

ISSN 2053-2296

Received 21 June 2024 Accepted 15 July 2024

Edited by R. Diniz, Universidade Federal de Minas Gerais, Brazil

Keywords: crystal structure; subphthalocyanine; boron; axial; crystal growth; solid state; sublimation; slow vapour diffusion; slow evaporation; organic electronics.

CCDC references: 2363939; 2363938; 2363937; 2363936; 2363935; 2363934; 2363933; 2363932; 2363931; 2363930; 2363929; 2363928; 2363927; 2363926; 2363925; 2363924; 2363923; 2363922

Supporting information: this article has supporting information at journals.iucr.org/c

The influence of the axial group on the crystal structures of boron subphthalocyanines

Rachel Zigelstein,^a Alan J. Lough^b and Timothy P. Bender^{a,b,c,d}*

^aDepartment of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada, ^bDepartment of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada, ^cDepartment of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario, M5S 3E4, Canada, and ^dDepartment of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada. *Correspondence e-mail: tim.bender@utoronto.ca

The crystal structures of 16 boron subphthalocyanines (BsubPcs) with structurally diverse axial groups were analyzed and compared to elucidate the impact of the axial group on the intermolecular π - π interactions, axial-group interactions, axial bond length and BsubPc bowl depth. π - π interactions between the isoindole units of adjacent BsubPc molecules most often involve concaveconcave packing, whereas axial-group interactions with adjacent BsubPc molecules tend to favour the convex side of the BsubPc bowl. Furthermore, axial groups that contain O and/or F atoms tend to have significant hydrogen-bonding interactions, while axial groups containing arene site(s) can participate in $\pi - \pi$ interactions with the BsubPc bowl, both of which can strongly influence the crystal packing. Bulky axial groups did tend to disrupt the π - π interactions and/ or axial-group interactions, preventing some of the close packing that is seen in BsubPcs with less bulky axial groups. The atomic radius of the heteroatom bonded to boron directly influences the axial bond length, whereas the axial group has minimal impact on the BsubPc bowl depth. Finally, the crystal growth method did not generally appear to have a significant impact on the solid-state arrangement, with the exception of water occasionally being incorporated into crystal structures when hygroscopic solvents were used. These insights can help with the design and fine-tuning of the solid-state structures of BsubPcs as they continue to be developed as functional materials in organic electronics.

1. Introduction

Boron subphthalocyanines (BsubPcs) are a class of nonplanar aromatic organic compounds with a unique bowl-shaped structure. The BsubPcs are homologues of the phthalocyanine (Pc) family and are comprised of three diiminoisoindole units templated around a boron chelation centre (Fig. 1) (Claessens et al., 2014). An additional substituent bonded to boron protrudes from the convex side of the bowl and is known as the axial group (Farac et al., 2023; Zigelstein & Bender, 2024). BsubPcs were first synthesized accidentally by Meller and Ossko in 1972 when trying to incorporate boron as the central atom in a phthalocyanine (Pc) (Grant et al., 2019; Meller & Ossko, 1972). Instead of the anticipated planar macrocycle with four repeating diiminoisoindole units that is a part of the Pc structure, they discovered Cl-BsubPc as a purple nonplanar compound with three diiminoisoindole units around the boron centre, with chlorine in the axial position [Fig. 1(c)] (Grant et al., 2019). The characteristic nonplanar shape of BsubPcs is caused by the atomic radius of boron being slightly larger than the cavity it occupies (Morse & Bender, 2012a). Numerous BsubPc derivatives have been synthesized in the \sim 50 years since their discovery, with many physical properties, including

the solid-state arrangement, being influenced by substitution at the axial and/or peripheral positions of the BsubPc macrocycle (Morse *et al.*, 2014). The unique optical, electronic and physical properties of BsubPcs, as well as the ability to tune these properties through axial and/or peripheral derivatization, have led to the development of these materials for organic electronic applications, such as organic photovoltaics (OPVs) (Grant *et al.*, 2019; Mutolo *et al.*, 2006), organic lightemitting diodes (OLEDs) (Morse & Bender, 2012*a*: Morse *et al.*, 2010) and organic thin film transistors (OTFTs) (Yasuda & Tsutsui, 2006).

BsubPcs are typically employed in the solid state as photoactive materials in organic electronics, sparking the interest in using X-ray diffraction (XRD) to study the intermolecular interactions that impact their solid-state arrangements (Virdo *et al.*, 2016). The solid-state arrangement of BsubPcs can be described by the molecular fragment interactions between neighbouring BsubPcs and the relative alignment of the isoindoline fragments, with π - π interactions commonly being seen between adjacent BsubPcs in the crystal structure (Bukuroshi *et al.*, 2019). These interactions can provide information on the charge-transfer properties of BsubPcs, which is important for their application as organic semiconductors (Castrucci *et al.*, 2012).

In this study, single crystals were grown of an array of BsubPcs with structurally diverse axial groups (Fig. 2) to investigate how the axial group impacts the π - π interactions of BsubPcs in the solid state and explore the intermolecular interactions that involve the axial group. The influence of the axial group on the BsubPc bowl depth and axial bond length is also of interest. While crystal structures of some of the BsubPcs investigated in this study have been reported previously, past studies have largely focused on smaller subsets of axial substituents, such as halide (Fulford et al., 2012), phenoxy (Paton et al., 2011) or sulfonate (Paton et al., 2012) derivatives, but different functional groups are rarely compared to each other. A review paper from Lavarda et al. (2022) provides a general summary of the crystal behaviour of axial halide, aryl and aryloxy derivatives, but the discussion does not extend to other boron-oxygen-bonded derivatives or include any boron-sulfur- or boron-nitrogen-bonded derivatives, and the crystals are from multiple laboratories. Therefore, herein, we provide the first report of a systematic comparison of BsubPc crystal structures with a comprehensive set of axial substituents, including halide (1 and 2), alkoxy (3-8), phenoxy (9 and 10), carboxylate (11 and 12), siloxy (13), thiophenoxy (14 and 15) and amino (16) derivatives. Furthermore, we report new polymorphs of some BsubPcs and use different crystal growth methods than have been reported previously.

2. Experimental

2.1. Materials and instrumentation

Toluene, heptane, acetone, dichloromethane (DCM), hexanes, tetrahydrofuran (THF) and pentane were purchased

from Caledon Laboratories (Caledon, Ontario, Canada) and used as received. All X-ray crystal structure data were collected using a Bruker Kappa APEX DUO CMOS Photon II diffractometer. Experimental and refinement details are provided in Table 1. Structural analysis was conducted using *Mercury* software (Macrae *et al.*, 2020).

2.2. Synthesis and crystal growth

Briefly, with the exception of Br- and Cl-BsubPc, all other axially substituted BsubPcs were synthesized through an axial exchange reaction with Br-BsubPc and the appropriate nucleophile. In general, the axial exchange reactions were run in anhydrous chlorobenzene with 5–10 equivalents of the nucleophile at 75 °C until all of the Br-BsubPc was consumed, as monitored by high-performance liquid chromatography (HPLC). Full detailed synthetic procedures and characterization by ¹H NMR and ¹⁹F NMR spectroscopy, direct analysis in real-time high-resolution mass spectrometry (DART-HRMS) and HPLC for the BsubPcs analysed within this study are provided in a recent publication (Zigelstein & Bender, 2024).

The train sublimation apparatus that was used to grow several of the crystals analysed in this study has been described previously (Morse et al., 2010; Virdo et al., 2016). For crystals grown by slow vapour diffusion of heptane into toluene, 5-10 mg of material was dissolved in toluene in a 20 ml scintillation vial. The vial was then suspended in a sealed jar containing \sim 150 ml of heptane and left undisturbed for 2–4 weeks until crystals were seen. For crystals grown by slow evaporation of a common organic solvent (i.e. acetone or methanol), 5-10 mg of material was dissolved in solvent in a 20 ml scintillation vial. The vial was then covered with aluminium foil with 3-5 holes poked through and left undisturbed until crystals were seen. For crystals grown during a two-solvent recrystallization, the material was dissolved in THF, and pentane was added dropwise until crystals formed out of solution. These crystals were then collected by gravity filtration. Finally, some crystals formed after rotary evaporation to remove DCM/hexanes after purification by column chromatography on standard basic alumina. The crystal growth method used for each compound is provided in Table 1.

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

3. Results and discussion

Single crystals of 16 axially substituted BsubPcs were grown by either train sublimation, slow vapour diffusion of heptane into toluene, slow evaporation of an organic solvent (*i.e.* acetone or methanol), two-solvent recrystallization or formed during rotary evaporation to remove solvent following purification by column chromatography. The influence of the axial group on

Table 1

Experimental details.

Experiments were carried out using a Bruker Kappa APEX DUO CMOS Photon II diffractometer at 150 K. H-atom parameters were constrained. Absorption was corrected for by multi-scan methods (*SADABS*; Krause *et al.*, 2015).

	Cl-BsubPc (1)	Br-BsubPc (2)	MeO-BsubPc (3)	EtO-BsubPc (4-I)
CCDC Deposition No.	2363922	2363923	2363924	2363925
Crystallization method	Sublimation (405 °C)	Sublimation (350 °C)	Sublimation (300 °C)	Sublimation (295 °C)
Crystal data				
Chemical formula	C24H12BClN6	C24H12BBrN6	$C_{25}H_{15}BN_6O$	C ₂₆ H ₁₇ BN ₆ O
$M_{ m r}$	430.66	475.12	426.24	440.26
Crystal system, space group	Orthorhombic, Pnma	Orthorhombic, Pnma	Orthorhombic, Pnma	Monoclinic, $P2_1/n$
<i>a</i> , <i>b</i> , <i>c</i> (Å)	12.0315 (10), 14.8174 (13), 10.3002 (8)	12.0010 (6), 15.0617 (8), 10.3879 (5)	12.3162 (11), 15.2325 (19), 10.4151 (10)	9.0313 (14), 14.220 (2), 16.474 (2)
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 90, 90	90, 102.667 (4), 90
$V(Å^3)$	1836.3 (3)	1877.67 (16)	1953.9 (4)	2064.3 (5)
Z	4	4	4	4
Radiation type	Cu Ka	Μο Κα	Cu Ka	Μο Κα
$\mu (\text{mm}^{-1})$	2.07	2.22	0.75	0.09
Crystal size (mm)	$0.15 \times 0.06 \times 0.02$	$0.27\times0.16\times0.14$	$0.10\times0.04\times0.02$	$0.21 \times 0.12 \times 0.03$
Data collection				
T_{\min}, T_{\max}	0.646, 0.753	0.688, 0.746	0.659, 0.753	0.684, 0.746
No. of measured, indepen- dent and observed $[I > 2\sigma(I)]$ reflections	19930, 1647, 1416	23127, 2243, 1955	27808, 1762, 1570	49575, 4744, 3311
R _{int}	0.061	0.027	0.057	0.101
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.593	0.650	0.592	0.650
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.097, 1.06	0.021, 0.057, 1.09	0.032, 0.078, 1.08	0.047, 0.098, 1.04
No. of reflections	1647	2243	1762	4744
No. of parameters	151	151	159	308
No. of restraints	0	0	0	0
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.24, -0.35	0.38, -0.26	0.22, -0.19	0.21, -0.23
	/ /		/ >	
	EtO-BsubPc (4-II)	F_3 EtO-BsubPc (5)	ButO-BsubPc (6)	tButO-BsubPc (7)
CCDC Deposition No.	2363926	2363927	2363928	2363929
Crystallization method Crystal data	Slow evaporation – acetone	Sublimation (305 °C)	Sublimation (265 °C)	Rotovap – DCM/hexanes
Chemical formula	C ₂₆ H ₁₇ BN ₆ O	$C_{26}H_{14}BF_3N_6O$	$C_{28}H_{21}BN_6O$	C ₂₈ H ₂₁ BN ₆ O
M _e	440.26	494.24	468.32	468.32

Chemical formula	$C_{26}H_{17}BN_6O$	$C_{26}H_{14}BF_3N_6O$	$C_{28}H_{21}BN_6O$	$C_{28}H_{21}BN_6O$
$M_{\rm r}$	440.26	494.24	468.32	468.32
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/c$	Orthorhombic, Pbca	Monoclinic, $P2_1/c$
a, b, c (Å)	9.0304 (5), 14.2423 (8), 16.4452 (9)	10.4664 (6), 15.4986 (8), 14.3171 (8)	14.6398 (8), 15.2842 (9), 20.5313 (12)	14.3815 (7), 8.2702 (4), 19.8660 (9)
α, β, γ (°)	90, 102.476 (3), 90	90, 110.221 (3), 90	90, 90, 90	90, 102.074 (2), 90
$V(Å^3)$	2065.1 (2)	2179.3 (2)	4594.0 (5)	2310.55 (19)
Ζ	4	4	8	4
Radiation type	Cu Ka	Cu Κα	Cu Kα	Cu Kα
$\mu (\text{mm}^{-1})$	0.72	0.96	0.68	0.68
Crystal size (mm)	$0.15 \times 0.15 \times 0.10$	$0.14 \times 0.09 \times 0.04$	$0.15\times0.07\times0.06$	$0.17 \times 0.09 \times 0.02$
Data collection				
T_{\min}, T_{\max}	0.654, 0.753	0.624, 0.753	0.661, 0.753	0.673, 0.753
No. of measured, indepen- dent and observed $[I > 2\sigma(I)]$ reflections	46104, 3555, 3148	39716, 3759, 3043	45733, 3951, 3295	41764, 3994, 3363
R _{int}	0.059	0.083	0.065	0.052
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.593	0.594	0.594	0.594
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.102, 1.05	0.039, 0.107, 1.04	0.038, 0.095, 1.07	0.035, 0.089, 1.05
No. of reflections	3555	3759	3951	3994
No. of parameters	308	335	326	329
No. of restraints	0	0	0	0
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.50, -0.21	0.27, -0.28	0.33, -0.22	0.22, -0.17

	OctO-BsubPc (8)	PhO-BsubPc (9)	Naphthoxy-BsubPc (10)	Acetate-BsubPc (11)
CCDC Deposition No.	2363930	2363931	2363932	2363933
Crystallization method	Slow Evaporation – methanol	SVD - toluene/heptane	Sublimation (315 °C)	Sublimation (290 °C)
Crystal data				
Chemical formula	$6C_{32}H_{29}BN_6O \cdot 0.5H_2O$	$C_{30}H_{17}BN_6O$	$C_{34}H_{19}BN_6O$	$C_{26}H_{15}BN_6O_2$

research papers

Table 1 (continued)

	OctO-BsubPc (8)	PhO-BsubPc (9)	Naphthoxy-BsubPc (10)	Acetate-BsubPc (11)
Mr	3166.55	488.30	538.36	454.25
Crystal system, space group	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$	Orthorhombic, Pnma	Triclinic, $P\overline{1}$
a, b, c (Å)	15.3028 (7), 16.2278 (7), 17.3604 (7)	10.0268 (10), 10.7263 (12), 11.8090 (13)	17.133 (3), 13.929 (2), 10.3669 (16)	9.3432 (9), 9.3548 (7), 12.3322 (12)
$lpha,eta,\gamma$ (°)	103.045 (3), 105.716 (3), 94.022 (3)	85.879 (4), 77.440 (3), 66.151 (3)	90, 90, 90	104.203 (2), 100.751 (3), 90.701 (2)
$V(Å^3)$	4003.0 (3)	1133.6 (2)	2474.0 (7)	1024.69 (16)
Z	1	2	4	2
Radiation type	Cu Ka	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.65	0.09	0.09	0.10
Crystal size (mm)	$0.24\times0.16\times0.06$	$0.28\times0.15\times0.09$	$0.26 \times 0.15 \times 0.08$	$0.24 \times 0.22 \times 0.13$
Data collection				
T_{\min}, T_{\max}	0.622, 0.753	0.687, 0.746	0.609, 0.746	0.710, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	110436, 13816, 10618	26461, 5137, 3795	17347, 2963, 1878	21123, 4670, 3665
R _{int}	0.070	0.052	0.092	0.038
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.594	0.649	0.650	0.650
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.054, 0.149, 1.05	0.039, 0.095, 1.03	0.052, 0.119, 1.05	0.038, 0.096, 1.03
No. of reflections	13816	5137	2963	4670
No. of parameters	1201	343	217	317
No. of restraints	499	0	0	0
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.61, -0.39	0.22, -0.23	0.26, -0.28	0.32, -0.28

	Benzoate-BsubPc (12)	TMSO-BsubPc (13)	F_5 PhS-BsubPc (14)	MePhS-BsubPC (15)
CCDC Deposition No.	2363934	2363935	2363936	2363937
Crystallization method	Sublimation (355 °C)	Rotovap – DCM/hexanes	SVD - toluene/heptane	SVD - toluene/heptane
Crystal data		-	-	_
Chemical formula	$C_{31}H_{17}BN_6O_2$	C27H21BN6OSi	$C_{30}H_{12}BF_5N_6S$	$C_{31}H_{19}BN_6S$
M _r	516.31	484.40	594.33	518.39
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$	Triclinic, $P\overline{1}$	Monoclinic, C2/c
a, b, c (Å)	15.671 (2), 11.1920 (13), 15.2363 (19)	16.343 (3), 11.9655 (16), 12.5059 (19)	10.7010 (5), 11.8651 (6), 22.4968 (13)	49.653 (4), 12.1268 (10), 27.559 (2)
$lpha,eta,\gamma~(^\circ)$	90, 115.386 (4), 90	90, 99.996 (11), 90	95.863 (2), 92.861 (2), 115.433 (2)	90, 114.838 (4), 90
$V(Å^3)$	2414.3 (5)	2408.4 (6)	2552.1 (2)	15059 (2)
Z	4	4	4	24
Radiation type	Μο Κα	Cu Kα	Μο Κα	Cu Kα
$\mu \text{ (mm}^{-1})$	0.09	1.13	0.20	1.41
Crystal size (mm)	$0.30 \times 0.15 \times 0.12$	$0.19\times0.15\times0.01$	$0.35 \times 0.24 \times 0.05$	$0.28\times0.27\times0.02$
Data collection				
T_{\min}, T_{\max}	0.685, 0.746	0.629, 0.753	0.713, 0.746	0.633, 0.753
No. of measured, indepen- dent and observed $[I > 2\sigma(I)]$ reflections	49333, 5530, 4050	57016, 4230, 2990	75917, 11711, 7793	12819, 12819, 10107
R _{int}	0.071	0.127	0.073	0.091
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.650	0.608	0.650	0.594
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.095, 1.03	0.054, 0.123, 1.05	0.043, 0.102, 1.02	0.098, 0.242, 1.09
No. of reflections	5530	4230	11711	12819
No. of parameters	361	326	775	1059
No. of restraints	0	0	0	0
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.23, -0.24	0.31, -0.24	0.39, -0.31	0.89, -0.57

CCDC Deposition No. Crystallization method Crystal data Chemical formula M_r Crystal system, space group a, b, c (Å) a, β, γ (°) V (Å³) Z $\begin{array}{l} \label{eq:phiese} PhMeN-BsubPc (\textbf{16-I}) \\ 2363938 \\ Recrystallization - THF/pentane \\ C_{31}H_{20}BN_7 \cdot 0.14H_2O \\ 503.87 \\ Triclinic, P\overline{1} \\ 11.4897 (5), 11.7489 (5), 19.3046 (8) \\ 73.348 (2), 81.941 (2), 76.167 (2) \\ 2417.05 (18) \\ 4 \end{array}$

PhMeN-BsubPc (**16-II**) 2363939 Recrystallization – THF/pentane C₃₁H₂₀BN₇ 501.35 Monoclinic, *P*2₁/*c* 10.3502 (4), 20.7509 (8), 12.2816 (5) 90, 114.734 (2), 90 2395.80 (17) 4

PhMeN-BsubPc (16-I) PhMeN-BsubPc (16-II) Cu Ka Radiation type Cu Ka $\mu \,({\rm mm}^{-1})$ 0.68 0.68 Crystal size (mm) $0.20 \times 0.15 \times 0.08$ $0.19 \times 0.14 \times 0.09$ Data collection 0.657 0.753 0.462 0.753 T_{\min}, T_{\max} No. of measured, independent and observed 60606, 8275, 7193 41606, 4159, 3432 $[I > 2\sigma(I)]$ reflections R_{int} 0.046 0.111 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.592 0.595 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.037. 0.093. 1.06 0.055, 0.165, 1.06 No. of reflections 8275 4159 No. of parameters 713 354 No. of restraints 0 0 0.27, -0.290.28, -0.35 $\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å

Computer programs: APEX4 (Bruker, 2021), SHELXT2018 (Sheldrick, 2015a), SHELXL2019 (Sheldrick, 2015b), PLATON (Spek, 2020) and SHELXTL (Sheldrick, 2008).

the intermolecular interactions, bowl depths and axial bond lengths was analysed and is discussed below.

3.1. Intermolecular interactions

Table 1 (continued)

The previously established method for describing the intermolecular π - π interactions of BsubPcs uses some unique terminology for the side of the BsubPc bowl being considered and the alignment of isoindole units between adjacent BsubPcs (Morse *et al.*, 2014; Virdo *et al.*, 2016; Claessens *et al.*, 2014; Farac *et al.*, 2024). First, the terms concave and convex are used to describe the side of the BsubPc bowl being considered, with concave being the 'inside' of the bowl and convex being the outer surface of the bowl [Fig. 1(*c*)]. Furthermore, the three outermost six-membered carbon rings of the BsubPc are called 'heads', while the six-membered rings containing the boron centre, one imine N atom and two pyrrole N atoms are called 'tails' [Fig. 1(*b*)] (Virdo *et al.*, 2016).

With these terms, the intermolecular $\pi - \pi$ interactions of BsubPcs can be described as concave-concave, convexconvex, concave-convex, head-to-head, tail-to-tail and headto-tail (Morse et al., 2010, 2014). Interactions between the axial ligand and BsubPc π -system are also sometimes observed and are described as concave-to-axial ligand and convex-toaxial ligand (Morse et al., 2010, 2014). Distances less than 4 Å are considered significant intermolecular π - π interactions (Fulford *et al.*, 2012). All interactions involving a π -group are measured to the centroid of that group. Other interactions are considered significant if the intermolecular distance between the two atoms is less than the sum of the van der Waals radii of the two atoms (Virdo et al., 2013). For example, weak hydrogen bonds with C-H···O, C-H···F and C-H···N contacts are characterized by $H \cdots O$, $H \cdots F$ and $H \cdots N$ distances less than 2.72, 2.67 and 2.75 Å, respectively. Furthermore, C-H···halogen bonds are characterized by H...Cl and H...Br distances that are less than 2.95 and 3.05 Å, respectively.

(a) General 2D structure of the BsubPc unit with key terms labelled, including the peripheral substituents (R_p) , imine (N_{imine}) and pyrrole (N_{pyr}) N atoms, and different π units (π_{Ph} in red and π_{pyr} in green). (b) General 2D structure of the BsubPc unit with 'head' (orange highlight) and 'tail' (purple highlight) labelled. (c) General 3D structure of the BsubPc unit with the axial substituent (R_a) and concave/convex sides of the bowl labelled. The peripheral substituents have been omitted from the 3D structure for clarity.

research papers

3.1.1. Axially halogenated BsubPcs. The crystal structure of Cl-BsubPc [1; Fig. 3(a)] from train sublimation grown in this study shows good agreement with the previously reported structure (Virdo et al., 2016). It arranges in the orthorhombic Pnma space group, with four molecules in the unit cell [Fig. 3(b)] [see Note 2]. There are significant convex-convex head-to-head interactions, with a π_{pyr} - π_{Ph} distance (pyr is pyrrole and Ph is phenyl) of 3.615 Å, and less significant concave-concave head-to-tail interactions, with an intermolecular distance of 4.150 Å. There are also $C-H \cdots$ halogen interactions between the axial Cl and a π_{Ph} H atom of an adjacent molecule (C-H_{Ph}···Cl-B) at an intermolecular distance of 2.893 Å. Upon extension of the unit cell, there are convex-to-axial ligand halogen- π (B-Cl··· π_{Ph}) interactions, with an intermolecular distance of 3.548 Å. The intermolecular interactions of Cl-BsubPc (1) are shown in Fig. 3(c).

It has been reported previously that a Br-BsubPc [2; Fig. 4(a)] crystal cannot be grown by train sublimation because the boron-bromine axial bond (B-Br) is not thermally stable at its sublimation temperature (Fulford et al., 2012; Hildebrand et al., 2022). However, within this study, we were able to obtain a sublimed crystal of Br-BsubPc during the attempted purification of TMSO-BsubPc (13) by train sublimation (350 °C), as there was some unreacted Br-BsubPc remaining in the crude product from the TMSO-BsubPc axial exchange reaction, and therefore was separated and crystallized during train sublimation. Like Cl-BsubPc, Br-BsubPc arranges in the orthorhombic Pnma space group, with four molecules in the unit cell [Fig. 4(b)], which is consistent with the previously reported Br-BsubPc crystal structure using solvent-based crystal growth methods (Fulford et al., 2012). The intermolecular interactions observed in the Br-BsubPc crystal

Figure 2

2D structures of investigated axially substituted BsubPcs with the colour of the axial group representing the heteroatom bonded to boron, *i.e.* chlorine – pink, bromine – purple, oxygen – blue, sulfur – red and nitrogen – green.

Figure 3 (a) The molecular structure of Cl-BsubPc (1), with displacement ellipsoids drawn at the 50% probability level and H atoms removed for clarity, (b) the unit-cell packing and (c) significant intermolecular interactions in the crystal structure. π - π interactions are shown in blue and all other intermolecular interactions are shown in green. Atom colours: carbon – gray, hydrogen – white, nitrogen – blue, boron – light pink and chlorine – green.

structure are very similar to those of the Cl-BsubPc crystal structure. Within the unit cell, Br-BsubPc displays concaveconcave head-to-tail packing, with an intermolecular distance of 4.151 Å, which is nearly identical to the distance observed for Cl-BsubPc. Upon extension outside the unit cell, more significant π - π interactions are seen, with convex-convex head-to-head interactions between adjacent molecules at a π_{pyr} - π_{Ph} distance of 3.661 Å. There are also C-H···halogen

(a) The molecular structure of Br-BsubPc (2), with displacement ellipsoids drawn at the 50% probability level and H atoms removed for clarity, (b) the unit-cell packing and (c) significant intermolecular interactions in the crystal structure. π - π interactions are shown in blue and all other intermolecular interactions are shown in green. Atom colours: carbon – gray, hydrogen – white, nitrogen – blue, boron – light pink and bromine – bronze.

