

Received 12 April 2024 Accepted 15 May 2024

Edited by D. R. Turner, University of Monash, Australia

Keywords: crystal structure; hydrogen-bonded network; 4-hydroxybenzoic acid; short hydrogen bond; crystal engineering; topology; paddle wheel complex; carboxylate dimer.

CCDC references: 2355537; 2355536; 2355535; 2355534; 2355533; 2355532; 2355531; 2355530; 2355529; 2355528; 2355527; 2355526

Supporting information: this article has supporting information at journals.iucr.org/c

Supramolecular hydrogen-bonded networks formed from copper(II) carboxylate dimers

Brendan F. Abrahams,* Christopher J. Commons,* Timothy A. Hudson and Robin Sanchez-Arlt

University of Melbourne, School of Chemistry, Grattan St, Parkville, 3052, Australia. *Correspondence e-mail: bfa@unimelb.edu.au, christopher.commons@unimelb.edu.au

The well-known copper carboxylate dimer, with four carboxylate ligands extending outwards towards the corners of a square, has been employed to generate a series of crystalline compounds. In particular, this work centres on the use of the 4-hydroxybenzoate anion (Hhba-) and its deprotonated phenolate form 4-oxidobenzoate (hba2-) to obtain complexes with the general formula $[Cu_2(Hhba)_{4-x}(hba)_x L_{2-y}]^{x-}$, where L is an axial coligand (including solvent molecules), x = 0, 1 or 2, and y = 0 or 1. In some cases, short hydrogen bonds result in complexes which may be represented as [Cu₂(Hhba)₂(H_{0.5}hba)₂ L_2]⁻. The main focus of the investigation is on the formation of a variety of extended networks through hydrogen bonding and, in some crystals, coordinate bonds when bridging coligands (L) are employed. Crystals of $[Cu_2(Hhba)_4(di$ oxane)₂]·4(dioxane) consist of the expected Cu dimer with the Hhba⁻ anions forming hydrogen bonds to 1,4-dioxane molecules which block network formation. In the case of crystals of composition $[Et_4N][Cu_2(Hhba)_2(H_{0.5}hba)_2 (CH_3OH)(H_2O)$]·2(dioxane), Li[Cu₂(Hhba)₂(H_{0.5}hba)₂(H₂O)₂]·3(dioxane)·4H₂O and [Cu₂(Hhba)₂(H_{0.5}hba)₂(H_{0.5}DABCO)₂]·3CH₃OH (DABCO is 1,4-diazabicyclo[2.2.2]octane), square-grid hydrogen-bonded networks are generated in which the complex serves as one type of 4-connecting node, whilst a second 4-connecting node is a hydrogen-bonding motif assembled from four phenol/ phenolate groups. Another two-dimensional (2D) network based upon a related square-grid structure is formed in the case of [Et₄N]₂[Cu₂(Hhba)₂(hba)₂(dioxane)₂[$Cu_2(Hhba)_4(dioxane)(H_2O)$]·CH₃OH. In [$Cu_2(Hhba)_4(H_2O)_2$]·2(Et₄N-NO₃), a square-grid structure is again apparent, but, in this case, a pair of nitrate anions, along with four phenolic groups and a pair of water molecules, combine to form a second type of 4-connecting node. When 1,8-bis(dimethylamino)naphthalene (bdn, 'proton sponge') is used as a base, another square-grid network is generated, *i.e.* [Hbdn]₂[Cu₂(Hhba)₂(hba)₂(H₂O)₂]·3(dioxane)·H₂O, but with only the copper dimer complex serving as a 4-connecting node. Complex three-dimensional networks are formed in [Cu₂(Hhba)₄(O-bipy)]- H_2O and $[Cu_2(Hhba)_4(O-bipy)_2]\cdot 2(dioxane)$, where the potentially bridging 4,4'-bipyridine N,N'-dioxide (O-bipy) ligand is employed. Rare cases of mixed carboxylate copper dimer complexes were obtained in the cases of $[Cu_2(Hhba)_3]$ -(OAc)(dioxane)]·3.5(dioxane) and [Cu₂(Hhba)₂(OAc)₂(DABCO)₂]·10(dioxane), with each structure possessing a 2D network structure. The final compound reported is a simple hydrogen-bonded chain of composition (H_{0.5}DABCO)- $(H_{1.5}hba)$, formed from the reaction of H_2hba and DABCO.

1. Introduction

In 1953, the structure of the copper(II) acetate tetra- μ -acetato-bis[aquacopper(II)], [Cu₂(OAc)₄(H₂O)₂], was reported and shown to consist of a pair of Cu^{II} centres bridged by four carboxylate groups (van Niekerk & Schoening, 1953). This remarkable compound, possessing a beautiful blue colour and an elegant structure, is one of the classic coordination complexes and, as a result, is a common synthetic target in undergraduate chemistry laboratory programs. The four carboxylate ligands extend outwards towards the vertices of an approximate square, and thus the binuclear unit has been employed as a square-planar connector in both discrete and polymeric supramolecular systems formed from bridging ligands possessing two or more carboxylate groups (Eddaoudi *et al.*, 2001; Chui *et al.*, 1999; Lee *et al.*, 2021). The binuclear tetracarboxylate moiety has been commonly referred to as a 'paddle wheel unit', with the Cu···Cu direction colinear with the 'wheel axle' and the carboxylate groups serving as 'paddles'.

Over the last decade our group has been interested in coordination polymers formed from the combination of metal ions with the anions of 4-hydroxybenzoic acid (H₂hba; Scheme 1), resulting in a variety of polymeric networks with compositions such as Zn(hba) and Co(hba) (White et al., 2015), and $Cu_3(hba)_2(OH)_2$ (Abrahams et al., 2022), which formed as solvates. Whilst these networks contain the hba²⁻ ligand in the presence of transition-metal ions, the reactions with Group 1 and 2 metal ions often failed to remove the phenolic proton of H₂hba, even when the metal hydroxide was employed. These reactions commonly resulted in only the Hhba⁻ monoanion being formed (Abrahams et al., 2021). In some instances, the ligand formed a strong hydrogen bond with an adjacent ligand to create a dimeric unit with a 1charge, *i.e.* $(H_{1.5}hba)_2$. In this unit, the O atoms involved are closely separated (approximately 2.45 Å), with the H atom between the two halves of the dimer either at the mid-point of the two O atoms or disordered over two closely separated positions.

The observation that the phenolic protons were retained in the generation of hydrogen-bonded networks prompted an investigation into whether the binuclear Cu^{II} dimer unit, combined with 4-hydroxybenzoic acid in either its monoanionic or dianionic form, was able to serve as a square-planar hydrogen-bonding unit in extended structures. Within such structures, negatively charged phenolate groups could serve as hydrogen-bond acceptors, whilst phenolic groups could serve as both acceptors and donors. This current work describes a series of 11 compounds (1–11) involving Hhba⁻/hba²⁻ ligands in which the geometry of the Cu dimer leads to the generation of a variety of hydrogen-bonded complexes and networks. The structure of a 1:1 cocrystal (12) formed from the combination of H₂hba and DABCO (DABCO is 1,4-diazabicyclo[2.2.2] octane) is also reported. Compound **12** serves as a convenient starting material for the generation of compound **4**.

2. Experimental

2.1. Synthesis and crystallization

1–11 are compounds of copper. Compound 12 is a cocrystal of H_2hba and DABCO, denoted $(H_{0.5}DABCO)$ - $(H_{1.5}hba)$, which was used in the synthesis of 4.

2.1.1. $[Cu_2(Hhba)_4(dioxane)_2] \cdot 4(dioxane), 1. Cu(OAc)_2 \cdot H_2O$ (0.40 g, 2.0 mmol) and H_2hba (0.55 g, 4.0 mmol) were dissolved in 1,4-dioxane (40 ml). The solution was heated, with stirring, for 2.5 h at approximately 80 °C. The solvent was allowed to evaporate slowly and blue crystals separated from the solution after several days.

2.1.2. [NEt₄][Cu₂(Hhba)₂(H_{0.5}hba)₂(CH₃OH)(H₂O)]·2(dioxane), **2.** Cu(OAc)₂·H₂O (0.10 g, 0.50 mmol) and H₂hba (0.28 g, 2.0 mmol) were dissolved in 1,4-dioxane (10 ml). The solution was heated, with stirring, for 1.5 h at approximately 80 °C. Methanol (10 ml) and water (1 ml) were added, followed by the dropwise addition, with stirring, of a 25 wt% solution of Et₄NOH in water (1.3 ml). The solvent was allowed to evaporate slowly and blue crystals separated from solution after several days.

2.1.3. Li[Cu₂(Hhba)₂(H_{0.5}hba)₂(H₂O)₂]·3(dioxane)·4H₂O, **3.** Cu(OAc)₂·H₂O (0.40 g, 2.0 mmol) and H₂hba (0.55 g, 4.0 mmol) were dissolved in 1,4-dioxane (30 ml). The solution was heated, with stirring, for 2.5 h at approximately 80 °C.

To a 2 ml sample of this solution was added LiOH·H₂O (0.011 g, 0.27 mmol) and methanol (1 ml). The solvent was allowed to evaporate slowly and a mixture of dark-green crystals of **3** and pale-green crystals separated from the solution after several days. The pale-green crystals were shown by X-ray diffraction to be the mononuclear molecular complex [Cu-(Hhba)₂(H₂O)₃]·H₂O. The structure of this complex has been reported previously [Cambridge Structural Database (CSD) refcodes BAPHEF (Shnulin *et al.*, 1981) and ICUJUN (Liu & Li, 2007); CSD Version 5.45, March 2024 release; Groom *et al.*, 2016].

2.1.4. $[Cu_2(Hhba)_2(H_{0.5}hba)_2(H_{0.5}DABCO)_2] \cdot 3CH_3OH$, 4. $Cu(OAc)_2 \cdot H_2O$ (0.016 g, 0.080 mmol) and $(H_{0.5}DABCO)$ - $(H_{1.5}hba)$ (0.46 g, 1.3 mmol) were dissolved in CH₃OH (12 ml). The solvent was allowed to evaporate slowly and dark-green crystals formed after one day. [The synthesis of $(H_{0.5}DABCO)(H_{1.5}hba)$, **12**, is described below.]

2.1.5. [Et₄N]₂[Cu₂(Hhba)₂(hba)₂(dioxane)₂][Cu₂(Hhba)₄(dioxane)(H₂O)]·CH₃OH, 5. Cu(OAc)₂·H₂O (0.040 g, 0.20 mmol) and H₂hba (0.055 g, 0.040 mmol) were dissolved in 1,4-dioxane (10 ml). The solution was heated, with stirring, for 4 h at approximately 80 °C and methanol (10 ml) was added. A few drops of a 25 wt% solution of Et₄NOH in water were added slowly with stirring until the precipitate that formed upon addition of each drop only just dissolved. Solvent was allowed to evaporate slowly and dark-blue crystals separated from solution after several days.

Table 1

Experimental details.

Data for compounds 4 and 5 were collected at the Australian Synchrotron (beamlines MX1 and MX2, respectively). An Oxford Diffraction Supernova diffractometer was used for compounds 8 and 12. Other diffraction data were measured using a Rigaku XtalLAB Synergy S (Dualflex, HyPix) diffractometer. Cu $K\alpha^1$ radiation was employed on the laboratory-based diffractometers. Absorption corrections on the synchrotron data employed the multi-scan method using *XDS* (Kabsch, 2010). The multi-scan method was also used for diffractometer data employing *CrysAlis PRO* (Rigaku OD, 2018). Data were collected at 100 K, except for 8 and 12 (130 K). H atoms were treated by a mixture of independent and constrained refinement.

	1	2	3	4
Crystal data				
Chemical formula	$\begin{array}{c} [Cu_2(C_7H_5O_3)_4(C_4H_8O_2)_2] \\ + 4C_4H_8O_2 \end{array}$	$\begin{array}{c} (C_8H_{20}N)[Cu_2(C_7H_5O_3)_2-\\ (C_7H_{4.5}O_3)_2(CH_4O)-\\ (H_2O)]\cdot 2C_4H_8O_2 \end{array}$	$ \begin{array}{l} [\text{Li}(\text{C}_4\text{H}_8\text{O}_2)(\text{H}_2\text{O})_3][\text{Cu}_2-\\(\text{C}_7\text{H}_5\text{O}_3)_2(\text{C}_7\text{H}_{4.5}\text{O}_3)_2-\\(\text{H}_2\text{O})_2]\cdot2\text{C}_4\text{H}_8\text{O}_2\cdot\text{H}_2\text{O} \end{array} $	$\begin{array}{c} [Cu_2(C_7H_5O_3)_2(C_7H_{4.5}O_3)_2 \\ (C_6H_{12.5}N_2)_2]\cdot 3CH_4O \end{array}$
М.,	1204.14	1031.02	1047.81	995.99
Crystal system space group	Orthorhombic Pccn	Triclinic $P\overline{1}$	Triclinic $P\overline{1}$	Triclinic $P\overline{1}$
a, b, c (Å)	27.7701 (8), 21.2278 (4), 9 3888 (1)	10.1659 (4), 10.7383 (6), 12.9878 (4)	9.7711 (8), 10.1924 (6), 12.5863 (7)	8.8860 (18), 10.702 (2), 12.360 (3)
$lpha,eta,\gamma~(^\circ)$	90, 90, 90	76.132 (4), 69.646 (3), 75.304 (4)	73.615 (5), 79.528 (6), 83.412 (6)	73.13 (3), 73.07 (3), 81.68 (3)
$V(Å^3)$	5534.7 (2)	1267.74 (10)	1179.86 (15)	1073.8 (4)
7	4	1	1	1
$\frac{2}{10}$ (mm ⁻¹)	1 66	1.63	1 85	1 07
μ (mm)	0.14 0.12 0.05	0.17 0.12 0.05	0.14 0.07 0.02	0.10 0.11 0.07
Crystal size (mm)	$0.14 \times 0.13 \times 0.05$	$0.17 \times 0.12 \times 0.05$	$0.14 \times 0.07 \times 0.03$	$0.18 \times 0.11 \times 0.07$
Data collection	0.567 1.000	0.885 1.000	0.610, 1.000	0.221 0.422
No. of measured, indepen-	18728, 5586, 4112	17988, 5262, 4672	10093, 4145, 3048	0.321, 0.432 15021, 3849, 2994
dent and observed $[I > 2\sigma(I)]$ reflections				
Rint	0.049	0.047	0.070	0.061
$(\sin \theta/\lambda)_{\rm max}$ (Å ⁻¹)	0.634	0.634	0.602	0.617
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.063, 0.187,	0.068, 0.200,	0.089, 0.261,	0.089, 0.263, 1.05
	1.04	1.06	1.09	
No. of reflections	5586	5262	4145	3849
No. of parameters	354	459	338	325
No. of restraints	2	419	42	364
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.47, -0.48	0.73, -1.00	1.21, -1.32	1.14, -0.76
	5	6	7	8
	5	0	1	8
Crystal data Chemical formula	$\begin{array}{c} (C_8H_{20}N)[Cu_2(C_7H_4O_3)_{2^-}\\ (C_7H_5O_3)_2(C_4H_8O_2)_{2}]^-\\ [Cu_2(C_7H_5O_3)_{4^-}\\ (C_4H_8O_2)(H_2O)]^{\cdot-}\\ CH_4O\end{array}$	$\begin{array}{c} (C_8H_{20}N)_2[Cu_2(C_7H_5O_3)_4\text{-} \\ (H_2O)_2](NO_3)_2 \end{array}$	$\begin{array}{c} (C_{14}H_{19}N_2)_2[Cu_2(C_7H_5-\\O_3)_2(C_7H_4O_3)_2(H_2O)_2]-\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} [Cu_2(C_7H_5O_3)_4(C_{10}H_8\text{-}\\ N_2O_2)] \cdot H_2O \end{array}$
М	1023 80	1096.07	1420 47	881 72
$m_{\rm r}$	Orthorhombia Prama	Trialinia $\overline{P_1}$	Trialinia $\overline{D1}$	Monoalinia C2/a
a, b, c (Å)	12.833 (3), 54.548 (11), 12.119 (2)	10.4964 (3), 10.6595 (2), 12.3226 (3)	10.2155 (2), 12.0897 (3), 15.7111 (4)	11.9851 (8), 17.7472 (11), 17.1294 (10)
$lpha,eta,\gamma~(^\circ)$	90, 90, 90	97.271 (2), 101.042 (2), 108.130 (2)	69.581 (3), 75.988 (2), 79.651 (2)	90, 92.637 (5), 90
$V(\text{\AA}^3)$	8483 (3)	1260.15 (6)	1754.64 (8)	3639.6 (4)
$\frac{2}{(mm^{-1})}$	1 08	1 72	1 38	
Crystal size (mm)	$0.13 \times 0.09 \times 0.06$	$0.16 \times 0.13 \times 0.09$	$0.19 \times 0.16 \times 0.12$	$0.32 \times 0.06 \times 0.05$
Data collection				
T_{\min}, T_{\max}	0.321, 0.432	0.720, 1.000	0.890, 1.000	0.898, 1.000
No. of measured, indepen- dent and observed	151309, 13753, 11493	14549, 5136, 4648	21601, 6618, 5772	6868, 3663, 3386
$[I > 2\sigma(I)]$ reflections				
R _{int}	0.054	0.048	0.036	0.024
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.753	0.634	0.610	0.629
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.050, 0.148,	0.038, 0.101,	0.064, 0.189,	0.034, 0.098, 1.05
	1.02	1.08	1.05	
No. of reflections	13753	5136	6618	3663
No. of parameters	585	408	361	263
No. of restraints	67	263	3	2
$\Lambda_0 \qquad \Lambda_0 \qquad (e^{\dot{\Lambda}-3})$	142 - 0.84	0.47 - 0.54	105 - 0.62	0.36 - 0.57
$\rightarrow_{P_{\text{max}}}, \rightarrow_{P_{\text{min}}} (C_{P_{\text{min}}})$		0.17, 0.01	1.00, 0.02	0.00, 0.07

research papers

Table 1 (continued)

ruble i (continueu)				
	9	10	11	12
Crystal data				
Chemical formula	$[Cu_2(C_7H_5O_3)_4(C_{10}H_8-N_2O_2)_2] \cdot 2C_4H_8O_2$	$[Cu_2(C_7H_5O_3)_3(C_2H_3O_2)-(C_4H_8O_2)]\cdot 3.5C_4H_8O_2$	$[Cu_2(C_7H_5O_3)_2(C_2H_3O_2)_2 - (C_6H_{12}N_2)_2] \cdot 10C_4H_8O_2$	$C_6H_{13}N_2^+ \cdot C_7H_5O_3^-$
M _r	1228.09	993.92	1624.77	250.29
Crystal system, space group	Orthorhombic, Pbca	Monoclinic, I2/a	Monoclinic, Pc	Monoclinic, $P2_1/n$
a, b, c (Å)	17.5993 (3), 16.4583 (2), 19.7389 (2)	19.4801 (2), 13.0774 (2), 34.5443 (5)	9.7404 (3), 20.3001 (4), 22.9088 (7)	15.3994 (5), 10.6592 (3), 16.9261 (6)
α, β, γ (°)	90, 90, 90	90, 97.702 (1), 90	90, 118.494 (4), 90	90, 110.424 (4), 90
$V(Å^3)$	5717.46 (13)	8720.7 (2)	3981.1 (2)	2603.67 (15)
Z	4	8	2	8
$\mu ({\rm mm}^{-1})$	1.59	1.90	1.36	0.75
Crystal size (mm)	$0.09\times0.07\times0.05$	$0.26 \times 0.09 \times 0.06$	$0.34\times0.25\times0.14$	$0.22 \times 0.16 \times 0.13$
Data collection				
T_{\min}, T_{\max}	0.344, 1.000	0.764, 1.000	0.533, 1.000	0.952, 1.000
No. of measured, indepen- dent and observed $[I > 2\sigma(I)]$ reflections	23256, 5876, 4731	37963, 9032, 6906	27595, 12037, 9752	11079, 5386, 3805
R _{int}	0.056	0.071	0.040	0.039
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.634	0.635	0.635	0.632
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.129, 1.06	0.065, 0.191, 1.09	0.098, 0.287, 1.21	0.044, 0.120, 1.01
No. of reflections	5876	9032	12037	5386
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.59, -0.68	1.12, -1.24	1.38, -0.70	0.19, -0.24
Absolute structure	_	_	Refined as an inversion twin	_
Absolute structure para- meter	_	_	0.46 (6)	_

Computer programs: CrysAlis PRO (Rigaku OD, 2015, 2018, 2021, 2023), XDS (Kabsch, 2010), SHELXT (Sheldrick, 2015a), olex2.solve (Bourhis et al., 2015), SHELXL2018 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

2.1.6. $[Cu_2(Hhba)_4(H_2O)_2] \cdot 2Et_4N(NO_3)$, 6. H_2hba (0.55 g, 4.0 mmol) was added to a 25 wt% solution of Et_4NOH in water (8.0 ml) and heated, with stirring, at approximately 80 °C for 30 min. Water was evaporated from the solution and the resulting white solid dried by vacuum sublimation. A solution of the white solid (0.10 g) in methanol (2 ml) was added to a solution of $Cu(NO_3)_2 \cdot 3H_2O$ (0.10 g, 0.41 mmol) in methanol (2 ml). A yellow–green precipitate formed immediately which redissolved with stirring. The solvent was allowed to evaporate slowly and blue crystals separated from the solution after several days.

2.1.7. [Hbdn]₂[Cu₂(Hhba)₂(hba)₂(H₂O)₂]·3(dioxane)·H₂O, 7. Cu(OAc)₂·H₂O (0.10 g, 0.50 mmol) and H₂hba (0.14 g, 1.0 mmol) were added to 1,4-dioxane (10 ml). The solution was heated, with stirring, at approximately 70 °C for 10 min. 1,8-Bis(dimethylamino)naphthalene (bdn, 'proton sponge'; 0.070 g, 0.33 mmol) and acetonitrile (2 ml) were added, and the mixture heated for a further 30 min. The solvent was allowed to evaporate slowly and green crystals separated from solution after several days.

2.1.8. $[Cu_2(Hhba)_4(O-bipy)] \cdot H_2O$, **8.** $Cu(OAc)_2 \cdot H_2O$ (0.20 g, 1.0 mmol), 4,4'-bipyridine *N*,*N*'-dioxide (O-bipy; 0.10 g, 0.53 mmol) and H₂hba (0.20 g, 1.4 mmol) were added to water (10 ml) and xylene (1 ml). The mixture was heated at 110 °C in a Teflon-lined autoclave for 5 h to yield dark-green crystals.

2.1.9. $[Cu_2(Hhba)_4(O-bipy)_2] \cdot 2(dioxane)$, **9.** $Cu(OAc)_{2} \cdot H_2O$ (0.10 g, 0.50 mmol), O-bipy (0.050 g, 0.27 mmol) and H_2hba (0.050 g, 0.36 mmol) were added to 1,4-dioxane (10 ml). The mixture was heated at 110 °C in a Teflon-lined autoclave for 1 d to yield dark-green crystals.

2.1.10. $[Cu_2(Hhba)_3(OAc)(dioxane)] \cdot 3.5 dioxane, 10. Cu-(OAc)_2 \cdot H_2O$ (0.40 g, 2.0 mmol) and H₂hba (0.55 g, 4.0 mmol) were dissolved in 1,4-dioxane (40 ml). The solution was heated, with stirring, for 4 h at approximately 80 °C. The solvent was allowed to evaporate slowly and dark-blue crystals separated from solution after several days.

2.1.11. $[Cu_2(Hhba)_2(OAc)_2(DABCO)_2] \cdot 10(dioxane), 11. Cu-(OAc)_2 \cdot H_2O$ (0.10 g, 0.50 mmol), H₂hba (0.069 g, 0.50 mmol) and 1,4-diazabicyclo[2.2.2]octane (DABCO; 0.061 g, 0.54 mmol) were added to 1,4-dioxane (50 ml). A 0.01 *M* NaOH solution (50 µl) was then added. The mixture was heated at 115 °C in a Teflon-lined autoclave for 2 d to yield small green crystals.

2.1.12. ($H_{0.5}DABCO$)($H_{1.5}hba$), **12.** Separate 5 ml methanol solutions of H_2hba (1.34 g, 10 mmol) and DABCO (2.75 g, 25 mmol) were prepared. The two solutions were heated to approximately 40 °C, mixed and then heated for a further 15 min. Acetone (20 ml) was added and the solution allowed to evaporate. Colourless crystals formed after approximately 1 h.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms of water molecules, phenolic groups and carboxylic acid groups were commonly located in difference Fourier maps and were generally refined with O–H distances restrained to 0.85 Å and $U_{\rm iso}({\rm H})$ values of $1.5U_{\rm eq}({\rm O})$.

In 2, H atoms were involved in short hydrogen bonds $(O \cdots O \text{ distances less than } 2.45 \text{ Å})$ between the symmetry-

related O atoms of phenolate groups, and single peaks were observed in difference Fourier maps midway between the atoms. These peaks were assigned as H atoms and refined independently. Short hydrogen bonds were also present in **3** and **4** between the symmetry-related O atoms of phenol groups; however, single peaks midway between the O atoms were not observed. In these cases, H atoms were located on both O atoms with 0.5 occupancies and O-H distances restrained to 0.85 Å.

The H₂hba and DABCO molecules are closely aligned in **12** (N···O distances of approximately 2.52 Å) and single peaks were observed in difference Fourier maps almost midway

Figure 1

The structures of compounds **1–6**, showing the copper dimer units and the atom-labelling schemes. For clarity, the labels of the C and H atoms are not shown. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary size. The red dotted lines represent hydrogen-bonding interactions. In **2**, only one configuration of the disordered dioxane molecules is shown, and in **4**, only one configuration of the DABCO molecules is shown.

Figure 2

The structures of compounds 7–11, showing the copper dimer units and the atom-labelling schemes. The structure of the cocrystal formed from the combination of H_2 hba and DABCO (12) is also shown. For clarity, the labels of the C and H atoms are not shown. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary size. The red dotted lines represent hydrogen-bonding interactions. In 9, only one configuration of the disordered dioxane molecules is shown, and in 11, only one configuration of the DABCO molecules is shown.

Figure 3

The structure of $[Cu_2(Hhba)_4(dioxane)_2]$ -4(dioxane) (1), showing the links to two coordinated dioxane molecules and hydrogen-bond interactions with four non-coordinated dioxane molecules. Colour code for this and later figures, as applicable: Cu dark blue, C black, O red, N and Li pale blue, and H pale pink. Hydrogen bonds are indicated by black and white striped connections. For clarity, H atoms not involved in hydrogen bonding have been omitted in this and most of the following figures.

between the N and O atoms. These peaks were assigned as H atoms and refined independently.

Other H atoms were placed in calculated positions and refined as riding atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene and aromatic C atoms, $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl C atoms, and with C-H = 0.95 Å for aromatic groups, 0.99 Å for methylene group and 0.98 Å for methyl groups. The H atoms of two disordered water molecules (containing O11 and O13) were not modelled in **3**. Details of the refinements can be found in the embedded CIF files.

The mask process within *OLEX2* (Dolomanov *et al.*, 2009) was employed in the structure refinements for **4**, **7** and **10**,

which represent structures for which not all solvent molecules could be satisfactorily modelled.

3. Results and discussion

Labelled structures of compounds **1–12** showing displacement ellipsoids for non-H atoms are presented in Figs. 1 and 2.

Our general strategy towards the synthesis of hydrogenbonded copper(II) complexes incorporating Hhba⁻ anions involves the addition of H₂hba to $Cu_2(OAc)_4$ ·2H₂O. In this reaction, the acetate anion can serve as the base for H₂hba. The combination of $Cu_2(OAc)_4$ ·2H₂O with H₂hba in a 1:4 ratio in 1,4-dioxane (dioxane) yields a compound of composition [$Cu_2(Hhba)_4(dioxane)_2$]·4(dioxane) (1). As anticipated, the dimeric copper carboxylate complex is formed, as indicated in Fig. 3, with the Hhba⁻ units extending towards the vertices of an approximate square. Each phenolic group of the coordinated Hhba⁻ serves as a proton donor to a dioxane molecule. In addition, a dioxane molecule is coordinated to opposing axial sites on each of the symmetry-related Cu^{II} centres.

The compound $[NEt_4][Cu_2(Hhba)_2(H_{0.5}hba)_2(CH_3OH)-(H_2O)]\cdot 2(dioxane)$ (2) is formed by the combination of $Cu_2(OAc)_4(H_2O)_2$ and H_2hba in dioxane, followed by the addition of NEt_4OH in an aqueous methanol solution. It was anticipated that the addition of the base (NEt_4OH) would serve to generate at least some hba^{2-} anions. The Cu dimeric complex present in 1 is also evident in 2, however, with disordered water and methanol molecules occupying the axial sites in place of the dioxane molecules. A centre of inversion lies between the two Cu^{II} centres. The complex has formally lost one phenolic H atom, resulting in the formation of the anionic complex $[Cu_2(Hhba)_2(H_{0.5}hba)_2(CH_3OH)(H_2O)]^-$. The four organic groups extend outwards towards the vertices of an approximate square and thus the complex may be con-

Figure 4

The structure of $[NEt_4][Cu_2(Hhba)_2(H_0.5hba)_2(CH_3OH)(H_2O)]$ ·2(dioxane) (2), showing (a) the hydrogen-bonded 4-connected node, (b) the 4,4network with the dioxane molecules and NEt_4^+ ions in the square cavities (only one of the two orientations of each tetraethylammonium ion is shown), and (c) the intersheet hydrogen-bond interactions involving the coordinated water/methanol molecules which extend into sheets above and below.

Figure 5

The structure of Li[Cu₂(Hhba)₂(H_{0.5}hba)₂(H₂O)₂]·3(dioxane)·4H₂O (**3**), showing (*a*) the square-grid structure with the Li⁺ cation coordinated by water and dioxane molecules located in the larger of the two types of square cavities, and (*b*) part of the infinite Li⁺-solvent chain.

sidered as a 4-connecting node. Hydrogen bonding between phenolic and phenolate groups results in the generation of a second 4-connecting node within a two-dimensional (2D) network. As indicated in Fig. 4(a), the second type of 4-connecting node consists of three H atoms that bind four O atoms in a zigzag arrangement. The two central O atoms are separated by a H atom, which was refined to a position midway between the two symmetry-related O atoms. The $O \cdots H \cdots O$ separation of 2.446 (5) Å is indicative of a strong interaction, and the dimer unit formed by this interaction may be represented as $(H_{0.5}hba)_2^{3-}$. Interestingly, the O···O separation between O atoms is similar to that seen in $(H_{1.5}hba)_2^{-1}$ (Abrahams et al., 2021). Phenolic groups above and below the central pair of O atoms form additional hydrogen bonds which are a little longer $[O-H \cdots O = 2.601 (4) \text{ Å}]$, resulting in a short hydrogen-bonded planar zigzag chain (O-H···O··· $H \cdots O \cdots H = O$).

An anionic 2D 4,4-network (square-grid network) is generated by linking the $[Cu_2(Hhba)_2(H_{0.5}hba)_2(CH_3OH)-(H_2O)]^-$ complexes through hydrogen bonds involving the phenolic/phenolate groups [Fig. 4(*b*)]. Two types of squareshaped cavities are formed within the network, with orientationally disordered tetraethylammonium counter-ions occupying the larger cavities. Disordered dioxane molecules, which were crystallographically modelled with partial occupancies, occupy the slightly smaller square cavities and space between networks.

The 2D square-grid layers described above form hydrogen bonds with adjacent parallel layers through the coordinated water/methanol molecules. The coordinated molecules serve as hydrogen-bond donors, bonding to a terminus of the hydrogen-bonded $O-H\cdotsO\cdotsH\cdotsO\cdotsH-O$ chain. In the case of the coordinated water molecule, a hydrogen bond extends to a dioxane molecule located in one of the small square cavities of an adjacent sheet, as indicated in Fig. 4(c).

Figure 6

The structure of $[Cu_2(Hhba)_2(H_{0.5}DABCO)_2] \cdot 3CH_3OH$ (4), showing (a) $[DABCO \cdot H \cdot DABCO]^+$ links between $[Cu_2(Hhba)_2(H_{0.5}bha)_2]^-$ hydrogen-bonded sheets, (b) a single network with $[Cu_2(H_{0.5}hba)_2(Hhba)_2]^-$ hydrogen-bonded sheets linked by $[DABCO \cdot H \cdot DABCO]^+$ connections and (c) a pair of interpenetrating networks. Only a single orientation of each of the rotationally disordered DABCO units is represented in each figure.

Figure 7

The structure of $[Et_4N]_2[Cu_2(Hhba)_2(hba)_2(dioxane)_2][Cu_2(Hhba)_4(dioxane)(H_2O)] \cdot CH_3OH (5)$, showing (a) the anionic 2D structure and (b) a pair of sheets indicating the $ABAB \dots$ stacking.

Crystals of Li[Cu₂(Hhba)₂(H_{0.5}hba)₂(H₂O)₂]·3(dioxane)·-4H₂O (3) are generated using LiOH as a base. A similar 4,4network [Fig. 5(a)] to that found in **2** is formed. The binuclear unit is once again located on a centre of inversion and thus the asymmetric unit within the anionic network is very similar to that of compound 2. As with 2, there are two types of cavities in the sheet, one slightly larger than the other. The larger cavities, which are all crystallographically identical, are occupied by dioxane molecules, each of which is bound to a Li centre through one of the O atoms. Three water molecules complete the coordination sphere of the Li centre. The other O atom of the dioxane serves as a hydrogen-bond acceptor to a water molecule. A centre of inversion lies at the centre of the dioxane and thus the Li⁺ centre is disordered across a pair of symmetry-related sites. These components are part of an infinite chain consisting of water molecules, Li⁺ ions and bridging and branching dioxane molecules [Fig. 5(b)]. The chains pass through the larger square cavities of adjacent 4,4networks, as indicated in Fig. 5(a). Branching dioxane molecules occupy the smaller square cavities.

The compound $[Cu_2(Hhba)_2(H_{0.5}hba)_2(H_{0.5}DABCO)_2]$ -3CH₃OH (**4**) is formed from the reaction of Cu₂(OAc)₄·2H₂O and (H_{0.5}DABCO)(H_{1.5}hba) (**12**) in methanol. DABCO molecules occupy the axial sites on the Cu dimer complex and are rotationally disordered around the axis which passes through the two N centres. A similar $[Cu_2(Hhba)_2(H_{0.5}hba)_2]^-$ hydrogen-bonded 2D network to that present in compounds **2** and **3** is apparent in **4**, but rather than cations occupying square cavities, the charge on the anionic complex is balanced by a proton located between a pair of coordinated DABCO ligands ([DABCO···H···DABCO]⁺), which forms a linear link between anionic sheets, as indicated in Fig. 6(*a*). The binuclear Cu complex now serves as a 6-connecting node, with the DABCO ligands extending in a direction perpendicular to

The structure of $[Cu_2(Hhba)_4(H_2O)_2]\cdot 2(Et_4NNO_3)$ (6), showing (*a*) the hydrogen bonding from four phenolic groups to a pair of nitrate anions, and from water molecules to pairs of phenolic groups, and (*b*) the 2D network. Hydrogen bonds are indicated by black and white striped connections, whilst close interionic contacts between nitrate anions are indicated by pink and white striped connections. Only a single orientation of each of the disordered Et_4N^+ units is represented in part (*b*).

the familiar 2D network which was a feature of compounds **2** and **3** [Fig. 6(b)]. The result is a three-dimensional (3D) hydrogen-bonded network with relatively large intraframework voids that are large enough to accommodate a second equivalent network, as depicted in Fig. 6(c).

An anionic 2D hydrogen-bonded network is also a feature of the compound [Et₄N]₂[Cu₂(Hhba)₂(hba)₂(dioxane)₂][Cu₂- $(Hhba)_4(dioxane)(H_2O)]\cdot CH_3OH$ (5), but there are clear differences in the 4-connecting nodes that are formed by the aggregation of phenolic and phenolate groups. In each of the compounds 1-4, there is only one crystallographically unique binuclear complex, each possessing a centre of symmetry between the two Cu^{II} centres. In 5, however, two crystallographically distinct binuclear Cu^{II} complexes are present. The first of these consists of four Hhba⁻ anions bound to a pair of centrosymmetrically-related Cu^{II} centres which are represented by dark-blue spheres in Fig. 7(a). The second complex is comprised of two crystallographically distinct Cu^{II} centres (the larger light-blue spheres) which are bound to two Hhba⁻ anions and two hba²⁻ anions. The hba²⁻ anions are *cis* to each other in the binuclear complex. The phenolate O atoms of the hba²⁻ anions serve as hydrogen-bond acceptors from three phenolic groups, resulting in a 4-connecting hydrogen-bonding node. The $O \cdots O$ separations in the $[O^{-} \cdots (H-O)_{3}]$ node are in the range 2.571 (2)-2.616 (2) Å. Charge balance for the anionic network is achieved with tetraethylammonium ions that occupy every second square cavity of the 2D network, which extends in the *bc* plane. The 2D sheets stack in an *ABAB*... fashion [Fig. 7(*b*)], with tetraethylammonium ions sandwiched between $[O^-\cdots(H-O)_3]$ nodes of adjacent sheets. Dioxane and water molecules, which are bound to the axial positions of the binuclear complexes, exhibit varying degrees of disorder and protrude into the vacant square cavities of adjacent sheets.

The compound $[Cu_2(Hhba)_4(H_2O)_2]$ ·2Et₄N(NO₃) (6) is formed when Cu(NO₃)₂·3H₂O is used as the source of Cu^{II} and the reaction mixture includes H₂hba and Et₄NOH. The expected binuclear complex, with water molecules occupying the axial positions, is formed with a centre of symmetry between the metal centres. Each of the carboxylate ligands retains the phenolic proton to give the neutral [Cu₂(Hhba)₄- $(H_2O)_2$ complex. Four phenolic groups combine with a pair of nitrate anions and a pair of coordinated water molecules, from adjacent metal complexes, to form an unusual hydrogenbonded motif, as shown in Fig. 8(a). An interesting feature of this motif is the association of nitrate anion pairs, which make relatively close face-to-face contacts, with N····O separations of 2.883 (2) Å. Inspection of the Cambridge Structural Database (CSD, Version 5.45, March 2024 release; Groom et al., 2016) reveals numerous examples of similar face-to-face

Figure 9

The structure of $[Hbdn]_2[Cu_2(Hhba)_2(H_2O)_2]$ ·3(dioxane)·H₂O (7), showing (*a*) the double hba²⁻ bridges between Cu^{II} pairs along the *a* axis, (*b*) the double Hhba⁻ bridges between Cu^{II} pairs along the *b* axis, with an additional water molecule between the phenolic group and the coordinated water molecule, (*c*) a pair of face-to-face Hbdn⁺ cations and (*d*) the 2D network extending in the *ab* plane, with the cations located in the cavities.

interactions of nitrate anions. The aggregation of the phenolic groups, the two nitrate anions and a pair of coordinated water molecules leads once again to the generation of a 2D network, as depicted in Fig. 8(b). If the link from the coordinated water molecule to adjacent parallel layers is considered, then the overall structure is that of a 3D network. To balance the charge of the nitrate anion pairs, a tetraethylammonium cation is required for every square cavity. There are two crystallographically distinct tetraethylammonium ions, each of which is disordered over a pair of sites in each square cavity.

The employment of the organic base 1,8-bis(dimethylamino)naphthalene (bdn), more commonly known as a proton sponge, leads to the formation of crystals of composition $[Hbdn]_2[Cu_2(Hhba)_2(hba)_2(H_2O)_2]\cdot 3(dioxane)\cdot H_2O$ (7). In this compound, the binuclear complex carries an overall 2charge, with two hba²⁻ ligands *trans* to each other and extending along the *a*-axis direction. The *trans*-phenolate groups act as hydrogen-bond acceptors from coordinated water molecules belonging to complexes on either side along the direction of the a axis. In addition to acting as a proton acceptor via the trans hba²⁻ anions, the complex also serves as a proton donor to the complexes on either side through the coordinated water molecules. Thus, each complex forms a pair of double hba^{2-} bridges, as indicated in Fig. 9(*a*). In addition to the centre of symmetry between the Cu^{II} centres, there is a centre of symmetry between the pair of hba²⁻ anions. Similarly, along the b axis, there are Hhba⁻ double bridges between complexes with a non-coordinated water molecule interspersed between the phenolic group and the coordinated water molecule [Fig. 9(b)]. The presence of these two types of double bridges results in the generation of a 4,4-network in which the binuclear complex serves as the sole 4-connecting node. Pairs of Hbdn⁺ cations, in a face-to-face arrangement, occupy the approximately square cavities [Figs. 9(c) and 9(d)]. The 2D layers that are generated are separated by disordered solvent molecules.

The addition of 4,4'-bipyridine N,N'-dioxide (O-bipy) to Cu(OAc)₂·2H₂O and H₂hba under solvothermal conditions vields a one-dimensional (1D) coordination polymer of composition $[Cu_2(Hhba)_4(O-bipy)] \cdot H_2O$ (8). The O atoms of O-bipy coordinate to the axial positions of a binuclear Cu₂(Hhba)₄ complex, resulting in a coordination polymer chain that extends in the [201] direction [Fig. 10(a)]. Hydrogen-bonding interactions involving *trans*-Hhba⁻ anions lead to the generation of chains, as indicated in Fig. 10(b). Within the crystal structure, these hydrogen-bonded chains extend in both the [110] and the $[1\overline{10}]$ directions. If the links between $Cu_2(Hhba)_4$ units, shown in Figs. 10(a) and 10(b), are taken into account, the binuclear unit may be considered as a 4-connected node within a network which has the same topology as the CdSO₄ net, *i.e.* Schlafli (point) symbol $6^5 \cdot 8^1$. Whilst the CdSO₄ network is not as common as some of the better-known networks based on 4-connecting nodes, there are examples reported in the literature including one based upon a Cu^{II}-tetracarboxylate dimer (Moulton et al., 2003). The remaining two Hhba⁻ arms of the complex participate in hydrogen-bonding interactions with non-coordinated water molecules, which, in turn, form hydrogen-bonded links to the coordinated O atoms of the O-bipy ligands. The result is a complex 3D hydrogen-bonded network structure.

Figure 10

The structure of $[Cu_2(Hhba)_4(O-bipy)] \cdot H_2O(8)$, showing (a) the 1D chains formed by the bridging O-bipy ligands and (b) the hydrogen-bonded chains linking $Cu_2(Hhba)_4$ units together. The chains depicted in part (b) extend in both the [110] and the [110] directions.

Figure 11

The structure of $[Cu_2(Hhba)_4(O-bipy)_2]$ ·2(dioxane) (9), showing (a) part of the hydrogen-bonding 2D network that extends parallel to the *ab* plane, (b) double hydrogen-bonded bridges that link the sheets depicted in part (a), and (c) part of the resulting 3D network.

Under solvothermal conditions using dioxane as solvent, O-bipy reacts with Cu(OAc)₂·2H₂O and H₂hba to form crystals of composition [Cu₂(Hhba)₄(O-bipy)₂]·2(dioxane) (9), in which only one O atom of each O-bipy is coordinated to the neutral binuclear complex. Within this structure, a square-grid hydrogen-bonded network lying parallel to the *ab* plane is generated, with links between phenolic groups and the coordinated O-bipy O atom, as indicated in Fig. 11(a). Additional connections from each binuclear unit extend along the c axis. These connections are double bridges and consist of a hydrogen-bonding link between the non-coordinated O atom of O-bipy and a phenolic group of a Hhba^- ligand [Fig. 11(*b*)]. The double Hhba...O-bipy bridges extending from the binuclear units to symmetry-related parallel units result in a 3D network that has the topology of the simple (primitive) cubic net, which is also known as the α -polonium net [Fig. 11(c)]. The intraframework space is occupied by a symmetry-related second network.

In the preparation of the copper compounds described above, except for 6, the binuclear copper acetate complex served as the source of Cu^{II} . In the following two examples (10 and 11), only partial replacement of the acetate by the Hhba⁻ ligands has occurred. In [Cu₂(Hhba)₃(OAc)(dioxane)]·3.5(di-

oxane) (10), the binuclear unit is again present, but with the Cu^{II} ions coordinated by three Hhba⁻ anions and one acetate anion. In this case, the binuclear units are bridged by dioxane molecules to form a chain that extends along the *a* axis, as indicated in Fig. 12(*a*). Hydrogen-bonding interactions involving the phenolic groups and acetate O atoms result in linked parallel chains [Fig. 12(*b*)]. The remaining phenolic groups interact with disordered dioxane solvent molecules.

In $[Cu_2(Hhba)_2(OAc)_2(DABCO)_2]$ ·10(dioxane) (11), two *trans*-acetate anions remain coordinated, with coordinated DABCO molecules occupying the axial positions in the complex. The $[Cu_2(Hhba)_2(OAc)_2(DABCO)_2]$ unit serves as a 4-connecting node within a 2D 4,4-network, as depicted in Fig. 13(*a*), with hydrogen bonds formed between the phenolic groups and the non-coordinated DABCO N atom. Not surprisingly, there is a pronounced bend in the connection between the complexes associated with the C-O-H bond angle. The 2D layers stack on top of each other, with the methyl groups of the acetate ion extending above and below the mean plane of the 2D network [Fig. 13(*b*)]. Dioxane solvent molecules occupy the voids between neighbouring sheets.

The final compound described in this article is the 1:1 cocrystal formed from the combination of DABCO and

Figure 12

The linear chain structure of $[Cu_2(Hhba)_3(OAc)(dioxane)]$ -3.5(dioxane) (10), showing (a) the chain formed by bridging dioxane ligands that extends along the *a* axis and (b) the hydrogen-bonded corrugated sheet network. Non-coordinated dioxane molecules have been omitted.

 H_2hba , which was used as a reactant in the formation of compound 4.

The crystal structure determination indicates two DABCO and two 4-hydroxybenzoic acid molecules in the asymmetric unit. Hydrogen-bonded chains that extend in the [101] direction are generated as indicated in Fig. 14. Each chain contains only one type of DABCO and 4-hydroxybenzoic acid molecule. The orientations of the 4-hydroxybenzoic acid in the two crystallographically distinct chains, as represented in Fig. 14, are opposite to each other and thus the two chains are antiparallel. The cocrystal adopts the centrosymmetric space group $P2_1/n$ and thus each chain depicted in Fig. 14 also has a symmetry-related counterpart which is antiparallel.

In the structure refinement, peaks of electron density near C atoms were consistent with the expected positions for H atoms. Similarly, electron-density peaks corresponding to the phenolic H atom appeared at a distance consistent with an O-H covalent bond. For each of the two carboxylic acid groups, peaks of electron density are located at positions further from the O atom than expected based upon normal O-H covalent bonds. These peaks were assigned as H atoms and the position of each was refined, leading to $O\cdots$ H separations of 1.28 (3) Å. The assigned H atoms are 1.25 (3) and 1.24 (3) Å from the N atoms of the neighbouring DABCO

molecules. The two N···O separations of 2.518 (2) and 2.515 (2) Å are remarkably short for N···O hydrogen bonds. The N···O separations between the phenolic O atom and the neighbouring N atom of the DABCO are significantly longer [2.640 (2) and 2.619 (2) Å], but still relatively short for an N···O hydrogen bond.

4. General structural comments

For the Cu dimer compounds considered, compound 1 is the only one not to form a network-based material involving coordinate and/or hydrogen-bond interactions. The failure of 1 to form a network may be attributed to the dioxane molecules which bind to the phenolic groups of the neutral $Cu_2(Hhba)_4$ units and block any prospect of network formation. In compounds 7–11, the Cu dimer unit serves as a single node within a 2D (7, 10 and 11) or 3D (8 and 9) network, whilst in 2–6, there are two types of nodes.

In compounds 2–6, the Cu dimer serves as a node, with a second node formed from either the aggregation of phenolic and phenolate groups (2–5) or, alternatively, from the involvement of nitrate anions (6). In the networks involving two types of nodes (2–6), cations are present in the structure. In the structures of 2, 3, 5 and 6, the cations occupy square-shaped cavities, whereas in 4, a proton shared between the

The structure of $[Cu_2(Hhba)_2(OAc)_2(DABCO)_2]\cdot 10(dioxane)$ (11), showing (a) the 2D hydrogen-bonded network and (b) the crystal packing of the sheets.

Figure 14

The crystal structure of $(H_{0.5}DABCO)(H_{1.5}hba)$ (12), showing the formation of hydrogen-bonded chains that extend in the [101] direction.

non-coordinated N atoms of DABCO ligands serves as a link between Cu dimer nodes.

An average charge of 1- per Cu dimer unit appears to favour the formation of a second type of node in the hydrogen-bonded networks that are generated. In each of 2–5, four O atoms are held together by three H atoms. Whilst the hydrogen-bonded nodes formed in 2–4 are similar, consisting of a planar zigzag arrangement of O atoms with a short hydrogen bond between the central two O atoms, the corresponding node in 5 consists of a clearly defined phenolate O atom serving as a hydrogen-bond acceptor from three phenol groups. In the remaining structures (7–11), the phenol groups only serve to provide links between Cu dimer nodes.

In compounds **8–11**, the Cu dimer unit is neutral, with all hba ligands present as Hhba⁻. These circumstances appear to favour single node (Cu dimer) networks with phenolic groups facilitating links between nodes rather than forming nodes based upon the aggregation of phenolic groups. Although four phenolic groups are involved in a second type of node in **6**, the nitrate ion pairs play a key role in the generation of the second type of node.

Compound 7 represents a special case in which the Cu dimer has a 2- charge, *i.e.* $[Cu_2(Hhba)_2(hba)_2]^{2-}$. This dianion is also present in 5, but the presence of equal numbers of neutral $[Cu_2(Hhba)_4]$ means that the average charge on a Cu dimer in 5 is 1-. On the basis of the other structures, it might be expected that the presence of phenolic and phenolate groups in 7 would promote the formation of a second type of node, but instead, only one type of node is apparent with double ligand bridges between the Cu dimer nodes. A possible explanation for the adoption of the network, which is depicted in Fig. 9(b), is the complementary interaction between pairs of face-to-face Hbdn⁺ cations and the anionic network containing appropriately sized cavities.

Compounds **10** and **11** represent rare examples of mixed carboxylate systems for binuclear copper(II) dimers. According to Hassanein *et al.* (2015), of the 1300 Cu carboxylate dimers reported, only nine were heteroleptic. In the specific case of acetate-containing dimers, the CSD contains just one compound (refcode HIQQEE02; Luo *et al.*, 2010) with one acetate ligand in combination with three other ferrocenecarboxylate ligands.

In the structures described in this investigation, there are examples of H atoms refining to a position halfway or nearly halfway between a pair of atoms which form a hydrogen bond. The limitations of X-ray diffraction data in accurately determining the positions of H atoms make it difficult to distinguish between disordered asymmetric hydrogen bonds and truly symmetric hydrogen bonds. In the cases where we have refined the structure with a symmetric (or close to symmetric) hydrogen bond, we wish to stress that the assignments of the H-atom positions are only tentative.

5. Conclusion

The network structures described in this work demonstrate that Cu dimer units involving the hba²⁻/Hhba⁻ ligands can form a variety of networks. Clearly, hydrogen bonding has played a major role in the formation of the networks. Of particular importance has been the network nodes formed from multiple hydrogen bonds. In compounds **2–4**, the planar zigzag motif has shown itself to be an effective 4-connecting node with the ligands extending outwards to the corners of an approximate square. A different type of hydrogen-bonding motif involving three phenol groups serving as donors to a single phenolate group can also produce a 4-connecting node, as seen in **5**.

An unusual and beautiful example of a hydrogen-bonding node is apparent in 6, where a pair of nitrate anions, four phenol groups and a pair of coordinated water molecules combine to generate a network which accommodates tetraethylammonium cations in square windows. In the remaining structures involving copper dimer complexes, hydrogen bonding plays a key structural role in the arrangement of the molecular components although they do not contain hydrogen-bonded nodes within networks.

Clearly there are numerous opportunities for exploiting the ability of the phenolic/phenolate groups within Cu^{II} tetracarboxylate dimers to create a wide variety of extended structures. Furthermore, the work has demonstrated, using coligands such as DABCO/HDABCO⁺ and O-bipy, that additional connectivity of the Cu dimer can be achieved by utilizing the axial positions on the Cu centres. The use of different countercations provides further opportunities for crystal engineering. For these reasons, and given the diversity of structures described in this current work, there would appear to be plenty of scope for extending this family of compounds.

Acknowledgements

This research was undertaken in part using the MX1 and MX2 beamlines at the Australian Synchrotron (Aragão *et al.*, 2018; Cowieson *et al.*, 2015; McPhillips *et al.*, 2002), part of ANSTO,

References

- Abrahams, B. F., Commons, C. J., Dharma, A. D., Hudson, T. A., Robson, R., Sanchez Arlt, R. W., Stewart, T. C. & White, K. F. (2022). *CrystEngComm*, **24**, 1924–1933.
- Abrahams, B. F., Commons, C. J., Hudson, T. A., Sanchez Arlt, R., White, K. F., Chang, M., Jackowski, J. J., Lee, M., Lee, S. X., Liu, H. D., Mei, B. M., Meng, J. E., Poon, L., Xu, X. & Yu, Z. (2021). Acta Cryst. C77, 340–353.
- Aragão, D., Aishima, J., Cherukuvada, H., Clarken, R., Clift, M., Cowieson, N. P., Ericsson, D. J., Gee, C. L., Macedo, S., Mudie, N., Panjikar, S., Price, J. R., Riboldi-Tunnicliffe, A., Rostan, R., Williamson, R. & Caradoc-Davies, T. T. (2018). J. Synchrotron Rad. 25, 885–891.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.
- Chui, S. S. Y., Lo, S. M. F., Charmant, J. P., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148–1150.
- Cowieson, N. P., Aragao, D., Clift, M., Ericsson, D. J., Gee, C., Harrop, S. J., Mudie, N., Panjikar, S., Price, J. R., Riboldi-Tunnicliffe, A., Williamson, R. & Caradoc-Davies, T. (2015). *J. Synchrotron Rad.* 22, 187–190.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

research papers

- Eddaoudi, M., Kim, J., Wachter, J. B., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2001). J. Am. Chem. Soc. **123**, 4368–4369.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B**72**, 171–179.
- Hassanein, K., Castillo, O., Gómez-García, C., Zamora, F. & Amo-Ochoa, P. (2015). *Cryst. Growth Des.* **15**, 5485–5494.
- Kabsch, W. (2010). Acta Cryst. D66, 125-132.
- Lee, S., Jeong, H., Nam, D., Lah, M. S. & Choe, W. (2021). *Chem. Soc. Rev.* **50**, 528–555.
- Liu, X. & Li, C. (2007). Yingyong Huaxue, 24, 973.
- Luo, J.-H., Huang, C.-C., Huang, X.-H. & Wang, J.-G. (2010). Acta Cryst. C66, e11–e12.
- McPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). J. Synchrotron Rad. 9, 401–406.
- Moulton, B., Abourahma, H., Bradner, M. W., Lu, J., McManus, G. J. & Zaworotko, M. J. (2003). *Chem. Commun.* pp. 1342–1343.
- Niekerk, J. N. van & Schoening, F. R. L. (1953). Acta Cryst. 6, 227–232.
- Palmer, D. (2020). CrystalMaker. CrystalMaker Software, Bicester, England. http://crystalmaker.com/.
- Rigaku OD (2015, 2018, 2021, 2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shnulin, A. N., Nadzhafov, G. N. & Mamedov, Kh. S. (1981). Koord. *Khim.*, **7**, 1544.
- White, K. F., Abrahams, B. F., Babarao, R., Dharma, A. D., Hudson, T. A., Maynard–Casely, H. E. & Robson, R. (2015). *Chem. A Eur. J.* 21, 18057–18061.

