research papers

Received 11 June 2024 Accepted 18 July 2024

Edited by D. R. Turner, University of Monash, Australia

Keywords: organometallic iron(II) complex; acetonitrile cleavage; N-heterocyclic carbene; NHC; crystal structure; cyanation.

CCDC reference: 2326821

Supporting information: this article has supporting information at journals.iucr.org/c

Formation of a diiron– $(\mu - \eta^1 : \eta^1 - CN)$ complex from acetonitrile solution

Tim P. Schlachta, Michael J. Sauer, Leon F. Richter and Fritz E. Kühn*

Technical University of Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Lichtenbergstrasse 4, 85748 Garching, Germany. *Correspondence e-mail: fritz.kuehn@ch.tum.de

The activation of C–C bonds by transition-metal complexes is of continuing interest and acetonitrile (MeCN) has attracted attention as a cyanide source with comparatively low toxicity for organic cyanation reactions. A diiron end-on μ - η^1 : η^1 -CN-bridged complex was obtained from a crystallization experiment of an open-chain iron–NHC complex, namely, μ -cyanido- $\kappa^2 C$:*N*-bis{[(acetonitrile- κN)[3,3'-bis(pyridin-2-yl)-1,1'-(methylidene)bis(benzimidazol-2-ylidene)]iron(II)} tris(hexafluorophosphate), [Fe₂(CN)(C₂H₃N)₂(C₂₅H₁₈N₆)₂](PF₆)₃. The cyanide appears to originate from the MeCN solvent by C–C bond cleavage or through carbon–hydrogen oxidation.

1. Introduction

The first iron-NHC (N-heterocyclic carbene) complex was developed by Öfele in 1969 (Öfele, 1969). However, it has taken many years for iron-NHC complexes to attract the attention of a wider audience of chemists, but, especially in the last decade, there has been a sharp increase in related publications (Riener et al., 2014). The open-chain iron-pyridine-NHC complex bis(acetonitrile- κN)[3,3'-bis(pyridin-2-yl)-1,1'-(methylidene)bis(benzimidazol-2-ylidene)]iron(II) bis(hexafluorophosphate), 1 (Scheme 1), can be successfully employed in homogeneous epoxidation catalysis (Schlachta et al., 2024). In the present work, a diiron end-on μ - η^1 : η^1 -CN-bridged complex, 2 (Scheme 2), is formed from a solution of 1 in deuterated acetonitrile. The activation of C-C bonds by transition-metal complexes is of continuing interest and MeCN has attracted attention as a cyanide source with comparatively low toxicity for organic cyanation reactions (Ahmad et al., 2020; Lu et al., 2004; Spentzos et al., 2020; Grirrane et al., 2016).

2. Experimental

2.1. General procedures and analytical methods

Complex **1** was synthesized according to a literature method (Schlachta *et al.*, 2024). Solvents were purified, dried and degassed using standard methods (Armarego, 2017) or received from a solvent purification system by M. Braun. All other chemicals were obtained from commercial suppliers and were used without further purification. NMR spectra were recorded on a Bruker Avance Ultrashield AV400 (400.13 MHz for ¹H NMR and 100.53 MHz for ¹³C NMR). The chemical shifts are given in δ values in ppm (parts per million) relative to TMS (tetramethylsilane) and are reported relative to the residual deuterated solvent signal (Fulmer *et al.*, 2010). Electrospray ionization mass spectrometry (ESI–MS) data were measured

on a Thermo Fisher Ultimate 3000. FT–IR measurements were conducted on a PerkinElmer Frontier FT–IR spectrometer (ATR). The 'inVia Reflex Raman System' comprises a research grade optical microscope [Leica DM2700M, Magnification $5\times$, $20\times$ and $50\times$ (in this case, $50\times$ was used)] coupled to a high-performance Raman spectrometer (Renishaw). A 633 nm wavelength laser was used (Renishaw RL633 Class 3B).

2.2. Crystallization of 2

Single crystals of **2** suitable for X-ray diffraction were obtained by slow evaporation of a solution of **1** in CD_3CN over a period of six months at room temperature under an ambient atmosphere near a window with sunlight (see supporting information).

A solution of **1** (around 1–2 mg) in CD₃CN (around 0.4 ml, dry and degassed) from an NMR tube (see supporting information) was placed in a 10 ml vial under an ambient atmosphere. A human hair was fixed with adhesive tape to the inside of the vial, reaching into the solution. Heterogeneous nucleation occurs more frequently than homogeneous nucleation (Sear, 2014; Pruppacher & Klett, 1997) and human hair has been used for the growth of nanoparticles or as

Table 1	
Experimental details.	

Crystal data	
Chemical formula	$[Fe_{2}(CN)(C_{2}D_{3}N)_{2}(C_{25}H_{18}N_{6})_{2}]-(PF_{6})_{3}$
M _r	1465.67
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	100
a, b, c (Å)	25.562 (2), 17.0373 (15), 14.8998 (12)
β (°)	112.112 (3)
$V(A^3)$	6011.8 (9)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.67
Crystal size (mm)	$0.13 \times 0.05 \times 0.04$
Data collection	
Diffractometer	Bruker D8 Venture
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.708, 0.745
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	89835, 5310, 4621
R _{int}	0.051
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.031, 0.083, 1.11
No. of reflections	5310
No. of parameters	461
No. of restraints	9
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.43, -0.27

Computer programs: APEX4 (Bruker, 2021), SAINT (Bruker, 2019), SHELXT (Sheldrick, 2015a), SHELXL2019 (Sheldrick, 2015b), PLATON (Spek, 2020) and enCIFer (Allen et al., 2004).

catalyst-support material (Deng *et al.*, 2016; Liu *et al.*, 2015; Haveli *et al.*, 2012; Walter *et al.*, 2006). The vial was closed and the cap was punctured with a cannula. The vial was left for six months at room temperature under ambient conditions near a window with sunlight, allowing the solvent to evaporate slowly. Orange crystals suitable for SC-XRD analysis were obtained.

Figure 1

The molecular structure of **1**. H atoms and hexafluorophosphate anions have been omitted for clarity. Displacement ellipsoids are shown at the 50% probability level (Schlachta *et al.*, 2024).

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms could not be located in difference Fourier maps and were calculated in ideal positions (riding model), with C-H = 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH_3 groups, C-H = 0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH_2 groups, and C-H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH groups. Split-layer position refinement was used for atoms P2, F7, F8, F9, F10, F11 and F12 (PF₆⁻ anion), as well as N8 and C28 (bridging cyanide). Restraints were applied to atoms N8 and C28 to ensure reasonable ellipsoids. CD_3 has been modelled as CH_3 as there is no appreciable difference in SC-XRD.