Figure 5

(a) The molecular structure of MeO-BsubPc (3), with displacement ellipsoids drawn at the 50% probability level and H atoms removed for clarity, (b) the unit-cell packing and (c) significant intermolecular interactions in the crystal structure. $\pi - \pi$ interactions are shown in blue, weak hydrogen bonds are shown in red and all other intermolecular interactions are shown in green. Atom colours: carbon – gray, hydrogen – white, nitrogen – blue, boron – light pink and oxygen – red.

Figure 6

(a) The molecular structure of EtO-BsubPc (4-I), with displacement ellipsoids drawn at the 50% probability level and H atoms removed for clarity, (b) the unit-cell packing and (c) significant intermolecular interactions in the crystal structure. π - π interactions are shown in blue, weak hydrogen bonds are shown in red and all other interactions are shown in green. Atom colours: carbon – gray, hydrogen – white, nitrogen – blue, boron – light pink and oxygen – red.

(a) The molecular structure of EtO-BsubPc (4-II), with displacement ellipsoids drawn at the 50% probability level and H atoms removed for clarity, (b) the unit-cell packing and (c) significant intermolecular interactions in the crystal structure. π - π interactions are shown in blue, weak hydrogen bonds are shown in red and all other interactions are shown in green. Atom colours: carbon – gray, hydrogen – white, nitrogen – blue, boron – light pink and oxygen – red.

(a) The molecular structure of F₃EtO-BsubPc (5), with displacement ellipsoids drawn at the 50% probability level and H atoms removed for clarity, (b) the unit-cell packing and (c) significant intermolecular interactions in the crystal structure. π - π interactions are shown in blue and weak hydrogen bonds are shown in red. Atom colours: carbon – gray, hydrogen – white, nitrogen – blue, boron – light pink, oxygen – red and fluorine – green.

interactions between the axial Br atom and an adjacent π_{Ph} H atom (C–H_{Ph}···Br–B), with an intermolecular distance of 2.977 Å, which is slightly longer than what is seen in the Cl-BsubPc crystal structure due to the larger size of bromine compared to chlorine. Convex-to-axial ligand halogen– π (B–Br··· π_{Ph}) interactions are also observed, with an intermolecular distance of 3.475 Å. This is shorter than the distance observed for the analogous interaction for Cl-BsubPc. The intermolecular interactions of Br-BsubPc (2) are shown in Fig. 4(*c*).

3.1.2. Axial boron-oxygen-bonded BsubPcs. Crystals of MeO-BsubPc [**3**; Fig. 5(*a*)] were grown by train sublimation and arranged in the orthorhombic *Pnma* space group, with four molecules in the unit cell [Fig. 5(*b*)]. The only π - π interactions are weak concave-concave head-to-tail interactions, with an intermolecular distance of 4.044 Å. There is weak hydrogen bonding between the axial O atom and an adjacent π_{Ph} H atom (C-H_{Ph}···O-B), with an intermolecular distance of 2.637 Å. Extending beyond the unit cell, there is a convex-to-axial ligand C-H_{ax}··· π_{Ph} interaction, with an intermolecular distance of 2.605 Å. The intermolecular interactions of MeO-BsubPc (**3**) are shown in Fig. 5(*c*).

Crystals of EtO-BsubPc (4) were grown in two ways: train sublimation [4-I; Fig. 6(a)] and slow evaporation of acetone (4-II). The crystal structure was the same by both crystal growth methods. EtO-BsubPc is the only compound in the array that crystallizes in the monoclinic $P2_1/n$ space group. Starting with 4-I, there are four molecules in the unit cell [Fig. 6(b)] and the only π - π interactions are concave-concave

head-to-head interactions, with a π_{pyr} - π_{Ph} distance of 3.574 Å. There is weak hydrogen bonding between the axial O atom and an adjacent π_{Ph} H atom (C-H_{Ph}···O-B), with an intermolecular distance of 2.682 Å, which is slightly longer than the analogous distance for MeO-BsubPc. Extending beyond the unit cell, there is a concave-to-axial ligand C₂₆-H_{ax}··· π_{Ph} interaction, with an intermolecular distance of 3.593 Å. EtO-BsubPc is the only compound in the array with this type of interaction. The intermolecular interactions of EtO-BsubPc (**4-I**) are shown in Fig. 6(*c*).

As mentioned above, the crystal structure of EtO-BsubPc from slow evaporation of acetone [4-II; Fig. 7(a)] was the same as the crystal structure from train sublimation (4-I), arranging in the monoclinic $P2_1/n$ space group, with four molecules in the unit cell [Fig. 7(b)]. Identical intermolecular interactions were seen for 4-I and 4-II, with very modest differences in the intermolecular distances. The concave-concave head-to-head $\pi_{\rm pvr} - \pi_{\rm Ph}$ distance for 4-II (3.577 Å) was slightly longer than for 4-I (3.574 Å), whereas the concave-to-axial ligand $C_{26}-H_{ax}\cdots\pi_{Ph}$ intermolecular distance for 4-II (3.590 Å) was slightly shorter than for 4-I (3.593 Å). Lastly, the weak hydrogen bonding between the axial O atom and an adjacent π_{Ph} H atom (C $-H_{Ph}$ ···O-B) for **4-II** (2.690 Å) was at a slightly longer intermolecular distance than for 4-I (2.682 Å). The intermolecular interactions of EtO-BsubPc (4-II) are shown in Fig. 7(c).

F₃EtO-BsubPc [5; Fig. 8(a)] crystals were grown by train sublimation, organizing in the monoclinic $P2_1/c$ space group, with four molecules in the unit cell [Fig. 8(b)]. Similar to EtO-

(a) The molecular structure of ButO-BsubPc (6), with displacement ellipsoids drawn at the 50% probability level and H atoms removed for clarity, (b) the unit-cell packing and (c) significant intermolecular interactions in the crystal structure. π - π interactions are shown in blue, weak hydrogen bonds are shown in red and all other intermolecular interactions are shown in green. Atom colours: carbon – gray, hydrogen – white, nitrogen – blue, boron – light pink and oxygen – red.

BsubPc, the most significant $\pi - \pi$ interactions are concaveconcave head-to-head interactions, although the π_{pvr} - π_{Ph} distance is slightly longer at 3.640 Å. Unlike EtO-BsubPc, convex-convex head-to-tail interactions are observed, with an intermolecular distance of 3.822 Å. The axial group also has significant interactions, with weak hydrogen bonding between the axial O atom and an adjacent π_{Ph} H atom $(C-H_{Ph} \cdots O-B = 2.446 \text{ Å})$, an axial F atom with an adjacent π_{Ph} H atom (C-H_{Ph}···F-C = 2.529 Å) and an axial methylene H atom with an adjacent imine N atom $(C_{25}-H_{ax}\cdots N_{imine} = 2.622 \text{ Å})$. F₃EtO-BsubPc is the only alkoxy derivative that does not contain any concave- or convex-to-axial ligand interactions, indicating that when H atoms are replaced with F atoms, weak hydrogen bonding dominates over axial- π interactions. The intermolecular interactions of F_3EtO -BsubPc (5) are shown in Fig. 8(c).

ButO-BsubPc [6; Fig. 9(*a*)] is the only compound in the array to crystallize in the orthorhombic *Pbca* space group, with eight molecules in the unit cell [Fig. 9(*b*)]. There are significant concave–concave head-to-head interactions, with a $\pi_{pyr}-\pi_{Ph}$ distance of 3.612 Å, and less significant convex–convex head-to-tail interactions, with an intermolecular distance of 4.295 Å. There are also significant interactions involving the axial group, including weak hydrogen bonding between the axial O atom and a neighbouring π_{Ph} H atom (C–H_{Ph}···O–B = 2.556 Å), and between an axial methylene H atom and an adjacent imine N atom (C₂₆–H_{ax}···N_{imine} = 2.640 Å). There is also a convex-to-axial ligand C₂₈–H_{ax}··· π_{Ph} interaction between an axial methyl H atom and the π_{Ph} group of a neighbouring molecule (3.319 Å). The intermolecular interactions of ButO-BsubPc (**6**) are shown in Fig. 9(*c*).

tButO-BsubPc [7; Fig. 10(*a*)] arranges in the monoclinic $P2_1/c$ space group, with four molecules in the unit cell [Fig. 10(*b*)]. Within the unit cell, the only significant π - π interaction is a concave-concave head-to-head interaction, with a π_{pyr} - π_{Ph} distance of 3.564 Å, which is shorter than the distance observed for EtO-BsubPc (4), F₃EtO-BsubPc (5) and ButO-BsubPc (6). Upon extension of the unit cell, there is a convex-to-axial ligand C_{27} - H_{ax} ··· π_{Ph} interaction between an axial H atom and an adjacent π_{Ph} group (3.057 Å). No hydrogen bonding is observed for tButO-BsubPc (7) are shown in Fig. 10(*c*).

A diffraction-quality crystal of OctO-BsubPc (8) was difficult to obtain, likely due to the length of the axial alkyl chain preventing close packing of neighbouring molecules. After several unsuccessful attempts to grow crystals by train sublimation and solvent-based methods, such as slow evaporation and slow vapour diffusion, diffraction-quality crystals of OctO-BsubPc were successfully grown by slow evaporation of methanol, arranging in the triclinic $P\overline{1}$ space group. There are three independent OctO-BsubPc molecules in the asymmetric unit, which are referred to as 8-A [Fig. 11(a)], 8-B [Fig. 11(b)] and 8-C [Fig. 11(c)], and 0.5 molecules of water for every three molecules of OctO-BsubPc [Fig. 11(d)]. 8-B and 8-C have disorder in the octyl chains. Within the unit cell, there appears to be concave-convex head-to-head packing between 8-A and **8-B**, although the alignment is not perfect. The two π_{pvr} - π_{Ph} distances between adjacent molecules are not the same, at 3.628 and 3.673 Å. There also appears to be a concave-convex head-to-tail interaction between 8-A and 8-C, with an intermolecular distance of 3.890 Å, but again, the alignment is not

(a) The molecular structure of tButO-BsubPc (7), with displacement ellipsoids drawn at the 50% probability level and H atoms removed for clarity, (b) the unit-cell packing and (c) significant intermolecular interactions in the crystal structure. $\pi - \pi$ interactions are shown in blue and all other intermolecular interactions are shown in green. Atom colours: carbon – gray, hydrogen – white, nitrogen – blue, boron – light pink and oxygen – red.

Figure 11

The molecular structures of (a) OctO-BsubPc molecule A (8-A), (b) OctO-BsubPc molecule B (8-B) and (c) OctO-BsubPc molecule C (8-C), with displacement ellipsoids drawn at the 50% probability and H atoms removed for clarity. (d) The unit-cell packing of 8 and (e) significant intermolecular interactions in the crystal structure of 8. π - π interactions are shown in blue, strong and weak hydrogen bonds are shown in red, and all other intermolecular interactions are shown in green. Atom colours: carbon – gray, hydrogen – white, nitrogen – blue, boron – light pink and oxygen – red.

perfect between the two adjacent molecules. The length of the axial octyl chain is likely responsible for the lack of perfect alignment. There is weak hydrogen bond between the axial O atom of **8-A** and a π_{Ph} H atom of the adjacent **8-B** molecule $(C-H_{Ph}\cdots O-B)$, with an intermolecular distance of 2.641 Å. There is also hydrogen bonding between a water molecule and the imine N atom of an adjacent **8-A** molecule (2.165 Å). Lastly, convex-to-axial ligand $C-H\cdots\pi$ interactions are observed

between an axial H atom of **8-C** and the π_{Ph} group of **8-B**, with a $C-H_{ax} \cdot \cdot \pi_{Ph}$ distance of 2.971 Å. The intermolecular interactions of OctO-BsubPc (**8**) are shown in Fig. 11(*e*).

Crystals of PhO-BsubPc [9; Fig. 12(*a*)] were grown by slow vapour diffusion of heptane into toluene, arranging in the triclinic $P\overline{1}$ space group, with two molecules in the unit cell [Fig. 12(*b*)], as was reported previously (Paton *et al.*, 2011). While there are no π - π interactions within the unit cell, upon

Figure 12

(a) The molecular structure of PhO-BsubPc (9), with displacement ellipsoids drawn at the 50% probability level and H atoms removed for clarity, (b) the unit-cell packing and (c) significant intermolecular interactions in the crystal structure. π - π interactions are shown in blue. Atom colours: carbon – gray, hydrogen – white, nitrogen – blue, boron – light pink and oxygen – red.

Figure 13

(a) The molecular structure of naphthoxy-BsubPc (10), with displacement ellipsoids drawn at the 50% probability level and H atoms removed for clarity, (b) the unit-cell packing and (c) significant intermolecular interactions in the crystal structure. π - π interactions are shown in blue and weak hydrogen bonds are shown in red. Atom colours: carbon – gray, hydrogen – white, nitrogen – blue, boron – light pink and oxygen – red.

extension, concave–concave head-to-head packing is observed, with a π_{pyr} – π_{Ph} distance of 3.674 Å. There do not appear to be any π – π interactions between the axial group and the isoindole groups of adjacent molecules, or any other interactions involving the axial group. The intermolecular interactions of PhO-BsubPc (9) are shown in Fig. 12(*c*).

Crystals of naphthoxy-BsubPc [10; Fig. 13(*a*)] were grown by train sublimation and the resulting crystal structure is identical to a previous report from our group (Paton *et al.*, 2013). Naphthoxy-BsubPc arranges in the orthorhombic *Pnma* space group, with four molecules in the unit cell [Fig. 13(*b*)]. The naphthoxy axial group causes a disruption in the π - π interactions of the isoindole units of neighbouring BsubPcs, instead containing concave-to-axial ligand π - π interactions between the centroid of the outer ring of the naphthoxy unit and the tail of the BsubPc, with an intermolecular distance of 3.813 Å. There is also weak hydrogen bonding between the axial O atom and a neighbouring π _{Ph} H atom (2.627 Å). The intermolecular interactions of naphthoxy-BsubPc (10) are shown in Fig. 13(*c*).

Moving on to the carboxylate derivatives (**11** and **12**), crystals of acetate-BsubPc [**11**; Fig. 14(*a*)] were grown by train sublimation, showing good agreement with the previously reported structure from slow vapour diffusion of heptane into toluene (Lessard & Bender, 2013). Acetate-BsubPc crystallizes in the triclinic $P\overline{1}$ space group, with two molecules in the unit cell [Fig. 14(*b*)]. Packing within the unit cell appears to be largely dictated by the axial-group interactions, with weak hydrogen bonding between the axial O atom and an adjacent π_{Ph} H atom (C-H_{Ph}···O-B = 2.581 Å), the axial carbonyl O

atom and an adjacent π_{Ph} H atom (C-H_{Ph}···O=C = 2.628 Å), and an axial H atom and an adjacent imine N atom (C-H_{ax}···N_{imine} = 2.635 Å). The only π - π interactions observed in the unit cell are convex-convex tail-to-tail interactions, with an intermolecular distance of 3.897 Å. Looking beyond the unit cell, there are concave-concave head-to-head interactions, with a π_{pyr} - π_{Ph} distance of 3.620 Å. The intermolecular interactions of acetate-BsubPc (**11**) are shown in Fig. 14(*c*).

Crystals of benzoate-BsubPc [12; Fig. 15(a)] were grown by train sublimation, again showing good agreement with the previously reported structure from slow vapour diffusion of heptane into toluene (Lessard & Bender, 2013). Benzoate-BsubPc arranges in the monoclinic $P2_1/c$ space group, with four molecules in the unit cell [Fig. 15(b)], which is different from acetate-BsubPc. The benzoate axial group seems to disrupt the BsubPc π - π interactions, as only weak convexconvex head-to-tail interactions are observed, with an intermolecular distance of 4.163 Å. As with acetate-BsubPc, the most significant intermolecular interactions for benzoate-BsubPc involve the axial group. First, $C-H_{Ph}\cdots\pi_{ax}$ interactions are observed, with the closest intermolecular distances being 2.726 or 3.612 Å, depending on which molecules in the unit cell are being considered. Weak hydrogen bonding between the axial carbonyl O atom and adjacent π_{Ph} H atoms $(C-H_{Ph} \cdots O = C)$ is also observed, with intermolecular distances of 2.510 or 2.536 Å, depending on the molecules in the unit cell being considered. The intermolecular interactions of benzoate-BsubPc (12) are shown in Fig. 15(c).

The packing of the crystal of TMSO-BsubPc [13; Fig. 16(a)] is analogous to that of tButO-BsubPc (7), with the only

(a) The molecular structure of acetate-BsubPc (11), with displacement ellipsoids drawn at the 50% probability level and H atoms removed for clarity, (b) the unit-cell packing and (c) significant intermolecular interactions in the crystal structure. π - π interactions are shown in blue and weak hydrogen bonds are shown in red. Atom colours: carbon – gray, hydrogen – white, nitrogen – blue, boron – light pink and oxygen – red.

structural difference between the two compounds being the replacement of the quaternary C atom of the axial tert-butyl group in tButO-BsubPc with an Si atom in TMSO-BsubPc. The crystals of both compounds were grown serendipitously during rotary evaporation of DCM/hexanes following purification by column chromatography. Both arrange in the monoclinic $P2_1/c$ space group, with four molecules in the unit cell [Fig. 16(b)], and display concave–concave head-to-head packing. The intermolecular π_{pyr} - π_{Ph} distance for TMSO-BsubPc (3.543 Å) is slightly shorter than for tButO-BsubPc, while the convex-to-axial ligand $C_{26}-H_{ax}\cdots\pi_{Ph}$ interaction has a slightly longer intermolecular distance (3.070 Å) for TMSO-BsubPc than for tButO-BsubPc. There is also weak hydrogen bonding observed between an axial H atom and an adjacent π_{Ph} H atom (C-H_{Ph}···O-B = 2.478 Å), which is not observed for tButO-BsubPc. This may result from the longer bond length between oxygen and silicon (1.638 Å) in TMSO-BsubPc compared to oxygen and carbon (1.440 Å) in tButO-BsubPc, allowing for closer interactions with the axial O atom due to less steric hindrance directly around the O atom. The intermolecular interactions of TMSO-BsubPc (13) are shown in Fig. 16(c).

3.1.3. Axial boron–sulfur- and boron–nitrogen-bonded BsubPcs. Crystals of F_5 PhS-BsubPc (14) were grown by slow vapour diffusion of heptane into toluene. There are two crystallographically independent molecules in the asymmetric

unit, which are referred to as **14-A** [Fig. 17(*a*)] and **14-B** [Fig. 17(*b*)]. F₅PhS-BsubPc arranges in the triclinic $P\overline{1}$ space group, with four molecules in the unit cell [Fig. 17(*c*)]. Within the unit cell, there is concave–convex head-to-tail packing between **14-A** and **14-B**, with an intermolecular distance of 3.958 Å. Upon extension of the unit cell, significant concave-to-axial ligand π – π interactions are observed between the π_{Ph} group and the π_{ax} group, with an intermolecular distance of 3.525 Å. There is also an interaction between the axial S atom and the π_{ax} group of an adjacent molecule ($\pi_{ax} \cdots S$ –B), at a distance of 3.560 Å. Finally, weak hydrogen bonding is observed between an axial F atom and an adjacent π_{Ph} H atom (C–F_{ax}··· π_{Ph}), at a distance of 2.546 Å. The intermolecular interactions of F₅PhS-BsubPc (**14**) are shown in Fig. 17(*d*).

MePhS-BsubPc (15) crystals were grown by slow vapour diffusion of heptane into toluene. There are three independent molecules in the asymmetric unit that are referred to as 15-A [Fig. 18(*a*)], 15-B [Fig. 18(*b*)] and 15-C [Fig. 18(*c*)]. MePhS-BsubPc arranges in the monoclinic C2/c space group, with 24 molecules in the unit cell [Fig. 18(*d*)]. This is a different polymorph than the previously reported crystal structure of MePhS-BsubPc (Morse & Bender, 2012*b*). With 24 molecules in the unit cell, many interactions are observed. First, there are concave–concave head-to-head interactions between two adjacent 15-A molecules, with a $\pi_{pyr}-\pi_{Ph}$ distance of 3.659 Å. Next, there are less significant concave–concave head-to-tail

(a) The molecular structure of benzoate-BsubPc (12), with displacement ellipsoids drawn at the 50% probability level and H atoms removed for clarity, (b) the unit-cell packing and (c) significant intermolecular interactions in the crystal structure. π - π interactions are shown in blue, weak hydrogen bonds are shown in red and all other intermolecular interactions are shown in green. Atom colours: carbon – gray, hydrogen – white, nitrogen – blue, boron – light pink and oxygen – red.

Table 2

0	c	••	1 4	\ ·				••
Viimmorit.	ot T T	intorootione	1 1	1 not	induda	0 10 17	OVIO GROUM	intorootione
SUITINALY	\mathbf{U}	IIIICIACIIOIIS		1 1101	IIIC IIICIIII9	anv		
o anning y	01 10 10	meencenomo	· • •	,,	menaami		and Stoup	meencenomo

Axial group	Concave-	-concave		Convex-convex		Concave	-convex
rixia group	Head-to-head	Head-to-tail	Head-to-head	Head-to-tail	Tail-to-tail	Head-to-head	Head-to-tail
Cl (1)	_	4.150	3.615 ^a	_	_	_	_
Br (2)	_	4.151	3.661 ^a	_	-	_	_
MeO (3)	_	4.044	_	_	-	_	_
EtO (4-I)	3.574 ^a	-	_	_	-	_	_
EtO (4-II)	3.577 ^a	-	_	_	-	_	_
$F_3EtO(5)$	3.640^{a}	-	_	3.822	-	_	_
ButO (6)	3.612^{a}	-	_	4.295	-	_	_
tButO (7)	3.564 ^a	-	_	_	-	_	_
OctO (8)	_	-	_	_	-	3.628^a , 3.673^a	3.890
PhO (9)	3.674 ^a	_	_	_	_	_	_
Naphthoxy (10)	_	-	-	-	_	-	-
Acetate (11)	3.620^{a}	-	-	-	3.897	-	-
Benzoate (12)	_	-	-	4.163	_	-	-
TMSO (13)	3.543 ^a	-	-	-	_	-	-
F_5PhS (14)	_	-	-	-	_	-	3.958
MePhS (15)	3.659 ^a	4.040	3.577 ^a 3.691 ^a 3.537 ^b 3.861 ^a 3.934 ^a 3.911 ^b	_	_	_	-
PhMeN (16-I) PhMeN (16-II)	3.705^{a} 3.790^{a}	-	_	-		_	_

Notes: (a) π_{pyr} - π_{Ph} distance; (b) π_{Ph} - π_{Ph} distance.

interactions between two adjacent 15-B molecules at an intermolecular distance of 4.040 Å. There is also a slightly offset convex-convex head-to-head interaction between molecules 15-B and 15-C, with inconsistent π_{pvr} - π_{Ph} distances of 3.577 and 3.691 Å. The most significant overlap between isoindole groups in this interaction is between the adjacent π_{Ph} groups at a distance of 3.537 Å. A similar offset convexconvex head-to-head interaction is seen between 15-A and **15-B**, with π_{pyr} - π_{Ph} distances of 3.861 and 3.934 Å, and a $\pi_{\rm Ph} - \pi_{\rm Ph}$ distance of 3.911 Å. There are also some significant interactions with the axial group. First, there is a concave-toaxial ligand interaction between 15-B and 15-C, with a π - π interaction observed between the axial arene group of 15-B and the 'tail' of 15-C at a distance of 3.895 Å. There is also a convex-to-axial ligand interaction between the axial S atom of 15-A and the π_{Ph} group of an adjacent 15-C molecule $(\pi_{Ph} \cdots S - B)$ at a distance of 3.786 Å. Finally, there is a $C_{31}-H_{ax}\cdots\pi_{ax}$ interaction between two adjacent 15-A molecules involving an axial methyl H atom and an axial arene group at a distance of 2.876 Å. The intermolecular interactions of MePhS-BsubPc (15) are shown in Fig. 18(e).

On two separate occasions, crystals of PhMeN-BsubPc were grown during a two-solvent recrystallization with THF and pentane, resulting in two different polymorphs. The first polymorph [16-I; Fig. 19(*a*)] crystallized in the triclinic $P\overline{1}$ space group, with two molecules in the asymmetric unit [16-I (mol 1) and 16-I (mol 2)] and a partial occupancy water solvent molecule [Fig. 19(*b*)], which is aligned with a previous report (Morse & Bender, 2012*b*). The second polymorph [16-II; Fig. 20(*a*)] crystallized in the monoclinic $P2_1/c$ space group, with only one molecule in the asymmetric unit and no water [Fig. 20(*b*)]. Both 16-I and 16-II have four molecules in the unit cell. Concave–concave head-to-head interactions were seen within the unit cell for **16-I**, with a $\pi_{pyr}-\pi_{Ph}$ distance of 3.705 Å. There is also hydrogen bonding between the water molecule and the imine N atoms of two adjacent BsubPc molecules. Upon extension of the unit cell, there is a $C-H_{Ph,ax} \cdot \cdot \pi_{ax}$ interaction between adjacent axial groups, with an intermolecular distance of 3.048 Å. The intermolecular interactions of **16-I** are shown in Fig. 19(c).

For another crystal of PhMeN-BsubPc (16-II), there are no significant $\pi - \pi$ interactions between adjacent isoindole units within the unit cell. The axial group appears to have a strong influence on the packing within the unit cell, with the most significant interactions being a convex-to-axial ligand $C_{31}-H_{ax}\cdots\pi_{Ph}$ interaction between an axial methyl H atom and the adjacent π_{Ph} group (2.816 Å). Upon extension of the unit cell, there are concave–concave head-to-head interactions, with a $\pi_{Ph}-\pi_{pyr}$ distance of 3.790 Å, which is slightly longer than the analogous distance observed for 16-I. The intermolecular interactions of 16-II are shown in Fig. 20(*c*).