Acta Cryst. (2024). C80, 239-253 [https://doi.org/10.1107/S2053229624004534]

Supramolecular hydrogen-bonded networks formed from copper(II) carboxylate dimers

Brendan F. Abrahams, Christopher J. Commons, Timothy A. Hudson and Robin Sanchez-Arlt

Computing details

Tetrakis(µ-4-hydroxybenzoato)bis[(dioxane)copper(II)] dioxane tetrasolvate (compound_1)

Crystal data

 $[Cu_{2}(C_{7}H_{5}O_{3})_{4}(C_{4}H_{8}O_{2})_{2}]\cdot 4C_{4}H_{8}O_{2}$ $M_{r} = 1204.14$ Orthorhombic, *Pccn* a = 27.7701 (8) Å b = 21.2278 (4) Å c = 9.3888 (1) Å V = 5534.7 (2) Å³ Z = 4F(000) = 2520

Data collection

Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) $T_{\min} = 0.567, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.187$ S = 1.045586 reflections 354 parameters 2 restraints Primary atom site location: dual $D_x = 1.445 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 4835 reflections $\theta = 5.2-74.7^{\circ}$ $\mu = 1.66 \text{ mm}^{-1}$ T = 100 KIrregular, clear blue $0.14 \times 0.13 \times 0.05 \text{ mm}$

18728 measured reflections 5586 independent reflections 4112 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{max} = 77.9^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -35 \rightarrow 28$ $k = -26 \rightarrow 19$ $l = -11 \rightarrow 11$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0975P)^2 + 4.3605P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.47$ e Å⁻³ $\Delta\rho_{min} = -0.48$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cul	0.50401 (2)	0.45526 (2)	0.59237 (5)	0.0458 (2)	
O7	0.50598 (10)	0.37930 (11)	0.7532 (2)	0.0490 (6)	
O4	0.54939 (10)	0.41558 (10)	0.4607 (2)	0.0505 (6)	
05	0.54229 (10)	0.49330 (10)	0.2997 (2)	0.0518 (6)	
06	0.66319 (11)	0.29296 (12)	-0.0478 (3)	0.0599 (7)	
H6	0.668464	0.312064	-0.124535	0.090*	
O2	0.54782 (10)	0.58260 (11)	0.5194 (2)	0.0529 (6)	
08	0.47914 (12)	0.27813 (11)	0.9315 (3)	0.0571 (7)	
O3	0.67261 (11)	0.71553 (12)	0.9950 (3)	0.0608 (7)	
Н3	0.673537	0.752619	0.963883	0.091*	
09	0.68611 (11)	0.83420 (12)	0.8980 (3)	0.0612 (7)	
01	0.55547 (11)	0.50408 (11)	0.6795 (2)	0.0543 (7)	
011	0.69134 (11)	0.34846 (14)	-0.2826 (3)	0.0616 (7)	
012	0.72613 (16)	0.43718 (16)	-0.4748 (4)	0.0933 (12)	
C9	0.58665 (14)	0.40313 (15)	0.2377 (3)	0.0441 (8)	
C10	0.60184 (14)	0.34260 (15)	0.2709 (3)	0.0446 (8)	
H10	0.594393	0.325537	0.361853	0.054*	
C2	0.59535 (15)	0.59955 (16)	0.7219 (3)	0.0507 (9)	
C1	0.56448 (15)	0.55920 (16)	0.6338 (4)	0.0496 (9)	
C16	0.48813 (16)	0.33951 (16)	0.9880 (3)	0.0515 (9)	
H16A	0.522070	0.342274	1.019622	0.062*	
H16B	0.467273	0.346584	1.072004	0.062*	
C14	0.59734 (15)	0.42700 (16)	0.1026 (3)	0.0499 (9)	
H14	0.587022	0.468190	0.077453	0.060*	
C3	0.61863 (15)	0.57564 (17)	0.8414 (4)	0.0535 (9)	
H3A	0.616246	0.531981	0.862540	0.064*	
C8	0.55766 (14)	0.44018 (16)	0.3394 (3)	0.0464 (8)	
C13	0.62292 (15)	0.39108 (17)	0.0049 (4)	0.0547 (9)	
H13	0.630185	0.407712	-0.086565	0.066*	
C12	0.63782 (14)	0.33080 (16)	0.0413 (4)	0.0474 (8)	
C4	0.64526 (16)	0.61450 (17)	0.9303 (4)	0.0548 (9)	
H4	0.661817	0.597262	1.009843	0.066*	
C11	0.62742 (14)	0.30678 (16)	0.1752 (3)	0.0477 (8)	
H11	0.637937	0.265716	0.200681	0.057*	
C7	0.59887 (17)	0.66394 (17)	0.6935 (4)	0.0581 (10)	
H7	0.583379	0.680893	0.611805	0.070*	
O10	0.7010 (2)	0.9435 (2)	0.7379 (7)	0.144 (3)	
C18	0.49903 (16)	0.31738 (16)	0.6977 (4)	0.0525 (9)	
H18A	0.521433	0.310258	0.617282	0.063*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H18B	0.465720	0.313232	0.661358	0.063*
C15	0.47853 (16)	0.38964 (16)	0.8791 (3)	0.0517 (9)
H15A	0.443826	0.389838	0.854902	0.062*
H15B	0.486774	0.431350	0.919453	0.062*
C5	0.64764 (16)	0.67873 (17)	0.9027 (4)	0.0548 (9)
C17	0.50779 (16)	0.26872 (17)	0.8114 (4)	0.0568 (10)
H17A	0.501140	0.226371	0.771792	0.068*
H17B	0.542108	0.270035	0.839761	0.068*
C6	0.62463 (17)	0.70335 (17)	0.7826 (4)	0.0600 (11)
H6A	0.626689	0.747099	0.762227	0.072*
C19	0.64733 (17)	0.8696 (2)	0.8392 (4)	0.0654 (11)
H19A	0.619030	0.866925	0.903022	0.078*
H19B	0.638175	0.851694	0.745667	0.078*
C22	0.72803 (17)	0.8409 (3)	0.8115 (6)	0.0833 (15)
H22A	0.721990	0.822756	0.716070	0.100*
H22B	0.755268	0.817883	0.855291	0.100*
C23	0.74174 (18)	0.3544 (2)	-0.3066 (6)	0.0742 (12)
H23A	0.751884	0.325377	-0.383462	0.089*
H23B	0.759605	0.343188	-0.218927	0.089*
C26	0.6644 (2)	0.3658 (2)	-0.4058 (5)	0.0791 (14)
H26A	0.629503	0.361967	-0.385441	0.095*
H26B	0.672262	0.336957	-0.485339	0.095*
C24	0.7528 (2)	0.4210 (2)	-0.3480 (6)	0.0830 (14)
H24A	0.743885	0.449817	-0.269421	0.100*
H24B	0.787774	0.425563	-0.366055	0.100*
C25	0.6757 (2)	0.4309 (3)	-0.4466 (7)	0.0988 (19)
H25A	0.657138	0.442523	-0.532673	0.119*
H25B	0.666371	0.459876	-0.368743	0.119*
C20	0.6614 (3)	0.9360 (2)	0.8214 (8)	0.129 (3)
H20A	0.634225	0.959429	0.778626	0.155*
H20B	0.667934	0.954400	0.916282	0.155*
C21	0.7406 (2)	0.9099 (3)	0.7976 (9)	0.138 (3)
H21A	0.748471	0.927386	0.892523	0.166*
H21B	0.769217	0.914722	0.735716	0.166*

Alomic displacement parameters (A	Atomic	displacement	parameters	$(Å^2)$
-----------------------------------	--------	--------------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0770 (4)	0.0316 (3)	0.0288 (3)	0.0038 (2)	0.0171 (2)	0.00427 (18)
07	0.0881 (19)	0.0312 (11)	0.0277 (11)	0.0018 (11)	0.0178 (11)	0.0022 (9)
O4	0.0803 (18)	0.0385 (12)	0.0327 (11)	0.0105 (11)	0.0152 (11)	0.0054 (9)
05	0.0864 (18)	0.0348 (12)	0.0343 (11)	0.0113 (11)	0.0193 (12)	0.0066 (9)
O6	0.086 (2)	0.0487 (14)	0.0447 (13)	0.0097 (13)	0.0227 (14)	-0.0031 (11)
O2	0.0821 (18)	0.0397 (12)	0.0368 (12)	-0.0028 (11)	0.0169 (12)	0.0059 (10)
08	0.098 (2)	0.0358 (12)	0.0373 (12)	-0.0020 (12)	0.0150 (13)	0.0033 (10)
O3	0.091 (2)	0.0485 (15)	0.0430 (13)	-0.0062 (14)	0.0130 (13)	-0.0039 (11)
09	0.0794 (19)	0.0479 (14)	0.0564 (15)	-0.0014 (13)	-0.0054 (14)	0.0073 (12)
01	0.0881 (19)	0.0365 (12)	0.0382 (11)	-0.0033 (12)	0.0110 (12)	0.0067 (9)

011	0.0657 (17)	0.0747 (18)	0.0443 (13)	-0.0046 (14)	0.0104 (13)	0.0094 (12)
012	0.133 (3)	0.075 (2)	0.072 (2)	-0.037 (2)	0.010(2)	0.0163 (17)
C9	0.066 (2)	0.0341 (16)	0.0323 (15)	0.0000 (14)	0.0100 (15)	-0.0006 (12)
C10	0.065 (2)	0.0381 (17)	0.0310 (14)	0.0016 (15)	0.0073 (15)	-0.0004 (12)
C2	0.081 (3)	0.0379 (17)	0.0330 (15)	-0.0011 (16)	0.0170 (17)	-0.0005 (13)
C1	0.077 (2)	0.0359 (16)	0.0363 (16)	0.0016 (15)	0.0221 (17)	-0.0010 (13)
C16	0.085 (3)	0.0401 (18)	0.0296 (15)	0.0044 (16)	0.0098 (16)	0.0025 (13)
C14	0.072 (2)	0.0388 (17)	0.0385 (16)	0.0045 (16)	0.0157 (17)	0.0024 (14)
C3	0.076 (3)	0.0411 (18)	0.0440 (18)	0.0019 (17)	0.0187 (18)	0.0001 (15)
C8	0.069 (2)	0.0379 (17)	0.0322 (15)	0.0028 (15)	0.0098 (15)	0.0022 (13)
C13	0.078 (3)	0.0478 (19)	0.0379 (17)	0.0017 (18)	0.0205 (17)	0.0021 (15)
C12	0.064 (2)	0.0386 (17)	0.0399 (16)	0.0029 (15)	0.0118 (16)	-0.0042 (13)
C4	0.075 (3)	0.049 (2)	0.0405 (18)	0.0026 (18)	0.0159 (17)	-0.0002 (15)
C11	0.066 (2)	0.0392 (17)	0.0378 (16)	0.0035 (15)	0.0065 (16)	-0.0017 (13)
C7	0.096 (3)	0.045 (2)	0.0341 (16)	-0.0017 (19)	0.0130 (18)	0.0027 (14)
O10	0.150 (4)	0.088 (3)	0.196 (6)	-0.060 (3)	-0.110 (4)	0.082 (3)
C18	0.093 (3)	0.0305 (16)	0.0337 (16)	0.0031 (16)	0.0123 (17)	-0.0009 (13)
C15	0.086 (3)	0.0406 (18)	0.0290 (15)	0.0057 (17)	0.0151 (17)	-0.0009 (13)
C5	0.079 (3)	0.0469 (19)	0.0391 (17)	-0.0038 (18)	0.0196 (17)	-0.0061 (15)
C17	0.099 (3)	0.0354 (17)	0.0365 (17)	0.0028 (17)	0.0112 (18)	0.0011 (14)
C6	0.103 (3)	0.0396 (18)	0.0372 (17)	-0.0054 (19)	0.0167 (19)	-0.0006 (14)
C19	0.074 (3)	0.072 (3)	0.051 (2)	0.014 (2)	0.001 (2)	-0.0067 (19)
C22	0.058 (3)	0.094 (4)	0.099 (4)	-0.003 (2)	-0.002 (3)	0.043 (3)
C23	0.070 (3)	0.075 (3)	0.078 (3)	-0.002 (2)	0.008 (2)	0.006 (2)
C26	0.093 (4)	0.073 (3)	0.072 (3)	-0.017 (3)	-0.023 (3)	0.019 (2)
C24	0.081 (3)	0.076 (3)	0.092 (4)	-0.018 (3)	-0.001 (3)	0.006 (3)
C25	0.123 (5)	0.073 (3)	0.101 (4)	-0.019 (3)	-0.039 (4)	0.030 (3)
C20	0.217 (9)	0.040 (3)	0.131 (6)	0.019 (4)	-0.102 (6)	-0.020 (3)
C21	0.106 (5)	0.129 (5)	0.180 (7)	-0.052 (4)	-0.078 (5)	0.099 (5)

Geometric parameters (Å, °)

Cu1—Cu1 ⁱ	2.5818 (9)	C13—H13	0.9500
Cu1—O7	2.210(2)	C13—C12	1.388 (5)
Cu1—O4	1.956 (2)	C12—C11	1.387 (5)
Cu1—O5 ⁱ	1.968 (2)	C4—H4	0.9500
Cu1—O2 ⁱ	1.954 (3)	C4—C5	1.389 (5)
Cu1—01	1.946 (3)	C11—H11	0.9500
O7—C18	1.427 (4)	C7—H7	0.9500
O7—C15	1.423 (4)	C7—C6	1.383 (6)
O4—C8	1.273 (4)	O10—C20	1.359 (10)
О5—С8	1.262 (4)	O10—C21	1.424 (7)
O6—H6	0.8400	C18—H18A	0.9900
O6—C12	1.357 (4)	C18—H18B	0.9900
O2—C1	1.270 (4)	C18—C17	1.505 (5)
O8—C16	1.429 (4)	C15—H15A	0.9900
O8—C17	1.395 (4)	C15—H15B	0.9900
О3—Н3	0.8400	С5—С6	1.397 (6)

03 C5	1 357 (5)	C17 H17A	0.0000
03 - 03	1.337(3) 1.425(5)	C17 H17R	0.9900
O_{2}^{0}	1.425(5) 1.426(5)	C6 H6A	0.9900
01 C1	1.420(3)		0.9500
01 - 01	1.271(4) 1.423(5)	C10 H10P	0.9900
011 - C26	1.425(5)	C10 C20	0.9900
012 - 024	1.420(3)	$C_{19} = C_{20}$	1.4/1 (8)
012 - 024	1.443(0)	C22—H22A	0.9900
012 - 023	1.431 (7)	C22—H22B	0.9900
C9C10	1.388 (3)	C22—C21	1.311 (8)
C9—C14	1.397 (4)	C23—H23A	0.9900
C10_U10	1.4/6 (5)	C23—H23B	0.9900
C10—H10	0.9500	C_{23} C_{24}	1.498 (7)
	1.3/5 (5)	C26—H26A	0.9900
	1.467 (5)	С26—Н26В	0.9900
C2—C3	1.391 (5)	C26—C25	1.469 (7)
C2—C7	1.396 (5)	C24—H24A	0.9900
C16—H16A	0.9900	C24—H24B	0.9900
C16—H16B	0.9900	C25—H25A	0.9900
C16—C15	1.500 (5)	C25—H25B	0.9900
C14—H14	0.9500	C20—H20A	0.9900
C14—C13	1.389 (5)	C20—H20B	0.9900
С3—НЗА	0.9500	C21—H21A	0.9900
C3—C4	1.387 (6)	C21—H21B	0.9900
O7—Cu1—Cu1 ⁱ	176.39 (8)	O7—C18—H18B	109.5
O4—Cu1—Cu1 ⁱ	87.01 (7)	O7—C18—C17	110.6 (3)
O4—Cu1—O7	95.85 (9)	H18A—C18—H18B	108.1
O4—Cu1—O5 ⁱ	170.18 (9)	C17—C18—H18A	109.5
O5 ⁱ —Cu1—Cu1 ⁱ	83.17 (7)	C17—C18—H18B	109.5
O5 ⁱ —Cu1—O7	93.97 (9)	O7—C15—C16	111.2 (3)
O2 ⁱ —Cu1—Cu1 ⁱ	83.00 (7)	O7—C15—H15A	109.4
O2 ⁱ —Cu1—O7	94.89 (10)	O7—C15—H15B	109.4
O2 ⁱ —Cu1—O4	87.58 (11)	C16—C15—H15A	109.4
$O2^{i}$ —Cu1—O5 ⁱ	91.34 (12)	C16—C15—H15B	109.4
O1—Cu1—Cu1 ⁱ	87.37 (7)	H15A—C15—H15B	108.0
O1—Cu1—O7	94.76 (10)	O3—C5—C4	118.0 (4)
O1—Cu1—O4	91.26 (12)	O3—C5—C6	122.2 (3)
O1—Cu1—O5 ⁱ	88.16 (12)	C4—C5—C6	119.7 (4)
O1—Cu1—O2 ⁱ	170.35 (10)	O8—C17—C18	112.5 (3)
C18—O7—Cu1	114.77 (19)	O8—C17—H17A	109.1
C15—O7—Cu1	116.20 (19)	O8—C17—H17B	109.1
C15—O7—C18	111.9 (3)	С18—С17—Н17А	109.1
C8—O4—Cu1	120.3 (2)	C18—C17—H17B	109.1
C8—O5—Cu1 ⁱ	124.4 (2)	H17A—C17—H17B	107.8
С12—О6—Н6	109.5	C7—C6—C5	119.9 (3)
C1—O2—Cu1 ⁱ	124.2 (2)	С7—С6—Н6А	120.0
C17—O8—C16	109.3 (3)	С5—С6—Н6А	120.0
С5—О3—Н3	109.5	O9—C19—H19A	109.6
-		-	

C19—O9—C22	110.1 (3)	O9—C19—H19B	109.6
C1—O1—Cu1	119.5 (3)	O9—C19—C20	110.4 (5)
C23—O11—C26	111.4 (3)	H19A—C19—H19B	108.1
C25—O12—C24	109.1 (4)	С20—С19—Н19А	109.6
C10—C9—C14	118.4 (3)	C20—C19—H19B	109.6
C10—C9—C8	120.9 (3)	O9—C22—H22A	109.8
C14—C9—C8	120.7 (3)	O9—C22—H22B	109.8
С9—С10—Н10	119.3	O9—C22—C21	109.6 (5)
C11—C10—C9	121.4 (3)	H22A—C22—H22B	108.2
C11—C10—H10	119.3	C21—C22—H22A	109.8
C3—C2—C1	120.9 (3)	C21—C22—H22B	109.8
C3—C2—C7	118.6 (4)	O11—C23—H23A	109.9
C7—C2—C1	120.3 (3)	O11—C23—H23B	109.9
02	125.0 (4)	011-C23-C24	109.1 (4)
02-C1-C2	117.5 (3)	H23A—C23—H23B	108.3
01	117.5 (3)	C24—C23—H23A	109.9
08—C16—H16A	109.4	C24—C23—H23B	109.9
08-C16-H16B	109.4	011 - C26 - H26A	109.7
08-016-015	111.3 (3)	011—C26—H26B	109.7
H16A—C16—H16B	108.0	011 - C26 - C25	110.0 (4)
C15—C16—H16A	109.4	H26A—C26—H26B	108.2
C15—C16—H16B	109.4	C25—C26—H26A	109.7
C9—C14—H14	119.7	C25—C26—H26B	109.7
C13—C14—C9	120.6 (3)	O12—C24—C23	109.5 (4)
C13—C14—H14	119.7	O12—C24—H24A	109.8
С2—С3—НЗА	119.5	O12—C24—H24B	109.8
C4—C3—C2	121.1 (3)	C23—C24—H24A	109.8
С4—С3—НЗА	119.5	C23—C24—H24B	109.8
O4—C8—C9	117.3 (3)	H24A—C24—H24B	108.2
O5—C8—O4	124.7 (3)	O12—C25—C26	110.2 (5)
O5—C8—C9	118.0 (3)	O12—C25—H25A	109.6
C14—C13—H13	120.1	O12—C25—H25B	109.6
C12—C13—C14	119.8 (3)	С26—С25—Н25А	109.6
C12—C13—H13	120.1	C26—C25—H25B	109.6
O6—C12—C13	123.3 (3)	H25A—C25—H25B	108.1
O6—C12—C11	116.7 (3)	O10—C20—C19	113.1 (6)
C11—C12—C13	120.0 (3)	O10—C20—H20A	109.0
C3—C4—H4	120.1	O10-C20-H20B	109.0
C3—C4—C5	119.8 (4)	C19—C20—H20A	109.0
C5—C4—H4	120.1	C19—C20—H20B	109.0
C10—C11—C12	119.8 (3)	H20A—C20—H20B	107.8
C10—C11—H11	120.1	O10—C21—C22	109.9 (4)
C12—C11—H11	120.1	O10-C21-H21A	109.7
С2—С7—Н7	119.6	O10-C21-H21B	109.7
C6—C7—C2	120.8 (4)	C22—C21—H21A	109.7
С6—С7—Н7	119.6	C22—C21—H21B	109.7
C20—O10—C21	109.8 (5)	H21A—C21—H21B	108.2
O7—C18—H18A	109.5		

Cu1—O7—C18—C17	172.2 (3)	C14—C9—C10—C11	0.9 (6)
Cu1—O7—C15—C16	-172.0 (3)	C14—C9—C8—O4	-179.8 (4)
Cu1—O4—C8—O5	7.6 (5)	C14—C9—C8—O5	1.2 (6)
Cu1—O4—C8—C9	-171.3 (3)	C14—C13—C12—O6	-179.5 (4)
Cu1 ⁱ O5C8O4	-7.7 (6)	C14—C13—C12—C11	-0.4 (6)
Cu1 ⁱ —O5—C8—C9	171.2 (2)	C3—C2—C1—O2	-173.9 (3)
Cu1 ⁱ O2C1O1	11.5 (5)	C3-C2-C1-O1	7.9 (5)
Cu1 ⁱ O2C1C2	-166.6 (2)	C3—C2—C7—C6	-0.5 (6)
Cu1—O1—C1—O2	-11.9 (5)	C3—C4—C5—O3	177.7 (3)
Cu1—O1—C1—C2	166.2 (2)	C3—C4—C5—C6	-2.3 (6)
O7—C18—C17—O8	55.9 (5)	C8—C9—C10—C11	177.7 (4)
O6—C12—C11—C10	180.0 (4)	C8—C9—C14—C13	-177.3 (4)
O8—C16—C15—O7	-56.0 (5)	C13—C12—C11—C10	0.8 (6)
O3—C5—C6—C7	-178.8 (4)	C4—C5—C6—C7	1.3 (6)
O9—C19—C20—O10	57.5 (6)	C7—C2—C1—O2	11.1 (5)
O9—C22—C21—O10	-58.0 (8)	C7—C2—C1—O1	-167.1 (3)
O11—C23—C24—O12	-58.8 (6)	C7—C2—C3—C4	-0.6 (6)
O11—C26—C25—O12	58.7 (6)	C18—O7—C15—C16	53.5 (4)
C9—C10—C11—C12	-1.1 (6)	C15—O7—C18—C17	-52.7 (4)
C9—C14—C13—C12	0.3 (6)	C17—O8—C16—C15	57.8 (4)
C10—C9—C14—C13	-0.6 (6)	C19—O9—C22—C21	56.7 (5)
C10—C9—C8—O4	3.5 (6)	C22—O9—C19—C20	-55.6 (6)
C10—C9—C8—O5	-175.5 (4)	C23—O11—C26—C25	-58.2 (6)
C2—C3—C4—C5	2.0 (6)	C26—O11—C23—C24	58.1 (5)
C2—C7—C6—C5	0.2 (6)	C24—O12—C25—C26	-60.1 (6)
C1—C2—C3—C4	-175.7 (3)	C25—O12—C24—C23	60.0 (6)
C1—C2—C7—C6	174.6 (4)	C20—O10—C21—C22	58.2 (8)
C16—O8—C17—C18	-58.0 (4)	C21—O10—C20—C19	-58.5 (7)

Symmetry code: (i) -x+1, -y+1, -z+1.

 $Tetraethy lammonium aquatris (\mu-4-hydroxy benzoato) methanol (\mu-4-oxidobenzoato) dicopper (II) \ dioxane \ disolvate \ (compound_2)$

Crystal data

Z = 1
F(000) = 540
$D_{\rm x} = 1.350 {\rm ~Mg} {\rm ~m}^{-3}$
Cu Ka radiation, $\lambda = 1.54184$ Å
Cell parameters from 7244 reflections
$\theta = 3.7 - 77.8^{\circ}$
$\mu = 1.63 \text{ mm}^{-1}$
T = 100 K
Irregular, clear blue
$0.17 \times 0.12 \times 0.05 \text{ mm}$

Data collection

Divit Victor D 10	50(0) in the set of the stimut
Rigaku AtaLAB Synergy Dualitiex	5262 independent reflections
diffractometer with a HyPix detector	4672 reflections with $I > 2\sigma(I)$
Detector resolution: 10.0000 pixels mm ⁻¹	$R_{\rm int} = 0.047$
ω scans	$\theta_{\rm max} = 78.0^\circ, \theta_{\rm min} = 5.8^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(CrysAlis PRO; Rigaku OD, 2018)	$k = -13 \rightarrow 13$
$T_{\min} = 0.885, T_{\max} = 1.000$	$l = -13 \rightarrow 16$
17988 measured reflections	
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.068$	and constrained refinement
$wR(F^2) = 0.200$	$w = 1/[\sigma^2(F_o^2) + (0.1206P)^2 + 1.2732P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
5262 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
459 parameters	$\Delta \rho_{\rm max} = 0.73 \text{ e } \text{\AA}^{-3}$
419 restraints	$\Delta \rho_{\rm min} = -1.00 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: dual	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Occupancies of the axial sites of the complex are shared almost equally by H2O and CH3OH molecules. The NEt4 group is disordered across a scentre of inversion and is in PART -1. Both 1,4-dioxane molecules are disordered and their disordered components have been placed in parts.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cu1	0.55520 (4)	0.10317 (4)	0.44807 (3)	0.03624 (19)	
O6	-0.1090(2)	0.2374 (3)	0.18088 (19)	0.0451 (5)	
H6	-0.083253	0.289897	0.121568	0.068*	
O3	-0.0352 (3)	0.4006 (2)	0.99674 (18)	0.0455 (5)	
05	0.3102 (3)	-0.0326 (2)	0.46488 (19)	0.0430 (5)	
08	0.6421 (3)	0.2782 (2)	0.3614 (2)	0.0450 (5)	0.5
H8A	0.718610	0.258591	0.306740	0.067*	
H8B	0.693510	0.293540	0.397200	0.067*	0.5
02	0.3211 (2)	0.0083 (2)	0.66128 (18)	0.0424 (5)	
01	0.4181 (3)	0.1857 (2)	0.5731 (2)	0.0520 (6)	
04	0.4064 (3)	0.1441 (3)	0.3743 (2)	0.0514 (6)	
C12	-0.0038 (3)	0.2006 (3)	0.2307 (3)	0.0405 (7)	
C1	0.3299 (3)	0.1261 (3)	0.6517 (3)	0.0390 (7)	
C13	-0.0043 (4)	0.0848 (4)	0.3072 (3)	0.0440 (7)	
H13	-0.075254	0.034120	0.322676	0.053*	
C2	0.2303 (3)	0.2005 (3)	0.7402 (3)	0.0405 (7)	
C8	0.3148 (3)	0.0736 (3)	0.3971 (3)	0.0401 (7)	
С9	0.2033 (3)	0.1182 (3)	0.3399 (3)	0.0397 (7)	
C5	0.0506 (4)	0.3380 (3)	0.9122 (3)	0.0424 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C14	0.0996 (4)	0.0446 (3)	0.3603 (3)	0.0423 (7)	
H14	0.100262	-0.034953	0.411719	0.051*	
C3	0.2446 (4)	0.3258 (3)	0.7414 (3)	0.0478 (8)	
H3A	0.316244	0.365169	0.682944	0.057*	
C6	0.0339 (4)	0.2132 (4)	0.9099 (3)	0.0494 (8)	
H6A	-0.039305	0.174616	0.967266	0.059*	
C11	0.0988 (4)	0.2758 (4)	0.2101 (3)	0.0468 (8)	
H11	0.098196	0.355615	0.158966	0.056*	
C10	0.2006 (4)	0.2342 (4)	0.2640(3)	0.0479 (8)	
H10	0.270647	0.285612	0.249253	0.057*	
C7	0.1223(4)	0.1456 (4)	0.8255(3)	0.0468 (8)	
е <i>т</i> Н7	0.109673	0.060998	0.825413	0.056*	
C4	0.1565 (4)	0.3940(3)	0.8260 (3)	0.020	
H4	0.168138	0.479203	0.825243	0.058*	
N1	0.5009(17)	0.0024(14)	1.0087(13)	0.050	0.5
C28	0.3009(17) 0.4884(15)	0.0024(14) 0.1146(13)	1.0638 (9)	0.0999(19)	0.5
U20 H28A	0.4334(13)	0.1140 (15)	1.0038 (5)	0.117*	0.5
1120A	0.473903	0.190390	1.010975	0.117*	0.5
C20	0.401301	0.1101/2 0.1155(18)	1.129078	0.117	0.5
U29	0.001(2)	0.1155 (16)	1.0992 (11)	0.110(3)	0.5
П29А Ц20Д	0.001089	0.020477	1.102014	0.100*	0.5
П29D	0.504592	0.139082	1.1/3023	0.100*	0.5
П29С	0.037728	0.1/9149 0.1286 (0)	1.04/189	0.100^{-1}	0.5
	0.5447 (9)	-0.1280(9)	1.0750(7)	0.001 (2)	0.5
H30A	0.553635	-0.196311	1.029685	0.073*	0.5
H30B	0.640639	-0.132763	1.0/8163	0.073*	0.5
C31	0.4511 (16)	-0.162 (2)	1.1841 (15)	0.065 (4)	0.5
H3IA	0.442541	-0.096612	1.228873	0.097*	0.5
H3IB	0.490697	-0.248096	1.218277	0.097*	0.5
H31C	0.356621	-0.162182	1.180436	0.097*	0.5
C24	0.3558 (15)	0.0152 (14)	0.9974 (18)	0.141 (7)	0.5
H24A	0.285781	0.040750	1.067429	0.169*	0.5
H24B	0.345776	0.090811	0.937786	0.169*	0.5
C25	0.3076 (19)	-0.0882(17)	0.9745 (17)	0.137 (8)	0.5
H25A	0.302477	-0.161189	1.036869	0.206*	0.5
H25B	0.374806	-0.118281	0.906230	0.206*	0.5
H25C	0.212723	-0.055201	0.964780	0.206*	0.5
C26	0.6057 (15)	0.0192 (11)	0.8945 (7)	0.090 (4)	0.5
H26A	0.701856	0.001752	0.903545	0.107*	0.5
H26B	0.603984	-0.050203	0.856995	0.107*	0.5
C27	0.592 (2)	0.142 (2)	0.8181 (16)	0.090 (7)	0.5
H27A	0.670504	0.137026	0.748239	0.135*	0.5
H27B	0.595785	0.213382	0.851822	0.135*	0.5
H27C	0.500650	0.159704	0.802766	0.135*	0.5
H3	0.000000	0.500000	1.000000	0.09 (2)*	
O14	0.5243 (8)	0.4043 (7)	0.9358 (6)	0.0728 (17)	0.5
C34	0.398 (2)	0.4956 (17)	0.9555 (18)	0.077 (4)	0.5
H34A	0.319904	0.456490	0.955359	0.093*	0.5
H34B	0.408427	0.571531	0.894432	0.093*	0.5

C32

H32A

H32B

013

C35

H35A

H35B

H33A

H33B

H15A

H15B

H15C

07

09

C17

H17A

H17B

H16A

H16B

H19A

H19B

H18A

H18B

011

C20

H20A

H20B

H23A

H₂₃B

H22A

H22B

C21 H21A H21B O12

C22

C23

C18

C19

C16

O10

C15

C33

0.3596 (13)

0.271056

0.342807

0.438(2)

0.363689

0.490819

0.371(4)

0.326123

0.294405

0.607134

0.731581

0.760219

0.6421 (3)

0.748(3)

0.620951

0.621969

0.674 (3)

0.574587

0.719192

0.886(2)

0.949676

0.919569

0.914(2)

0.896272

1.014992

0.741 (4)

0.637(2)

0.564277

0.588377

0.825 (2)

0.914974

0.773344

0.866(2)

0.887819

0.8206(14)

0.6706 (18)

0.6890 (17)

0.4625 (11)

0.5413 (12)

0.608322

0.467156

0.563(2)

0.635523

0.522107

0.475(3)

0.430674

0.520442

0.361106

0.409197

0.267967

0.2782(2)

0.385(3)

0.496(2)

0.426873

0.581239

0.500(3)

0.518662

0.574521

0.347(2)

0.397624

0.254449

0.355(2)

0.276315

0.363034

0.403(3)

0.480(3)

0.428706

0.557561

0.306(2)

0.272411

0.232200

0.336(2)

0.253077

0.4688(14)

0.3335 (11)

0.3789 (10)

1.0644 (11)

1.074551

1.126593

1.0541 (10)

0.9224 (19)

0.902420

0.855438

1.001(3)

0.967518

1.058562

0.492573

0.385658

0.458586

0.3614(2)

0.489(3)

0.702692

0.675776

0.535516

0.489595

0.441985

0.494465

0.659827

0.585653

0.480(3)

0.607319

0.515925

0.484547

0.574225

0.678298

0.6286 (18)

0.5402 (18)

0.5570(19)

0.5048 (18)

0.6033 (19)

0.5373 (18)

0.6446(14)

0.6509(17)

0.4300 (10)

supporting information

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.080(3)

0.096*

0.096*

0.184*

0.184*

0.206*

0.206*

0.148*

0.148*

0.148*

0.0450(5)

0.071(3)

0.070(3)

0.071(3)

0.085*

0.085*

0.088*

0.088*

0.089*

0.089*

0.095*

0.095*

0.071(3)

0.072(3)

0.087*

0.087*

0.088*

0.088*

0.075(3)0.090*

0.073(3)

0.079(3)

0.074(3)

0.073(3)

0.098(4)

0.128(4)

0.154 (10)

0.172 (18)

0.955753	0.371003	0.593313	0.090*	0.25	
0.702 (3)	0.523 (2)	0.6224 (19)	0.075 (3)	0.25	
0.777256	0.570931	0.570094	0.090*	0.25	
0.628310	0.586357	0.666357	0.090*	0.25	
0.7639 (17)	0.4268 (14)	0.6966 (14)	0.078 (3)	0.25	
cement parameter	rs (Å ²)				

Atomic displa

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Cul	0.0303 (3)	0.0357 (3)	0.0339 (3)	0.00316 (18)	-0.00424 (19)	-0.00778 (18)	

06	0.0370(11)	0.0558 (14)	0.0363 (11)	-0.0026 (10)	-0.0081(9)	-0.0072 (10)
O3	0.0450 (12)	0.0474 (13)	0.0348 (11)	0.0027 (10)	-0.0036 (9)	-0.0149 (9)
05	0.0455 (12)	0.0401 (11)	0.0414 (12)	-0.0041 (9)	-0.0159 (10)	-0.0030(9)
08	0.0398 (12)	0.0388 (11)	0.0436 (12)	-0.0010 (9)	-0.0011 (9)	-0.0074 (9)
O2	0.0391 (11)	0.0456 (12)	0.0363 (11)	-0.0056 (9)	-0.0014 (9)	-0.0134 (9)
01	0.0507 (14)	0.0361 (12)	0.0460 (13)	0.0018 (10)	0.0092 (11)	-0.0110 (10)
O4	0.0393 (12)	0.0496 (14)	0.0600 (15)	-0.0088 (10)	-0.0218 (11)	0.0112 (11)
C12	0.0330 (14)	0.0474 (17)	0.0339 (14)	0.0029 (12)	-0.0055 (12)	-0.0119 (12)
C1	0.0352 (15)	0.0411 (16)	0.0336 (14)	0.0043 (12)	-0.0074 (12)	-0.0097 (12)
C13	0.0429 (17)	0.0484 (18)	0.0375 (16)	-0.0086 (14)	-0.0078 (13)	-0.0079 (13)
C2	0.0367 (15)	0.0423 (16)	0.0353 (15)	0.0028 (12)	-0.0072 (12)	-0.0097(12)
C8	0.0323 (14)	0.0415 (16)	0.0369 (15)	0.0039 (12)	-0.0040 (12)	-0.0102 (12)
C9	0.0342 (15)	0.0407 (16)	0.0362 (15)	0.0015 (12)	-0.0047 (12)	-0.0097 (12)
C5	0.0394 (16)	0.0486 (17)	0.0323 (14)	0.0023 (13)	-0.0054 (12)	-0.0134 (13)
C14	0.0441 (17)	0.0410 (16)	0.0362 (15)	-0.0037 (13)	-0.0082 (13)	-0.0066 (12)
C3	0.0461 (18)	0.0410 (17)	0.0401 (17)	0.0031 (14)	0.0020 (14)	-0.0119 (13)
C6	0.0462 (18)	0.056 (2)	0.0393 (17)	-0.0112 (15)	0.0013 (14)	-0.0161 (15)
C11	0.0387 (17)	0.0439 (17)	0.0497 (18)	-0.0009 (13)	-0.0119 (14)	-0.0026(14)
C10	0.0391 (17)	0.0446 (18)	0.0539 (19)	-0.0048 (14)	-0.0144 (15)	-0.0001 (15)
C7	0.0453 (18)	0.0514 (19)	0.0405 (17)	-0.0049 (15)	-0.0052 (14)	-0.0179 (14)
C4	0.0484 (19)	0.0392 (16)	0.0440 (17)	0.0002 (14)	-0.0020(14)	-0.0112 (13)
N1	0.051 (3)	0.066 (3)	0.056 (5)	0.016 (2)	-0.020 (3)	-0.020 (3)
C28	0.140 (11)	0.088 (7)	0.049 (5)	-0.015 (7)	-0.002 (6)	-0.029(5)
C29	0.165 (16)	0.118 (11)	0.070 (7)	-0.035 (11)	-0.068 (9)	0.000 (7)
C30	0.055 (4)	0.070 (5)	0.051 (4)	0.016 (4)	-0.021 (3)	-0.023 (4)
C31	0.055 (7)	0.067 (8)	0.065 (6)	0.010 (6)	-0.022 (5)	-0.016 (5)
C24	0.077 (7)	0.098 (9)	0.241 (18)	-0.020 (7)	-0.092 (10)	0.052 (10)
C25	0.118 (12)	0.147 (14)	0.168 (16)	-0.070 (12)	-0.100 (12)	0.069 (13)
C26	0.115 (9)	0.076 (6)	0.047 (4)	0.031 (6)	-0.010 (5)	-0.028 (4)
C27	0.105 (16)	0.080 (10)	0.061 (7)	0.025 (10)	-0.024 (8)	-0.018 (6)
O14	0.070 (4)	0.068 (4)	0.080 (4)	-0.004(3)	-0.021 (3)	-0.023 (3)
C34	0.072 (8)	0.053 (8)	0.122 (12)	-0.013 (6)	-0.045 (9)	-0.019 (9)
C32	0.059 (6)	0.065 (6)	0.099 (8)	-0.011 (5)	-0.004 (5)	-0.014 (6)
O13	0.104 (7)	0.107 (7)	0.166 (11)	-0.052 (6)	-0.056 (8)	0.047 (7)
C35	0.17 (2)	0.138 (15)	0.19 (2)	-0.065 (15)	-0.140 (18)	0.055 (15)
C33	0.105 (17)	0.096 (15)	0.32 (5)	-0.043 (13)	-0.12 (2)	0.07 (2)
C15	0.136 (11)	0.069 (7)	0.088 (8)	-0.049 (7)	0.002 (7)	-0.029 (6)
07	0.0398 (12)	0.0388 (11)	0.0436 (12)	-0.0010 (9)	-0.0011 (9)	-0.0074 (9)
O10	0.064 (5)	0.063 (5)	0.087 (6)	0.014 (4)	-0.028 (4)	-0.033 (5)
09	0.067 (5)	0.063 (6)	0.074 (5)	0.006 (4)	-0.011 (4)	-0.036 (5)
C17	0.069 (5)	0.063 (6)	0.076 (6)	0.010 (5)	-0.021 (5)	-0.029 (5)
C16	0.070 (6)	0.065 (6)	0.078 (5)	0.010 (5)	-0.018 (5)	-0.030 (5)
C19	0.068 (5)	0.059 (6)	0.079 (6)	0.013 (5)	-0.006(5)	-0.031 (5)
C18	0.069 (6)	0.065 (6)	0.092 (6)	0.013 (5)	-0.021 (5)	-0.026 (5)
O11	0.069 (5)	0.060 (6)	0.073 (5)	0.008 (4)	-0.009 (4)	-0.030 (5)
C20	0.067 (6)	0.066 (6)	0.076 (5)	0.011 (5)	-0.018 (5)	-0.029 (5)
C23	0.068 (6)	0.060 (6)	0.080 (6)	0.009 (5)	-0.010 (5)	-0.030 (5)
C22	0.064 (6)	0.063 (6)	0.088 (6)	0.013 (5)	-0.017 (5)	-0.030 (5)

C21	0.073 (5)	0.067 (6)	0.084 (6)	0.016 (5)	-0.027(5)	-0.032 (5)
012	0.069 (5)	0.068 (6)	0.091 (6)	0.017 (4)	-0.028 (5)	-0.030 (5)

Geometric parameters (Å, °)

Cu1—Cu1 ⁱ	2.6010 (9)	C24—C25	1.449 (15)
Cu1—O5 ⁱ	1.965 (2)	C25—H25A	0.9800
Cu1—O8	2.172 (2)	C25—H25B	0.9800
Cu1—O2 ⁱ	1.960 (2)	C25—H25C	0.9800
Cu1—O1	1.963 (2)	C26—H26A	0.9900
Cu1—O4	1.967 (2)	C26—H26B	0.9900
Cul—O7	2.172 (2)	C26—C27	1.459 (15)
O6—H6	0.8400	C27—H27A	0.9800
O6—C12	1.365 (4)	С27—Н27В	0.9800
O3—C5	1.344 (4)	C27—H27C	0.9800
O3—H3	1.223 (3)	O14—C34	1.39 (2)
O5—C8	1.263 (4)	O14—C32 ⁱⁱ	1.442 (15)
O8—H8A	0.8704	C34—H34A	0.9900
O8—H8B	0.8746	C34—H34B	0.9900
O2—C1	1.264 (4)	C34—C32	1.50 (2)
O1—C1	1.264 (4)	C32—H32A	0.9900
O4—C8	1.259 (4)	C32—H32B	0.9900
C12—C13	1.393 (5)	O13—C35 ⁱⁱ	1.46 (2)
C12—C11	1.393 (5)	O13—C33	1.42 (3)
C1—C2	1.484 (4)	C35—H35A	0.9900
С13—Н13	0.9500	С35—Н35В	0.9900
C13—C14	1.382 (5)	C35—C33	1.34 (3)
C2—C3	1.394 (5)	С33—Н33А	0.9900
C2—C7	1.396 (5)	С33—Н33В	0.9900
C8—C9	1.486 (5)	C15—H15A	0.9800
C9—C14	1.391 (5)	C15—H15B	0.9800
C9—C10	1.391 (5)	C15—H15C	0.9800
C5—C6	1.401 (5)	C15—O7	1.437 (13)
C5—C4	1.394 (5)	O7—H8A	0.8704
C14—H14	0.9500	O10—C17	1.454 (14)
С3—НЗА	0.9500	O10—C18	1.430 (14)
C3—C4	1.383 (5)	O9—C16	1.434 (15)
С6—Н6А	0.9500	O9—C19	1.431 (16)
C6—C7	1.379 (5)	C17—H17A	0.9900
C11—H11	0.9500	C17—H17B	0.9900
C11—C10	1.371 (5)	C17—C16	1.453 (17)
C10—H10	0.9500	C16—H16A	0.9900
С7—Н7	0.9500	C16—H16B	0.9900
C4—H4	0.9500	C19—H19A	0.9900
N1-C28	1.501 (14)	C19—H19B	0.9900
N1—C30	1.500 (13)	C19—C18	1.433 (17)
N1-C24	1.501 (14)	C18—H18A	0.9900
N1—C26	1.496 (14)	C18—H18B	0.9900

C28—H28A	0.9900	O11—C20	1.426 (16)
C28—H28B	0.9900	O11—C23	1.436 (16)
C28—C29	1.380 (15)	C20—H20A	0.9900
С29—Н29А	0.9800	C20—H20B	0.9900
C29—H29B	0.9800	C20—C21	1.449 (17)
С29—Н29С	0.9800	C23—H23A	0.9900
C30—H30A	0.9900	C23—H23B	0.9900
C30—H30B	0.9900	C23—C22	1.476 (17)
C30—C31	1.443 (14)	C22—H22A	0.9900
C31—H31A	0.9800	C22—H22B	0.9900
C31—H31B	0.9800	C22—O12	1.439 (14)
C31—H31C	0.9800	C21—H21A	0.9900
C24—H24A	0.9900	C21—H21B	0.9900
C24—H24B	0.9900	C21—O12	1.417 (15)
			()
O5 ⁱ —Cu1—Cu1 ⁱ	84.72 (7)	C25—C24—H24B	106.3
O5 ⁱ —Cu1—O8	96.44 (10)	C24—C25—H25A	109.5
O5 ⁱ —Cu1—O4	169.41 (10)	C24—C25—H25B	109.5
O5 ⁱ —Cu1—O7	96.44 (10)	C24—C25—H25C	109.5
O8—Cu1—Cu1 ⁱ	178.59 (7)	H25A—C25—H25B	109.5
O2 ⁱ —Cu1—Cu1 ⁱ	84.69 (7)	H25A—C25—H25C	109.5
$O2^{i}$ —Cu1—O5 ⁱ	88.27 (10)	H25B—C25—H25C	109.5
O2 ⁱ —Cu1—O8	96.14 (9)	N1—C26—H26A	107.2
O2 ⁱ —Cu1—O1	169.50 (10)	N1—C26—H26B	107.2
O2 ⁱ —Cu1—O4	90.21 (11)	H26A—C26—H26B	106.9
O2 ⁱ —Cu1—O7	96.14 (9)	C27—C26—N1	120.4 (12)
O1—Cu1—Cu1 ⁱ	84.85 (8)	C27—C26—H26A	107.2
01-Cu1-05 ⁱ	89.95 (11)	C27—C26—H26B	107.2
01—Cu1—O8	94.34 (10)	C26—C27—H27A	109.5
01—Cu1—O4	89.64 (12)	C26—C27—H27B	109.5
01—Cu1—07	94.34 (10)	C26—C27—H27C	109.5
O4—Cu1—Cu1 ⁱ	84.70 (8)	H27A—C27—H27B	109.5
04—Cu1—O8	94.14 (10)	H27A—C27—H27C	109.5
04—Cu1—07	94.14 (10)	H27B—C27—H27C	109.5
С12—О6—Н6	109.5	C34—O14—C32 ⁱⁱ	110.4 (10)
С5—О3—Н3	114.8 (2)	O14—C34—H34A	109.2
C8-05-Cu1 ⁱ	122.7 (2)	O14—C34—H34B	109.2
Cu1—O8—H8A	109.4	O14—C34—C32	112.2 (14)
Cu1—O8—H8B	109.6	H34A—C34—H34B	107.9
H8A—O8—H8B	90.7	C32—C34—H34A	109.2
$C1 - O2 - Cu1^i$	122.8 (2)	C32—C34—H34B	109.2
C1 - O1 - Cu1	122.5 (2)	014^{ii} - C32 - C34	108.5 (11)
C8-04-Cu1	122.7(2)	014 ⁱⁱ —C32—H32A	110.0
06—C12—C13	117.3(3)	$O14^{ii}$ — $C32$ — $H32B$	110.0
06-C12-C11	122.6 (3)	C34—C32—H32A	110.0
C11-C12-C13	120.1(3)	C34—C32—H32B	110.0
02-C1-C2	117.8 (3)	H32A—C32—H32B	108.4
01 - C1 - 02	125.1 (3)	C33—O13—C35 ⁱⁱ	111.5 (16)

O1—C1—C2	117.1 (3)	O13 ⁱⁱ —C35—H35A	107.6
C12—C13—H13	120.4	O13 ⁱⁱ —C35—H35B	107.6
C14—C13—C12	119.2 (3)	H35A—C35—H35B	107.0
C14—C13—H13	120.4	С33—С35—Н35А	107.6
C3—C2—C1	120.6 (3)	С33—С35—Н35В	107.6
C3—C2—C7	118.4 (3)	О13—С33—Н33А	108.8
C7—C2—C1	120.9 (3)	O13—C33—H33B	108.8
05	117.2 (3)	C35—C33—O13	114 (2)
04	125.1 (3)	С35—С33—Н33А	108.8
04	117.7 (3)	C35—C33—H33B	108.8
C14 - C9 - C8	120.8 (3)	H33A—C33—H33B	107.7
C14 - C9 - C10	1184(3)	H15A—C15—H15B	109.5
C10-C9-C8	120.8 (3)	H15A - C15 - H15C	109.5
03-05-06	119.6 (3)	H15B-C15-H15C	109.5
03-05-04	121.7(3)	07-C15-H15A	109.5
C_{1} C_{2} C_{4}	121.7(3) 1187(3)	07 C15 H15R	109.5
$C_{1}^{12} = C_{1}^{14} = C_{1}^{0}$	110.7(3) 121.2(3)	07 C15 H15C	109.5
$C_{13} = C_{14} = C_{9}$	121.3 (3)	$C_{11} = C_{13} = H_{13}C_{13}$	109.5
$C_{13} - C_{14} - H_{14}$	119.5	Cui = 07 = 07	109.4
C_{2} C_{2} U_{2}	119.5	C15 = 07 = U2	113.1 (3)
$C_2 = C_3 = H_3 A$	119.4	C13 - 07 - H8A	104.8
C4 - C3 - C2	121.2 (3)		120.7(17)
C4 - C3 - H3A	119.4	C19 - 09 - C16	109 (2)
С5—С6—Н6А	119.6	O10 - C17 - H17A	111.0
C/C6C5	120.8 (3)		111.0
С/—С6—Н6А	119.6	H1/A - C1/ - H1/B	109.0
С12—С11—Н11	120.1	C16—C17—O10	103.7 (17)
C10—C11—C12	119.7 (3)	С16—С17—Н17А	111.0
C10—C11—H11	120.1	С16—С17—Н17В	111.0
C9—C10—H10	119.3	O9—C16—C17	117 (3)
C11—C10—C9	121.3 (3)	O9—C16—H16A	108.1
C11—C10—H10	119.3	O9—C16—H16B	108.1
С2—С7—Н7	119.7	C17—C16—H16A	108.1
C6—C7—C2	120.6 (3)	C17—C16—H16B	108.1
С6—С7—Н7	119.7	H16A—C16—H16B	107.3
C5—C4—H4	119.9	O9—C19—H19A	106.2
C3—C4—C5	120.2 (3)	O9—C19—H19B	106.2
C3—C4—H4	119.9	O9—C19—C18	124.3 (19)
C28—N1—C24	105.1 (13)	H19A—C19—H19B	106.4
C30—N1—C28	113.5 (12)	C18—C19—H19A	106.2
C30—N1—C24	110.9 (12)	C18—C19—H19B	106.2
C26—N1—C28	108.9 (11)	O10—C18—C19	107.2 (16)
C26—N1—C30	109.8 (11)	O10-C18-H18A	110.3
C26—N1—C24	108.4 (14)	O10-C18-H18B	110.3
N1—C28—H28A	108.0	C19—C18—H18A	110.3
N1—C28—H28B	108.0	C19—C18—H18B	110.3
H28A—C28—H28B	107.2	H18A—C18—H18B	108.5
C29—C28—N1	117.2 (13)	C20—O11—C23	107 (2)
C29—C28—H28A	108.0	O11—C20—H20A	109.4

C29—C28—H28B	108.0	O11—C20—H20B	109.4
С28—С29—Н29А	109.5	O11—C20—C21	111 (2)
C28—C29—H29B	109.5	H20A—C20—H20B	108.0
С28—С29—Н29С	109.5	С21—С20—Н20А	109.4
H29A—C29—H29B	109.5	C21—C20—H20B	109.4
H29A—C29—H29C	109.5	O11—C23—H23A	106.9
H29B—C29—H29C	109.5	O11—C23—H23B	106.9
N1—C30—H30A	108.2	O11—C23—C22	121.6 (19)
N1—C30—H30B	108.2	H23A—C23—H23B	106.7
H30A—C30—H30B	107.3	С22—С23—Н23А	106.9
C31—C30—N1	116.6 (10)	С22—С23—Н23В	106.9
С31—С30—Н30А	108.2	С23—С22—Н22А	108.1
С31—С30—Н30В	108.2	C23—C22—H22B	108.1
С30—С31—Н31А	109.5	H22A—C22—H22B	107.3
С30—С31—Н31В	109.5	O12—C22—C23	117.0 (16)
С30—С31—Н31С	109.5	O12—C22—H22A	108.1
H31A—C31—H31B	109.5	O12—C22—H22B	108.1
H31A—C31—H31C	109.5	C20—C21—H21A	107.8
H31B—C31—H31C	109.5	C20—C21—H21B	107.8
N1—C24—H24A	106.3	H21A—C21—H21B	107.2
N1—C24—H24B	106.3	012—C21—C20	118 (2)
H24A—C24—H24B	106.4	012—C21—H21A	107.8
C25—C24—N1	124.1 (13)	O12—C21—H21B	107.8
C25—C24—H24A	106.3	C21—O12—C22	105.2 (17)
Cu1 ⁱ —O5—C8—O4	2.4 (5)	C11—C12—C13—C14	-1.3(5)
Cu1 ⁱ —O5—C8—C9	-177.73 (19)	C10—C9—C14—C13	-0.2(5)
Cu1 ⁱ —O2—C1—O1	-0.7 (5)	C7—C2—C3—C4	1.4 (6)
$Cu1^{i}$ — $O2$ — $C1$ — $C2$	-179.9 (2)	C4—C5—C6—C7	1.5 (6)
Cu1—O1—C1—O2	1.9 (5)	C28—N1—C30—C31	59.9 (19)
Cu1—O1—C1—C2	-179.0 (2)	C28—N1—C24—C25	-164.0 (17)
Cu1—O4—C8—O5	-3.2 (5)	C28—N1—C26—C27	-51 (2)
Cu1—O4—C8—C9	177.0 (2)	C30—N1—C28—C29	49.3 (17)
O6—C12—C13—C14	-179.4 (3)	C30—N1—C24—C25	-41 (2)
O6—C12—C11—C10	179.1 (3)	C30—N1—C26—C27	-175.9 (17)
O3—C5—C6—C7	-178.6 (3)	C24—N1—C28—C29	170.7 (13)
O3—C5—C4—C3	178.8 (3)	C24—N1—C30—C31	-58.1 (19)
O5—C8—C9—C14	-0.5 (4)	C24—N1—C26—C27	63 (2)
O5—C8—C9—C10	180.0 (3)	C26—N1—C28—C29	-73.3 (16)
O2—C1—C2—C3	172.9 (3)	C26—N1—C30—C31	-177.9 (15)
O2—C1—C2—C7	-5.7 (5)	C26—N1—C24—C25	80 (2)
O1—C1—C2—C3	-6.4 (5)	O14—C34—C32—O14 ⁱⁱ	57.8 (17)
O1—C1—C2—C7	175.0 (3)	C32 ⁱⁱ —O14—C34—C32	-58.8 (18)
O4—C8—C9—C14	179.4 (3)	O13 ⁱⁱ —C35—C33—O13	-46 (5)
O4—C8—C9—C10	-0.2 (5)	C35 ⁱⁱ —O13—C33—C35	42 (5)
C12—C13—C14—C9	0.8 (5)	O10-C17-C16-O9	58 (4)
C12—C11—C10—C9	-0.4 (6)	O9—C19—C18—O10	-34 (3)
	X - 2		- (-)
C1-C2-C3-C4	-177.2(3)	C17—O10—C18—C19	45 (3)

C1—C2—C7—C6	177.4 (3)	C16—O9—C19—C18	38 (4)
C13-C12-C11-C10	1.1 (5)	C19—O9—C16—C17	-50 (4)
C2—C3—C4—C5	-0.1 (6)	C18—O10—C17—C16	-57 (3)
C8—C9—C14—C13	-179.7 (3)	O11—C20—C21—O12	-66 (4)
C8—C9—C10—C11	179.5 (3)	O11—C23—C22—O12	35 (4)
C5—C6—C7—C2	-0.2 (6)	C20—O11—C23—C22	-38 (4)
C14—C9—C10—C11	0.0 (5)	C20—C21—O12—C22	56 (3)
C3—C2—C7—C6	-1.2 (5)	C23—O11—C20—C21	49 (4)
C6—C5—C4—C3	-1.3 (6)	C23—C22—O12—C21	-39 (3)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+2.