3. Results and discussion

When a solution of **1** (Scheme 1 and Fig. 1) in CD₃CN was evaporated slowly over a period of six months under ambient conditions, a diiron end-on μ - η^1 : η^1 -CN-bridged complex, [(MeCN)(NHC)Fe]₂(μ - η^1 : η^1 -CN)(PF₆)₃ (**2**) (Scheme 2 and Fig. 2), was obtained, as determined by X-ray diffraction. The two iron centres are bridged by a cyanide anion, hence three PF₆⁻ anions are present in the crystal structure. Under similar conditions, *i.e.* MeCN solution, room temperature and air, a dinuclear Cu^{II} cryptate has been found to form a μ - η^1 : η^1 -CNbridged complex by C–C bond cleavage of MeCN (Lu *et al.*, 2004). A possible mechanism involving the activation of the

Figure 2

The molecular structure of 2. H atoms and hexafluorophosphate anions have been omitted for clarity. Displacement ellipsoids are shown at the 50% probability level.

Table 2

Selected geometric parameters (Å, $^\circ).$

Fe1-N3	2.0703 (16)	Fe1-N8	1.83 (4)
Fe1-N6	2.0754 (17)	Fe1-C1	1.824 (2)
Fe1-N7	1.9336 (17)	Fe1-C14	1.824 (2)
Fe1-C28 ⁱ	1.98 (5)	N8-C28	1.128 (12)
N7-Fe1-N8	173.3 (10)	Fe1-N8-C28	171.1 (7)
Fe1 ⁱ -C28-N8	177 (4)	N3-Fe1-C14	167.26 (8)

Symmetry code: (i) -x + 1, y, $-z + \frac{1}{2}$.

sp-hybridized C atom of MeCN, bound to one Cu atom (MeCN-Cu), by the second Cu centre has been suggested. The increased electrophilicity of the methyl group would allow cleavage by H₂O to form MeOH and the cvanide-bridged compound (Lu et al., 2004; Ahmad et al., 2020). Another possible mechanism for the formation of 2 might be the carbon-hydrogen oxidation of MeCN by iron complex 1 to form glycolonitrile, as observed previously for an iron(III) tetracarbene complex, and subsequent release of cyanide upon decay of glycolonitrile (Knapp et al., 2012; Dyckhoff et al., 2021; Lewis, 2008). Due to the stronger Me-CN bond (122 kcal mol⁻¹) compared to the H-CH₂CN bond (93 kcal mol^{-1}) (Spentzos *et al.*, 2020; Blanksby & Ellison, 2003; Goebbert et al., 2010; Miscione & Bottoni, 2014), the carbonhydrogen oxidation of MeCN seems to be more likely the origin of cyanide in this case. However, C-C bond cleavage of MeCN by UV irradiation is known (Grirrane et al., 2016) and, given the fact that the crystallization setup with 1 was also accessible for sunlight during the extensive period of six months, C-C bond cleavage of MeCN cannot be excluded.

The crystal structure of 2 reveals strongly bent equatorial NHC ligands. This finding is in stark contrast to 1, where the NHC ligand is largely planar (Fig. 1). This sandwich-like structure encapsulates the cyanide ion and is indicative of some noncovalent interactions between the equatorial ligands, likely contributing to the stability of 2. Interestingly, the pyridine units are bent less towards the centre compared to the NHC units, forming a Z-shape or diamond-shape, depending on the viewing angle of **2**. The Fe-N-C angle is slightly bent (Table 2) in a *trans* fashion, resulting in a 'zigzag' vertical axis. Another interesting finding is the rotation of the NHC ligands towards each other in an anti conformation, resulting in a dihedral angle (CH₂-Fe-Fe-CH₂) of 160.7° (Scheme 2). The crystal structure can in principle also be solved as the diiron– $(\mu - \eta^1 : \eta^1 - N_2)$ complex (Fig. 2), which is why we refrain from a detailed structural discussion at this point. However, there are several arguments against a diiron– $(\mu - \eta^1: \eta^1 - N_2)$ complex:

(i) The main argument against a diiron– $(\mu - \eta^{1}: \eta^{1}-N_{2})$ complex is the fact that the crystal structure contains three counter-ions. As the crystallization was performed with **1** containing an iron(II) centre, bridging two Fe^{II} atoms with a neutral N₂ ligand should lead to the presence of four counter-ions. Otherwise, three counter-ions would indicate that a redox process has occurred during the formation of **2**, but the nature of a hypothetical reducing agent and the location of reduction are highly speculative. The main components of the

crystallization experiment were **1** and CD₃CN, as well as unreacted ligand precursor as a minor impurity (see supporting information). In a cyclic voltammetry study of **1**, the first reduction event occurred at -1.78 V (*versus* Fc/Fc⁺). A preliminary experiment measuring **1** in cyclic voltammetry under an N₂ atmosphere did not show significant redox processes or electric current. Considering all these facts, the involvement of a redox process appears to be quite implausible.

(ii) Dinitrogen is a weak σ -donor and a weak π -acceptor, and substitution of the N₂ ligand with CO or nitriles like MeCN is often observed (Crossland & Tyler, 2010; Sunada *et al.*, 2013). A diiron– $(\mu$ - η^1 : η^1 -N₂) version of **2** would be very surprising in this context, since one axial MeCN ligand coordinates with one iron centre each, the crystallization of **2** occurred in (deuterated) MeCN as solvent and the previous occupation of both axial coordination sites by MeCN in **1**. The stability of **2** under air is also interesting, which would be rather uncommon for a diiron– $(\mu$ - η^1 : η^1 -N₂) complex (Crossland & Tyler, 2010; Takeshita *et al.*, 2018; Saouma *et al.*, 2011; Regenauer *et al.*, 2022) and an affinity for N₂ over O₂ would be very unusual considering other Fe compounds tending to form diiron– μ -oxido species (Schlachta & Kühn, 2023; Schlachta *et al.*, 2021).

(iii) A diiron– $(\mu - \eta^1: \eta^1 - N_2)$ complex should show a distinctive $v_{\rm NN}$ absorption band in Raman spectroscopy and be IR inactive due to the centrosymmetric structure (Suess & Peters, 2013; McWilliams *et al.*, 2018; Gu *et al.*, 2018). No $v_{\rm NN}$ band was detected in the crude material either by IR or Raman spectroscopy. However, no pronounced $v_{\rm CN}$ stretch could be observed either and, interestingly, complex **1** also does not show a characteristic $v_{\rm CN}$ band in IR, contrary to similar complexes (Raba *et al.*, 2012), but signals attributable to axial MeCN are visible in the Raman spectrum (see supporting information).

4. Conclusion

A diiron end-on μ - η^{1} : η^{1} -CN-bridged complex, **2**, was obtained from a crystallization experiment with an open-chain iron NHC complex **1**. The cyanide presumably originates from the MeCN solvent by C–C bond cleavage or through carbonhydrogen oxidation. The strongly bent NHC ligands are positioned in an *anti* conformation.

Acknowledgements

Lena Schröck is gratefully acknowledged for Raman measurements. There are no competing interests to declare. Open access funding enabled and organized by Projekt DEAL.

References

- Ahmad, M. S., Pulidindi, I. N. & Li, C. (2020). New J. Chem. 44, 17177–17197.
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.