3.1.4. Intermolecular interactions summary. The π - π interactions observed in the crystal structures of the investigated BsubPcs are summarized in Table 2, and all intermolecular interactions involving the axial group are summarized in Table 3. Concave-concave head-to-head interactions were the most common π - π interactions in the analyzed BsubPcs, observed in 10 of the 17 crystal structures (Table 2). Head-to-head interactions, whether concave-concave, convex-convex or concave-convex, tend to display closer packing than head-to-tail interactions. Only MeO- (3), naphthoxy- (10), benzoate- (12) and F₅PhS-BsubPc (14) didn't display any head-to-head packing. Concave-convex interactions were rare, appearing only in the crystal structures of OctO- (8) and F₅PhS-BsubPc (14).

Axial group	Convex-to	-axial ligand	Con	cave-to-a	xial ligand]	Hydrogen/ł	halogen bo	onding	л	r _{ax} interactio	ons
0.11						$B - A \cdots$	$C-H_{ax}\cdots$	$C-F_{ax}\cdots$	C=O _{ax} ····			
	$B - A \cdots \pi_{Ph}$	$C-H_{ax}\cdots\pi_{Ph}$	$\pi_{\rm ax}$ – $\pi_{\rm tail}$	$\pi_{\rm ax}$ – $\pi_{\rm Ph}$	$C-H_{ax}\!\cdot\cdot\cdot\pi_{Ph}$	$\mathrm{H}_{Ph}{-}\mathrm{C}$	N _{imine}	H _{Ph} -C	H _{Ph} -C	$C-H_{Ph}\cdots\pi_{a}$	$B = A \cdots \pi_{a}$	$_{\rm x}$ C-H _{ax} ··· $\pi_{\rm ax}$
Cl (1)	3.548	_	_	_	_	2.893 ^b	_	-	-	-	_	_
Br (2)	3.475	-	_	_	-	2.977^{b}	-	_	_	_	_	_
MeO (3)	-	2.605	_	_	-	2.637 ^a	-	_	_	_	_	_
EtO (4-I)	-	-	_	_	3.593	2.682 ^a	-	_	_	_	_	_
EtO (4-II)	-	-	_	_	3.590	2.690 ^a	-	_	_	_	_	_
$F_3EtO(5)$	-	-	_	_	-	2.446 ^a	2.622^{a}	2.529 ^a	_	_	_	_
ButO (6)	-	3.319	_	_	-	2.556 ^a	2.640^{a}	_	_	_	_	_
tButO (7)	_	3.057	-	_	_	-	-	_	_	_	_	-
OctO (8)	_	2.971	-	_	_	2.641 ^a	-	_	_	_	_	-
PhO (9)	-	-	_	_	-	_	-	_	_	_	_	_
Naphthoxy (10)	-	-	3.813	_	-	2.627 ^a	-	_	_	_	_	_
Acetate (11)	-	-	_	_	-	2.581 ^a	2.635 ^a	_	2.628 ^a	_	_	_
Benzoate (12)	-	-	_	_	-	_	-	_	2.510 ^a , 2.536 ^a	2.726, 3.612	_	_
TMSO (13)	-	3.070	_	_	-	2.478 ^a	-	_	_	_	_	_
F ₅ PhS (14)	_	-	-	3.525	-	_	_	2.546 ^a	-	-	3.560	-
MePhS (15)	3.786	-	3.895	_	_	-	-	_	_	_	_	2.876
PhMeN (16-I)	_	-	_	_	_	_	-	_	-	-	_	3.048
PhMeN (16-II)	_	2.816	-	_	_	-	-	-	-	_	-	_

 Table 3

 Summary of intermolecular interactions (Å) involving the axial group.

Notes: (a) weak hydrogen bond; (b) halogen bond.

Regarding intermolecular interactions involving the axial group, convex-to-axial ligand interactions were quite common, appearing in nine of the investigated crystal structures. These interactions always involved a π_{Ph} group and either an axial H atom, which was common among the axial alkoxy derivatives (3–8), or the axial heteroatom bonded to boron, in the cases of

(a) The molecular structure of TMSO-BsubPc (13), with displacement ellipsoids drawn at the 50% probability level and H atoms removed for clarity, (b) the unit-cell packing and (c) significant intermolecular interactions in the crystal structure. π - π interactions are shown in blue, weak hydrogen bonds are shown in red and all other intermolecular interactions are shown in green. Atom colours: carbon – gray, hydrogen – white, nitrogen – blue, boron – light pink, oxygen – red and silicon – yellow.

Figure 17

The molecular structures of (a) F₅PhS-BsubPc molecule A (**14-A**) and (b) F₅PhS-BsubPc molecule B (**14-B**), with displacement ellipsoids drawn at the 50% probability level and H atoms removed for clarity. (c) The unit-cell packing and (d) significant intermolecular interactions in the crystal structure of **14**. π - π interactions are shown in blue, weak hydrogen bonds are shown in red and all other intermolecular interactions are shown in green. Atom colours: carbon – gray, hydrogen – white, nitrogen – blue, boron – light pink, sulfur – orange and fluorine – green.

Cl- (1), Br- (2) and MePhS-BsubPc (15). F₃EtO-BsubPc (5) was the only alkoxy derivative that did not have any concaveor convex-to-axial ligand interactions. Its nonfluorinated analogue, EtO-BsubPc (4), displayed concave-to-axial ligand interactions between one of its axial methyl H atoms and an adjacent π_{Ph} group, but in the case of F₃EtO-BsubPc (5), the axial methyl H atoms are all replaced by F atoms. The F atoms instead interacted with adjacent π_{Ph} H atoms through weak hydrogen bonding. Furthermore, neither carboxylate derivative (11 and 12) had any concave- or convex-to-axial ligand interactions. Both compounds have two O atoms in the axial group capable of weak hydrogen bonding, which appeared to dictate the axial-group interactions.

Weak hydrogen-bonding interactions were prevalent in compounds with boron-oxygen axial bonds (3-13). Of the alkoxy derivatives (3-8), only tButO-BsubPc (7) did not display any hydrogen bonding, likely due to steric effects. PhO-BsubPc (9) was the only other boron-oxygen-bonded compound that did not display any hydrogen bonding. It looked like there may have been weak hydrogen bonding between the axial O atom and an adjacent axial π_{Ph} H atom in

the crystal structure of **9**, but the intermolecular $O \cdots H$ distance (2.766 Å) was slightly greater than the sum of the van der Waals radii of oxygen and hydrogen (2.72 Å). For the carboxylate derivatives, acetate-BsubPc (**11**) had weak hydrogen bonding involving both the axial O atom bonded to boron and the carbonyl O atom, whereas hydrogen bonding was only seen with the carbonyl O atom of benzoate-BsubPc (**12**). Hydrogen bonding involving the axial N atom of PhMeN-BsubPc (**16**) was not observed for either polymorph.

Among the six compounds containing an arene group within the axial moiety (9, 10, 12, 14, 15 and 16), three had π - π interactions involving the axial group. Most significantly, the only π - π interactions seen for naphthoxy-BsubPc (10) were concave-to-axial ligand π_{ax} - π_{tail} interactions. The two thiophenoxy derivatives were the only other compounds to display π - π interactions involving the π_{ax} group. Interestingly, PhO-BsubPc (9) was the only investigated compound that didn't have any interactions involving the axial group. Finally, the two polymorphs of PhMeN-BsubPc (16) have different intermolecular interactions, but for 16-I this interaction is

3.2. Axial bond length and BsubPc bowl depth

The influence of the axial group on the axial bond length was also of interest in this study. The axial bond length is the distance between boron and the heteroatom to which it is bonded. As expected, the axial bond length increased linearly as the atomic radius of the heteroatom bonded to boron increased (Fig. 21). In cases where multiple compounds had the same heteroatom, the average bond length was used to generate Fig. 21. The average axial bond length was 1.430 \pm 0.020 Å for boron–oxygen bonds, 1.512 \pm 0.002 Å for boron–nitrogen bonds, 1.884 Å for the boron–chlorine bond, 1.931 \pm 0.021 Å for boron–sulfur bonds and 2.052 Å for the boron–bromine bond.

Additional trends were observed when comparing the axial bond lengths of compounds with the same heteroatom. Within the compounds with boron-oxygen bonds (Fig. 22), the two carboxylate derivatives [acetate- (11) and benzoate-BsubPc (12)] had the longest axial bond lengths at 1.473 Å for both compounds. The two phenoxy derivatives [PhO- (9) and naphthoxy-BsubPc (10)] had the next highest axial bond

lengths at 1.441 Å for both compounds. For the axial alkoxy derivatives (3–8), there was a general slight decrease in axial bond length as the length of the carbon chain increases. The exception was F₃EtO-BsubPc (5), which had the longest axial bond length of the alkoxy derivatives at 1.437 Å. The axial bond lengths of the three OctO-BsubPc (8) molecules in the asymmetric unit showed some variation, resulting in an average bond length of 1.414 \pm 0.006 Å. The bond length of TMSO-BsubPc (13) was most closely aligned with ButO-BsubPc (6), with both compounds having an axial bond length of 1.415 Å.

For the two compounds with axial boron–sulfur bonds, the axial bond length of F_5PhS -BsubPc (14) was longer than that of MePhS-BsubPc (15) (Fig. 23). This is similar to what was seen with the alkoxy derivatives (3–8), with the fluorine-containing axial group (5) having the longest axial bond length. These results indicate that F atoms in the axial group cause a slight lengthening of the axial bond. F_5PhS -BsubPc (14) has two molecules in its asymmetric unit, with an average bond length of 1.957 \pm 0.001 Å, and MePhS-BsubPc (15) has three molecules in its asymmetric unit, with an average bond length of 1.915 \pm 0.006 Å.

Bowl depth is a measure of the degree of nonplanarity of the BsubPc macrocycle. The greater the bowl depth, the less planar the molecule. Three bowl depths were calculated for

The molecular structures of (a) MePhS-BsubPc molecule A (15-A), (b) MePhS-BsubPc molecule B (15-B) and (c) MePhS-BsubPc molecule C (15-C), with displacement ellipsoids drawn at the 50% probability level and H atoms removed for clarity. (d) The unit-cell packing and (e) significant intermolecular interactions in the crystal structure of 15. π - π interactions are shown in blue and all other intermolecular interactions are shown in green. Atom colours: carbon – gray, hydrogen – white, nitrogen – blue, boron – light pink and sulfur – orange.

Figure 19

(a) The molecular structure of PhMeN-BsubPc (16-I), with displacement ellipsoids drawn at the 50% probability level and H atoms removed for clarity, (b) the unit-cell packing and (c) significant intermolecular interactions in the crystal structure. $\pi - \pi$ interactions are shown in blue, hydrogen bonding is shown in red and all other intermolecular interactions are shown in green. Atom colours: carbon – gray, hydrogen – white, nitrogen – blue and boron – light pink.

Figure 20

(a) The molecular structure of PhMeN-BsubPc (16-II), with displacement ellipsoids drawn at the 50% probability level and H atoms removed for clarity, (b) the unit-cell packing and (c) significant intermolecular interactions in the crystal structure. π - π interactions are shown in blue and all other intermolecular interactions are shown in green. Atom colours: carbon – gray, hydrogen – white, nitrogen – blue and boron – light pink.

research papers

Figure 21

Atomic radius of the heteroatom bonded to boron (oxygen – blue circle, nitrogen – green square, chlorine – pink triangle, sulfur – red diamond and bromine – purple X) *versus* the axial bond length. The boron–oxygen bond length is the average axial bond length of compounds **3–13** and the boron–sulfur bond length is the average axial bond length of compounds **14** and **15**.

each BsubPc (Fig. 24) by measuring the distance between the B atom and (i) the plane defined by the three pyrrole N atoms (plane a, green), (ii) the plane defined by the three imine N atoms (plane b, blue), and (iii) the plane defined by the six outermost C atoms (plane c, red). The greatest variation in bowl depth across the axially substituted BsubPcs was seen when considering the distance between boron and plane c (Fig. 24). Very little variation was seen in bowl depth when considering the distance between boron and planes a and b (Fig. 24). Therefore, this discussion will focus on the bowl depth that is measured between boron and plane c.

Unlike for the axial bond length, the nature of the heteroatom bonded to boron did not have a clear influence on the BsubPc bowl depth. The axially halogenated derivatives [Cl- (1) and Br-BsubPc (2)] had two of the smallest bowl depths of the investigated compounds, although the nature of the halogen atom had an almost negligible impact. Acetate-BsubPc (11) was the only compound with a smaller bowl depth than the halogens and had the smallest bowl depth of all investigated compounds. Interestingly, the other investigated carboxylate derivative, benzoate-BsubPc (12), had the second largest bowl depth of all investigated BsubPcs, behind only naphthoxy-BsubPc (10). It appears that adding arenes to

Axial bond lengths of the investigated BsubPcs with boron–oxygen axial bonds.

Axial bond lengths of the investigated BsubPcs with boron-sulfur axial bonds.

otherwise identical axial substituents increases the bowl depth. For instance, naphthoxy-BsubPc (10), which has two arene sites in the axial position, has a larger bowl depth than PhO-BsubPc (9), which has one arene site in the axial position. Furthermore, benzoate-BsubPc (12) has a larger bowl depth than acetate-BsubPc (11), with the only difference being an arene in place of a methyl group.

While F_3 EtO-BsubPc (5) stuck out from the other alkoxy-BsubPc derivatives (3–8) with the longest bond length, it stuck out again here with the smallest bowl depth. Among the nonfluorinated alkoxy derivatives, there does not appear to be a clear correlation between the bowl depth and the length of the axial carbon chain. Furthermore, there was a minimal difference in the bowl depths of ButO- (6) and tButO-BsubPc (7), indicating that branching does not impact the bowl depth. However, the bowl depth of TMSO-BsubPc (13) was smaller than that of its structural analogue, tButO-BsubPc (7), indicating that the presence of an Si atom in place of a C atom has a modest impact on the planarity of the BsubPc.

The thiophenoxy derivatives (14 and 15) both have multiple molecules in their asymmetric units with varying bowl depths. For F₅PhS-BsubPc (14), there are two independent molecules in the asymmetric unit, with an average bowl depth of 2.620 ± 0.131 Å. For MePhS-BsubPc (15), the average bowl depth of the three molecules is 2.553 ± 0.019 Å. Therefore, adding F atoms to the thiophenoxy axial group increases both the BsubPc bowl depth and the axial bond length, in contrast to what was seen when adding F atoms to the axial alkoxy group, whereby the bond length increased and the bowl depth decreased.

Finally, the two PhMeN-BsubPc (16) polymorphs have very similar bowl depths when comparing the average bowl depth of the two molecules in 16-I (2.586 \pm 0.45 Å) to the bowl depth of 16-II (2.595 Å).

The axial bond lengths and BsubPc bowl depths are tabulated in Table 4.

4. Conclusions

Overall, the axial-group interactions play a significant role in the crystal packing of BsubPcs, influencing the crystal system/ space group and intermolecular interactions. Concave–

Table 4

Axial bond lengths (Å) and bowl depths (Å) of the investigated BsubPcs.

Plane a is defined by the three pyrrole N atoms, plane b by the three imine N atoms and plane c by the six outermost C atoms.

Axial group	Axial bond length	Bowl depth to plane a	Bowl depth to plane b	Bowl depth to plane c
Cl (1)	1.884	0.580	1.116	2.456
Br (2)	2.052	0.568	1.101	2.457
MeO (3)	1.424	0.632	1.191	2.618
EtO (4-I)	1.421	0.641	1.193	2.598
EtO (4-II)	1.418	0.642	1.192	2.590
$F_3EtO(5)$	1.437	0.631	1.188	2.468
ButO (6)	1.417	0.643	1.210	2.718
tButO (7)	1.415	0.660	1.225	2.711
OctO (8-A)	1.416	0.643	1.230	2.867
OctO (8-B)	1.421	0.646	1.209	2.652
OctO (8-C)	1.406	0.640	1.195	2.493
PhO (9)	1.441	0.624	1.181	2.607
Naphthoxy (10)	1.441	0.620	1.202	2.881
Acetate (11)	1.473	0.603	1.158	2.389
Benzoate (12)	1.473	0.602	1.192	2.835
TMSO (13)	1.415	0.649	1.207	2.630
F_5PhS (14-A)	1.955	0.587	1.183	2.751
F ₅ PhS (14-B)	1.958	0.587	1.119	2.489
MePhS (15-A)	1.922	0.615	1.180	2.580
MePhS (15-A)	1.907	0.625	1.173	2.541
MePhS (15-A)	1.915	0.619	1.165	2.537
PhMeN (16-1, mol 1)	1.509	0.650	1.205	2.541
PhMeN (16-1, mol 2)	1.513	0.667	1.250	2.631
PhMeN (16-2)	1.513	0.659	1.217	2.595

concave head-to-head interactions were the most common π - π interactions in the crystal structures of the investigated BsubPcs, whereas axial-group interactions with adjacent isoindoline units tended to favour the convex side of the bowl. Weak hydrogen-bonding interactions are prevalent when the axial group contains O and/or F atoms, but the axial N atom in PhMeN-BsubPc did not participate in hydrogen bonding. This may be a result of steric hindrance, as other investigated compounds with bulky axial groups, such as tButO-BsubPc and OctO-BsubPc, also disrupted some of the intermolecular

interactions. The bulkiness of tButO-BsubPc disrupted hydrogen bonding with the axial O atom, while OctO-BsubPc disrupted the intermolecular π - π interactions. The presence of arenes in the axial moiety can also have a significant impact, as π - π interactions involving the axial group are now possible. In particular, naphthoxy-, F₅PhS- and MePhS-BsubPc all have concave-to-axial π - π interactions. Furthermore, the axial bond length increases linearly with the atomic radius of the heteroatom bonded to boron, and the presence of F atoms in the axial group tended to lengthen the axial bond. However,

(a) Bowl depth variation with different axial substituents. Three bowl depths are reported as the shortest distance between boron and plane a (green), boron and plane b (blue), and boron and plane c (red). (b) 3D structure of Cl-BsubPc defining planes a, b and c, and (c) 2D general BsubPc structure highlighting the atoms that define planes a, b and c. For compounds with multiple molecules in the asymmetric unit (8, 14, 15 and 16-I), the reported bowl depths are an average of all the molecules in the asymmetric unit.

there is no clear trend in BsubPc bowl depth related to the axial group, with only a modest impact being observed. There were also no clear trends observed based on some of the crystal growth methods. The crystal structures of EtO-BsubPc from train sublimation (4-I) and slow evaporation of acetone (4-II) were identical, as were the crystal structures of acetate-(11) and benzoate-BsubPc (12) grown from train sublimation in this study compared to a previous report of the crystal structures from solvent-based crystal growth methods. Train sublimation is often the preferred crystal growth method, as it most closely mimics the vacuum deposition conditions used for the thin film fabrication in organic electronic applicants. However, in this case, the solvent-based crystal growth methods appeared to produce the same results as train sublimation. The only observed solvent effects were when hygroscopic solvents methanol and THF were used to grow crystals of OctO- (8) and PhMeN-BsubPc (16-I), respectively, with water molecules incorporated into the crystal structures and hydrogen bonding with imine N atoms. Overall, the results of this study are useful for the nanoengineering of thin films of BsubPcs for their application in organic electronics.

Acknowledgements

This work was supported by Mitacs through the Mitacs Accelerate program that is present within Canada and a Hatch Graduate Scholarship from Hatch Ltd (Mississauga, Ontario, Canada). The authors also gratefully acknowledge the NSERC of Canada and their support of this work through a Discovery Grant (DG) to TPB.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada.

References

- Bruker (2021). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA. Bukuroshi, E., Vestfrid, J., Gross, Z. & Bender, T. P. (2019). New J. Chem. 43, 16730–16737.
- Castrucci, J. S., Helander, M. G., Morse, G. E., Lu, Z.-H., Yip, C. M. & Bender, T. P. (2012). *Cryst. Growth Des.* **12**, 1095–1100.

- Claessens, C. G., González-Rodríguez, D., Rodríguez-Morgade, M. S., Medina, A. & Torres, T. (2014). *Chem. Rev.* **114**, 2192–2277.
- Farac, N. F., Lough, A. J. & Bender, T. P. (2024). Precis. Chem. 2, 161–181.
- Farac, N. F., Tetreault, A. R. & Bender, T. P. (2023). J. Phys. Chem. C, **127**, 702–727.
- Fulford, M. V., Jaidka, D., Paton, A. S., Morse, G. E., Brisson, E. R. L., Lough, A. J. & Bender, T. P. (2012). *J. Chem. Eng. Data*, **57**, 2756– 2765.
- Grant, T. M., Josey, D. S., Sampson, K. L., Mudigonda, T., Bender, T. P. & Lessard, B. H. (2019). *Chem. Rec.* **19**, 1093–1112.
- Hildebrand, M., Holst, D., Bender, T. & Kronik, L. (2022). Adv. *Theory Simul.* 5, 2100400.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Lavarda, G., Labella, J., Martínez-Díaz, M. V., Rodríguez-Morgade, M. S., Osuka, A. & Torres, T. (2022). Chem. Soc. Rev. 51, 9482–9619.
- Lessard, B. H. & Bender, T. P. (2013). *Macromol. Rapid Commun.* 34, 568–573.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Meller, A. & Ossko, A. (1972). Monatsh. Chem. 103, 150-155.
- Morse, G. E. & Bender, T. P. (2012a). Appl. Mater. Interfaces, 4, 5055–5068.
- Morse, G. E. & Bender, T. P. (2012b). Inorg. Chem. 51, 6460-6467.
- Morse, G. E., Gong, I., Kawar, Y., Lough, A. J. & Bender, T. P. (2014). *Cryst. Growth Des.* 14, 2138–2147.
- Morse, G. E., Helander, M. G., Maka, J. F., Lu, Z.-H. & Bender, T. P. (2010). *Appl. Mater. Interfaces*, **2**, 1934–1944.
- Mutolo, K. L., Mayo, E. I., Rand, B. P., Forrest, S. R. & Thompson, M. E. (2006). J. Am. Chem. Soc. 128, 8108–8109.
- Paton, A. S., Lough, A. J. & Bender, T. P. (2012). Acta Cryst. C68, 0459–0464.
- Paton, A. S., Morse, G. E., Lough, A. J. & Bender, T. P. (2011). *CrystEngComm*, **13**, 914–919.
- Paton, A. S., Morse, G. E., Lough, A. J. & Bender, T. P. (2013). Cryst. Growth Des. 13, 5368–5374.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Virdo, J. D., Kawar, Y. H., Lough, A. J. & Bender, T. P. (2013). *CrystEngComm*, **15**, 3187–3199.
- Virdo, J. D., Lough, A. J. & Bender, T. P. (2016). *Acta Cryst.* C72, 297–307.
- Yasuda, T. & Tsutsui, T. (2006). Mol. Cryst. Liq. Cryst. 462, 3-9.
- Zigelstein, R. & Bender, T. P. (2024). *Mol. Syst. Des. Eng.* https://doi. org/10.1039/D4ME00070F.