 $Triaqua(dioxane) lithium tris(\mu-4-hydroxybenzoato)(\mu-4-oxidobenzoato) bis[aquacopper(II)] dioxane disolvate monohydrate (compound_3)$

Crystal data

Data collection

Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2023)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.089$ $wR(F^2) = 0.261$ S = 1.094145 reflections 338 parameters 42 restraints Primary atom site location: dual Z = 1 F(000) = 542 $D_x = 1.475 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 3510 reflections $\theta = 4.6-75.1^{\circ}$ $\mu = 1.85 \text{ mm}^{-1}$ T = 100 KIrregular, clear blue $0.14 \times 0.07 \times 0.03 \text{ mm}$

 $T_{\min} = 0.610, T_{\max} = 1.000$ 10093 measured reflections 4145 independent reflections 3048 reflections with $I > 2\sigma(I)$ $R_{int} = 0.070$ $\theta_{\max} = 68.2^{\circ}, \theta_{\min} = 4.6^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -15 \rightarrow 15$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1435P)^2 + 2.3152P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.21$ e Å⁻³ $\Delta\rho_{min} = -1.32$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms on the disordered water molecules containing O11 and O13 were not modelled. A Li atom and 3 coordinated H2O molecules are disordered across a centre of inversion and placed in Part -1. A water molecule (containing O13) is present when this Li group is absent.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cul	0.38413 (8)	0.44096 (8)	1.04454 (7)	0.0407 (3)	
O4	0.3050 (4)	0.5680 (4)	0.9199 (3)	0.0399 (9)	
O3	0.7321 (5)	-0.1046 (4)	0.6841 (3)	0.0462 (10)	
02	0.6606 (5)	0.4217 (4)	0.8704 (3)	0.0477 (10)	
O6	0.1137 (4)	1.0334 (5)	0.5107 (3)	0.0481 (11)	
O5	0.5051 (4)	0.6668 (5)	0.8416 (4)	0.0609 (14)	
O1	0.4633 (5)	0.3197 (4)	0.9507 (5)	0.0602 (13)	
O7	0.2001 (5)	0.3273 (5)	1.1236 (5)	0.0673 (15)	
H7A	0.173763	0.283559	1.077023	0.101*	
H7B	0.217203	0.255346	1.183695	0.101*	
C9	0.3070 (6)	0.7543 (5)	0.7571 (4)	0.0366 (12)	
C5	0.6987 (6)	0.0029 (6)	0.7287 (5)	0.0439 (14)	
C8	0.3781 (6)	0.6559 (5)	0.8459 (4)	0.0392 (13)	
C2	0.6203 (7)	0.2170 (6)	0.8296 (5)	0.0464 (14)	
C1	0.5794 (6)	0.3279 (6)	0.8863 (5)	0.0473 (15)	
C10	0.1669 (7)	0.7495 (7)	0.7551 (5)	0.0482 (15)	
H10	0.114814	0.681778	0.810525	0.058*	
C7	0.7338 (7)	0.2261 (7)	0.7429 (5)	0.0525 (16)	
H7	0.785553	0.305501	0.718947	0.063*	
C12	0.1768 (6)	0.9412 (6)	0.5911 (4)	0.0410 (13)	
C14	0.3812 (6)	0.8539 (6)	0.6753 (5)	0.0453 (14)	
H14	0.477583	0.858547	0.675817	0.054*	
C6	0.7714 (7)	0.1217 (7)	0.6921 (5)	0.0515 (16)	
H6A	0.847165	0.130358	0.631925	0.062*	
C4	0.5883 (8)	-0.0078 (6)	0.8167 (6)	0.0578 (18)	
H4	0.539242	-0.088896	0.843512	0.069*	
C13	0.3165 (6)	0.9466 (6)	0.5929 (4)	0.0429 (14)	
H13	0.368694	1.014212	0.537429	0.051*	
C3	0.5500 (8)	0.0985 (6)	0.8652 (6)	0.0590 (18)	
H3A	0.473322	0.090364	0.924595	0.071*	
08	0.0820 (8)	0.2064 (10)	0.9889 (8)	0.125 (3)	
C11	0.1015 (7)	0.8421 (8)	0.6732 (5)	0.0572 (18)	
H11	0.004893	0.838042	0.672981	0.069*	
O10	0.6328 (9)	0.5374 (9)	0.4925 (8)	0.116 (3)	
09	0.0984 (11)	0.2964 (12)	0.7549 (9)	0.146 (3)	
C20	0.6142 (13)	0.4296 (12)	0.4539 (10)	0.104 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H20A	0.696253	0.362893	0.461404	0.125*	
H20B	0.604375	0.462237	0.373547	0.125*	
C17	0.0420 (14)	0.3807 (15)	0.8225 (11)	0.121 (3)	
H17A	-0.031199	0.445081	0.787530	0.145*	
H17B	0.115637	0.435331	0.829864	0.145*	
C18	-0.0188 (13)	0.2999 (15)	0.9347 (10)	0.119 (3)	
H18A	-0.059153	0.362762	0.981288	0.143*	
H18B	-0.095151	0.248610	0.927384	0.143*	
C19	0.5160 (16)	0.6390 (12)	0.4789 (13)	0.118 (4)	
H19A	0.505849	0.673732	0.398712	0.142*	
H19B	0.531282	0.717240	0.506369	0.142*	
C15	0.1383 (18)	0.1230 (17)	0.9084 (15)	0.150 (4)	
H15A	0.209901	0.053351	0.940044	0.180*	
H15B	0.062027	0.074383	0.897454	0.180*	
C16	0.1989 (19)	0.2079 (18)	0.8021 (16)	0.163 (4)	
H16	0.294502	0.202828	0.769955	0.195*	
Н3	0.78 (2)	-0.08(2)	0.619 (8)	0.244*	
H6	0.029 (14)	1.02 (3)	0.51 (3)	0.244*	0.5
O11	0.9549 (12)	0.4163 (10)	0.5358 (8)	0.064 (3)	0.5
O12	0.8884 (13)	0.7314 (10)	0.4357 (7)	0.065 (3)	0.5
H12A	0.925599	0.746213	0.365501	0.097*	0.5
H12B	0.895816	0.807350	0.452242	0.097*	0.5
Li1	0.819 (3)	0.567 (3)	0.5324 (18)	0.058 (6)	0.5
O14	0.7460 (14)	0.6145 (10)	0.6690 (9)	0.065 (3)	0.5
H14A	0.733666	0.559870	0.736424	0.098*	0.5
H14B	0.721000	0.695829	0.678221	0.098*	0.5
013	0.8171 (17)	0.5735 (14)	0.6329 (10)	0.085 (4)	0.5

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cu1	0.0322 (5)	0.0349 (5)	0.0401 (5)	0.0003 (3)	-0.0017 (3)	0.0102 (3)
O4	0.036 (2)	0.041 (2)	0.0295 (18)	0.0003 (16)	0.0006 (15)	0.0068 (15)
03	0.047 (2)	0.048 (2)	0.0320 (19)	0.0004 (18)	0.0031 (17)	0.0015 (17)
O2	0.048 (2)	0.052 (2)	0.034 (2)	-0.0111 (19)	0.0020 (17)	0.0018 (17)
06	0.042 (2)	0.060 (2)	0.0263 (18)	-0.0031 (19)	-0.0058 (16)	0.0132 (17)
05	0.035 (2)	0.054 (3)	0.063 (3)	-0.0014 (18)	-0.009 (2)	0.033 (2)
01	0.042 (3)	0.041 (2)	0.086 (3)	-0.0046 (18)	0.015 (2)	-0.013 (2)
O7	0.034 (2)	0.054 (3)	0.083 (3)	-0.0033 (19)	-0.002 (2)	0.027 (2)
C9	0.043 (3)	0.034 (3)	0.024 (2)	0.006 (2)	-0.002 (2)	0.001 (2)
C5	0.042 (3)	0.047 (3)	0.032 (3)	-0.001 (2)	-0.002 (2)	0.004 (2)
C8	0.037 (3)	0.038 (3)	0.033 (3)	0.007 (2)	-0.003 (2)	0.002 (2)
C2	0.045 (3)	0.040 (3)	0.041 (3)	-0.001 (2)	0.000 (2)	0.007 (2)
C1	0.044 (3)	0.040 (3)	0.043 (3)	0.000 (3)	-0.009 (3)	0.014 (2)
C10	0.043 (3)	0.056 (3)	0.031 (3)	-0.005 (3)	-0.002 (2)	0.011 (2)
C7	0.056 (4)	0.051 (4)	0.040 (3)	-0.014 (3)	-0.001 (3)	0.004 (3)
C12	0.045 (3)	0.047 (3)	0.022 (2)	0.000 (2)	-0.004 (2)	0.002 (2)
C14	0.036 (3)	0.048 (3)	0.041 (3)	0.000 (2)	-0.003 (2)	0.004 (3)

C6	0.051 (4)	0.062 (4)	0.032 (3)	-0.014 (3)	0.005 (3)	0.000 (3)
C4	0.060 (4)	0.041 (3)	0.055 (4)	-0.008 (3)	0.018 (3)	0.000 (3)
C13	0.041 (3)	0.045 (3)	0.030 (3)	-0.003 (2)	-0.003 (2)	0.008 (2)
C3	0.057 (4)	0.042 (3)	0.061 (4)	-0.006 (3)	0.019 (3)	-0.003 (3)
08	0.069 (4)	0.161 (6)	0.140 (6)	0.012 (4)	-0.011 (4)	-0.045 (5)
C11	0.037 (3)	0.079 (5)	0.037 (3)	-0.010 (3)	-0.005 (2)	0.017 (3)
O10	0.095 (5)	0.108 (6)	0.159 (8)	0.001 (4)	-0.029 (5)	-0.056 (5)
09	0.117 (6)	0.190 (7)	0.144 (6)	-0.016 (5)	0.038 (5)	-0.101 (6)
C20	0.116 (9)	0.103 (8)	0.089 (7)	0.030 (7)	0.002 (6)	-0.045 (6)
C17	0.097 (6)	0.166 (8)	0.119 (6)	0.009 (6)	-0.005 (5)	-0.083 (6)
C18	0.076 (5)	0.181 (7)	0.111 (6)	0.030 (5)	-0.012 (5)	-0.075 (6)
C19	0.139 (11)	0.087 (7)	0.135 (11)	0.001 (7)	-0.009 (9)	-0.050(7)
C15	0.111 (7)	0.142 (8)	0.184 (8)	-0.004 (6)	0.031 (6)	-0.057 (7)
C16	0.129 (8)	0.169 (8)	0.179 (8)	0.002 (6)	0.056 (7)	-0.083 (7)
O11	0.078 (7)	0.052 (5)	0.051 (5)	-0.006 (5)	0.005 (5)	-0.003 (4)
O12	0.095 (8)	0.057 (6)	0.034 (4)	-0.014 (5)	0.007 (5)	-0.008 (4)
Lil	0.072 (16)	0.068 (14)	0.034 (10)	-0.007 (11)	0.000 (10)	-0.018 (10)
O14	0.097 (9)	0.046 (5)	0.041 (5)	-0.015 (6)	0.006 (6)	-0.001 (4)
O13	0.112 (11)	0.079 (8)	0.054 (7)	-0.003 (7)	0.022 (7)	-0.022 (6)

Geometric parameters (Å, °)

Cu1—O4	1.949 (4)	C13—H13	0.9500
Cu1—O2 ⁱ	1.958 (5)	С3—НЗА	0.9500
Cu1—O5 ⁱ	1.959 (4)	O8—C18	1.415 (15)
Cu1—O1	1.948 (5)	O8—C15	1.492 (16)
Cu1—O7	2.178 (4)	C11—H11	0.9500
O4—C8	1.271 (7)	O10—C20	1.363 (13)
O3—C5	1.349 (8)	O10—C19	1.451 (15)
О3—Н3	0.850 (15)	O10—Li1	2.05 (3)
O2—C1	1.263 (8)	O9—C17	1.379 (13)
O6—C12	1.358 (7)	O9—C16	1.36 (2)
O6—H6	0.85 (2)	C20—H20A	0.9900
O5—C8	1.248 (7)	C20—H20B	0.9900
01—C1	1.265 (8)	C20—C19 ⁱⁱ	1.517 (18)
O7—H7A	0.9149	C17—H17A	0.9900
O7—H7B	0.9178	C17—H17B	0.9900
С9—С8	1.491 (7)	C17—C18	1.476 (18)
C9—C10	1.381 (9)	C18—H18A	0.9900
C9—C14	1.387 (8)	C18—H18B	0.9900
C5—C6	1.395 (9)	C19—H19A	0.9900
C5—C4	1.389 (9)	C19—H19B	0.9900
C2—C1	1.481 (9)	C15—H15A	0.9900
С2—С7	1.398 (9)	C15—H15B	0.9900
С2—С3	1.380 (9)	C15—C16	1.44 (2)
C10—H10	0.9500	C16—H16	0.9500
C10-C11	1.384 (8)	O11—Li1	1.91 (3)
С7—Н7	0.9500	O12—H12A	0.8696

	1 252 (10)		
C/C6	1.3/3 (10)	O12—H12B	0.8703
C12—C13	1.377 (9)	O12—Li1	1.89 (3)
C12—C11	1.390 (8)	Li1—O14	1.91 (2)
C14—H14	0.9500	Li1—O13	1.28 (3)
C14—C13	1.384 (8)	O14—H14A	0.8699
С6—Н6А	0.9500	O14—H14B	0.8705
C4—H4	0.9500	014—013	0.889 (14)
C4—C3	1.372 (10)		()
	110 / 2 (10)		
$O_{4} = C_{11} = O_{2}^{i}$	80.60 (17)	C10 C11 H11	110.0
04 - Cu1 - 02	160.14(17)		119.9
04 - Cu1 - 07	109.14(17)	C12—C11—H11	119.9
	97.95 (18)	C20-010-C19	110.9 (10)
02 ⁴ —Cu1—O5 ⁴	88.7 (2)	C20—O10—L11	123.0 (10)
$O2^{i}$ —Cu1—O7	95.2 (2)	C19—O10—L11	124.9 (10)
O5 ¹ —Cu1—O7	92.89 (18)	C16—O9—C17	109.9 (12)
01—Cu1—O4	90.9 (2)	O10—C20—H20A	109.8
O1—Cu1—O2 ⁱ	168.96 (18)	O10—C20—H20B	109.8
O1—Cu1—O5 ⁱ	88.7 (2)	O10-C20-C19 ⁱⁱ	109.2 (9)
O1—Cu1—O7	95.7 (2)	H20A—C20—H20B	108.3
C8—O4—Cu1	121.3 (4)	C19 ⁱⁱ —C20—H20A	109.8
С5—О3—Н3	112 (10)	C19 ⁱⁱ —C20—H20B	109.8
$C1 - O2 - Cu1^{i}$	120.0 (4)	O9—C17—H17A	109.5
C12—O6—H6	115 (5)	09—C17—H17B	109 5
$C_{8} = C_{5} = C_{11}^{i}$	1242(3)	09-C17-C18	110.9(12)
$C_1 = C_1 = C_1 = C_1$	124.2 (5)	H17A C17 H17B	108.0
$C_{1} = 01 = C_{1}$	120.8 (5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.5
Cu1 = 07 = 117D	111.0	$C_{10} = C_{17} = H_{17}$	109.5
	112.4		109.5
H/A - O/-H/B	101.9		111.8 (10)
C10—C9—C8	121.2 (5)	08—C18—H18A	109.3
C10—C9—C14	118.6 (5)	O8—C18—H18B	109.3
C14—C9—C8	120.2 (5)	C17—C18—H18A	109.3
O3—C5—C6	123.2 (5)	C17—C18—H18B	109.3
O3—C5—C4	117.8 (6)	H18A—C18—H18B	107.9
C4—C5—C6	119.0 (6)	O10-C19-C20 ⁱⁱ	107.7 (10)
O4—C8—C9	117.7 (5)	O10-C19-H19A	110.2
O5—C8—O4	125.1 (5)	O10-C19-H19B	110.2
O5—C8—C9	117.2 (5)	С20 ^{іі} —С19—Н19А	110.2
C7—C2—C1	121.5 (6)	C20 ⁱⁱ —C19—H19B	110.2
$C_{3}-C_{2}-C_{1}$	120.1 (5)	H19A—C19—H19B	108.5
$C_{3}-C_{2}-C_{7}$	118 3 (6)	08-C15-H15A	109.4
02-C1-01	124.0 (6)	08-C15-H15B	109.4
$O_2 C_1 C_2$	124.0(0) 1107(5)	H15A C15 H15B	109.4
02 - 01 - 02	119.7(5) 116.2(6)	$\frac{1115}{115}$	100.0
$C_1 - C_1 - C_2$	110.5 (0)	$C_{10} = C_{13} = U_0$	111.1 (13)
	119.0	C10-C15-H15A	109.4
	120.8 (5)	C10-C12-H12B	109.4
C11—C10—H10	119.6	09-016-015	109.4 (14)
С2—С7—Н7	119.6	O9—C16—H16	125.3
C6—C7—C2	120.8 (6)	C15—C16—H16	125.3

С6—С7—Н7	119.6	H12A—O12—H12B	104.5
O6—C12—C13	119.9 (5)	Li1—012—H12A	127.5
O6—C12—C11	120.8 (6)	Li1—O12—H12B	127.9
C13—C12—C11	119.3 (5)	O11—Li1—O10	114.4 (12)
C9—C14—H14	119.6	O12—Li1—O10	109.6 (13)
C13—C14—C9	120.9 (6)	012—Li1—011	111.6 (13)
C13—C14—H14	119.6	012—Li1—014	103.7 (12)
С5—С6—Н6А	119.9	O14—Li1—O10	97.5 (12)
C7—C6—C5	120.1 (6)	O14—Li1—O11	118.6 (13)
С7—С6—Н6А	119.9	O13—Li1—O10	116.5 (17)
C5—C4—H4	119.9	O13—Li1—O11	97.0 (17)
C3—C4—C5	120.2 (6)	O13—Li1—O12	107.0 (16)
C3—C4—H4	119.9	O13—Li1—O14	23.3 (9)
C12—C13—C14	120.2 (5)	Li1—O14—H14A	127.6
С12—С13—Н13	119.9	Li1—O14—H14B	127.8
C14—C13—H13	119.9	H14A—O14—H14B	104.5
С2—С3—НЗА	119.3	013—014—Li1	34.7 (14)
C4—C3—C2	121.4 (6)	O13—O14—H14A	104.0
С4—С3—НЗА	119.3	O13—O14—H14B	138.1
C18—O8—C15	103.7 (11)	O14—O13—Li1	122 (2)
C10-C11-C12	120.2 (6)		
Cu1—O4—C8—O5	3.3 (8)	C7—C2—C3—C4	-0.7 (11)
Cu1—O4—C8—C9	-176.6 (4)	C14—C9—C8—O4	178.9 (5)
Cu1 ⁱ —O2—C1—O1	4.2 (8)	C14—C9—C8—O5	-0.9 (8)
Cu1 ⁱ —O2—C1—C2	-174.3 (4)	C14—C9—C10—C11	0.0 (10)
Cu1 ⁱ O5C8O4	-5.0 (9)	C6—C5—C4—C3	1.4 (11)
Cu1 ⁱ O5C8C9	174.9 (4)	C4—C5—C6—C7	0.0 (10)
Cu1—O1—C1—O2	-2.6 (9)	C13—C12—C11—C10	-0.5 (11)
Cu1—O1—C1—C2	175.9 (4)	C3—C2—C1—O2	164.9 (6)
O3—C5—C6—C7	-178.5 (6)	C3—C2—C1—O1	-13.7 (9)
O3—C5—C4—C3	180.0 (6)	C3—C2—C7—C6	2.1 (10)
O6—C12—C13—C14	179.3 (6)	O8—C15—C16—O9	-64 (2)
O6-C12-C11-C10	-179.5 (6)	C11—C12—C13—C14	0.3 (10)
C9-C10-C11-C12	0.4 (11)	O10-Li1-O13-O14	-38 (3)
C9—C14—C13—C12	0.0 (10)	O9—C17—C18—O8	59.4 (16)
C5—C4—C3—C2	-1.0 (12)	C20-010-C19-C20 ⁱⁱ	60.5 (14)
C8—C9—C10—C11	179.2 (6)	C17—O9—C16—C15	61.7 (18)
C8—C9—C14—C13	-179.5 (5)	C18—O8—C15—C16	59.6 (18)
C2—C7—C6—C5	-1.8 (10)	C19—O10—C20—C19 ⁱⁱ	-61.4 (15)
C1—C2—C7—C6	179.2 (6)	C15—O8—C18—C17	-56.5 (14)
C1—C2—C3—C4	-177.9 (7)	C16—O9—C17—C18	-59.2 (16)
C10—C9—C8—O4	-0.3 (8)	O11—Li1—O13—O14	-159.6 (17)
C10—C9—C8—O5	179.8 (6)	O12—Li1—O13—O14	85 (2)
C10 C0 C14 C12	0.2(0)	L:1 010 C20 C10ii	120 4 (12)
C7—C2—C1—O2	-12.2 (9)	Li1—O10—C19—C20 ⁱⁱ	-131.6 (12)
-------------	-----------	-------------------------------	-------------
C7—C2—C1—O1	169.3 (6)		

Z = 2

F(000) = 520 $D_x = 1.540 \text{ Mg m}^{-3}$

 $\mu = 1.07 \text{ mm}^{-1}$

Irregular, dark green

 $0.18 \times 0.11 \times 0.07 \text{ mm}$

T = 100 K

Synchrotron radiation, $\lambda = 0.7108$ Å

Cell parameters from 1048 reflections

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+1, -z+1.

 $(1-Aza-4-azoniabicyclo[2.2.2]octane)(1,4-diazabicyclo[2.2.2]octane)tris(\mu-4-hydroxybenzoato)(\mu-4-oxidobenzoato)dicopper(II) methanol trisolvate (compound_4)$

Crystal data

$$\begin{split} & [\mathrm{Cu}_2(\mathrm{C}_7\mathrm{H}_5\mathrm{O}_3)_2(\mathrm{C}_7\mathrm{H}_{4.5}\mathrm{O}_3)_2(\mathrm{C}_6\mathrm{H}_{12.5}\mathrm{N}_2)_2]\cdot 3\mathrm{CH}_4\mathrm{O} \\ & M_r = 995.99 \\ & \mathrm{Triclinic}, \ P\overline{1} \\ & a = 8.8860 \ (18) \ \text{\AA} \\ & b = 10.702 \ (2) \ \text{\AA} \\ & c = 12.360 \ (3) \ \text{\AA} \\ & a = 73.13 \ (3)^\circ \\ & \beta = 73.07 \ (3)^\circ \\ & \gamma = 81.68 \ (3)^\circ \\ & V = 1073.8 \ (4) \ \text{\AA}^3 \end{split}$$

Data collection

MX1 beamline, Australian Synchrotron	$T_{\min} = 0.321, T_{\max} = 0.432$
Radiation source: MX1 Beamline Australian	3849 independent reflections
Synchrotron	2994 reflections with $I > 2\sigma(I)$
Silicon Double Crystal monochromator	$R_{\rm int} = 0.061$
Detector resolution: 13.3 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^{\circ}, \theta_{\rm min} = 2.0^{\circ}$
ω Scan scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan	$k = -13 \rightarrow 13$
(XDS; Kabsch, 2010)	$l = -15 \rightarrow 15$
Definement	

Refinement

Refinement on F^2 H atoms treated by a mixture of independent Least-squares matrix: full and constrained refinement $R[F^2 > 2\sigma(F^2)] = 0.089$ $w = 1/[\sigma^2(F_o^2) + (0.171P)^2 + 2.1393P]$ $wR(F^2) = 0.263$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.05 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.14 \text{ e} \text{ Å}^{-3}$ 3849 reflections 325 parameters $\Delta \rho_{\rm min} = -0.76 \ {\rm e} \ {\rm \AA}^{-3}$ 364 restraints Extinction correction: SHELXL2018 Primary atom site location: dual (Sheldrick, 2015b), Hydrogen site location: mixed $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.042 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cu1	0.91525 (8)	0.40962 (7)	0.50033 (6)	0.0423 (4)	
01	0.8428 (6)	0.5494 (4)	0.3804 (4)	0.0574 (12)	

C2	0.8255 (8)	0.7566 (6)	0.2492 (5)	0.0477 (14)	
O2	0.9863 (7)	0.7028 (5)	0.3797 (5)	0.0665 (15)	
C3	0.7122 (9)	0.7192 (7)	0.2095 (6)	0.0607 (18)	
Н3	0.678943	0.632476	0.240430	0.073*	
03	0.6426 (8)	1.0210 (6)	-0.0079(5)	0.0847 (19)	
H3A	0.543 (5)	1.010 (9)	0.008 (8)	0.127*	0.5
C4	0.6478 (11)	0.8062 (8)	0.1261 (7)	0.074 (2)	
H4	0.568257	0.779865	0.101610	0.089*	
04	0.7604 (5)	0.4726 (4)	0.6205 (3)	0.0450 (10)	
C5	0.6990 (11)	0.9344 (8)	0.0764 (7)	0.072 (2)	
05	0.9074 (6)	0.6316 (5)	0.6200 (4)	0.0545 (11)	
C6	0.8155 (11)	0.9693 (8)	0.1147 (7)	0.069 (2)	
H6	0.854603	1.053888	0.080615	0.083*	
06	0.2991 (10)	0.7280 (8)	1.0103 (6)	0.101 (2)	
C7	0.8749 (9)	0.8828(7)	0.2012 (6)	0.0603 (18)	
H7	0.951005	0.909894	0.228449	0.072*	
C1	0.8900 (7)	0.6624 (6)	0.3432 (5)	0.0444(13)	
C9	0.6517(9)	0.6047(7)	0.7562(6)	0.0547 (16)	
C10	0.5215 (9)	0.5350 (9)	0.8104(7)	0.067(2)	
H10	0.511431	0.458053	0.790262	0.081*	
C11	0.4014 (11)	0.5794 (11)	0.8975 (8)	0.085 (3)	
H11	0.310126	0.531598	0.937259	0.102*	
C12	0.4177 (13)	0.6931 (10)	0.9244 (7)	0.080 (3)	
C13	0.5484 (13)	0.7608 (9)	0.8695 (8)	0.079 (3)	
H13	0.559052	0.837438	0.889875	0.095*	
C14	0.6642 (11)	0.7198 (8)	0.7853 (7)	0.068 (2)	
H14	0.754270	0.769191	0.745923	0.081*	
C8	0.7799 (8)	0.5664 (6)	0.6607 (5)	0.0481 (15)	
N1	0.7671 (6)	0.2586 (5)	0.4988 (4)	0.0461 (11)	0.555 (7)
C17	0.731 (2)	0.1618 (13)	0.6134 (10)	0.081 (3)	0.555 (7)
H17A	0.678059	0.207125	0.675185	0.097*	0.555 (7)
H17B	0.830428	0.117030	0.630255	0.097*	0.555 (7)
C15	0.8402 (17)	0.1984 (14)	0.4014 (12)	0.086 (3)	0.555 (7)
H15A	0.946828	0.159761	0.406807	0.104*	0.555 (7)
H15B	0.851251	0.266193	0.326017	0.104*	0.555 (7)
C16	0.6165 (13)	0.3210 (11)	0.4750 (15)	0.074 (3)	0.555 (7)
H16A	0.637701	0.385495	0.397365	0.089*	0.555 (7)
H16B	0.560983	0.368217	0.534929	0.089*	0.555 (7)
C20	0.625 (2)	0.0609 (15)	0.6157 (10)	0.082 (3)	0.555 (7)
H20A	0.676906	-0.027865	0.635981	0.098*	0.555 (7)
H20B	0.524460	0.064754	0.676297	0.098*	0.555 (7)
C18	0.7403 (14)	0.0925 (15)	0.4052 (13)	0.089 (3)	0.555 (7)
H18A	0.714610	0.110836	0.329127	0.107*	0.555 (7)
H18B	0.801005	0.006758	0.417889	0.107*	0.555 (7)
C19	0.5127 (14)	0.2189 (8)	0.4768 (14)	0.071 (3)	0.555 (7)
H19A	0.412688	0.220663	0.538407	0.085*	0.555 (7)
H19B	0.487187	0.239789	0.400419	0.085*	0.555 (7)
N2	0.5933 (6)	0.0867 (5)	0.4999 (5)	0.0559 (14)	0.555 (7)

N3	0 7671 (6)	0 2586 (5)	0 4988 (4)	0.0461 (11)	0.445(7)
C22	0.659(2)	0.2360(3)	0.4565 (10)	0.079(3)	0.445(7)
	0.039 (2)	0.2101 (17)	0.0105 (10)	0.079 (3)	0.445(7)
П22А	0.38/4/4	0.291190	0.030080	0.095	0.443 (7)
H22B	0.719355	0.182541	0.675806	0.095*	0.445 (7)
C23	0.8617 (16)	0.1350 (11)	0.4899 (17)	0.071 (3)	0.445 (7)
H23A	0.909291	0.102047	0.556891	0.085*	0.445 (7)
H23B	0.948073	0.150815	0.416766	0.085*	0.445 (7)
C21	0.721 (2)	0.2961 (15)	0.3879 (12)	0.078 (3)	0.445 (7)
H21A	0.816011	0.304454	0.320791	0.094*	0.445 (7)
H21B	0.659043	0.381386	0.379801	0.094*	0.445 (7)
C25	0.562 (2)	0.1089 (17)	0.6177 (10)	0.080 (3)	0.445 (7)
H25A	0.587637	0.026534	0.673075	0.096*	0.445 (7)
H25B	0.448520	0.133583	0.645779	0.096*	0.445 (7)
C26	0.7583 (12)	0.0335 (14)	0.4900 (18)	0.079 (3)	0.445 (7)
H26A	0.799594	0.005350	0.416665	0.095*	0.445 (7)
H26B	0.762038	-0.044203	0.556586	0.095*	0.445 (7)
C24	0.622 (2)	0.1906 (14)	0.3892 (12)	0.087 (3)	0.445 (7)
H24A	0.519977	0.231650	0.375672	0.104*	0.445 (7)
H24B	0.677070	0.150851	0.323891	0.104*	0.445 (7)
N4	0.5933 (6)	0.0867 (5)	0.4999 (5)	0.0559 (14)	0.445 (7)
H2	0.500000	0.000000	0.500000	0.11 (5)*	
H6A	0.276 (19)	0.807 (5)	1.015 (13)	0.160*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0498 (5)	0.0343 (5)	0.0516 (5)	-0.0111 (3)	-0.0270 (3)	-0.0070 (3)
01	0.075 (3)	0.039 (2)	0.071 (3)	-0.018 (2)	-0.049 (3)	0.003 (2)
C2	0.054 (3)	0.043 (3)	0.050 (3)	-0.001 (3)	-0.022 (3)	-0.011 (3)
O2	0.088 (4)	0.042 (3)	0.084 (3)	-0.018 (2)	-0.061 (3)	0.006 (2)
C3	0.076 (5)	0.050 (4)	0.066 (4)	-0.001 (4)	-0.041 (4)	-0.010 (3)
03	0.127 (5)	0.063 (3)	0.070 (3)	0.021 (4)	-0.057 (4)	-0.010 (3)
C4	0.100 (6)	0.061 (5)	0.075 (5)	0.002 (4)	-0.056 (5)	-0.011 (4)
O4	0.056 (2)	0.041 (2)	0.043 (2)	-0.0215 (19)	-0.0165 (18)	-0.0070 (17)
C5	0.094 (6)	0.064 (5)	0.057 (4)	0.029 (4)	-0.039 (4)	-0.015 (3)
05	0.057 (3)	0.056 (3)	0.062 (3)	-0.011 (2)	-0.013 (2)	-0.031 (2)
C6	0.085 (5)	0.053 (4)	0.067 (4)	-0.008 (4)	-0.028 (4)	-0.002 (3)
06	0.116 (5)	0.098 (5)	0.070 (4)	0.034 (5)	-0.023 (4)	-0.012 (4)
C7	0.070 (4)	0.050 (4)	0.061 (4)	-0.007 (3)	-0.026 (3)	-0.003 (3)
C1	0.047 (3)	0.042 (3)	0.051 (3)	-0.006 (3)	-0.024 (3)	-0.010 (3)
C9	0.065 (4)	0.049 (4)	0.060 (4)	0.002 (3)	-0.035 (3)	-0.013 (3)
C10	0.063 (4)	0.068 (5)	0.068 (5)	-0.002 (4)	-0.025 (4)	-0.007 (4)
C11	0.073 (5)	0.095 (7)	0.068 (5)	0.000 (5)	-0.018 (4)	0.002 (5)
C12	0.105 (7)	0.073 (6)	0.057 (4)	0.019 (5)	-0.037 (5)	-0.005 (4)
C13	0.106 (7)	0.067 (5)	0.071 (5)	0.017 (5)	-0.042 (5)	-0.022 (4)
C14	0.091 (6)	0.058 (4)	0.065 (4)	0.006 (4)	-0.041 (4)	-0.018 (3)
C8	0.052 (3)	0.047 (4)	0.050 (3)	-0.005 (3)	-0.029 (3)	-0.004 (3)
N1	0.052 (3)	0.045 (3)	0.048 (3)	-0.017 (2)	-0.023 (2)	-0.005 (2)

C17	0.094 (6)	0.054 (5)	0.105 (6)	-0.028 (5)	-0.051 (5)	-0.001 (5)
C15	0.092 (5)	0.063 (5)	0.123 (6)	-0.025 (5)	-0.038 (5)	-0.034 (5)
C16	0.076 (5)	0.044 (5)	0.124 (6)	-0.025 (4)	-0.063 (5)	-0.009 (5)
C20	0.092 (6)	0.057 (6)	0.110 (6)	-0.031 (5)	-0.058 (5)	0.001 (5)
C18	0.089 (6)	0.066 (5)	0.129 (6)	-0.025 (5)	-0.034 (5)	-0.035 (5)
C19	0.071 (5)	0.037 (5)	0.124 (7)	-0.019 (4)	-0.060 (5)	-0.010 (5)
N2	0.057 (3)	0.045 (3)	0.076 (4)	-0.017 (3)	-0.026 (3)	-0.016 (3)
N3	0.052 (3)	0.045 (3)	0.048 (3)	-0.017 (2)	-0.023 (2)	-0.005 (2)
C22	0.091 (6)	0.051 (6)	0.108 (6)	-0.026 (5)	-0.045 (5)	-0.012 (5)
C23	0.078 (5)	0.038 (4)	0.118 (6)	-0.019 (3)	-0.046 (5)	-0.027 (5)
C21	0.092 (6)	0.055 (6)	0.114 (7)	-0.027 (6)	-0.065 (5)	-0.013 (6)
C25	0.091 (7)	0.053 (6)	0.111 (6)	-0.026 (5)	-0.043 (6)	-0.016 (5)
C26	0.077 (5)	0.056 (4)	0.127 (7)	-0.030 (4)	-0.047 (5)	-0.025 (5)
C24	0.094 (6)	0.060 (5)	0.127 (6)	-0.030 (5)	-0.061 (5)	-0.012 (5)
N4	0.057 (3)	0.045 (3)	0.076 (4)	-0.017 (3)	-0.026 (3)	-0.016 (3)

Cu1—O1	1.959 (4)	C17—H17B	0.9900
Cu1—O2 ⁱ	1.957 (4)	C17—C20	1.521 (12)
Cu1—O4	1.917 (4)	C15—H15A	0.9900
Cu1—O5 ⁱ	1.925 (5)	C15—H15B	0.9900
Cu1—N1	2.235 (5)	C15—C18	1.520 (12)
Cu1—N3	2.235 (5)	C16—H16A	0.9900
01—C1	1.250 (7)	C16—H16B	0.9900
C2—C3	1.390 (10)	C16—C19	1.521 (12)
C2—C7	1.387 (10)	C20—H20A	0.9900
C2—C1	1.495 (8)	C20—H20B	0.9900
O2—C1	1.252 (7)	C20—N2	1.479 (8)
С3—Н3	0.9500	C18—H18A	0.9900
C3—C4	1.375 (9)	C18—H18B	0.9900
O3—H3A	0.87 (2)	C18—N2	1.473 (8)
O3—C5	1.344 (8)	С19—Н19А	0.9900
C4—H4	0.9500	C19—H19B	0.9900
C4—C5	1.413 (12)	C19—N2	1.479 (8)
O4—C8	1.294 (8)	N2—H2	1.330 (5)
C5—C6	1.390 (12)	N3—C22	1.477 (8)
O5—C8	1.310 (8)	N3—C23	1.474 (8)
С6—Н6	0.9500	N3—C21	1.472 (8)
C6—C7	1.375 (10)	C22—H22A	0.9900
O6—C12	1.357 (11)	C22—H22B	0.9900
O6—H6A	0.86 (2)	C22—C25	1.523 (12)
С7—Н7	0.9500	С23—Н23А	0.9900
C9—C10	1.361 (11)	С23—Н23В	0.9900
C9—C14	1.408 (11)	C23—C26	1.521 (12)
С9—С8	1.490 (10)	C21—H21A	0.9900
C10—H10	0.9500	C21—H21B	0.9900
C10—C11	1.415 (12)	C21—C24	1.519 (12)

G11 H11	0.0500		0 0000
CII—HII	0.9500	C25—H25A	0.9900
C11—C12	1.389 (15)	C25—H25B	0.9900
C12—C13	1.354 (14)	C25—N4	1.483 (8)
С13—Н13	0.9500	С26—Н26А	0.9900
C13—C14	1.358 (12)	C26—H26B	0.9900
C14—H14	0.9500	C26—N4	1.478 (8)
N1—C17	1.470 (8)	C24—H24A	0.9900
N1-C15	1.469 (8)	C24—H24B	0.9900
N1—C16	1 476 (8)	C24—N4	1 473 (8)
C17H17A	0.9900	N4H2	1.175(0)
	0.9900	114-112	1.550 (5)
01—Cu1—N1	95 47 (18)	C18—C15—H15B	109.6
O1 Cu1 N3	95.17 (18)	N1 C16 H16A	109.5
$O_1^{i} = C_{11} = O_1^{i}$	169, 22, (10)	N1 C16 H16P	109.5
02 - cul - 01	100.33(19)		109.5
	96.20 (19)		110.5 (8)
02 ⁱ —Cu1—N3	96.20 (19)	H16A—C16—H16B	108.1
04—Cu1—O1	90.0 (2)	C19—C16—H16A	109.5
$O4$ — $Cu1$ — $O2^i$	89.0 (2)	C19—C16—H16B	109.5
$O4$ — $Cu1$ — $O5^i$	170.21 (18)	C17—C20—H20A	109.6
O4—Cu1—N1	95.04 (19)	С17—С20—Н20В	109.6
O4—Cu1—N3	95.04 (19)	H20A—C20—H20B	108.1
O5 ⁱ —Cu1—O1	89.2 (2)	N2-C20-C17	110.1 (9)
$O5^{i}$ —Cu1—O2 ⁱ	89.9 (2)	N2—C20—H20A	109.6
$O5^{i}$ —Cu1—N1	94.8 (2)	N2-C20-H20B	109.6
05^{i} Cu1 N3	94 8 (2)	C_{15} C_{18} H_{18A}	109.4
C1 = O1 = Cu1	1244(4)	C_{15} C_{18} H_{18B}	109.4
$C_1^2 = C_1^2 = C_1^2$	124.4(4) 120.1(6)		109.4
C_{3}^{-} C_{2}^{-} C_{3}^{-}	120.1(0) 118.7(6)	$\frac{1110}{10} = \frac{110}{10} = \frac{110}{10}$	100.0
$C_{1} = C_{2} = C_{3}$	110.7(0)	N2 - C10 - C13	111.0 (10)
$C_{1} = C_{2} = C_{1}$	121.2(0)	$N_2 - C_{10} - H_{10} R_{10}$	109.4
C1—O2—Cul ¹	122.5 (4)	N2—C18—H18B	109.4
С2—С3—Н3	119.6	C16—C19—H19A	109.5
C4—C3—C2	120.8 (7)	C16—C19—H19B	109.5
С4—С3—Н3	119.6	H19A—C19—H19B	108.1
С5—О3—НЗА	107 (2)	N2—C19—C16	110.7 (8)
C3—C4—H4	119.7	N2—C19—H19A	109.5
C3—C4—C5	120.5 (8)	N2-C19-H19B	109.5
С5—С4—Н4	119.7	C20—N2—H2	111.2 (6)
C8—O4—Cu1	124.4 (4)	C18—N2—C20	111.7 (10)
O3—C5—C4	122.4 (8)	C18—N2—C19	106.1 (9)
03	119.6 (8)	C18—N2—H2	111.8 (6)
C6-C5-C4	1180(7)	$C_{19} N_{2} C_{20}$	106.6(10)
$C_8 - C_5 - C_{11}^{i}$	1225(4)	C19 - N2 - H2	100.0(10) 109.2(5)
C5 C6 H6	110.6	$C_{12} = 112$ C_{1	109.2(3) 108.7(7)
$C_{7} = C_{6} = C_{5}$	112.0	$C_{22} = N_3 = C_{11}$	100.7(7)
$C_{1} = C_{0} = C_{3}$	120.0(/)	C_{23} N2 C_{23}	111.1(0) 100.5(11)
$C_1 = C_0 = H_0$	119.0	$C_{23} = N_{3} = C_{22}$	100.5 (11)
U12	123 (10)	C21—N3—Cu1	109.6 (6)
С2—С7—Н7	119.4	C21—N3—C22	125.0 (11)
C6—C7—C2	121.1 (7)	C21—N3—C23	100.8 (11)

С6—С7—Н7	119.4	N3—C22—H22A	109.9
01—C1—C2	117.7 (5)	N3—C22—H22B	109.9
O1—C1—O2	124.8 (5)	N3—C22—C25	109.0 (11)
O2—C1—C2	117.6 (6)	H22A—C22—H22B	108.3
C10—C9—C14	120.1 (8)	C25—C22—H22A	109.9
С10—С9—С8	121.6 (7)	С25—С22—Н22В	109.9
C14—C9—C8	118.2 (7)	N3—C23—H23A	109.6
С9—С10—Н10	120.6	N3—C23—H23B	109.6
C9—C10—C11	118.8 (8)	N3—C23—C26	110.1 (10)
C11—C10—H10	120.6	H23A—C23—H23B	108.1
C10—C11—H11	120.2	С26—С23—Н23А	109.6
C12—C11—C10	119.6 (9)	С26—С23—Н23В	109.6
C12—C11—H11	120.2	N3—C21—H21A	110.1
06-C12-C11	116.1 (10)	N3—C21—H21B	110.1
C13—C12—O6	123.2 (10)	N3-C21-C24	108.2 (10)
C_{13} C_{12} C_{11}	120.6 (9)	H21A—C21—H21B	108.4
C12—C13—H13	119.8	C24-C21-H21A	110.1
C12 - C13 - C14	120 5 (9)	C_{24} C_{21} H_{21R}	110.1
C12 - C13 - H13	119.8	$C_{2}^{2} = C_{2}^{2} = H_{2}^{2} A$	109.2
C9-C14-H14	119.8	$C_{22} = C_{25} = H_{25R}$	109.2
C_{13} C_{14} C_{14} C_{9}	120 4 (9)	$H_{25A} - C_{25} - H_{25B}$	107.9
C13 - C14 - H14	110.8	N4_C25_C22	107.9 112.0 (11)
04-08-05	122.9 (6)	N4 - C25 - C22 $N4 - C25 - H25 \Delta$	109.2
04 $C8$ $C9$	110.3 (6)	N4 C25 H25B	109.2
0 = 0 = 0	117.8 (6)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.2
$C_{17} = 0.0000000000000000000000000000000000$	117.8 (0)	$C_{23} = C_{20} = H_{20} R_{20}$	109.4
C17 = N1 = C16	110.3(0)	H26A C26 H26D	109.4
C17 - N1 - C10	108.0 (9)	$M_{20}A - C_{20} - H_{20}B$	100.0
C15 = N1 = C17	111.3(0) 112.8(10)	N4 C26 U26	111.2 (10)
C15 - N1 - C17	112.8(10)	N4 - C26 - H26A	109.4
C15-N1-C16	104.0 (9)	$\mathbf{N4} = \mathbf{C20} = \mathbf{H20B}$	109.4
	110.0 (5)	C21—C24—H24A	108.9
NI-CI7-HI7A	109.4	C21—C24—H24B	108.9
NI = CI7 = CI7	109.4	H24A-C24-H24B	107.7
NI = CI / = C20	111.2 (9)	N4-C24-C21	113.3 (11)
HI/A = CI/= HI/B	108.0	N4—C24—H24A	108.9
C20—C17—H17A	109.4	N4—C24—H24B	108.9
С20—С17—Н17В	109.4	C25—N4—H2	111.5 (7)
NI—CI5—HI5A	109.6	C26—N4—C25	96.9 (11)
NI—CI5—HI5B	109.6	C26—N4—H2	112.5 (6)
N1—C15—C18	110.4 (10)	C24—N4—C25	124.6 (11)
H15A—C15—H15B	108.1	C24—N4—C26	97.4 (11)
C18—C15—H15A	109.6	C24—N4—H2	111.5 (7)
Cu1—O1—C1—C2	178.5 (4)	C12—C13—C14—C9	-1.5 (11)
Cu1—O1—C1—O2	-2.2 (10)	C14—C9—C10—C11	-1.1 (11)
Cu1 ⁱ —O2—C1—O1	2.2 (10)	C14—C9—C8—O4	-169.9 (6)
Cu1 ⁱ —O2—C1—C2	-178.6 (4)	C14—C9—C8—O5	9.2 (8)
Cu1—O4—C8—O5	2.3 (8)	C8—C9—C10—C11	-177.7 (6)

Cu1 ⁱ —O5—C8—O4	-26(8)		
	2.0 (0)	N1-C17-C20-N2	2.0 (14)
Cu1 ⁱ —O5—C8—C9	178.3 (4)	N1-C15-C18-N2	4.1 (15)
Cu1—N1—C17—C20	177.9 (9)	N1-C16-C19-N2	-0.9 (14)
Cu1—N1—C15—C18	177.8 (9)	C17—N1—C15—C18	53.0 (14)
Cu1—N1—C16—C19	-178.5 (8)	C17—N1—C16—C19	-58.1 (13)
Cu1—N3—C22—C25	-177.6 (9)	C17—C20—N2—C18	54.7 (13)
Cu1—N3—C23—C26	179.5 (9)	C17—C20—N2—C19	-60.7 (12)
Cu1—N3—C21—C24	179.3 (9)	C15—N1—C17—C20	-56.7 (14)
C2—C3—C4—C5	1.9 (13)	C15—N1—C16—C19	61.9 (12)
C3—C2—C7—C6	-1.0 (12)	C15—C18—N2—C20	-58.5 (14)
C3—C2—C1—O1	2.6 (10)	C15—C18—N2—C19	57.3 (13)
C3—C2—C1—O2	-176.7 (7)	C16—N1—C17—C20	57.6 (13)
C3—C4—C5—O3	177.9 (7)	C16—N1—C15—C18	-63.7 (12)
C3—C4—C5—C6	-0.1 (13)	C16—C19—N2—C20	60.2 (12)
O3—C5—C6—C7	179.7 (7)	C16—C19—N2—C18	-58.9 (12)
C4—C5—C6—C7	-2.2 (13)	N3—C22—C25—N4	-5.2 (15)
C5—C6—C7—C2	2.8 (13)	N3—C23—C26—N4	-0.5 (16)
O6—C12—C13—C14	179.0 (7)	N3—C21—C24—N4	3.1 (16)
C7—C2—C3—C4	-1.4 (12)	C22—N3—C23—C26	64.7 (13)
C7—C2—C1—O1	-178.4 (6)	C22—N3—C21—C24	-49.0 (17)
C7—C2—C1—O2	2.4 (10)	C22—C25—N4—C26	67.1 (13)
C1—C2—C3—C4	177.7 (7)	C22—C25—N4—C24	-36.8 (18)
C1—C2—C7—C6	179.9 (7)	C23—N3—C22—C25	-60.9 (13)
C9—C10—C11—C12	0.9 (11)	C23—N3—C21—C24	62.1 (13)
C10—C9—C14—C13	1.4 (11)	C23—C26—N4—C25	-63.4 (13)
C10—C9—C8—O4	6.8 (9)	C23—C26—N4—C24	62.9 (14)
C10—C9—C8—O5	-174.1 (6)	C21—N3—C22—C25	50.4 (16)
C10—C11—C12—O6	-178.8 (7)	C21—N3—C23—C26	-64.4 (13)
C10—C11—C12—C13	-1.0 (12)	C21—C24—N4—C25	38.2 (19)
C11—C12—C13—C14	1.3 (12)	C21—C24—N4—C26	-65.5 (14)

Symmetry code: (i) –*x*+2, –*y*+1, –*z*+1.