- Armarego, W. L. (2017). In *Purification of laboratory chemicals*. London: Butterworth–Heinemann.
- Blanksby, S. J. & Ellison, G. B. (2003). Acc. Chem. Res. 36, 255–263.
- Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2021). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.
- Crossland, J. L. & Tyler, D. R. (2010). Coord. Chem. Rev. 254, 1883–1894.
- Deng, D., Gopiraman, M., Kim, S. H., Chung, I.-M. & Kim, I. S. (2016). ACS Sustainable Chem. Eng. 4, 5409–5414.
- Dyckhoff, F., Schlagintweit, J. F., Bernd, M. A., Jakob, C. H. G., Schlachta, T. P., Hofmann, B. J., Reich, R. M. & Kühn, F. E. (2021). *Catal. Sci. Technol.* **11**, 795–799.
- Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E. & Goldberg, K. I. (2010). *Organometallics*, 29, 2176–2179.
- Goebbert, D. J., Velarde, L., Khuseynov, D. & Sanov, A. (2010). J. *Phys. Chem. Lett.* **1**, 792–795.
- Grirrane, A., Álvarez, E., Albero, J., García, H. & Corma, A. (2016). Dalton Trans. 45, 5444–5450.
- Gu, N. X., Oyala, P. H. & Peters, J. C. (2018). J. Am. Chem. Soc. 140, 6374–6382.
- Haveli, S. D., Walter, P., Patriarche, G., Ayache, J., Castaing, J., Van Elslande, E., Tsoucaris, G., Wang, P.-A. & Kagan, H. B. (2012). *Nano Lett.* 12, 6212–6217.
- Knapp, S. M. M., Sherbow, T. J., Juliette, J. J. & Tyler, D. R. (2012). Organometallics, 31, 2941–2944.
- Lewis, R. J. Sr (2008). In *Hazardous Chemicals Desk Reference*, 6th ed. Chichester: John Wiley & Sons.
- Liu, X., Zhou, W., Yang, L., Li, L., Zhang, Z., Ke, Y. & Chen, S. (2015). J. Mater. Chem. A, 3, 8840–8846.
- Lu, T., Zhuang, X., Li, Y. & Chen, S. (2004). J. Am. Chem. Soc. 126, 4760–4761.
- McWilliams, S. F., Bunting, P. C., Kathiresan, V., Mercado, B. Q., Hoffman, B. M., Long, J. R. & Holland, P. L. (2018). *Chem. Commun.* 54, 13339–13342.
- Miscione, G. P. & Bottoni, A. (2014). Organometallics, **33**, 4173–4182. Öfele, K. (1969). Angew. Chem. Int. Ed. Engl. **8**, 916–917.
- Pruppacher, H. R. & Klett, J. D. (1997). In *Microphysics of Clouds*
- and Precipitation. Dordrecht: Springer. Raba, A., Cokoja, M., Ewald, S., Riener, K., Herdtweck, E., Pöthig,
- A., Herrmann, W. A. & Kühn, F. E. (2012). *Organometallics*, **31**, 2793–2800.
- Regenauer, N. I., Wadepohl, H. & Roşca, D.-A. (2022). *Inorg. Chem.* **61**, 7426–7435.
- Riener, K., Haslinger, S., Raba, A., Högerl, M. P., Cokoja, M., Herrmann, W. A. & Kühn, F. E. (2014). *Chem. Rev.* 114, 5215–5272.
- Saouma, C. T., Moore, C. E., Rheingold, A. L. & Peters, J. C. (2011). *Inorg. Chem.* 50, 11285–11287.
- Schlachta, T. P., Anneser, M. R., Schlagintweit, J. F., Jakob, C. H. G., Hintermeier, C., Böth, A. D., Haslinger, S., Reich, R. M. & Kühn, F. E. (2021). *Chem. Commun.* 57, 6644–6647.
- Schlachta, T. P. & Kühn, F. E. (2023). Chem. Soc. Rev. 52, 2238-2277.
- Schlachta, T. P., Zámbó, G. G., Sauer, M. J., Rüter, I. & Kühn, F. E. (2024). Submitted.
- Sear, R. P. (2014). CrystEngComm, 16, 6506-6522.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Spentzos, A. Z., Gau, M. R., Carroll, P. J. & Tomson, N. C. (2020). Chem. Commun. 56, 9675–9678.
- Suess, D. L. M. & Peters, J. C. (2013). J. Am. Chem. Soc. 135, 4938-4941.
- Sunada, Y., Imaoka, T. & Nagashima, H. (2013). Organometallics, **32**, 2112–2120.
- Takeshita, T., Sato, K. & Nakajima, Y. (2018). Dalton Trans. 47, 17004–17010.
- Walter, P., Welcomme, E., Hallégot, P., Zaluzec, N. J., Deeb, C., Castaing, J., Veyssière, P., Bréniaux, R., Lévêque, J.-L. & Tsoucaris, G. (2006). *Nano Lett.* 6, 2215–2219.

Acta Cryst. (2024). C80, 534-537 [https://doi.org/10.1107/S2053229624007058]

Formation of a diiron–(μ - η^1 : η^1 -CN) complex from acetonitrile solution

Tim P. Schlachta, Michael J. Sauer, Leon F. Richter and Fritz E. Kühn

Computing details

 μ -Cyanido- κ^2 C:N-bis[(acetonitrile- κ N)[3,3'-bis(pyridin-2-yl)-1,1'-(methylidene)bis(benzimidazol-2-ylidene)]iron(II) tris(hexafluorophosphate),

Crystal data

 $[Fe_{2}(CN)(C_{2}D_{3}N)_{2}(C_{25}H_{18}N_{6})_{2}](PF_{6})_{3}$ $M_{r} = 1465.67$ Monoclinic, C2/c Hall symbol: -C 2yc a = 25.562 (2) Å b = 17.0373 (15) Å c = 14.8998 (12) Å $\beta = 112.112$ (3)° V = 6011.8 (9) Å³ Z = 4

Data collection

Bruker D8 Venture diffractometer Radiation source: TXS rotating anode Helios optic monochromator Detector resolution: 16 pixels mm⁻¹ phi– and ω -rotation scans Absorption correction: multi-scan (SADABS; Bruker, 2016) $T_{\min} = 0.708$, $T_{\max} = 0.745$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.083$ S = 1.115310 reflections 461 parameters 9 restraints Primary atom site location: iterative F(000) = 2944 $D_x = 1.613 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9628 reflections $\theta = 2.4-26.4^{\circ}$ $\mu = 0.67 \text{ mm}^{-1}$ T = 100 KBlock, orange $0.13 \times 0.05 \times 0.04 \text{ mm}$

89835 measured reflections 5310 independent reflections 4621 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -30 \rightarrow 30$ $k = -20 \rightarrow 20$ $l = -17 \rightarrow 17$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0401P)^2 + 7.8548P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.43$ e Å⁻³ $\Delta\rho_{min} = -0.27$ e Å⁻³

Special details

Experimental. Diffractometer operator Michael J. Sauer scanspeed 8 s per frame dx 52 mm 2745 frames measured in 9 data sets phi-scans with delta_phi = 0.5 omega-scans with delta_omega = 0.5 shutterless mode

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement on F² for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The observed criterion of $F^2 > 2sigma(F^2)$ is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