Acta Cryst. (2024). C80 [https://doi.org/10.1107/S2053229624006934]

The influence of the axial group on the crystal structures of boron subphthalocyanines

Rachel Zigelstein, Alan J. Lough and Timothy P. Bender

Computing details

Chlorido(subphthalocyaninato)boron (d2344a_a)

Crystal data

 $C_{24}H_{12}BCIN_6$ $M_r = 430.66$ Orthorhombic, *Pnma* a = 12.0315 (10) Å b = 14.8174 (13) Å c = 10.3002 (8) Å $V = 1836.3 (3) Å^3$ Z = 4F(000) = 880

Data collection

Bruker Kappa APEX-DUO CMOS PHOTON II diffractometer Radiation source: Incoatec ImuS with multilayer optics φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.646, T_{\max} = 0.753$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.097$ S = 1.061647 reflections 151 parameters 0 restraints $D_{\rm x} = 1.558 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 5394 reflections $\theta = 5.7-65.5^{\circ}$ $\mu = 2.07 \text{ mm}^{-1}$ T = 150 KShard, pink $0.15 \times 0.06 \times 0.02 \text{ mm}$

19930 measured reflections 1647 independent reflections 1416 reflections with $I > 2\sigma(I)$ $R_{int} = 0.061$ $\theta_{max} = 66.2^{\circ}, \ \theta_{min} = 5.2^{\circ}$ $h = -14 \rightarrow 14$ $k = -17 \rightarrow 16$ $l = -12 \rightarrow 11$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0494P)^2 + 1.2852P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.24$ e Å⁻³ $\Delta\rho_{min} = -0.34$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.18664 (5)	0.250000	1.23875 (6)	0.0214 (2)
N1	0.00611 (17)	0.250000	0.9063 (2)	0.0187 (5)
N2	0.16179 (12)	0.32926 (10)	0.99200 (14)	0.0175 (4)
N3	0.33419 (12)	0.40660 (11)	0.97328 (15)	0.0203 (4)
N4	0.32869 (17)	0.250000	1.0229 (2)	0.0189 (5)
C1	0.06079 (14)	0.32723 (13)	0.93070 (17)	0.0182 (4)
C2	0.04565 (15)	0.41770 (12)	0.87898 (18)	0.0184 (4)
C3	-0.04130 (16)	0.45728 (13)	0.80994 (18)	0.0209 (4)
H3A	-0.107253	0.424477	0.791349	0.025*
C4	-0.02881 (17)	0.54552 (14)	0.76936 (18)	0.0237 (4)
H4A	-0.087720	0.574001	0.723614	0.028*
C5	0.06875 (16)	0.59383 (14)	0.79419 (19)	0.0233 (4)
H5A	0.074040	0.654917	0.766882	0.028*
C6	0.15769 (16)	0.55449 (13)	0.85768 (18)	0.0216 (4)
H6A	0.224841	0.586872	0.871258	0.026*
C7	0.14594 (15)	0.46613 (13)	0.90106 (17)	0.0186 (4)
C8	0.22237 (15)	0.40490 (13)	0.96506 (17)	0.0189 (4)
C9	0.38573 (15)	0.32726 (13)	0.99400 (17)	0.0195 (4)
C10	0.49870 (15)	0.29805 (13)	0.96453 (16)	0.0199 (4)
C11	0.59444 (16)	0.34628 (14)	0.93356 (18)	0.0243 (4)
H11	0.594751	0.410391	0.932401	0.029*
C12	0.68919 (16)	0.29719 (15)	0.9045 (2)	0.0286 (5)
H12	0.755883	0.328435	0.884055	0.034*
B1	0.2098 (3)	0.250000	1.0579 (3)	0.0193 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

```
Atomic displacement parameters (Å^2)
```

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0256 (4)	0.0190 (3)	0.0195 (3)	0.000	0.0007 (2)	0.000
N1	0.0177 (11)	0.0165 (11)	0.0218 (11)	0.000	0.0024 (9)	0.000
N2	0.0171 (7)	0.0156 (8)	0.0196 (8)	0.0000 (6)	0.0003 (6)	0.0002 (6)
N3	0.0194 (8)	0.0205 (8)	0.0211 (8)	-0.0013 (6)	-0.0006 (6)	0.0005 (7)
N4	0.0181 (11)	0.0180 (12)	0.0205 (11)	0.000	-0.0003 (9)	0.000
C1	0.0166 (9)	0.0201 (9)	0.0180 (9)	-0.0003 (8)	0.0030 (7)	-0.0012 (8)
C2	0.0200 (9)	0.0178 (10)	0.0175 (9)	0.0013 (8)	0.0029 (7)	-0.0004 (7)
C3	0.0187 (9)	0.0228 (10)	0.0212 (10)	0.0007 (8)	0.0009 (8)	-0.0010 (8)
C4	0.0235 (10)	0.0258 (11)	0.0218 (10)	0.0065 (8)	0.0009 (8)	0.0016 (8)
C5	0.0273 (10)	0.0196 (10)	0.0230 (10)	0.0027 (8)	0.0039 (8)	0.0027 (8)
C6	0.0229 (9)	0.0199 (10)	0.0220 (10)	-0.0007 (8)	0.0035 (8)	0.0010 (8)

C7	0.0207 (9)	0.0188 (9)	0.0164 (9)	0.0010 (8)	0.0022 (7)	-0.0001 (7)
C8	0.0200 (9)	0.0188 (9)	0.0180 (9)	-0.0018 (7)	0.0003 (7)	-0.0010 (8)
C9	0.0199 (9)	0.0200 (10)	0.0187 (9)	-0.0021 (8)	-0.0022 (7)	-0.0008 (8)
C10	0.0173 (9)	0.0249 (10)	0.0176 (9)	-0.0002(8)	-0.0037(7)	0.0008 (8)
C11	0.0215 (9)	0.0278 (11)	0.0234 (10)	-0.0035(8)	-0.0030(8)	0.0021 (9)
C12	0.0178 (9)	0.0383 (12)	0.0296 (11)	-0.0039 (9)	0.0003 (8)	0.0015 (10)
B1	0.0199 (15)	0.0176 (15)	0.0205 (15)	0.000	-0.0009 (12)	0.000

Geometric parameters (Å, °)

Cl1—B1	1.884 (3)	С3—НЗА	0.9500
N1	1.344 (2)	C4—C5	1.398 (3)
N1—C1 ⁱ	1.344 (2)	C4—H4A	0.9500
N2—C8	1.365 (2)	C5—C6	1.383 (3)
N2	1.370 (2)	С5—Н5А	0.9500
N2—B1	1.474 (2)	C6—C7	1.391 (3)
N3—C9	1.346 (2)	C6—H6A	0.9500
N3—C8	1.348 (2)	C7—C8	1.450 (3)
N4—C9	1.367 (2)	C9—C10	1.458 (3)
N4	1.367 (2)	C10—C11	1.393 (3)
N4—B1	1.475 (4)	C10-C10 ⁱ	1.424 (4)
C1—C2	1.454 (3)	C11—C12	1.385 (3)
C2—C3	1.394 (3)	C11—H11	0.9500
C2—C7	1.422 (3)	C12—C12 ⁱ	1.399 (4)
C3—C4	1.381 (3)	C12—H12	0.9500
C1-N1-C1 ⁱ	116.8 (2)	С7—С6—Н6А	121.0
C8—N2—C1	113.45 (15)	C6—C7—C2	120.65 (17)
C8—N2—B1	122.57 (17)	C6—C7—C8	132.11 (18)
C1—N2—B1	122.83 (17)	C2—C7—C8	107.16 (16)
C9—N3—C8	116.95 (16)	N3—C8—N2	122.36 (17)
C9—N4—C9 ⁱ	113.7 (2)	N3—C8—C7	130.51 (17)
C9—N4—B1	122.66 (11)	N2—C8—C7	105.51 (15)
C9 ⁱ —N4—B1	122.67 (11)	N3—C9—N4	122.31 (16)
N1—C1—N2	122.64 (17)	N3—C9—C10	130.96 (17)
N1—C1—C2	130.93 (17)	N4—C9—C10	105.34 (16)
N2—C1—C2	105.06 (15)	C11-C10-C10 ⁱ	120.87 (12)
C3—C2—C7	120.40 (17)	C11—C10—C9	131.78 (18)
C3—C2—C1	131.96 (17)	C10 ⁱ —C10—C9	107.26 (11)
C7—C2—C1	107.47 (15)	C12—C11—C10	117.44 (19)
C4—C3—C2	118.09 (18)	C12—C11—H11	121.3
С4—С3—Н3А	121.0	C10-C11-H11	121.3
С2—С3—Н3А	121.0	C11—C12—C12 ⁱ	121.68 (12)
C3—C4—C5	121.38 (18)	C11—C12—H12	119.2
C3—C4—H4A	119.3	C12 ⁱ —C12—H12	119.2
C5—C4—H4A	119.3	$N2$ — $B1$ — $N2^{i}$	105.6 (2)
C6—C5—C4	121.35 (19)	N2-B1-N4	105.51 (16)
C6—C5—H5A	119.3	$N2^{i}$ —B1—N4	105.52 (16)

119.3	N2—B1—Cl1	113.41 (14)
118.04 (18)	N2 ⁱ —B1—Cl1	113.41 (14)
121.0	N4—B1—Cl1	112.64 (19)
-7.7 (3)	C2-C7-C8-N3	158.19 (19)
156.82 (14)	C6-C7-C8-N2	175.97 (19)
156.35 (18)	C2C7C8N2	-7.20 (19)
-11.7 (3)	C8—N3—C9—N4	-8.6 (3)
-11.6 (2)	C8—N3—C9—C10	155.84 (18)
-179.66 (18)	C9 ⁱ —N4—C9—N3	157.11 (13)
14.9 (3)	B1—N4—C9—N3	-11.8 (3)
-178.50 (19)	C9 ⁱ —N4—C9—C10	-10.7 (3)
-160.3 (2)	B1—N4—C9—C10	-179.7 (2)
6.32 (19)	N3-C9-C10-C11	16.4 (3)
-2.9 (3)	N4-C9-C10-C11	-177.2 (2)
-177.54 (19)	N3-C9-C10-C10 ⁱ	-160.25 (17)
1.2 (3)	N4-C9-C10-C10 ⁱ	6.13 (16)
1.6 (3)	C10 ⁱ —C10—C11—C12	-0.7 (2)
-2.5 (3)	C9-C10-C11-C12	-177.04 (18)
0.8 (3)	C10-C11-C12-C12 ⁱ	0.7 (2)
177.25 (19)	$C8$ — $N2$ — $B1$ — $N2^{i}$	-140.31 (15)
1.9 (3)	$C1-N2-B1-N2^{i}$	26.6 (3)
177.79 (16)	C8—N2—B1—N4	-28.8 (3)
-175.32 (17)	C1—N2—B1—N4	138.10 (17)
0.52 (19)	C8—N2—B1—Cl1	94.9 (2)
7.9 (3)	C1—N2—B1—Cl1	-98.15 (19)
-155.37 (19)	C9—N4—B1—N2	28.2 (3)
-154.88 (17)	C9 ⁱ —N4—B1—N2	-139.74 (19)
13.2 (3)	$C9-N4-B1-N2^{i}$	139.74 (19)
12.0 (2)	$C9^{i}$ —N4—B1—N 2^{i}	-28.2 (3)
-179.94 (18)	C9—N4—B1—Cl1	-96.0 (2)
-18.6 (3)	C9 ⁱ —N4—B1—Cl1	96.0 (2)
	119.3 $118.04 (18)$ 121.0 $-7.7 (3)$ $156.82 (14)$ $156.35 (18)$ $-11.7 (3)$ $-11.6 (2)$ $-179.66 (18)$ $14.9 (3)$ $-178.50 (19)$ $-160.3 (2)$ $6.32 (19)$ $-2.9 (3)$ $-177.54 (19)$ $1.2 (3)$ $1.6 (3)$ $-2.5 (3)$ $0.8 (3)$ $177.25 (19)$ $1.9 (3)$ $177.79 (16)$ $-175.32 (17)$ $0.52 (19)$ $7.9 (3)$ $-155.37 (19)$ $-154.88 (17)$ $13.2 (3)$ $12.0 (2)$ $-179.94 (18)$ $-18.6 (3)$	119.3N2-B1-Cl1118.04 (18)N2'-B1-Cl1121.0N4-B1-Cl1-7.7 (3)C2-C7-C8-N3156.82 (14)C6-C7-C8-N2156.35 (18)C2-C7-C8-N2-11.7 (3)C8-N3-C9-N4-11.6 (2)C8-N3-C9-N4-11.6 (2)C8-N3-C9-N3-178.50 (19)C9'-N4-C9-N3-178.50 (19)C9'-N4-C9-C10-160.3 (2)B1-N4-C9-C10-C11-2.9 (3)N4-C9-C10-C11-177.54 (19)N3-C9-C10-C11-C12-2.5 (3)C1-C11-C12-C12'-2.5 (3)C1-N2-B1-N2'177.79 (16)C8-N2-B1-N2'177.79 (16)C8-N2-B1-N4-175.32 (17)C1-N2-B1-N4-175.37 (19)C9-N4-B1-N2'13.2 (3)C9-N4-B1-N2'12.0 (2)C9'-N4-B1-N2'12.0 (2)C9'-N4-B1-N2'12.0 (2)C9'-N4-B1-N2'13.2 (3)C9-N4-B1-N2'13.2 (3)C9-N4-B1-N2'13.2 (3)C9-N4-B1-N2'13.2 (3)C9-N4-B1-N2'13.2 (3)C9-N4-B1-N2'-179.94 (18)C9-N4-B1-C11-18.6 (3)C9'-N4-B1-C11

Symmetry code: (i) x, -y+1/2, z.

Bromido(subphthalocyaninato)boron (d23119a_a)

Crystal data

C₂₄H₁₂BBrN₆ $M_r = 475.12$ Orthorhombic, *Pnma* a = 12.0010 (6) Å b = 15.0617 (8) Å c = 10.3879 (5) Å V = 1877.67 (16) Å³ Z = 4F(000) = 952 $D_x = 1.681 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9878 reflections $\theta = 2.4-27.5^{\circ}$ $\mu = 2.22 \text{ mm}^{-1}$ T = 150 KShard, purple $0.27 \times 0.16 \times 0.14 \text{ mm}$ Data collection

Bruker Kappa APEX-DUO CMOS PHOTON II diffractometer Radiation source: sealed tube with Bruker Triumph monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Krause <i>et al.</i> , 2015) $T_{\min} = 0.688, T_{\max} = 0.746$ Refinement	23127 measured reflections 2243 independent reflections 1955 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -15 \rightarrow 13$ $k = -18 \rightarrow 19$ $l = -13 \rightarrow 13$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.057$ S = 1.09 2243 reflections 151 parameters 0 restraints	Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0231P)^2 + 1.4706P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.38$ e Å ⁻³ $\Delta\rho_{min} = -0.26$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.81550 (2)	0.750000	0.24958 (2)	0.01614 (7)	
N1	0.66674 (10)	0.59579 (8)	0.52765 (12)	0.0161 (3)	
N2	0.83966 (10)	0.67206 (8)	0.50914 (12)	0.0138 (2)	
N3	0.99565 (14)	0.750000	0.59384 (17)	0.0146 (3)	
N4	0.67202 (14)	0.750000	0.47898 (17)	0.0144 (4)	
C1	0.31111 (13)	0.70352 (12)	0.59788 (17)	0.0258 (4)	
H1	0.244319	0.672743	0.618348	0.031*	
C2	0.40596 (13)	0.65542 (11)	0.56881 (15)	0.0216 (3)	
H2	0.405645	0.592354	0.570221	0.026*	
C3	0.50217 (12)	0.70269 (10)	0.53733 (14)	0.0172 (3)	
C4	0.61501 (12)	0.67384 (10)	0.50787 (14)	0.0157 (3)	
C5	0.77859 (12)	0.59742 (10)	0.53537 (14)	0.0147 (3)	
C6	0.85558 (12)	0.53724 (10)	0.59867 (14)	0.0152 (3)	
C7	0.84333 (13)	0.45010 (10)	0.64201 (14)	0.0175 (3)	
H7A	0.776162	0.418167	0.627899	0.021*	
C8	0.93209 (13)	0.41167 (10)	0.70617 (16)	0.0197 (3)	
H8A	0.926535	0.351706	0.733810	0.024*	
C9	1.02985 (13)	0.45920 (11)	0.73121 (14)	0.0196 (3)	
H9A	1.088591	0.431358	0.777344	0.023*	
C10	1.04267 (12)	0.54609 (10)	0.69005 (14)	0.0171 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H10A	1.108779	0.578365	0.708496	0.021*
C11	0.95604 (12)	0.58479 (10)	0.62094 (14)	0.0146 (3)
C12	0.94074 (11)	0.67398 (10)	0.56982 (14)	0.0141 (3)
B1	0.79108 (19)	0.750000	0.4451 (2)	0.0139 (4)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.02272 (12)	0.01261 (11)	0.01311 (11)	0.000	0.00090 (8)	0.000
N1	0.0169 (6)	0.0158 (6)	0.0158 (6)	-0.0018 (5)	-0.0013 (5)	0.0010 (5)
N2	0.0145 (6)	0.0120 (6)	0.0148 (6)	-0.0004 (5)	0.0008 (5)	0.0001 (5)
N3	0.0149 (8)	0.0132 (8)	0.0158 (8)	0.000	0.0018 (7)	0.000
N4	0.0149 (8)	0.0134 (8)	0.0148 (8)	0.000	-0.0004 (7)	0.000
C1	0.0164 (7)	0.0365 (10)	0.0245 (8)	-0.0051 (7)	0.0008 (6)	0.0034 (7)
C2	0.0174 (7)	0.0268 (8)	0.0207 (8)	-0.0036 (6)	-0.0022 (6)	0.0046 (7)
C3	0.0153 (7)	0.0220 (8)	0.0143 (7)	0.0003 (6)	-0.0024 (6)	0.0000 (6)
C4	0.0156 (7)	0.0172 (7)	0.0142 (7)	-0.0023 (6)	-0.0014 (5)	0.0004 (6)
C5	0.0175 (7)	0.0131 (7)	0.0136 (7)	-0.0012 (5)	0.0002 (5)	0.0000 (5)
C6	0.0171 (7)	0.0147 (7)	0.0137 (6)	0.0008 (6)	0.0012 (6)	-0.0003 (5)
C7	0.0190 (7)	0.0150 (7)	0.0184 (7)	-0.0013 (6)	0.0029 (6)	0.0010 (6)
C8	0.0250 (8)	0.0144 (7)	0.0196 (7)	0.0018 (6)	0.0034 (6)	0.0038 (6)
C9	0.0214 (7)	0.0192 (7)	0.0181 (7)	0.0056 (6)	-0.0002 (6)	0.0029 (6)
C10	0.0167 (7)	0.0170 (7)	0.0175 (7)	0.0014 (6)	0.0002 (6)	-0.0009 (6)
C11	0.0171 (6)	0.0130 (7)	0.0136 (7)	0.0015 (5)	0.0029 (5)	-0.0008 (5)
C12	0.0135 (6)	0.0152 (7)	0.0135 (7)	0.0013 (5)	0.0017 (5)	-0.0001 (6)
B1	0.0157 (10)	0.0128 (10)	0.0134 (11)	0.000	-0.0001 (9)	0.000

Geometric parameters (Å, °)

2.052 (2)	С2—Н2	0.9500
1.3449 (18)	C3—C3 ⁱ	1.425 (3)
1.3452 (19)	C3—C4	1.455 (2)
1.3674 (18)	C5—C6	1.452 (2)
1.3693 (18)	C6—C7	1.395 (2)
1.4698 (18)	C6—C11	1.421 (2)
1.3444 (17)	C7—C8	1.384 (2)
1.3444 (17)	С7—Н7А	0.9500
1.3689 (17)	C8—C9	1.399 (2)
1.3689 (17)	C8—H8A	0.9500
1.471 (3)	C9—C10	1.385 (2)
1.383 (2)	С9—Н9А	0.9500
1.400 (4)	C10-C11	1.391 (2)
0.9500	C10—H10A	0.9500
1.395 (2)	C11—C12	1.456 (2)
116.99 (13)	C11—C6—C5	107.39 (12)
113.61 (12)	C8—C7—C6	117.89 (14)
122.92 (13)	С8—С7—Н7А	121.1
	2.052 (2) 1.3449 (18) 1.3452 (19) 1.3674 (18) 1.3693 (18) 1.4698 (18) 1.3444 (17) 1.3689 (17) 1.3689 (17) 1.3689 (17) 1.3689 (17) 1.3683 (2) 1.471 (3) 1.383 (2) 1.400 (4) 0.9500 1.395 (2) 116.99 (13) 113.61 (12) 122.92 (13)	$2.052 (2)$ $C2-H2$ $1.3449 (18)$ $C3-C3^i$ $1.3452 (19)$ $C3-C4$ $1.3674 (18)$ $C5-C6$ $1.3693 (18)$ $C6-C7$ $1.4698 (18)$ $C6-C11$ $1.3444 (17)$ $C7-C8$ $1.3444 (17)$ $C7-H7A$ $1.3699 (17)$ $C8-C9$ $1.3689 (17)$ $C8-H8A$ $1.471 (3)$ $C9-C10$ $1.383 (2)$ $C9-H9A$ $1.400 (4)$ $C10-C11$ 0.9500 $C11-C12$ $116.99 (13)$ $C11-C6-C5$ $113.61 (12)$ $C8-C7-H7A$

C5—N2—B1	122.24 (13)	С6—С7—Н7А	121.1
C12 ⁱ —N3—C12	116.79 (17)	C7—C8—C9	121.42 (14)
C4 ⁱ —N4—C4	113.85 (17)	C7—C8—H8A	119.3
C4 ⁱ —N4—B1	122.53 (9)	С9—С8—Н8А	119.3
C4—N4—B1	122.53 (9)	С10—С9—С8	121.28 (14)
C2-C1-C1 ⁱ	121.60 (10)	С10—С9—Н9А	119.4
C2—C1—H1	119.2	С8—С9—Н9А	119.4
C1 ⁱ —C1—H1	119.2	C9—C10—C11	118.17 (14)
C1—C2—C3	117.72 (16)	C9—C10—H10A	120.9
C1—C2—H2	121.1	C11—C10—H10A	120.9
C3—C2—H2	121.1	C10—C11—C6	120.44 (13)
C2-C3-C3 ⁱ	120.68 (10)	C10-C11-C12	131.98 (14)
C2—C3—C4	131.85 (15)	C6-C11-C12	107.38 (12)
$C3^{i}$ —C3—C4	107.38 (9)	N3—C12—N2	122.58 (13)
N1-C4-N4	122.35 (13)	N3—C12—C11	131.01 (14)
N1-C4-C3	131.18 (14)	N2—C12—C11	105.09 (12)
N4—C4—C3	105.13 (13)	$N2^{i}$ B1 N2	106.01 (17)
N1-C5-N2	122.50 (13)	$N2^{i}$ B1 N4	106.08(12)
N1-C5-C6	130.60 (13)	N2—B1—N4	106.08 (12)
N2-C5-C6	105.19 (12)	$N2^{i}$ B1 Br1	113.03 (11)
C7—C6—C11	120.73 (14)	N_2 —B1—Br1	113.03 (11)
C7—C6—C5	131.79 (14)	N4—B1—Br1	112.04 (15)
			112101 (10)
C1 ⁱ —C1—C2—C3	-0.93 (18)	C9—C10—C11—C6	2.7 (2)
C1-C2-C3-C3 ⁱ	0.92 (18)	C9—C10—C11—C12	176.81 (15)
C1—C2—C3—C4	176.97 (16)	C7—C6—C11—C10	-2.1 (2)
C5—N1—C4—N4	8.8 (2)	C5—C6—C11—C10	174.79 (13)
C5—N1—C4—C3	-155.92 (15)	C7—C6—C11—C12	-177.45 (13)
C4 ⁱ —N4—C4—N1	-157.35 (11)	C5—C6—C11—C12	-0.60 (16)
B1-N4-C4-N1	10.9 (3)	C12 ⁱ —N3—C12—N2	8.0 (3)
C4 ⁱ —N4—C4—C3	10.8 (2)	C12 ⁱ —N3—C12—C11	-156.87 (11)
B1—N4—C4—C3	179.12 (17)	C5—N2—C12—N3	-156.66 (15)
C2—C3—C4—N1	-15.9 (3)	B1—N2—C12—N3	10.9 (2)
C3 ⁱ —C3—C4—N1	160.54 (14)	C5—N2—C12—C11	11.56 (16)
C2—C3—C4—N4	177.39 (17)	B1—N2—C12—C11	179.14 (15)
C3 ⁱ —C3—C4—N4	-6.17 (13)	C10-C11-C12-N3	-14.1 (3)
C4—N1—C5—N2	-7.8 (2)	C6-C11-C12-N3	160.59 (16)
C4—N1—C5—C6	155.00 (15)	C10-C11-C12-N2	179.12 (15)
C12—N2—C5—N1	154.60 (14)	C6-C11-C12-N2	-6.23 (15)
B1—N2—C5—N1	-13.1 (2)	C12—N2—B1—N2 ⁱ	-25.6 (2)
C12—N2—C5—C6	-11.95 (16)	$C5$ — $N2$ — $B1$ — $N2^{i}$	140.89 (12)
B1-N2-C5-C6	-179.63 (14)	C12—N2—B1—N4	-138.14 (14)
N1—C5—C6—C7	18.5 (3)	C5—N2—B1—N4	28.4 (2)
N2—C5—C6—C7	-176.44 (15)	C12—N2—B1—Br1	98.71 (15)
N1-C5-C6-C11	-157.83 (15)	C5—N2—B1—Br1	-94.76 (16)
N2-C5-C6-C11	7.19 (15)	$C4^{i}$ —N4—B1—N2 ⁱ	27.4 (2)
C11—C6—C7—C8	-0.4 (2)	C4—N4—B1—N 2^{i}	-139.86 (15)
C5—C6—C7—C8	-176.41 (15)	C4 ⁱ —N4—B1—N2	139.86 (15)

C6—C7—C8—C9	2.2 (2)	C4—N4—B1—N2	-27.4 (2)
C7—C8—C9—C10	-1.5 (2)	C4 ⁱ —N4—B1—Br1	-96.36 (16)
C8—C9—C10—C11	-1.0 (2)	C4—N4—B1—Br1	96.36 (16)

Symmetry code: (i) x, -y+3/2, z.