Bis(tetraethylammonium) bis(μ -4-hydroxybenzoato)bis(μ -4-oxidobenzoato)bis[(dioxane)copper(II)] aqua(dioxane)tetrakis(μ -4-hydroxybenzoato)dicopper(II) methanol monosolvate (compound_5)

Crystal data

 $\begin{array}{l} (C_8H_{20}N)[Cu_2(C_7H_4O_3)_2(C_7H_5O_3)_2(C_4H_8O_2)_2] \\ [Cu_2(C_7H_5O_3)_4(C_4H_8O_2)(H_2O)]\cdot CH_4O \\ M_r = 1923.89 \\ \text{Orthorhombic, } Pnma \\ a = 12.833 \ (3) \ \text{\AA} \\ b = 54.548 \ (11) \ \text{\AA} \\ c = 12.119 \ (2) \ \text{\AA} \\ V = 8483 \ (3) \ \text{\AA}^3 \\ Z = 4 \end{array}$

F(000) = 4016 $D_x = 1.506 \text{ Mg m}^{-3}$ Synchrotron radiation, $\lambda = 0.7108 \text{ Å}$ Cell parameters from 2355 reflections $\mu = 1.08 \text{ mm}^{-1}$ T = 100 KIrregular, clear blue $0.13 \times 0.09 \times 0.06 \text{ mm}$ Data collection

 MX2 beamline, Australian Synchrotron diffractometer Radiation source: MX2 Beamline Australian Synchrotron Silicon Double Crystal monochromator Detector resolution: 13.3 pixels mm⁻¹ ω Scan scans Absorption correction: multi-scan (XDS; Kabsch, 2010) 	$T_{\min} = 0.321, T_{\max} = 0.432$ 151309 measured reflections 13753 independent reflections 11493 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.054$ $\theta_{\text{max}} = 32.4^{\circ}, \theta_{\text{min}} = 0.8^{\circ}$ $h = -19 \rightarrow 19$ $k = -75 \rightarrow 75$ $l = -16 \rightarrow 16$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.148$ S = 1.02 13753 reflections 585 parameters 67 restraints Primary atom site location: dual	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0883P)^2 + 6.6788P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.005$ $\Delta\rho_{max} = 1.42$ e Å ⁻³ $\Delta\rho_{min} = -0.84$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The methanol molecule is disordered across a mirror plane and modelled in Part -1.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cul	1.09438 (2)	0.50228 (2)	0.46389 (2)	0.02254 (7)	
Cu3	0.77549 (3)	0.750000	0.39070 (3)	0.02583 (8)	
Cu2	0.97413 (3)	0.750000	0.42875 (3)	0.02737 (9)	
O11	0.93206 (12)	0.63271 (2)	0.00021 (12)	0.0286 (3)	
O6	0.79458 (13)	0.59894 (3)	0.04796 (13)	0.0305 (3)	
O5	0.87919 (12)	0.51933 (3)	0.40980 (14)	0.0344 (3)	
01	1.10134 (12)	0.53053 (3)	0.56100 (13)	0.0310 (3)	
O4	1.04170 (12)	0.52395 (3)	0.34824 (13)	0.0327 (3)	
O7	1.25994 (13)	0.50399 (3)	0.41904 (15)	0.0351 (3)	
O2	0.93938 (13)	0.52620 (3)	0.62668 (14)	0.0351 (3)	
O17	0.6112 (2)	0.750000	0.3665 (2)	0.0372 (5)	
H17C	0.567 (2)	0.750000	0.424 (3)	0.056*	
H17	0.583 (3)	0.7564 (10)	0.310 (3)	0.056*	0.5
O3	1.09462 (14)	0.61876 (3)	0.89328 (14)	0.0369 (4)	
Н3	1.047567	0.622646	0.936981	0.077 (13)*	
O9	0.98162 (14)	0.72462 (3)	0.31540 (16)	0.0443 (4)	
O10	0.81086 (14)	0.72439 (3)	0.28582 (16)	0.0451 (4)	
O13	0.77289 (15)	0.72506 (4)	0.50558 (17)	0.0460 (4)	
O14	0.79843 (16)	0.63828 (3)	0.84125 (15)	0.0458 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

018	0.5112 (6)	0.73992 (18)	0.5562 (5)	0.139 (4)	0.5
H18	0.451763	0.744139	0.572141	0.208*	0.5
H14A	0.840123	0.637049	0.896711	0.208*	
012	0.94340 (16)	0.72509 (4)	0.53854 (17)	0.0498 (5)	
015	1.1407 (2)	0.750000	0.4589 (3)	0.0510(7)	
N1	0.94177 (16)	0.62350 (4)	0.45490 (16)	0.0340 (4)	
C12	0.83421 (17)	0.58163 (3)	0.11586 (15)	0.0267 (4)	
C7	0.96608 (16)	0.56600 (3)	0.76684 (16)	0.0274 (4)	
H7	0.902792	0.557028	0.771631	0.033*	
08	1.41723 (18)	0.47818 (4)	0.5330(2)	0.0576 (5)	
C2	1.04197 (16)	0.55867 (3)	0.69232 (16)	0.0261 (3)	
C19	0.91121 (17)	0.69439 (3)	0.19854 (16)	0.0283 (4)	
C13	0.94089 (17)	0.57883 (3)	0.13287 (16)	0.0272 (4)	
H13	0.988965	0.589086	0.095133	0.033*	
C8	0.94606 (16)	0.52843 (3)	0.34574 (16)	0.0258 (3)	
C1	1.02630 (16)	0.53685 (3)	0.62135 (15)	0.0253 (3)	
C11	0.76460 (17)	0.56603 (4)	0.16858 (18)	0.0298 (4)	
H11	0.692123	0.567179	0.153469	0.036*	
C25	0.85244 (19)	0.71771 (4)	0.55474 (16)	0.0317 (4)	
C22	0.92602 (17)	0.65267 (3)	0.06385 (16)	0.0270 (4)	
C6	0.98102 (17)	0.58615 (4)	0.83431 (16)	0.0283 (4)	
H6A	0.928236	0.590939	0.884863	0.034*	
C14	0.97644(16)	0.56107 (3)	0.20488 (16)	0.0270 (4)	
H14	1.049277	0.558911	0.215007	0.032*	
C23	1.019277	0.66676 (4)	0.08873(18)	0.0313(4)	
H23	1 080046	0.662257	0.058802	0.0315(1)	
C26	0.83724 (19)	0.602237 0.69794(4)	0.63736 (17)	0.0318 (4)	
C64	0.03721(17) 0.90060(17)	0.09791(1) 0.71611(4)	0.03730(17) 0.27185(16)	0.0318(4)	
C9	0.90715(16)	0.54634(3)	0.26264 (16)	0.0250(1) 0.0257(3)	
C5	1.07344(17)	0.59938(4)	0.20201(10) 0.82799(17)	0.0297(3) 0.0297(4)	
C4	1 14971 (18)	0.59259(4)	0.75125(18)	0.0297(1) 0.0316(4)	
H4	1 212193	0.601828	0.745030	0.038*	
C27	0.7452(2)	0.68484(4)	0.63751 (19)	0.0365 (5)	
027 H27	0.689710	0.689614	0.590260	0.044*	
C24	1.00705(17)	0.68709(4)	0.370200 0.15624(18)	0.0318(4)	
С2 4 Н24	1.067993	0.696164	0.173907	0.0318(4)	
C3	1.007995	0.090104 0.57242 (4)	0.173907 0.68471(17)	0.038 0.0292 (4)	
НЗЛ	1.13500 (17)	0.57242 (4)	0.632966	0.025*	
	0.80083 (16)	0.507794 0.54885 (3)	0.032900 0.24297(17)	0.033	
U10	0.30085 (10)	0.538650	0.24297(17) 0.281032	0.0203(4)	
C21	0.752775	0.538050	0.281032 0.71040 (18)	0.034°	
U21	0.9101(2) 0.070126	0.09101 (4)	0.71040 (18)	0.0334 (4)	
ПЭТ С20	0.979120	0.700732	0.711240 0.17122(10)	0.043°	
C20	0.82288 (18)	0.08095 (4)	0.1/152(19)	0.0330 (4)	
П20 С20	0.730099	0.00000/	0.190000	0.040	
U39 U20A	0.0940 (2)	0.00932 (4)	0.34997 (18) 0.602 <i>465</i>	0.0338 (3)	
пруд	0.930063	0.004931	0.002403	0.043*	
H39B	0.844682	0.620229	0.589215	0.043*	
C21	0.83027 (18)	0.66027 (4)	0.10592 (18)	0.0332 (4)	

H21	0.769260	0.651113	0.089396	0.040*
C42	1.08702 (19)	0.62009 (5)	0.3124 (2)	0.0374 (5)
H42A	1.039807	0.621569	0.249216	0.056*
H42B	1.146988	0.609944	0.291858	0.056*
H42C	1.111212	0.636411	0.334408	0.056*
C29	0.8131 (2)	0.65835 (4)	0.77841 (18)	0.0363 (5)
C30	0.9032 (2)	0.67202 (4)	0.78223 (19)	0.0356 (4)
H30	0.956350	0.668071	0.833815	0.043*
C15	1.30881 (19)	0.48317 (4)	0.3692 (2)	0.0382 (4)
H15A	1.368711	0.488498	0.323664	0.046*
H15B	1.258622	0 474517	0.320926	0.046*
C37	0.8636(2)	0.62802 (5)	0.3634(2)	0.0405(5)
H37A	0.807573	0.637781	0.304673	0.0403 (3)
1137A 1137B	0.87373	0.612056	0.304073	0.049
C28	0.043334 0.7226(2)	0.012030	0.330932	0.049°
C28	0.7550(2)	0.00483 (4)	0.7001(2)	0.0397(3)
H28	0.071125	0.655505	0.703982	0.048^{+}
C40	0.8368 (2)	0.58612 (5)	0.51/8 (2)	0.0445 (5)
H40A	0.778075	0.590266	0.469606	0.067*
H40B	0.810747	0.577962	0.584382	0.067*
H40C	0.884540	0.575124	0.478700	0.067*
C41	1.0304 (2)	0.60833 (5)	0.4071 (2)	0.0428 (5)
H41A	1.081202	0.604906	0.466636	0.051*
H41B	1.001899	0.592412	0.382052	0.051*
C38	0.7663 (2)	0.64124 (5)	0.4007 (2)	0.0425 (5)
H38A	0.718827	0.643180	0.337958	0.064*
H38B	0.785164	0.657431	0.429548	0.064*
H38C	0.731911	0.631705	0.458698	0.064*
O16	1.2961 (4)	0.750000	0.6153 (4)	0.1116 (19)
C17	1.3722 (2)	0.49978 (5)	0.5839 (3)	0.0483 (6)
H17A	1.425049	0.508191	0.629804	0.058*
H17B	1.313166	0.495025	0.631961	0.058*
C35	0.9795 (2)	0.64795 (5)	0.4959(3)	0.0449 (6)
H35A	0.998623	0.658168	0 431508	0.054*
H35B	0.921343	0.656247	0 534448	0.054*
C36	1 0698 (2)	0.64683 (6)	0.5715 (3)	0.0537(7)
H36A	1.128135	0.638651	0.534472	0.081*
H36R	1.050704	0.637508	0.637875	0.081*
	1.000526	0.037398	0.037873	0.081*
H30C	1.090320	0.003494	0.392338	0.081°
	1.3343 (2)	0.51079 (5)	0.4955 (2)	0.0424 (3)
HI8A	1.299981	0.531228	0.526678	0.051*
HI8B	1.394838	0.522659	0.449831	0.051*
C16	1.3456 (2)	0.46624 (5)	0.4601 (3)	0.0496 (6)
H16A	1.284709	0.460432	0.502876	0.060*
H16B	1.379874	0.451750	0.426902	0.060*
C32	1.1999 (3)	0.77128 (6)	0.4784 (3)	0.0574 (8)
H32A	1.157007	0.786006	0.463735	0.069*
H32B	1.260763	0.771627	0.428212	0.069*
C33	1.2354 (4)	0.77148 (9)	0.5931 (4)	0.0939 (15)

H33A	1.278058	0.786305	0.606652	0.113*		
H33B	1.174512	0.771984	0.643119	0.113*		
H6	0.8425 (19)	0.6083 (5)	0.035 (3)	0.045 (9)*		
C34	0.5581 (9)	0.7512 (7)	0.6500 (7)	0.139 (4)	0.5	
H34A	0.517242	0.747211	0.715856	0.208*	0.5	
H34B	0.560602	0.769051	0.640566	0.208*	0.5	
H34C	0.629092	0.744851	0.658456	0.208*	0.5	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.02841 (12)	0.01829 (11)	0.02092 (12)	0.00083 (8)	0.00086 (8)	0.00034 (7)
Cu3	0.03776 (18)	0.02005 (15)	0.01968 (15)	0.000	-0.00168 (12)	0.000
Cu2	0.03862 (19)	0.02342 (16)	0.02007 (16)	0.000	-0.00258 (13)	0.000
011	0.0424 (8)	0.0189 (6)	0.0245 (6)	0.0004 (5)	0.0009 (6)	-0.0010 (5)
06	0.0390 (8)	0.0234 (6)	0.0292 (7)	0.0006 (6)	-0.0010 (6)	0.0070 (5)
05	0.0333 (7)	0.0335 (8)	0.0363 (8)	0.0025 (6)	0.0024 (6)	0.0154 (6)
01	0.0359 (7)	0.0271 (7)	0.0300 (7)	-0.0028 (6)	0.0039 (6)	-0.0079 (6)
O4	0.0343 (7)	0.0360 (8)	0.0278 (7)	0.0021 (6)	0.0004 (6)	0.0096 (6)
O7	0.0341 (7)	0.0300 (7)	0.0413 (9)	0.0029 (6)	0.0075 (6)	0.0015 (6)
O2	0.0367 (8)	0.0287 (7)	0.0400 (8)	-0.0035 (6)	0.0072 (7)	-0.0123 (6)
O17	0.0408 (12)	0.0398 (12)	0.0309 (11)	0.000	-0.0041 (9)	0.000
O3	0.0459 (9)	0.0305 (8)	0.0344 (8)	-0.0079 (6)	0.0056 (7)	-0.0129 (6)
09	0.0422 (9)	0.0406 (9)	0.0500 (10)	0.0037 (7)	-0.0060 (8)	-0.0229 (8)
O10	0.0415 (9)	0.0454 (10)	0.0485 (10)	0.0043 (7)	-0.0033 (8)	-0.0257 (8)
O13	0.0462 (10)	0.0459 (10)	0.0460 (10)	-0.0038 (8)	-0.0065 (8)	0.0242 (8)
O14	0.0663 (12)	0.0305 (8)	0.0405 (9)	-0.0143 (8)	-0.0184 (8)	0.0139 (7)
O18	0.120 (4)	0.231 (10)	0.066 (3)	-0.083 (6)	-0.004 (3)	-0.009 (4)
O12	0.0462 (10)	0.0558 (11)	0.0473 (11)	-0.0053 (9)	-0.0065 (8)	0.0273 (9)
O15	0.0454 (14)	0.0340 (13)	0.074 (2)	0.000	-0.0177 (13)	0.000
N1	0.0405 (10)	0.0309 (9)	0.0306 (9)	0.0044 (7)	0.0032 (7)	0.0021 (7)
C12	0.0376 (10)	0.0210 (8)	0.0214 (8)	0.0005 (7)	-0.0006 (7)	0.0010 (6)
C7	0.0349 (9)	0.0221 (8)	0.0252 (9)	-0.0010 (7)	0.0008 (7)	-0.0011 (6)
08	0.0559 (12)	0.0470 (11)	0.0698 (15)	0.0062 (9)	-0.0079 (10)	0.0070 (10)
C2	0.0357 (9)	0.0210 (8)	0.0217 (8)	0.0006 (7)	0.0000 (7)	-0.0004 (6)
C19	0.0393 (10)	0.0220 (8)	0.0238 (8)	0.0009 (7)	-0.0017 (7)	-0.0012 (6)
C13	0.0364 (10)	0.0240 (8)	0.0213 (8)	-0.0036 (7)	-0.0008 (7)	0.0028 (6)
C8	0.0367 (9)	0.0193 (7)	0.0216 (8)	0.0003 (7)	-0.0002 (7)	0.0002 (6)
C1	0.0363 (9)	0.0195 (7)	0.0201 (8)	0.0023 (7)	-0.0009 (7)	0.0007 (6)
C11	0.0330 (9)	0.0260 (9)	0.0304 (10)	0.0020(7)	0.0006 (8)	0.0049 (7)
C25	0.0491 (12)	0.0243 (9)	0.0218 (8)	0.0014 (8)	-0.0014 (8)	0.0012 (6)
C22	0.0389 (10)	0.0194 (8)	0.0226 (8)	0.0006 (7)	-0.0014 (7)	0.0012 (6)
C6	0.0372 (10)	0.0239 (8)	0.0239 (8)	-0.0002 (7)	0.0023 (7)	-0.0016 (6)
C14	0.0332 (9)	0.0255 (8)	0.0222 (8)	-0.0016 (7)	-0.0027 (7)	0.0008 (6)
C23	0.0355 (10)	0.0263 (9)	0.0322 (10)	0.0015 (7)	-0.0008(8)	-0.0025 (7)
C26	0.0495 (12)	0.0236 (8)	0.0223 (8)	0.0011 (8)	-0.0027 (8)	0.0024 (7)
C64	0.0419 (10)	0.0221 (8)	0.0225 (9)	0.0006 (7)	0.0001 (7)	0.0004 (6)
C9	0.0359 (9)	0.0195 (7)	0.0215 (8)	0.0012 (7)	-0.0008 (7)	0.0003 (6)

C5	0.0406 (10)	0.0229 (8)	0.0256 (9)	-0.0021 (7)	-0.0005 (8)	-0.0034 (7)
C4	0.0376 (10)	0.0274 (9)	0.0299 (9)	-0.0042 (8)	0.0036 (8)	-0.0043 (7)
C27	0.0506 (13)	0.0309 (10)	0.0282 (10)	-0.0039 (9)	-0.0083 (9)	0.0057 (8)
C24	0.0359 (10)	0.0277 (9)	0.0316 (10)	-0.0006 (7)	-0.0031 (8)	-0.0041 (7)
C3	0.0352 (9)	0.0264 (9)	0.0258 (9)	-0.0008 (7)	0.0030 (7)	-0.0017 (7)
C10	0.0339 (9)	0.0230 (8)	0.0286 (9)	-0.0005 (7)	0.0023 (7)	0.0050 (7)
C31	0.0470 (12)	0.0314 (10)	0.0279 (10)	-0.0020 (8)	-0.0029 (9)	0.0057 (8)
C20	0.0384 (10)	0.0276 (9)	0.0348 (10)	-0.0006 (8)	0.0033 (8)	-0.0064 (8)
C39	0.0469 (12)	0.0340 (11)	0.0265 (10)	-0.0021 (9)	0.0022 (9)	-0.0010 (8)
C21	0.0371 (10)	0.0275 (9)	0.0351 (10)	-0.0045 (8)	0.0024 (8)	-0.0065 (8)
C42	0.0397 (11)	0.0383 (11)	0.0344 (11)	0.0037 (9)	0.0036 (9)	0.0004 (9)
C29	0.0548 (13)	0.0254 (9)	0.0287 (10)	-0.0035 (9)	-0.0072 (9)	0.0050 (7)
C30	0.0477 (12)	0.0301 (10)	0.0289 (10)	-0.0003 (8)	-0.0060 (9)	0.0056 (8)
C15	0.0371 (11)	0.0376 (10)	0.0401 (11)	0.0061 (8)	0.0095 (9)	-0.0016 (8)
C37	0.0478 (13)	0.0444 (13)	0.0292 (10)	0.0116 (10)	-0.0002 (9)	0.0002 (9)
C28	0.0533 (13)	0.0322 (10)	0.0337 (11)	-0.0098 (9)	-0.0105 (10)	0.0076 (8)
C40	0.0530 (14)	0.0351 (11)	0.0453 (13)	-0.0051 (10)	0.0007 (11)	-0.0007 (10)
C41	0.0488 (13)	0.0379 (12)	0.0418 (12)	0.0134 (10)	0.0086 (10)	0.0067 (10)
C38	0.0420 (12)	0.0501 (14)	0.0354 (11)	0.0096 (10)	-0.0012 (10)	-0.0005 (10)
016	0.112 (4)	0.126 (4)	0.097 (4)	0.000	-0.067 (3)	0.000
C17	0.0447 (13)	0.0476 (14)	0.0527 (16)	0.0032 (11)	0.0027 (12)	0.0163 (12)
C35	0.0463 (13)	0.0326 (11)	0.0559 (16)	0.0007 (10)	-0.0008 (12)	-0.0038 (10)
C36	0.0523 (15)	0.0597 (18)	0.0490 (16)	-0.0058 (13)	-0.0063 (13)	-0.0062 (13)
C18	0.0481 (13)	0.0353 (11)	0.0439 (12)	-0.0003 (9)	0.0038 (9)	0.0016 (8)
C16	0.0515 (15)	0.0384 (13)	0.0590 (17)	0.0033 (11)	0.0050 (13)	-0.0024 (11)
C32	0.0497 (15)	0.0453 (15)	0.077 (2)	-0.0108 (12)	-0.0080 (15)	0.0045 (14)
C33	0.102 (3)	0.092 (3)	0.087 (3)	-0.002 (3)	-0.031 (3)	-0.040 (3)
C34	0.119 (4)	0.230 (10)	0.067 (3)	-0.085 (6)	-0.004 (3)	-0.009 (5)

Cu1—O5 ⁱ	1.9618 (15)	С23—Н23	0.9500	
Cu1—01	1.9408 (15)	C23—C24	1.382 (3)	
Cu1—04	1.9542 (15)	C26—C27	1.381 (3)	
Cu1—07	2.1950 (17)	C26—C31	1.388 (3)	
Cu1—O2 ⁱ	1.9508 (15)	C9—C10	1.392 (3)	
Cu3—Cu3 ⁱⁱ	0.0000 (10)	C5—C4	1.400 (3)	
Cu3—017	2.128 (3)	C4—H4	0.9500	
Cu3—O10	1.9425 (16)	C4—C3	1.380 (3)	
Cu3—O10 ⁱⁱ	1.9426 (16)	С27—Н27	0.9500	
Cu3—013	1.9469 (17)	C27—C28	1.379 (3)	
Cu3—013 ⁱⁱ	1.9469 (17)	C24—H24	0.9500	
Cu2—O9 ⁱⁱ	1.9527 (16)	С3—НЗА	0.9500	
Cu2—O9	1.9526 (16)	C10—H10	0.9500	
Cu2—O12	1.9422 (18)	C31—H31	0.9500	
Cu2—O12 ⁱⁱ	1.9422 (18)	C31—C30	1.388 (3)	
Cu2—015	2.168 (3)	C20—H20	0.9500	
O11—C22	1.336 (2)	C20—C21	1.381 (3)	

O6—C12	1.352 (2)	С39—Н39А	0.9900
O6—H6	0.815 (18)	С39—Н39В	0.9900
O5—C8	1.259 (2)	C39—C40	1.514 (3)
01—C1	1.257 (2)	C21—H21	0.9500
O4—C8	1.252 (3)	C42—H42A	0.9800
O7—C15	1.431 (3)	C42—H42B	0.9800
O7—C18	1.487 (3)	C42—H42C	0.9800
O2—C1	1.259 (3)	C42—C41	1.502 (3)
O17—H17C	0.899 (19)	C29—C30	1.376 (3)
O17—H17	0.847 (19)	C29—C28	1.392 (3)
О3—Н3	0.8307	С30—Н30	0.9500
O3—C5	1.348 (2)	С15—Н15А	0.9900
O9—C64	1.255 (3)	С15—Н15В	0.9900
010	1.248 (3)	C15—C16	1.513 (4)
Q13—C25	1.248 (3)	С37—Н37А	0.9900
014—H14A	0.8617	С37—Н37В	0.9900
014-029	1.347 (3)	C37—C38	1.511 (3)
018—H18	0.8199	C28—H28	0.9500
018-034	1.427 (16)	C40—H40A	0.9800
012	1.250 (3)	C40—H40B	0.9800
015—C32 ⁱⁱ	1.408 (3)	C40—H40C	0.9800
015-032	1.408 (3)	C41—H41A	0.9900
N1-C39	1.517 (3)	C41—H41B	0.9900
N1—C37	1.516 (3)	C38—H38A	0.9800
N1-C41	1.521 (3)	C38—H38B	0.9800
N1—C35	1.504 (3)	C38—H38C	0.9800
C12—C13	1.393 (3)	016—C33 ⁱⁱ	1.432 (6)
C12—C11	1.389 (3)	016-033	1.432 (6)
С7—Н7	0.9500	С17—Н17А	0.9900
C7—C2	1.387 (3)	С17—Н17В	0.9900
C7—C6	1.383 (3)	C17—C18	1.517 (4)
O8—C17	1.450 (4)	С35—Н35А	0.9900
O8—C16	1.431 (4)	С35—Н35В	0.9900
C2—C1	1.482 (3)	C35—C36	1.478 (4)
C2—C3	1.398 (3)	С36—Н36А	0.9800
C19—C64	1.487 (3)	С36—Н36В	0.9800
C19—C24	1.391 (3)	С36—Н36С	0.9800
C19—C20	1.390 (3)	C18—H18A	0.9900
С13—Н13	0.9500	C18—H18B	0.9900
C13—C14	1.382 (3)	С16—Н16А	0.9900
C8—C9	1.489 (3)	C16—H16B	0.9900
С11—Н11	0.9500	С32—Н32А	0.9900
C11—C10	1.381 (3)	С32—Н32В	0.9900
C25—C26	1.484 (3)	C32—C33	1.462 (6)
C22—C23	1.402 (3)	С33—Н33А	0.9900
C22—C21	1.393 (3)	С33—Н33В	0.9900
С6—Н6А	0.9500	С34—Н34А	0.9795
C6—C5	1.390 (3)	C34—H34B	0.9804
	the second se		

C14—H14	0.9500	C34—H34C	0.9799
C14—C9	1.388 (3)		
O5 ⁱ —Cu1—O7	92.94 (7)	C3—C4—H4	120.2
O1—Cu1—O5 ⁱ	89.78 (7)	С26—С27—Н27	119.9
O1—Cu1—O4	88.31 (7)	C28—C27—C26	120.2 (2)
01—Cu1—O7	94.12 (6)	С28—С27—Н27	119.9
$01-Cu1-O2^{i}$	169.60 (7)	C19—C24—H24	119.7
04 — $Cu1$ — 05^i	169.44 (7)	C23—C24—C19	120.5 (2)
04—Cu1—07	97.56 (7)	C23—C24—H24	119.7
Ω^{2i} Cu1 Ω^{5i}	89.93 (8)	C2—C3—H3A	119.5
$O2^{i}$ Cu1 $O2^{i}$	90.08(7)	C4-C3-C2	120.96 (19)
02^{i} Cu1 07	96 28 (7)	C4-C3-H3A	119.5
$C_{11}^{11} - C_{11}^{11} - $	0(10)	$C_{11} - C_{10} - C_{9}$	120 57 (18)
$Cu3^{ii}$ $-Cu3$ $-O10$	0(10)	$C_{11} - C_{10} - H_{10}$	119.7
C_{11}^{11} C_{11}^{11} C_{11}^{11} C_{11}^{11} C_{11}^{11} C_{11}^{11}	0(10)	C9-C10-H10	119.7
$Cu3^{ii}$ $Cu3$ $O13$	0(10)	C_{26} C_{31} H31	119.7
Cu^{3ii} Cu^3 $O1^{3ii}$	0(10)	$C_{20} = C_{31} = C_{30}$	119.3
010 013 017	0(10) 98 13 (7)	$C_{20} = C_{31} = C_{30}$	120.3 (2)
$010^{10} - Cu^3 - 017$	98.13(7)	$C_{30} = C_{31} = H_{31}$	119.8
010 - Cu3 - 017	90.12(7)	$C_{19} = C_{20} = C_{10}$	119.0 120.7(2)
010 - Cu3 - 010	91.90(13)	$C_{21} = C_{20} = C_{19}$	120.7(2)
$010 - Cu_{3} - 013$	107.05(0)	N1 C20 H20A	119.0
010 - Cu3 - 013	1(7.04(9))	NI-C39-H39A	108.5
010 010 013 013	107.04(8)	NI-C39-H39B	108.5
010^{-1} 012^{-1} 013^{-1}	88.24 (9)	H39A—C39—H39B	107.5
013 - Cu3 - 017	94.67 (8)	C40—C39—N1	115.3 (2)
$O13^{\mu}$ —Cu3—O17	94.67 (8)	C40—C39—H39A	108.5
013 ⁿ —Cu3—O13	88.66 (13)	С40—С39—Н39В	108.5
09—Cu2—O9 ⁿ	90.31 (13)	С22—С21—Н21	119.6
09—Cu2—O15	94.01 (8)	C20—C21—C22	120.9 (2)
O9 ⁿ —Cu2—O15	94.01 (8)	C20—C21—H21	119.6
O12—Cu2—O9	89.77 (10)	H42A—C42—H42B	109.5
O12—Cu2—O9 ⁱⁱ	171.10 (8)	H42A—C42—H42C	109.5
$O12^{ii}$ — $Cu2$ — $O9^{ii}$	89.77 (10)	H42B—C42—H42C	109.5
O12 ⁱⁱ —Cu2—O9	171.10 (8)	C41—C42—H42A	109.5
O12—Cu2—O12 ⁱⁱ	88.79 (15)	C41—C42—H42B	109.5
O12 ⁱⁱ —Cu2—O15	94.86 (9)	C41—C42—H42C	109.5
O12—Cu2—O15	94.86 (9)	O14—C29—C30	122.6 (2)
С12—О6—Н6	106 (2)	O14—C29—C28	117.4 (2)
C8—O5—Cu1 ⁱ	126.88 (14)	C30—C29—C28	120.0 (2)
C1—O1—Cu1	122.35 (13)	C31—C30—H30	120.1
C8—O4—Cu1	118.33 (13)	C29—C30—C31	119.7 (2)
C15—O7—Cu1	119.67 (14)	С29—С30—Н30	120.1
C15—O7—C18	110.24 (19)	O7—C15—H15A	110.0
C18—O7—Cu1	119.51 (14)	O7—C15—H15B	110.0
C1—O2—Cu1 ⁱ	122.35 (13)	O7—C15—C16	108.3 (2)
Cu3 ⁱⁱ —O17—Cu3	0.000 (17)	H15A—C15—H15B	108.4
Cu3 ⁱⁱ —O17—H17C	121 (3)	C16—C15—H15A	110.0

Cu3—O17—H17C	121 (3)	C16—C15—H15B	110.0
Cu3 ⁱⁱ —O17—H17	123 (3)	N1—C37—H37A	108.8
Cu3—O17—H17	123 (3)	N1—C37—H37B	108.8
H17C—O17—H17	110 (5)	Н37А—С37—Н37В	107.7
С5—О3—Н3	115.3	C38—C37—N1	113.9 (2)
C64—O9—Cu2	121.15 (15)	С38—С37—Н37А	108.8
Cu3 ⁱⁱ —O10—Cu3	0.00 (2)	С38—С37—Н37В	108.8
C64—O10—Cu3 ⁱⁱ	124.35 (15)	C27—C28—C29	120.1 (2)
C64—O10—Cu3	124.35 (15)	С27—С28—Н28	119.9
Cu3 ⁱⁱ —O13—Cu3	0.000 (13)	С29—С28—Н28	119.9
C25—O13—Cu3 ⁱⁱ	123.49 (16)	С39—С40—Н40А	109.5
C25—O13—Cu3	123.49 (16)	С39—С40—Н40В	109.5
C29—O14—H14A	114.7	С39—С40—Н40С	109.5
C34—O18—H18	94.8	H40A—C40—H40B	109.5
C25—O12—Cu2	121.49 (16)	H40A—C40—H40C	109.5
C32—O15—Cu2	124.11 (17)	H40B—C40—H40C	109.5
C32 ⁱⁱ —O15—Cu2	124.11 (17)	N1—C41—H41A	108.6
C32 ⁱⁱ —O15—C32	111.1 (3)	N1—C41—H41B	108.6
C39—N1—C41	108.29 (18)	C42—C41—N1	114.85 (19)
C37—N1—C39	111.8 (2)	C42—C41—H41A	108.6
C37—N1—C41	107.75 (19)	C42—C41—H41B	108.6
C35—N1—C39	109.36 (19)	H41A—C41—H41B	107.5
C35—N1—C37	108.14 (19)	С37—С38—Н38А	109.5
C35—N1—C41	111.6 (2)	С37—С38—Н38В	109.5
O6—C12—C13	122.43 (18)	С37—С38—Н38С	109.5
O6—C12—C11	117.77 (19)	H38A—C38—H38B	109.5
C11—C12—C13	119.79 (18)	H38A—C38—H38C	109.5
С2—С7—Н7	119.5	H38B—C38—H38C	109.5
С6—С7—Н7	119.5	C33 ⁱⁱ —O16—C33	109.8 (5)
C6—C7—C2	121.10 (19)	O8—C17—H17A	110.0
C16—O8—C17	112.1 (2)	O8—C17—H17B	110.0
C7—C2—C1	120.92 (18)	O8—C17—C18	108.4 (2)
C7—C2—C3	118.65 (17)	H17A—C17—H17B	108.4
C3—C2—C1	120.43 (18)	C18—C17—H17A	110.0
C24—C19—C64	121.95 (19)	C18—C17—H17B	110.0
C20—C19—C64	119.20 (19)	N1—C35—H35A	108.5
C20—C19—C24	118.85 (18)	N1—C35—H35B	108.5
С12—С13—Н13	120.2	Н35А—С35—Н35В	107.5
C14—C13—C12	119.66 (18)	C36—C35—N1	114.9 (2)
C14—C13—H13	120.2	С36—С35—Н35А	108.5
O5—C8—C9	116.55 (18)	С36—С35—Н35В	108.5
O4—C8—O5	125.20 (18)	С35—С36—Н36А	109.5
O4—C8—C9	118.23 (18)	С35—С36—Н36В	109.5
O1—C1—O2	125.57 (18)	С35—С36—Н36С	109.5
O1—C1—C2	116.98 (18)	H36A—C36—H36B	109.5
O2—C1—C2	117.44 (18)	H36A—C36—H36C	109.5
C12—C11—H11	120.0	H36B—C36—H36C	109.5
C10-C11-C12	119.95 (19)	O7—C18—C17	110.9 (2)

C10-C11-H11	120.0	O7—C18—H18A	109.5
O13—C25—O12	125.8 (2)	O7—C18—H18B	109.5
O13—C25—C26	116.6 (2)	C17—C18—H18A	109.5
O12—C25—C26	117.6 (2)	C17—C18—H18B	109.5
O11—C22—C23	121.57 (19)	H18A—C18—H18B	108.1
O11—C22—C21	120.30 (19)	O8—C16—C15	111.9 (2)
C21—C22—C23	118.12 (18)	O8—C16—H16A	109.2
С7—С6—Н6А	120.1	O8—C16—H16B	109.2
C7—C6—C5	119.88 (19)	C15—C16—H16A	109.2
С5—С6—Н6А	120.1	C15—C16—H16B	109.2
C13—C14—H14	119.6	H16A—C16—H16B	107.9
C13—C14—C9	120.87 (19)	O15—C32—H32A	109.8
C9—C14—H14	119.6	O15—C32—H32B	109.8
С22—С23—Н23	119.6	O15—C32—C33	109.5 (3)
C24—C23—C22	120.8 (2)	H32A—C32—H32B	108.2
C24—C23—H23	119.6	C33—C32—H32A	109.8
C_{27} C_{26} C_{25}	119.3 (2)	C33—C32—H32B	109.8
$C_{27} - C_{26} - C_{31}$	119.6 (2)	016-03-032	110.0 (4)
$C_{31} - C_{26} - C_{25}$	1210(2)	016-C33-H33A	109 7
09-C64-C19	118.04(19)	016—C33—H33B	109.7
010-64-09	124 99 (19)	C32—C33—H33A	109.7
010 - C64 - C19	116 97 (19)	C32—C33—H33B	109.7
$C_{14} - C_{9} - C_{8}$	12040(18)	H33A-C33-H33B	108.2
$C_{14} = C_{9} = C_{10}$	120.40(10) 119.00(17)	018—C34—H34A	100.2
C10 - C9 - C8	120.60(17)	018-034-H34B	110.4
03-05-06	120.00(10) 123.14(10)	018 - 034 - 1134D 018 - 034 - 1134D	108.8
03 - 05 - 00	125.14(1)) 117 15 (10)	H34A C34 H34B	100.5
C_{1}^{-}	117.13(19) 110.71(18)	$H_{34A} = C_{34} = H_{34C}$	109.5
$C_{0} = C_{3} = C_{4}$	120.2	$H_{24}^{A} = C_{24}^{A} + H_{24}^{A} C$	109.5
$C_3 = C_4 = C_5$	120.2 110 7 (2)	1134B-034-11340	109.5
05-04-05	119.7 (2)		
Cu1 ⁱ —O5—C8—O4	4.5 (3)	C13—C12—C11—C10	4.1 (3)
$Cu1^{i}$ — $O5$ — $C8$ — $C9$	-174.02(13)	C13—C14—C9—C8	-175.80(17)
Cu1 - 01 - 02	-0.3(3)	C_{13} C_{14} C_{9} C_{10}	3.2 (3)
Cu1—O1—C1—C2	179.56 (13)	C8-C9-C10-C11	177.83 (18)
Cu1—O4—C8—O5	-2.8(3)	C1—C2—C3—C4	-179.21 (19)
Cu1—O4—C8—C9	175.68 (13)	$C_{11} - C_{12} - C_{13} - C_{14}$	-2.1(3)
Cu1—07—C15—C16	-85.9 (2)	C25—C26—C27—C28	173.5 (2)
Cu1—07—C18—C17	84.9 (2)	C_{25} C_{26} C_{31} C_{30}	-175.7(2)
$Cu_{1i} - O_{2} - C_{1} - O_{1}$	-1.6(3)	C22—C23—C24—C19	-1.7(3)
$Cu^{i} - O2 - C1 - C2$	178.56 (13)	C6-C7-C2-C1	179.08 (18)
$Cu3^{ii}$ 010 C64 09	-7.1(3)	C6-C7-C2-C3	-1.4(3)
Cu3-010-C64-09	-7.1(3)	C6-C5-C4-C3	-1.8(3)
Cu3—O10—C64—C19	172.42 (14)	C14-C9-C10-C11	-1.2(3)
Cu3 ⁱⁱ —O10—C64—C19	172.42 (14)	C23—C22—C21—C20	-0.7(3)
Cu3—O13—C25—O12	0.3 (4)	C26—C27—C28—C29	2.4 (4)
Cu3 ⁱⁱ —013—C25—O12	0.3 (4)	C26—C31—C30—C29	2.1 (4)
$C_{11}3^{11}$ $-O_{13}$ $-C_{25}$ $-C_{26}$	-177.86(15)	C64-C19-C24-C23	179.71 (19)
0.0 020 020	- , , , , , , , , , , , , , , , , , , ,		(1 /)

C 2 012 C25 C26	177.9((15))	C(4 C10 C20 C21	170.2(2)
Cu3—013—C25—C26	-1//.86(15)	C64—C19—C20—C21	-1/8.2 (2)
Cu2—O9—C64—O10	8.3 (3)	C5—C4—C3—C2	0.3 (3)
Cu2—O9—C64—C19	-171.20 (14)	C27—C26—C31—C30	0.9 (3)
Cu2—O12—C25—O13	-0.4 (4)	C24—C19—C64—O9	-15.8 (3)
Cu2—O12—C25—C26	177.69 (15)	C24—C19—C64—O10	164.7 (2)
Cu2—O15—C32—C33	111.0 (3)	C24—C19—C20—C21	1.8 (3)
O11—C22—C23—C24	-178.86 (19)	C3-C2-C1-O1	4.8 (3)
O11—C22—C21—C20	-179.7 (2)	C3—C2—C1—O2	-175.35 (19)
O6—C12—C13—C14	178.82 (18)	C31—C26—C27—C28	-3.1 (4)
O6—C12—C11—C10	-176.77 (18)	C20—C19—C64—O9	164.2 (2)
O5—C8—C9—C14	166.29 (19)	C20-C19-C64-O10	-15.4 (3)
O5—C8—C9—C10	-12.7 (3)	C20—C19—C24—C23	-0.3 (3)
O4—C8—C9—C14	-12.3 (3)	C39—N1—C37—C38	56.5 (3)
O4—C8—C9—C10	168.72 (19)	C39—N1—C41—C42	-179.3 (2)
O7—C15—C16—O8	-58.8 (3)	C39—N1—C35—C36	68.5 (3)
O3—C5—C4—C3	177.9 (2)	C21—C22—C23—C24	2.2 (3)
O13—C25—C26—C27	15.3 (3)	C30—C29—C28—C27	0.6 (4)
O13—C25—C26—C31	-168.1 (2)	C15—O7—C18—C17	-59.7 (3)
O14—C29—C30—C31	176.0 (2)	C37—N1—C39—C40	50.7 (3)
O14—C29—C28—C27	-178.3 (2)	C37—N1—C41—C42	59.7 (3)
O12—C25—C26—C27	-163.0 (2)	C37—N1—C35—C36	-169.6 (2)
O12—C25—C26—C31	13.6 (3)	C28—C29—C30—C31	-2.8 (4)
O15—C32—C33—O16	58.4 (5)	C41—N1—C39—C40	-67.8 (3)
C12—C13—C14—C9	-1.6 (3)	C41—N1—C37—C38	175.4 (2)
C12—C11—C10—C9	-2.5 (3)	C41—N1—C35—C36	-51.3 (3)
C7—C2—C1—O1	-175.67 (18)	C17—O8—C16—C15	58.4 (3)
C7—C2—C1—O2	4.2 (3)	C35—N1—C39—C40	170.4 (2)
C7—C2—C3—C4	1.3 (3)	C35—N1—C37—C38	-63.9 (3)
C7—C6—C5—O3	-178.0 (2)	C35—N1—C41—C42	-58.9 (3)
C7—C6—C5—C4	1.7 (3)	C18—O7—C15—C16	58.6 (3)
O8—C17—C18—O7	56.1 (3)	C16—O8—C17—C18	-55.9 (3)
C2—C7—C6—C5	-0.1 (3)	C32 ⁱⁱ —O15—C32—C33	-59.8 (5)
C19—C20—C21—C22	-1.3 (3)	C33 ⁱⁱ —O16—C33—C32	-57.9 (8)

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, -y+3/2, z.

Bis(tetraethylammonium) tetrakis(µ-4-hydroxybenzoato)bis[aquacopper(II)] dinitrate (compound_6)

Crystal data

$(C_8H_{20}N)_2[Cu_2(C_7H_5O_3)_4(H_2O)_2](NO_3)_2$	Z = 1
$M_r = 1096.07$	F(000) = 574
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.444 {\rm Mg} {\rm m}^{-3}$
a = 10.4964 (3) Å	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
b = 10.6595 (2) Å	Cell parameters from 9558 reflections
c = 12.3226 (3) Å	$\theta = 3.7 - 77.1^{\circ}$
$\alpha = 97.271 \ (2)^{\circ}$	$\mu = 1.72 \text{ mm}^{-1}$
$\beta = 101.042 \ (2)^{\circ}$	T = 100 K
$\gamma = 108.130 \ (2)^{\circ}$	Irregular, clear blue
V = 1260.15 (6) Å ³	$0.16 \times 0.13 \times 0.09 \text{ mm}$

Data collection

Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) $T_{min} = 0.720, T_{max} = 1.000$	14549 measured reflections 5136 independent reflections 4648 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 77.8^{\circ}, \theta_{min} = 3.7^{\circ}$ $h = -13 \rightarrow 12$ $k = -11 \rightarrow 13$ $l = -15 \rightarrow 15$
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.038$	$w = 1/[\sigma^2(F_o^2) + (0.0433P)^2 + 0.6073P]$
$wR(F^2) = 0.101$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} = 0.002$
5136 reflections	$\Delta ho_{ m max} = 0.47 \ { m e} \ { m \AA}^{-3}$
408 parameters	$\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$

263 restraints Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cu1	0.60492 (3)	1.09668 (2)	0.06898 (2)	0.01545 (10)	
05	0.63242 (14)	0.95587 (13)	0.15033 (12)	0.0240 (3)	
01	0.28109 (14)	0.94966 (13)	0.02841 (12)	0.0228 (3)	
03	-0.02189 (14)	1.21562 (14)	0.33643 (12)	0.0263 (3)	
H3	0.019917	1.290925	0.379890	0.039*	
06	0.68959 (15)	0.43690 (13)	0.32703 (11)	0.0242 (3)	
H6	0.753157	0.471250	0.386246	0.036*	
04	0.45124 (14)	0.79086 (13)	0.03219 (12)	0.0234 (3)	
07	0.76600 (14)	1.25985 (13)	0.18582 (11)	0.0215 (3)	
H7A	0.818286	1.230265	0.232693	0.032*	
H7B	0.731807	1.303866	0.230401	0.032*	
O2	0.46250 (14)	1.11502 (13)	0.14613 (12)	0.0239 (3)	
08	0.12980 (15)	0.45992 (14)	0.47304 (12)	0.0266 (3)	
09	0.01650 (19)	0.51873 (19)	0.33412 (15)	0.0435 (4)	
O10	0.15453 (18)	0.66988 (16)	0.47954 (19)	0.0466 (5)	
N1	0.09987 (18)	0.55237 (17)	0.42740 (16)	0.0283 (4)	
C1	0.33495 (19)	1.04871 (18)	0.11060 (15)	0.0188 (4)	
C8	0.55712 (19)	0.83394 (18)	0.11426 (15)	0.0190 (4)	
C9	0.59538 (19)	0.73170 (18)	0.17232 (16)	0.0201 (4)	
C12	0.6636 (2)	0.53624 (18)	0.27773 (16)	0.0206 (4)	
C11	0.5531 (2)	0.49787 (19)	0.18333 (17)	0.0240 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H11	0.501073	0.405178	0.154204	0.029*	
C10	0.5193 (2)	0.59497 (19)	0.13213 (17)	0.0228 (4)	
H10	0.442770	0.568296	0.068363	0.027*	
C2	0.24107 (19)	1.09348 (18)	0.17038 (16)	0.0202 (4)	
C3	0.0989 (2)	1.02301 (19)	0.14088 (17)	0.0230 (4)	
H3A	0.061445	0.945147	0.082188	0.028*	
C5	0.0671 (2)	1.17952 (19)	0.28262 (16)	0.0222 (4)	
C6	0.2083 (2)	1.25261 (19)	0.31114 (17)	0.0231 (4)	
H6A	0.245456	1.331688	0.368596	0.028*	
C14	0.7095 (2)	0.76897 (18)	0.26457 (16)	0.0214 (4)	
H14	0.763967	0.861460	0.291399	0.026*	
C13	0.7441 (2)	0.67266 (19)	0.31743 (16)	0.0221 (4)	
H13	0.821883	0.698915	0.380094	0.027*	
C4	0.0116 (2)	1.0653 (2)	0.19626 (18)	0.0256 (4)	
H4	-0.085082	1.016952	0.175532	0.031*	
C7	0.29421 (19)	1.20914 (19)	0.25506 (16)	0.0215 (4)	
H7	0.390566	1.258845	0.274610	0.026*	
N2	-0.0028(12)	0.4959 (11)	0.0084 (9)	0.0192 (11)	0.5
C17	-0.1172 (4)	0.5224 (4)	0.0560 (3)	0.0236 (8)	0.5
H17A	-0.199133	0.438736	0.033948	0.028*	0.5
H17B	-0.086343	0.542762	0.139361	0.028*	0.5
C18	-0.1611 (6)	0.6357 (5)	0.0190 (5)	0.0298 (12)	0.5
H18A	-0.192215	0.617067	-0.063448	0.045*	0.5
H18B	-0.082545	0.720514	0.044433	0.045*	0.5
H18C	-0.236870	0.643029	0.052121	0.045*	0.5
C15	-0.0459 (4)	0.4598 (4)	-0.1200(3)	0.0242 (8)	0.5
H15A	-0.063548	0.537132	-0.148426	0.029*	0.5
H15B	0.032565	0.446804	-0.147705	0.029*	0.5
C16	-0.1721 (17)	0.3355 (16)	-0.1701 (11)	0.031 (3)	0.5
H16A	-0.185596	0.315055	-0.252165	0.047*	0.5
H16B	-0.253464	0.351579	-0.152284	0.047*	0.5
H16C	-0.159114	0.259320	-0.138364	0.047*	0.5
C19	0.0264 (4)	0.3808 (4)	0.0570 (3)	0.0241 (8)	0.5
H19A	0.054508	0.407958	0.140285	0.029*	0.5
H19B	-0.060419	0.302142	0.036949	0.029*	0.5
C20	0.1372 (6)	0.3374 (6)	0.0175 (5)	0.0286 (11)	0.5
H20A	0.111914	0.312214	-0.065071	0.043*	0.5
H20B	0.145599	0.259952	0.049559	0.043*	0.5
H20C	0.225811	0.412078	0.042408	0.043*	0.5
C21	0.1260 (4)	0.6212 (4)	0.0365 (3)	0.0235 (8)	0.5
H21A	0.195413	0.600106	0.000420	0.028*	0.5
H21B	0.101573	0.692501	0.002320	0.028*	0.5
C22	0.1922 (17)	0.6771 (15)	0.1607 (11)	0.027 (2)	0.5
H22A	0.272970	0.758069	0.169956	0.041*	0.5
H22B	0.221172	0.609257	0.195169	0.041*	0.5
H22C	0.125245	0.700018	0.197558	0.041*	0.5
N3	0.5007 (12)	1.0017 (12)	0.5000 (11)	0.0263 (5)	0.5
C23	0.4801 (5)	0.8872 (4)	0.4042 (4)	0.0298 (9)	0.5
	(-)				

H23A	0.556981	0.914792	0.366738	0.036*	0.5
H23B	0.393363	0.873525	0.347957	0.036*	0.5
C24	0.4731 (16)	0.7527 (9)	0.4381 (9)	0.032 (2)	0.5
H24A	0.453775	0.684151	0.370408	0.048*	0.5
H24B	0.399225	0.725335	0.477494	0.048*	0.5
H24C	0.561641	0.762451	0.488200	0.048*	0.5
C25	0.3769 (5)	0.9742 (4)	0.5518 (4)	0.0314 (9)	0.5
H25A	0.399375	1.045657	0.619343	0.038*	0.5
H25B	0.361414	0.887484	0.577378	0.038*	0.5
C26	0.2426 (10)	0.9682 (13)	0.4729 (9)	0.035 (2)	0.5
H26A	0.220416	0.899518	0.404664	0.052*	0.5
H26B	0.253938	1.056106	0.452203	0.052*	0.5
H26C	0.167310	0.945044	0.511319	0.052*	0.5
C27	0.5254 (4)	1.1278 (4)	0.4499 (4)	0.0276 (8)	0.5
H27A	0.449016	1.110412	0.382579	0.033*	0.5
H27B	0.612095	1.145372	0.424374	0.033*	0.5
C28	0.5359 (17)	1.2542 (9)	0.5301 (9)	0.032 (2)	0.5
H28A	0.554704	1.330911	0.491972	0.047*	0.5
H28B	0.611245	1.272653	0.597309	0.047*	0.5
H28C	0.448636	1.240223	0.552499	0.047*	0.5
C29	0.6233 (5)	1.0155 (5)	0.5948 (4)	0.0352 (10)	0.5
H29A	0.597152	0.938412	0.633124	0.042*	0.5
H29B	0.642991	1.098612	0.650726	0.042*	0.5
C30	0.7557 (9)	1.0208 (15)	0.5584 (10)	0.043 (3)	0.5
H30A	0.742187	0.933482	0.512399	0.064*	0.5
H30B	0.831779	1.041044	0.625397	0.064*	0.5
H30C	0.778193	1.091153	0.514052	0.064*	0.5

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.01445 (14)	0.01505 (14)	0.01602 (15)	0.00494 (10)	0.00401 (10)	0.00005 (10)
05	0.0258 (7)	0.0177 (6)	0.0233 (7)	0.0051 (5)	0.0000 (5)	0.0016 (5)
01	0.0188 (6)	0.0231 (6)	0.0242 (7)	0.0067 (5)	0.0073 (5)	-0.0049 (5)
O3	0.0211 (7)	0.0299 (7)	0.0261 (7)	0.0108 (6)	0.0061 (6)	-0.0064 (6)
06	0.0290 (7)	0.0208 (6)	0.0209 (7)	0.0102 (5)	0.0000 (5)	0.0027 (5)
O4	0.0222 (7)	0.0186 (6)	0.0263 (7)	0.0061 (5)	0.0007 (5)	0.0041 (5)
O7	0.0195 (6)	0.0191 (6)	0.0200 (6)	0.0046 (5)	0.0006 (5)	-0.0045 (5)
O2	0.0170 (6)	0.0275 (7)	0.0233 (7)	0.0059 (5)	0.0056 (5)	-0.0054 (5)
08	0.0292 (7)	0.0251 (7)	0.0248 (7)	0.0126 (6)	0.0030 (6)	-0.0001 (6)
09	0.0403 (9)	0.0550 (10)	0.0333 (9)	0.0140 (8)	0.0031 (7)	0.0173 (8)
O10	0.0317 (9)	0.0224 (8)	0.0789 (14)	0.0040 (6)	0.0090 (9)	0.0062 (8)
N1	0.0229 (8)	0.0283 (9)	0.0337 (10)	0.0067 (7)	0.0100 (7)	0.0074 (7)
C1	0.0190 (8)	0.0198 (8)	0.0186 (9)	0.0082 (7)	0.0047 (7)	0.0029 (7)
C8	0.0181 (8)	0.0213 (8)	0.0186 (9)	0.0074 (7)	0.0069 (7)	0.0025 (7)
C9	0.0200 (9)	0.0196 (8)	0.0211 (9)	0.0069 (7)	0.0065 (7)	0.0025 (7)
C12	0.0235 (9)	0.0202 (8)	0.0202 (9)	0.0105 (7)	0.0063 (7)	0.0027 (7)
C11	0.0260 (10)	0.0182 (8)	0.0249 (10)	0.0061 (7)	0.0028 (8)	0.0025 (7)