 $U_{\rm iso}$ */ $U_{\rm eq}$ Occ. (<1) х Zv C2 0.0230 (4) 0.51681 (9) 0.54639 (12) 0.40847 (15) C1 0.48971 (8) 0.67342 (11) 0.41355 (14) 0.0191 (4) C3 0.52280 (10) 0.46741 (12) 0.39071 (16) 0.0285 (5) H3 0.493545 0.439133 0.342543 0.034* C4 0.57347 (10) 0.43178 (13) 0.44656 (16) 0.0325(5)H4 0.578761 0.377839 0.436170 0.039* C5 0.61662 (10) 0.47228 (13) 0.51698 (16) 0.0309(5)H5 0.650564 0.445503 0.553634 0.037* C6 0.61117 (9) 0.55136(12) 0.53500(15) 0.0262(5)H6 0.031* 0.640536 0.579456 0.583194 C7 0.56099 (9) 0.58683 (11) 0.47936(14) 0.0210(4)C8 0.41982 (8) 0.60040 (12) 0.29429 (14) 0.0216 (4) C9 0.39400 (9) 0.53318 (13) 0.24422 (16) 0.0278(5)H9 0.412663 0.483855 0.258325 0.033* C10 0.34073 (10) 0.53986 (13) 0.17372 (16) 0.0316 (5) H10 0.322298 0.495149 0.137462 0.038* C11 0.31423 (9) 0.61226(14) 0.15608 (17) 0.0315(5)0.038* H11 0.277284 0.617889 0.108242 C12 0.34259 (9) 0.67626 (13) 0.20945 (15) 0.0269 (5) H12 0.197740 0.032* 0.324037 0.725698 C13 0.57511 (9) 0.72591 (11) 0.54465 (15) 0.0237 (4) H13A 0.028* 0.615637 0.718645 0.556805 H13B 0.570386 0.721898 0.607461 0.028* C14 0.50573 (8) 0.82068 (11) 0.43583 (14) 0.0185(4)0.0194 (4) C15 0.55845 (8) 0.93306(11) 0.47385 (14) C16 1.00883 (12) 0.48412 (15) 0.0220(4)0.58037 (8) H16 0.558874 1.051346 0.447128 0.026* C17 0.63487 (9) 1.01944 (12) 0.55065 (15) 0.0251 (5) H17 0.651077 1.070411 0.559010 0.030* C18 0.66666 (9) 0.95765 (13) 0.60568 (16) 0.0261(5)H18 0.703851 0.967543 0.650754 0.031* C19 0.64519 (9) 0.88182 (12) 0.0241 (4) 0.59610(15) 0.029* H19 0.666647 0.839438 0.633500

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C20	0.59074 (8)	0.87146 (11)	0.52896 (14)	0.0205 (4)	
C21	0.45748 (8)	0.92713 (11)	0.34057 (14)	0.0191 (4)	
C22	0.44959 (9)	1.00394 (12)	0.30793 (15)	0.0229 (4)	
H22	0.477790	1.042564	0.336464	0.027*	
C23	0.39996 (9)	1.02300 (13)	0.23321 (16)	0.0276 (5)	
H23	0.393359	1.075350	0.209642	0.033*	
C24	0.35964 (9)	0.96551 (13)	0.19246 (16)	0.0277 (5)	
H24	0.325140	0.977582	0.140730	0.033*	
C25	0.37087 (9)	0.89035 (13)	0.22888 (14)	0.0240 (4)	
H25	0.343196	0.850972	0.200839	0.029*	
C26	0.37547 (9)	0.76394 (12)	0.48363 (15)	0.0223 (4)	
C27	0.33930 (9)	0.76348 (14)	0.53938 (16)	0.0314 (5)	
H27A	0.362703	0.760303	0.608611	0.047*	
H27B	0.313983	0.718030	0.520553	0.047*	
H27C	0.316874	0.811809	0.526464	0.047*	
N1	0.47349 (7)	0.60167 (9)	0.36928 (12)	0.0211 (4)	
N2	0.54219 (7)	0.66444 (9)	0.47956 (12)	0.0192 (3)	
N3	0.39514 (7)	0.67189 (10)	0.27707 (12)	0.0215 (4)	
N4	0.50588 (7)	0.89954 (9)	0.41663 (11)	0.0184 (3)	
N5	0.55693 (7)	0.80364 (9)	0.50275 (12)	0.0190 (3)	
N6	0.41879 (7)	0.86973 (10)	0.30185 (12)	0.0196 (4)	
N7	0.40318 (7)	0.76333 (10)	0.43942 (12)	0.0201 (4)	
N8	0.4815 (13)	0.7578 (5)	0.271 (3)	0.012 (3)	0.5
C28	0.5088 (17)	0.7573 (7)	0.226 (4)	0.015 (3)	0.5
F1	0.28817 (5)	0.30065 (8)	0.33162 (9)	0.0332 (3)	
F2	0.26765 (5)	0.36583 (8)	0.11822 (9)	0.0329 (3)	
F3	0.27050 (6)	0.41972 (7)	0.25915 (9)	0.0354 (3)	
F4	0.34412 (5)	0.34831 (8)	0.25648 (10)	0.0355 (3)	
F5	0.28548 (6)	0.24662 (7)	0.19108 (10)	0.0389 (3)	
F6	0.21189 (5)	0.31830 (9)	0.19278 (9)	0.0368 (3)	
P1	0.27795 (2)	0.33301 (3)	0.22461 (4)	0.02314 (14)	
Fe1	0.44743 (2)	0.75968 (2)	0.35901 (2)	0.01691 (9)	
P2	0.5028 (4)	0.77084 (6)	0.7390 (5)	0.0259 (9)	0.5
F7	0.4679 (2)	0.8423 (3)	0.6742 (5)	0.0414 (12)	0.5
F8	0.5148 (2)	0.8219 (3)	0.8346 (4)	0.0494 (13)	0.5
F9	0.53865 (16)	0.70063 (18)	0.8030 (3)	0.0597 (10)	0.5
F10	0.49183 (12)	0.72121 (15)	0.6430 (2)	0.0357 (6)	0.5
F11	0.44684 (14)	0.7360 (3)	0.7446 (2)	0.0606 (10)	0.5
F12	0.55908 (11)	0.80528 (18)	0.7315 (2)	0.0400 (7)	0.5

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.0285 (11)	0.0170 (10)	0.0230 (10)	-0.0014 (8)	0.0092 (9)	0.0028 (8)
C1	0.0226 (10)	0.0165 (10)	0.0206 (10)	-0.0039 (8)	0.0108 (8)	-0.0002 (8)
C3	0.0381 (13)	0.0164 (10)	0.0273 (11)	-0.0043 (9)	0.0081 (10)	-0.0004 (9)
C4	0.0450 (14)	0.0148 (10)	0.0332 (12)	0.0031 (9)	0.0094 (11)	0.0013 (9)
C5	0.0382 (13)	0.0181 (11)	0.0321 (12)	0.0059 (9)	0.0083 (10)	0.0048 (9)