(Methanolato)(subphthalocyaninato)boron (d2368_a)

Crystal data

C₂₅H₁₅BN₆O $M_r = 426.24$ Orthorhombic, *Pnma* a = 12.3162 (11) Å b = 15.2325 (19) Å c = 10.4151 (10) Å V = 1953.9 (4) Å³ Z = 4F(000) = 880

Data collection

Bruker Kappa APEX-DUO CMOs PHOTON II diffractometer Radiation source: Icoatec ImuS with multi-layer optics φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.659, T_{\max} = 0.753$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.078$ S = 1.081762 reflections 159 parameters 0 restraints Primary atom site location: structure-invariant direct methods $D_x = 1.449 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 8333 reflections $\theta = 5.1-65.5^{\circ}$ $\mu = 0.75 \text{ mm}^{-1}$ T = 150 KShard, pink $0.10 \times 0.04 \times 0.02 \text{ mm}$

27808 measured reflections 1762 independent reflections 1570 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$ $\theta_{max} = 66.0^{\circ}, \theta_{min} = 5.1^{\circ}$ $h = -14 \rightarrow 14$ $k = -17 \rightarrow 17$ $l = -12 \rightarrow 11$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0301P)^2 + 0.6842P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.19$ e Å⁻³ Extinction correction: SHELXL2019 (Sheldrick, 2015*b*), Fc*=kFc[1+0.001xFc²\lambda³/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0026 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.74991 (10)	0.750000	0.29681 (12)	0.0284 (3)	
N1	0.96403 (12)	0.750000	0.56717 (14)	0.0249 (3)	
N2	0.80691 (8)	0.67267 (7)	0.49738 (10)	0.0235 (3)	

N3	0.64054 (8)	0.59780 (7)	0.53777 (10)	0.0266 (3)	
N4	0.64148 (12)	0.750000	0.48741 (14)	0.0248 (3)	
C1	0.90890 (10)	0.67473 (8)	0.54862 (12)	0.0235 (3)	
C2	0.92753 (10)	0.58766 (8)	0.60186 (12)	0.0240 (3)	
C3	1.01583 (10)	0.55147 (8)	0.66539 (13)	0.0281 (3)	
H3A	1.081703	0.583335	0.674325	0.034*	
C4	1.00543 (11)	0.46789 (9)	0.71533 (13)	0.0316 (3)	
H4A	1.065143	0.442124	0.759076	0.038*	
C5	0.90876 (11)	0.42036 (9)	0.70283 (13)	0.0306 (3)	
H5A	0.904612	0.362429	0.736277	0.037*	
C6	0.81926 (10)	0.45637 (8)	0.64260 (13)	0.0276 (3)	
H6A	0.753201	0.424472	0.636119	0.033*	
C7	0.82830 (10)	0.54053 (8)	0.59167 (12)	0.0245 (3)	
C8	0.74954 (10)	0.59952 (8)	0.53308 (12)	0.0246 (3)	
C9	0.58841 (10)	0.67493 (8)	0.52199 (12)	0.0251 (3)	
C10	0.48053 (10)	0.70324 (9)	0.56126 (12)	0.0274 (3)	
C11	0.38841 (10)	0.65651 (10)	0.59870 (13)	0.0332 (3)	
H11	0.388003	0.594147	0.599794	0.040*	
C12	0.29788 (11)	0.70410 (11)	0.63409 (15)	0.0406 (4)	
H12	0.233924	0.673711	0.659092	0.049*	
C13	0.84839 (16)	0.750000	0.23075 (18)	0.0316 (4)	
H13A	0.836530	0.729920	0.142465	0.047*	0.5
H13B	0.899536	0.710471	0.273802	0.047*	0.5
H13C	0.878312	0.809608	0.229560	0.047*	0.5
B1	0.75398 (16)	0.750000	0.43343 (19)	0.0240 (4)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0324 (7)	0.0282 (7)	0.0246 (7)	0.000	-0.0006 (5)	0.000
N1	0.0245 (7)	0.0217 (8)	0.0284 (8)	0.000	0.0037 (6)	0.000
N2	0.0247 (6)	0.0216 (6)	0.0242 (6)	-0.0011 (4)	0.0021 (4)	-0.0001 (4)
N3	0.0263 (6)	0.0280 (6)	0.0255 (6)	-0.0025 (4)	-0.0020 (4)	0.0002 (5)
N4	0.0248 (8)	0.0265 (8)	0.0231 (8)	0.000	-0.0009 (6)	0.000
C1	0.0226 (6)	0.0236 (7)	0.0241 (6)	-0.0004 (5)	0.0042 (5)	-0.0011 (5)
C2	0.0261 (6)	0.0207 (6)	0.0252 (6)	0.0010 (5)	0.0037 (5)	-0.0015 (5)
C3	0.0261 (6)	0.0241 (7)	0.0342 (7)	0.0008 (5)	0.0005 (5)	-0.0026 (5)
C4	0.0317 (7)	0.0273 (7)	0.0359 (8)	0.0046 (6)	-0.0029 (6)	0.0018 (6)
C5	0.0362 (7)	0.0224 (7)	0.0332 (7)	0.0016 (6)	0.0031 (6)	0.0040 (5)
C6	0.0292 (7)	0.0243 (7)	0.0293 (7)	-0.0028 (5)	0.0041 (5)	0.0003 (5)
C7	0.0273 (6)	0.0227 (7)	0.0235 (6)	-0.0002 (5)	0.0030 (5)	-0.0015 (5)
C8	0.0277 (6)	0.0232 (6)	0.0228 (6)	-0.0036 (5)	0.0012 (5)	-0.0014 (5)
C9	0.0255 (6)	0.0272 (7)	0.0227 (6)	-0.0031 (5)	-0.0022 (5)	0.0010 (5)
C10	0.0245 (6)	0.0355 (7)	0.0221 (6)	-0.0013 (5)	-0.0052 (5)	0.0010 (5)
C11	0.0261 (7)	0.0413 (8)	0.0323 (7)	-0.0044 (6)	-0.0049 (6)	0.0046 (6)
C12	0.0236 (7)	0.0557 (9)	0.0426 (8)	-0.0047 (6)	0.0002 (6)	0.0040 (7)
C13	0.0465 (12)	0.0223 (9)	0.0261 (10)	0.000	0.0043 (9)	0.000
B1	0.0265 (10)	0.0228 (10)	0.0228 (10)	0.000	0.0012 (8)	0.000

Geometric parameters (Å, °)

01—C13	1.394 (2)	C5—C6	1.3819 (19)
01—B1	1.424 (2)	C5—H5A	0.9500
N1-C1 ⁱ	1.3465 (14)	C6—C7	1.3920 (18)
N1—C1	1.3466 (14)	С6—Н6А	0.9500
N2—C1	1.3651 (16)	C7—C8	1.4563 (18)
N2—C8	1.3708 (16)	C9—C10	1.4555 (18)
N2—B1	1.5020 (16)	C10—C11	1.3950 (18)
N3—C8	1.3435 (16)	C10-C10 ⁱ	1.425 (3)
N3—C9	1.3489 (17)	C11—C12	1.380 (2)
N4—C9	1.3655 (15)	C11—H11	0.9500
N4-C9 ⁱ	1.3656 (15)	C12-C12 ⁱ	1.398 (3)
N4—B1	1.495 (2)	C12—H12	0.9500
C1—C2	1.4556 (17)	C13—H13A	0.9800
С2—С3	1.3872 (18)	C13—H13B	0.9800
С2—С7	1.4213 (17)	C13—H13C	0.9800
C3—C4	1.3813 (19)	C13—H13A ⁱ	0.980 (9)
С3—НЗА	0.9500	C13—H13B ⁱ	0.980 (15)
C4—C5	1.3995 (19)	C13—H13C ⁱ	0.980 (5)
C4—H4A	0.9500		
C13—O1—B1	117.55 (15)	C11—C10—C10 ⁱ	120.68 (8)
C1 ⁱ —N1—C1	116.76 (15)	C11—C10—C9	132.06 (13)
C1—N2—C8	112.76 (10)	C10 ⁱ —C10—C9	107.23 (7)
C1—N2—B1	123.69 (11)	C12—C11—C10	117.63 (14)
C8—N2—B1	122.28 (11)	C12—C11—H11	121.2
C8—N3—C9	117.01 (11)	C10—C11—H11	121.2
C9—N4—C9 ⁱ	113.74 (15)	C11-C12-C12 ⁱ	121.69 (9)
C9—N4—B1	122.87 (7)	C11—C12—H12	119.2
C9 ⁱ —N4—B1	122.87 (7)	C12 ⁱ —C12—H12	119.2
N1-C1-N2	122.66 (11)	O1—C13—H13A	109.5
N1-C1-C2	129.92 (12)	O1—C13—H13B	109.5
N2-C1-C2	105.85 (10)	H13A—C13—H13B	109.5
C3—C2—C7	120.59 (11)	O1—C13—H13C	109.5
C3—C2—C1	131.86 (12)	H13A—C13—H13C	109.5
C7—C2—C1	107.23 (11)	H13B—C13—H13C	109.5
C4—C3—C2	118.24 (12)	O1-C13-H13A ⁱ	109.5 (2)
C4—C3—H3A	120.9	H13A—C13—H13A ⁱ	36.4
С2—С3—Н3А	120.9	H13B—C13—H13A ⁱ	135.8
C3—C4—C5	121.38 (12)	H13C—C13—H13A ⁱ	75.8
C3—C4—H4A	119.3	O1—C13—H13B ⁱ	109.5 (3)
C5—C4—H4A	119.3	H13A—C13—H13B ⁱ	135.8
C6—C5—C4	121.03 (12)	H13B—C13—H13B ⁱ	75.8
С6—С5—Н5А	119.5	H13C—C13—H13B ⁱ	36.4
C4—C5—H5A	119.5	H13A ⁱ —C13—H13B ⁱ	109.5
C5—C6—C7	118.34 (12)	O1—C13—H13C ⁱ	109.47 (12)
С5—С6—Н6А	120.8	H13A—C13—H13C ⁱ	75.8

С7—С6—Н6А	120.8	H13B-C13-H13C ⁱ	36.4
C6—C7—C2	120.37 (12)	H13C-C13-H13C ⁱ	135.8
C6—C7—C8	132.43 (12)	H13A ⁱ —C13—H13C ⁱ	109.5
C2—C7—C8	107.00 (11)	H13B ⁱ —C13—H13C ⁱ	109.5
N3—C8—N2	122.73 (11)	O1—B1—N4	110.07 (15)
N3—C8—C7	129.67 (11)	O1—B1—N2	117.29 (10)
N2—C8—C7	105.77 (10)	N4—B1—N2	103.62 (11)
N3—C9—N4	122.25 (11)	$O1 - B1 - N2^i$	117.28 (10)
N3—C9—C10	131.17 (12)	$N4$ — $B1$ — $N2^{i}$	103.62 (11)
N4—C9—C10	105.25 (11)	$N2 - B1 - N2^{i}$	103.30 (14)
C1 ⁱ —N1—C1—N2	8.5 (2)	C2C7C8N2	7.22 (13)
C1 ⁱ —N1—C1—C2	-155.07 (10)	C8—N3—C9—N4	7.75 (18)
C8—N2—C1—N1	-155.14 (13)	C8—N3—C9—C10	-157.04 (13)
B1—N2—C1—N1	12.2 (2)	C9 ⁱ —N4—C9—N3	-156.56 (9)
C8—N2—C1—C2	11.82 (13)	B1—N4—C9—N3	15.4 (2)
B1—N2—C1—C2	179.17 (12)	C9 ⁱ —N4—C9—C10	11.64 (19)
N1—C1—C2—C3	-14.3(2)	B1-N4-C9-C10	-176.44 (14)
N2—C1—C2—C3	-179.94 (13)	N3—C9—C10—C11	-17.8 (2)
N1—C1—C2—C7	159.10 (13)	N4—C9—C10—C11	175.53 (14)
N2—C1—C2—C7	-6.56 (13)	N3-C9-C10-C10 ⁱ	160.09 (12)
C7—C2—C3—C4	1.61 (18)	N4-C9-C10-C10 ⁱ	-6.63 (11)
C1—C2—C3—C4	174.26 (13)	C10 ⁱ —C10—C11—C12	0.65 (15)
C2—C3—C4—C5	-0.04 (19)	C9—C10—C11—C12	178.25 (13)
C3—C4—C5—C6	-1.6 (2)	C10-C11-C12-C12 ⁱ	-0.66 (15)
C4—C5—C6—C7	1.55 (19)	C13—O1—B1—N4	180.000(1)
C5—C6—C7—C2	0.02 (18)	C13—O1—B1—N2	-61.93 (13)
C5—C6—C7—C8	-174.12 (13)	C13—O1—B1—N2 ⁱ	61.93 (13)
C3—C2—C7—C6	-1.63 (18)	C9—N4—B1—O1	94.40 (13)
C1—C2—C7—C6	-175.90 (11)	C9 ⁱ —N4—B1—O1	-94.40 (13)
C3—C2—C7—C8	173.85 (11)	C9—N4—B1—N2	-31.80 (19)
C1—C2—C7—C8	-0.42 (13)	C9 ⁱ —N4—B1—N2	139.39 (12)
C9—N3—C8—N2	-8.48 (17)	$C9-N4-B1-N2^{i}$	-139.39 (12)
C9—N3—C8—C7	153.85 (13)	$C9^{i}$ —N4—B1—N 2^{i}	31.80 (19)
C1—N2—C8—N3	153.87 (11)	C1—N2—B1—O1	103.19 (15)
B1—N2—C8—N3	-13.69 (18)	C8—N2—B1—O1	-90.62 (17)
C1—N2—C8—C7	-12.08 (13)	C1—N2—B1—N4	-135.32 (12)
B1—N2—C8—C7	-179.64 (12)	C8—N2—B1—N4	30.86 (16)
C6—C7—C8—N3	17.3 (2)	$C1$ — $N2$ — $B1$ — $N2^i$	-27.49 (19)
C2—C7—C8—N3	-157.40 (13)	$C8$ — $N2$ — $B1$ — $N2^{i}$	138.69 (10)
C6-C7-C8-N2	-178.07 (13)		

Symmetry code: (i) x, -y+3/2, z.

(Ethanolato)(subphthalocyaninato)boron (d22127_a)

Crystal data

 $C_{26}H_{17}BN_6O$ $M_r = 440.26$ Monoclinic, $P2_1/n$ a = 9.0313 (14) Å b = 14.220 (2) Å c = 16.474 (2) Å $\beta = 102.667 (4)^{\circ}$ $V = 2064.3 (5) Å^3$ Z = 4

Data collection

Bruker Kanna APFX-DUO CMOS PHOTON II	49575 measured reflections
diffractometer	4744 independent reflections
Dediction source: seeled tube with Druker	2211 reflections with $L > 2\pi(L)$
Radiation source. seared tube with Diuker	5511 reflections with $1 \ge 20(1)$
Triumph Monochromator	$R_{\rm int} = 0.101$
φ and ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Krause et al., 2015)	$k = -18 \rightarrow 18$
$T_{\min} = 0.684, \ T_{\max} = 0.746$	$l = -21 \rightarrow 20$
Refinement	
Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$D[E^2 > 2 - (E^2)] = 0.047$	I Indus and site to estimate informed from

F(000) = 912

 $\theta = 2.5 - 26.0^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 150 K

Plate, purple

 $0.21 \times 0.12 \times 0.03 \text{ mm}$

 $D_{\rm x} = 1.417 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6076 reflections

Least-squares matrix: fullunder the modes $R[F^2 > 2\sigma(F^2)] = 0.047$ Hydrogen site location: inferred from
neighbouring sites $wR(F^2) = 0.098$ H-atom parameters constrained
 $w = 1/[\sigma^2(F_o^2) + (0.0401P)^2 + 0.5512P]$
where $P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{max} < 0.001$
 $\Delta\rho_{max} = 0.21$ e Å⁻³
 $\Delta\rho_{min} = -0.23$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.43092 (12)	0.67237 (8)	0.21540 (6)	0.0226 (3)	
N1	0.45908 (14)	0.58982 (9)	0.34451 (8)	0.0197 (3)	
N2	0.56828 (14)	0.70834 (9)	0.43968 (8)	0.0209 (3)	
N3	0.34169 (14)	0.73791 (9)	0.33712 (8)	0.0185 (3)	
N4	0.07319 (14)	0.74430 (9)	0.29173 (8)	0.0200 (3)	
N5	0.20976 (14)	0.60783 (9)	0.26680 (8)	0.0186 (3)	
N6	0.30979 (14)	0.45416 (9)	0.30217 (8)	0.0211 (3)	
C1	0.43968 (17)	0.49460 (11)	0.34219 (10)	0.0196 (3)	
C2	0.56971 (17)	0.45745 (11)	0.40263 (10)	0.0212 (3)	

C3	0.62097 (18)	0.36620 (12)	0.42212 (10)	0.0238 (4)
H3A	0.567321	0.313513	0.394840	0.029*
C4	0.75308 (18)	0.35475 (12)	0.48276 (10)	0.0262 (4)
H4A	0.792134	0.293223	0.495709	0.031*
C5	0.82990 (19)	0.43142 (12)	0.52514 (10)	0.0266 (4)
H5A	0.919487	0.420909	0.566683	0.032*
C6	0.77830 (18)	0.52271 (12)	0.50793 (10)	0.0247 (4)
H6A	0.829356	0.574522	0.538144	0.030*
C7	0.64924 (17)	0.53599 (11)	0.44495 (10)	0.0208 (3)
C8	0.56794 (17)	0.62028 (11)	0.41016 (10)	0.0202 (3)
С9	0.44772 (17)	0.76266 (11)	0.40651 (10)	0.0197 (3)
C10	0.38257 (17)	0.84138 (11)	0.44307 (10)	0.0192 (3)
C11	0.43401 (18)	0.89251 (11)	0.51574 (10)	0.0220 (4)
H11A	0.532128	0.881631	0.549515	0.026*
C12	0.33899 (18)	0.95956 (12)	0.53769 (10)	0.0241 (4)
H12A	0.373533	0.996338	0.586292	0.029*
C13	0.19304 (18)	0.97406 (11)	0.48953 (10)	0.0240 (4)
H13A	0.130921	1.021538	0.505329	0.029*
C14	0.13725 (18)	0.92083 (11)	0.41948 (10)	0.0224 (4)
H14A	0.036495	0.929469	0.388239	0.027*
C15	0.23215 (17)	0.85429 (11)	0.39580 (9)	0.0191 (3)
C16	0.20517 (17)	0.78150 (11)	0.33235 (9)	0.0192 (3)
C17	0.07709 (17)	0.65512 (11)	0.26457 (9)	0.0194 (3)
C18	-0.04156 (18)	0.58441 (11)	0.25035 (9)	0.0197 (3)
C19	-0.19862 (18)	0.59144 (12)	0.24018 (9)	0.0220 (4)
H19A	-0.246991	0.650926	0.238807	0.026*
C20	-0.28115 (18)	0.50930 (12)	0.23222 (10)	0.0250 (4)
H20A	-0.388527	0.512614	0.223660	0.030*
C21	-0.21131 (19)	0.42095 (12)	0.23637 (10)	0.0255 (4)
H21A	-0.271955	0.365765	0.231144	0.031*
C22	-0.05506 (19)	0.41275 (12)	0.24797 (10)	0.0232 (4)
H22A	-0.007700	0.352779	0.251650	0.028*
C23	0.03053 (17)	0.49511 (11)	0.25409 (9)	0.0202 (3)
C24	0.19339 (17)	0.51235 (11)	0.27071 (9)	0.0196 (3)
C25	0.34167 (18)	0.70717 (12)	0.13924 (10)	0.0260 (4)
H25A	0.289154	0.765629	0.149550	0.031*
H25B	0.263941	0.660151	0.114554	0.031*
C26	0.4441 (2)	0.72668 (13)	0.08048 (11)	0.0318 (4)
H26A	0.382777	0.745504	0.026213	0.048*
H26B	0.501630	0.669782	0.074011	0.048*
H26C	0.514583	0.777464	0.102930	0.048*
B1	0.3627 (2)	0.65482 (13)	0.28386 (11)	0.0196 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0180 (6)	0.0296 (6)	0.0206 (6)	0.0021 (5)	0.0052 (5)	0.0034 (5)
N1	0.0163 (7)	0.0219 (7)	0.0220 (7)	0.0023 (5)	0.0068 (5)	0.0016 (6)
N2	0.0160 (7)	0.0228 (7)	0.0243 (7)	0.0015 (6)	0.0053 (6)	0.0027 (6)
-----	-------------	-------------	------------	-------------	------------	-------------
N3	0.0153 (6)	0.0183 (7)	0.0219 (7)	0.0013 (5)	0.0044 (5)	0.0027 (5)
N4	0.0186 (7)	0.0201 (7)	0.0203 (7)	0.0019 (5)	0.0022 (5)	0.0020 (5)
N5	0.0168 (7)	0.0193 (7)	0.0199 (7)	0.0018 (5)	0.0046 (5)	0.0012 (5)
N6	0.0208 (7)	0.0222 (7)	0.0217 (7)	0.0021 (6)	0.0076 (6)	-0.0009 (6)
C1	0.0198 (8)	0.0205 (8)	0.0212 (8)	0.0025 (6)	0.0101 (6)	0.0008 (6)
C2	0.0182 (8)	0.0244 (9)	0.0237 (8)	0.0045 (7)	0.0106 (7)	0.0033 (7)
C3	0.0218 (9)	0.0239 (9)	0.0292 (9)	0.0028 (7)	0.0129 (7)	0.0044 (7)
C4	0.0238 (9)	0.0266 (9)	0.0315 (9)	0.0083 (7)	0.0132 (7)	0.0106 (7)
C5	0.0205 (9)	0.0350 (10)	0.0250 (9)	0.0058 (7)	0.0063 (7)	0.0090 (7)
C6	0.0200 (8)	0.0301 (10)	0.0249 (9)	0.0038 (7)	0.0068 (7)	0.0024 (7)
C7	0.0174 (8)	0.0243 (9)	0.0225 (8)	0.0024 (7)	0.0082 (6)	0.0032 (7)
C8	0.0149 (8)	0.0251 (9)	0.0218 (8)	-0.0002 (7)	0.0067 (6)	0.0016 (7)
C9	0.0159 (8)	0.0204 (8)	0.0228 (8)	-0.0017 (6)	0.0045 (6)	0.0026 (7)
C10	0.0179 (8)	0.0182 (8)	0.0223 (8)	-0.0013 (6)	0.0057 (6)	0.0043 (6)
C11	0.0196 (8)	0.0220 (9)	0.0235 (8)	-0.0029 (7)	0.0029 (7)	0.0030 (7)
C12	0.0263 (9)	0.0242 (9)	0.0223 (8)	-0.0048 (7)	0.0061 (7)	-0.0005 (7)
C13	0.0249 (9)	0.0218 (9)	0.0275 (9)	0.0030 (7)	0.0103 (7)	0.0008 (7)
C14	0.0193 (8)	0.0231 (9)	0.0248 (8)	0.0028 (7)	0.0046 (7)	0.0041 (7)
C15	0.0198 (8)	0.0179 (8)	0.0199 (8)	-0.0001 (6)	0.0052 (6)	0.0037 (6)
C16	0.0187 (8)	0.0183 (8)	0.0208 (8)	0.0032 (6)	0.0050 (6)	0.0057 (6)
C17	0.0179 (8)	0.0238 (9)	0.0165 (8)	0.0032 (6)	0.0038 (6)	0.0022 (6)
C18	0.0208 (8)	0.0228 (8)	0.0150 (7)	0.0006 (7)	0.0025 (6)	0.0003 (6)
C19	0.0199 (8)	0.0262 (9)	0.0198 (8)	0.0018 (7)	0.0043 (7)	-0.0024 (7)
C20	0.0187 (8)	0.0343 (10)	0.0231 (9)	-0.0014 (7)	0.0071 (7)	-0.0045 (7)
C21	0.0256 (9)	0.0278 (9)	0.0246 (9)	-0.0065 (7)	0.0087 (7)	-0.0019 (7)
C22	0.0257 (9)	0.0234 (9)	0.0208 (8)	0.0005 (7)	0.0061 (7)	-0.0010 (7)
C23	0.0202 (8)	0.0235 (9)	0.0174 (8)	0.0014 (7)	0.0050 (6)	-0.0008 (7)
C24	0.0210 (8)	0.0203 (8)	0.0181 (8)	0.0024 (7)	0.0053 (6)	-0.0018 (6)
C25	0.0224 (9)	0.0326 (10)	0.0224 (9)	0.0013 (7)	0.0037 (7)	0.0035 (7)
C26	0.0366 (10)	0.0362 (10)	0.0247 (9)	0.0009 (8)	0.0111 (8)	0.0047 (8)
B1	0.0161 (9)	0.0199 (9)	0.0230 (9)	0.0021 (7)	0.0051 (7)	0.0018 (7)

Geometric parameters (Å, °)

01—B1	1.421 (2)	C10—C11	1.391 (2)
O1—C25	1.4231 (18)	C10—C15	1.422 (2)
N1—C8	1.363 (2)	C11—C12	1.383 (2)
N1—C1	1.365 (2)	C11—H11A	0.9500
N1—B1	1.493 (2)	C12—C13	1.397 (2)
N2—C8	1.343 (2)	C12—H12A	0.9500
N2—C9	1.349 (2)	C13—C14	1.380 (2)
N3—C9	1.3665 (19)	C13—H13A	0.9500
N3—C16	1.3667 (19)	C14—C15	1.389 (2)
N3—B1	1.508 (2)	C14—H14A	0.9500
N4C16	1.341 (2)	C15—C16	1.453 (2)
N4	1.348 (2)	C17—C18	1.451 (2)
N5—C17	1.3675 (19)	C18—C19	1.395 (2)

N5—C24	1.369 (2)	C18—C23	1.422 (2)
N5—B1	1.504 (2)	C19—C20	1.376 (2)
N6—C1	1.342 (2)	С19—Н19А	0.9500
N6-C24	1.349 (2)	C20—C21	1.401 (2)
C1—C2	1.462 (2)	C20—H20A	0.9500
C2—C3	1.392 (2)	C21—C22	1.387 (2)
C2—C7	1.425 (2)	C21—H21A	0.9500
C3—C4	1.387 (2)	C22—C23	1.395 (2)
С3—НЗА	0.9500	C22—H22A	0.9500
C4—C5	1.395 (2)	C23—C24	1.457 (2)
C4—H4A	0.9500	C25—C26	1.504 (2)
C5—C6	1.387 (2)	С25—Н25А	0.9900
С5—Н5А	0.9500	С25—Н25В	0.9900
C6—C7	1.393 (2)	С26—Н26А	0.9800
С6—Н6А	0.9500	C26—H26B	0.9800
C7—C8	1.456 (2)	C26—H26C	0.9800
C9—C10	1 455 (2)		012000
B1-01-C25	120.02 (12)	C13—C14—C15	118.29 (15)
C8-N1-C1	113 79 (13)	C13—C14—H14A	120.9
C8-N1-B1	123 21 (13)	C15 $-C14$ $-H14A$	120.9
C1-N1-B1	122.21 (13)	C14 - C15 - C10	120.5 120.57(14)
C8 - N2 - C9	116 72 (13)	C14-C15-C16	120.37(11) 132(13(14))
C9 - N3 - C16	112.90(13)	C10-C15-C16	102.13(11) 106.94(13)
C9_N3_B1	122.28 (13)	N4_C16_N3	100.94(13) 122.79(14)
C_16 N ₃ B ₁	122.28(13) 123.28(13)	N4-C16-C15	122.79(14) 129.08(14)
$C_{10} = N_{3} = D_{1}$	116.85 (13)	N3 C16 C15	129.00(14) 105.05(13)
C17 - N5 - C24	110.03(13) 112.70(13)	N4_C17_N5	103.33(13) 122.71(14)
C17 = N5 = C17	112.70(13) 123.34(13)	$N_{4} = C_{17} = N_{3}$	122.71(14) 120.32(14)
C1/-N5-B1	123.34(13) 122.42(13)	$N_{-} C_{17} C_{18}$	129.32(14) 105.08(13)
$C_1 = N_6 = C_2 A$	122.42(13) 116.70(13)	13 - 17 - 18	103.38(13) 120.87(14)
N6 C1 N1	110.70(13) 122.12(14)	$C_{19} = C_{18} = C_{23}$	120.87(14) 121.71(15)
$N_{0} = C_{1} = N_{1}$	122.12(14) 121.66(14)	$C_{19} = C_{18} = C_{17}$	131.71(13) 107.27(13)
$N_0 - C_1 - C_2$	151.00(14) 105.00(12)	$C_{23} = C_{10} = C_{17}$	107.27(13) 117.76(15)
N1 - C1 - C2	103.09(13) 120.77(14)	$C_{20} = C_{19} = C_{18}$	117.70(13)
$C_{3} = C_{2} = C_{1}$	120.77(14) 122.15(15)	C_{20} C_{19} H_{19A}	121.1
C_{3} C_{2} C_{1}	152.15(15) 107.07(12)	C10 - C20 - C21	121.1 121.97(15)
C/-C2-C1	107.07 (13)	C19 - C20 - C21	121.87 (15)
C4 - C3 - C2	117.75 (10)	C19 - C20 - H20A	119.1
C4 - C3 - H3A	121.1	$C_{21} = C_{20} = H_{20A}$	119.1
C2—C3—H3A	121.1	$C_{22} = C_{21} = C_{20}$	121.05 (15)
$C_3 = C_4 = C_5$	121.57 (16)	C22—C21—H21A	119.5
C3—C4—H4A	119.2	C20—C21—H21A	119.5
U5—U4—H4A	119.2	$C_{21} - C_{22} - C_{23}$	118.06 (15)
C6—C5—C4	121.42 (15)	C21—C22—H22A	121.0
С6—С5—Н5А	119.3	C23—C22—H22A	121.0
С4—С5—Н5А	119.3	C22—C23—C18	120.36 (14)
C5—C6—C7	117.89 (16)	C22—C23—C24	132.50 (15)
С5—С6—Н6А	121.1	C18—C23—C24	106.96 (13)