C10	0.0218 (9)	0.0215 (9)	0.0218 (9)	0.0060 (7)	0.0015 (7)	0.0024 (7)
C2	0.0203 (9)	0.0203 (8)	0.0210 (9)	0.0086 (7)	0.0060 (7)	0.0016 (7)
C3	0.0195 (9)	0.0239 (9)	0.0240 (10)	0.0081 (7)	0.0057 (7)	-0.0031 (7)
C5	0.0226 (9)	0.0267 (9)	0.0204 (9)	0.0132 (8)	0.0064 (7)	0.0016 (7)
C6	0.0236 (9)	0.0222 (9)	0.0224 (9)	0.0095 (7)	0.0044 (7)	-0.0025 (7)
C14	0.0219 (9)	0.0183 (8)	0.0221 (9)	0.0060 (7)	0.0044 (7)	0.0010 (7)
C13	0.0217 (9)	0.0223 (9)	0.0200 (9)	0.0080 (7)	0.0013 (7)	0.0007 (7)
C4	0.0180 (9)	0.0271 (9)	0.0281 (10)	0.0067 (7)	0.0050 (8)	-0.0033 (8)
C7	0.0185 (9)	0.0232 (9)	0.0215 (9)	0.0069 (7)	0.0040 (7)	0.0018 (7)
N2	0.0192 (13)	0.0211 (15)	0.016 (3)	0.0034 (11)	0.0052 (15)	0.0045 (16)
C17	0.0194 (18)	0.0242 (18)	0.0229 (19)	0.0016 (14)	0.0069 (15)	0.0015 (15)
C18	0.032 (3)	0.027 (3)	0.031 (3)	0.009 (2)	0.010 (2)	0.007 (2)
C15	0.0253 (19)	0.0273 (19)	0.0151 (17)	0.0035 (15)	0.0042 (14)	0.0027 (14)
C16	0.025 (5)	0.032 (4)	0.021 (3)	-0.008 (3)	0.005 (3)	0.000 (3)
C19	0.0227 (18)	0.0224 (17)	0.0217 (18)	0.0010 (14)	0.0024 (15)	0.0067 (15)
C20	0.027 (3)	0.028 (3)	0.033 (3)	0.011 (2)	0.008 (2)	0.008 (2)
C21	0.0219 (18)	0.0233 (18)	0.0197 (18)	0.0003 (15)	0.0057 (15)	0.0031 (14)
C22	0.023 (5)	0.029 (4)	0.021 (3)	-0.002 (3)	0.005 (3)	0.000 (3)
N3	0.0286 (12)	0.0245 (12)	0.0235 (12)	0.0114 (10)	0.0013 (10)	-0.0012 (10)
C23	0.031 (2)	0.0286 (19)	0.025 (2)	0.0119 (17)	0.0014 (17)	-0.0070 (16)
C24	0.026 (3)	0.027 (3)	0.044 (6)	0.006 (2)	0.018 (5)	0.002 (3)
C25	0.039 (2)	0.029 (2)	0.027 (2)	0.0119 (18)	0.0108 (18)	0.0028 (16)
C26	0.033 (3)	0.019 (3)	0.056 (6)	0.010 (2)	0.014 (3)	0.015 (4)
C27	0.028 (2)	0.0283 (19)	0.025 (2)	0.0102 (16)	0.0019 (16)	0.0030 (16)
C28	0.031 (3)	0.022 (3)	0.041 (5)	0.005 (2)	0.017 (4)	-0.001 (3)
C29	0.042 (2)	0.029 (2)	0.028 (2)	0.0161 (19)	-0.0076 (19)	-0.0029 (17)
C30	0.024 (3)	0.034 (4)	0.061 (6)	0.002 (2)	-0.005 (3)	0.024 (4)

Cu1—O5	1.9700 (13)	C18—H18B	0.9800
Cu1—O1 ⁱ	1.9707 (13)	C18—H18C	0.9800
Cu1—O4 ⁱ	1.9686 (13)	C15—H15A	0.9900
Cu1—O7	2.1355 (13)	C15—H15B	0.9900
Cu1—O2	1.9636 (13)	C15—C16	1.509 (11)
O5—C8	1.261 (2)	C16—H16A	0.9800
O1—C1	1.264 (2)	C16—H16B	0.9800
O3—H3	0.8400	C16—H16C	0.9800
O3—C5	1.362 (2)	С19—Н19А	0.9900
Об—Нб	0.8400	C19—H19B	0.9900
O6—C12	1.358 (2)	C19—C20	1.516 (6)
O4—C8	1.266 (2)	C20—H20A	0.9800
O7—H7A	0.8756	C20—H20B	0.9800
O7—H7B	0.8750	C20—H20C	0.9800
O2—C1	1.262 (2)	C21—H21A	0.9900
O8—N1	1.285 (2)	C21—H21B	0.9900
O9—N1	1.237 (3)	C21—C22	1.512 (11)
O10—N1	1.232 (2)	C22—H22A	0.9800

C1—C2	1.491 (2)	C22—H22B	0.9800
C8—C9	1.490 (3)	C22—H22C	0.9800
C9—C10	1.396 (3)	N3—C23	1.518 (12)
C9—C14	1.397 (3)	N3—C25	1.519 (12)
C12—C11	1.391 (3)	N3—C27	1.520(12)
C12-C13	1.001(0) 1.402(3)	N3-C29	1.520(12) 1.518(12)
C11—H11	0.9500	C23—H23A	0.9900
C_{11}	1,380(3)	C23—H23B	0.9900
C10—H10	0.9500	C^{23} C^{24}	1 527 (9)
$C_2 - C_3$	1 396 (3)	C24_H24A	0.9800
$C_2 = C_3$	1.390(3)	$C_{24} = H_{24}R$	0.9800
$C_2 = C_1$	0.9500	C_{24} H24C	0.9800
$C_3 = C_4$	1 380 (3)	$C_{24} = H_{25} \wedge C_{25} = H_{25} \wedge C_{25} + H_{25} \wedge C_{25} = H$	0.9800
C_{5}	1.309(3)	C_{23} - $H_{23}A$	0.9900
$C_{5} = C_{6}$	1.395(3)	C_{23} - H_{23B}	1.520 (0)
C_{3}	1.595 (5)	C_{23} $-C_{20}$	1.550 (9)
	0.9500	C_{20} —H20A	0.9800
	1.387 (3)	C26—H26B	0.9800
C14—H14	0.9500	C26—H26C	0.9800
	1.386 (3)	C2/—H2/A	0.9900
C13—H13	0.9500	C27—H27B	0.9900
C4—H4	0.9500	C27—C28	1.528 (9)
С7—Н7	0.9500	C28—H28A	0.9800
N2—C17	1.518 (11)	C28—H28B	0.9800
N2—C15	1.523 (11)	C28—H28C	0.9800
N2—C19	1.519 (11)	C29—H29A	0.9900
N2—C21	1.520 (11)	C29—H29B	0.9900
C17—H17A	0.9900	C29—C30	1.527 (10)
C17—H17B	0.9900	C30—H30A	0.9800
C17—C18	1.511 (6)	C30—H30B	0.9800
C18—H18A	0.9800	C30—H30C	0.9800
O5—Cu1—O1 ⁱ	87.67 (6)	C16—C15—H15A	108.4
O5—Cu1—O7	95.42 (5)	C16—C15—H15B	108.4
Ol ⁱ —Cul—O7	97.36 (5)	C15—C16—H16A	109.5
O4 ⁱ —Cu1—O5	169.17 (5)	C15—C16—H16B	109.5
$O4^{i}$ —Cu1—O1 ⁱ	91.24 (6)	C15—C16—H16C	109.5
O4 ⁱ —Cu1—O7	95.40 (5)	H16A—C16—H16B	109.5
O2—Cu1—O5	91.45 (6)	H16A—C16—H16C	109.5
O2—Cu1—O1 ⁱ	169.18 (5)	H16B—C16—H16C	109.5
$O2$ — $Cu1$ — $O4^{i}$	87.61 (6)	N2-C19-H19A	108.5
O2—Cu1—O7	93.46 (5)	N2-C19-H19B	108.5
C8-O5-Cu1	121.04 (12)	H19A—C19—H19B	107.5
C1-O1-Cu1 ⁱ	119.98 (12)	C20—C19—N2	115.0 (5)
С5—О3—Н3	109.5	C20—C19—H19A	108 5
C12—O6—H6	109.5	C20-C19-H19B	108.5
C8-04-Cu1 ⁱ	124 09 (12)	C19—C20—H20A	109.5
Cu1 - 07 - H7A	111 1	C19 - C20 - H20R	109.5
Cu1-07-H7B	110.8	C19 - C20 - H20D	109.5
Con () 11/D	110.0	017 020 11200	107.5

H7A—O7—H7B	103.1	H20A—C20—H20B	109.5
C1—O2—Cu1	124.80 (12)	H20A—C20—H20C	109.5
O9—N1—O8	118.39 (17)	H20B-C20-H20C	109.5
O10—N1—O8	118.21 (18)	N2—C21—H21A	108.4
O10—N1—O9	123.40 (19)	N2—C21—H21B	108.4
O1—C1—C2	117.98 (16)	H21A—C21—H21B	107.4
O2-C1-O1	125.49 (17)	C22—C21—N2	115.7 (7)
O2—C1—C2	116.52 (16)	C22—C21—H21A	108.4
O5—C8—O4	125.28 (17)	C22—C21—H21B	108.4
O5—C8—C9	117.71 (16)	C21—C22—H22A	109.5
O4—C8—C9	117.00 (16)	C21—C22—H22B	109.5
С10—С9—С8	119.85 (17)	C21—C22—H22C	109.5
C10—C9—C14	118.64 (17)	H22A—C22—H22B	109.5
C14—C9—C8	121.47 (16)	H22A—C22—H22C	109.5
O6—C12—C11	117.31 (17)	H22B—C22—H22C	109.5
O6—C12—C13	122.66 (17)	C23—N3—C25	111.4 (8)
C11—C12—C13	120.03 (17)	C23—N3—C27	106.1 (8)
C12—C11—H11	120.1	C23—N3—C29	110.2 (7)
C10—C11—C12	119.73 (17)	C25—N3—C27	112.3 (8)
C10—C11—H11	120.1	C29—N3—C25	105.8 (8)
С9—С10—Н10	119.4	C29—N3—C27	111.1 (8)
C11—C10—C9	121.20 (18)	N3—C23—H23A	108.4
C11—C10—H10	119.4	N3—C23—H23B	108.4
C3—C2—C1	120.91 (16)	N3—C23—C24	115.5 (6)
C7—C2—C1	120.11 (17)	H23A—C23—H23B	107.5
C7—C2—C3	118.96 (17)	С24—С23—Н23А	108.4
С2—С3—НЗА	119.6	С24—С23—Н23В	108.4
C4—C3—C2	120.81 (17)	C23—C24—H24A	109.5
С4—С3—НЗА	119.6	C23—C24—H24B	109.5
O3—C5—C6	122.17 (17)	C23—C24—H24C	109.5
O3—C5—C4	117.46 (17)	H24A—C24—H24B	109.5
C6—C5—C4	120.37 (17)	H24A—C24—H24C	109.5
С5—С6—Н6А	120.2	H24B—C24—H24C	109.5
C7—C6—C5	119.54 (17)	N3—C25—H25A	108.6
С7—С6—Н6А	120.2	N3—C25—H25B	108.6
C9—C14—H14	119.6	N3—C25—C26	114.8 (6)
C13—C14—C9	120.81 (17)	H25A—C25—H25B	107.5
C13—C14—H14	119.6	С26—С25—Н25А	108.6
C12—C13—H13	120.2	C26—C25—H25B	108.6
C14—C13—C12	119.52 (18)	С25—С26—Н26А	109.5
C14—C13—H13	120.2	C25—C26—H26B	109.5
C3—C4—C5	119.42 (18)	С25—С26—Н26С	109.5
C3—C4—H4	120.3	H26A—C26—H26B	109.5
С5—С4—Н4	120.3	H26A—C26—H26C	109.5
С2—С7—Н7	119.6	H26B—C26—H26C	109.5
C6—C7—C2	120.87 (18)	N3—C27—H27A	108.6
С6—С7—Н7	119.6	N3—C27—H27B	108.6
C17—N2—C15	110.9 (7)	N3—C27—C28	114.9 (6)

C17—N2—C19	107.0 (7)	H27A—C27—H27B	107.5
C17—N2—C21	111.5 (7)	C28—C27—H27A	108.6
C19—N2—C15	110.8 (7)	C28—C27—H27B	108.6
C19—N2—C21	111.7 (7)	C27—C28—H28A	109.5
C21—N2—C15	105.0 (7)	C27—C28—H28B	109.5
N2—C17—H17A	108.4	C27—C28—H28C	109.5
N2—C17—H17B	108.4	H28A—C28—H28B	109.5
H17A—C17—H17B	107.4	H28A—C28—H28C	109.5
C18—C17—N2	115.6 (5)	H28B—C28—H28C	109.5
C18—C17—H17A	108.4	N3—C29—H29A	108.5
C18—C17—H17B	108.4	N3—C29—H29B	108.5
C17—C18—H18A	109.5	N3—C29—C30	115.2 (7)
C17—C18—H18B	109.5	H29A—C29—H29B	107.5
C17—C18—H18C	109.5	С30—С29—Н29А	108.5
H18A—C18—H18B	109.5	C30—C29—H29B	108.5
H18A—C18—H18C	109.5	С29—С30—Н30А	109.5
H18B—C18—H18C	109.5	C29—C30—H30B	109.5
N2—C15—H15A	108.4	C29—C30—H30C	109.5
N2—C15—H15B	108.4	H30A—C30—H30B	109.5
H15A—C15—H15B	107.5	H30A—C30—H30C	109.5
C16—C15—N2	115.5 (7)	H30B—C30—H30C	109.5
Cu1—O5—C8—O4	-7.3 (3)	C5—C6—C7—C2	0.2 (3)
Cu1—O5—C8—C9	172.57 (12)	C6—C5—C4—C3	1.7 (3)
Cu1 ⁱ —O1—C1—O2	-8.7 (3)	C14—C9—C10—C11	1.5 (3)
Cul ⁱ —O1—C1—C2	170.35 (12)	C13—C12—C11—C10	-2.9(3)
Cu1 ⁱ —O4—C8—O5	8.1 (3)	C4—C5—C6—C7	-1.7(3)
Cu1 ⁱ O4C8C9	-171.75 (12)	C7—C2—C3—C4	-1.3 (3)
Cu1—O2—C1—O1	9.2 (3)	C17—N2—C15—C16	-60.3 (13)
Cu1—O2—C1—C2	-169.79 (12)	C17—N2—C19—C20	179.0 (5)
O5—C8—C9—C10	-176.90 (18)	C17—N2—C21—C22	61.0 (12)
O5—C8—C9—C14	0.9 (3)	C15—N2—C17—C18	-59.8 (8)
O1—C1—C2—C3	3.9 (3)	C15—N2—C19—C20	58.0 (8)
O1—C1—C2—C7	-174.45 (17)	C15—N2—C21—C22	-178.8 (10)
O3—C5—C6—C7	178.53 (18)	C19—N2—C17—C18	179.2 (5)
O3—C5—C4—C3	-178.51 (18)	C19—N2—C15—C16	58.4 (13)
O6-C12-C11-C10	177.89 (17)	C19—N2—C21—C22	-58.7 (12)
O6—C12—C13—C14	-178.41 (17)	C21—N2—C17—C18	56.8 (8)
O4—C8—C9—C10	3.0 (3)	C21—N2—C15—C16	179.1 (11)
O4—C8—C9—C14	-179.28 (17)	C21—N2—C19—C20	-58.7 (8)
O2—C1—C2—C3	-177.03 (18)	C23—N3—C25—C26	-65.0 (10)
O2—C1—C2—C7	4.7 (3)	C23—N3—C27—C28	174.7 (8)
C1—C2—C3—C4	-179.64 (18)	C23—N3—C29—C30	49.9 (11)
C1—C2—C7—C6	179.67 (18)	C25—N3—C23—C24	-65.6 (11)
C8—C9—C10—C11	179.29 (18)	C25—N3—C27—C28	52.8 (11)
C8—C9—C14—C13	-179.73 (17)	C25—N3—C29—C30	170.5 (8)
C9—C14—C13—C12	0.0 (3)	C27—N3—C23—C24	171.9 (8)
С12—С11—С10—С9	1.0 (3)	C27—N3—C25—C26	53.8 (10)

C11—C12—C13—C14	2.5 (3)	C27—N3—C29—C30	-67.4 (10)
C10-C9-C14-C13	-1.9 (3)	C29—N3—C23—C24	51.5 (11)
C2—C3—C4—C5	-0.2 (3)	C29—N3—C25—C26	175.2 (7)
C3—C2—C7—C6	1.3 (3)	C29—N3—C27—C28	-65.5 (11)

Symmetry code: (i) -x+1, -y+2, -z.

Bis[8-(dimethylamino)-N,N-dimethylnaphthalen-1-aminium] bis(μ -4-hydroxybenzoato)bis(μ -4-oxidobenzoato)bis[aquacopper(II)] dioxane trisolvate monohydrate (compound_7)

Crystal data

$\begin{array}{l} ({\rm C}_{14}{\rm H}_{19}{\rm N}_{2})_{2}[{\rm Cu}_{2}({\rm C}_{7}{\rm H}_{5}{\rm O}_{3})_{2}({\rm C}_{7}{\rm H}_{4}{\rm O}_{3})_{2}({\rm H}_{2}{\rm O})_{2}]\cdot 3({\rm C}_{4}{\rm H}_{8}{\rm O}_{2})\cdot {\rm H}_{2}{\rm O}\\ M_{r} = 1420.47\\ {\rm Triclinic}, \ P\overline{1}\\ a = 10.2155\ (2)\ {\rm \mathring{A}}\\ b = 12.0897\ (3)\ {\rm \mathring{A}}\\ c = 15.7111\ (4)\ {\rm \mathring{A}}\\ a = 69.581\ (3)^{\circ}\\ \beta = 75.988\ (2)^{\circ}\\ \gamma = 79.651\ (2)^{\circ}\\ V = 1754.64\ (8)\ {\rm \mathring{A}}^{3}\\ Z = 1 \end{array}$	F(000) = 746 $D_x = 1.344 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 13870 reflections $\theta = 3.9-76.4^{\circ}$ $\mu = 1.38 \text{ mm}^{-1}$ T = 100 K Irregular, dark green $0.19 \times 0.16 \times 0.12 \text{ mm}$
Data collection	
Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2021)	$T_{\min} = 0.890, T_{\max} = 1.000$ 21601 measured reflections 6618 independent reflections 5772 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.036$ $\theta_{\text{max}} = 70.1^{\circ}, \theta_{\text{min}} = 3.9^{\circ}$ $h = -11 \rightarrow 12$ $k = -14 \rightarrow 14$ $l = -19 \rightarrow 19$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.189$ S = 1.05 6618 reflections 361 parameters 3 restraints Primary atom site location: dual	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.104P)^2 + 1.3001P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.05$ e Å ⁻³ $\Delta\rho_{min} = -0.62$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms on the non-coordinated water molecule have not been modelled.

	x	V	Z	$U_{\rm iso}$ */ $U_{\rm ea}$	Occ. (<1)
Cul	0.41243 (3)	1.03328 (4)	0.56430 (3)	0.05295 (19)	. /
02	0.28374(18)	1.0623 (2)	0.48196(14)	0.05230(1))	
05	0.53049 (19)	0.8085(2)	0.50342(15)	0.0606 (6)	
01	0.43470 (19)	1.0072 (2)	0.37024(15)	0.0642 (6)	
04	0.3805 (2)	0.8663(2)	0.61457(15)	0.0624 (6)	
07	0.2650(2)	1.0729 (3)	0.67983(15)	0.0729(7)	
H7A	0.243652	1.006377	0.724847	0.109*	
H7B	0.294519	1.114115	0.707290	0.109*	
N1	0.1882 (2)	0.4847 (3)	0.26458 (17)	0.0543 (6)	
03	-0.0933 (2)	1.1176 (3)	0.20193 (17)	0.0803 (8)	
N2	0.1811 (3)	0.7077 (3)	0.23467 (18)	0.0642 (7)	
C19	0.1764 (2)	0.5416 (3)	0.48681 (19)	0.0466 (6)	
C7	0.2451 (3)	1.0837 (3)	0.2541 (2)	0.0472 (6)	
H7	0.337867	1.076527	0.225115	0.057*	
C2	0.2116 (2)	1.0756 (2)	0.34692 (19)	0.0437 (6)	
C1	0.3175 (3)	1.0479 (3)	0.4042 (2)	0.0488 (7)	
C18	0.1704 (3)	0.4236 (3)	0.5491 (2)	0.0506 (7)	
H18	0.167908	0.409167	0.612828	0.061*	
C16	0.1727 (3)	0.3519 (3)	0.4252 (2)	0.0517(7)	
H16	0.172479	0.287161	0.404197	0.062*	
C6	0.1453 (3)	1.1021 (3)	0.2031 (2)	0.0518 (7)	
H6	0.169295	1.110413	0.138981	0.062*	
C20	0.1786 (3)	0.5633 (3)	0.39178 (19)	0.0466 (6)	
C3	0.0745 (3)	1.0892 (3)	0.38825 (19)	0.0473 (6)	
H3	0.050180	1.088584	0.450726	0.057*	
С9	0.4164 (3)	0.6634 (3)	0.6303 (2)	0.0582 (8)	
C21	0.1819 (3)	0.6831 (3)	0.3323 (2)	0.0538 (7)	
C15	0.1778 (3)	0.4643 (3)	0.3627 (2)	0.0490 (7)	
C8	0.4452 (3)	0.7875 (3)	0.5789 (2)	0.0578 (8)	
C17	0.1680 (3)	0.3309 (3)	0.5196 (2)	0.0519 (7)	
H17	0.163160	0.252830	0.562284	0.062*	
C24	0.1809 (3)	0.6368 (3)	0.5184 (2)	0.0518 (7)	
H24	0.180192	0.621831	0.582038	0.062*	
06	0.3297 (4)	0.3177 (3)	0.7702 (3)	0.1148 (13)	
H6A	0.371348	0.246340	0.764438	0.172*	
C4	-0.0256 (3)	1.1036 (3)	0.3387 (2)	0.0560 (8)	
H4	-0.118384	1.110321	0.367757	0.067*	
C22	0.1854 (3)	0.7737 (3)	0.3652 (2)	0.0585 (8)	
H22	0.187458	0.852888	0.324297	0.070*	
C5	0.0092 (3)	1.1083 (3)	0.2468 (2)	0.0578 (8)	
C23	0.1861 (3)	0.7495 (3)	0.4588 (2)	0.0577 (7)	
H23	0.190141	0.812351	0.480905	0.069*	
C10	0.4835 (3)	0.5708 (4)	0.5974 (3)	0.0669 (10)	
H10	0.549054	0.587890	0.541371	0.080*	
C14	0.3211 (3)	0.6365 (4)	0.7131 (2)	0.0663 (10)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H14	0.276047	0.698248	0.737315	0.080*	
C12	0.3582 (4)	0.4321 (4)	0.7257 (3)	0.0813 (12)	
C13	0.2922 (3)	0.5228 (4)	0.7595 (3)	0.0752 (11)	
H13	0.226383	0.505690	0.815325	0.090*	
C11	0.4570 (3)	0.4568 (4)	0.6437 (3)	0.0734 (10)	
H11	0.504593	0.394417	0.621063	0.088*	
C25	0.3216 (4)	0.4303 (4)	0.2238 (3)	0.0750 (11)	
H25A	0.395746	0.462606	0.234019	0.113*	
H25B	0.327582	0.448714	0.157179	0.113*	
H25C	0.328733	0.344044	0.253574	0.113*	
C26	0.0748 (4)	0.4427 (4)	0.2452 (3)	0.0825 (12)	
H26A	0.081251	0.355873	0.269691	0.124*	
H26B	0.079407	0.468610	0.178199	0.124*	
H26C	-0.011534	0.475856	0.274947	0.124*	
C28	0.0512 (5)	0.7777 (4)	0.2101 (3)	0.0926 (14)	
H28A	-0.025759	0.738063	0.253488	0.139*	
H28B	0.047433	0.783342	0.146975	0.139*	
H28C	0.046878	0.857623	0.213779	0.139*	
C27	0.3000 (5)	0.7669 (5)	0.1724 (3)	0.0955 (14)	
H27A	0.299074	0.843744	0.180619	0.143*	
H27B	0.295990	0.779193	0.107959	0.143*	
H27C	0.383474	0.716950	0.187273	0.143*	
H1	0.211 (5)	0.598 (5)	0.228 (4)	0.114 (17)*	
08	0.5441 (8)	0.8767 (9)	0.2438 (7)	0.132 (3)	0.5

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0186 (2)	0.0960 (4)	0.0415 (3)	0.00493 (19)	-0.00648 (16)	-0.0234 (2)
0.0224 (8)	0.0920 (15)	0.0451 (11)	0.0053 (9)	-0.0099 (7)	-0.0247 (10)
0.0272 (9)	0.1013 (17)	0.0495 (12)	-0.0037 (10)	-0.0006 (8)	-0.0257 (11)
0.0225 (9)	0.120 (2)	0.0487 (11)	0.0102 (10)	-0.0099 (8)	-0.0325 (12)
0.0299 (10)	0.0950 (17)	0.0505 (12)	0.0046 (10)	-0.0019 (8)	-0.0180 (11)
0.0354 (11)	0.131 (2)	0.0458 (12)	0.0177 (12)	-0.0058 (9)	-0.0338 (13)
0.0398 (13)	0.0727 (16)	0.0472 (13)	0.0024 (11)	-0.0078 (10)	-0.0196 (12)
0.0341 (11)	0.146 (3)	0.0556 (14)	-0.0047 (13)	-0.0214 (10)	-0.0195 (14)
0.0664 (18)	0.0680 (17)	0.0434 (14)	0.0039 (13)	-0.0080 (12)	-0.0068 (12)
0.0216 (11)	0.0658 (17)	0.0450 (14)	0.0058 (11)	-0.0058 (10)	-0.0142 (12)
0.0256 (12)	0.0633 (17)	0.0459 (15)	-0.0017 (11)	-0.0062 (10)	-0.0113 (12)
0.0241 (12)	0.0573 (15)	0.0449 (14)	-0.0002 (10)	-0.0088 (10)	-0.0111 (11)
0.0221 (12)	0.0710 (18)	0.0481 (15)	0.0000 (11)	-0.0072 (11)	-0.0149 (13)
0.0249 (12)	0.0723 (19)	0.0436 (15)	0.0066 (12)	-0.0073 (10)	-0.0103 (13)
0.0313 (13)	0.0606 (17)	0.0581 (17)	0.0025 (12)	-0.0051 (12)	-0.0187 (14)
0.0346 (14)	0.0733 (19)	0.0403 (14)	-0.0025 (12)	-0.0089 (11)	-0.0097 (13)
0.0265 (12)	0.0584 (16)	0.0468 (15)	0.0060 (11)	-0.0055 (10)	-0.0129 (12)
0.0262 (12)	0.0704 (18)	0.0411 (14)	-0.0011 (11)	-0.0069 (10)	-0.0143 (12)
0.0220 (12)	0.096 (2)	0.0504 (16)	0.0020 (13)	-0.0126 (11)	-0.0159 (16)
0.0378 (14)	0.0630 (18)	0.0478 (16)	0.0057 (12)	-0.0059 (12)	-0.0090 (13)
	U^{11} 0.0186 (2) 0.0224 (8) 0.0272 (9) 0.0225 (9) 0.0299 (10) 0.0354 (11) 0.0398 (13) 0.0341 (11) 0.0664 (18) 0.0216 (11) 0.0256 (12) 0.0241 (12) 0.0221 (12) 0.0249 (12) 0.0313 (13) 0.0346 (14) 0.0265 (12) 0.0220 (12) 0.0378 (14)	U^{11} U^{22} $0.0186(2)$ $0.0960(4)$ $0.0224(8)$ $0.0920(15)$ $0.0272(9)$ $0.1013(17)$ $0.0225(9)$ $0.120(2)$ $0.0299(10)$ $0.0950(17)$ $0.0354(11)$ $0.131(2)$ $0.0398(13)$ $0.0727(16)$ $0.0398(13)$ $0.0727(16)$ $0.0341(11)$ $0.146(3)$ $0.0664(18)$ $0.0680(17)$ $0.0256(12)$ $0.0633(17)$ $0.0221(12)$ $0.0710(18)$ $0.0249(12)$ $0.0723(19)$ $0.0313(13)$ $0.0606(17)$ $0.0265(12)$ $0.0584(16)$ $0.0265(12)$ $0.0704(18)$ $0.0220(12)$ $0.096(2)$ $0.0378(14)$ $0.0630(18)$	U^{11} U^{22} U^{33} 0.0186 (2)0.0960 (4)0.0415 (3)0.0224 (8)0.0920 (15)0.0451 (11)0.0272 (9)0.1013 (17)0.0495 (12)0.0225 (9)0.120 (2)0.0487 (11)0.0299 (10)0.0950 (17)0.0505 (12)0.0354 (11)0.131 (2)0.0458 (12)0.0398 (13)0.0727 (16)0.0472 (13)0.0341 (11)0.146 (3)0.0556 (14)0.0664 (18)0.0680 (17)0.0434 (14)0.0216 (11)0.0658 (17)0.0459 (15)0.0241 (12)0.0713 (15)0.0449 (14)0.0221 (12)0.0710 (18)0.0481 (15)0.0313 (13)0.0606 (17)0.0581 (17)0.0346 (14)0.0733 (19)0.0403 (14)0.0265 (12)0.0584 (16)0.0468 (15)0.0262 (12)0.0704 (18)0.0411 (14)0.0220 (12)0.096 (2)0.0504 (16)0.0378 (14)0.0630 (18)0.0478 (16)	U^{11} U^{22} U^{33} U^{12} 0.0186 (2)0.0960 (4)0.0415 (3)0.00493 (19)0.0224 (8)0.0920 (15)0.0451 (11)0.0053 (9)0.0272 (9)0.1013 (17)0.0495 (12) -0.0037 (10)0.0225 (9)0.120 (2)0.0487 (11)0.0102 (10)0.0299 (10)0.0950 (17)0.0505 (12)0.0046 (10)0.0354 (11)0.131 (2)0.0458 (12)0.0177 (12)0.0398 (13)0.0727 (16)0.0472 (13)0.0024 (11)0.0341 (11)0.146 (3)0.0556 (14) -0.0047 (13)0.0664 (18)0.0680 (17)0.0434 (14)0.0039 (13)0.0216 (11)0.0658 (17)0.0459 (15) -0.0017 (11)0.0221 (12)0.0633 (17)0.0449 (14) -0.0002 (10)0.0221 (12)0.0723 (19)0.0436 (15)0.0066 (12)0.0313 (13)0.0606 (17)0.0581 (17)0.0025 (12)0.0346 (14)0.0733 (19)0.0403 (14) -0.0025 (12)0.0265 (12)0.0584 (16)0.0468 (15)0.0060 (11)0.0262 (12)0.0704 (18)0.0411 (14) -0.0011 (11)0.0220 (12)0.096 (2)0.0504 (16)0.0020 (13)0.0378 (14)0.0630 (18)0.0478 (16)0.0057 (12)	U^{11} U^{22} U^{33} U^{12} U^{13} $0.0186(2)$ $0.0960(4)$ $0.0415(3)$ $0.00493(19)$ $-0.00648(16)$ $0.0224(8)$ $0.0920(15)$ $0.0451(11)$ $0.0053(9)$ $-0.0099(7)$ $0.0272(9)$ $0.1013(17)$ $0.0495(12)$ $-0.0037(10)$ $-0.0006(8)$ $0.0225(9)$ $0.120(2)$ $0.0487(11)$ $0.0102(10)$ $-0.0099(8)$ $0.0299(10)$ $0.0950(17)$ $0.0505(12)$ $0.0046(10)$ $-0.0019(8)$ $0.0354(11)$ $0.131(2)$ $0.0458(12)$ $0.0177(12)$ $-0.0058(9)$ $0.0398(13)$ $0.0727(16)$ $0.0472(13)$ $0.0024(11)$ $-0.0078(10)$ $0.0341(11)$ $0.146(3)$ $0.0556(14)$ $-0.0047(13)$ $-0.0214(10)$ $0.0664(18)$ $0.0680(17)$ $0.0434(14)$ $0.0039(13)$ $-0.0080(12)$ $0.0216(11)$ $0.0633(17)$ $0.0459(15)$ $-0.0017(11)$ $-0.0062(10)$ $0.0225(12)$ $0.0633(17)$ $0.0498(15)$ $-0.0002(10)$ $-0.0088(10)$ $0.0221(12)$ $0.0723(19)$ $0.0436(15)$ $0.0066(12)$ $-0.0073(10)$ $0.0313(13)$ $0.0606(17)$ $0.0581(17)$ $0.0025(12)$ $-0.0089(11)$ $0.0265(12)$ $0.0584(16)$ $0.0468(15)$ $0.0060(11)$ $-0.0055(10)$ $0.0225(12)$ $0.0584(16)$ $0.0468(15)$ $0.0060(11)$ $-0.0055(10)$ $0.0220(12)$ $0.0704(18)$ $0.0411(14)$ $-0.0011(11)$ $-0.0055(10)$ $0.0220(12)$ $0.0630(18)$ $0.0478(16)$ $0.0057(12)$ $-0.0059(12)$

C15	0.0285 (12)	0.0656 (17)	0.0463 (15)	0.0045 (11)	-0.0061 (11)	-0.0152 (13)
C8	0.0215 (12)	0.102 (2)	0.0467 (16)	0.0049 (13)	-0.0125 (11)	-0.0212 (16)
C17	0.0279 (13)	0.0606 (17)	0.0529 (16)	0.0043 (11)	-0.0045 (11)	-0.0073 (13)
C24	0.0279 (13)	0.0738 (19)	0.0514 (16)	0.0046 (12)	-0.0078 (11)	-0.0219 (14)
06	0.083 (2)	0.109 (3)	0.124 (3)	-0.0259 (19)	-0.030(2)	0.010 (2)
C4	0.0252 (13)	0.083 (2)	0.0523 (17)	0.0019 (13)	-0.0088 (11)	-0.0155 (15)
C22	0.0465 (16)	0.0547 (17)	0.0626 (19)	0.0037 (13)	-0.0057 (14)	-0.0119 (14)
C5	0.0289 (13)	0.091 (2)	0.0475 (16)	-0.0019 (13)	-0.0143 (11)	-0.0123 (15)
C23	0.0366 (15)	0.0676 (19)	0.0652 (19)	0.0024 (13)	-0.0060 (13)	-0.0231 (15)
C10	0.0266 (14)	0.101 (3)	0.063 (2)	0.0046 (15)	-0.0135 (13)	-0.0154 (18)
C14	0.0295 (14)	0.113 (3)	0.0489 (17)	-0.0024 (16)	-0.0140 (12)	-0.0146 (18)
C12	0.053 (2)	0.099 (3)	0.080 (3)	-0.011 (2)	-0.0307 (19)	-0.001 (2)
C13	0.0372 (16)	0.112 (3)	0.060 (2)	-0.0057 (18)	-0.0115 (14)	-0.007 (2)
C11	0.0379 (17)	0.093 (3)	0.080 (3)	0.0020 (16)	-0.0188 (16)	-0.016 (2)
C25	0.060 (2)	0.101 (3)	0.056 (2)	0.0127 (19)	-0.0041 (16)	-0.0306 (19)
C26	0.066 (2)	0.119 (3)	0.064 (2)	-0.014 (2)	-0.0213 (18)	-0.025 (2)
C28	0.099 (3)	0.100 (3)	0.063 (2)	0.027 (3)	-0.034 (2)	-0.013 (2)
C27	0.100 (3)	0.107 (3)	0.055 (2)	-0.020 (3)	0.012 (2)	-0.010 (2)
08	0.084 (5)	0.199 (9)	0.164 (7)	0.039 (5)	-0.057 (5)	-0.126 (7)

Cu1—O2	1.9661 (19)	С3—Н3	0.9500
Cu1—O5 ⁱ	1.952 (3)	C3—C4	1.381 (4)
Cu1—O1 ⁱ	1.972 (2)	C9—C8	1.480 (5)
Cu1—O4	1.951 (3)	C9—C10	1.396 (5)
Cu1—O7	2.195 (2)	C9—C14	1.397 (4)
O2—C1	1.251 (4)	C21—C22	1.373 (5)
O5—C8	1.265 (4)	C17—H17	0.9500
01—C1	1.273 (3)	C24—H24	0.9500
O4—C8	1.274 (4)	C24—C23	1.360 (5)
07—H7A	0.8868	O6—H6A	0.9151
O7—H7B	0.8899	O6—C12	1.363 (6)
N1-C15	1.454 (4)	C4—H4	0.9500
N1—C25	1.500 (4)	C4—C5	1.384 (4)
N1-C26	1.477 (5)	C22—H22	0.9500
N1—H1	1.33 (5)	C22—C23	1.396 (5)
O3—C5	1.366 (4)	C23—H23	0.9500
N2-C21	1.458 (4)	C10—H10	0.9500
N2-C28	1.498 (5)	C10-C11	1.357 (6)
N2—C27	1.481 (5)	C14—H14	0.9500
N2—H1	1.34 (5)	C14—C13	1.361 (6)
C19—C18	1.423 (4)	C12—C13	1.381 (7)
C19—C20	1.418 (4)	C12—C11	1.406 (6)
C19—C24	1.415 (4)	C13—H13	0.9500
С7—Н7	0.9500	C11—H11	0.9500
С7—С2	1.387 (4)	C25—H25A	0.9800
С7—С6	1.387 (4)	C25—H25B	0.9800

C2—C1	1,491 (4)	C25—H25C	0.9800
C2—C3	1.400 (4)	C26—H26A	0.9800
C18—H18	0.9500	C26—H26B	0.9800
C18 - C17	1 360 (5)	C26—H26C	0.9800
C16-H16	0.9500	C28—H28A	0.9800
C16 C15	1,372(A)	C28 H28B	0.9000
C16-C17	1.372(4) 1 405 (4)	C28—H28C	0.9800
C6 H6	0.9500	C27 H27A	0.9800
C6 C5	1.395(4)	C_{27} H27R	0.9800
C_{0}	1.395 (4)	$C_{27} = H_{27}C$	0.9800
$C_{20} = C_{21}$	1.425(4)	627—11276	0.9800
220	1.425 (4)		
O2—Cu1—O1 ⁱ	169.41 (8)	C16—C15—C20	120.9 (3)
O2—Cu1—O7	96.76 (8)	C20—C15—N1	118.3 (3)
O5 ⁱ —Cu1—O2	89.56 (9)	O5—C8—O4	124.6 (3)
$O5^{i}$ —Cu1—O1 ⁱ	90.35 (10)	05	118.6 (3)
O5 ⁱ —Cu1—O7	99.17 (11)	O4—C8—C9	116.8 (3)
O1 ⁱ —Cu1—O7	93.70 (8)	C18—C17—C16	119.2 (3)
04—Cu1—O2	89.80 (10)	C18—C17—H17	120.4
04—Cu1—O5 ⁱ	169.45 (9)	C16—C17—H17	120.4
O4—Cu1—O1 ⁱ	88.35 (11)	C19—C24—H24	119.6
O4—Cu1—O7	91.37 (11)	C23—C24—C19	120.7 (3)
C1—O2—Cu1	122.97 (16)	C23—C24—H24	119.6
C8—O5—Cu1 ⁱ	121.9 (2)	С12—О6—Н6А	133.4
C1—O1—Cu1 ⁱ	121.97 (19)	C3—C4—H4	119.9
C8—O4—Cu1	123.8 (2)	C3—C4—C5	120.1 (3)
Cu1—O7—H7A	110.5	C5—C4—H4	119.9
Cu1—O7—H7B	114.9	C21—C22—H22	119.9
H7A—O7—H7B	104.2	C21—C22—C23	120.2 (3)
C15—N1—C25	111.3 (2)	C23—C22—H22	119.9
C15—N1—C26	112.7 (3)	O3—C5—C6	122.0 (3)
C15—N1—H1	102 (2)	O3—C5—C4	117.9 (3)
C25—N1—H1	99 (2)	C4—C5—C6	120.2 (3)
C26—N1—C25	110.5 (3)	C24—C23—C22	120.5 (3)
C26—N1—H1	120 (2)	C24—C23—H23	119.7
C21—N2—C28	111.0 (3)	С22—С23—Н23	119.7
C21—N2—C27	112.7 (3)	C9—C10—H10	119.3
C21—N2—H1	101 (2)	C11—C10—C9	121.3 (3)
C28—N2—H1	119 (2)	C11—C10—H10	119.3
C27—N2—C28	111.1 (3)	C9—C14—H14	119.7
C27—N2—H1	102 (2)	C13—C14—C9	120.6 (4)
C20—C19—C18	119.2 (3)	C13—C14—H14	119.7
C24—C19—C18	120.9 (3)	O6—C12—C13	121.3 (4)
C24—C19—C20	119.9 (3)	O6—C12—C11	118.6 (5)
С2—С7—Н7	119.5	C13—C12—C11	120.1 (4)
C2—C7—C6	121.0 (2)	C14—C13—C12	120.3 (4)
С6—С7—Н7	119.5	C14—C13—H13	119.9
C7—C2—C1	121.5 (2)	С12—С13—Н13	119.9

07 02 02	110.0 (2)	G10 G11 G12	110 1 (4)
C/-C2-C3	118.9 (2)	C10-C11-C12	119.1 (4)
C3—C2—C1	119.5 (2)	C10—C11—H11	120.4
O2—C1—O1	125.5 (2)	C12—C11—H11	120.4
O2—C1—C2	118.1 (2)	N1—C25—H25A	109.5
O1—C1—C2	116.3 (3)	N1—C25—H25B	109.5
C19—C18—H18	119.2	N1—C25—H25C	109.5
C17—C18—C19	121.7 (3)	H25A—C25—H25B	109.5
C17—C18—H18	119.2	H25A—C25—H25C	109.5
C15—C16—H16	119.4	H25B—C25—H25C	109.5
C15—C16—C17	121.2 (3)	N1—C26—H26A	109.5
C17—C16—H16	119.4	N1—C26—H26B	109.5
С7—С6—Н6	120.4	N1—C26—H26C	109.5
C7 - C6 - C5	119 3 (3)	H26A—C26—H26B	109.5
C5-C6-H6	120.4	$H_{26A} = C_{26} = H_{26C}$	109.5
C_{10} C_{20} C_{21}	120.4	H26B C26 H26C	109.5
$C_{19} = C_{20} = C_{21}$	117.5(3) 117.0(3)	$M_{200} = C_{20} = M_{200} = M_{200}$	109.5
$C_{15} = C_{20} = C_{15}$	117.9(3) 124.8(2)	N2 C28 H28D	109.5
C13 - C20 - C21	124.8 (5)	N2 = C28 = H28C	109.5
$C_2 = C_3 = H_3$	119.8	$N_2 = C_2 = H_2 \otimes C_2$	109.5
C4 - C3 - C2	120.4 (3)	H28A—C28—H28B	109.5
C4—C3—H3	119.8	H28A—C28—H28C	109.5
C10—C9—C8	120.9 (3)	H28B—C28—H28C	109.5
C10—C9—C14	118.6 (4)	N2—C27—H27A	109.5
C14—C9—C8	120.5 (3)	N2—C27—H27B	109.5
C20—C21—N2	118.2 (3)	N2—C27—H27C	109.5
C22—C21—N2	120.4 (3)	H27A—C27—H27B	109.5
C22—C21—C20	121.4 (3)	H27A—C27—H27C	109.5
C16—C15—N1	120.8 (3)	H27B—C27—H27C	109.5
Cu1—O2—C1—O1	4.0 (5)	C3—C4—C5—C6	-1.9(5)
Cu1—O2—C1—C2	-178.53 (19)	C9-C10-C11-C12	1.1 (5)
Cu1 ⁱ O5C8O4	5.8 (4)	C9—C14—C13—C12	0.8 (5)
Cu1 ⁱ —O5—C8—C9	-174.54 (18)	C21—C20—C15—N1	3.4 (4)
Cu1 ⁱ -O1-C1-O2	-3.0(5)	C21—C20—C15—C16	-179.1 (3)
$Cu1^{i}-01-C1-C2$	179.5 (2)	C21—C22—C23—C24	-1.1(5)
Cu1 - 04 - C8 - 05	-54(4)	C_{15} C_{16} C_{17} C_{18}	-0.9(4)
Cu1 - 04 - C8 - C9	174 92 (18)	$C_{15} = C_{20} = C_{21} = N_2$	15(4)
$N_2 - C_{21} - C_{22} - C_{23}$	1799(3)	$C_{15} = C_{20} = C_{21} = C_{22}$	-178.6(3)
$C_{10} C_{18} C_{17} C_{16}$	175.7(3)	$C_{13}^{} C_{20}^{} C_{21}^{} C_{22}^{} C_{22}^{$	-170.5(3)
$C_{19} = C_{18} = C_{17} = C_{10}$	-178.6(2)	$C_8 = C_9 = C_{10} = C_{11}$	179.5(3)
$C_{19} = C_{20} = C_{21} = N_2$	170.0(2)	$C_{0} = C_{0} = C_{14} = C_{15}$	178.5(3)
C19 - C20 - C21 - C22	1.2 (4)	C17 - C16 - C15 - N1	1/7.5(2)
C19—C20—C15—N1	-1/6.4(2)	C1/-C16-C15-C20	0.1 (4)
C19 - C20 - C15 - C16	1.0 (4)	C_{24} C_{19} C_{18} C_{17}	-1/9.1 (2)
C19—C24—C23—C22	0.8 (4)	C24—C19—C20—C21	-1.5 (4)
C'/C2C1O2	167.6 (3)	C24—C19—C20—C15	178.3 (2)
C7—C2—C1—O1	-14.7 (4)	O6—C12—C13—C14	-179.1 (3)
C7—C2—C3—C4	3.7 (5)	O6—C12—C11—C10	178.2 (3)
C7—C6—C5—O3	-175.1 (3)	C10—C9—C8—O5	1.1 (4)
C7—C6—C5—C4	4.1 (5)	C10-C9-C8-O4	-179.2(3)

C2—C7—C6—C5	-2.3 (5)	C10-C9-C14-C13	-1.5 (5)
C2—C3—C4—C5	-2.0 (5)	C14—C9—C8—O5	-178.9 (3)
C1—C2—C3—C4	-173.8 (3)	C14—C9—C8—O4	0.9 (4)
C18—C19—C20—C21	178.7 (2)	C14—C9—C10—C11	0.5 (5)
C18—C19—C20—C15	-1.4 (4)	C13—C12—C11—C10	-1.8 (6)
C18—C19—C24—C23	-179.7 (2)	C11—C12—C13—C14	0.8 (6)
C6—C7—C2—C1	175.9 (3)	C25—N1—C15—C16	-66.3 (4)
C6—C7—C2—C3	-1.5 (5)	C25—N1—C15—C20	111.1 (3)
C20-C19-C18-C17	0.7 (4)	C26—N1—C15—C16	58.5 (4)
C20—C19—C24—C23	0.6 (4)	C26—N1—C15—C20	-124.1 (3)
C20—C21—C22—C23	0.1 (5)	C28—N2—C21—C20	112.3 (4)
C3—C2—C1—O2	-15.0 (4)	C28—N2—C21—C22	-67.5 (4)
C3—C2—C1—O1	162.7 (3)	C27—N2—C21—C20	-122.3 (3)
C3—C4—C5—O3	177.3 (3)	C27—N2—C21—C22	57.8 (4)

Symmetry code: (i) -x+1, -y+2, -z+1.

catena-Poly[[tetrakis(μ -4-hydroxybenzoato)dicopper(II)]- μ -(4,4-bipyridine *N*,*N*'-dioxide)] (compound_8)

Crystal data

$[Cu_2(C_7H_5O_3)_4(C_{10}H_8N_2O_2)] \cdot H_2O$	F(000) = 1800
$M_r = 881.72$	$D_{\rm x} = 1.609 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, C2/c	Cu $K\alpha$ radiation, $\lambda = 1.54184$ Å
a = 11.9851 (8) Å	Cell parameters from 3614 reflections
b = 17.7472 (11) Å	$\theta = 4.5 - 75.7^{\circ}$
c = 17.1294 (10) Å	$\mu = 2.12 \text{ mm}^{-1}$
$\beta = 92.637(5)^{\circ}$	T = 130 K
V = 3639.6 (4) Å ³	Block, dark green
Z=4	$0.32 \times 0.06 \times 0.05 \text{ mm}$
Data collection	
Rigaku OD SuperNova Dual source	$T_{\rm min} = 0.898, T_{\rm max} = 1.000$
diffractometer with an Atlas detector	6868 measured reflections
Radiation source: micro-focus sealed X-ray	3663 independent reflections
tube, SuperNova (Cu) X-ray Source	3386 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.024$
Detector resolution: 10.2273 pixels mm ⁻¹	$\theta_{\rm max} = 75.9^\circ, \theta_{\rm min} = 4.5^\circ$
ω scans	$h = -13 \rightarrow 14$
Absorption correction: multi-scan	$k = -22 \rightarrow 19$
(CrysAlis PRO; Rigaku OD, 2018)	$l = -14 \rightarrow 21$
Refinement	
Refinement on F^2	Primary atom site location: dual
Least-squares matrix: full	Hydrogen site location: mixed
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.098$	$w = 1/[\sigma^2(F_o^2) + (0.0627P)^2 + 1.6515P]$
S = 1.05	where $P = (F_0^2 + 2F_c^2)/3$
3663 reflections	$(\Delta/\sigma)_{ m max} = 0.002$
263 parameters	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
2 restraints	$\Delta ho_{ m min} = -0.57 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cul	0.54139 (2)	0.54327 (2)	0.55445 (2)	0.01706 (11)	
01	0.40892 (10)	0.39073 (7)	0.53016 (7)	0.0225 (3)	
O2	0.47249 (11)	0.47017 (7)	0.62379 (8)	0.0237 (3)	
O3	0.32641 (10)	0.52033 (8)	0.45993 (8)	0.0243 (3)	
O4	0.39850 (10)	0.59718 (7)	0.55335 (8)	0.0241 (3)	
05	0.500000	0.68052 (11)	0.750000	0.0259 (4)	
H5	0.467094	0.653598	0.782900	0.039*	
O6	0.61601 (10)	0.60211 (8)	0.65226 (8)	0.0252 (3)	
07	-0.08298 (11)	0.73890 (8)	0.49096 (9)	0.0279 (3)	
H7	-0.073715	0.782010	0.510444	0.042*	
08	0.14206 (12)	0.27908 (9)	0.81889 (8)	0.0315 (3)	
H8	0.098782	0.247191	0.797536	0.047*	
N1	0.72175 (12)	0.59467 (8)	0.67856 (9)	0.0217 (3)	
C1	0.41454 (14)	0.41455 (10)	0.60065 (10)	0.0197 (3)	
C2	0.34645 (14)	0.37614 (10)	0.65823 (10)	0.0209 (3)	
C12	0.01382 (14)	0.69945 (10)	0.49891 (11)	0.0223 (3)	
C8	0.31973 (14)	0.57449 (10)	0.50733 (10)	0.0209 (3)	
C9	0.21109 (14)	0.61541 (10)	0.50826 (10)	0.0206 (3)	
C7	0.26800 (15)	0.32172 (10)	0.63378 (10)	0.0225 (3)	
H7A	0.262365	0.307233	0.580351	0.027*	
C6	0.19869 (15)	0.28877 (10)	0.68605 (11)	0.0249 (4)	
H6	0.145326	0.252219	0.668495	0.030*	
C11	0.10430 (15)	0.72402 (10)	0.54651 (11)	0.0235 (3)	
H11	0.098850	0.769221	0.575802	0.028*	
C17	0.94118 (15)	0.58594 (10)	0.73482 (11)	0.0236 (4)	
C3	0.35321 (15)	0.39701 (11)	0.73707 (11)	0.0248 (4)	
H3	0.405288	0.434477	0.754374	0.030*	
C13	0.01999 (15)	0.63124 (11)	0.45921 (11)	0.0254 (4)	
H13	-0.043056	0.612977	0.429322	0.030*	
C10	0.20231 (14)	0.68216 (10)	0.55087 (10)	0.0227 (3)	
H10	0.263924	0.699033	0.583112	0.027*	
C5	0.20708 (15)	0.30921 (11)	0.76486 (11)	0.0246 (4)	
C18	0.85292 (15)	0.57140 (11)	0.78293 (11)	0.0269 (4)	
H18	0.867997	0.558339	0.836152	0.032*	
C16	0.91425 (15)	0.60349 (11)	0.65689 (11)	0.0269 (4)	
H16	0.972354	0.612354	0.622120	0.032*	
C14	0.11820 (15)	0.59009 (10)	0.46338 (11)	0.0245 (4)	
H14	0.122520	0.544045	0.435389	0.029*	
C15	0.80470 (16)	0.60814 (11)	0.62966 (11)	0.0269 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H15	0.787426	0.620798	0.576581	0.032*
C19	0.74381 (15)	0.57585 (11)	0.75379 (11)	0.0263 (4)
H19	0.684199	0.565602	0.786902	0.032*
C4	0.28504 (16)	0.36375 (11)	0.79002 (11)	0.0275 (4)
H4	0.291054	0.377890	0.843540	0.033*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.01606 (16)	0.01854 (16)	0.01641 (16)	0.00039 (8)	-0.00081 (10)	0.00009 (8)
01	0.0262 (6)	0.0211 (6)	0.0203 (6)	-0.0031 (5)	0.0032 (5)	0.0003 (5)
O2	0.0245 (6)	0.0263 (6)	0.0201 (6)	-0.0066(5)	-0.0015 (5)	0.0028 (5)
03	0.0196 (6)	0.0263 (6)	0.0266 (7)	0.0057 (5)	-0.0016 (5)	-0.0041 (5)
O4	0.0190 (6)	0.0270 (6)	0.0260 (6)	0.0040 (5)	-0.0015 (5)	-0.0034 (5)
05	0.0234 (9)	0.0268 (9)	0.0281 (10)	0.000	0.0077 (7)	0.000
06	0.0160 (6)	0.0326 (7)	0.0266 (7)	0.0023 (5)	-0.0046 (5)	-0.0098 (5)
O7	0.0205 (6)	0.0258 (6)	0.0372 (8)	0.0041 (5)	-0.0025 (5)	-0.0067 (5)
08	0.0331 (7)	0.0392 (8)	0.0226 (7)	-0.0107 (6)	0.0046 (5)	0.0008 (6)
N1	0.0182 (7)	0.0230 (7)	0.0235 (7)	-0.0011 (5)	-0.0031 (5)	-0.0039 (6)
C1	0.0170 (7)	0.0219 (8)	0.0199 (8)	0.0027 (6)	-0.0008 (6)	0.0016 (6)
C2	0.0184 (8)	0.0238 (8)	0.0203 (8)	0.0009 (6)	0.0003 (6)	0.0003 (6)
C12	0.0182 (8)	0.0240 (8)	0.0248 (9)	0.0015 (6)	0.0023 (6)	0.0025 (6)
C8	0.0189 (8)	0.0225 (8)	0.0213 (8)	0.0016 (6)	0.0018 (6)	0.0051 (6)
C9	0.0187 (8)	0.0223 (8)	0.0208 (8)	0.0012 (6)	0.0014 (6)	0.0027 (6)
C7	0.0228 (8)	0.0250 (8)	0.0199 (8)	-0.0006 (7)	0.0011 (6)	-0.0016 (6)
C6	0.0243 (8)	0.0262 (8)	0.0241 (9)	-0.0031 (7)	0.0001 (7)	-0.0003 (7)
C11	0.0225 (8)	0.0217 (8)	0.0263 (9)	0.0004 (6)	0.0021 (7)	-0.0025 (7)
C17	0.0202 (9)	0.0267 (8)	0.0239 (9)	-0.0012 (6)	-0.0009(7)	-0.0011 (7)
C3	0.0230 (8)	0.0268 (8)	0.0243 (9)	-0.0044 (7)	-0.0017 (7)	-0.0014 (7)
C13	0.0189 (8)	0.0290 (9)	0.0280 (9)	0.0004 (7)	-0.0023 (6)	-0.0027 (7)
C10	0.0188 (8)	0.0266 (8)	0.0225 (8)	0.0000 (6)	-0.0007 (6)	0.0002 (7)
C5	0.0238 (8)	0.0280 (9)	0.0222 (9)	-0.0009 (7)	0.0025 (7)	0.0021 (7)
C18	0.0235 (9)	0.0364 (10)	0.0208 (9)	0.0019 (7)	-0.0005 (7)	0.0033 (7)
C16	0.0216 (8)	0.0368 (10)	0.0221 (9)	-0.0047 (7)	-0.0002 (7)	0.0018 (7)
C14	0.0224 (8)	0.0245 (8)	0.0264 (9)	0.0016 (6)	0.0007 (7)	-0.0029 (7)
C15	0.0231 (8)	0.0353 (10)	0.0220 (9)	-0.0022 (7)	-0.0007 (7)	0.0017 (7)
C19	0.0228 (8)	0.0312 (9)	0.0250 (9)	-0.0003 (7)	0.0030(7)	0.0000 (7)
C4	0.0305 (9)	0.0336 (10)	0.0182 (8)	-0.0041 (8)	0.0000 (7)	-0.0025 (7)