C6	0.0309 (12)	0.0184 (11)	0.0265 (11)	0.0012 (9)	0.0076 (9)	0.0013 (8)
C7	0.0282 (11)	0.0143 (10)	0.0223 (10)	-0.0009 (8)	0.0116 (9)	0.0008 (8)
C8	0.0232 (10)	0.0202 (10)	0.0211 (10)	-0.0057 (8)	0.0081 (8)	0.0016 (8)
C9	0.0330 (12)	0.0195 (11)	0.0301 (12)	-0.0061 (9)	0.0109 (10)	-0.0012 (9)
C10	0.0347 (13)	0.0269 (12)	0.0312 (12)	-0.0130 (10)	0.0101 (10)	-0.0056 (9)
C11	0.0232 (11)	0.0333 (13)	0.0322 (12)	-0.0068 (9)	0.0040 (10)	-0.0026 (10)
C12	0.0229 (11)	0.0254 (11)	0.0305 (12)	-0.0027 (9)	0.0078 (9)	-0.0013 (9)
C13	0.0249 (11)	0.0147 (10)	0.0256 (11)	0.0021 (8)	0.0029 (9)	-0.0021 (8)
C14	0.0227 (10)	0.0145 (9)	0.0211 (10)	0.0015 (8)	0.0113 (8)	-0.0013 (8)
C15	0.0181 (10)	0.0193 (10)	0.0216 (10)	-0.0020 (8)	0.0084 (8)	-0.0047 (8)
C16	0.0257 (11)	0.0167 (10)	0.0256 (11)	-0.0003 (8)	0.0120 (9)	-0.0016 (8)
C17	0.0262 (11)	0.0193 (10)	0.0322 (12)	-0.0069 (8)	0.0136 (9)	-0.0070 (9)
C18	0.0196 (10)	0.0255 (11)	0.0308 (12)	-0.0030 (9)	0.0068 (9)	-0.0073 (9)
C19	0.0225 (10)	0.0194 (10)	0.0280 (11)	0.0019 (8)	0.0067 (9)	-0.0039 (8)
C20	0.0215 (10)	0.0168 (10)	0.0242 (10)	-0.0017 (8)	0.0099 (8)	-0.0043 (8)
C21	0.0200 (10)	0.0188 (10)	0.0205 (10)	0.0001 (8)	0.0101 (8)	-0.0008 (8)
C22	0.0248 (11)	0.0201 (10)	0.0252 (11)	-0.0009 (8)	0.0111 (9)	0.0005 (8)
C23	0.0308 (12)	0.0227 (11)	0.0303 (12)	0.0031 (9)	0.0125 (10)	0.0069 (9)
C24	0.0258 (11)	0.0290 (12)	0.0255 (11)	0.0025 (9)	0.0064 (9)	0.0064 (9)
C25	0.0207 (10)	0.0265 (11)	0.0232 (11)	-0.0012 (8)	0.0064 (9)	0.0001 (8)
C26	0.0209 (10)	0.0209 (10)	0.0218 (10)	0.0018 (8)	0.0043 (9)	0.0032 (8)
C27	0.0251 (11)	0.0418 (14)	0.0298 (12)	0.0049 (10)	0.0134 (10)	0.0073 (10)
N1	0.0242 (9)	0.0144 (8)	0.0234 (9)	-0.0031 (7)	0.0075 (7)	0.0000(7)
N2	0.0207 (8)	0.0151 (8)	0.0201 (8)	-0.0002 (7)	0.0057 (7)	-0.0004 (6)
N3	0.0213 (9)	0.0200 (9)	0.0235 (9)	-0.0039 (7)	0.0087 (7)	-0.0012 (7)
N4	0.0194 (8)	0.0139 (8)	0.0216 (8)	-0.0003 (6)	0.0074 (7)	-0.0014 (7)
N5	0.0190 (8)	0.0153 (8)	0.0208 (8)	-0.0009 (7)	0.0053 (7)	-0.0027 (7)
N6	0.0192 (8)	0.0215 (9)	0.0197 (8)	-0.0001 (7)	0.0093 (7)	-0.0004 (7)
N7	0.0192 (8)	0.0181 (9)	0.0215 (9)	0.0005 (7)	0.0062 (7)	0.0012 (7)
N8	0.005 (9)	0.010 (3)	0.019 (2)	-0.001(2)	0.003 (6)	0.000(2)
C28	0.007 (9)	0.017 (4)	0.020 (3)	-0.001(2)	0.004 (6)	0.000 (3)
F1	0.0328 (7)	0.0370 (7)	0.0277 (7)	0.0044 (6)	0.0092 (6)	0.0050 (6)
F2	0.0345 (7)	0.0352 (7)	0.0263 (7)	-0.0045 (6)	0.0085 (6)	0.0013 (5)
F3	0.0400 (8)	0.0265 (7)	0.0361 (7)	0.0070 (6)	0.0103 (6)	-0.0047 (6)
F4	0.0211 (6)	0.0412 (8)	0.0406 (8)	0.0003 (6)	0.0075 (6)	0.0046 (6)
F5	0.0550 (9)	0.0231 (7)	0.0479 (8)	0.0001 (6)	0.0298 (7)	-0.0045 (6)
F6	0.0217 (6)	0.0515 (9)	0.0340 (7)	-0.0047 (6)	0.0067 (6)	-0.0013 (6)
P1	0.0202 (3)	0.0226 (3)	0.0248 (3)	0.0012 (2)	0.0064 (2)	-0.0009(2)
Fe1	0.01672 (15)	0.01537 (15)	0.01870 (15)	-0.00122 (11)	0.00674 (12)	-0.00098 (11)
P2	0.0273 (16)	0.0196 (4)	0.024 (3)	-0.0010 (8)	0.0018 (15)	0.0012 (7)
F7	0.047 (3)	0.026 (2)	0.042 (2)	0.0131 (17)	0.0055 (19)	0.0051 (16)
F8	0.056 (4)	0.053 (4)	0.031 (2)	0.004 (2)	0.007 (2)	-0.014 (2)
F9	0.063 (2)	0.0328 (18)	0.051 (2)	0.0012 (16)	-0.0151 (19)	0.0152 (16)
F10	0.0386 (15)	0.0250 (14)	0.0350 (15)	-0.0053 (11)	0.0042 (13)	-0.0107 (11)
F11	0.0415 (19)	0.099 (3)	0.0406 (19)	-0.029 (2)	0.0148 (16)	0.007 (2)
F12	0.0303 (15)	0.0353 (16)	0.0522 (18)	-0.0096 (12)	0.0130 (13)	-0.0107 (14)

Geometric parameters (Å, °)

