)	0.0704 (15)	0.3333 (12)	0.050 (3)	0.357 (14)
H13C	0.327766	0.046259	0.317901	0.075*	0.357 (14)
H13D	0.270322	0.136169	0.426513	0.075*	0.357 (14)
N14B	0.1096 (3)	0.1541 (3)	0.1812 (3)	0.0448 (6)	0.357 (14)
H14C	0.155966	0.225597	0.150299	0.067*	0.357 (14)
H14D	0.038556	0.198626	0.204402	0.067*	0.357 (14)

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu 1	$0.0384(2)$	$0.0342(2)$	$0.0408(2)$	$0.00048(17)$	$0.02519(16)$	$0.00040(16)$
Cu 2	$0.0272(2)$	$0.0342(2)$	$0.0311(2)$	$-0.0012(2)$	$0.01687(18)$	$-0.0013(2)$
C 1	$0.0394(13)$	$0.0296(13)$	$0.0433(14)$	$-0.0010(14)$	$0.0250(12)$	$-0.0014(13)$
N 1	$0.0327(11)$	$0.0432(13)$	$0.0388(12)$	$-0.0015(12)$	$0.0197(10)$	$-0.0033(11)$
C 2	$0.0401(15)$	$0.0334(14)$	$0.0416(15)$	$0.0005(11)$	$0.0203(12)$	$0.0064(11)$

supporting information

N2	$0.0392(15)$	$0.0414(16)$	$0.0399(14)$	$0.0027(12)$	$0.0190(12)$	$0.0056(12)$
N2C	$0.0401(15)$	$0.0334(14)$	$0.0416(15)$	$0.0005(11)$	$0.0203(12)$	$0.0064(11)$
C2N	$0.0392(15)$	$0.0414(16)$	$0.0399(14)$	$0.0027(12)$	$0.0190(12)$	$0.0056(12)$
O11A	$0.061(2)$	$0.022(5)$	$0.081(3)$	$0.013(4)$	$0.0363(17)$	$0.018(5)$
C12A	$0.039(3)$	$0.059(3)$	$0.041(3)$	$0.011(3)$	$0.013(2)$	$0.002(2)$
C13A	$0.048(4)$	$0.060(3)$	$0.034(2)$	$0.010(3)$	$0.018(2)$	$-0.004(2)$
N14A	$0.0484(14)$	$0.0414(14)$	$0.0500(15)$	$-0.0048(12)$	$0.0274(12)$	$-0.0040(12)$
O11B	$0.061(2)$	$0.022(5)$	$0.081(3)$	$0.013(4)$	$0.0363(17)$	$0.018(5)$
C12B	$0.051(5)$	$0.097(6)$	$0.042(4)$	$-0.021(4)$	$0.035(4)$	$-0.010(4)$
C13B	$0.046(5)$	$0.054(5)$	$0.044(4)$	$-0.007(4)$	$0.015(4)$	$-0.008(4)$
N14B	$0.0484(14)$	$0.0414(14)$	$0.0500(15)$	$-0.0048(12)$	$0.0274(12)$	$-0.0040(12)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cu}-\mathrm{C} 1$	1.922 (3)	C13A-N14A	1.454 (6)
$\mathrm{Cu} 1-\mathrm{N} 2$	1.947 (3)	C13A-H13A	0.9700
$\mathrm{Cu} 1-\mathrm{C} 2{ }^{\text {i }}$	1.949 (3)	C13A-H13B	0.9700
$\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {ii }}$	2.7734 (7)	N14A-H14A	0.8900
$\mathrm{Cu} 2-\mathrm{N} 1$	1.963 (2)	N14A-H14B	0.8900
$\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~A}$	2.044 (2)	O11B-C12B	1.44 (3)
Cu2-N14B	2.044 (2)	O11B-H11B	0.819 (10)
$\mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~B}$	2.67 (3)	C12B-C13B	1.41 (2)
$\mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~A}$	2.439 (14)	C12B-H12C	0.9700
$\mathrm{C} 1-\mathrm{N} 1$	1.142 (4)	C12B-H12D	0.9700
C2-N2	1.147 (4)	C13B-N14B	1.563 (12)
O11A-C12A	1.442 (17)	C13B-H13C	0.9700
O11A-H11A	0.817 (10)	C13B-H13D	0.9700
C12A-C13A	1.494 (11)	N14B-H14C	0.8900
C12A-H12A	0.9700	N14B-H14D	0.8900
C12A-H12B	0.9700		
$\mathrm{C} 1-\mathrm{Cu} 1-\mathrm{N} 2$	118.41 (12)	O11A-C12A-H12A	110.8
$\mathrm{C} 1-\mathrm{Cu}-\mathrm{C}^{\text {i }}$	118.33 (12)	C13A-C12A-H12B	110.8
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{C} 2{ }^{\text {i }}$	120.78 (11)	O11A-C12A-H12B	110.8
$\mathrm{C} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{ii}}$	66.96 (9)	H12A-C12A-H12B	108.8
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {ii }}$	108.86 (8)	N14A-C13A-C12A	108.7 (6)
$\mathrm{C} 2 \mathrm{i}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {ii }}$	107.33 (8)	N14A-C13A-H13A	109.9
$\mathrm{N} 1-\mathrm{Cu} 2-\mathrm{N} 1^{\text {iii }}$	180.0	C12A-C13A-H13A	109.9
$\mathrm{N} 1-\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~A}^{\text {iii }}$	88.76 (10)	N14A-C13A-H13B	109.9
$\mathrm{N} 1{ }^{\text {iii }}-\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~A}^{\text {iii }}$	91.24 (10)	$\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}-\mathrm{H} 13 \mathrm{~B}$	109.9
N1-Cu2-N14A	91.24 (10)	H13A-C13A-H13B	108.3
$\mathrm{N}{ }^{1 i i}-\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~A}$	88.76 (10)	C13A-N14A-Cu2	113.8 (3)
N14A ${ }^{\text {iii }}$ - $\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~A}$	180.0	C13A-N14A-H14A	108.8
N1-Cu2-N14B	91.24 (10)	$\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~A}-\mathrm{H} 14 \mathrm{~A}$	108.8
$\mathrm{N}{ }^{1 i i}-\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~B}$	88.76 (10)	C13A-N14A-H14B	108.8
$\mathrm{N} 1-\mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~B}^{\text {iii }}$	85.3 (7)	$\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~A}-\mathrm{H} 14 \mathrm{~B}$	108.8
$\mathrm{N} 1{ }^{\text {iii }}-\mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~B}^{\text {iii }}$	94.7 (7)	H14A-N14A-H14B	107.7
$\mathrm{N} 14 \mathrm{~A}^{\text {iii }}-\mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~B}^{\text {iii }}$	80.1 (7)	$\mathrm{C} 12 \mathrm{~B}-\mathrm{O} 11 \mathrm{~B}-\mathrm{Cu} 2$	90.3 (10)