С7—С6—Н6А	121.1	N6-C24-N5	122.92 (14)
C6—C7—C2	120.53 (15)	N6—C24—C23	129.70 (14)
C6—C7—C8	132.24 (15)	N5—C24—C23	105.85 (13)
C2—C7—C8	107.22 (13)	O1—C25—C26	108.79 (13)
N2—C8—N1	121.84 (14)	O1—C25—H25A	109.9
N2-C8-C7	131.61 (14)	C26—C25—H25A	109.9
N1-C8-C7	105.34(13)	01-C25-H25B	109.9
N2	123 14 (14)	C26—C25—H25B	109.9
$N_{2} - C_{9} - C_{10}$	129.53 (14)	H25A-C25-H25B	108.3
N_{3} C9 C10	105 76 (13)	C25—C26—H26A	109.5
$C_{11} - C_{10} - C_{15}$	105.70(15) 120.18(14)	$C_{25} = C_{26} = H_{26}R$	109.5
C11 - C10 - C9	120.10(14) 132.03(14)	$H_{26A} - C_{26} - H_{26B}$	109.5
C_{15} C_{10} C_{9}	107.28(13)	C25_C26_H26C	109.5
$C_{12} = C_{11} = C_{10}$	107.20(13) 118 $AA(15)$	$H_{26}^{-11} = 0.0000000000000000000000000000000000$	109.5
$C_{12} = C_{11} = C_{10}$	120.8	H26R C26 H26C	109.5
C_{12} C_{11} H_{11A}	120.8	H_{20} H	109.3 110.42 (12)
	120.0	OIBINI	110.43(13)
CII = CI2 = CI3	121.05 (15)	OI-BI-N5	118.04 (14)
CII—CI2—HI2A	119.5	NI-BI-N5	103.11 (13)
C13—C12—H12A	119.5	OI—BI—N3	117.12(14)
C14—C13—C12	121.35 (16)	N1—B1—N3	102.99 (13)
C14—C13—H13A	119.3	N5—B1—N3	103.27 (12)
C12—C13—H13A	119.3		
C24—N6—C1—N1	-6.1 (2)	C14—C15—C16—N4	-17.3 (3)
C24—N6—C1—C2	159.88 (16)	C10—C15—C16—N4	155.65 (15)
C8—N1—C1—N6	156.73 (14)	C14—C15—C16—N3	179.45 (16)
B1—N1—C1—N6	-19.4 (2)	C10-C15-C16-N3	-7.64 (16)
C8—N1—C1—C2	-12.44 (17)	C16—N4—C17—N5	-9.2 (2)
B1—N1—C1—C2	171.41 (13)	C16—N4—C17—C18	152.47 (16)
N6-C1-C2-C3	19.7 (3)	C24—N5—C17—N4	154.08 (14)
N1—C1—C2—C3	-172.63 (16)	B1—N5—C17—N4	-12.1 (2)
N6-C1-C2-C7	-160.56 (16)	C24—N5—C17—C18	-11.23 (17)
N1—C1—C2—C7	7.15 (16)	B1—N5—C17—C18	-177.40 (13)
C7—C2—C3—C4	-1.2 (2)	N4—C17—C18—C19	18.0 (3)
C1—C2—C3—C4	178.56 (16)	N5-C17-C18-C19	-178.01 (16)
C2—C3—C4—C5	2.2 (2)	N4—C17—C18—C23	-157.53 (15)
C3—C4—C5—C6	-0.6 (3)	N5-C17-C18-C23	6.46 (17)
C4—C5—C6—C7	-1.9(2)	C23—C18—C19—C20	-1.3(2)
C5—C6—C7—C2	2.8 (2)	C17—C18—C19—C20	-176.34(16)
C5-C6-C7-C8	-178.47(16)	C18 - C19 - C20 - C21	1.8 (2)
$C_{3} - C_{2} - C_{7} - C_{6}$	-13(2)	C19 - C20 - C21 - C22	-0.6(2)
C1 - C2 - C7 - C6	178 86 (14)	C_{20} C_{21} C_{22} C_{23}	-1.0(2)
$C_{3} - C_{2} - C_{7} - C_{8}$	179.69 (14)	$C_{20} = C_{21} = C_{22} = C_{23} = C_{18}$	1.0(2) 1 4 (2)
$C_1 - C_2 - C_7 - C_8$	-0.12(17)	$C_{21} = C_{22} = C_{23} = C_{10}$	175 98 (16)
$C_{1} = C_{2} = C_{1} = C_{0}$	62(2)	C19 - C18 - C23 - C23	-0.3(2)
$C_{112} = C_{0} = 101$	-150.34(16)	C17 - C18 - C23 - C22	175 85 (14)
$C_1 = N_1 = C_8 = N_2$	-156 A2 (10)	C17 - C18 - C23 - C22	-176.09(14)
$\mathbf{D}_{1} = \mathbf{N}_{1} = \mathbf{O}_{1} = \mathbf{N}_{2}$	100.42(14)	$C_{19} = C_{10} = C_{23} = C_{24}$	170.00(14)
DI-INI-CO-INZ	17./ (4)	U1/-U10-U23-U24	0.04(1/)

C1—N1—C8—C7	12.39 (17)	C1—N6—C24—N5	10.3 (2)
B1—N1—C8—C7	-171.47 (14)	C1—N6—C24—C23	-153.46 (16)
C6—C7—C8—N2	-18.5 (3)	C17—N5—C24—N6	-155.86 (14)
C2-C7-C8-N2	160.30 (16)	B1—N5—C24—N6	10.5 (2)
C6—C7—C8—N1	174.22 (17)	C17—N5—C24—C23	11.24 (17)
C2C7C8N1	-6.97 (17)	B1—N5—C24—C23	177.55 (13)
C8—N2—C9—N3	-11.0 (2)	C22—C23—C24—N6	-15.7 (3)
C8—N2—C9—C10	152.64 (16)	C18—C23—C24—N6	159.39 (16)
C16—N3—C9—N2	156.63 (14)	C22-C23-C24-N5	178.39 (16)
B1—N3—C9—N2	-9.6 (2)	C18—C23—C24—N5	-6.51 (16)
C16—N3—C9—C10	-10.29 (17)	B1-01-C25-C26	175.44 (14)
B1—N3—C9—C10	-176.52 (13)	C25—O1—B1—N1	160.56 (13)
N2-C9-C10-C11	10.6 (3)	C25—O1—B1—N5	42.4 (2)
N3—C9—C10—C11	176.42 (16)	C25—O1—B1—N3	-82.04 (18)
N2-C9-C10-C15	-160.93 (15)	C8—N1—B1—O1	91.45 (17)
N3—C9—C10—C15	4.84 (17)	C1—N1—B1—O1	-92.76 (17)
C15-C10-C11-C12	-3.8 (2)	C8—N1—B1—N5	-141.56 (14)
C9—C10—C11—C12	-174.54 (16)	C1—N1—B1—N5	34.24 (19)
C10-C11-C12-C13	1.8 (2)	C8—N1—B1—N3	-34.36 (19)
C11—C12—C13—C14	1.4 (2)	C1—N1—B1—N3	141.43 (14)
C12—C13—C14—C15	-2.4 (2)	C17—N5—B1—O1	-102.86 (17)
C13—C14—C15—C10	0.3 (2)	C24—N5—B1—O1	92.29 (18)
C13—C14—C15—C16	172.45 (16)	C17—N5—B1—N1	135.14 (14)
C11—C10—C15—C14	2.8 (2)	C24—N5—B1—N1	-29.72 (18)
C9—C10—C15—C14	175.61 (14)	C17—N5—B1—N3	28.15 (19)
C11—C10—C15—C16	-171.05 (14)	C24—N5—B1—N3	-136.70 (14)
C9—C10—C15—C16	1.71 (17)	C9—N3—B1—O1	-92.20 (17)
C17—N4—C16—N3	8.8 (2)	C16—N3—B1—O1	103.01 (17)
C17—N4—C16—C15	-152.04 (15)	C9—N3—B1—N1	29.17 (19)
C9—N3—C16—N4	-153.22 (14)	C16—N3—B1—N1	-135.62 (14)
B1—N3—C16—N4	12.8 (2)	C9—N3—B1—N5	136.25 (14)
C9—N3—C16—C15	11.38 (17)	C16—N3—B1—N5	-28.55 (19)
B1—N3—C16—C15	177.45 (13)		

(Ethanolato)(subphthalocyaninato)boron (d22128_a)

Crystal data

 $C_{26}H_{17}BN_{6}O$ $M_{r} = 440.26$ Monoclinic, $P2_{1}/n$ a = 9.0304 (5) Å b = 14.2423 (8) Å c = 16.4452 (9) Å $\beta = 102.476$ (3)° V = 2065.1 (2) Å³ Z = 4 F(000) = 912 $D_x = 1.416 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9939 reflections $\theta = 4.2-65.7^{\circ}$ $\mu = 0.72 \text{ mm}^{-1}$ T = 150 KBlock, purple $0.15 \times 0.15 \times 0.10 \text{ mm}$ Data collection

Bruker Kappa APEX-DUO CMOS PHOTON II diffractometer Radiation source: Incoatec ImuS with multi- layer optics φ and ω scans Absorption correction: multi-scan (SADABS; Krause <i>et al.</i> , 2015) $T_{\min} = 0.654, T_{\max} = 0.753$	46104 measured reflections 3555 independent reflections 3148 reflections with $I > 2\sigma(I)$ $R_{int} = 0.059$ $\theta_{max} = 66.1^{\circ}, \theta_{min} = 4.2^{\circ}$ $h = -10 \rightarrow 10$ $k = -16 \rightarrow 16$ $l = -19 \rightarrow 19$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.102$ S = 1.05 3555 reflections 308 parameters 0 restraints	Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0501P)^2 + 0.8523P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.50$ e Å ⁻³ $\Delta\rho_{min} = -0.21$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.43100 (11)	0.67170 (7)	0.21518 (6)	0.0284 (3)	
N1	0.45941 (13)	0.58926 (9)	0.34451 (8)	0.0247 (3)	
N2	0.56875 (13)	0.70791 (9)	0.43942 (8)	0.0270 (3)	
N3	0.34174 (13)	0.73692 (8)	0.33710 (8)	0.0243 (3)	
N4	0.07299 (13)	0.74350 (9)	0.29183 (8)	0.0253 (3)	
N5	0.20962 (13)	0.60716 (9)	0.26691 (7)	0.0241 (3)	
N6	0.31011 (14)	0.45375 (9)	0.30233 (8)	0.0264 (3)	
C1	0.44029 (16)	0.49430 (10)	0.34227 (9)	0.0253 (3)	
C2	0.57050 (16)	0.45711 (11)	0.40250 (9)	0.0264 (3)	
C3	0.62145 (17)	0.36615 (11)	0.42205 (10)	0.0300 (4)	
H3A	0.567517	0.313576	0.394978	0.036*	
C4	0.75388 (18)	0.35451 (12)	0.48250 (10)	0.0331 (4)	
H4A	0.793009	0.293066	0.495193	0.040*	
C5	0.83088 (18)	0.43129 (12)	0.52509 (10)	0.0339 (4)	
H5A	0.920282	0.420810	0.566635	0.041*	
C6	0.77923 (17)	0.52228 (12)	0.50784 (10)	0.0305 (4)	
H6A	0.830297	0.574069	0.537896	0.037*	
C7	0.64952 (16)	0.53554 (11)	0.44475 (9)	0.0271 (3)	
C8	0.56827 (15)	0.61983 (11)	0.40996 (9)	0.0255 (3)	
C9	0.44810 (16)	0.76202 (10)	0.40642 (9)	0.0252 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C10	0.38312 (16)	0.84085 (10)	0.44303 (9)	0.0260 (3)
C11	0.43452 (17)	0.89237 (11)	0.51549 (10)	0.0292 (3)
H11A	0.532775	0.881930	0.549059	0.035*
C12	0.33929 (18)	0.95902 (11)	0.53744 (10)	0.0304 (4)
H12A	0.373671	0.995742	0.586086	0.036*
C13	0.19338 (18)	0.97357 (11)	0.48956 (10)	0.0310 (4)
H13A	0.131530	1.021163	0.505424	0.037*
C14	0.13711 (17)	0.92004 (11)	0.41949 (10)	0.0288 (3)
H14A	0.036258	0.928440	0.388532	0.035*
C15	0.23225 (16)	0.85365 (10)	0.39565 (9)	0.0252 (3)
C16	0.20527 (16)	0.78083 (10)	0.33249 (9)	0.0245 (3)
C17	0.07694 (16)	0.65457 (10)	0.26476 (9)	0.0241 (3)
C18	-0.04180 (16)	0.58398 (10)	0.25038 (9)	0.0250 (3)
C19	-0.19910 (16)	0.59083 (11)	0.24007 (9)	0.0276 (3)
H19A	-0.247657	0.650166	0.238637	0.033*
C20	-0.28149 (17)	0.50859 (12)	0.23204 (10)	0.0305 (4)
H20A	-0.388824	0.511746	0.223543	0.037*
C21	-0.21143 (18)	0.42064 (12)	0.23607 (10)	0.0310 (4)
H21A	-0.272034	0.365522	0.230474	0.037*
C22	-0.05515 (17)	0.41233 (11)	0.24806 (9)	0.0287 (3)
H22A	-0.007766	0.352455	0.251932	0.034*
C23	0.03028 (17)	0.49473 (11)	0.25427 (9)	0.0254 (3)
C24	0.19340 (16)	0.51184 (10)	0.27080 (9)	0.0248 (3)
C25	0.34110 (18)	0.70714 (12)	0.13931 (10)	0.0342 (4)
H25A	0.289660	0.765756	0.150133	0.041*
H25B	0.262630	0.660635	0.114787	0.041*
C26	0.4432 (2)	0.72616 (13)	0.08009 (11)	0.0404 (4)
H26A	0.381919	0.745375	0.025975	0.061*
H26B	0.499809	0.669051	0.073209	0.061*
H26C	0.514504	0.776445	0.102470	0.061*
B1	0.36277 (18)	0.65409 (12)	0.28368 (11)	0.0248 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0225 (5)	0.0359 (6)	0.0268 (5)	0.0022 (4)	0.0054 (4)	0.0042 (5)
N1	0.0205 (6)	0.0268 (7)	0.0269 (7)	0.0030 (5)	0.0054 (5)	0.0020 (5)
N2	0.0208 (6)	0.0287 (7)	0.0310(7)	0.0007 (5)	0.0048 (5)	0.0029 (5)
N3	0.0212 (6)	0.0247 (6)	0.0265 (7)	0.0010 (5)	0.0041 (5)	0.0032 (5)
N4	0.0235 (6)	0.0265 (7)	0.0250 (6)	0.0020 (5)	0.0029 (5)	0.0022 (5)
N5	0.0215 (6)	0.0253 (6)	0.0254 (6)	0.0021 (5)	0.0049 (5)	0.0007 (5)
N6	0.0239 (6)	0.0280 (7)	0.0279 (7)	0.0039 (5)	0.0071 (5)	0.0005 (5)
C1	0.0236 (7)	0.0267 (8)	0.0272 (8)	0.0033 (6)	0.0090 (6)	0.0009 (6)
C2	0.0230 (7)	0.0305 (8)	0.0275 (8)	0.0047 (6)	0.0096 (6)	0.0045 (6)
C3	0.0282 (8)	0.0308 (8)	0.0334 (9)	0.0044 (6)	0.0122 (7)	0.0058 (7)
C4	0.0296 (8)	0.0351 (9)	0.0376 (9)	0.0098 (7)	0.0137 (7)	0.0131 (7)
C5	0.0259 (8)	0.0441 (10)	0.0322 (9)	0.0078 (7)	0.0076 (7)	0.0114 (7)
C6	0.0241 (8)	0.0376 (9)	0.0304 (8)	0.0039 (7)	0.0068 (6)	0.0043 (7)
		× /			. ,	

C7	0.0217 (7)	0.0332 (8)	0.0281 (8)	0.0035 (6)	0.0088 (6)	0.0043 (6)
C8	0.0192 (7)	0.0302 (8)	0.0278 (8)	0.0009 (6)	0.0066 (6)	0.0031 (6)
C9	0.0200 (7)	0.0275 (8)	0.0276 (8)	-0.0018 (6)	0.0039 (6)	0.0028 (6)
C10	0.0236 (7)	0.0252 (8)	0.0290 (8)	-0.0017 (6)	0.0052 (6)	0.0043 (6)
C11	0.0259 (8)	0.0292 (8)	0.0308 (8)	-0.0038 (6)	0.0019 (6)	0.0025 (7)
C12	0.0332 (8)	0.0297 (8)	0.0284 (8)	-0.0039(7)	0.0068 (7)	-0.0012 (6)
C13	0.0314 (8)	0.0288 (8)	0.0340 (9)	0.0018 (6)	0.0097 (7)	-0.0012 (7)
C14	0.0260 (8)	0.0291 (8)	0.0307 (8)	0.0025 (6)	0.0049 (6)	0.0036 (6)
C15	0.0245 (7)	0.0240 (7)	0.0265 (8)	0.0001 (6)	0.0043 (6)	0.0037 (6)
C16	0.0219 (7)	0.0261 (8)	0.0252 (8)	0.0031 (6)	0.0043 (6)	0.0053 (6)
C17	0.0224 (7)	0.0269 (8)	0.0224 (7)	0.0039 (6)	0.0034 (6)	0.0020 (6)
C18	0.0242 (7)	0.0294 (8)	0.0207 (7)	0.0014 (6)	0.0036 (6)	-0.0007 (6)
C19	0.0243 (8)	0.0339 (9)	0.0242 (8)	0.0025 (6)	0.0046 (6)	-0.0025 (6)
C20	0.0226 (7)	0.0409 (9)	0.0284 (8)	-0.0022 (7)	0.0067 (6)	-0.0046 (7)
C21	0.0292 (8)	0.0350 (9)	0.0292 (8)	-0.0062 (7)	0.0074 (7)	-0.0030(7)
C22	0.0303 (8)	0.0290 (8)	0.0271 (8)	-0.0002 (6)	0.0069 (6)	-0.0009 (6)
C23	0.0249 (7)	0.0295 (8)	0.0218 (7)	0.0007 (6)	0.0050 (6)	-0.0008 (6)
C24	0.0249 (7)	0.0261 (8)	0.0241 (7)	0.0016 (6)	0.0067 (6)	-0.0008 (6)
C25	0.0297 (8)	0.0415 (9)	0.0301 (9)	0.0015 (7)	0.0034 (7)	0.0041 (7)
C26	0.0434 (10)	0.0456 (10)	0.0333 (9)	0.0007 (8)	0.0105 (8)	0.0046 (8)
B1	0.0201 (8)	0.0270 (9)	0.0270 (9)	0.0022 (7)	0.0046 (7)	0.0028 (7)

Geometric parameters (Å, °)

01—B1	1.418 (2)	C10—C11	1.391 (2)
O1—C25	1.4257 (19)	C10—C15	1.428 (2)
N1-C8	1.3628 (19)	C11—C12	1.380 (2)
N1—C1	1.363 (2)	C11—H11A	0.9500
N1—B1	1.496 (2)	C12—C13	1.397 (2)
N2-C8	1.344 (2)	C12—H12A	0.9500
N2-C9	1.3491 (19)	C13—C14	1.384 (2)
N3—C16	1.3694 (18)	C13—H13A	0.9500
N3—C9	1.3700 (19)	C14—C15	1.390 (2)
N3—B1	1.507 (2)	C14—H14A	0.9500
N4—C17	1.3456 (19)	C15—C16	1.451 (2)
N4—C16	1.3460 (19)	C17—C18	1.452 (2)
N5-C24	1.368 (2)	C18—C19	1.397 (2)
N5-C17	1.3691 (18)	C18—C23	1.423 (2)
N5—B1	1.507 (2)	C19—C20	1.379 (2)
N6-C1	1.3466 (19)	C19—H19A	0.9500
N6-C24	1.3520 (19)	C20—C21	1.398 (2)
C1—C2	1.463 (2)	C20—H20A	0.9500
С2—С3	1.389 (2)	C21—C22	1.387 (2)
С2—С7	1.423 (2)	C21—H21A	0.9500
C3—C4	1.390 (2)	C22—C23	1.396 (2)
С3—НЗА	0.9500	C22—H22A	0.9500
C4—C5	1.400 (3)	C23—C24	1.459 (2)
C4—H4A	0.9500	C25—C26	1.504 (2)

C5—C6	1.386 (2)	С25—Н25А	0.9900
C5—H5A	0.9500	С25—Н25В	0.9900
C6—C7	1.400 (2)	C26—H26A	0.9800
С6—Н6А	0.9500	C26—H26B	0.9800
C7—C8	1.458 (2)	C26—H26C	0.9800
C9—C10	1.456 (2)		
B1-01-C25	119.65 (11)	C13—C14—C15	118.14 (14)
C8—N1—C1	113.82 (12)	C13—C14—H14A	120.9
C8—N1—B1	123.23 (13)	C15—C14—H14A	120.9
C1—N1—B1	122.84 (13)	C14—C15—C10	120.55 (14)
C8—N2—C9	116.65 (13)	C14—C15—C16	132.06 (14)
C16—N3—C9	112.81 (12)	C10—C15—C16	107.00 (13)
C16—N3—B1	123.39 (12)	N4—C16—N3	122.59 (13)
C9—N3—B1	122.37 (12)	N4—C16—C15	129.18 (13)
C17—N4—C16	116.87 (12)	N3—C16—C15	106.08 (12)
C24—N5—C17	112.87 (12)	N4—C17—N5	122.77 (13)
C24—N5—B1	122.33 (12)	N4—C17—C18	129.38 (13)
C17—N5—B1	123.32 (13)	N5-C17-C18	105.91 (12)
C1—N6—C24	116.79 (13)	C19—C18—C23	120.73 (14)
N6-C1-N1	122.06 (13)	C19—C18—C17	131.86 (14)
N6-C1-C2	131.62 (14)	C23—C18—C17	107.26 (12)
N1—C1—C2	105.21 (13)	C20-C19-C18	117.76 (14)
C3—C2—C7	120.86 (14)	С20—С19—Н19А	121.1
C3—C2—C1	132.21 (15)	C18—C19—H19A	121.1
C7—C2—C1	106.94 (13)	C19—C20—C21	121.82 (14)
C2—C3—C4	117.87 (15)	C19—C20—H20A	119.1
С2—С3—Н3А	121.1	C21—C20—H20A	119.1
С4—С3—Н3А	121.1	C22—C21—C20	121.28 (15)
C3—C4—C5	121.49 (15)	C22—C21—H21A	119.4
C3—C4—H4A	119.3	C20—C21—H21A	119.4
C5—C4—H4A	119.3	C21—C22—C23	117.89 (14)
C6—C5—C4	121.28 (15)	C21—C22—H22A	121.1
С6—С5—Н5А	119.4	C23—C22—H22A	121.1
C4—C5—H5A	119.4	C22—C23—C18	120.49 (14)
C5—C6—C7	117.95 (16)	C22—C23—C24	132.34 (14)
С5—С6—Н6А	121.0	C18—C23—C24	107.02 (13)
С7—С6—Н6А	121.0	N6—C24—N5	122.86 (13)
C6—C7—C2	120.47 (14)	N6—C24—C23	129.87 (14)
C6—C7—C8	132.19 (15)	N5—C24—C23	105.71 (12)
C2—C7—C8	107.33 (13)	O1—C25—C26	108.53 (13)
N2—C8—N1	121.90 (13)	O1—C25—H25A	110.0
N2—C8—C7	131.66 (14)	C26—C25—H25A	110.0
N1—C8—C7	105.24 (13)	O1—C25—H25B	110.0
N2—C9—N3	123.08 (13)	C26—C25—H25B	110.0
N2—C9—C10	129.55 (14)	H25A—C25—H25B	108.4
N3—C9—C10	105.82 (12)	C25—C26—H26A	109.5
C11—C10—C15	120.18 (14)	C25—C26—H26B	109.5