C2—C3	1.391 (3)	C19—C20	1.386 (3)
C2—N1	1.403 (3)	C19—H19	0.9500
С2—С7	1.403 (3)	C20—N5	1.407 (3)
C1—N2	1.341 (3)	C21—N6	1.356 (3)
C1—N1	1.377 (3)	C21—C22	1.384 (3)
C3—C4	1.388 (3)	C21—N4	1.407 (3)
С3—Н3	0.9500	C22—C23	1.375 (3)
C4—C5	1.386 (3)	C22—H22	0.9500
C4—H4	0.9500	C23—C24	1.385 (3)
C5—C6	1.391 (3)	C23—H23	0.9500
С5—Н5	0.9500	C24—C25	1.378 (3)
С6—С7	1.377 (3)	C24—H24	0.9500
С6—Н6	0.9500	C25—N6	1.343 (3)
C7—N2	1.407 (3)	C25—H25	0.9500
C8—N3	1.351 (3)	C26—N7	1.134 (3)
С8—С9	1.390 (3)	C26—C27	1.457 (3)
C8—N1	1.406 (3)	C27—H27A	0.9800
C9—C10	1.376 (3)	C27—H27B	0.9800
С9—Н9	0.9500	C27—H27C	0.9800
C10-C11	1.384 (3)	Fe1—N3	2.0703 (16)
C10—H10	0.9500	Fe1—N6	2.0754 (17)
C11—C12	1.383 (3)	Fe1—N7	1.9336 (17)
C11—H11	0.9500	Fe1—C28 ⁱ	1.98 (5)
C12—N3	1.344 (3)	Fe1—N8	1.83 (4)
С12—Н12	0.9500	Fe1—C1	1.824 (2)
C13—N2	1.460 (2)	Fe1—C14	1.824 (2)
C13—N5	1.463 (3)	N8—C28	1.128 (12)
С13—Н13А	0.9900	F1—P1	1.6128 (13)
C13—H13B	0.9900	F2—P1	1.6063 (13)
C14—N5	1.345 (3)	F3—P1	1.5992 (13)
C14—N4	1.374 (2)	F4—P1	1.5968 (13)
C15—C16	1.392 (3)	F5—P1	1.5892 (13)
C15—C20	1.395 (3)	F6—P1	1.5924 (13)
C15—N4	1.413 (2)	P2—F11	1.580 (8)
C16—C17	1.384 (3)	P2—F9	1.588 (7)
С16—Н16	0.9500	P2—F10	1.592 (6)
C17—C18	1.393 (3)	P2—F12	1.595 (8)
С17—Н17	0.9500	P2—F8	1.598 (8)
C18—C19	1.390 (3)	P2—F7	1.600 (9)
C18—H18	0.9500		
C3—C2—N1	134.2 (2)	N6—C25—H25	118.2
C3—C2—C7	120.2 (2)	C24—C25—H25	118.2
N1-C2-C7	105.62 (17)	N7—C26—C27	178.9 (2)
N2-C1-N1	106.73 (17)	C26—C27—H27A	109.5
N2-C1-Fe1	132.87 (15)	C26—C27—H27B	109.5