Cu1—O1 ⁱ	1.9765 (12)	C9—C14	1.398 (3)	
Cu1—O2	1.9663 (13)	C7—H7A	0.9500	
Cu1—O3 ⁱ	1.9701 (12)	C7—C6	1.379 (2)	
Cu1—O4	1.9610 (12)	С6—Н6	0.9500	
Cu1—O6	2.1352 (13)	C6—C5	1.397 (3)	
01—C1	1.278 (2)	C11—H11	0.9500	
O2—C1	1.260 (2)	C11—C10	1.389 (3)	

03	1 263 (2)	C17-C17 ⁱⁱⁱ	1 480 (4)
04 - C8	1.203(2) 1 267(2)	C17-C18	1.400(4) 1.395(3)
05—H5 ⁱⁱ	0.85(3)	C_{17} C_{16}	1.393(3)
05 H5	0.8407	C_3 H3	0.9500
06 N1	1 3320 (10)	$C_3 = C_4$	1.381(3)
07 H7	0.8400	C_{12} H_{12}	1.561 (5)
0/-1/	1.257(2)	C_{13} $$	0.9300
0/-C12	1.337(2)		1.364 (3)
08—H8	0.8400		0.9500
08-05	1.348 (2)	C5C4	1.399 (3)
NI-C15	1.350 (2)	C18—H18	0.9500
N1—C19	1.346 (3)	C18—C19	1.380 (3)
C1—C2	1.476 (2)	C16—H16	0.9500
C2—C7	1.399 (2)	C16—C15	1.376 (3)
C2—C3	1.399 (3)	C14—H14	0.9500
C12—C11	1.396 (3)	C15—H15	0.9500
C12—C13	1.392 (3)	С19—Н19	0.9500
C8—C9	1.492 (2)	C4—H4	0.9500
C9—C10	1.398 (2)		
01^{i} _01	98 98 (5)	С7—С6—Н6	120.1
$O_{1}^{2} = C_{11}^{2} = O_{1}^{1}$	160 AA (5)	C7 - C6 - C5	120.1 110 00 (17)
02 - Cu1 - 01	109.44(5)	$C_{1} = C_{0} = C_{2}$	119.90(17)
02 - Cu1 - 03	95.44 (0)	$C_{12} = C_{11} = U_{11}$	120.1
02 - Cu1 - 00	91.21 (3)		120.1
	88.00 (0)		119.77(17)
03'	93.91 (5)		120.1
04—Cul—Ol	89.79 (5)		121.9 (2)
O4—Cu1—O2	86.38 (6)		120.7 (2)
$O4$ — $Cu1$ — $O3^{1}$	170.18 (5)	C16—C17—C18	117.30 (17)
O4—Cu1—O6	95.91 (5)	С2—С3—Н3	119.6
$C1 - O1 - Cu1^{i}$	119.48 (11)	C4—C3—C2	120.74 (17)
C1—O2—Cu1	124.57 (12)	С4—С3—Н3	119.6
C8—O3—Cu1 ⁱ	126.26 (12)	C12—C13—H13	120.1
C8—O4—Cu1	118.44 (11)	C14—C13—C12	119.85 (17)
H5—O5—H5 ⁱⁱ	111.6	C14—C13—H13	120.1
N1—O6—Cu1	125.07 (10)	C9—C10—H10	119.7
С12—О7—Н7	109.5	C11—C10—C9	120.59 (17)
С5—О8—Н8	109.5	C11—C10—H10	119.7
O6—N1—C15	119.26 (16)	O8—C5—C6	122.84 (17)
O6—N1—C19	119.37 (15)	O8—C5—C4	117.51 (17)
C19—N1—C15	121.34 (16)	C6—C5—C4	119.64 (17)
O1—C1—C2	118.16 (15)	С17—С18—Н18	119.7
O2—C1—O1	124.09 (16)	C19—C18—C17	120.50 (18)
O2—C1—C2	117.73 (16)	C19—C18—H18	119.7
C7—C2—C1	120.24 (16)	C17—C16—H16	119.6
C7—C2—C3	118.70 (16)	C15—C16—C17	120.89 (17)
C_{3} C_{2} C_{1}	120.91 (16)	C15—C16—H16	119.6
07-C12-C11	122.35 (16)	C9-C14-H14	119.6
07-012-013	117 66 (16)	C_{13} C_{14} C_{9}	120 83 (17)
0, 012 013	11/100 (10)		120.00 (1/)

C13—C12—C11	119.97 (16)	C13—C14—H14	119.6
O3—C8—O4	125.04 (16)	N1-C15-C16	119.83 (18)
O3—C8—C9	117.29 (16)	N1—C15—H15	120.1
O4—C8—C9	117.67 (16)	C16—C15—H15	120.1
C10—C9—C8	120.32 (16)	N1-C19-C18	120.10 (17)
C14—C9—C8	120.74 (16)	N1—C19—H19	119.9
C14—C9—C10	118.85 (16)	C18—C19—H19	119.9
С2—С7—Н7А	119.5	C3—C4—C5	120.01 (17)
C6—C7—C2	121.00 (17)	C3—C4—H4	120.0
С6—С7—Н7А	119.5	C5—C4—H4	120.0
Cul-Ol-Cl-O2	-17.0 (2)	C1—C2—C3—C4	176.48 (17)
Cul ¹ —Ol—Cl—C2	161.12 (12)	C2—C7—C6—C5	-0.6 (3)
Cu1—O2—C1—O1	12.8 (2)	C2—C3—C4—C5	-0.8 (3)
Cu1—O2—C1—C2	-165.33 (11)	C12—C11—C10—C9	-0.3(3)
Cu1 ⁱ O3C8O4	0.6 (3)	C12—C13—C14—C9	1.2 (3)
Cu1 ⁱ —O3—C8—C9	179.74 (11)	C8—C9—C10—C11	174.30 (16)
Cu1—O4—C8—O3	-1.9 (2)	C8—C9—C14—C13	-174.76 (17)
Cu1—O4—C8—C9	179.02 (11)	C7—C2—C3—C4	1.0 (3)
Cu1—O6—N1—C15	57.1 (2)	C7—C6—C5—O8	-179.88 (17)
Cu1—O6—N1—C19	-124.59 (15)	C7—C6—C5—C4	0.8 (3)
O1—C1—C2—C7	-7.9 (2)	C6—C5—C4—C3	0.0 (3)
O1—C1—C2—C3	176.70 (16)	C11—C12—C13—C14	-3.8 (3)
O2—C1—C2—C7	170.33 (16)	C17 ⁱⁱⁱ —C17—C18—C19	176.46 (14)
O2—C1—C2—C3	-5.1 (2)	C17 ⁱⁱⁱ —C17—C16—C15	-175.92 (15)
O3—C8—C9—C10	-170.92 (16)	C17-C18-C19-N1	-0.3 (3)
O3—C8—C9—C14	5.6 (2)	C17—C16—C15—N1	-0.8 (3)
O4—C8—C9—C10	8.3 (2)	C3—C2—C7—C6	-0.3 (3)
O4—C8—C9—C14	-175.21 (16)	C13-C12-C11-C10	3.3 (3)
O6—N1—C15—C16	177.51 (17)	C10-C9-C14-C13	1.8 (3)
O6—N1—C19—C18	-176.93 (17)	C18—C17—C16—C15	1.7 (3)
O7—C12—C11—C10	-178.44 (16)	C16—C17—C18—C19	-1.1 (3)
O7—C12—C13—C14	177.89 (17)	C14—C9—C10—C11	-2.3 (3)
O8—C5—C4—C3	-179.45 (18)	C15—N1—C19—C18	1.3 (3)
C1—C2—C7—C6	-175.80 (16)	C19—N1—C15—C16	-0.7 (3)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, *y*, -*z*+3/2; (iii) -*x*+2, *y*, -*z*+3/2.

Tetrakis(µ-4-hydroxybenzoato)bis[(4,4'-bipyridine N,N'-dioxide)copper(II)] dioxane disolvate (compound_9)

Crystal data

	-
$[Cu_2(C_7H_5O_3)_4(C_{10}H_8N_2O_2)_2] \cdot 2C_4H_8O_2$	$D_{\rm x} = 1.427 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 1228.09$	Cu Ka radiation, $\lambda = 1.54184$ Å
Orthorhombic, <i>Pbca</i>	Cell parameters from 10015 reflections
a = 17.5993 (3) Å	$\theta = 4.3 - 76.7^{\circ}$
b = 16.4583 (2) Å	$\mu = 1.59 \text{ mm}^{-1}$
c = 19.7389 (2) Å	T = 100 K
$V = 5717.46 (13) \text{ Å}^3$	Irregular, dark green
Z = 4	$0.09 \times 0.07 \times 0.05 \text{ mm}$
F(000) = 2536	

Data collection

Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector	23256 measured reflections 5876 independent reflections
Radiation source: micro-focus sealed X-ray	4731 reflections with $I > 2\sigma(I)$
tube, PhotonJet (Cu) X-ray Source	$R_{\rm int} = 0.056$
Mirror monochromator	$\theta_{\rm max} = 77.9^{\circ}, \theta_{\rm min} = 4.3^{\circ}$
ω scans	$h = -21 \rightarrow 18$
Absorption correction: multi-scan	$k = -20 \rightarrow 16$
(CrysAlis PRO; Rigaku OD, 2018)	$l = -24 \longrightarrow 24$
$T_{\min} = 0.344, \ T_{\max} = 1.000$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred fro

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.129$	$w = 1/[\sigma^2(F_o^2) + (0.0724P)^2 + 2.8715P]$
S = 1.06	where $P = (F_0^2 + 2F_c^2)/3$
5876 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
427 parameters	$\Delta ho_{ m max} = 0.59 \ { m e} \ { m \AA}^{-3}$
110 restraints	$\Delta ho_{ m min}$ = -0.68 e Å ⁻³
Primary atom site location: dual	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cul	0.55547 (2)	0.53111 (2)	0.53308 (2)	0.01823 (12)	
05	0.50248 (10)	0.36700 (10)	0.46401 (8)	0.0252 (4)	
07	0.65573 (9)	0.57946 (10)	0.57670 (7)	0.0241 (3)	
O1	0.59137 (11)	0.56075 (11)	0.44259 (8)	0.0291 (4)	
08	0.61763 (11)	0.68383 (10)	1.05831 (8)	0.0273 (4)	
O2	0.49637 (11)	0.50447 (11)	0.38364 (8)	0.0280 (4)	
O4	0.59873 (10)	0.42265 (10)	0.52209 (9)	0.0298 (4)	
O3	0.71353 (11)	0.63150 (11)	0.14972 (8)	0.0321 (4)	
Н3	0.683225	0.640715	0.117760	0.048*	
O6	0.72255 (11)	0.06580 (10)	0.49628 (10)	0.0354 (4)	
H6	0.761058	0.068772	0.521300	0.053*	
N1	0.65256 (11)	0.59407 (11)	0.64321 (9)	0.0206 (4)	
N2	0.62549 (12)	0.67097 (11)	0.99246 (9)	0.0230 (4)	
O11	0.3089 (3)	0.7105 (2)	0.7347 (2)	0.0404 (8)	0.810 (7)
C8	0.56697 (13)	0.36401 (13)	0.49230 (11)	0.0211 (4)	
С9	0.60821 (14)	0.28525 (14)	0.49182 (11)	0.0226 (5)	
C2	0.59825 (14)	0.56527 (13)	0.32415 (11)	0.0234 (5)	
C1	0.55878 (14)	0.54118 (13)	0.38817 (11)	0.0220 (5)	
C15	0.63041 (15)	0.66824 (14)	0.66426 (11)	0.0252 (5)	
H15	0.617842	0.709079	0.632146	0.030*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)
C17	0.64367 (14)	0.62556 (13)	0.78060 (11)	0.0227 (5)	
C10	0.68067 (14)	0.28099 (14)	0.52013 (12)	0.0244 (5)	
H10	0.703137	0.328469	0.538773	0.029*	
C16	0.62607 (15)	0.68455 (14)	0.73252 (11)	0.0251 (5)	
H16	0.610782	0.737066	0.747134	0.030*	
C21	0.60508 (14)	0.71260 (14)	0.87942 (11)	0.0245 (5)	
H21	0.585371	0.751688	0.848675	0.029*	
C20	0.63854 (14)	0.64219 (13)	0.85414 (11)	0.0226 (5)	
C5	0.67379 (15)	0.60924 (14)	0.20579 (11)	0.0258 (5)	
C3	0.67212 (14)	0.59578 (14)	0.32695 (11)	0.0237 (5)	
НЗА	0.696648	0.601726	0.369532	0.028*	
C12	0.68680 (15)	0.13871 (14)	0.49508 (13)	0.0266 (5)	
C23	0.65919 (16)	0.60197 (15)	0.97036 (12)	0.0281 (5)	
H23	0.677647	0.563450	1.002205	0.034*	
09	0.45652 (16)	0.6662 (2)	0.77770 (13)	0.0493 (10)	0.810(7)
C11	0.72015 (14)	0.20845 (14)	0.52137 (11)	0.0245 (5)	
H11	0.769830	0.206259	0.540094	0.029*	
C4	0.71015 (14)	0.61755 (14)	0.26802 (12)	0.0255 (5)	
H4	0.760583	0.637948	0.270175	0.031*	
C22	0.59993 (14)	0.72685 (14)	0.94821 (11)	0.0241 (5)	
H22	0.578336	0.776103	0.964300	0.029*	
C7	0.56233 (15)	0.55780 (16)	0.26172 (12)	0.0297(5)	
H7	0.511831	0.537584	0.259521	0.036*	
C19	0.66950 (17)	0.53507 (14)	0.68720(12)	0.0294 (5)	
H19	0.684302	0.483013	0.671134	0.035*	
C24	0.66691 (16)	0.58720 (14)	0.90203 (12)	0.0278 (5)	
H24	0.691776	0.539147	0.887204	0.033*	
C14	0.57563 (15)	0.21559 (15)	0.46452 (12)	0.0265 (5)	
H14	0.526630	0.218244	0.444465	0.032*	
C18	0.66551 (17)	0.54966 (15)	0.75576 (12)	0.0311 (6)	
H18	0.677809	0.507415	0.786663	0.037*	
C6	0.59989 (16)	0.57974 (16)	0.20242 (12)	0.0313 (5)	
H6A	0.575141	0.574575	0.159865	0.038*	
C13	0.61441 (16)	0.14216 (15)	0.46646 (14)	0.0321 (6)	
H13	0.591747	0.094479	0.448363	0.039*	
C25	0.3282 (2)	0.7026 (3)	0.80400 (19)	0.0388 (9)	0.810(7)
H25A	0.315819	0.646817	0.819254	0.047*	0.810(7)
H25B	0.297075	0.740911	0.830851	0.047*	0.810(7)
C26	0.4093 (3)	0.7187 (3)	0.8173 (2)	0.0438 (11)	0.810(7)
H26A	0.421075	0.775979	0.806207	0.053*	0.810(7)
H26B	0.420166	0.710148	0.866016	0.053*	0.810(7)
C28	0.3552 (2)	0.6565 (3)	0.6955 (2)	0.0434 (10)	0.810(7)
H28A	0.343313	0.663150	0.646780	0.052*	0.810(7)
H28B	0.343961	0.599572	0.708289	0.052*	0.810(7)
C27	0.4373 (2)	0.6736 (3)	0.7071 (2)	0.0509 (12)	0.810 (7)
H27A	0.468400	0.635153	0.680357	0.061*	0.810 (7)
H27B	0.449168	0.729354	0.691464	0.061*	0.810 (7)
O10	0.4610 (8)	0.7313 (12)	0.7713 (7)	0.064 (4)	0.190 (7)

C29	0.405 (2)	0.753 (2)	0.8167 (18)	0.071 (5)	0.190 (7)
H29A	0.380285	0.804734	0.803985	0.085*	0.190 (7)
H29B	0.424871	0.756919	0.863503	0.085*	0.190 (7)
C32	0.4311 (12)	0.7477 (15)	0.7046 (9)	0.059 (4)	0.190 (7)
H32A	0.408561	0.802772	0.703074	0.071*	0.190 (7)
H32B	0.472222	0.744782	0.670468	0.071*	0.190 (7)
C30	0.341 (2)	0.666 (2)	0.8067 (17)	0.085 (5)	0.190 (7)
H30A	0.367741	0.613827	0.808990	0.101*	0.190 (7)
H30B	0.298857	0.667275	0.840290	0.101*	0.190 (7)
C31	0.3752 (19)	0.689 (2)	0.6905 (16)	0.076 (5)	0.190 (7)
H31A	0.399871	0.634867	0.690215	0.091*	0.190 (7)
H31B	0.355471	0.698959	0.644293	0.091*	0.190 (7)
012	0.313 (2)	0.6859 (18)	0.7354 (18)	0.087 (6)	0.190 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.02456 (19)	0.01616 (18)	0.01396 (18)	-0.00172 (12)	0.00016 (12)	0.00019 (11)
05	0.0280 (9)	0.0203 (8)	0.0273 (8)	0.0012 (7)	-0.0046 (7)	-0.0030 (6)
07	0.0285 (8)	0.0306 (8)	0.0131 (7)	-0.0072 (7)	0.0008 (6)	-0.0039 (6)
01	0.0347 (10)	0.0364 (9)	0.0161 (8)	-0.0099 (8)	0.0034 (7)	0.0002 (7)
08	0.0405 (10)	0.0279 (8)	0.0137 (7)	0.0021 (7)	0.0000 (7)	-0.0025 (6)
O2	0.0354 (10)	0.0334 (9)	0.0151 (7)	-0.0093 (8)	0.0011 (7)	0.0020 (6)
O4	0.0308 (9)	0.0206 (8)	0.0380 (10)	0.0002 (7)	-0.0082 (8)	-0.0057 (7)
O3	0.0359 (10)	0.0420 (10)	0.0183 (8)	0.0017 (8)	0.0057 (7)	0.0073 (7)
06	0.0327 (10)	0.0212 (8)	0.0524 (12)	0.0044 (7)	-0.0152 (9)	-0.0072 (8)
N1	0.0252 (9)	0.0233 (9)	0.0132 (8)	-0.0024 (8)	-0.0019 (7)	-0.0024 (7)
N2	0.0334 (11)	0.0211 (9)	0.0146 (9)	0.0000 (8)	-0.0009(8)	-0.0029(7)
O11	0.0389 (15)	0.049 (2)	0.0337 (14)	0.0094 (15)	0.0003 (11)	-0.0053 (15)
C8	0.0264 (11)	0.0194 (10)	0.0175 (10)	-0.0011 (9)	0.0010 (8)	0.0016 (8)
С9	0.0260 (11)	0.0232 (11)	0.0187 (10)	-0.0007 (9)	0.0005 (9)	0.0002 (8)
C2	0.0336 (13)	0.0187 (10)	0.0180 (10)	0.0003 (9)	0.0032 (9)	0.0016 (8)
C1	0.0299 (12)	0.0197 (10)	0.0165 (10)	0.0009 (9)	0.0010 (9)	0.0006 (8)
C15	0.0343 (13)	0.0218 (11)	0.0195 (11)	-0.0008 (10)	-0.0017 (9)	0.0029 (9)
C17	0.0299 (12)	0.0197 (10)	0.0184 (10)	0.0005 (9)	-0.0021 (9)	-0.0009 (8)
C10	0.0302 (12)	0.0180 (10)	0.0251 (11)	0.0000 (9)	-0.0019 (9)	-0.0003 (9)
C16	0.0366 (13)	0.0192 (10)	0.0196 (11)	0.0026 (9)	0.0009 (9)	-0.0014 (8)
C21	0.0348 (13)	0.0203 (10)	0.0184 (10)	0.0047 (9)	-0.0035 (9)	0.0014 (8)
C20	0.0317 (12)	0.0195 (10)	0.0165 (10)	-0.0004 (9)	-0.0020 (9)	-0.0012 (8)
C5	0.0338 (12)	0.0257 (11)	0.0180 (11)	0.0022 (10)	0.0073 (9)	0.0036 (9)
C3	0.0315 (12)	0.0224 (11)	0.0172 (10)	0.0026 (10)	0.0020 (9)	0.0015 (8)
C12	0.0294 (12)	0.0198 (11)	0.0305 (12)	0.0025 (9)	-0.0037 (10)	-0.0025 (9)
C23	0.0440 (15)	0.0215 (11)	0.0186 (11)	0.0065 (11)	-0.0039 (10)	0.0010 (9)
09	0.0365 (15)	0.077 (2)	0.0349 (14)	0.0123 (14)	-0.0016 (11)	-0.0141 (14)
C11	0.0272 (12)	0.0227 (11)	0.0236 (11)	-0.0014 (9)	-0.0032 (9)	-0.0003 (9)
C4	0.0276 (12)	0.0262 (11)	0.0225 (11)	0.0026 (10)	0.0023 (9)	0.0031 (9)
C22	0.0325 (13)	0.0184 (10)	0.0214 (10)	0.0054 (9)	0.0004 (9)	-0.0004 (9)
C7	0.0336 (13)	0.0351 (13)	0.0205 (12)	-0.0066 (11)	0.0006 (10)	0.0024 (10)

C19	0.0449 (15)	0.0229 (11)	0.0203 (11)	0.0068 (11)	-0.0021 (10)	-0.0033 (9)
C24	0.0430 (14)	0.0194 (11)	0.0211 (11)	0.0070 (10)	-0.0027 (10)	-0.0025 (9)
C14	0.0277 (12)	0.0227 (12)	0.0292 (12)	0.0019 (10)	-0.0045 (9)	-0.0036 (9)
C18	0.0490 (16)	0.0240 (11)	0.0204 (11)	0.0091 (11)	-0.0052 (11)	-0.0018 (9)
C6	0.0396 (14)	0.0370 (13)	0.0172 (11)	-0.0034 (11)	0.0007 (10)	0.0032 (10)
C13	0.0336 (14)	0.0231 (12)	0.0396 (14)	-0.0009 (10)	-0.0079 (11)	-0.0062 (10)
C25	0.039 (2)	0.050(2)	0.0271 (17)	0.0065 (18)	0.0047 (14)	-0.0004 (17)
C26	0.043 (2)	0.057 (3)	0.0308 (19)	-0.001 (2)	0.0031 (16)	-0.011 (2)
C28	0.035 (2)	0.058 (3)	0.037 (2)	0.0044 (19)	0.0039 (17)	-0.013 (2)
C27	0.041 (2)	0.076 (3)	0.035 (2)	0.001 (2)	0.0008 (16)	-0.021 (2)
O10	0.053 (5)	0.092 (7)	0.046 (5)	0.003 (5)	0.001 (4)	0.003 (5)
C29	0.063 (7)	0.094 (8)	0.057 (7)	-0.002 (6)	-0.001 (6)	-0.001 (6)
C32	0.050 (6)	0.086 (7)	0.041 (6)	-0.003 (6)	0.002 (5)	0.006 (5)
C30	0.079 (8)	0.096 (8)	0.078 (7)	-0.004 (6)	-0.001 (6)	0.000 (6)
C31	0.072 (7)	0.092 (8)	0.064 (7)	-0.003 (6)	0.006 (6)	-0.001 (6)
O12	0.082 (8)	0.096 (8)	0.081 (7)	-0.005 (6)	0.001 (6)	-0.003 (6)

Geometric parameters (Å, °)

Cu1—O5 ⁱ	1.9637 (17)	C12—C11	1.390 (3)
Cu1—O7	2.1185 (16)	C12—C13	1.395 (4)
Cu1—O1	1.9564 (16)	С23—Н23	0.9500
Cu1—O2 ⁱ	1.9692 (16)	C23—C24	1.377 (3)
Cu1—O4	1.9527 (17)	O9—C26	1.431 (5)
О5—С8	1.266 (3)	O9—C27	1.439 (5)
O7—N1	1.336 (2)	C11—H11	0.9500
01—C1	1.260 (3)	C4—H4	0.9500
O8—N2	1.324 (2)	C22—H22	0.9500
O2—C1	1.257 (3)	С7—Н7	0.9500
O4—C8	1.261 (3)	С7—С6	1.392 (3)
O3—H3	0.8400	C19—H19	0.9500
O3—C5	1.360 (3)	C19—C18	1.376 (3)
O6—H6	0.8400	C24—H24	0.9500
O6—C12	1.355 (3)	C14—H14	0.9500
N1-C15	1.347 (3)	C14—C13	1.388 (4)
N1-C19	1.336 (3)	C18—H18	0.9500
N2-C23	1.353 (3)	C6—H6A	0.9500
N2-C22	1.346 (3)	C13—H13	0.9500
O11—C25	1.416 (6)	C25—H25A	0.9900
O11—C28	1.433 (6)	C25—H25B	0.9900
С8—С9	1.486 (3)	C25—C26	1.475 (7)
C9—C10	1.394 (3)	C26—H26A	0.9900
C9—C14	1.390 (3)	C26—H26B	0.9900
C2—C1	1.496 (3)	C28—H28A	0.9900
C2—C3	1.395 (4)	C28—H28B	0.9900
C2—C7	1.390 (3)	C28—C27	1.489 (6)
С15—Н15	0.9500	C27—H27A	0.9900
C15—C16	1.376 (3)	С27—Н27В	0.9900

C17—C16	1.392 (3)	O10—C29	1.38 (4)
C17—C20	1.480 (3)	O10—C32	1.44 (2)
C17—C18	1.396 (3)	С29—Н29А	0.9900
С10—Н10	0.9500	C29—H29B	0.9900
C10—C11	1.381 (3)	C29—C30	1.83 (5)
C16—H16	0.9500	C32—H32A	0 9900
C21—H21	0.9500	C32—H32B	0.9900
$C_{21} - C_{20}$	1 392 (3)	C_{32} C_{31}	1 41 (4)
$C_{21} - C_{22}$	1 381 (3)	C30—H30A	0.9900
C_{20} C_{24}	1.301(3)	C30—H30B	0.9900
$C_{20} = C_{21}$	1 392 (3)	$C_{30} - 0_{12}$	1.52(4)
C5—C6	1.392(3) 1.390(4)	C31—H31A	0.9900
$C_3 H_{3A}$	0.9500	C31 H31R	0.0000
$C_3 = C_4$	1 380 (3)	C_{31} C_{12}	1.41(5)
05-04	1.389 (3)	012	1.41 (3)
O5 ⁱ —Cu1—O7	95.73 (7)	N2—C22—H22	120.0
$O5^{i}$ —Cu1—O2 ⁱ	89.36 (7)	C21—C22—H22	120.0
O1—Cu1—O5 ⁱ	88.94 (7)	С2—С7—Н7	119.8
O1—Cu1—O7	90.49 (7)	C2—C7—C6	120.4 (2)
O1—Cu1—O2 ⁱ	170.38 (7)	С6—С7—Н7	119.8
O2 ⁱ —Cu1—O7	99.10 (7)	N1—C19—H19	120.0
O4—Cu1—O5 ⁱ	170.56 (7)	N1—C19—C18	120.1 (2)
O4—Cu1—O7	93.66 (7)	C18—C19—H19	120.0
04—Cu1—O1	90.04 (8)	C20—C24—H24	119.6
O4—Cu1—O2 ⁱ	90.09 (8)	C23—C24—C20	120.8 (2)
C8—O5—Cu1 ⁱ	119.08 (15)	C23—C24—H24	119.6
N1—07—Cu1	115.61 (13)	C9—C14—H14	119.9
C1—O1—Cu1	124.60 (16)	C13—C14—C9	120.3 (2)
C1—O2—Cu1 ⁱ	119.24 (15)	C13—C14—H14	119.9
C8—O4—Cu1	125.36 (16)	C17—C18—H18	119.5
С5—О3—Н3	109.5	C19—C18—C17	121.0 (2)
С12—О6—Н6	109.5	C19—C18—H18	119.5
O7—N1—C15	118.58 (18)	C5—C6—C7	119.7 (2)
O7—N1—C19	119.90 (19)	С5—С6—Н6А	120.2
C19—N1—C15	121.50 (19)	С7—С6—Н6А	120.2
O8—N2—C23	119.76 (19)	C12—C13—H13	120.1
O8—N2—C22	119.54 (19)	C14—C13—C12	119.7 (2)
C22—N2—C23	120.71 (19)	C14—C13—H13	120.1
C25—O11—C28	109.2 (4)	O11—C25—H25A	109.0
05	118.0 (2)	O11—C25—H25B	109.0
O4—C8—O5	125.0 (2)	O11—C25—C26	112.8 (4)
O4—C8—C9	117.0 (2)	H25A—C25—H25B	107.8
C10—C9—C8	119.2 (2)	C26—C25—H25A	109.0
C14—C9—C8	121.4 (2)	C26—C25—H25B	109.0
C14—C9—C10	119.4 (2)	O9—C26—C25	110.8 (4)
C3—C2—C1	119.7 (2)	O9—C26—H26A	109.5
C7—C2—C1	120.9 (2)	O9—C26—H26B	109.5
C7—C2—C3	119.4 (2)	C25—C26—H26A	109.5

O1—C1—C2	116.2 (2)	С25—С26—Н26В	109.5
O2-C1-O1	125.6 (2)	H26A—C26—H26B	108.1
O2—C1—C2	118.2 (2)	O11—C28—H28A	109.5
N1—C15—H15	120.2	O11—C28—H28B	109.5
N1—C15—C16	119.7 (2)	O11—C28—C27	110.5 (4)
C16—C15—H15	120.2	H28A—C28—H28B	108.1
C16—C17—C20	121.7 (2)	С27—С28—Н28А	109.5
C16—C17—C18	116.5 (2)	C27—C28—H28B	109.5
C18—C17—C20	121.8 (2)	09-C27-C28	111.2 (4)
C9—C10—H10	119.6	09—C27—H27A	109.4
C_{11} C_{10} C_{9}	120.7(2)	09—C27—H27B	109.4
$C_{11} - C_{10} - H_{10}$	119.6	$C_{28} = C_{27} = H_{27A}$	109.1
C_{15} C_{16} C_{17}	121 3 (2)	$C_{28} = C_{27} = H_{27B}$	109.1
C15 - C16 - H16	110 4	$H_{27} = C_{27} = H_{27} = H_{27}$	102.4
C17 C16 H16	110.4	$C_{29} O_{10} C_{32}$	106.0
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	119.4	010 020 010	111.8
$C_{20} = C_{21} = H_{21}$	119.5	010 - 029 - 1129 A	111.0
$C_{22} = C_{21} = C_{20}$	119.5	010 - 029 - 029	111.0
$C_{22} = C_{21} = C_{20}$	121.4(2)	10-10-129-130	100 (2)
$C_{21} = C_{20} = C_{17}$	122.1(2)	H29A—C29—H29B	109.5
$C_{21} = C_{20} = C_{24}$	116.5 (2)	$C_{30} = C_{29} = H_{29} A$	111.8
$C_{24} = C_{20} = C_{17}$	121.4 (2)	C30—C29—H29B	111.8
03-05-04	117.1 (2)	010—C32—H32A	110.1
03	122.5 (2)	010—С32—Н32В	110.1
C6—C5—C4	120.5 (2)	H32A—C32—H32B	108.4
С2—С3—НЗА	119.7	C31—C32—O10	108 (2)
C4—C3—C2	120.6 (2)	C31—C32—H32A	110.1
C4—C3—H3A	119.7	C31—C32—H32B	110.1
O6—C12—C11	121.9 (2)	С29—С30—Н30А	112.2
O6—C12—C13	117.9 (2)	С29—С30—Н30В	112.2
C11—C12—C13	120.2 (2)	H30A—C30—H30B	109.8
N2—C23—H23	119.8	O12—C30—C29	98 (2)
N2—C23—C24	120.5 (2)	O12—C30—H30A	112.2
С24—С23—Н23	119.8	O12—C30—H30B	112.2
C26—O9—C27	109.9 (3)	С32—С31—Н31А	108.2
C10-C11-C12	119.7 (2)	C32—C31—H31B	108.2
C10-C11-H11	120.2	C32—C31—O12	116 (3)
C12—C11—H11	120.2	H31A—C31—H31B	107.4
C5—C4—H4	120.3	O12—C31—H31A	108.2
C3—C4—C5	119.5 (2)	O12—C31—H31B	108.2
C3—C4—H4	120.3	C31—O12—C30	110 (3)
N2-C22-C21	120.0(2)		
	120:0 (2)		
Cul ⁱ —05—C8—04	-1.2(3)	C10-C9-C14-C13	1.1 (4)
$Cu1^{i}$ 05 06 01	177 52 (15)	C_{16} C_{17} C_{20} C_{21}	101(4)
$C_{11} = 0.7 = 0.1 = 0.15$	-91 3 (2)	$C_{16} - C_{17} - C_{20} - C_{24}$	-170 3 (2)
Cu1 = 07 = N1 = C19	87 2 (2)	C16 - C17 - C18 - C19	0.3(4)
$C_{11} = 07 = 07 = 07 = 07$	(1,2)	$C_{10} - C_{17} - C_{10} - C_{17}$	21(4)
$C_{u1} = 01 = 01 = 02$	-176 11 (15)	$C_{21} - C_{20} - C_{24} - C_{23}$	2.1(+) -1704(2)
Cui - Oi - Ci - C2	-1/0.11(13)	120 - 11 - 10 - 13	-1/9.4 (2)

Cu1 ⁱ —O2—C1—O1	-2.8 (3)	C20—C17—C18—C19	179.6 (3)
Cu1 ⁱ O2C1C2	178.11 (15)	C20-C21-C22-N2	-2.0 (4)
Cu1—O4—C8—O5	1.2 (3)	C3-C2-C1-O1	9.7 (3)
Cu1—O4—C8—C9	-177.61 (15)	C3—C2—C1—O2	-171.1 (2)
O5—C8—C9—C10	177.4 (2)	C3—C2—C7—C6	0.6 (4)
O5—C8—C9—C14	-3.5 (3)	C23—N2—C22—C21	2.7 (4)
O7—N1—C15—C16	179.5 (2)	C11—C12—C13—C14	-0.2 (4)
O7—N1—C19—C18	-179.3 (2)	C4—C5—C6—C7	-0.5 (4)
O8—N2—C23—C24	179.2 (2)	C22—N2—C23—C24	-1.0 (4)
O8—N2—C22—C21	-177.4 (2)	C22—C21—C20—C17	179.2 (2)
O4—C8—C9—C10	-3.8 (3)	C22—C21—C20—C24	-0.4 (4)
O4—C8—C9—C14	175.4 (2)	C7—C2—C1—O1	-170.3 (2)
O3—C5—C4—C3	179.9 (2)	C7—C2—C1—O2	8.9 (3)
O3—C5—C6—C7	179.8 (2)	C7—C2—C3—C4	-0.9 (3)
O6—C12—C11—C10	-178.7 (2)	C19—N1—C15—C16	1.0 (4)
O6—C12—C13—C14	179.7 (2)	C14—C9—C10—C11	-0.1 (4)
N1—C15—C16—C17	-0.5 (4)	C18—C17—C16—C15	-0.2 (4)
N1—C19—C18—C17	0.2 (4)	C18—C17—C20—C21	-169.2 (3)
N2-C23-C24-C20	-1.5 (4)	C18—C17—C20—C24	10.4 (4)
O11—C25—C26—O9	-56.8 (5)	C6—C5—C4—C3	0.3 (4)
O11—C28—C27—O9	58.0 (6)	C13—C12—C11—C10	1.2 (4)
C8—C9—C10—C11	179.1 (2)	C25—O11—C28—C27	-57.2 (5)
C8—C9—C14—C13	-178.1 (2)	C26—O9—C27—C28	-56.3 (5)
C9—C10—C11—C12	-1.0 (4)	C28—O11—C25—C26	57.3 (5)
C9—C14—C13—C12	-0.9 (4)	C27—O9—C26—C25	54.9 (5)
C2—C3—C4—C5	0.4 (3)	O10-C29-C30-O12	-69 (3)
C2—C7—C6—C5	0.0 (4)	O10—C32—C31—O12	60 (4)
C1—C2—C3—C4	179.2 (2)	C29—O10—C32—C31	-72 (3)
C1—C2—C7—C6	-179.4 (2)	C29—C30—O12—C31	59 (3)
C15—N1—C19—C18	-0.9 (4)	C32—O10—C29—C30	76 (2)
C17—C20—C24—C23	-177.5 (2)	C32—C31—O12—C30	-61 (4)

Symmetry code: (i) -x+1, -y+1, -z+1.

 $(\mu$ -Acetato)(dioxane)tris(μ -4-hydroxybenzoato)dicopper(II) dioxane 3.5-solvate (compound_10)

Crystal data

$[Cu_2(C_7H_5O_3)_3(C_2H_3O_2)(C_4H_8O_2)]$ ·3.5C ₄ H ₈ O ₂	F(000) = 4144
$M_r = 993.92$	$D_{\rm x} = 1.514 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, <i>I</i> 2/ <i>a</i>	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
a = 19.4801 (2) Å	Cell parameters from 12029 reflections
b = 13.0774 (2) Å	$\theta = 2.6 - 77.0^{\circ}$
c = 34.5443 (5) Å	$\mu = 1.90 \text{ mm}^{-1}$
$\beta = 97.702 \ (1)^{\circ}$	T = 100 K
V = 8720.7 (2) Å ³	Irregular, clear light blue
Z = 8	$0.26 \times 0.09 \times 0.06$ mm

Data collection

Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) $T_{min} = 0.764, T_{max} = 1.000$	37963 measured reflections 9032 independent reflections 6906 reflections with $I > 2\sigma(I)$ $R_{int} = 0.071$ $\theta_{max} = 78.1^{\circ}, \theta_{min} = 4.1^{\circ}$ $h = -24 \rightarrow 24$ $k = -16 \rightarrow 16$ $l = -28 \rightarrow 43$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.191$ S = 1.09 9032 reflections 436 parameters 16 restraints	Primary atom site location: dual Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0941P)^2 + 18.8122P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.12$ e Å ⁻³ $\Delta\rho_{min} = -1.24$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cu2	0.44041 (2)	0.51623 (4)	0.35763 (2)	0.02947 (15)
Cul	0.30843 (2)	0.50941 (4)	0.35715 (2)	0.02987 (15)
O13	0.05315 (11)	0.4778 (2)	0.35721 (7)	0.0337 (5)
O2	0.30466 (11)	0.5698 (2)	0.30561 (7)	0.0392 (6)
08	0.44644 (12)	0.4646 (2)	0.41110 (7)	0.0407 (6)
01	0.41904 (11)	0.5676 (2)	0.30416 (7)	0.0391 (6)
O10	0.43263 (12)	0.6561 (2)	0.37857 (8)	0.0404 (6)
O12	0.19732 (11)	0.5053 (2)	0.35894 (7)	0.0369 (6)
05	0.31312 (12)	0.3742 (2)	0.33394 (7)	0.0393 (6)
O4	0.42855 (12)	0.3756 (2)	0.33901 (8)	0.0414 (6)
07	0.33150 (11)	0.4503 (2)	0.40920 (7)	0.0406 (6)
O11	0.31846 (12)	0.6492 (2)	0.37953 (8)	0.0431 (6)
O6	0.37646 (14)	-0.0615 (2)	0.26699 (9)	0.0566 (8)
H6	0.411533	-0.095216	0.273652	0.085*
O14	0.49812 (14)	0.3538 (2)	0.21595 (10)	0.0573 (8)
03	0.30985 (16)	0.7474 (3)	0.13673 (9)	0.0608 (9)
Н3	0.269905	0.772437	0.131840	0.091*
C9	0.37065 (16)	0.2276 (3)	0.31508 (10)	0.0347 (7)
C1	0.35749 (16)	0.5857 (3)	0.28908 (10)	0.0334 (7)
C8	0.37070 (16)	0.3329 (3)	0.33044 (9)	0.0334 (7)
C2	0.34527 (17)	0.6291 (3)	0.24884 (10)	0.0366 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C15	0.39327 (16)	0.4382 (3)	0.42566 (10)	0.0336(7)
C22	0.37622 (19)	0.6950 (3)	0.38545 (11)	0.0398 (8)
C16	0.40368 (19)	0.3911 (3)	0.46479 (11)	0.0411 (8)
015	0.3630 (2)	0.3028 (4)	0.18432 (12)	0.0898 (13)
C3	0.27752 (19)	0.6499 (3)	0.23152 (11)	0.0427 (9)
H3A	0.239946	0.636583	0.245707	0.051*
C7	0.3989 (2)	0.6463 (4)	0.22722 (13)	0.0539(11)
H7	0.445139	0.631333	0.238242	0.065*
C12	0.37601 (19)	0.0322 (3)	0.28385 (12)	0.0445 (9)
C14	0.43073 (18)	0.1694 (3)	0.32141 (12)	0.0449 (9)
H14	0.470813	0.197199	0.336437	0.054*
C10	0.3124 (2)	0.1862 (4)	0.29364 (13)	0.0512 (10)
H10	0.270403	0.223955	0.289909	0.061*
C4	0.2644 (2)	0.6894 (3)	0.19413 (12)	0.0473 (9)
H4	0.218118	0.703503	0.182926	0.057*
C26	0.08145 (18)	0.5156 (4)	0.32423 (12)	0.0515(11)
H26A	0.081698	0.591269	0.324855	0.062*
H26B	0.051977	0.493612	0.300078	0.062*
C27	0.15447 (18)	0.4770 (4)	0.32362 (12)	0.0534 (12)
H27A	0.153967	0.401680	0.320873	0.064*
H27B	0.173591	0.506501	0.300920	0.064*
C13	0.43340 (18)	0.0727(3)	0.30644 (12)	0.0444 (9)
H13	0.474695	0.033561	0.311605	0.053*
C11	0.3151 (2)	0.0892 (4)	0.27750 (14)	0.0577(12)
H11	0.275376	0.061757	0.262081	0.069*
09	0.4332 (3)	0.2645 (6)	0.57554 (15)	0.158 (3)
H9	0.475453	0.265261	0.584575	0.237*
C5	0.3185 (2)	0.7083 (4)	0.17307(12)	0.0493 (10)
C17	0.3487 (2)	0.3545 (4)	0.48191 (13)	0.0581 (12)
H17	0.302917	0.359420	0.468479	0.070*
C25	0.09698 (19)	0.5089 (5)	0.39178 (12)	0.0679 (16)
H25A	0.077723	0.483734	0.415122	0.081*
H25B	0.098910	0.584502	0.393076	0.081*
C6	0.3860 (2)	0.6851 (4)	0.18967 (13)	0.0611 (13)
H6A	0.423384	0.695983	0.175093	0.073*
C24	0.16922 (19)	0.4665 (5)	0.39156 (12)	0.0666 (15)
H24A	0.198972	0.486336	0.415911	0.080*
H24B	0.167409	0.390914	0.390270	0.080*
C28	0.4463 (3)	0.3372 (6)	0.23929(15)	0.0812 (18)
H28A	0.454840	0.381743	0.262597	0.097*
H28B	0.448857	0.265315	0.248406	0.097*
C18	0.3600 (3)	0.3100 (5)	0.51906 (16)	0.0782 (17)
H18	0.322004	0.283295	0.530427	0.094*
C21	0.4693 (3)	0.3848 (5)	0.48548 (13)	0.0758 (17)
H21	0.507538	0.410986	0.474207	0.091*
C23	0.3785 (3)	0.8010 (4)	0.40150 (16)	0.0635 (12)
H23A	0.426723	0.820561	0.409991	0.095*
H23B	0.352366	0.803686	0.423833	0.095*

H23C	0.357871	0.848395	0.381235	0.095*	
C29	0.3787 (3)	0.3565 (5)	0.21985 (17)	0.0744 (15)	
H29A	0.344515	0.337519	0.237407	0.089*	
H29B	0.373770	0.430747	0.214539	0.089*	
C19	0.4246 (4)	0.3046 (7)	0.53894 (17)	0.116 (3)	
C20	0.4805 (4)	0.3411 (8)	0.52241 (17)	0.124 (4)	
H20	0.526012	0.336326	0.536121	0.149*	
C30	0.4107 (5)	0.3217 (7)	0.16096 (17)	0.116 (3)	
H30A	0.408630	0.394801	0.153427	0.140*	
H30B	0.400532	0.280473	0.136838	0.140*	
C31	0.4837 (4)	0.2964 (6)	0.1809 (2)	0.111 (2)	
H31A	0.487082	0.222395	0.186889	0.133*	
H31B	0.518025	0.313050	0.163161	0.133*	

Atomic displacement parameters (\mathring{A}^2)

	<i>U</i> ¹¹	I /22	I /33	1/12	1/13	I /23
$\overline{Cu2}$	0.0120 (2)		0.0306 (3)	0.00001 (17)	0.00304 (18)	0.00412 (10)
Cu2 Cu1	0.0139(2)	0.0439(3)	0.0300(3)	0.00001(17) 0.00122(17)	0.00304(18)	0.00413(19) 0.00215(10)
012	0.0141(2)	0.0438(3)	0.0299(3)	0.00123(17)	0.00301(18)	0.00213(19)
013	0.0140(10)	0.0547(15)	0.0323(12)	-0.0001(9)	0.0024 (9)	-0.0018(10)
02	0.0174 (10)	0.0651(17)	0.0350 (13)	0.0040(10)	0.0032 (9)	0.0106 (11)
08	0.0192 (11)	0.0681 (17)	0.0344 (13)	0.0011 (11)	0.0019 (9)	0.0134 (12)
01	0.0179 (10)	0.0665 (17)	0.0333 (12)	0.0046 (10)	0.0044 (9)	0.0117 (11)
O10	0.0242 (11)	0.0463 (14)	0.0505 (15)	-0.0023 (10)	0.0043 (10)	-0.0021 (11)
012	0.0115 (10)	0.0643 (17)	0.0348 (13)	-0.0018 (9)	0.0026 (9)	-0.0039 (11)
05	0.0208 (11)	0.0492 (15)	0.0481 (14)	-0.0002 (10)	0.0055 (10)	-0.0067 (11)
04	0.0197 (11)	0.0505 (15)	0.0542 (16)	-0.0018 (10)	0.0058 (10)	-0.0065 (12)
07	0.0195 (11)	0.0685 (17)	0.0341 (13)	-0.0011 (11)	0.0049 (9)	0.0095 (12)
O11	0.0251 (12)	0.0549 (16)	0.0491 (15)	0.0043 (11)	0.0045 (10)	-0.0068 (12)
06	0.0317 (13)	0.0620 (19)	0.074 (2)	0.0072 (12)	0.0001 (13)	-0.0295 (15)
O14	0.0350 (15)	0.0607 (19)	0.078 (2)	-0.0055 (13)	0.0151 (14)	-0.0013 (15)
03	0.0489 (17)	0.088 (2)	0.0479 (16)	0.0206 (16)	0.0153 (13)	0.0219 (16)
C9	0.0215 (14)	0.050(2)	0.0336 (17)	0.0012 (13)	0.0068 (13)	-0.0020 (15)
C1	0.0244 (15)	0.0438 (19)	0.0319 (17)	0.0028 (13)	0.0035 (13)	0.0018 (14)
C8	0.0191 (14)	0.051 (2)	0.0298 (17)	0.0008 (13)	0.0029 (12)	0.0024 (14)
C2	0.0286 (16)	0.046 (2)	0.0368 (18)	0.0066 (14)	0.0082 (14)	0.0028 (15)
C15	0.0218 (14)	0.048 (2)	0.0305 (17)	-0.0002 (13)	0.0024 (12)	-0.0007 (14)
C22	0.0325 (17)	0.050 (2)	0.0359 (19)	0.0023 (15)	0.0022 (14)	0.0023 (15)
C16	0.0352 (18)	0.054 (2)	0.0364 (19)	0.0087 (16)	0.0139 (15)	0.0085 (16)
015	0.073 (3)	0.113 (3)	0.078 (3)	-0.029(2)	-0.010(2)	-0.027(2)
C3	0.0306 (17)	0.059 (2)	0.040 (2)	0.0040 (16)	0.0095 (15)	0.0056 (17)
C7	0.034 (2)	0.079 (3)	0.050 (2)	0.0111 (19)	0.0100 (17)	0.020 (2)
C12	0.0282 (17)	0.058 (2)	0.046 (2)	0.0032 (16)	0.0027 (15)	-0.0163(18)
C14	0.0229 (16)	0.054 (2)	0.057 (2)	-0.0002(15)	-0.0006(15)	-0.0024(18)
C10	0.0293 (18)	0.062 (3)	0.060 (3)	0.0056 (17)	-0.0023(17)	-0.016(2)
C4	0.0341 (19)	0.063(3)	0.046 (2)	0.0114 (17)	0.0087 (16)	0.0089(18)
C26	0.0169 (16)	0.091(3)	0.047(2)	-0.0021(17)	0.0028 (15)	0.021 (2)
C27	0.0153 (16)	0.109 (4)	0.036 (2)	-0.0032(18)	0.0046 (14)	-0.004(2)

C13	0.0215 (16)	0.053 (2)	0.058 (2)	0.0058 (14)	0.0001 (15)	-0.0053 (18)
C11	0.0289 (18)	0.068 (3)	0.072 (3)	0.0014 (18)	-0.0059 (18)	-0.030 (2)
09	0.147 (4)	0.254 (7)	0.091 (3)	0.129 (5)	0.079 (3)	0.122 (4)
C5	0.042 (2)	0.062 (3)	0.045 (2)	0.0126 (18)	0.0121 (17)	0.0139 (19)
C17	0.050 (2)	0.078 (3)	0.051 (2)	0.006 (2)	0.025 (2)	0.017 (2)
C25	0.0136 (16)	0.153 (5)	0.038 (2)	-0.001 (2)	0.0074 (15)	-0.019 (3)
C6	0.039 (2)	0.094 (4)	0.054 (3)	0.017 (2)	0.0193 (19)	0.029 (2)
C24	0.0168 (17)	0.143 (5)	0.040 (2)	0.008 (2)	0.0041 (15)	0.020 (3)
C28	0.056 (3)	0.134 (5)	0.057 (3)	-0.042 (3)	0.021 (2)	-0.011 (3)
C18	0.100 (4)	0.080 (4)	0.066 (3)	0.015 (3)	0.054 (3)	0.028 (3)
C21	0.047 (3)	0.139 (5)	0.041 (2)	0.026 (3)	0.004 (2)	0.032 (3)
C23	0.052 (3)	0.055 (3)	0.084 (3)	0.002 (2)	0.010 (2)	-0.016 (2)
C29	0.046 (3)	0.098 (4)	0.081 (4)	-0.006 (3)	0.015 (2)	-0.024 (3)
C19	0.132 (6)	0.166 (7)	0.061 (3)	0.103 (5)	0.049 (4)	0.063 (4)
C20	0.091 (5)	0.234 (10)	0.051 (3)	0.072 (6)	0.024 (3)	0.061 (5)
C30	0.172 (6)	0.132 (5)	0.046 (3)	-0.072 (5)	0.020 (4)	-0.036 (3)
C31	0.117 (5)	0.095 (4)	0.139 (5)	-0.027 (4)	0.090 (4)	-0.061 (4)

Geometric parameters (Å, °)

Cu2—O13 ⁱ	2.199 (2)	C12—C11	1.393 (5)
Cu2—O8	1.955 (2)	C14—H14	0.9500
Cu2—O1	1.957 (2)	C14—C13	1.370 (6)
Cu2010	1.981 (3)	C10—H10	0.9500
Cu2—O4	1.951 (3)	C10—C11	1.388 (6)
Cu1—O2	1.940 (2)	C4—H4	0.9500
Cu1—012	2.174 (2)	C4—C5	1.382 (5)
Cu1—O5	1.948 (3)	C26—H26A	0.9900
Cu1—O7	1.953 (2)	C26—H26B	0.9900
Cu1011	1.984 (3)	C26—C27	1.512 (5)
O13—C26	1.419 (4)	C27—H27A	0.9900
O13—C25	1.431 (5)	C27—H27B	0.9900
O2—C1	1.259 (4)	C13—H13	0.9500
O8—C15	1.259 (4)	C11—H11	0.9500
01—C1	1.264 (4)	О9—Н9	0.8400
O10—C22	1.261 (4)	O9—C19	1.358 (6)
O12—C27	1.432 (4)	C5—C6	1.395 (6)
O12—C24	1.412 (5)	C17—H17	0.9500
O5—C8	1.266 (4)	C17—C18	1.399 (7)
O4—C8	1.257 (4)	C25—H25A	0.9900
O7—C15	1.270 (4)	C25—H25B	0.9900
O11—C22	1.267 (4)	C25—C24	1.514 (5)
O6—H6	0.8199	С6—Н6А	0.9500
O6—C12	1.356 (5)	C24—H24A	0.9900
O14—C28	1.391 (5)	C24—H24B	0.9900
O14—C31	1.421 (7)	C28—H28A	0.9900
О3—Н3	0.8400	C28—H28B	0.9900
O3—C5	1.345 (5)	C28—C29	1.419 (8)