C11—C10—C9	132.17 (14)	H26A—C26—H26B	109.5
C15—C10—C9	107.17 (13)	С25—С26—Н26С	109.5
C12—C11—C10	118.38 (14)	H26A—C26—H26C	109.5
C12—C11—H11A	120.8	H26B—C26—H26C	109.5
C10—C11—H11A	120.8	01—B1—N1	110.46 (12)
$C_{11} - C_{12} - C_{13}$	121 31 (15)	01—B1—N5	118 17 (13)
C11—C12—H12A	1193	N1—B1—N5	103.20(12)
C13 - C12 - H12A	119.3	$\Omega_1 = B_1 = N_3$	103.20(12) 117.11(13)
C_{14} C_{13} C_{12} C_{12}	121 33 (15)	N1N3	102.83(12)
$C_{14} = C_{13} = H_{13A}$	110.3	N5N3	102.05(12) 103.16(12)
$C_{12} = C_{13} = H_{13} \Lambda$	110.3		105.10 (12)
C12—C13—III3A	117.5		
C24—N6—C1—N1	-6.0 (2)	C14—C15—C16—N4	-16.8 (3)
$C_{24} = N_{6} = C_{1} = C_{2}$	160.12 (15)	C10—C15—C16—N4	155.77 (14)
C8-N1-C1-N6	156.80 (13)	C14-C15-C16-N3	179.82 (15)
B1-N1-C1-N6	-195(2)	C10-C15-C16-N3	-7.59(16)
C_{8} N1 C_{1} C_{2}	-12.45(16)	$C_{16} N_{4} C_{17} N_{5}$	-91(2)
B1 - N1 - C1 - C2	171 22 (13)	$C_{16} N_{4} C_{17} C_{18}$	15272(15)
M = 01 = 02	171.22(13) 103(3)	$C_{10} = 10 = 10 = 10$	152.72(13) 154.15(13)
$N_{1} = C_{1} = C_{2} = C_{3}$	-172.01.(15)	$C_2 - N_3 - C_1 / N_4$	-122(2)
$N_{1} = C_{1} = C_{2} = C_{3}$	-160.40(15)	D1 - N3 - C17 - N4	12.2(2)
$N_0 = C_1 = C_2 = C_7$	-100.49(13)	$C_{24} = N_{3} = C_{17} = C_{18}$	-11.34(10)
N1 - C1 - C2 - C7	1.51(13)	DI - NJ - CI7 - CI8	-1/7.72(13)
$C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}$	-1.0(2)	N4 - C17 - C18 - C19	17.9 (3)
C1 - C2 - C3 - C4	1/8.61 (15)	$N_{2} = C_{1} = C_{1} = C_{1} = C_{2}$	-1//.93 (15)
$C_2 - C_3 - C_4 - C_5$	2.6 (2)	N4—C17—C18—C23	-157.53 (14)
C3—C4—C5—C6	-0.9 (2)	N5—C17—C18—C23	6.65 (16)
C4—C5—C6—C7	-1.7 (2)	C23—C18—C19—C20	-1.4 (2)
C5—C6—C7—C2	2.6 (2)	C17—C18—C19—C20	-176.29 (15)
C5—C6—C7—C8	-178.40 (15)	C18—C19—C20—C21	1.6 (2)
C3—C2—C7—C6	-0.9(2)	C19—C20—C21—C22	-0.2(2)
C1—C2—C7—C6	178.88 (13)	C20—C21—C22—C23	-1.3 (2)
C3—C2—C7—C8	179.82 (13)	C21—C22—C23—C18	1.5 (2)
C1—C2—C7—C8	-0.37 (16)	C21—C22—C23—C24	176.41 (15)
C9—N2—C8—N1	6.3 (2)	C19—C18—C23—C22	-0.2 (2)
C9—N2—C8—C7	-159.23 (15)	C17—C18—C23—C22	175.85 (13)
C1—N1—C8—N2	-156.59 (13)	C19—C18—C23—C24	-176.23 (13)
B1—N1—C8—N2	19.7 (2)	C17—C18—C23—C24	-0.19 (16)
C1—N1—C8—C7	12.23 (16)	C1—N6—C24—N5	10.1 (2)
B1—N1—C8—C7	-171.46 (13)	C1—N6—C24—C23	-153.51 (15)
C6—C7—C8—N2	-18.6 (3)	C17—N5—C24—N6	-155.84 (13)
C2—C7—C8—N2	160.55 (15)	B1-N5-C24-N6	10.7 (2)
C6—C7—C8—N1	174.17 (15)	C17—N5—C24—C23	11.19 (16)
C2—C7—C8—N1	-6.71 (16)	B1—N5—C24—C23	177.73 (13)
C8—N2—C9—N3	-10.9 (2)	C22—C23—C24—N6	-15.9 (3)
C8—N2—C9—C10	152.75 (15)	C18—C23—C24—N6	159.45 (15)
C16—N3—C9—N2	156.91 (14)	C22—C23—C24—N5	178.28 (15)
B1—N3—C9—N2	-9.9 (2)	C18—C23—C24—N5	-6.33 (16)
C16—N3—C9—C10	-10.08 (16)	B1-01-C25-C26	175.74 (14)

B1—N3—C9—C10	-176.86 (12)	C25—O1—B1—N1	161.12 (13)
N2-C9-C10-C11	10.6 (3)	C25—O1—B1—N5	42.67 (19)
N3—C9—C10—C11	176.44 (15)	C25—O1—B1—N3	-81.67 (17)
N2-C9-C10-C15	-161.15 (15)	C8—N1—B1—O1	91.19 (16)
N3—C9—C10—C15	4.69 (16)	C1—N1—B1—O1	-92.82 (16)
C15—C10—C11—C12	-3.4 (2)	C8—N1—B1—N5	-141.58 (13)
C9—C10—C11—C12	-174.31 (15)	C1—N1—B1—N5	34.41 (18)
C10-C11-C12-C13	1.4 (2)	C8—N1—B1—N3	-34.53 (17)
C11—C12—C13—C14	1.7 (2)	C1—N1—B1—N3	141.46 (13)
C12—C13—C14—C15	-2.7 (2)	C24—N5—B1—O1	92.26 (17)
C13—C14—C15—C10	0.6 (2)	C17—N5—B1—O1	-102.61 (16)
C13—C14—C15—C16	172.42 (15)	C24—N5—B1—N1	-29.94 (18)
C11—C10—C15—C14	2.5 (2)	C17—N5—B1—N1	135.19 (13)
C9-C10-C15-C14	175.39 (13)	C24—N5—B1—N3	-136.74 (13)
C11—C10—C15—C16	-171.16 (13)	C17—N5—B1—N3	28.39 (18)
C9—C10—C15—C16	1.77 (16)	C16—N3—B1—O1	102.80 (16)
C17—N4—C16—N3	8.7 (2)	C9—N3—B1—O1	-91.83 (17)
C17—N4—C16—C15	-152.26 (15)	C16—N3—B1—N1	-135.91 (13)
C9—N3—C16—N4	-153.51 (14)	C9—N3—B1—N1	29.45 (17)
B1—N3—C16—N4	13.1 (2)	C16—N3—B1—N5	-28.83 (18)
C9—N3—C16—C15	11.22 (16)	C9—N3—B1—N5	136.53 (13)
B1—N3—C16—C15	177.83 (13)		

(Subphthalocyaninato)(2,2,2-trifluoroethanolato)boron (d22126_a)

Crystal data

C₂₆H₁₄BF₃N₆O $M_r = 494.24$ Monoclinic, $P2_1/c$ a = 10.4664 (6) Å b = 15.4986 (8) Å c = 14.3171 (8) Å $\beta = 110.221$ (3)° V = 2179.3 (2) Å³ Z = 4

Data collection

Bruker Kappa APEX-DUO CMOS PHOTON II diffractometer Radiation source: Incoatec ImuS with multilayer optics φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.624, T_{\max} = 0.753$ *Refinement*

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.107$ S = 1.04 F(000) = 1008 $D_x = 1.506 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 8597 reflections $\theta = 4.4-65.2^{\circ}$ $\mu = 0.96 \text{ mm}^{-1}$ T = 150 KNeedle, purple $0.14 \times 0.09 \times 0.04 \text{ mm}$

39716 measured reflections 3759 independent reflections 3043 reflections with $I > 2\sigma(I)$ $R_{int} = 0.083$ $\theta_{max} = 66.3^{\circ}, \theta_{min} = 4.4^{\circ}$ $h = -12 \rightarrow 12$ $k = -18 \rightarrow 18$ $l = -16 \rightarrow 16$

3759 reflections335 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0593P)^2 + 0.5694P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

Special details

$$\begin{split} &\Delta\rho_{\rm max}=0.27~{\rm e~\AA^{-3}}\\ &\Delta\rho_{\rm min}=-0.28~{\rm e~\AA^{-3}}\\ &\rm Extinction~correction:~SHELXL2019\\ &({\rm Sheldrick},~2015b),\\ &\rm Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}\\ &\rm Extinction~coefficient:~0.0077~(6) \end{split}$$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
F1	0.14828 (12)	0.32579 (9)	0.15721 (11)	0.0619 (4)
F2	0.12876 (12)	0.35980 (8)	0.00694 (10)	0.0642 (4)
F3	0.10380 (11)	0.22880 (7)	0.04406 (9)	0.0493 (3)
01	0.40052 (12)	0.36016 (7)	0.13347 (8)	0.0281 (3)
N1	0.60948 (13)	0.42611 (8)	0.23935 (10)	0.0240 (3)
N2	0.53157 (13)	0.55917 (9)	0.28127 (10)	0.0253 (3)
N3	0.42606 (13)	0.42704 (8)	0.29839 (10)	0.0236 (3)
N4	0.39573 (13)	0.30705 (9)	0.39199 (10)	0.0249 (3)
N5	0.54216 (13)	0.29777 (9)	0.29696 (10)	0.0238 (3)
N6	0.75795 (14)	0.30516 (9)	0.27647 (10)	0.0267 (3)
C1	0.73096 (16)	0.38769 (11)	0.24857 (11)	0.0247 (4)
C2	0.82193 (17)	0.45773 (11)	0.24592 (12)	0.0261 (4)
C3	0.95492 (17)	0.45794 (12)	0.24534 (13)	0.0299 (4)
H3A	1.002880	0.405582	0.247105	0.036*
C4	1.01423 (19)	0.53653 (12)	0.24214 (14)	0.0337 (4)
H4A	1.104046	0.538081	0.240258	0.040*
C5	0.94627 (18)	0.61398 (12)	0.24159 (13)	0.0339 (4)
H5A	0.990399	0.667082	0.239219	0.041*
C6	0.81507 (18)	0.61465 (11)	0.24444 (12)	0.0303 (4)
H6A	0.769392	0.667474	0.245174	0.036*
C7	0.75239 (17)	0.53604 (11)	0.24620 (12)	0.0258 (4)
C8	0.61905 (16)	0.51318 (10)	0.25096 (11)	0.0240 (4)
C9	0.44168 (16)	0.51425 (10)	0.31008 (11)	0.0239 (4)
C10	0.36737 (16)	0.53890 (11)	0.37553 (12)	0.0254 (4)
C11	0.33740 (17)	0.61856 (11)	0.40721 (12)	0.0291 (4)
H11A	0.368751	0.670501	0.387225	0.035*
C12	0.26033 (18)	0.62009 (12)	0.46888 (13)	0.0325 (4)
H12A	0.235136	0.673985	0.488973	0.039*
C13	0.21908 (18)	0.54373 (12)	0.50201 (13)	0.0322 (4)
H13A	0.166915	0.546880	0.544601	0.039*
C14	0.25226 (17)	0.46388 (11)	0.47436 (12)	0.0285 (4)
H14A	0.226622	0.412318	0.499143	0.034*
C15	0.32478 (16)	0.46125 (11)	0.40874 (12)	0.0252 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C16	0.37397 (16)	0.39014 (11)	0.36432 (12)	0.0243 (4)
C17	0.48759 (16)	0.26371 (11)	0.36294 (11)	0.0244 (4)
C18	0.57039 (17)	0.18891 (10)	0.40590 (12)	0.0248 (4)
C19	0.56054 (18)	0.12527 (11)	0.47146 (12)	0.0287 (4)
H19A	0.486998	0.124697	0.495976	0.034*
C20	0.66076 (19)	0.06292 (11)	0.49991 (12)	0.0320 (4)
H20A	0.653186	0.017315	0.542023	0.038*
C21	0.77307 (19)	0.06506 (11)	0.46843 (13)	0.0342 (4)
H21A	0.841187	0.021796	0.490708	0.041*
C22	0.78658 (18)	0.12919 (11)	0.40537 (13)	0.0301 (4)
H22A	0.864497	0.131765	0.385839	0.036*
C23	0.68316 (17)	0.18960 (10)	0.37145 (12)	0.0256 (4)
C24	0.66641 (16)	0.26342 (10)	0.30644 (12)	0.0248 (4)
C25	0.32578 (17)	0.28402 (11)	0.10139 (13)	0.0285 (4)
H25A	0.356760	0.239782	0.154346	0.034*
H25B	0.342072	0.261682	0.041700	0.034*
C26	0.17718 (19)	0.30021 (12)	0.07709 (14)	0.0354 (4)
B1	0.48581 (19)	0.37544 (12)	0.23485 (13)	0.0237 (4)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
F1	0.0388 (7)	0.0799 (9)	0.0757 (9)	-0.0018 (6)	0.0309 (6)	-0.0268 (7)
F2	0.0441 (7)	0.0473 (7)	0.0741 (9)	-0.0030 (6)	-0.0144 (6)	0.0187 (6)
F3	0.0363 (6)	0.0454 (7)	0.0586 (7)	-0.0149 (5)	0.0067 (5)	-0.0029 (6)
01	0.0299 (6)	0.0294 (6)	0.0235 (6)	-0.0066(5)	0.0071 (5)	0.0005 (5)
N1	0.0236 (7)	0.0262 (7)	0.0229 (7)	-0.0005 (5)	0.0089 (6)	0.0004 (5)
N2	0.0240 (7)	0.0275 (7)	0.0233 (7)	0.0005 (6)	0.0068 (6)	0.0031 (6)
N3	0.0204 (7)	0.0264 (7)	0.0231 (7)	0.0006 (5)	0.0066 (6)	0.0020 (6)
N4	0.0230 (7)	0.0279 (7)	0.0239 (7)	-0.0006 (6)	0.0083 (6)	-0.0001 (6)
N5	0.0239 (7)	0.0247 (7)	0.0240 (7)	-0.0008 (5)	0.0096 (6)	-0.0006 (6)
N6	0.0280 (8)	0.0283 (7)	0.0255 (7)	0.0002 (6)	0.0114 (6)	-0.0008 (6)
C1	0.0257 (9)	0.0282 (9)	0.0213 (8)	0.0006 (7)	0.0094 (7)	-0.0013 (7)
C2	0.0258 (9)	0.0327 (9)	0.0196 (8)	-0.0014 (7)	0.0077 (7)	0.0012 (7)
C3	0.0246 (9)	0.0384 (10)	0.0269 (9)	0.0021 (7)	0.0093 (7)	0.0048 (7)
C4	0.0242 (9)	0.0448 (11)	0.0313 (9)	-0.0038 (8)	0.0086 (7)	0.0057 (8)
C5	0.0295 (10)	0.0373 (10)	0.0339 (9)	-0.0088 (7)	0.0098 (8)	0.0052 (8)
C6	0.0311 (9)	0.0305 (9)	0.0284 (9)	-0.0025 (7)	0.0091 (7)	0.0014 (7)
C7	0.0252 (9)	0.0306 (9)	0.0216 (8)	-0.0017 (7)	0.0080 (7)	0.0001 (7)
C8	0.0240 (8)	0.0262 (8)	0.0205 (8)	-0.0006 (7)	0.0061 (7)	0.0022 (6)
C9	0.0223 (8)	0.0264 (8)	0.0219 (8)	0.0011 (6)	0.0062 (7)	0.0019 (7)
C10	0.0204 (8)	0.0306 (9)	0.0225 (8)	0.0013 (6)	0.0039 (7)	-0.0005 (7)
C11	0.0271 (9)	0.0300 (9)	0.0273 (9)	-0.0001 (7)	0.0057 (7)	-0.0012 (7)
C12	0.0332 (10)	0.0345 (10)	0.0280 (9)	0.0026 (7)	0.0085 (8)	-0.0065 (7)
C13	0.0300 (9)	0.0428 (11)	0.0242 (9)	0.0038 (8)	0.0099 (7)	-0.0029 (7)
C14	0.0274 (9)	0.0341 (9)	0.0242 (8)	0.0015 (7)	0.0091 (7)	0.0021 (7)
C15	0.0207 (8)	0.0309 (9)	0.0223 (8)	0.0018 (6)	0.0052 (7)	0.0007 (7)
C16	0.0214 (8)	0.0285 (9)	0.0222 (8)	-0.0023 (6)	0.0064 (7)	0.0017 (7)

C17	0.0238 (8)	0.0271 (8)	0.0222 (8)	-0.0037 (7)	0.0076 (7)	-0.0011 (7)
C18	0.0290 (9)	0.0226 (8)	0.0224 (8)	-0.0033 (7)	0.0083 (7)	-0.0029 (6)
C19	0.0349 (9)	0.0267 (9)	0.0245 (8)	-0.0042 (7)	0.0104 (7)	-0.0032 (7)
C20	0.0433 (11)	0.0259 (9)	0.0257 (9)	-0.0015 (8)	0.0105 (8)	0.0014 (7)
C21	0.0390 (10)	0.0284 (9)	0.0325 (9)	0.0049 (8)	0.0088 (8)	-0.0001 (8)
C22	0.0311 (9)	0.0292 (9)	0.0295 (9)	0.0013 (7)	0.0099 (7)	-0.0036 (7)
C23	0.0290 (9)	0.0252 (8)	0.0225 (8)	-0.0009 (7)	0.0090 (7)	-0.0040 (6)
C24	0.0255 (9)	0.0263 (8)	0.0241 (8)	-0.0005 (7)	0.0103 (7)	-0.0028 (7)
C25	0.0311 (9)	0.0282 (9)	0.0272 (8)	-0.0034 (7)	0.0114 (7)	-0.0041 (7)
C26	0.0326 (10)	0.0325 (10)	0.0378 (10)	-0.0037 (8)	0.0081 (8)	-0.0031 (8)
B1	0.0223 (9)	0.0266 (10)	0.0233 (9)	-0.0015 (7)	0.0092 (8)	0.0004 (7)

Geometric parameters (Å, °)

F1—C26	1.343 (2)	С6—Н6А	0.9500
F2—C26	1.329 (2)	C7—C8	1.464 (2)
F3—C26	1.337 (2)	C9—C10	1.461 (2)
O1—C25	1.403 (2)	C10—C11	1.388 (2)
O1—B1	1.437 (2)	C10—C15	1.421 (2)
N1—C8	1.359 (2)	C11—C12	1.387 (3)
N1—C1	1.368 (2)	C11—H11A	0.9500
N1—B1	1.496 (2)	C12—C13	1.398 (3)
N2-C9	1.345 (2)	C12—H12A	0.9500
N2-C8	1.345 (2)	C13—C14	1.380 (3)
N3—C9	1.365 (2)	C13—H13A	0.9500
N3—C16	1.368 (2)	C14—C15	1.398 (2)
N3—B1	1.500 (2)	C14—H14A	0.9500
N4-C16	1.343 (2)	C15—C16	1.453 (2)
N4—C17	1.351 (2)	C17—C18	1.451 (2)
N5—C17	1.367 (2)	C18—C19	1.390 (2)
N5-C24	1.368 (2)	C18—C23	1.428 (2)
N5—B1	1.492 (2)	C19—C20	1.380 (3)
N6-C1	1.341 (2)	C19—H19A	0.9500
N6-C24	1.343 (2)	C20—C21	1.397 (3)
C1—C2	1.453 (2)	C20—H20A	0.9500
C2—C3	1.395 (3)	C21—C22	1.382 (3)
С2—С7	1.416 (2)	C21—H21A	0.9500
C3—C4	1.375 (2)	C22—C23	1.386 (2)
С3—НЗА	0.9500	C22—H22A	0.9500
C4—C5	1.394 (3)	C23—C24	1.447 (2)
C4—H4A	0.9500	C25—C26	1.493 (3)
C5—C6	1.388 (3)	C25—H25A	0.9900
С5—Н5А	0.9500	C25—H25B	0.9900
C6—C7	1.388 (2)		
C25—O1—B1	123.44 (13)	C13—C14—C15	117.91 (16)
C8—N1—C1	113.17 (13)	C13—C14—H14A	121.0
C8—N1—B1	123.54 (14)	C15—C14—H14A	121.0

C1—N1—B1	122.48 (14)	C14—C15—C10	120.41 (15)
C9—N2—C8	116.80 (14)	C14—C15—C16	132.33 (16)
C9—N3—C16	112.89 (13)	C10—C15—C16	107.25 (14)
C9—N3—B1	123.02 (14)	N4—C16—N3	122.48 (15)
C16—N3—B1	122.99 (14)	N4—C16—C15	130.37 (15)
C16—N4—C17	116.86 (14)	N3—C16—C15	105.72 (14)
C17—N5—C24	113.02 (13)	N4—C17—N5	122.17 (14)
C17—N5—B1	123.35 (14)	N4—C17—C18	130.62 (15)
C24—N5—B1	122.66 (13)	N5—C17—C18	105.69 (14)
C1—N6—C24	117.03 (14)	C19—C18—C23	120.12 (15)
N6-C1-N1	122.48 (15)	C19—C18—C17	132.90 (16)
N6—C1—C2	130.39 (15)	C23—C18—C17	106.94 (14)
N1—C1—C2	105.53 (14)	C20—C19—C18	118.04 (17)
C3—C2—C7	120.86 (15)	С20—С19—Н19А	121.0
C3—C2—C1	131.77 (16)	С18—С19—Н19А	121.0
C7—C2—C1	107.35 (14)	C19—C20—C21	121.77 (17)
C4—C3—C2	117.73 (16)	С19—С20—Н20А	119.1
С4—С3—Н3А	121.1	С21—С20—Н20А	119.1
С2—С3—Н3А	121.1	C22—C21—C20	121.00 (17)
C3—C4—C5	121.85 (17)	C22—C21—H21A	119.5
C3—C4—H4A	119.1	C20—C21—H21A	119.5
C5—C4—H4A	119.1	C21—C22—C23	118.08 (17)
C6—C5—C4	120.95 (17)	C21—C22—H22A	121.0
С6—С5—Н5А	119.5	C23—C22—H22A	121.0
C4—C5—H5A	119.5	C22—C23—C18	120.83 (16)
C7—C6—C5	118.21 (17)	C22—C23—C24	131.76 (16)
С7—С6—Н6А	120.9	C18—C23—C24	107.30 (14)
С5—С6—Н6А	120.9	N6—C24—N5	122.65 (14)
C6—C7—C2	120.38 (16)	N6—C24—C23	130.17 (15)
C6—C7—C8	132.64 (16)	N5—C24—C23	105.74 (14)
C2—C7—C8	106.97 (14)	O1—C25—C26	110.68 (14)
N2—C8—N1	122.41 (14)	O1—C25—H25A	109.5
N2—C8—C7	130.75 (15)	С26—С25—Н25А	109.5
N1—C8—C7	105.41 (14)	O1—C25—H25B	109.5
N2—C9—N3	122.82 (15)	C26—C25—H25B	109.5
N2-C9-C10	130.21 (15)	H25A—C25—H25B	108.1
N3—C9—C10	105.66 (14)	F2—C26—F3	106.60 (14)
C11—C10—C15	120.77 (16)	F2-C26-F1	107.49 (16)
C11—C10—C9	132.30 (16)	F3—C26—F1	105.96 (16)
C15—C10—C9	106.93 (14)	F2—C26—C25	112.78 (16)
C12—C11—C10	118.04 (16)	F3—C26—C25	111.61 (15)
C12—C11—H11A	121.0	F1—C26—C25	111.99 (15)
C10—C11—H11A	121.0	O1—B1—N5	116.67 (14)
C11—C12—C13	121.16 (16)	O1—B1—N1	110.87 (14)
C11—C12—H12A	119.4	N5—B1—N1	103.88 (13)
C13—C12—H12A	119.4	O1—B1—N3	117.18 (14)
C14—C13—C12	121.61 (17)	N5—B1—N3	103.33 (13)
C14—C13—H13A	119.2	N1—B1—N3	103.28 (13)