N1—C1—Fe1	118.74 (14)	H27A—C27—H27B	109.5
C4—C3—C2	117.0 (2)	С26—С27—Н27С	109.5
С4—С3—Н3	121.5	H27A—C27—H27C	109.5
С2—С3—Н3	121.5	H27B—C27—H27C	109.5
C5—C4—C3	122.2 (2)	C1—N1—C2	110.40 (16)
C5—C4—H4	118.9	C1—N1—C8	114.98 (16)
C3—C4—H4	118.9	C2—N1—C8	134.56 (17)
C4—C5—C6	121.3 (2)	C1—N2—C7	110.73 (16)
C4—C5—H5	119.4	C1—N2—C13	124.95 (16)
С6—С5—Н5	119.4	C7—N2—C13	124.30 (16)
C7—C6—C5	116.6 (2)	C12 - N3 - C8	117.12 (17)
C7—C6—H6	121.7	C12—N3—Fe1	130.04 (14)
С5—С6—Н6	121.7	C8—N3—Fe1	112.81 (13)
C6-C7-C2	122.75 (19)	C14 - N4 - C21	115.07 (16)
C6-C7-N2	130.72 (19)	C14 - N4 - C15	110.26 (16)
C2-C7-N2	106.52(17)	$C_{21} - N_{4} - C_{15}$	134.35 (17)
N3-C8-C9	123 18 (19)	C14 - N5 - C20	110.67 (16)
N3-C8-N1	1125.10(17)	C14 - N5 - C13	125 16 (16)
C9-C8-N1	124.28 (19)	C_{20} N5 C_{13}	123.10 (10)
C10-C9-C8	1184(2)	$C_{25} = N_{6} = C_{21}$	121.13(10) 11692(17)
C10 - C9 - H9	120.8	$C_{25} = N_{6} = F_{e1}$	129.93 (14)
C8-C9-H9	120.8	C_{21} N6—Fe1	112 89 (13)
C9-C10-C11	119 4 (2)	C_{26} N7—Fel	177 16 (17)
C_{9} C_{10} H_{10}	120.3	F5_P1_F6	90.05 (8)
C_{11} C_{10} H_{10}	120.3	F5P1F4	90.26 (8)
C_{12} C_{11} C_{10}	120.3 118.7(2)	$F_{5} = 1 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	179 66 (8)
$C_{12} = C_{11} = C_{10}$	120.6	F5 P1 F3	179.58 (8)
$C_{12} = C_{11} = H_{11}$	120.6	F6 P1 F3	179.38(8)
$N_2 = C_{12} = C_{11}$	120.0 123.2(2)	F_{4} P_{1} F_{3}	90.00 (8) 80.60 (7)
N3 C12 H12	123.2 (2)	$F_{4} = F_{1} = F_{3}$	89.09(7)
$N_{3} = C_{12} = H_{12}$	118.4	$F_{5} = F_{1} = F_{2}$	90.37 (7) 80.06 (7)
N2 C12 N5	110.4	$F_{1} = F_{2}$	89.90(7)
N2 - C13 - H13A	100.5	$\begin{array}{c} \Gamma 4 - \Gamma 1 - \Gamma 2 \\ F 3 - D 1 - F 2 \end{array}$	89.92(7)
N5 C12 H12A	109.5	Γ_{5} Γ_{1} Γ_{2} Γ_{5} Γ_{1} Γ_{1} Γ_{2}	90.03(7)
N2 C12 H12P	109.5	$\Gamma J \longrightarrow \Gamma I \longrightarrow \Gamma I$	90.02(7)
N5 C12 H12D	109.5	$\Gamma 0 - \Gamma I - \Gamma I$ $\Gamma 4 - \Gamma 1 = \Gamma$	09.90(7)
H12A C12 H12D	109.5	$\begin{array}{ccc} \Gamma 4 - \Gamma I - \Gamma I \\ F 2 & P 1 & F 1 \end{array}$	90.14 (7) 80.56 (7)
N5 C14 N4	106.0 (16)	Γ_{3} Γ_{1} Γ_{1} Γ_{1} Γ_{2} Γ_{1} Γ_{2} Γ_{1} Γ_{2} Γ_{3} Γ_{1} Γ_{1} Γ_{2} Γ_{3} Γ_{3	39.30(7)
$N_{5} = C_{14} = N_{4}$	100.09(10) 122.70(15)	$\Gamma 2 - \Gamma I - \Gamma I$	1/9.01(0)
N_{3} C_{14} F_{c1}	132.79(13) 110.40(14)	C1 = Fe1 = C14	86.42(9)
	119.49 (14)	$C14$ E_{-1} N8	80.8 (7)
C16 - C15 - C20	120.34(18) 122.87(10)	C1 = Fe1 = N8	87.9(9)
C10-C15-N4	155.87 (19)	C14 E-1 N7	97.83 (8)
C_{20} C_{13} N_{4} C_{17} C_{16} C_{15}	103.30(10) 117.04(10)	14 $\Gamma C I$ $N / N / C C I$ $N / N / C C I$ $N / C C I$	7/.00(0)
C17 = C16 = U16	11/.04(19)	$\frac{1}{10} - \frac{1}{10} = \frac{1}{100} = \frac{1}{1$	1/3.3(10)
$C_1/-C_10-H_10$	121.3	$FeI^{-} U2\delta - IN\delta$ $FeI^{-} N8 C28$	1//(4)
$C_{13} - C_{10} - H_{10}$	121.3	$\Gamma \in I \longrightarrow \mathbb{N} $	1/1.1(/)
C10 - C1 / - C18	121.99 (19)	C_1 —Fe1—N3	/9.83 (8)
C16—C17—H17	119.0	N3—FeI—C14	167.26 (8)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C18—C17—H17	119.0	N8—Fe1—N3	86.5 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19—C18—C17	121.46 (19)	N7—Fe1—N3	89.44 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19—C18—H18	119.3	C1—Fe1—N6	165.70 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17—C18—H18	119.3	C14—Fe1—N6	79.71 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C20—C19—C18	116.29 (19)	N8—Fe1—N6	84.9 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С20—С19—Н19	121.9	N7—Fe1—N6	91.55 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18—C19—H19	121.9	N3—Fe1—N6	111.16(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19—C20—C15	122.68 (18)	F11—P2—F9	90.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19—C20—N5	130.53 (18)	F11—P2—F10	89.5 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—C20—N5	106.79 (17)	F9—P2—F10	90.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N6—C21—C22	123.10 (18)	F11—P2—F12	179.0 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N6—C21—N4	112.40 (16)	F9—P2—F12	89.3 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22—C21—N4	124.50 (18)	F10—P2—F12	89.6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23—C22—C21	118.4 (2)	F11—P2—F8	91.7 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23—C22—H22	120.8	F9—P2—F8	90.1 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21—C22—H22	120.8	F10—P2—F8	178.7 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22—C23—C24	119.7 (2)	F12—P2—F8	89.2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22—C23—H23	120.2	F11—P2—F7	90.4 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C24—C23—H23	120.2	F9—P2—F7	178.8 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C25—C24—C23	118.3 (2)	F10—P2—F7	89.6 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C25—C24—H24	120.8	F12—P2—F7	89.5 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23—C24—H24	120.8	F8—P2—F7	90.0 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N6—C25—C24	123.6 (2)		, (_)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C2—C3—C4	-179.7(2)	C11—C12—N3—C8	-2.0(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C2—C3—C4	0.7 (3)	C11—C12—N3—Fe1	175.72 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C4—C5	-0.1 (3)	C9—C8—N3—C12	1.5 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—C5—C6	-0.2 (4)	N1—C8—N3—C12	-177.18 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—C6—C7	-0.1(3)	C9—C8—N3—Fe1	-176.56 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6—C7—C2	0.7 (3)	N1-C8-N3-Fe1	4.7 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6—C7—N2	179.7 (2)	N5-C14-N4-C21	173.84 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C7—C6	-1.0(3)	Fe1—C14—N4—C21	4.0 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C2—C7—C6	179.26 (19)	N5-C14-N4-C15	-0.6 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C7—N2	179.78 (19)	Fe1—C14—N4—C15	-170.49 (13)
N3-C8-C9-C100.0 (3)C22-C21-N4-C14 $-178.39 (18)$ N1-C8-C9-C10178.6 (2)N6-C21-N4-C15174.24 (19)C8-C9-C10-C11 $-1.2 (3)$ C22-C21-N4-C15 $-5.6 (3)$ C9-C10-C11-C120.8 (3)C16-C15-N4-C14 $-178.8 (2)$ C10-C11-C12-N30.9 (3)C20-C15-N4-C140.2 (2)C20-C15-C16-C170.0 (3)C16-C15-N4-C218.3 (4)N4-C15-C16-C17178.8 (2)C20-C15-N4-C21 $-172.8 (2)$ C15-C16-C17-C18 $-0.4 (3)$ N4-C14-N5-C200.9 (2)C16-C17-C18-C190.3 (3)Fe1-C14-N5-C13179.66 (17)C18-C19-C20-C15 $-0.4 (3)$ Fe1-C14-N5-C13 $-12.4 (3)$ C18-C19-C20-N5 $-179.3 (2)$ C19-C20-N5-C14 $178.2 (2)$ C16-C15-C20-C19 $0.4 (3)$ C15-C20-N5-C14 $-0.8 (2)$	N1—C2—C7—N2	0.0 (2)	N6-C21-N4-C14	1.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—C8—C9—C10	0.0 (3)	C22—C21—N4—C14	-178.39 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C8—C9—C10	178.6 (2)	N6-C21-N4-C15	174.24 (19)
C9—C10—C11—C120.8 (3)C16—C15—N4—C14 $-178.8 (2)$ C10—C11—C12—N30.9 (3)C20—C15—N4—C140.2 (2)C20—C15—C16—C170.0 (3)C16—C15—N4—C218.3 (4)N4—C15—C16—C17178.8 (2)C20—C15—N4—C21 $-172.8 (2)$ C15—C16—C17—C18 $-0.4 (3)$ N4—C14—N5—C200.9 (2)C16—C17—C18—C190.3 (3)Fe1—C14—N5—C20168.81 (15)C17—C18—C19—C200.1 (3)N4—C14—N5—C13179.66 (17)C18—C19—C20—C15 $-0.4 (3)$ Fe1—C14—N5—C13 $-12.4 (3)$ C18—C19—C20—N5 $-179.3 (2)$ C19—C20—N5—C14178.2 (2)C16—C15—C20—C19 $0.4 (3)$ C15—C20—N5—C14 $-0.8 (2)$	C8—C9—C10—C11	-1.2(3)	C22—C21—N4—C15	-5.6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—C11—C12	0.8 (3)	C16-C15-N4-C14	-178.8(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C12-N3	0.9 (3)	C20-C15-N4-C14	0.2 (2)
N4—C15—C16—C17178.8 (2)C20—C15—N4—C21 $-172.8 (2)$ C15—C16—C17—C18 $-0.4 (3)$ N4—C14—N5—C20 $0.9 (2)$ C16—C17—C18—C19 $0.3 (3)$ Fe1—C14—N5—C20 $168.81 (15)$ C17—C18—C19—C20 $0.1 (3)$ N4—C14—N5—C13 $179.66 (17)$ C18—C19—C20—C15 $-0.4 (3)$ Fe1—C14—N5—C13 $-12.4 (3)$ C18—C19—C20—N5 $-179.3 (2)$ C19—C20—N5—C14 $178.2 (2)$ C16—C15—C20—C19 $0.4 (3)$ C15—C20—N5—C14 $-0.8 (2)$	C20-C15-C16-C17	0.0 (3)	C16—C15—N4—C21	8.3 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4—C15—C16—C17	178.8 (2)	C20-C15-N4-C21	-172.8(2)
C16—C17—C18—C190.3 (3)Fe1—C14—N5—C20168.81 (15)C17—C18—C19—C200.1 (3)N4—C14—N5—C13179.66 (17)C18—C19—C20—C15 -0.4 (3)Fe1—C14—N5—C13 -12.4 (3)C18—C19—C20—N5 -179.3 (2)C19—C20—N5—C14178.2 (2)C16—C15—C20—C19 0.4 (3)C15—C20—N5—C14 -0.8 (2)	C15—C16—C17—C18	-0.4(3)	N4—C14—N5—C20	0.9 (2)
C17—C18—C19—C20 0.1 (3) N4—C14—N5—C13 179.66 (17) C18—C19—C20—C15 -0.4 (3) Fe1—C14—N5—C13 -12.4 (3) C18—C19—C20—N5 -179.3 (2) C19—C20—N5—C14 178.2 (2) C16—C15—C20—C19 0.4 (3) C15—C20—N5—C14 -0.8 (2)	C16—C17—C18—C19	0.3 (3)	Fe1—C14—N5—C20	168.81 (15)
C18—C19—C20—C15 -0.4 (3)Fe1—C14—N5—C13 -12.4 (3)C18—C19—C20—N5 -179.3 (2)C19—C20—N5—C14178.2 (2)C16—C15—C20—C19 0.4 (3)C15—C20—N5—C14 -0.8 (2)	C17—C18—C19—C20	0.1 (3)	N4—C14—N5—C13	179.66 (17)
C18—C19—C20—N5 -179.3 (2) C19—C20—N5—C14 178.2 (2) C16—C15—C20—C19 0.4 (3) C15—C20—N5—C14 -0.8 (2)	C18—C19—C20—C15	-0.4 (3)	Fe1—C14—N5—C13	-12.4 (3)
C16—C15—C20—C19 0.4 (3) C15—C20—N5—C14 -0.8 (2)	C18—C19—C20—N5	-179.3 (2)	C19—C20—N5—C14	178.2 (2)
	C16—C15—C20—C19	0.4 (3)	C15-C20-N5-C14	-0.8(2)