supporting information

$\mathrm{N} 14 \mathrm{~A}-\mathrm{Cu} 2-\mathrm{O}^{\text {1 }} \mathrm{B}^{\text {iii }}$	99.9 (7)	C12B-O11B-H11B	109 (10)
N14B-Cu2-O11B ${ }^{\text {iii }}$	99.9 (7)	$\mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~B}-\mathrm{H} 11 \mathrm{~B}$	91 (9)
$\mathrm{N} 1-\mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~B}$	94.7 (7)	O11B-C12B-C13B	117.6 (14)
N1 $1^{\text {iii- }} \mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~B}$	85.3 (7)	O11B-C12B-H12C	107.9
N14B-Cu2-O11B	80.1 (7)	C13B-C12B-H12C	107.9
O11B ${ }^{\text {iii- }}$ Cu2-O11B	180.0	O11B-C12B-H12D	107.9
$\mathrm{N} 1-\mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~A}$	92.4 (4)	C13B-C12B-H12D	107.9
N1 ${ }^{\text {iii- }}$ - $\mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~A}$	87.6 (4)	H12C-C12B-H12D	107.2
N14A ${ }^{\text {iiii }}$ - $\mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~A}$	105.3 (3)	C12B-C13B-N14B	109.9 (12)
N14A-Cu2-O11A	74.7 (3)	C12B-C13B-H13C	109.7
N1-C1-Cu1	173.7 (3)	N14B-C13B-H13C	109.7
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{Cu1}{ }^{\text {ii }}$	114.4 (2)	C12B-C13B-H13D	109.7
$\mathrm{Cu} 1-\mathrm{C} 1-\mathrm{Cu} 1^{\text {ii }}$	71.84 (9)	N14B-C13B-H13D	109.7
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 2$	176.9 (2)	H13C-C13B-H13D	108.2
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{Cu} 1^{\text {iv }}$	176.5 (3)	C13B-N14B-Cu2	109.2 (5)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{Cu} 1$	174.0 (3)	C13B-N14B-H14C	109.8
$\mathrm{C} 12 \mathrm{~A}-\mathrm{O} 11 \mathrm{~A}-\mathrm{Cu} 2$	106.0 (5)	$\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~B}-\mathrm{H} 14 \mathrm{C}$	109.8
C12A-O11A-H11A	108 (6)	C13B-N14B-H14D	109.8
$\mathrm{Cu} 2-\mathrm{O} 11 \mathrm{~A}-\mathrm{H} 11 \mathrm{~A}$	123 (6)	$\mathrm{Cu} 2-\mathrm{N} 14 \mathrm{~B}-\mathrm{H} 14 \mathrm{D}$	109.8
C13A-C12A-O11A	104.9 (8)	H14C-N14B-H14D	108.3
$\mathrm{C} 13 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{H} 12 \mathrm{~A}$	110.8		

Symmetry codes: (i) $-x+1, y-1 / 2,-z-1 / 2$; (ii) $-x+1,-y,-z$; (iii) $-x,-y,-z$; (iv) $-x+1, y+1 / 2,-z-1 / 2$.
Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 14 B — \mathrm{H} 14 D \cdots \mathrm{O} 11 B^{\vee}$	0.89	2.20	$3.09(3)$	178
$\mathrm{O} 11 B — \mathrm{H} 11 B \cdots \mathrm{~N} 2 C^{\mathrm{ii}}$	$0.82(1)$	$2.53(6)$	$3.30(3)$	$156(11)$

Symmetry codes: (ii) $-x+1,-y,-z$; (v) $-x, y+1 / 2,-z+1 / 2$.