С9—С8	1.475 (5)	C18—H18	0.9500
C9—C14	1.389 (5)	C18—C19	1.352 (10)
C9—C10	1.380 (5)	C21—H21	0.9500
C1—C2	1.491 (5)	C21—C20	1.389 (7)
C2—C3	1.401 (5)	С23—Н23А	0.9800
C2—C7	1.382 (5)	С23—Н23В	0.9800
C15—C16	1.474 (5)	С23—Н23С	0.9800
C22—C23	1.492 (6)	С29—Н29А	0.9900
C16—C17	1.378 (5)	С29—Н29В	0.9900
C16—C21	1.380 (6)	C19—C20	1.380 (11)
O15—C29	1.412 (6)	C20—H20	0.9500
O15—C30	1.334 (8)	C30—H30A	0.9900
С3—НЗА	0.9500	C30—H30B	0.9900
C3—C4	1.383 (5)	C30—C31	1.530 (12)
С7—Н7	0.9500	C31—H31A	0.9900
C7—C6	1.384 (6)	C31—H31B	0.9900
C12—C13	1.381 (5)		
$O8-Cu2-O13^{i}$	94.87 (9)	H26A—C26—H26B	108.0
08—Cu2—O1	171.23 (9)	C27—C26—H26A	109.4
$08-Cu^2-010$	88.38 (12)	C27—C26—H26B	109.4
$01-Cu^2-013^i$	93 90 (9)	012-C27-C26	1101(3)
$01 - Cu^2 - 010$	90.61 (12)	012 - C27 - H27A	109.6
$010-012-013^{i}$	95 46 (10)	O12 - C27 - H27B	109.6
$04-Cu^2-013^i$	96.05 (10)	$C_{26} - C_{27} - H_{27A}$	109.6
$04-Cu^2-08$	88 61 (12)	$C_{20} = C_{27} = H_{27R}$	109.6
$04 - Cu^2 = 01$	90.65 (12)	$H_{27} = C_{27} = H_{27} = H_{27}$	109.0
$04-Cu^2-010$	168 31 (10)	C_{12} C_{13} H_{13}	120.0
$O_{1}^{2} = C_{11}^{2} = O_{10}^{12}$	06.03(0)	$C_{12} = C_{13} = 1113$	120.0 110.0(3)
02 - Cu1 - 012	90.95 (9) 80 40 (11)	C14 - C13 - C12	119.9 (3)
02 - Cu1 - 03	168 07 (0)	$C_{14} = C_{15} = 1115$	120.0
02 - Cu1 - 07	100.97(9) 88 41 (12)	$C_{12} = C_{11} = C_{12}$	119.9 120.2(4)
02 - Cu1 - 011	95.24(10)	$C_{10} = C_{11} = C_{12}$	120.2 (4)
05 - Cu1 - 012	95.24(10)	$C_{10} = C_{11} = H_{11}$	119.9
05 - Cu1 - 07	90.13(12) 171.26(10)	C19 - 09 - H9	109.3
03 - Cu1 - 011	1/1.30(10)	03 - 03 - 04	123.4(4)
0/Cu1012	94.09 (9)	03-05-06	117.4(4)
0/-cui-011	90.42(12)	$C_4 - C_5 - C_0$	119.2 (4)
011 - 012	95.55 (10)	C16 - C17 - H17	119.9
$C_{20} = 013 = C_{12}^{-1}$	119.2(2)	C16 - C17 - C18	120.1 (5)
$C_{20} = 013 = C_{23}$	108.6 (3)		119.9
$C_{25} = 013 = Cu2^{n}$	118.0 (2)	013—C25—H25A	109.7
C1 = O2 = Cu1	123.4 (2)	013—C25—H25B	109.7
C15 - C02	121.6 (2)	U13 - U23 - U24	110.0 (4)
C1 = O1 = Cu2	121.6 (2)	H25A-U25-H25B	108.2
C22—O10—Cu2	123.5 (2)	C24—C25—H25A	109.7
$C_2/-O_1^2-C_{u_1}$	116.8 (2)	C24—C25—H25B	109.7
C24—O12—Cul	121.7 (2)	C/C6C5	120.5 (4)
C24—O12—C27	110.1 (3)	С7—С6—Н6А	119.7

C8—O5—Cu1	121.2 (2)	С5—С6—Н6А	119.7
C8—O4—Cu2	124.0 (2)	O12—C24—C25	109.4 (4)
C15—O7—Cu1	123.3 (2)	O12—C24—H24A	109.8
C22—O11—Cu1	122.5 (2)	O12—C24—H24B	109.8
С12—О6—Н6	114.7	C25—C24—H24A	109.8
C28—O14—C31	109.6 (4)	C25—C24—H24B	109.8
С5—О3—Н3	109.5	H24A—C24—H24B	108.2
C14—C9—C8	119.7 (3)	O14—C28—H28A	108.9
С10—С9—С8	121.4 (3)	O14—C28—H28B	108.9
C10—C9—C14	118.9 (4)	O14—C28—C29	113.4 (5)
O2—C1—O1	124.8 (3)	H28A—C28—H28B	107.7
O2—C1—C2	116.6 (3)	C29—C28—H28A	108.9
O1—C1—C2	118.7 (3)	C29—C28—H28B	108.9
05	118.4 (3)	C17—C18—H18	119.7
04	124.4 (3)	C19—C18—C17	120.6 (5)
04—C8—C9	117.2 (3)	C19—C18—H18	119.7
C3—C2—C1	119.7 (3)	C16—C21—H21	119.3
C7—C2—C1	121.9 (3)	C16-C21-C20	121.4 (5)
C7—C2—C3	118.4 (3)	C20—C21—H21	119.3
08-015-07	124.6 (3)	C22—C23—H23A	109.5
08 - C15 - C16	127.5(3)	C22—C23—H23B	109.5
07 - C15 - C16	117.0(3)	C22—C23—H23C	109.5
010-C22-011	123 8 (4)	H23A—C23—H23B	109.5
$010 - C^{22} - C^{23}$	123.0(1) 1174(4)	H23A—C23—H23C	109.5
$011 - C^{22} - C^{23}$	117.1(1) 1187(4)	H23R - C23 - H23C	109.5
C_{17} C_{16} C_{15}	121 3 (4)	015-029-028	109.3 113.7(5)
C_{17} C_{16} C_{21}	121.3(4) 118 4 (4)	015 - 029 - 020	108.8
C_{21} C_{16} C_{15}	120.2(3)	015 - 029 - H29R	108.8
$C_{30} - 015 - C_{29}$	120.2(3) 1103(4)	C_{28} C_{29} H_{29A}	108.8
$C_{2} - C_{3} - H_{3}A$	110.5 (4)	$C_{28} = C_{29} = H_{29R}$	108.8
C4-C3-C2	121.2 (3)	$H_{29}A = C_{29} = H_{29}B$	107.7
C4 - C3 - H3A	119.4	09-C19-C20	107.7 120.9(7)
$C^2 - C^7 - H^7$	119.4	C18 - C19 - O9	120.9(7) 118.9(7)
$C_2 - C_7 - C_6$	120.7(4)	C18 - C19 - C20	110.9(7) 120.2(5)
C6-C7-H7	119.6	$C_{10} = C_{10} = C_{20}$	120.2 (3)
06-012-013	122 5 (3)	C19 - C20 - C21	119.1 (6)
06-C12-C11	122.3(3)	C19 - C20 - C21 C19 - C20 - H20	120.4
C_{13} C_{12} C_{11}	110.1(5) 119.4(4)	015 - 020 - 1120	109.3
C9-C14-H14	119.3	015 - 000 - 000	109.3
C_{13} C_{14} C_{9}	119.5 121 4 (3)	015 - 030 - 031	111.6 (6)
C_{13} C_{14} H_{14}	121.4 (5)	$H_{30A} = C_{30} = H_{30B}$	108.0
C_{0} C_{10} H_{10}	120.0	C31_C30_H30A	100.0
C_{9} C_{10} C_{11}	120.0 120.1(4)	C31_C30_H30B	109.3
$C_{11} - C_{10} - H_{10}$	120.1 (4)	014-031-030	109.5
C3_C4_H4	120.0	014 - 031 - 030	109.0 (3)
$C_{5} - C_{4} - C_{3}$	120.0 120.0(4)	014-031-H31R	109.0
C5C4H4	120.0 (+)	C_{30} C_{31} H_{31}	109.8
013—C26—H26A	109.4	C30-C31-H31R	109.8
$\overline{\mathbf{U}}$	102.7		107.0

O13—C26—H26B	109.4	H31A—C31—H31B	108.2
O13—C26—C27	111.3 (3)		
Cu2 ⁱⁱ —O13—C26—C27	-162.8 (3)	C1—C2—C7—C6	178.9 (4)
Cu2 ⁱⁱ —O13—C25—C24	160.5 (3)	C8—C9—C14—C13	-177.7 (4)
Cu2—O8—C15—O7	-6.6 (5)	C8—C9—C10—C11	176.0 (4)
Cu2-08-C15-C16	174.3 (3)	C2—C3—C4—C5	0.5 (7)
Cu2—O1—C1—O2	-2.6 (5)	C2—C7—C6—C5	0.5 (8)
Cu2—O1—C1—C2	177.3 (2)	C15—C16—C17—C18	179.9 (5)
Cu2—O10—C22—O11	-0.4 (5)	C15—C16—C21—C20	179.9 (6)
Cu2—O10—C22—C23	179.5 (3)	C16—C17—C18—C19	1.6 (9)
Cu2—O4—C8—O5	-2.3 (5)	C16—C21—C20—C19	-1.0 (12)
Cu2—O4—C8—C9	177.3 (2)	O15—C30—C31—O14	-57.8 (8)
Cu1—O2—C1—O1	-2.3 (5)	C3—C2—C7—C6	1.3 (7)
Cu1—O2—C1—C2	177.8 (2)	C3—C4—C5—O3	-179.4 (4)
Cu1—O12—C27—C26	-158.4 (3)	C3—C4—C5—C6	1.3 (7)
Cu1—O12—C24—C25	158.4 (3)	C7—C2—C3—C4	-1.8 (7)
Cu1—O5—C8—O4	-4.5 (5)	C14—C9—C8—O5	-161.0 (3)
Cu1—O5—C8—C9	175.9 (2)	C14—C9—C8—O4	19.3 (5)
Cu1—O7—C15—O8	1.9 (5)	C14—C9—C10—C11	-2.5 (6)
Cu1—O7—C15—C16	-179.1 (3)	C10—C9—C8—O5	20.5 (5)
Cu1—O11—C22—O10	-1.5 (5)	C10—C9—C8—O4	-159.1 (4)
Cu1—O11—C22—C23	178.5 (3)	C10—C9—C14—C13	0.8 (6)
O13—C26—C27—O12	-57.2 (5)	C4—C5—C6—C7	-1.8 (8)
O13—C25—C24—O12	61.2 (6)	C26—O13—C25—C24	-59.8 (5)
O2—C1—C2—C3	-0.1 (5)	C27—O12—C24—C25	-59.4 (5)
O2—C1—C2—C7	-177.6 (4)	C13—C12—C11—C10	0.3 (7)
O8—C15—C16—C17	-176.1 (4)	C11—C12—C13—C14	-1.9 (7)
O8—C15—C16—C21	5.2 (6)	O9—C19—C20—C21	-177.8 (8)
O1—C1—C2—C3	-180.0 (4)	C17—C16—C21—C20	1.2 (9)
O1—C1—C2—C7	2.5 (6)	C17—C18—C19—O9	177.5 (7)
O7—C15—C16—C17	4.7 (6)	C17—C18—C19—C20	-1.4 (12)
O7—C15—C16—C21	-174.0 (4)	C25—O13—C26—C27	58.1 (5)
O6—C12—C13—C14	177.3 (4)	C24—O12—C27—C26	57.4 (5)
O6—C12—C11—C10	-179.0 (4)	C28—O14—C31—C30	54.1 (8)
O14—C28—C29—O15	53.8 (8)	C18—C19—C20—C21	1.1 (13)
O3—C5—C6—C7	178.8 (5)	C21—C16—C17—C18	-1.4 (8)
C9—C14—C13—C12	1.4 (6)	C29—O15—C30—C31	55.7 (8)
C9—C10—C11—C12	1.9 (7)	C30—O15—C29—C28	-54.5 (9)
C1—C2—C3—C4	-179.4 (4)	C31—O14—C28—C29	-54.0 (8)

Symmetry codes: (i) *x*+1/2, -*y*+1, *z*; (ii) *x*-1/2, -*y*+1, *z*.

 $Bis(\mu$ -acetato) $bis(\mu$ -4-hydroxybenzoato) $bis[(1,4-diazabicyclo[2.2.2]octane) \land copper(II)]$ dioxane decasolvate (compound 11)

F(000) = 1732

 $\theta = 4.4 - 76.2^{\circ}$ $\mu = 1.36 \text{ mm}^{-1}$

T = 100 K

 $D_{\rm x} = 1.355 {\rm Mg} {\rm m}^{-3}$

Irregular, clear green $0.34 \times 0.25 \times 0.14$ mm

Cu Ka radiation, $\lambda = 1.54184$ Å

Cell parameters from 12586 reflections

Crystal data

$$\begin{split} & [\mathrm{Cu}_2(\mathrm{C}_7\mathrm{H}_5\mathrm{O}_3)_2(\mathrm{C}_2\mathrm{H}_3\mathrm{O}_2)_2(\mathrm{C}_6\mathrm{H}_{12}\mathrm{N}_2)_2]\cdot 10\mathrm{C}_4\mathrm{H}_8\mathrm{O}_2 \\ & M_r = 1624.77 \\ & \text{Monoclinic, } Pc \\ & a = 9.7404 \text{ (3) Å} \\ & b = 20.3001 \text{ (4) Å} \\ & c = 22.9088 \text{ (7) Å} \\ & \beta = 118.494 \text{ (4)}^\circ \\ & V = 3981.1 \text{ (2) Å}^3 \\ & Z = 2 \end{split}$$

Data collection

Rigaku XtaLAB Synergy Dualflex	$T_{\min} = 0.533, \ T_{\max} = 1.000$
diffractometer with a HyPix detector	27595 measured reflections
Radiation source: micro-focus sealed X-ray	12037 independent reflections
tube, PhotonJet (Cu) X-ray Source	9752 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.040$
Detector resolution: 10.0000 pixels mm ⁻¹	$\theta_{\rm max} = 78.3^{\circ}, \theta_{\rm min} = 3.1^{\circ}$
ω scans	$h = -11 \rightarrow 12$
Absorption correction: multi-scan	$k = -25 \rightarrow 21$
(CrysAlis PRO; Rigaku OD, 2023)	$l = -28 \rightarrow 29$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.098$	H-atom parameters constrained
$wR(F^2) = 0.287$	$w = 1/[\sigma^2(F_0^2) + (0.2P)^2]$
S = 1.21	where $P = (F_0^2 + 2F_c^2)/3$
12037 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
985 parameters	$\Delta \rho_{\rm max} = 1.38 \text{ e} \text{ Å}^{-3}$
352 restraints	$\Delta \rho_{\rm min} = -0.69 \text{ e } \text{\AA}^{-3}$
Primary atom site location: dual	Absolute structure: Refined as an inversion

Absolute structure parameter: 0.46 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Twin: Twin law (-1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0), BASF [0.46 (6)]. One of the 1,4diazabicyclo[2.2.2]octane (DABCO) ligands clearly showed disorder. This ligand was modelled in two components, in Parts 1 and 2. Atoms in component 2 have the lower occupancy and were allowed to remain isotropic. There was evidence ofor some disorder in the second DABCO. Attempts to model the second DABCO ligand over two sites were unsuccessful.

	Fractional atomic coordinates an	d isotropic or	equivalent	isotropic disp	placement par	rameters (Ų)
--	----------------------------------	----------------	------------	----------------	---------------	--------------

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cu1	0.85466 (11)	0.73020 (5)	0.69458 (5)	0.0479 (3)	
Cu2	1.09154 (12)	0.77234 (5)	0.80581 (5)	0.0510 (4)	

01	0.7337 (8)	0.7533 (3)	0.7410(3)	0.0545 (14)
02	0.9351 (9)	0.7849 (4)	0.8363 (4)	0.0649 (19)
03	1.0129 (8)	0.7148 (4)	0.6664 (3)	0.0566 (15)
04	1.2119 (8)	0.7550 (4)	0.7585 (4)	0.0627 (18)
05	0.8421 (9)	0.8227 (3)	0.6666 (3)	0.068 (2)
06	1.0355 (8)	0.8600 (3)	0.7626 (3)	0.0628 (18)
07	0.8164 (8)	1.1244 (3)	0.5991 (4)	0.0627 (18)
H7	0.735797	1.125104	0.561829	0.094*
08	0.9025 (8)	0.6434 (3)	0.7376 (3)	0.0556 (16)
09	1.1103 (9)	0.6788 (3)	0.8302 (3)	0.066 (2)
010	1.1514 (8)	0.3737(3)	0.8890(3)	0.0580(16)
H10	1.242643	0.370206	0.920603	0.087*
N1	0.6535(9)	0.6937(3)	0.6026 (3)	0.0513(18)
N2	0.0333(9)	0.6957(3)	0.0020(3) 0.4961(4)	0.0513(10) 0.0501(17)
N3	1,2970(9)	0.8068(3)	0.1901(1) 0.8954(4)	0.0301(17) 0.0494(17)
N4	1.2970(9) 1 5416(9)	0.8509(3)	0.0997(4)	0.0494(17) 0.0504(17)
C1	0.7935(13)	0.0509(5) 0.7739(4)	0.7989 (5)	0.0501(17)
C^2	0.6851 (14)	0.7869 (5)	0.7709(5)	0.055(2)
U2 H2A	0.0001 (14)	0.7809 (5)	0.8275 (5)	0.003 (3)
112A 112B	0.377333	0.791408	0.750555	0.098
	0.710445	0.827048	0.855014	0.098*
C3	1.1553(12)	0.7302(3)	0.055914 0.7004 (5)	0.098
C3	1.1333(12) 1.2650(12)	0.7302(3)	0.7004(5)	0.050(2)
	1.2039 (13)	0.7193 (3)	0.0733 (3)	0.001(2)
П4А ЦИР	1.329110	0.080081	0.094197	0.092*
H4B	1.334402	0.757745	0.685458	0.092*
П4C С22	1.200858	0.713027	0.023330	0.092°
C23	0.9304 (11)	0.8674(4)	0.7040(5)	0.053(2)
C24	0.9011 (10)	0.9353 (4)	0.6761 (4)	0.0465 (18)
C25	0.9800 (11)	0.9889 (4)	0.7165 (5)	0.057(2)
H25	1.052472	0.982761	0.762134	0.068*
C26	0.9494 (12)	1.0524 (4)	0.6878 (5)	0.061 (3)
H26	1.004959	1.088933	0./14558	0.074*
C27	0.8426 (10)	1.0628 (4)	0.6229 (5)	0.0482 (18)
C28	0.7625 (11)	1.0083 (4)	0.5820 (5)	0.055 (2)
H28	0.690983	1.014453	0.536306	0.066*
C29	0.7902 (11)	0.9457 (4)	0.6100 (4)	0.055 (2)
H29	0.732614	0.909320	0.583570	0.066*
C30	1.0211 (10)	0.6345 (4)	0.7946 (4)	0.0476 (18)
C31	1.0515 (10)	0.5660 (4)	0.8206 (4)	0.0482 (19)
C32	1.1735 (11)	0.5534 (4)	0.8840 (4)	0.0524 (19)
H32	1.231937	0.589170	0.911329	0.063*
C33	1.2111 (10)	0.4893 (4)	0.9079 (4)	0.0514 (19)
H33	1.295430	0.481419	0.951050	0.062*
C34	1.1242 (10)	0.4367 (4)	0.8682 (4)	0.0489 (19)
C35	0.9965 (10)	0.4496 (4)	0.8065 (4)	0.0441 (17)
H35	0.932200	0.414425	0.780473	0.053*
C36	0.9632 (10)	0.5127 (4)	0.7831 (4)	0.0489 (19)
H36	0.877725	0.520475	0.740214	0.059*

C5	0.5817 (13)	0.7470 (4)	0.5539 (4)	0.071 (2)	
H5A	0.661791	0.768011	0.545101	0.086*	
H5B	0.539214	0.780894	0.571925	0.086*	
C6	0.4459 (14)	0.7184 (4)	0.4869 (5)	0.071 (2)	
H6A	0.348008	0.742948	0.474581	0.085*	
H6B	0.473148	0.723614	0.450713	0.085*	
C7	0.5318 (11)	0.6656 (5)	0.6174 (5)	0.0652 (18)	
H7A	0.497202	0.699641	0.638520	0.078*	
H7B	0.576483	0.628375	0.648895	0.078*	
C8	0.3893 (12)	0.6411 (6)	0.5523 (5)	0.0649 (18)	
H8A	0 367328	0 594432	0 557268	0.078*	
H8B	0.295776	0.667446	0.543298	0.078*	
C9	0.7044(12)	0.6412 (5)	0 5746 (5)	0.067(2)	
H9A	0 758000	0.606883	0.608765	0.081*	
H9B	0 780430	0.658960	0 561494	0.081*	
C10	0 5667 (12)	0.6099 (5)	0.5137(5)	0.067(2)	
H10A	0 588724	0.609772	0.475705	0.081*	
H10R	0.552632	0.563742	0.523670	0.081*	
C11	1 3898 (15)	0.7540 (6)	0.9385(7)	0.0551 (16)	0.718(10)
H11A	1.3050 (15)	0.726717	0.915159	0.066*	0.718(10) 0.718(10)
H11R	1.452578	0.725593	0.949579	0.066*	0.718(10) 0.718(10)
C12	1.522075	0.725555	1 0023 (6)	0.060(4)	0.718(10) 0.718(10)
H12A	1.5237 (10)	0.7814 (0)	1.0025 (0)	0.000 (+)	0.718(10) 0.718(10)
H12A H12B	1.505952	0.771393	1.039974	0.072*	0.718(10) 0.718(10)
C15	1.022080	0.759205 0.8512 (6)	1.010895	0.072°	0.718(10)
	1.2310 (13)	0.8312(0)	0.9373 (0)	0.0343 (10)	0.718(10)
	1.194310	0.823070	0.933740	0.003*	0.718(10)
	1.181009	0.880/81	0.909377	0.003°	0.718(10)
	1.4002 (14)	0.8813(0)	0.9930 (0)	0.030 (3)	0.718(10)
HIOA	1.402012	0.929301	0.988015	0.00/*	0.718(10)
HI0B C10	1.398941	0.874340	1.03/33/	0.00/*	0.718 (10)
C19	1.3896 (15)	0.8494 (6)	0.8764 (6)	0.0548 (16)	0.718 (10)
HI9A	1.331843	0.890677	0.856814	0.066*	0.718 (10)
HI9B	1.408878	0.827023	0.842540	0.066*	0.718 (10)
C20	1.54/2 (15)	0.8653 (7)	0.9384 (6)	0.058 (3)	0.718 (10)
H20A	1.631272	0.838998	0.937081	0.070*	0.718 (10)
H20B	1.572144	0.912470	0.937805	0.070*	0.718 (10)
C13	1.271 (3)	0.8015 (14)	0.9559 (13)	0.0545 (16)*	0.282 (10)
HI3A	1.235087	0.756741	0.958949	0.065*	0.282 (10)
HI3B	1.191994	0.833793	0.952728	0.065*	0.282 (10)
C14	1.432 (3)	0.816 (2)	1.0179 (11)	0.080 (10)*	0.282 (10)
H14A	1.415467	0.844130	1.049389	0.096*	0.282 (10)
H14B	1.480252	0.774396	1.040558	0.096*	0.282 (10)
C17	1.327 (3)	0.8756 (10)	0.8885 (11)	0.0543 (16)*	0.282 (10)
H17A	1.233185	0.901935	0.879702	0.065*	0.282 (10)
H17B	1.346134	0.880739	0.850136	0.065*	0.282 (10)
C18	1.469 (3)	0.9017 (10)	0.9517 (11)	0.048 (6)*	0.282 (10)
H18A	1.544868	0.921148	0.939613	0.058*	0.282 (10)
H18B	1.433958	0.936897	0.971671	0.058*	0.282 (10)

C21	1.428 (2)	0.7627 (12)	0.9128 (14)	0.0545 (16)*	0.282 (10)
H21A	1.442221	0.754562	0.873300	0.065*	0.282 (10)
H21B	1.408343	0.720003	0.928145	0.065*	0.282 (10)
C22	1.578 (2)	0.7947 (14)	0.9686 (14)	0.062 (8)*	0.282 (10)
H22A	1.636052	0.761343	1.003274	0.074*	0.282 (10)
H22B	1.645886	0.809399	0.949975	0.074*	0.282 (10)
011	0.6469 (17)	1.2339 (5)	0.6830 (6)	0.116 (4)	()
012	0.9058 (11)	1.1719 (4)	0.7875 (5)	0.088 (2)	
C37	0.805 (3)	1.2511 (7)	0.7007 (9)	0.108 (5)	
H37A	0.810676	1.298416	0.691462	0.130*	
H37B	0.839709	1.225312	0.673301	0.130*	
C38	0.914(2)	1.2374 (6)	0.7737(8)	0.093 (4)	
H38A	1 022609	1 248661	0 784663	0.112*	
H38B	0.884026	1.265241	0.801290	0.112*	
C39	0.7412(18)	1 1545 (9)	0.7692(9)	0.098(4)	
H39A	0.703883	1.19 13 (9)	0.794602	0.118*	
H39R	0.733860	1.107483	0.778986	0.118*	
C40	0.735000 0.6454(17)	1.1674 (9)	0.6963 (9)	0.110 0.100(4)	
C40 H40Δ	0.687781	1.1074 ())	0.671755	0.120*	
	0.536406	1.152025	0.681007	0.120*	
013	1.355(2)	1.152955	0.081097 0.8567 (11)	0.120	
013	1.333(2) 1.445(3)	1.1090 (8)	0.0130(11)	0.105(5)	
C41	1.445(3) 1.275(3)	1.0405(9) 1.1275(10)	0.9130(13) 0.8707(15)	0.130(0)	
	1.275 (5)	1.1275 (10)	0.8797(13)	0.149(5) 0.170*	
П 4 1А 1141D	1.200739	1.100370	0.041917	0.179*	
H41B	1.213470	1.155589	0.893987	0.179^{*}	
C42	1.372 (4)	1.0832 (12)	0.9345 (16)	0.170 (6)	
H42A	1.450083	1.108938	0.972612	0.204*	
H42B	1.305914	1.058/61	0.949108	0.204*	
C43	1.536 (4)	1.0/39 (11)	0.8949 (17)	0.162 (6)	
H43A	1.5/4/82	1.042848	0.8/2//9	0.194*	
H43B	1.62/666	1.089920	0.935585	0.194*	
C44	1.465 (4)	1.1308 (12)	0.8501 (17)	0.171 (6)	
H44A	1.551154	1.160420	0.855505	0.206*	
H44B	1.415657	1.114120	0.803947	0.206*	
016	1.4098 (13)	0.8818 (4)	0.6857 (5)	0.094 (3)	
015	1.4720 (14)	1.0174 (5)	0.7067 (8)	0.113 (4)	
C45	1.3353 (18)	0.9927 (8)	0.7042 (10)	0.099 (4)	
H45A	1.247286	0.997265	0.658592	0.119*	
H45B	1.309755	1.018077	0.734664	0.119*	
C46	1.359 (2)	0.9209 (7)	0.7242 (7)	0.090 (4)	
H46A	1.436835	0.917540	0.771757	0.108*	
H46B	1.258860	0.902753	0.718892	0.108*	
C47	1.5375 (19)	0.9108 (6)	0.6829 (10)	0.088 (4)	
H47A	1.557816	0.886458	0.650303	0.105*	
H47B	1.631343	0.906628	0.726872	0.105*	
C48	1.511 (2)	0.9830 (6)	0.6634 (9)	0.094 (4)	
H48A	1.607434	1.001937	0.665651	0.113*	
H48B	1.425969	0.987324	0.617141	0.113*	

017	0.7898 (13)	0.9441 (4)	0.9096 (5)	0.096 (3)
O18	1.0942 (14)	0.9954 (5)	0.9541 (6)	0.106 (3)
C49	0.9221 (18)	0.9168 (7)	0.9667 (8)	0.094 (4)
H49A	0.964045	0.878968	0.952838	0.113*
H49B	0.888839	0.900485	0.998762	0.113*
C50	1.046 (2)	0.9674 (10)	0.9992 (10)	0.111 (5)
H50A	1.006810	1.003012	1.016842	0.133*
H50B	1.137750	0.947185	1.037082	0.133*
C51	0.955 (3)	1.0224 (8)	0.8978 (10)	0.112 (5)
H51A	0.908601	1.056936	0.913464	0.135*
H51B	0.983877	1.042620	0.865879	0.135*
C52	0.843 (3)	0.9707 (8)	0.8657 (8)	0.115 (6)
H52A	0.891924	0.935246	0.852127	0.139*
H52B	0.753256	0.988256	0.825293	0.139*
O19	1.1865 (17)	0.7493 (9)	1.0421 (7)	0.141 (6)
O20	0.9620 (16)	0.7060 (7)	1.0781 (10)	0.130 (5)
C53	1.226 (2)	0.7344 (13)	1.1086 (10)	0.127 (7)
H53A	1.310960	0.764189	1.138406	0.153*
H53B	1.266262	0.688800	1.118443	0.153*
C54	1.093 (2)	0.7405 (13)	1.1245 (12)	0.132 (8)
H54A	1.126336	0.722839	1.169497	0.159*
H54B	1.066390	0.787569	1.124147	0.159*
C55	0.918 (2)	0.7239 (8)	1.0126 (11)	0.112 (6)
H55A	0.886360	0.770870	1.005777	0.135*
H55B	0.826590	0.697206	0.981839	0.135*
C56	1.055 (2)	0.7129 (11)	0.9976 (11)	0.114 (5)
H56A	1.081314	0.665438	1.001740	0.137*
H56B	1.023119	0.726698	0.951508	0.137*
O21	1.5083 (12)	0.5874 (10)	1.0261 (5)	0.144 (6)
022	1.6773 (10)	0.5843 (4)	1.1660 (4)	0.083 (2)
C57	1.6700 (16)	0.6025 (7)	1.0601 (7)	0.084 (3)
H57A	1.684826	0.650769	1.065923	0.101*
H57B	1.720335	0.586978	1.033936	0.101*
C58	1.7448 (15)	0.5686 (5)	1.1280 (6)	0.086 (4)
H58A	1.738670	0.520347	1.121272	0.104*
H58B	1.856714	0.580821	1.152327	0.104*
C59	1.5175 (17)	0.5698 (9)	1.1285 (8)	0.096 (4)
H59A	1.464938	0.581742	1.154818	0.115*
H59B	1.505338	0.521745	1.120472	0.115*
C60	1.4398 (14)	0.6033 (10)	1.0653 (6)	0.096 (5)
H60A	1.328134	0.590622	1.041981	0.116*
H60B	1.445787	0.651535	1.072703	0.116*
O23	1.3926 (18)	0.3381 (8)	0.7451 (7)	0.137 (4)
O24	1.5903 (12)	0.3973 (7)	0.8647 (5)	0.104 (3)
C61	1.555 (3)	0.3247 (13)	0.7834 (12)	0.138 (5)
H61A	1.596662	0.310842	0.753329	0.165*
H61B	1.570681	0.287809	0.814182	0.165*
C62	1.643 (2)	0.3825 (11)	0.8219 (9)	0.112 (4)

H62A	1.756423	0.372354	0.846300	0.134*
H62B	1.627309	0.420182	0.791877	0.134*
C63	1.424 (2)	0.4104 (11)	0.8305 (10)	0.113 (4)
H63A	1.402252	0.450066	0.802338	0.136*
H63B	1.387164	0.418847	0.863335	0.136*
C64	1 340 (2)	0.3539(11)	0 7892 (10)	0 112 (4)
H64A	1 353896	0.315461	0.818036	0.134*
H64R	1.227279	0.364176	0.764380	0.134*
025	0.9100(12)	0.5321 (9)	0.5691 (7)	0.137
025	1.1814(14)	0.3321(0) 0.4963(16)	0.5693(7)	0.127(3)
020 C65	1.1014(14)	0.4903(10)	0.5095(7)	0.207(12)
	0.9230 (19)	0.5508 (10)	0.5110 (10)	0.117(0) 0.140*
HUJA	0.972020	0.579044	0.310337	0.140*
HOSB	0.821808	0.555594	0.4/1/01	0.140^{*}
C66	1.028 (2)	0.4819 (14)	0.5123 (9)	0.14/(10)
H66A	0.98/350	0.438982	0.518121	0.1/6*
H66B	1.033983	0.480881	0.4/0468	0.176*
C67	1.166 (2)	0.4967 (10)	0.6256 (9)	0.122 (7)
H67A	1.269889	0.504509	0.664504	0.146*
H67B	1.129061	0.452963	0.631201	0.146*
C68	1.060 (2)	0.5458 (9)	0.6241 (11)	0.114 (6)
H68A	1.096392	0.589957	0.619002	0.137*
H68B	1.054527	0.545099	0.666103	0.137*
O27	0.8625 (18)	0.8288 (6)	0.4919 (7)	0.124 (4)
O28	1.1376 (14)	0.7734 (5)	0.5050 (5)	0.097 (3)
C69	0.865 (3)	0.7660 (8)	0.4695 (11)	0.139 (10)
H69A	0.762695	0.755737	0.431005	0.167*
H69B	0.885279	0.733758	0.505057	0.167*
C70	0.996 (3)	0.7604 (11)	0.4486 (9)	0.127 (7)
H70A	0.996343	0.715533	0.431740	0.153*
H70B	0.976981	0.792525	0.413111	0.153*
C71	1.143 (2)	0.8375 (7)	0.5315 (8)	0.103 (5)
H71A	1.134290	0.871621	0.498989	0.123*
H71B	1.243293	0.843948	0.572668	0.123*
C72	1.002 (2)	0.8431 (7)	0.5469 (8)	0.100 (4)
H72A	1 018736	0.812357	0.583215	0.120*
H72B	0 997980	0 888406	0 562096	0.120*
029	1 4761 (9)	0.5705 (4)	0.7695 (4)	0.0687(17)
030	1.6818(10)	0.5703(1) 0.6123(5)	0.7095(1)	0.0007(17)
C73	1.6225(15)	0.5983 (6)	0.7001(4) 0.7883(6)	0.085(2)
U73 Л	1.608043	0.676166	0.770051	0.088*
1173A 1172D	1.664276	0.040100	0.779031	0.088
П/ЗБ	1.004570	0.579108	0.700209	0.080°
C74	1.7580 (10)	0.3000 (0)	0.8380(0)	0.081(3)
H/4A	1.702809	0.541337	0.800393	0.097*
п/4В	1.833408	0.012400	0.8820 (()	0.09/*
U/5	1.5555 (15)	0.5819(/)	0.8839 (6)	0.0//(3)
H/SA	1.490328	0.601291	0.911364	0.093*
H75B	1.547628	0.534028	0.892954	0.093*
C76	1.4250 (14)	0.5935 (6)	0.8125 (5)	0.068 (3)

H76A	1.323859	0.572301	0.801178	0.082*
H76B	1.406049	0.641511	0.805425	0.082*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cul	0.0440 (7)	0.0355 (6)	0.0306 (6)	0.0017 (5)	-0.0095 (5)	-0.0007 (4)
Cu2	0.0467 (7)	0.0319 (5)	0.0319 (6)	0.0010 (4)	-0.0156 (5)	0.0007 (4)
O1	0.047 (3)	0.057 (3)	0.033 (3)	0.001 (3)	-0.004 (3)	-0.010 (3)
O2	0.055 (4)	0.059 (3)	0.040 (4)	0.000 (3)	-0.009(3)	-0.007 (3)
O3	0.046 (4)	0.067 (3)	0.032 (3)	-0.006(3)	-0.002 (3)	-0.008 (3)
O4	0.048 (3)	0.055 (3)	0.047 (4)	0.000 (3)	-0.008 (3)	-0.014 (3)
O5	0.070 (4)	0.034 (3)	0.042 (3)	0.002 (3)	-0.020 (3)	0.006 (2)
O6	0.060 (4)	0.035 (3)	0.040 (3)	0.006 (3)	-0.019 (3)	0.006 (2)
07	0.053 (3)	0.043 (3)	0.048 (4)	0.000(2)	-0.012 (3)	0.004 (2)
08	0.048 (3)	0.037 (3)	0.035 (3)	-0.003(2)	-0.017 (3)	0.000 (2)
09	0.062 (4)	0.035 (3)	0.039 (3)	-0.001 (3)	-0.026 (3)	0.004 (2)
O10	0.051 (3)	0.037 (3)	0.047 (3)	0.000(2)	-0.009 (3)	0.012 (2)
N1	0.046 (4)	0.037 (3)	0.033 (4)	0.005 (3)	-0.012 (3)	-0.002 (3)
N2	0.050 (4)	0.035 (3)	0.036 (3)	-0.001 (3)	-0.004 (3)	-0.002 (3)
N3	0.044 (4)	0.038 (3)	0.033 (4)	-0.002(3)	-0.007 (3)	-0.001 (3)
N4	0.043 (4)	0.045 (3)	0.034 (3)	0.002 (3)	-0.005 (3)	-0.007 (3)
C1	0.055 (6)	0.042 (4)	0.045 (5)	-0.005 (3)	0.005 (5)	0.001 (3)
C2	0.064 (6)	0.048 (4)	0.048 (5)	0.004 (4)	-0.002 (5)	-0.008 (4)
C3	0.048 (5)	0.036 (4)	0.033 (4)	0.002 (3)	-0.008 (4)	-0.001 (3)
C4	0.051 (5)	0.061 (5)	0.043 (5)	0.000 (4)	-0.001 (4)	0.005 (4)
C23	0.045 (4)	0.040 (4)	0.039 (4)	0.003 (3)	-0.010 (4)	0.006 (3)
C24	0.037 (4)	0.041 (4)	0.031 (3)	0.007 (3)	-0.008 (3)	0.005 (3)
C25	0.045 (5)	0.038 (4)	0.045 (5)	-0.001 (3)	-0.013 (4)	0.001 (3)
C26	0.051 (5)	0.036 (4)	0.055 (5)	0.002 (4)	-0.008 (4)	0.007 (4)
C27	0.041 (4)	0.038 (3)	0.046 (4)	0.001 (3)	0.005 (4)	0.003 (3)
C28	0.052 (5)	0.037 (3)	0.038 (4)	0.008 (3)	-0.010 (4)	0.007 (2)
C29	0.049 (4)	0.033 (3)	0.035 (3)	0.001 (3)	-0.019 (3)	0.004 (3)
C30	0.040 (4)	0.040 (4)	0.036 (4)	0.001 (3)	-0.003 (3)	0.003 (3)
C31	0.040 (4)	0.041 (4)	0.036 (4)	0.000 (3)	-0.005 (3)	0.002 (3)
C32	0.046 (4)	0.049 (4)	0.036 (4)	-0.001 (3)	-0.002 (4)	0.000 (3)
C33	0.044 (4)	0.045 (4)	0.032 (4)	-0.004 (3)	-0.009 (3)	0.003 (3)
C34	0.040 (4)	0.038 (3)	0.038 (4)	-0.003 (3)	-0.006 (3)	0.007 (3)
C35	0.037 (4)	0.039 (3)	0.031 (4)	-0.003 (3)	-0.004 (3)	-0.003 (3)
C36	0.041 (4)	0.043 (4)	0.030 (4)	0.000 (3)	-0.010 (3)	0.005 (3)
C5	0.070 (4)	0.041 (3)	0.034 (3)	-0.006 (3)	-0.031 (3)	0.000 (2)
C6	0.071 (4)	0.041 (3)	0.034 (3)	-0.007 (3)	-0.030 (3)	0.000 (2)
C7	0.053 (4)	0.066 (4)	0.042 (3)	-0.009 (3)	-0.006 (3)	-0.014 (3)
C8	0.053 (4)	0.066 (4)	0.042 (3)	-0.008 (3)	-0.006 (3)	-0.014 (3)
C9	0.050 (3)	0.054 (3)	0.050 (4)	0.003 (3)	-0.016 (3)	-0.021 (3)
C10	0.050 (3)	0.054 (3)	0.050 (4)	0.004 (3)	-0.015 (3)	-0.021 (3)
C11	0.0548 (18)	0.0544 (18)	0.0547 (18)	0.0000 (9)	0.0251 (12)	0.0001 (9)
C12	0.048 (6)	0.050 (6)	0.041 (6)	0.005 (5)	-0.013(5)	-0.001(5)

C15	0.0545 (17)	0.0544 (17)	0.0542 (17)	0.0001 (9)	0.0255 (12)	-0.0003 (9)
C16	0.048 (6)	0.053 (6)	0.040 (6)	0.007 (5)	-0.002(5)	-0.008(5)
C19	0.0546 (17)	0.0548 (17)	0.0543 (17)	-0.0002 (9)	0.0255 (12)	-0.0003 (9)
C20	0.056 (7)	0.060 (6)	0.038 (6)	0.000 (5)	0.007 (5)	0.000 (5)
O11	0.117 (9)	0.095 (7)	0.091 (8)	0.037 (6)	0.013 (7)	0.009 (5)
012	0.083 (5)	0.072 (4)	0.075 (5)	0.012 (4)	0.011 (5)	0.015 (4)
C37	0.150 (17)	0.075 (8)	0.086 (10)	0.009 (9)	0.046 (11)	0.017(7)
C38	0.106 (11)	0.073 (6)	0.088 (9)	-0.005 (7)	0.036 (9)	0.000 (6)
C39	0.077 (8)	0.115 (10)	0.105 (11)	0.012 (7)	0.044 (8)	0.029 (8)
C40	0.065 (7)	0.122 (11)	0.103 (11)	0.005 (7)	0.033 (8)	0.002 (9)
013	0.190 (12)	0.116 (8)	0.222 (13)	0.017 (7)	0.127 (11)	0.027 (8)
014	0.192 (12)	0.119 (8)	0.242(14)	0.021 (8)	0.114 (12)	0.005 (8)
C41	0.163(12)	0.106 (8)	0.221(14)	0.026(8)	0.126 (11)	0.030 (9)
C42	0.188(13)	0.116 (9)	0.227(14)	0.029(9)	0.115(12)	0.017 (9)
C43	0.185(13)	0 110 (9)	0.227(14)	0.025(9)	0.127(12)	0.010(9)
C44	0.102(13) 0.197(13)	0.129(9)	0.227(14)	0.020(9)	0.127(12) 0.127(12)	0.010(9)
016	0.098 (6)	0.072(5)	0.089(6)	-0.012(5)	0.027(6)	-0.007(4)
015	0.105 (8)	0.072(5)	0.003(0)	-0.012(5)	0.027(0)	-0.030(6)
C45	0.075 (8)	0.105 (9)	0.134(13)	-0.002(3)	0.064 (9)	-0.016(9)
C46	0.075(0)	0.103(9)	0.157(15)	0.000(7)	0.001(9) 0.028(8)	0.012(6)
C40	0.081(8)	0.067 (6)	0.007(7) 0.119(12)	-0.005(6)	0.020(0)	-0.002(0)
C48	0.001(0) 0.102(10)	0.007(0)	0.119(12) 0.121(12)	0.000(0)	0.050(9)	0.002(7)
017	0.089(6)	0.077(7)	0.121(12) 0.095(7)	-0.006(4)	0.007(10)	-0.013(4)
018	0.009(0)	0.002 (4)	0.095(7)	-0.026(5)	0.009(3)	-0.010(4)
C49	0.094(7)	0.092(0)	0.079 (8)	-0.011(7)	0.023(7)	-0.010(0)
C50	0.034(3)	0.087(8) 0.118(12)	0.079(8)	-0.032(10)	0.013(7)	-0.038(9)
C51	0.109(12) 0.124(14)	0.110(12) 0.088(8)	0.003(11) 0.103(11)	-0.017(9)	0.034(10)	-0.006(9)
C52	0.124(14) 0.162(18)	0.038(8)	0.103(11)	-0.017(9)	0.030(11)	0.000 (8)
010	0.102(18)	0.079(0)	0.000(7)	-0.014(9)	-0.010(9)	0.003(0)
019	0.097(8)	0.130(13)	0.073(7)	-0.043(9)	0.011(0)	-0.021(10)
C53	0.087(7)	0.130(9)	0.174(14) 0.076(11)	0.019(7)	0.003(9)	0.021(10)
C55	0.080(11)	0.18(2) 0.172(10)	0.070(11) 0.114(15)	0.012(11)	0.009(9)	0.008(11)
C54	0.073(9)	0.175(19)	0.114(13) 0.100(12)	-0.007(11)	0.010(10)	-0.037(14)
C55	0.082(10)	0.083(9)	0.109(13)	0.001(7)	-0.004(9)	0.044(8)
021	0.080(10)	0.130(13) 0.282(10)	0.104(13)	-0.011(9)	0.021(10)	0.013(11)
021	0.062(5)	0.285(19)	0.042(4)	0.030(8)	-0.013(4)	-0.001(7)
022	0.062(4)	0.085(5)	0.057(4)	-0.004(4)	-0.009(4)	0.006(4)
C57	0.068 (7)	0.097 (8)	0.068(7)	0.000(6)	0.017(0)	0.004 (6)
C58	0.073(7)	0.039 (3)	0.064(6)	0.008(5)	-0.018(6)	-0.002(3)
C39	0.065(7)	0.111(10)	0.080(8)	0.001(7)	0.009(7)	-0.009(7)
000	0.048 (5)	0.161 (14)	0.056 (6)	0.027(7)	0.005 (5)	0.001 (7)
023	0.111(7)	0.151 (8)	0.105 (7)	0.010 (7)	0.016 (6)	-0.027 (6)
024	0.076 (5)	0.156 (8)	0.070 (5)	-0.020 (5)	0.027(4)	-0.017(5)
C61	0.108 (8)	0.157 (10)	0.105 (8)	0.008 (8)	0.015 (7)	-0.027 (8)
C62	0.087 (7)	0.163 (9)	0.079 (6)	-0.012 (7)	0.035 (6)	-0.028 (7)
C63	0.087 (7)	0.150 (9)	0.090 (7)	-0.003(7)	0.032 (6)	-0.012 (7)
C64	0.092 (7)	0.137 (9)	0.096 (7)	0.005 (7)	0.036 (6)	-0.022 (7)
025	0.055 (5)	0.205 (14)	0.096 (8)	0.004 (6)	0.015 (5)	-0.045 (9)
O26	0.059 (6)	0.46 (4)	0.079 (8)	0.035 (12)	0.014 (6)	0.010 (14)

C65	0.064 (8)	0.146 (15)	0.098 (12)	0.014 (9)	0.004 (8)	0.046 (11)
C66	0.072 (9)	0.25 (3)	0.071 (9)	0.012 (13)	-0.004 (8)	-0.025 (13)
C67	0.104 (11)	0.120 (12)	0.077 (9)	0.042 (10)	-0.008 (8)	-0.020 (8)
C68	0.097 (11)	0.105 (11)	0.106 (12)	0.000 (8)	0.020 (9)	-0.041 (9)
O27	0.126 (9)	0.111 (8)	0.113 (9)	0.049 (7)	0.039 (8)	0.035 (7)
O28	0.097 (7)	0.098 (6)	0.065 (5)	0.032 (5)	0.014 (5)	0.008 (4)
C69	0.152 (19)	0.075 (9)	0.093 (12)	-0.007 (9)	-0.021 (13)	-0.001 (7)
C70	0.138 (17)	0.134 (15)	0.065 (9)	0.025 (13)	0.012 (10)	-0.031 (9)
C71	0.107 (11)	0.076 (7)	0.089 (9)	0.020 (7)	0.017 (9)	0.003 (6)
C72	0.118 (12)	0.079 (7)	0.086 (9)	0.034 (8)	0.035 (10)	0.024 (7)
O29	0.065 (4)	0.075 (4)	0.049 (4)	0.010 (3)	0.014 (3)	0.002 (3)
O30	0.070 (5)	0.118 (6)	0.050 (4)	0.000 (5)	0.016 (4)	0.003 (4)
C73	0.066 (6)	0.083 (7)	0.060 (6)	0.011 (5)	0.020 (5)	-0.002 (5)
C74	0.067 (6)	0.113 (9)	0.055 (6)	0.022 (6)	0.022 (5)	0.019 (6)
C75	0.065 (6)	0.091 (7)	0.061 (6)	0.012 (5)	0.017 (5)	0.021 (5)
C76	0.060 (6)	0.083 (7)	0.047 (5)	0.006 (5)	0.014 (5)	0.006 (5)

Geometric parameters (Å, °)

Cu1—O1	1.984 (7)	C40—H40B	0.9900
Cu1—O3	1.959 (7)	O13—C41	1.405 (19)
Cu1—O5	1.970 (6)	O13—C44	1.389 (19)
Cu1—O8	1.963 (6)	O14—C42	1.355 (19)
Cu1—N1	2.211 (7)	O14—C43	1.33 (2)
Cu2—O2	1.973 (9)	C41—H41A	0.9900
Cu2—O4	1.971 (8)	C41—H41B	0.9900
Cu2—O6	1.982 (6)	C41—C42	1.46 (2)
Cu2—O9	1.963 (6)	C42—H42A	0.9900
Cu2—N3	2.189 (7)	C42—H42B	0.9900
01—C1	1.240 (12)	C43—H43A	0.9900
O2—C1	1.248 (13)	C43—H43B	0.9900
O3—C3	1.264 (12)	C43—C44	1.48 (2)
O4—C3	1.277 (12)	C44—H44A	0.9900
O5—C23	1.262 (11)	C44—H44B	0.9900
O6—C23	1.250 (10)	O16—C46	1.442 (19)
O7—H7	0.8400	O16—C47	1.404 (18)
O7—C27	1.341 (10)	O15—C45	1.398 (18)
O8—C30	1.279 (10)	O15—C48	1.409 (19)
O9—C30	1.245 (10)	C45—H45A	0.9900
O10—H10	0.8400	C45—H45B	0.9900
O10—C34	1.346 (10)	C45—C46	1.51 (2)
N1-C5	1.470 (11)	C46—H46A	0.9900
N1—C7	1.493 (14)	C46—H46B	0.9900
N1-C9	1.448 (12)	C47—H47A	0.9900
N2C6	1.485 (11)	C47—H47B	0.9900
N2—C8	1.478 (15)	C47—C48	1.518 (19)
N2-C10	1.471 (13)	C48—H48A	0.9900
N3—C11	1.444 (15)	C48—H48B	0.9900

N3—C15	1.535 (15)	O17—C49	1.439 (19)
N3—C19	1.458 (14)	O17—C52	1.44 (2)
N3—C13	1.52 (3)	O18—C50	1.44 (2)
N3—C17	1.45 (2)	O18—C51	1.46 (2)
N3—C21	1.45 (2)	C49—H49A	0.9900
N4—C12	1.429 (15)	C49—H49B	0.9900
N4—C16	1.474 (15)	C49—C50	1.49 (2)
N4—C20	1.439 (15)	С50—Н50А	0.9900
N4—C14	1.51 (3)	C50—H50B	0.9900
N4—C18	1.41 (2)	C51—H51A	0.9900
N4—C22	1.46 (2)	C51—H51B	0.9900
C1—C2	1.503 (17)	C51—C52	1.43 (2)
C2—H2A	0.9800	С52—Н52А	0.9900
C2—H2B	0.9800	С52—Н52В	0.9900
C2—H2C	0.9800	O19—C53	1.41 (2)
C3—C4	1.489 (17)	O19—C56	1.41 (2)
C4—H4A	0.9800	O20—C54	1.40 (2)
C4—H4B	0.9800	O20—C55	1.40 (3)
C4—H4C	0.9800	C53—H53A	0.9900
C23—C24	1.489 (11)	C53—H53B	0.9900
C24—C25	1.396 (12)	C53—C54	1.50 (3)
C24—C29	1.394 (10)	C54—H54A	0.9900
C25—H25	0.9500	C54—H54B	0.9900
C25—C26	1.412 (12)	С55—Н55А	0.9900
C26—H26	0.9500	С55—Н55В	0.9900
C26—C27	1.365 (13)	C55—C56	1.55 (3)
C27—C28	1.419 (12)	С56—Н56А	0.9900
C28—H28	0.9500	С56—Н56В	0.9900
C28—C29	1.390 (11)	O21—C57	1.419 (18)
С29—Н29	0.9500	021-60	1.388 (18)
C30—C31	1.485 (12)	O22—C58	1.355 (19)
C31—C32	1.393 (12)	O22—C59	1.404 (16)
C31—C36	1.394 (12)	С57—Н57А	0.9900
С32—Н32	0.9500	С57—Н57В	0.9900
C32—C33	1.391 (13)	C57—C58	1.530 (18)
С33—Н33	0.9500	C58—H58A	0.9900
C33—C34	1.398 (12)	C58—H58B	0.9900
C34—C35	1.391 (11)	С59—Н59А	0.9900
С35—Н35	0.9500	С59—Н59В	0.9900
C35—C36	1.367 (12)	C59—C60	1.44 (2)
С36—Н36	0.9500	C60—H60A	0.9900
C5—H5A	0.9900	C60—H60B	0.9900
C5—H5B	0.9900	023—C61	1.42 (3)
C5—C6	1.582 (11)	O23—C64	1.37 (2)
C6—H6A	0.9900	024—C62	1.343 (19)
C6—H6B	0.9900	O24—C63	1.45 (2)
С7—Н7А	0.9900	С61—Н61А	0.9900
С7—Н7В	0.9900	С61—Н61В	0.9900