N4—C15—C20—C19	-178.70 (18)	C19—C20—N5—C13	-0.6 (3)
C16—C15—C20—N5	179.45 (17)	C15-C20-N5-C13	-179.59 (17)
N4—C15—C20—N5	0.4 (2)	N2-C13-N5-C14	23.9 (3)
N6-C21-C22-C23	0.5 (3)	N2-C13-N5-C20	-157.43 (17)
N4—C21—C22—C23	-179.58 (19)	C24—C25—N6—C21	0.1 (3)
C21—C22—C23—C24	-0.4 (3)	C24—C25—N6—Fe1	-173.70 (16)
C22—C23—C24—C25	0.1 (3)	C22—C21—N6—C25	-0.4 (3)
C23—C24—C25—N6	0.0 (3)	N4—C21—N6—C25	179.70 (16)
N2-C1-N1-C2	0.0 (2)	C22-C21-N6-Fe1	174.44 (15)
Fe1—C1—N1—C2	167.21 (14)	N4-C21-N6-Fe1	-5.4 (2)
N2-C1-N1-C8	-177.53 (16)	N2-C1-Fe1-C14	-2.1 (2)
Fe1—C1—N1—C8	-10.3 (2)	N1-C1-Fe1-C14	-165.21 (16)
C3—C2—N1—C1	-179.7 (2)	N2—C1—Fe1—N8	85.9 (9)
C7—C2—N1—C1	0.0 (2)	N1—C1—Fe1—N8	-77.2 (9)
C3—C2—N1—C8	-2.8 (4)	N2—C1—Fe1—N7	-99.0 (2)
C7—C2—N1—C8	176.8 (2)	N1—C1—Fe1—N7	97.86 (15)
N3—C8—N1—C1	2.7 (2)	N2—C1—Fe1—N3	173.0 (2)
C9—C8—N1—C1	-175.96 (19)	N1—C1—Fe1—N3	9.85 (14)
N3—C8—N1—C2	-174.0 (2)	N2—C1—Fe1—N6	31.7 (4)
C9—C8—N1—C2	7.3 (4)	N1—C1—Fe1—N6	-131.5 (3)
N1—C1—N2—C7	0.0 (2)	N5-C14-Fe1-C1	-0.1 (2)
Fe1—C1—N2—C7	-164.60 (16)	N4—C14—Fe1—C1	166.63 (16)
N1—C1—N2—C13	-178.60 (17)	N5—C14—Fe1—N8	-86.9 (7)
Fe1—C1—N2—C13	16.8 (3)	N4—C14—Fe1—N8	79.8 (7)
C6—C7—N2—C1	-179.2 (2)	N5—C14—Fe1—N7	97.64 (19)
C2-C7-N2-C1	0.0 (2)	N4—C14—Fe1—N7	-95.65 (15)
C6—C7—N2—C13	-0.6 (3)	N5—C14—Fe1—N3	-22.7 (5)
C2-C7-N2-C13	178.58 (18)	N4—C14—Fe1—N3	144.0 (3)
N5-C13-N2-C1	-26.0 (3)	N5-C14-Fe1-N6	-172.1 (2)
N5-C13-N2-C7	155.62 (17)	N4—C14—Fe1—N6	-5.36 (14)

Symmetry code: (i) -x+1, *y*, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C6—H6…F3 ⁱⁱ	0.95	2.58	3.437 (3)	150
C6—H6…F4 ⁱⁱ	0.95	2.58	3.348 (3)	138
C13—H13A…F1 ⁱⁱ	0.99	2.42	3.312 (2)	150
C13—H13B…F10	0.99	2.26	3.006 (4)	131
C13—H13 <i>B</i> …F11 ⁱⁱⁱ	0.99	2.42	3.396 (4)	170
C13—H13 <i>B</i> …F12	0.99	2.43	3.257 (4)	140
C16—H16…F7 ^{iv}	0.95	2.47	3.366 (6)	158
C19—H19…F1 ⁱⁱ	0.95	2.62	3.513 (2)	158
C22—H22···F7 ^{iv}	0.95	2.44	3.310(7)	152
C22—H22···F8 ^v	0.95	2.50	3.352 (7)	150
C25—H25…F6 ^{vi}	0.95	2.55	3.034 (2)	112
C27—H27 <i>A</i> …F9 ⁱⁱⁱ	0.98	2.57	3.299 (4)	131

C27—H27A…F11	0.98	2.37	3.286 (4)	155	
C27—H27A…F12 ⁱⁱⁱ	0.98	2.58	3.497 (4)	155	
C27—H27B····F2 ^{vii}	0.98	2.62	3.348 (3)	131	
C27—H27 <i>C</i> …F2 ^{vi}	0.98	2.58	3.346 (3)	135	

Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) -x+1, y, -z+3/2; (iv) -x+1, -y+2, -z+1; (v) x, -y+2, z-1/2; (vi) -x+1/2, y+1/2, -z+1/2; (vii) x, -y+1, z+1/2.