С7—С8	1.557 (12)	C61—C62	1.47 (3)
C8—H8A	0.9900	C62—H62A	0.9900
C8—H8B	0.9900	C62—H62B	0.9900
С9—Н9А	0.9900	C63—H63A	0.9900
С9—Н9В	0.9900	С63—Н63В	0.9900
C9—C10	1.538 (11)	C63—C64	1.46 (3)
C10—H10A	0.9900	C64—H64A	0.9900
C10—H10B	0.9900	C64—H64B	0.9900
C11—H11A	0.9900	O25—C65	1.40(2)
C11—H11B	0.9900	O25—C68	1.43 (2)
C11—C12	1.526 (15)	O26—C66	1.47 (2)
C12—H12A	0.9900	O26—C67	1.37 (2)
С12—Н12В	0.9900	С65—Н65А	0.9900
С15—Н15А	0.9900	С65—Н65В	0.9900
C15—H15B	0.9900	C65—C66	1.49 (2)
C15—C16	1.547 (15)	C66—H66A	0.9900
C16—H16A	0.9900	C66—H66B	0.9900
C16—H16B	0.9900	C67—H67A	0.9900
C19—H19A	0.9900	C67—H67B	0.9900
C19—H19B	0.9900	C67—C68	1.422(17)
C19-C20	1 549 (15)	C68—H68A	0.9900
C_{20} H20A	0.9900	C68—H68B	0.9900
C20—H20B	0.9900	027 - 69	1.38(2)
C13_H13A	0.9900	027 - 003	1.30(2) 1.37(2)
C13_H13B	0.9900	027 - 072 028 - 070	1.37(2) 1.40(2)
C13 - C14	1.56 (2)	028 - C71	1.40(2) 1.426(18)
C14 $H14A$	0.9900	C69_H69A	0.0000
C14—H14B	0.9900	C69_H69B	0.9900
C17_H17A	0.9900	C69-C70	1.56 (4)
C17—H17B	0.9900	C70 H70A	0.9900
C17 - C18	1.54(2)	C70—H70B	0.9900
C18—H18A	0.9900	C71_H71A	0.9900
C18—H18B	0.9900	C71_H71B	0.9900
C_{21} H21A	0.9900	C71 - C72	1.58 (3)
C21—H21R	0.9900	$C72 H72 \Delta$	0.0000
C_{21} C_{22}	1.55 (2)	C72_H72R	0.9900
C_{22} H_{22}	0.9900	029 - 073	1 397 (16)
C22 H22R	0.9900	029 - C76	1.397(10) 1.382(14)
011_037	1.44(3)	029 - C74	1.302(14) 1.401(15)
011 - C40	1.38 (2)	030 - C75	1.401(15) 1.446(16)
012 C38	1.38(2) 1 379(16)	C73 H73A	0.0000
012 - 000	1.379 (10)	C73_H73R	0.9900
C_{37} H37A	0.0000	C73 C74	1.463(17)
C37_H37B	0.9900	C74_H74A	0.0000
$C_{37} = C_{38}$	1.52 (2)	C74 H74B	0.9900
$C_{38} = H_{38A}$	1.32(2)	$C_{14} = 11/4D$	0.9900
C28 H28B	0.2200	C75 H75P	0.9900
C20 1120A	0.9900	$C_{1}J - \Pi_{1}JD$	0.9900
Сэу—пэуа	0.9900	U/J-U/0	1.482 (13)

С39—Н39В	0.9900	C76—H76A	0.9900
C39—C40	1.50 (2)	C76—H76B	0.9900
C40—H40A	0.9900		
01-Cu1-N1	96.1 (3)	C40—C39—H39A	110.4
03—Cu1—O1	167.5 (3)	C40—C39—H39B	110.4
O3—Cu1—O5	88.9 (3)	O11—C40—C39	110.6 (15)
O3—Cu1—O8	89.2 (3)	O11—C40—H40A	109.5
O3—Cu1—N1	96.4 (3)	O11—C40—H40B	109.5
O5—Cu1—O1	89.4 (3)	C39—C40—H40A	109.5
05—Cu1—N1	96.9 (3)	C39—C40—H40B	109.5
08—Cu1—O1	90.1 (3)	H40A—C40—H40B	108.1
08-Cu1-05	169.2 (3)	C44—013—C41	107.4 (18)
08—Cu1—N1	93.9 (2)	C43 - 014 - C42	109 (2)
$0^{2}-Cu^{2}-0^{6}$	89.2 (3)	013 - C41 - H41A	108 2
02 - Cu2 = 03	98.2 (3)	013 - C41 - H41B	108.2
$04 - Cu^2 - 0^2$	168.6(3)	013 - C41 - C42	116 (2)
$04 - Cu^2 - 06$	88 8 (3)	H41A - C41 - H41B	107.3
$04 - Cu^2 - N^3$	93.2(3)	C42— $C41$ — $H41A$	107.3
$06-Cu^2-N^3$	95.2 (3)	C42— $C41$ — $H41B$	108.2
00 Cu2 103 09-Cu2-02	90.4 (4)	012 - 041 - 041	108.2
$09 - Cu^2 - 04$	89 1 (4)	014 - C42 - H42A	110.0
$09 - Cu^2 - 06$	167.6(3)	014 - C42 - H42B	110.0
$09 - Cu^2 - N3$	97 1 (3)	C41 - C42 - H42A	110.0
C1 = 01 = Cu1	1239(7)	C41 - C42 - H42B	110.0
$C1 = 02 = Cu^2$	123.9(7) 1214(7)	H42A - C42 - H42B	108.4
$C_{3} = 0_{3} = C_{11}$	124.2 (6)	014-012 H43A	108.0
$C_{3} = 04 = C_{11}^{2}$	124.2(0) 124.8(7)	014 $C43$ $H43R$	108.0
$C_{23} = 05 = C_{11}$	124.0(7) 123 2 (5)	014 - C43 - C44	100.0
$C_{23} = 05 = C_{11}$	123.2(5) 122.3(5)	H43A - C43 - H43B	107 2
C27_07_H7	109 5	C44—C43—H43A	107.2
$C_{20} = 08 = C_{11}$	109.5	C44— $C43$ — $H43B$	108.0
$C_{30} = 0_{9} = C_{11}^{2}$	121.3(5) 124.8(5)	013 - C44 - C43	100.0
C34 - 010 - H10	109 5	013 - C44 - H44A	107 5
C_{5} N1 $-C_{11}$	111.2 (5)	013 - C44 - H44B	107.5
C_{5} N1 C_{1}	108.2(8)	C43—C44—H44A	107.5
C7 - N1 - Cu1	100.2(0) 110.5(5)	C43 - C44 - H44B	107.5
C_{1} C_{1} C_{1} C_{1}	109.5(5)	H44 A - C44 - H44B	107.0
C_{0} N1 C_{0}	107.3(5) 110.1(8)	C47 - 0.16 - C46	107.0 111.7(11)
C9 - N1 - C7	107.3(8)	$C_{45} = 0.15 = C_{48}$	111.7(11) 111.5(12)
$C_{N1} C_{7}$	107.3(8) 108.7(8)	015 - C45 - H45A	109.8
C_{10} N2 C_{6}	110.9 (9)	015 - C45 - H45B	109.8
C10 N2 C8	107.1(8)	015 C45 C46	109.0 109.4 (13)
$C_{11} = N_{3} = C_{11}$	113 5 (6)	H45A_C45_H45B	109.4 (15)
C11 - N3 - C15	106 3 (0)	C46-C45-H45A	100.2
C11 - N3 - C19	111 7 (0)	C46—C45—H45R	109.8
$C15 N3 Cu^{2}$	111.7 (7)	016-C46-C45	113 0 (12)
C19 - N3 - Cu2	109 1 (6)	O16-C46-H46A	109.0
U1/ 11/ U44	107.1 (0)		107.0

C19—N3—C15	104.4 (8)	O16—C46—H46B	109.0
C13—N3—Cu2	110.9 (10)	C45—C46—H46A	109.0
C17—N3—Cu2	110.2 (10)	C45—C46—H46B	109.0
C17—N3—C13	107.1 (15)	H46A—C46—H46B	107.8
C17—N3—C21	115.3 (16)	O16—C47—H47A	109.0
C21—N3—Cu2	110.6 (10)	O16—C47—H47B	109.0
C21—N3—C13	102.3 (16)	O16—C47—C48	112.9 (12)
C12—N4—C16	106.3 (10)	H47A—C47—H47B	107.8
C12—N4—C20	108.4 (9)	C48—C47—H47A	109.0
C20—N4—C16	108.8 (9)	C48—C47—H47B	109.0
C18—N4—C14	113.2 (19)	O15—C48—C47	109.6 (13)
C18—N4—C22	110.9 (18)	O15—C48—H48A	109.7
C22—N4—C14	98 (2)	O15—C48—H48B	109.7
01—C1—O2	126.5 (11)	C47—C48—H48A	109.7
O1—C1—C2	117.0 (9)	C47—C48—H48B	109.7
O2—C1—C2	116.5 (9)	H48A—C48—H48B	108.2
C1—C2—H2A	109.5	C49—O17—C52	108.3 (14)
C1—C2—H2B	109.5	C50—O18—C51	107.4 (15)
C1—C2—H2C	109.5	017—С49—Н49А	109.6
H2A—C2—H2B	109.5	O17—C49—H49B	109.6
H2A—C2—H2C	109.5	O17—C49—C50	110.4 (14)
H2B—C2—H2C	109.5	H49A—C49—H49B	108.1
O3—C3—O4	122.7 (10)	С50—С49—Н49А	109.6
O3—C3—C4	120.4 (8)	С50—С49—Н49В	109.6
O4—C3—C4	116.9 (9)	O18—C50—C49	112.3 (14)
C3—C4—H4A	109.5	O18—C50—H50A	109.2
C3—C4—H4B	109.5	O18—C50—H50B	109.2
C3—C4—H4C	109.5	С49—С50—Н50А	109.2
H4A—C4—H4B	109.5	C49—C50—H50B	109.2
H4A—C4—H4C	109.5	H50A—C50—H50B	107.9
H4B—C4—H4C	109.5	O18—C51—H51A	109.8
O5—C23—C24	116.4 (7)	O18—C51—H51B	109.8
O6—C23—O5	125.9 (8)	H51A—C51—H51B	108.2
O6—C23—C24	117.6 (7)	C52—C51—O18	109.6 (14)
C25—C24—C23	120.3 (7)	С52—С51—Н51А	109.8
C29—C24—C23	119.8 (7)	C52—C51—H51B	109.8
C29—C24—C25	119.9 (7)	O17—C52—H52A	109.5
C24—C25—H25	120.8	O17—C52—H52B	109.5
C24—C25—C26	118.4 (8)	C51—C52—O17	110.8 (14)
C26—C25—H25	120.8	C51—C52—H52A	109.5
C25—C26—H26	119.0	C51—C52—H52B	109.5
C27—C26—C25	122.0 (8)	H52A—C52—H52B	108.1
C27—C26—H26	119.0	C56—O19—C53	110.6 (16)
O7—C27—C26	119.1 (8)	C55—O20—C54	112.8 (17)
O7—C27—C28	121.4 (8)	O19—C53—H53A	108.5
C26—C27—C28	119.5 (7)	O19—C53—H53B	108.5
C27—C28—H28	120.5	O19—C53—C54	114.9 (18)
C29—C28—C27	118.9 (8)	Н53А—С53—Н53В	107.5

C29—C28—H28	120.5	С54—С53—Н53А	108.5
С24—С29—Н29	119.4	С54—С53—Н53В	108.5
C28—C29—C24	121.2 (7)	O20—C54—C53	110.8 (17)
С28—С29—Н29	119.4	O20—C54—H54A	109.5
O8—C30—C31	116.8 (7)	O20—C54—H54B	109.5
O9—C30—O8	125.1 (7)	С53—С54—Н54А	109.5
O9—C30—C31	118.0 (7)	С53—С54—Н54В	109.5
C32—C31—C30	119.8 (7)	H54A—C54—H54B	108.1
C32—C31—C36	118.0 (7)	O20—C55—H55A	109.7
C36—C31—C30	122.2 (7)	O20—C55—H55B	109.7
С31—С32—Н32	119.5	O20—C55—C56	110.0 (14)
C33—C32—C31	121.0 (8)	H55A—C55—H55B	108.2
С33—С32—Н32	119.5	С56—С55—Н55А	109.7
С32—С33—Н33	120.2	С56—С55—Н55В	109.7
C32—C33—C34	119.7 (7)	O19—C56—C55	110.4 (19)
С34—С33—Н33	120.2	019—C56—H56A	109.6
Q10—C34—C33	122.7 (7)	019—C56—H56B	109.6
010-C34-C35	118.0 (7)	С55—С56—Н56А	109.6
C35—C34—C33	119.1 (7)	С55—С56—Н56В	109.6
C34—C35—H35	119.8	H56A—C56—H56B	108.1
C36—C35—C34	120.4 (7)	C60—O21—C57	110.2 (11)
С36—С35—Н35	119.8	C58—O22—C59	107.0 (10)
С31—С36—Н36	119.2	О21—С57—Н57А	109.9
C35—C36—C31	121.6 (7)	О21—С57—Н57В	109.9
С35—С36—Н36	119.2	O21—C57—C58	109.1 (13)
N1—C5—H5A	109.7	Н57А—С57—Н57В	108.3
N1—C5—H5B	109.7	С58—С57—Н57А	109.9
N1—C5—C6	110.0 (7)	С58—С57—Н57В	109.9
H5A—C5—H5B	108.2	O22—C58—C57	113.9 (10)
С6—С5—Н5А	109.7	O22—C58—H58A	108.8
С6—С5—Н5В	109.7	O22—C58—H58B	108.8
N2—C6—C5	109.2 (7)	С57—С58—Н58А	108.8
N2—C6—H6A	109.8	С57—С58—Н58В	108.8
N2—C6—H6B	109.8	H58A—C58—H58B	107.7
С5—С6—Н6А	109.8	022—С59—Н59А	108.7
С5—С6—Н6В	109.8	О22—С59—Н59В	108.7
H6A—C6—H6B	108.3	O22—C59—C60	114.4 (14)
N1—C7—H7A	109.6	H59A—C59—H59B	107.6
N1—C7—H7B	109.6	С60—С59—Н59А	108.7
N1—C7—C8	110.2 (8)	С60—С59—Н59В	108.7
H7A—C7—H7B	108.1	O21—C60—C59	110.8 (12)
С8—С7—Н7А	109.6	O21—C60—H60A	109.5
С8—С7—Н7В	109.6	O21—C60—H60B	109.5
N2—C8—C7	109.8 (9)	С59—С60—Н60А	109.5
N2—C8—H8A	109.7	С59—С60—Н60В	109.5
N2—C8—H8B	109.7	H60A—C60—H60B	108.1
С7—С8—Н8А	109.7	C64—O23—C61	106.7 (17)
C7—C8—H8B	109.7	C62—O24—C63	111.5 (13)
			(10)

H8A—C8—H8B	108.2	O23—C61—H61A	109.2
N1—C9—H9A	109.3	O23—C61—H61B	109.2
N1—C9—H9B	109.3	O23—C61—C62	112.0 (19)
N1—C9—C10	111.8 (8)	H61A—C61—H61B	107.9
H9A—C9—H9B	107.9	C62—C61—H61A	109.2
С10—С9—Н9А	109.3	С62—С61—Н61В	109.2
С10—С9—Н9В	109.3	O24—C62—C61	107.4 (18)
N2—C10—C9	109.7 (8)	O24—C62—H62A	110.2
N2-C10-H10A	109.7	O24—C62—H62B	110.2
N2-C10-H10B	109.7	C61—C62—H62A	110.2
C9-C10-H10A	109.7	$C_{61} - C_{62} - H_{62}B$	110.2
C9-C10-H10B	109.7	H62A - C62 - H62B	108.5
H_{10A} $-C_{10}$ $-H_{10B}$	108.2	Ω^{24} C^{63} H^{63A}	109.7
N3—C11—H11A	109.5	O24-C63-H63B	109.7
N3—C11—H11B	109.5	024 - C63 - C64	109.9 (16)
N_3 C_{11} C_{12}	110.8 (10)	H63A - C63 - H63B	109.9 (10)
H11A_C11_H11B	108.1	C64_C63_H63A	100.2
$C_{12} C_{11} H_{11A}$	100.1	C64 $C63$ $H63R$	109.7
C_{12} C_{11} H_{11B}	109.5	0^{23} C64 C63	109.7 111.0 (17)
N4 C12 C11	112.1 (10)	023 - C64 - H64A	100.2
N4 C12 H12A	100.2	023 - C64 - H64B	109.2
N4 C12 H12R	109.2	C_{23} C_{64} H_{64A}	109.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.2	C63 C64 H64P	109.2
C11 - C12 - H12A	109.2	C03 - C04 - H04B	109.2
	109.2	H04A - C04 - H04B	107.9
H12A - C12 - H12B	107.9	$C_{03} = 025 = C_{08}$	100.9 (14)
N3—CI5—HI5A	109.8	$C_0/-C_{00}$	108.4 (17)
N3-C15-C16	109.8	025—C65—H65A	110.1
	109.3 (10)	025—C65—H65B	110.1
HI5A—CI5—HI5B	108.3	025	108.1 (16)
CI6—CI5—HI5A	109.8	H65A—C65—H65B	108.4
С16—С15—Н15В	109.8	С66—С65—Н65А	110.1
N4—C16—C15	110.8 (9)	С66—С65—Н65В	110.1
N4—C16—H16A	109.5	026—C66—C65	104.6 (17)
N4—C16—H16B	109.5	O26—C66—H66A	110.8
C15—C16—H16A	109.5	O26—C66—H66B	110.8
C15—C16—H16B	109.5	C65—C66—H66A	110.8
H16A—C16—H16B	108.1	C65—C66—H66B	110.8
N3—C19—H19A	109.8	H66A—C66—H66B	108.9
N3—C19—H19B	109.8	O26—C67—H67A	109.1
N3—C19—C20	109.4 (9)	O26—C67—H67B	109.1
H19A—C19—H19B	108.2	O26—C67—C68	113 (2)
С20—С19—Н19А	109.8	H67A—C67—H67B	107.8
C20—C19—H19B	109.8	С68—С67—Н67А	109.1
N4—C20—C19	111.3 (10)	С68—С67—Н67В	109.1
N4—C20—H20A	109.4	O25—C68—H68A	110.1
N4—C20—H20B	109.4	O25—C68—H68B	110.1
С19—С20—Н20А	109.4	C67—C68—O25	108.1 (14)
C19—C20—H20B	109.4	C67—C68—H68A	110.1

H20A—C20—H20B	108.0	C67—C68—H68B	110.1
N3—C13—H13A	110.4	H68A—C68—H68B	108.4
N3—C13—H13B	110.4	С72—О27—С69	110.5 (13)
N3—C13—C14	106.6 (17)	C70—O28—C71	112.7 (12)
H13A—C13—H13B	108.6	O27—C69—H69A	109.6
C14—C13—H13A	110.4	O27—C69—H69B	109.6
C14—C13—H13B	110.4	O27—C69—C70	110.3 (18)
N4—C14—C13	111.5 (17)	H69A—C69—H69B	108.1
N4—C14—H14A	109.3	С70—С69—Н69А	109.6
N4—C14—H14B	109.3	С70—С69—Н69В	109.6
C13—C14—H14A	109.3	O28—C70—C69	107.1 (14)
C13—C14—H14B	109.3	O28—C70—H70A	110.3
H14A—C14—H14B	108.0	O28—C70—H70B	110.3
N3—C17—H17A	109.3	С69—С70—Н70А	110.3
N3—C17—H17B	109.3	С69—С70—Н70В	110.3
N3—C17—C18	111.4 (16)	H70A—C70—H70B	108.5
H17A—C17—H17B	108.0	O28—C71—H71A	110.2
C18—C17—H17A	109.3	O28—C71—H71B	110.2
C18—C17—H17B	109.3	O28—C71—C72	107.5 (14)
N4—C18—C17	111.3 (15)	H71A—C71—H71B	108.5
N4—C18—H18A	109.4	С72—С71—Н71А	110.2
N4—C18—H18B	109.4	С72—С71—Н71В	110.2
C17—C18—H18A	109.4	O27—C72—C71	111.5 (13)
C17—C18—H18B	109.4	O27—C72—H72A	109.3
H18A—C18—H18B	108.0	О27—С72—Н72В	109.3
N3—C21—H21A	109.9	С71—С72—Н72А	109.3
N3—C21—H21B	109.9	С71—С72—Н72В	109.3
N3—C21—C22	109.1 (16)	H72A—C72—H72B	108.0
H21A—C21—H21B	108.3	C76—O29—C73	107.8 (9)
C22—C21—H21A	109.9	C74—O30—C75	110.4 (10)
C22—C21—H21B	109.9	О29—С73—Н73А	108.5
N4—C22—C21	111.9 (16)	О29—С73—Н73В	108.5
N4—C22—H22A	109.2	O29—C73—C74	115.1 (11)
N4—C22—H22B	109.2	H73A—C73—H73B	107.5
C21—C22—H22A	109.2	С74—С73—Н73А	108.5
C21—C22—H22B	109.2	С74—С73—Н73В	108.5
H22A—C22—H22B	107.9	O30—C74—C73	111.0 (10)
C40—O11—C37	107.3 (11)	O30—C74—H74A	109.4
C38—O12—C39	109.7 (12)	O30—C74—H74B	109.4
O11—C37—H37A	109.5	С73—С74—Н74А	109.4
О11—С37—Н37В	109.5	С73—С74—Н74В	109.4
O11—C37—C38	110.9 (14)	H74A—C74—H74B	108.0
Н37А—С37—Н37В	108.1	O30—C75—H75A	110.0
C38—C37—H37A	109.5	O30—C75—H75B	110.0
C38—C37—H37B	109.5	O30—C75—C76	108.4 (9)
O12—C38—C37	110.1 (13)	H75A—C75—H75B	108.4
O12—C38—H38A	109.6	С76—С75—Н75А	110.0
O12—C38—H38B	109.6	С76—С75—Н75В	110.0

C37—C38—H38A	109.6	O29—C76—C75	115.1 (10)
C37—C38—H38B	109.6	O29—C76—H76A	108.5
H38A—C38—H38B	108.2	O29—C76—H76B	108.5
012—С39—Н39А	110.4	С75—С76—Н76А	108.5
O12—C39—H39B	110.4	С75—С76—Н76В	108.5
O12—C39—C40	106.7 (11)	H76A—C76—H76B	107.5
H39A—C39—H39B	108.6		
Cu1—O1—C1—O2	1.7 (13)	C15—N3—C19—C20	69.3 (11)
Cu1—O1—C1—C2	-178.0(6)	C16—N4—C12—C11	66.3 (14)
Cu1—O3—C3—O4	3.4 (12)	C16—N4—C20—C19	-49.5 (12)
Cu1—O3—C3—C4	-177.2(6)	C19—N3—C11—C12	60.5 (14)
Cu1—O5—C23—O6	-0.1 (17)	C19—N3—C15—C16	-55.0 (12)
Cu1—O5—C23—C24	-177.5 (7)	C20—N4—C12—C11	-50.5 (15)
Cu1—O8—C30—O9	5.1 (14)	C20—N4—C16—C15	63.0 (13)
Cu1—O8—C30—C31	-176.4 (6)	C13—N3—C17—C18	58 (2)
Cu1—N1—C5—C6	176.1 (8)	C13—N3—C21—C22	-71 (3)
Cu1—N1—C7—C8	179.0 (7)	C14—N4—C18—C17	-56 (3)
Cu1—N1—C9—C10	175.2 (8)	C14—N4—C22—C21	55 (3)
Cu2—O2—C1—O1	1.7 (13)	C17—N3—C13—C14	-69(3)
Cu2—O2—C1—C2	-178.5 (6)	C17—N3—C21—C22	44 (3)
Cu2—O4—C3—O3	0.9 (12)	C18—N4—C14—C13	44 (3)
Cu2—O4—C3—C4	-178.5(6)	C18—N4—C22—C21	-63(3)
Cu2—O6—C23—O5	4.2 (17)	C21—N3—C13—C14	53 (3)
Cu2—O6—C23—C24	-178.5(7)	C21—N3—C17—C18	-55(3)
Cu2—O9—C30—O8	-1.4(15)	C22—N4—C14—C13	-73(3)
Cu2-09-C30-C31	-179.9 (7)	C22—N4—C18—C17	52 (3)
Cu2—N3—C11—C12	-175.7(9)	011-C37-C38-012	58.1 (18)
Cu2—N3—C15—C16	-172.7(8)	O12—C39—C40—O11	-64.1 (16)
Cu2—N3—C19—C20	-171.4(8)	C37—O11—C40—C39	64.1 (17)
Cu2—N3—C13—C14	171 (2)	C38—O12—C39—C40	60.2 (16)
Cu2—N3—C17—C18	178.6 (17)	C39—O12—C38—C37	-57.7(18)
Cu2—N3—C21—C22	170.3 (19)	C40—O11—C37—C38	-59.5 (17)
Q5—C23—C24—C25	172.2 (10)	O13—C41—C42—O14	-64 (3)
O5—C23—C24—C29	-5.5 (15)	O14—C43—C44—O13	35 (5)
Q6—C23—C24—C25	-5.4 (15)	C41—O13—C44—C43	-31 (4)
O6—C23—C24—C29	176.9 (10)	C42—O14—C43—C44	-49 (4)
O7—C27—C28—C29	-177.7(10)	C43—O14—C42—C41	61 (3)
O8—C30—C31—C32	-176.3(9)	C44—O13—C41—C42	46 (3)
O8—C30—C31—C36	4.8 (14)	O16—C47—C48—O15	54.8 (19)
09-C30-C31-C32	2.3 (14)	015-C45-C46-016	-54 (2)
09-C30-C31-C36	-176.6(10)	C45-015-C48-C47	-60.3(19)
010-C34-C35-C36	179.8 (9)	C46-016-C47-C48	-49.6(18)
N1 - C5 - C6 - N2	5.1 (15)	C47-016-C46-C45	49.6 (18)
N1-C7-C8-N2	5.0 (11)	C_{48} — O_{15} — C_{45} — C_{46}	60.1 (19)
N1-C9-C10-N2	6.7 (14)	017-C49-C50-018	-56 (2)
N3-C11-C12-N4	-10.6 (17)	018-051-052-017	64 (2)
N_{3} —C15—C16—N4	-89(14)	C49 - 017 - C52 - C51	-613(19)
	~·· (1 ·)	0 01, 002 001	01.5 (17)

N3-C19-C20-N4	-16.8 (14)	C50—O18—C51—C52	-60 (2)
N3—C13—C14—N4	18 (4)	C51-018-C50-C49	57 (2)
N3—C17—C18—N4	4 (3)	C52—O17—C49—C50	56.0 (16)
N3—C21—C22—N4	13 (3)	O19—C53—C54—O20	51 (3)
C23—C24—C25—C26	179.5 (10)	O20—C55—C56—O19	-57.9 (19)
C23—C24—C29—C28	-178.6 (10)	C53—O19—C56—C55	54 (2)
C24—C25—C26—C27	1.9 (17)	C54—O20—C55—C56	58 (2)
C25—C24—C29—C28	3.7 (16)	C55—O20—C54—C53	-53 (3)
C25—C26—C27—O7	178.5 (10)	C56—O19—C53—C54	-52 (3)
C25—C26—C27—C28	-1.9 (17)	O21—C57—C58—O22	-56.1 (15)
C26—C27—C28—C29	2.7 (16)	O22—C59—C60—O21	59 (2)
C27—C28—C29—C24	-3.6 (16)	C57—O21—C60—C59	-56 (2)
C29—C24—C25—C26	-2.8 (16)	C58—O22—C59—C60	-57.3 (16)
C30—C31—C32—C33	-175.8 (9)	C59—O22—C58—C57	55.2 (14)
C30—C31—C36—C35	177.2 (9)	C60—O21—C57—C58	53.9 (19)
C31—C32—C33—C34	-0.8 (15)	O23—C61—C62—O24	63 (3)
C32—C31—C36—C35	-1.7 (15)	O24—C63—C64—O23	-56 (2)
C32—C33—C34—O10	-178.1 (10)	C61—O23—C64—C63	58 (2)
C32—C33—C34—C35	-3.1 (15)	C62—O24—C63—C64	56 (2)
C33—C34—C35—C36	4.5 (15)	C63—O24—C62—C61	-58 (2)
C34—C35—C36—C31	-2.1 (15)	C64—O23—C61—C62	-62 (3)
C36—C31—C32—C33	3.2 (15)	O25—C65—C66—O26	-66 (2)
C5—N1—C7—C8	57.1 (10)	O26—C67—C68—O25	61 (3)
C5—N1—C9—C10	-62.2 (12)	C65—O25—C68—C67	-62 (2)
C6—N2—C8—C7	-62.9 (11)	C66—O26—C67—C68	-61 (3)
C6—N2—C10—C9	54.2 (12)	C67—O26—C66—C65	61 (3)
C7—N1—C5—C6	-62.4 (12)	C68—O25—C65—C66	67 (2)
C7—N1—C9—C10	55.3 (11)	O27—C69—C70—O28	61 (2)
C8—N2—C6—C5	57.2 (13)	O28—C71—C72—O27	-54.6 (15)
C8—N2—C10—C9	-64.3 (11)	C69—O27—C72—C71	59 (2)
C9—N1—C5—C6	54.6 (13)	C70—O28—C71—C72	56.9 (19)
C9—N1—C7—C8	-61.7 (10)	C71—O28—C70—C69	-60 (2)
C10—N2—C6—C5	-60.3 (13)	С72—О27—С69—С70	-61.5 (19)
C10—N2—C8—C7	56.9 (10)	O29—C73—C74—O30	-55.5 (15)
C11—N3—C15—C16	63.2 (12)	O30—C75—C76—O29	57.5 (14)
C11—N3—C19—C20	-45.2 (13)	C73—O29—C76—C75	-55.2 (13)
C12—N4—C16—C15	-53.6 (13)	C74—O30—C75—C76	-55.2 (13)
C12—N4—C20—C19	65.7 (13)	C75—O30—C74—C73	54.9 (14)
C15—N3—C11—C12	-52.8 (13)	C76—O29—C73—C74	53.4 (12)

1-Aza-4-azoniabicyclo[2.2.2]octane 4-hydroxybenzoate (compound_12)

Crystal data	
$C_6H_{13}N_2^+ \cdot C_7H_5O_3^-$	$\beta = 110.424 \ (4)^{\circ}$
$M_r = 250.29$	$V = 2603.67 (15) \text{ Å}^3$
Monoclinic, $P2_1/n$	Z = 8
a = 15.3994 (5) Å	F(000) = 1072
b = 10.6592 (3) Å	$D_{\rm x} = 1.277 {\rm ~Mg} {\rm ~m}^{-3}$
c = 16.9261 (6) Å	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å

Cell parameters from 3137 reflections	T = 130 K
$\theta = 4.8 - 76.7^{\circ}$	Irregular, clear colourless
$\mu = 0.75 \text{ mm}^{-1}$	$0.22 \times 0.16 \times 0.13 \text{ mm}$
Data collection	
Rigaku OD SuperNova Dual source	$T_{\min} = 0.952, \ T_{\max} = 1.000$
diffractometer with an Atlas detector	11079 measured reflections
Radiation source: micro-focus sealed X-ray	5386 independent reflections
tube, SuperNova (Cu) X-ray Source	3805 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.039$
Detector resolution: 10.2273 pixels mm ⁻¹	$\theta_{\rm max} = 76.9^{\circ}, \theta_{\rm min} = 4.8^{\circ}$
ω scans	$h = -19 \rightarrow 15$
Absorption correction: multi-scan	$k = -13 \rightarrow 11$
(CrysAlis PRO; Rigaku OD, 2023)	$l = -21 \rightarrow 19$
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.044$	and constrained refinement
$wR(F^2) = 0.120$	$w = 1/[\sigma^2(F_o^2) + (0.0552P)^2]$
<i>S</i> = 1.01	where $P = (F_0^2 + 2F_c^2)/3$
5386 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
337 parameters	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
2 restraints	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Peaks of electron density approximately midway between O1 and N1 and between O4 and N3 were assigned as H atoms and allowed to refine independently.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	v	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
03	1.07534 (9)	0.92832 (11)	0.26476 (8)	0.0325 (3)	
06	0.39246 (9)	0.06837 (12)	0.72789 (8)	0.0344 (3)	
H6A	0.377242	0.123074	0.756348	0.052*	
01	0.85260 (9)	0.81944 (13)	0.50408 (8)	0.0396 (3)	
04	0.65348 (9)	0.17927 (12)	0.52275 (9)	0.0387 (3)	
05	0.64976 (10)	0.37381 (13)	0.56921 (9)	0.0433 (3)	
02	0.83541 (10)	0.63012 (13)	0.44495 (9)	0.0449 (4)	
N2	0.65699 (9)	0.69665 (13)	0.67705 (8)	0.0235 (3)	
N4	0.82538 (9)	0.31541 (13)	0.33188 (8)	0.0243 (3)	
N3	0.74510 (9)	0.25762 (13)	0.43525 (8)	0.0255 (3)	
N1	0.75472 (9)	0.75015 (14)	0.58792 (8)	0.0271 (3)	
C18	0.44712 (10)	0.12068 (16)	0.68975 (10)	0.0244 (3)	
C16	0.53758 (10)	0.08932 (15)	0.60035 (10)	0.0246 (3)	
H16	0.559584	0.034981	0.566996	0.030*	
C5	1.02615 (10)	0.87741 (16)	0.30869 (10)	0.0239 (3)	
C6	1.00103 (11)	0.95660 (16)	0.36279 (10)	0.0257 (3)	

Н6	1.019823	1.042010	0.368411	0.031*
C15	0.56429 (10)	0.21443 (15)	0.60853 (9)	0.0228 (3)
C7	0.94857 (10)	0.91040 (16)	0.40832 (10)	0.0242 (3)
H7	0.931289	0.965032	0.444654	0.029*
C3	0.94708 (10)	0.70619 (15)	0.34851 (9)	0.0245 (3)
H3A	0.929034	0.620488	0.343731	0.029*
C4	0.99942 (10)	0.75138 (15)	0.30237 (9)	0.0242 (3)
H4	1.017093	0.696478	0.266421	0.029*
C17	0.47946 (11)	0.04216 (16)	0.63987 (10)	0.0263 (3)
H17	0.461564	-0.043593	0.633079	0.032*
C2	0.92081 (10)	0.78541 (16)	0.40172 (9)	0.0233 (3)
C20	0.53078 (11)	0.29304 (16)	0.65709 (10)	0.0252 (3)
H20	0.547877	0.379110	0.662769	0.030*
C26	0.89072 (10)	0.32690 (18)	0.41950 (10)	0.0295 (4)
H26A	0.913877	0.414185	0.430027	0.035*
H26B	0.944450	0.270862	0.427788	0.035*
C22	0.74505 (11)	0.39917 (16)	0.32048 (10)	0.0263 (3)
H22A	0.700086	0.390449	0.262372	0.032*
H22B	0.766231	0.487474	0.328729	0.032*
C14	0.62704 (11)	0.26345 (16)	0.56480 (10)	0.0262 (3)
C11	0.73355 (11)	0.60533 (16)	0.69291 (10)	0.0269 (3)
H11A	0.707725	0.520356	0.676195	0.032*
H11B	0.770748	0.603757	0.753853	0.032*
C13	0.69696 (11)	0.82297 (15)	0.69902 (10)	0.0265 (3)
H13A	0.739074	0.824194	0.758553	0.032*
H13B	0.646796	0.884498	0.692605	0.032*
C19	0.47265 (11)	0.24713 (16)	0.69734 (10)	0.0263 (3)
H19	0.450186	0.301899	0.730123	0.032*
C9	0.59948 (10)	0.69311 (17)	0.58667 (10)	0.0276 (4)
H9A	0.550405	0.757766	0.574570	0.033*
H9B	0.569188	0.610087	0.572522	0.033*
C1	0.86523 (11)	0.73765 (17)	0.45246 (10)	0.0278 (4)
C8	0.65960 (11)	0.71719 (19)	0.53215 (10)	0.0314 (4)
H8A	0.661187	0.641106	0.499140	0.038*
H8B	0.632892	0.786679	0.492248	0.038*
C24	0.79187 (12)	0.18504 (16)	0.31742 (11)	0.0296 (4)
H24A	0.844859	0.127738	0.325455	0.035*
H24B	0.748538	0.175801	0.258691	0.035*
C10	0.79599 (11)	0.64116 (17)	0.64256 (11)	0.0321 (4)
H10A	0.858764	0.662874	0.681704	0.039*
H10B	0.801488	0.569320	0.607531	0.039*
C21	0.69766 (11)	0.36560 (18)	0.38415 (11)	0.0317 (4)
H21A	0.700207	0.438359	0.421250	0.038*
H21B	0.631754	0.344697	0.353719	0.038*
C25	0.84260 (11)	0.29168 (19)	0.48231 (10)	0.0334 (4)
H25A	0.875059	0.219960	0.517418	0.040*
H25B	0.844925	0.363548	0.520040	0.040*
C12	0.75124 (12)	0.85972 (16)	0.64089 (11)	0.0311 (4)

H12A	0.720265	0.931079	0.604516	0.037*	
H12B	0.814915	0.885815	0.675367	0.037*	
C23	0.74232 (14)	0.14950 (18)	0.37884 (13)	0.0389 (4)	
H23A	0.677167	0.126647	0.346843	0.047*	
H23B	0.773184	0.076051	0.412906	0.047*	
H4A	0.7006 (19)	0.227 (3)	0.4812 (18)	0.090 (9)*	
H1	0.8039 (18)	0.777 (2)	0.5461 (17)	0.082 (9)*	
H3	1.101 (2)	0.875 (2)	0.240 (2)	0.123*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
03	0.0442 (7)	0.0266 (7)	0.0378 (7)	-0.0010 (6)	0.0286 (6)	-0.0001 (5)
06	0.0462 (7)	0.0299 (7)	0.0401 (7)	-0.0063 (6)	0.0313 (6)	-0.0061 (6)
01	0.0475 (7)	0.0408 (8)	0.0442 (7)	-0.0145 (6)	0.0335 (7)	-0.0141 (6)
O4	0.0478 (7)	0.0321 (7)	0.0522 (8)	-0.0038 (6)	0.0378 (7)	-0.0018 (6)
05	0.0606 (8)	0.0353 (8)	0.0462 (8)	-0.0216 (7)	0.0342 (7)	-0.0131 (6)
O2	0.0585 (8)	0.0354 (8)	0.0555 (9)	-0.0181 (7)	0.0383 (7)	-0.0120 (7)
N2	0.0254 (6)	0.0237 (7)	0.0229 (6)	0.0003 (5)	0.0102 (5)	-0.0004 (5)
N4	0.0255 (6)	0.0264 (7)	0.0233 (6)	0.0017 (5)	0.0114 (6)	0.0011 (5)
N3	0.0250 (6)	0.0271 (7)	0.0281 (7)	-0.0004 (6)	0.0139 (6)	0.0011 (6)
N1	0.0256 (6)	0.0324 (8)	0.0271 (7)	-0.0027 (6)	0.0139 (6)	-0.0014 (6)
C18	0.0251 (7)	0.0279 (9)	0.0231 (7)	-0.0011 (6)	0.0118 (6)	0.0015 (6)
C16	0.0259 (7)	0.0261 (8)	0.0252 (7)	0.0018 (6)	0.0132 (6)	-0.0006 (6)
C5	0.0265 (7)	0.0256 (8)	0.0222 (7)	0.0031 (6)	0.0116 (6)	0.0029 (6)
C6	0.0299 (8)	0.0214 (8)	0.0276 (8)	0.0001 (7)	0.0122 (7)	-0.0013 (6)
C15	0.0208 (7)	0.0290 (9)	0.0183 (7)	-0.0011 (6)	0.0065 (6)	0.0008 (6)
C7	0.0241 (7)	0.0273 (9)	0.0217 (7)	0.0023 (6)	0.0085 (6)	-0.0022 (6)
C3	0.0261 (7)	0.0229 (8)	0.0242 (7)	-0.0029 (6)	0.0086 (6)	-0.0036 (6)
C4	0.0279 (7)	0.0233 (8)	0.0232 (7)	0.0017 (7)	0.0114 (6)	-0.0037 (6)
C17	0.0314 (8)	0.0205 (8)	0.0311 (8)	-0.0004 (7)	0.0162 (7)	-0.0001 (7)
C2	0.0206 (6)	0.0286 (9)	0.0209 (7)	-0.0014 (6)	0.0076 (6)	-0.0020 (6)
C20	0.0297 (8)	0.0232 (8)	0.0232 (7)	-0.0035 (7)	0.0097 (7)	-0.0022 (6)
C26	0.0211 (7)	0.0408 (10)	0.0260 (8)	-0.0030 (7)	0.0073 (7)	0.0013 (7)
C22	0.0287 (7)	0.0255 (9)	0.0252 (7)	0.0050 (7)	0.0100 (7)	0.0022 (7)
C14	0.0258 (7)	0.0298 (9)	0.0231 (7)	-0.0051 (7)	0.0088 (6)	-0.0017 (7)
C11	0.0302 (8)	0.0223 (8)	0.0264 (8)	0.0027 (7)	0.0075 (7)	0.0003 (6)
C13	0.0307 (8)	0.0217 (8)	0.0291 (8)	0.0018 (7)	0.0129 (7)	-0.0006 (6)
C19	0.0298 (8)	0.0285 (9)	0.0232 (7)	-0.0010 (7)	0.0126 (7)	-0.0048 (7)
C9	0.0222 (7)	0.0358 (10)	0.0239 (8)	-0.0023 (7)	0.0069 (6)	-0.0002 (7)
C1	0.0264 (7)	0.0316 (9)	0.0274 (8)	-0.0042 (7)	0.0118 (7)	-0.0026 (7)
C8	0.0269 (8)	0.0446 (11)	0.0233 (8)	-0.0009 (8)	0.0094 (7)	0.0004 (7)
C24	0.0323 (8)	0.0277 (9)	0.0320 (8)	0.0028 (7)	0.0155 (7)	-0.0034 (7)
C10	0.0244 (7)	0.0343 (10)	0.0376 (9)	0.0054 (7)	0.0109 (7)	-0.0003 (8)
C21	0.0271 (7)	0.0394 (10)	0.0298 (8)	0.0100 (7)	0.0113 (7)	0.0036 (8)
C25	0.0255 (8)	0.0498 (12)	0.0236 (8)	-0.0012 (8)	0.0069 (7)	0.0055 (8)
C12	0.0358 (8)	0.0258 (9)	0.0363 (9)	-0.0038 (7)	0.0184 (8)	-0.0013 (7)
C23	0.0476 (10)	0.0276 (10)	0.0532 (12)	-0.0090 (8)	0.0325 (10)	-0.0091 (9)

Geometric parameters (Å, °)

03—C5	1.3470 (18)	C3—C4	1.390 (2)
O3—H3	0.875 (17)	C3—C2	1.394 (2)
O6—H6A	0.8400	C4—H4	0.9500
O6—C18	1.3474 (18)	C17—H17	0.9500
O1—C1	1.296 (2)	C2—C1	1.497 (2)
O1—H1	1.28 (3)	C20—H20	0.9500
O4—C14	1.296 (2)	C20—C19	1.389 (2)
O4—H4A	1.28 (3)	C26—H26A	0.9900
O5—C14	1.222 (2)	C26—H26B	0.9900
O2—C1	1.225 (2)	C26—C25	1.540 (2)
N2—C11	1.479 (2)	C22—H22A	0.9900
N2—C13	1.473 (2)	C22—H22B	0.9900
N2—C9	1.4766 (19)	C22—C21	1.540 (2)
N4—C26	1.478 (2)	C11—H11A	0.9900
N4—C22	1.4824 (19)	C11—H11B	0.9900
N4—C24	1.473 (2)	C11—C10	1.539 (2)
N3—C21	1.472 (2)	C13—H13A	0.9900
N3—C25	1.478 (2)	C13—H13B	0.9900
N3—C23	1.488 (2)	C13—C12	1.547 (2)
N3—H4A	1.25 (3)	C19—H19	0.9500
N1—C8	1.482 (2)	С9—Н9А	0.9900
N1-C10	1.483 (2)	С9—Н9В	0.9900
N1—C12	1.485 (2)	C9—C8	1.540 (2)
N1—H1	1.24 (3)	C8—H8A	0.9900
C18—C17	1.398 (2)	C8—H8B	0.9900
C18—C19	1.397 (2)	C24—H24A	0.9900
C16—H16	0.9500	C24—H24B	0.9900
C16—C15	1.388 (2)	C24—C23	1.536 (2)
C16—C17	1.385 (2)	C10—H10A	0.9900
C5—C6	1.396 (2)	C10—H10B	0.9900
C5—C4	1.398 (2)	C21—H21A	0.9900
С6—Н6	0.9500	C21—H21B	0.9900
C6—C7	1.387 (2)	С25—Н25А	0.9900
C15—C20	1.393 (2)	С25—Н25В	0.9900
C15—C14	1.501 (2)	C12—H12A	0.9900
С7—Н7	0.9500	C12—H12B	0.9900
C7—C2	1.392 (2)	С23—Н23А	0.9900
С3—НЗА	0.9500	C23—H23B	0.9900
С5—О3—Н3	116 (2)	O5—C14—O4	124.17 (15)
С18—О6—Н6А	109.5	O5—C14—C15	121.66 (15)
C1—O1—H1	112.8 (12)	N2—C11—H11A	109.6
C14—O4—H4A	111.8 (12)	N2-C11-H11B	109.6
C13—N2—C11	108.62 (12)	N2-C11-C10	110.40 (13)
C13—N2—C9	109.36 (13)	H11A—C11—H11B	108.1
C9—N2—C11	108.85 (12)	C10-C11-H11A	109.6

C26—N4—C22	109.01 (13)	C10-C11-H11B	109.6
C24—N4—C26	108.75 (13)	N2—C13—H13A	109.7
C24—N4—C22	108.58 (13)	N2—C13—H13B	109.7
C21—N3—C25	109.09 (14)	N2-C13-C12	109.98 (13)
C21—N3—C23	109.36 (14)	H13A—C13—H13B	108.2
C21—N3—H4A	107.5 (13)	C12—C13—H13A	109.7
$C_{25} N_{3} C_{23}$	109 41 (14)	C12—C13—H13B	109.7
C_{25} N3—H4A	113 8 (13)	C18 - C19 - H19	119.9
C_{23} N3 H4A	107.5(12)	C_{20} C_{19} C_{18}	120 24 (15)
C_{23} N_{3} N_{1} C_{10}	107.9(12) 108.96(14)	C_{20} C_{19} H_{19}	110.0
$C_8 $ N1 C_{12}	100.50(14) 100.50(13)	$N_2 = C_0 + 0_A$	100.6
$C_8 = N_1 = U_1$	109.59(15) 110.0(12)	$N_2 = C_2 = H_0 P$	109.0
	110.9(12) 100.74(12)	$N_2 = C_9 = H_9 B$	109.0
C10 - N1 - C12	109.74(13)	$N_2 = C_9 = C_8$	110.30 (12)
CIO—NI—HI	108.7 (12)	H9A—C9—H9B	108.1
C12—NI—HI	109.0 (12)	C8—C9—H9A	109.6
O6—C18—C17	117.09 (15)	С8—С9—Н9В	109.6
O6—C18—C19	123.92 (15)	01—C1—C2	114.09 (15)
C19—C18—C17	119.00 (14)	O2—C1—O1	124.09 (15)
C15—C16—H16	119.4	O2—C1—C2	121.82 (15)
C17—C16—H16	119.4	N1—C8—C9	108.98 (13)
C17—C16—C15	121.29 (15)	N1—C8—H8A	109.9
O3—C5—C6	117.17 (15)	N1—C8—H8B	109.9
O3—C5—C4	123.51 (14)	С9—С8—Н8А	109.9
C6—C5—C4	119.31 (14)	С9—С8—Н8В	109.9
С5—С6—Н6	120.1	H8A—C8—H8B	108.3
C7—C6—C5	119.90 (15)	N4—C24—H24A	109.6
С7—С6—Н6	120.1	N4—C24—H24B	109.6
$C_{16} - C_{15} - C_{20}$	118.61 (14)	N4—C24—C23	110.37 (13)
$C_{16} - C_{15} - C_{14}$	120.30(14)	H24A_C24_H24B	108.1
C_{20} C_{15} C_{14}	120.50(11) 121.09(15)	C_{23} C_{24} H_{24A}	109.6
C6 C7 H7	110 /	C_{23} C_{24} H_{24R}	109.6
$C_{0} = C_{1} = C_{1}$	119.7 121.17(15)	124	109.0 109.07(12)
$C_0 - C_7 - C_2$	121.17 (13)	N1 = C10 = H10A	108.97(12)
$C_2 = C_1 = H_1$	119.4	NI CIO HIOD	109.9
C4 = C3 = C3	119./		109.9
C4 - C3 - C2	120.01 (15)	CII—CIO—HIOA	109.9
C2—C3—H3A	119.7	CII—CIO—HIOB	109.9
C5—C4—H4	119.9	HI0A—CI0—HI0B	108.3
C3—C4—C5	120.21 (14)	N3—C21—C22	109.50 (13)
C3—C4—H4	119.9	N3—C21—H21A	109.8
C18—C17—H17	120.0	N3—C21—H21B	109.8
C16—C17—C18	120.05 (15)	C22—C21—H21A	109.8
C16—C17—H17	120.0	C22—C21—H21B	109.8
C7—C2—C3	118.79 (14)	H21A—C21—H21B	108.2
C7—C2—C1	120.03 (14)	N3—C25—C26	109.32 (13)
C3—C2—C1	121.17 (15)	N3—C25—H25A	109.8
С15—С20—Н20	119.6	N3—C25—H25B	109.8
C19—C20—C15	120.81 (15)	C26—C25—H25A	109.8
C19—C20—H20	119.6	C26—C25—H25B	109.8
N4—C26—H26A	109.6	H25A—C25—H25B	108.3
-------------------------------------	--------------	-------------------------------	-------------
N4—C26—H26B	109.6	N1—C12—C13	109.03 (13)
N4—C26—C25	110.44 (13)	N1-C12-H12A	109.9
H26A—C26—H26B	108.1	N1-C12-H12B	109.9
C25—C26—H26A	109.6	C13—C12—H12A	109.9
C25—C26—H26B	109.6	C13—C12—H12B	109.9
N4—C22—H22A	109.6	H12A—C12—H12B	108.3
N4—C22—H22B	109.6	N3—C23—C24	109.48 (14)
N4—C22—C21	110.28 (13)	N3—C23—H23A	109.8
H22A—C22—H22B	108.1	N3—C23—H23B	109.8
C21—C22—H22A	109.6	C24—C23—H23A	109.8
C21—C22—H22B	109.6	C24—C23—H23B	109.8
04—C14—C15	114.17 (15)	H23A—C23—H23B	108.2
O3—C5—C6—C7	178.56 (14)	C2—C3—C4—C5	-0.2 (2)
O3—C5—C4—C3	-178.71 (14)	C20—C15—C14—O4	179.26 (15)
O6—C18—C17—C16	-178.61 (14)	C20—C15—C14—O5	-1.1(2)
O6-C18-C19-C20	178.79 (15)	C26—N4—C22—C21	-57.79 (17)
N2-C11-C10-N1	-4.97 (19)	C26—N4—C24—C23	59.89 (17)
N2-C13-C12-N1	-6.37 (18)	C22—N4—C26—C25	58.89 (18)
N2—C9—C8—N1	-6.1 (2)	C22—N4—C24—C23	-58.59 (18)
N4-C26-C25-N3	-0.3(2)	C14—C15—C20—C19	179.93 (14)
N4—C22—C21—N3	-1.77 (19)	C11—N2—C13—C12	63.29 (16)
N4—C24—C23—N3	-1.0 (2)	C11—N2—C9—C8	-55.57 (18)
C16—C15—C20—C19	0.7 (2)	C13—N2—C11—C10	-56.90 (16)
C16—C15—C14—O4	-1.5 (2)	C13—N2—C9—C8	62.96 (17)
C16—C15—C14—O5	178.14 (16)	C19—C18—C17—C16	1.4 (2)
C5—C6—C7—C2	0.5 (2)	C9—N2—C11—C10	62.09 (17)
C6—C5—C4—C3	1.0 (2)	C9—N2—C13—C12	-55.37 (16)
C6—C7—C2—C3	0.3 (2)	C8—N1—C10—C11	-57.43(17)
C6—C7—C2—C1	179.22 (14)	C8—N1—C12—C13	63.48 (17)
C15—C16—C17—C18	-0.5(2)	C24—N4—C26—C25	-59.32(18)
C15—C20—C19—C18	0.2 (2)	C24—N4—C22—C21	60.53 (17)
C7—C2—C1—O1	-4.3 (2)	C10—N1—C8—C9	63.89 (18)
C7—C2—C1—O2	176.04 (16)	C10—N1—C12—C13	-56.12(17)
C3-C2-C1-O1	174.60 (15)	C21—N3—C25—C26	-60.07(19)
$C_{3}-C_{2}-C_{1}-O_{2}$	-5.1 (3)	C21—N3—C23—C24	60.41 (18)
C4—C5—C6—C7	-1.2(2)	C25—N3—C21—C22	61.18 (17)
C4—C3—C2—C7	-0.5(2)	C25 - N3 - C23 - C24	-59.03(19)
C4—C3—C2—C1	-179.37(14)	C12—N1—C8—C9	-56.19 (18)
C_{17} C_{18} C_{19} C_{20}	-1.2 (2)	C12-N1-C10-C11	62.56 (17)
C17—C16—C15—C20	-0.5(2)	C_{23} N3 C_{21} C_{22}	-58.45(17)
C17—C16—C15—C14	-179.76(14)	C_{23} N3 C_{25} C_{26}	59.53 (19)