С12—С13—Н13А	119.2		
C24—N6—C1—N1	-7.4 (2)	C10—C15—C16—N4	158.64 (16)
C24—N6—C1—C2	155.98 (16)	C14-C15-C16-N3	174.03 (17)
C8—N1—C1—N6	154.59 (15)	C10-C15-C16-N3	-7.64 (17)
B1-N1-C1-N6	-15.4 (2)	C16—N4—C17—N5	-9.1 (2)
C8—N1—C1—C2	-12.37 (17)	C16—N4—C17—C18	154.73 (16)
B1—N1—C1—C2	177.64 (14)	C24—N5—C17—N4	155.36 (14)
N6—C1—C2—C3	19.4 (3)	B1—N5—C17—N4	-13.6 (2)
N1—C1—C2—C3	-175.05 (17)	C24—N5—C17—C18	-11.96 (17)
N6—C1—C2—C7	-159.14 (16)	B1—N5—C17—C18	179.06 (14)
N1—C1—C2—C7	6.39 (17)	N4—C17—C18—C19	19.2 (3)
C7—C2—C3—C4	-1.8 (2)	N5-C17-C18-C19	-174.95 (17)
C1—C2—C3—C4	179.75 (17)	N4—C17—C18—C23	-158.20 (16)
C2—C3—C4—C5	1.3 (3)	N5-C17-C18-C23	7.64 (17)
C3—C4—C5—C6	0.1 (3)	C23—C18—C19—C20	-1.2(2)
C4—C5—C6—C7	-1.1 (3)	C17—C18—C19—C20	-178.37 (16)
C5—C6—C7—C2	0.5 (2)	C18—C19—C20—C21	3.1 (2)
C5—C6—C7—C8	178.76 (17)	C19—C20—C21—C22	-1.4 (3)
C3—C2—C7—C6	0.9 (2)	C20—C21—C22—C23	-2.2(3)
C1—C2—C7—C6	179.70 (15)	C21—C22—C23—C18	4.1 (2)
C3—C2—C7—C8	-177.70 (15)	C21—C22—C23—C24	179.74 (16)
C1—C2—C7—C8	1.05 (17)	C19—C18—C23—C22	-2.4 (2)
C9—N2—C8—N1	6.9 (2)	C17—C18—C23—C22	175.42 (15)
C9—N2—C8—C7	-157.45 (16)	C19—C18—C23—C24	-179.02 (14)
C1—N1—C8—N2	-154.74 (14)	C17—C18—C23—C24	-1.21 (17)
B1—N1—C8—N2	15.1 (2)	C1—N6—C24—N5	8.8 (2)
C1—N1—C8—C7	12.99 (17)	C1—N6—C24—C23	-155.46 (16)
B1—N1—C8—C7	-177.14 (14)	C17—N5—C24—N6	-156.34 (15)
C6—C7—C8—N2	-20.3 (3)	B1—N5—C24—N6	12.7 (2)
C2C7C8N2	158.15 (16)	C17—N5—C24—C23	11.21 (17)
C6—C7—C8—N1	173.44 (17)	B1—N5—C24—C23	-179.72 (14)
C2-C7-C8-N1	-8.15 (17)	C22—C23—C24—N6	-15.5 (3)
C8—N2—C9—N3	-8.0 (2)	C18—C23—C24—N6	160.58 (16)
C8—N2—C9—C10	156.98 (16)	C22—C23—C24—N5	178.20 (17)
C16—N3—C9—N2	155.65 (14)	C18—C23—C24—N5	-5.68 (17)
B1—N3—C9—N2	-12.6 (2)	B1-01-C25-C26	108.42 (17)
C16—N3—C9—C10	-12.50 (17)	O1—C25—C26—F2	58.5 (2)
B1—N3—C9—C10	179.23 (13)	O1—C25—C26—F3	178.51 (14)
N2-C9-C10-C11	19.1 (3)	O1-C25-C26-F1	-62.88 (19)
N3-C9-C10-C11	-173.93 (17)	C25—O1—B1—N5	26.0 (2)
N2-C9-C10-C15	-160.02 (16)	C25—O1—B1—N1	144.61 (14)
N3—C9—C10—C15	6.91 (16)	C25—O1—B1—N3	-97.22 (18)
C15—C10—C11—C12	-2.5 (2)	C17—N5—B1—O1	-99.68 (18)
C9—C10—C11—C12	178.46 (16)	C24—N5—B1—O1	92.39 (18)
C10-C11-C12-C13	2.9 (3)	C17—N5—B1—N1	137.99 (14)
C11—C12—C13—C14	-0.5 (3)	C24—N5—B1—N1	-29.94 (19)
C12—C13—C14—C15	-2.3 (3)	C17—N5—B1—N3	30.43 (19)

C13—C14—C15—C10	2.6 (2)	C24—N5—B1—N3	-137.50 (14)
C13—C14—C15—C16	-179.22 (16)	C8—N1—B1—O1	96.21 (18)
C11-C10-C15-C14	-0.3 (2)	C1—N1—B1—O1	-94.85 (17)
C9—C10—C15—C14	179.02 (14)	C8—N1—B1—N5	-137.70 (14)
C11-C10-C15-C16	-178.82 (14)	C1—N1—B1—N5	31.24 (19)
C9—C10—C15—C16	0.46 (17)	C8—N1—B1—N3	-30.11 (19)
C17—N4—C16—N3	9.1 (2)	C1—N1—B1—N3	138.84 (14)
C17—N4—C16—C15	-155.18 (16)	C9—N3—B1—O1	-93.42 (18)
C9—N3—C16—N4	-154.83 (14)	C16—N3—B1—O1	99.48 (17)
B1—N3—C16—N4	13.4 (2)	C9—N3—B1—N5	136.78 (14)
C9—N3—C16—C15	12.79 (17)	C16—N3—B1—N5	-30.32 (19)
B1—N3—C16—C15	-178.93 (13)	C9—N3—B1—N1	28.76 (19)
C14—C15—C16—N4	-19.7 (3)	C16—N3—B1—N1	-138.34 (14)

(Butanolato)(subphthalocyaninato)boron (d2365_a)

Crystal data

C₂₈H₂₁BN₆O $M_r = 468.32$ Orthorhombic, *Pbca* a = 14.6398 (8) Å b = 15.2842 (9) Å c = 20.5313 (12) Å V = 4594.0 (5) Å³ Z = 8F(000) = 1952

Data collection

Bruker Kappa APEX-DUO CMOS PHOTON II diffractometer Radiation source: Incoatec ImuS with multilayer optics φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.661, T_{\max} = 0.753$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.095$ S = 1.073951 reflections 326 parameters 0 restraints $D_x = 1.354 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 7196 reflections $\theta = 4.7-63.5^{\circ}$ $\mu = 0.68 \text{ mm}^{-1}$ T = 150 KShard, red $0.15 \times 0.07 \times 0.06 \text{ mm}$

45733 measured reflections 3951 independent reflections 3295 reflections with $I > 2\sigma(I)$ $R_{int} = 0.065$ $\theta_{max} = 66.3^\circ, \theta_{min} = 4.7^\circ$ $h = -17 \rightarrow 16$ $k = -16 \rightarrow 17$ $l = -24 \rightarrow 24$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0386P)^2 + 1.7934P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.33$ e Å⁻³ $\Delta\rho_{min} = -0.22$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.65454 (7)	0.16749 (7)	0.52754 (5)	0.0285 (3)	
N1	0.58690 (8)	0.22126 (8)	0.42800 (6)	0.0248 (3)	
N2	0.44187 (9)	0.26949 (8)	0.46684 (6)	0.0263 (3)	
N3	0.57903 (9)	0.31323 (8)	0.51964 (6)	0.0250 (3)	
N4	0.70172 (8)	0.41129 (8)	0.54038 (6)	0.0267 (3)	
N5	0.71948 (8)	0.29367 (8)	0.46566 (6)	0.0252 (3)	
N6	0.71634 (9)	0.23507 (8)	0.35842 (6)	0.0275 (3)	
C1	0.62896 (10)	0.21061 (10)	0.36922 (7)	0.0259 (3)	
C2	0.55680 (11)	0.19102 (10)	0.32311 (7)	0.0269 (3)	
C3	0.55809 (11)	0.17229 (10)	0.25676 (8)	0.0322 (4)	
H3A	0.614156	0.167151	0.233781	0.039*	
C4	0.47546 (12)	0.16141 (11)	0.22530 (8)	0.0363 (4)	
H4A	0.475089	0.147802	0.180154	0.044*	
C5	0.39223 (12)	0.16993 (11)	0.25832 (8)	0.0342 (4)	
H5A	0.336628	0.162068	0.235187	0.041*	
C6	0.38963 (11)	0.18955 (10)	0.32386 (8)	0.0300 (4)	
H6A	0.333032	0.195459	0.346052	0.036*	
C7	0.47213 (11)	0.20048 (10)	0.35668 (7)	0.0263 (3)	
C8	0.49379 (10)	0.22703 (10)	0.42291 (7)	0.0253 (3)	
C9	0.48618 (10)	0.31643 (10)	0.51220 (7)	0.0251 (3)	
C10	0.45570 (10)	0.39165 (10)	0.55014 (7)	0.0264 (3)	
C11	0.36938 (11)	0.42489 (11)	0.56440 (7)	0.0303 (4)	
H11A	0.315704	0.397116	0.548633	0.036*	
C12	0.36428 (12)	0.49964 (11)	0.60225 (8)	0.0343 (4)	
H12A	0.306052	0.521543	0.614558	0.041*	
C13	0.44299 (12)	0.54373 (11)	0.62283 (8)	0.0343 (4)	
H13A	0.436989	0.595398	0.648198	0.041*	
C14	0.52909 (11)	0.51372 (10)	0.60704 (8)	0.0306 (4)	
H14A	0.582202	0.545163	0.619654	0.037*	
C15	0.53575 (10)	0.43579 (10)	0.57201 (7)	0.0260 (3)	
C16	0.61408 (11)	0.38657 (10)	0.54796 (7)	0.0257 (3)	
C17	0.75094 (10)	0.36772 (10)	0.49558 (7)	0.0256 (3)	
C18	0.82841 (10)	0.39771 (10)	0.45701 (8)	0.0270 (4)	
C19	0.88477 (11)	0.47080 (10)	0.46284 (8)	0.0304 (4)	
H19A	0.881078	0.508072	0.499773	0.036*	
C20	0.94620 (11)	0.48738 (11)	0.41319 (9)	0.0355 (4)	
H20A	0.986726	0.535668	0.416917	0.043*	
C21	0.94995 (11)	0.43464 (12)	0.35767 (9)	0.0372 (4)	
H21A	0.992352	0.448279	0.324149	0.045*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C22	0.89308 (11)	0.36290 (11)	0.35053 (8)	0.0327 (4)
H22A	0.895339	0.327776	0.312391	0.039*
C23	0.83258 (10)	0.34367 (10)	0.40074 (8)	0.0275 (3)
C24	0.75772 (10)	0.28113 (10)	0.40558 (7)	0.0264 (3)
C25	0.69849 (13)	0.18122 (11)	0.58877 (8)	0.0371 (4)
H25A	0.663075	0.223900	0.614799	0.045*
H25B	0.760334	0.205582	0.581576	0.045*
C26	0.70553 (11)	0.09683 (11)	0.62503 (8)	0.0327 (4)
H26A	0.742726	0.055377	0.599157	0.039*
H26B	0.643656	0.071458	0.629674	0.039*
C27	0.74800 (13)	0.10629 (12)	0.69235 (8)	0.0405 (4)
H27A	0.810516	0.130236	0.687871	0.049*
H27B	0.711594	0.148443	0.718175	0.049*
C28	0.75238 (17)	0.02032 (14)	0.72826 (10)	0.0595 (6)
H28A	0.785888	0.028192	0.769166	0.089*
H28B	0.783825	-0.023103	0.701230	0.089*
H28C	0.690291	0.000015	0.737717	0.089*
B1	0.63728 (12)	0.24284 (11)	0.48926 (8)	0.0254 (4)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0352 (6)	0.0240 (6)	0.0262 (6)	-0.0006 (5)	-0.0076 (5)	-0.0007 (4)
N1	0.0262 (7)	0.0232 (7)	0.0248 (7)	0.0000 (5)	-0.0014 (5)	-0.0011 (5)
N2	0.0288 (7)	0.0253 (7)	0.0248 (7)	-0.0025 (5)	-0.0003(5)	0.0021 (5)
N3	0.0276 (7)	0.0243 (7)	0.0232 (6)	-0.0011 (5)	-0.0012 (5)	-0.0007(5)
N4	0.0278 (7)	0.0262 (7)	0.0261 (7)	0.0006 (5)	-0.0029 (5)	-0.0013 (5)
N5	0.0256 (7)	0.0243 (7)	0.0257 (7)	0.0013 (5)	-0.0017 (5)	-0.0016 (5)
N6	0.0268 (7)	0.0255 (7)	0.0302 (7)	0.0020 (5)	-0.0003(5)	-0.0036 (6)
C1	0.0290 (8)	0.0231 (8)	0.0258 (8)	0.0028 (6)	0.0003 (6)	-0.0016 (6)
C2	0.0318 (9)	0.0214 (8)	0.0274 (8)	0.0016 (6)	-0.0027 (7)	-0.0021 (6)
C3	0.0372 (9)	0.0301 (9)	0.0292 (8)	0.0032 (7)	0.0015 (7)	-0.0052 (7)
C4	0.0449 (10)	0.0371 (10)	0.0268 (8)	0.0045 (8)	-0.0070(8)	-0.0073 (7)
C5	0.0372 (9)	0.0320 (9)	0.0334 (9)	0.0013 (7)	-0.0102 (7)	-0.0046 (7)
C6	0.0302 (9)	0.0275 (8)	0.0323 (9)	0.0006 (7)	-0.0041 (7)	-0.0024 (7)
C7	0.0302 (8)	0.0213 (8)	0.0275 (8)	0.0007 (6)	-0.0022 (6)	-0.0007 (6)
C8	0.0266 (8)	0.0234 (8)	0.0260 (8)	-0.0010 (6)	-0.0011 (6)	0.0014 (6)
C9	0.0263 (8)	0.0257 (8)	0.0233 (8)	-0.0017 (6)	0.0007 (6)	0.0032 (6)
C10	0.0318 (8)	0.0272 (8)	0.0202 (7)	0.0014 (7)	0.0011 (6)	0.0035 (6)
C11	0.0313 (9)	0.0335 (9)	0.0261 (8)	0.0029 (7)	0.0004 (7)	0.0049 (7)
C12	0.0364 (9)	0.0364 (9)	0.0301 (9)	0.0108 (7)	0.0038 (7)	0.0041 (7)
C13	0.0444 (10)	0.0286 (9)	0.0299 (9)	0.0070 (7)	0.0021 (7)	-0.0011 (7)
C14	0.0376 (9)	0.0273 (8)	0.0269 (8)	0.0012 (7)	0.0001 (7)	-0.0003 (7)
C15	0.0306 (8)	0.0251 (8)	0.0222 (8)	0.0008 (6)	0.0017 (6)	0.0031 (6)
C16	0.0312 (8)	0.0238 (8)	0.0222 (8)	-0.0008 (6)	-0.0021 (6)	0.0003 (6)
C17	0.0274 (8)	0.0234 (8)	0.0261 (8)	0.0005 (6)	-0.0053 (7)	-0.0019 (6)
C18	0.0235 (8)	0.0249 (8)	0.0327 (9)	0.0035 (6)	-0.0035 (6)	0.0003 (7)
C19	0.0276 (8)	0.0270 (8)	0.0364 (9)	0.0004 (6)	-0.0040 (7)	-0.0005 (7)

C20	0.0294 (9)	0.0327 (9)	0.0445 (10)	-0.0035 (7)	-0.0032 (8)	0.0038 (8)
C21	0.0279 (9)	0.0421 (10)	0.0416 (10)	-0.0018 (7)	0.0031 (7)	0.0050 (8)
C22	0.0272 (9)	0.0361 (9)	0.0348 (9)	0.0035 (7)	0.0019 (7)	-0.0021 (7)
C23	0.0240 (8)	0.0257 (8)	0.0330 (8)	0.0038 (6)	-0.0016 (6)	0.0000(7)
C24	0.0258 (8)	0.0247 (8)	0.0287 (8)	0.0046 (6)	-0.0004 (7)	-0.0019 (7)
C25	0.0501 (11)	0.0324 (9)	0.0288 (9)	0.0005 (8)	-0.0114 (8)	-0.0004 (7)
C26	0.0339 (9)	0.0319 (9)	0.0325 (9)	-0.0025 (7)	-0.0037 (7)	0.0028 (7)
C27	0.0484 (11)	0.0415 (10)	0.0318 (9)	-0.0047 (8)	-0.0061 (8)	0.0034 (8)
C28	0.0765 (15)	0.0565 (13)	0.0457 (12)	-0.0175 (11)	-0.0181 (11)	0.0175 (10)
B1	0.0277 (9)	0.0244 (9)	0.0241 (9)	-0.0005 (7)	-0.0010 (7)	-0.0020 (7)

Geometric parameters (Å, °)

01—B1	1.417 (2)	C11—H11A	0.9500
O1—C25	1.4277 (19)	C12—C13	1.400 (2)
N1—C1	1.3646 (19)	C12—H12A	0.9500
N1-C8	1.3700 (19)	C13—C14	1.380 (2)
N1—B1	1.495 (2)	C13—H13A	0.9500
N2—C9	1.343 (2)	C14—C15	1.395 (2)
N2—C8	1.346 (2)	C14—H14A	0.9500
N3—C16	1.3630 (19)	C15—C16	1.458 (2)
N3—C9	1.369 (2)	C17—C18	1.457 (2)
N3—B1	1.508 (2)	C18—C19	1.394 (2)
N4—C17	1.345 (2)	C18—C23	1.421 (2)
N4—C16	1.346 (2)	C19—C20	1.383 (2)
N5-C17	1.3676 (19)	C19—H19A	0.9500
N5-C24	1.3680 (19)	C20—C21	1.397 (3)
N5—B1	1.512 (2)	C20—H20A	0.9500
N6-C24	1.342 (2)	C21—C22	1.385 (2)
N6-C1	1.351 (2)	C21—H21A	0.9500
C1—C2	1.450 (2)	C22—C23	1.391 (2)
C2—C3	1.392 (2)	C22—H22A	0.9500
C2—C7	1.426 (2)	C23—C24	1.458 (2)
C3—C4	1.381 (2)	C25—C26	1.493 (2)
С3—НЗА	0.9500	C25—H25A	0.9900
C4—C5	1.401 (2)	C25—H25B	0.9900
C4—H4A	0.9500	C26—C27	1.523 (2)
C5—C6	1.379 (2)	C26—H26A	0.9900
С5—Н5А	0.9500	C26—H26B	0.9900
C6—C7	1.393 (2)	C27—C28	1.508 (3)
С6—Н6А	0.9500	С27—Н27А	0.9900
С7—С8	1.454 (2)	C27—H27B	0.9900
C9—C10	1.459 (2)	C28—H28A	0.9800
C10-C11	1.393 (2)	C28—H28B	0.9800
C10—C15	1.425 (2)	C28—H28C	0.9800
C11—C12	1.384 (2)		
B1—01—C25	116.69 (12)	N4—C16—N3	122.69 (14)

C1—N1—C8	112.90 (12)	N4—C16—C15	130.09 (14)
C1—N1—B1	123.22 (13)	N3—C16—C15	105.83 (13)
C8—N1—B1	122.74 (13)	N4—C17—N5	122.45 (14)
C9—N2—C8	116.71 (13)	N4-C17-C18	129.27 (14)
C16—N3—C9	113.09 (13)	N5-C17-C18	106.15(13)
C16 - N3 - B1	123 39 (13)	C19 - C18 - C23	120.67(15)
C9—N3—B1	122.74 (13)	C19 - C18 - C17	120.07(15) 131.76(15)
C17 - N4 - C16	116 79 (13)	C^{23} C^{18} C^{17}	106.99(13)
C17 - N5 - C24	112 53 (13)	C_{20} C_{10} C_{10} C_{18}	117.94(15)
C17 N5 B1	112.33(13) 123.31(12)	C_{20} C_{10} H_{10A}	121.0
C_{1} N5 B1	123.31(12) 122.86(12)	C_{18} C_{10} H_{10A}	121.0
$C_2 - N_5 - B_1$	122.00(12) 117.02(13)	$C_{10} = C_{10} = C_{10}$	121.0 121.41(16)
$N_{1} = 0$	117.02(13) 122.64(14)	$C_{19} = C_{20} = C_{21}$	121.41(10)
$N_{0} = C_{1} = N_{1}$	122.04(14) 120.70(14)	$C_{19} = C_{20} = H_{20}A$	119.5
$N_0 - C_1 - C_2$	129.79 (14)	$C_{21} = C_{20} = H_{20}A$	119.5
NI = CI = C2	105.86 (13)	$C_{22} = C_{21} = C_{20}$	121.31 (16)
$C_{3} = C_{2} = C_{1}$	120.38 (14)	C22 = C21 = H21A	119.3
C3—C2—C1	132.19 (15)	С20—С21—Н21А	119.3
C7—C2—C1	107.27 (13)	C21—C22—C23	118.16 (15)
C4—C3—C2	118.07 (15)	C21—C22—H22A	120.9
С4—С3—Н3А	121.0	C23—C22—H22A	120.9
С2—С3—НЗА	121.0	C22—C23—C18	120.46 (14)
C3—C4—C5	121.63 (15)	C22—C23—C24	131.92 (15)
C3—C4—H4A	119.2	C18—C23—C24	107.07 (13)
C5—C4—H4A	119.2	N6—C24—N5	122.65 (14)
C6—C5—C4	121.09 (15)	N6—C24—C23	129.38 (14)
С6—С5—Н5А	119.5	N5—C24—C23	106.09 (13)
С4—С5—Н5А	119.5	O1—C25—C26	110.07 (13)
C5—C6—C7	118.31 (15)	O1—C25—H25A	109.6
С5—С6—Н6А	120.8	C26—C25—H25A	109.6
С7—С6—Н6А	120.8	O1—C25—H25B	109.6
C6—C7—C2	120.51 (14)	C26—C25—H25B	109.6
C6—C7—C8	132.45 (15)	H25A—C25—H25B	108.2
C2—C7—C8	106.90 (13)	C25—C26—C27	113.51 (14)
N2—C8—N1	122.80 (13)	C25—C26—H26A	108.9
N2—C8—C7	129.64 (14)	C27—C26—H26A	108.9
N1—C8—C7	105.69 (13)	C25—C26—H26B	108.9
N2-C9-N3	122.56 (14)	C27—C26—H26B	108.9
N_{2} C9 C10	130.07(14)	$H_{26A} = C_{26} = H_{26B}$	107.7
N_{3} C9 C10	105 80 (13)	$C_{28} = C_{27} = C_{26}$	112.24 (15)
$C_{11} - C_{10} - C_{15}$	120.48(14)	$C_{28} = C_{27} = H_{27A}$	109.2
$C_{11} - C_{10} - C_{9}$	132.62 (15)	$C_{26} = C_{27} = H_{27A}$	109.2
$C_{15} - C_{10} - C_{9}$	106 85 (13)	$C_{28} = C_{27} = H_{27}R$	109.2
C_{12} C_{11} C_{10}	117 91 (15)	$C_{26} = C_{27} = H_{27B}$	109.2
C12_C11_ H11A	121.0	$H_{2} = C_{2} = H_{2} = H_{2}$	109.2
C_{12} $-C_{11}$ $-U_{11}$ A	121.0	$\frac{112}{A} - \frac{12}{D}$	107.9
$C_{10} - C_{11} - C_{12}$	121.0 121.50 (15)	$C_2 / - C_2 O - H_2 O A$	109.5
$C_{11} = C_{12} = C_{13}$	121.30 (13)	$C_2 / - C_2 O - H_2 O D$	109.5
C12 C12 H12A	119.5	$\frac{1120}{C27} C28 H28C$	109.5
U13-U12-H12A	117.3	UZ/UZO	109.3

C14—C13—C12	121.39 (15)	H28A—C28—H28C	109.5
C14—C13—H13A	119.3	H28B—C28—H28C	109.5
C12—C13—H13A	119.3	O1—B1—N1	112.04 (13)
C13—C14—C15	117.95 (15)	O1—B1—N3	116.83 (13)
C13—C14—H14A	121.0	N1—B1—N3	103.09 (12)
C15—C14—H14A	121.0	O1—B1—N5	116.97 (13)
C14—C15—C10	120.62 (14)	N1—B1—N5	103.67 (12)
C14—C15—C16	132.09 (14)	N3—B1—N5	102.47 (12)
C10-C15-C16	107.22 (13)		~ /
C24—N6—C1—N1	-8.4 (2)	C10-C15-C16-N4	160.67 (15)
C24—N6—C1—C2	154.51 (15)	C14—C15—C16—N3	177.24 (15)
C8—N1—C1—N6	154.80 (14)	C10-C15-C16-N3	-5.86 (16)
B1-N1-C1-N6	-13.3 (2)	C16—N4—C17—N5	-9.5 (2)
C8—N1—C1—C2	-11.62 (16)	C16—N4—C17—C18	151.51 (15)
B1—N1—C1—C2	-179.71 (13)	C24—N5—C17—N4	153.85 (14)
N6-C1-C2-C3	16.4 (3)	B1—N5—C17—N4	-13.5 (2)
N1—C1—C2—C3	-178.53 (16)	C24—N5—C17—C18	-10.97 (16)
N6-C1-C2-C7	-158.88 (15)	B1—N5—C17—C18	-178.28 (13)
N1—C1—C2—C7	6.20 (16)	N4—C17—C18—C19	14.1 (3)
C7—C2—C3—C4	-1.4 (2)	N5-C17-C18-C19	177.53 (16)
C1—C2—C3—C4	-176.16 (16)	N4—C17—C18—C23	-157.01 (15)
C2—C3—C4—C5	0.9 (2)	N5-C17-C18-C23	6.41 (16)
C3—C4—C5—C6	-0.1 (3)	C23—C18—C19—C20	-1.8(2)
C4—C5—C6—C7	-0.2 (2)	C17—C18—C19—C20	-171.89 (16)
C5—C6—C7—C2	-0.3 (2)	C18—C19—C20—C21	2.2 (2)
C5—C6—C7—C8	174.89 (16)	C19—C20—C21—C22	-0.9(3)
C3—C2—C7—C6	1.2 (2)	C20—C21—C22—C23	-0.9(2)
C1—C2—C7—C6	177.11 (14)	C21—C22—C23—C18	1.3 (2)
C3—C2—C7—C8	-175.16 (14)	C21—C22—C23—C24	171.58 (16)
C1—C2—C7—C8	0.78 (16)	C19—C18—C23—C22	0.0 (2)
C9—N2—C8—N1	8.5 (2)	C17—C18—C23—C22	172.32 (14)
C9—N2—C8—C7	-153.64 (15)	C19—C18—C23—C24	-172.41 (14)
C1—N1—C8—N2	-153.67 (14)	C17—C18—C23—C24	-0.10 (16)
B1—N1—C8—N2	14.5 (2)	C1—N6—C24—N5	8.6 (2)
C1—N1—C8—C7	12.10 (17)	C1—N6—C24—C23	-153.51 (15)
B1—N1—C8—C7	-179.74 (13)	C17—N5—C24—N6	-154.79 (14)
C6—C7—C8—N2	-18.7 (3)	B1-N5-C24-N6	12.6 (2)
C2—C7—C8—N2	156.99 (15)	C17—N5—C24—C23	10.90 (16)
C6C7C8N1	176.85 (16)	B1—N5—C24—C23	178.27 (13)
C2—C7—C8—N1	-7.44 (16)	C22—C23—C24—N6	-13.1 (3)
C8—N2—C9—N3	-8.3 (2)	C18—C23—C24—N6	158.15 (15)
C8—N2—C9—C10	155.31 (15)	C22—C23—C24—N5	-177.46 (16)
C16—N3—C9—N2	155.60 (14)	C18—C23—C24—N5	-6.24 (16)
B1—N3—C9—N2	-14.6 (2)	B1-01-C25-C26	175.87 (14)
C16—N3—C9—C10	-11.42 (17)	O1—C25—C26—C27	-177.48 (14)
B1—N3—C9—C10	178.37 (13)	C25—C26—C27—C28	178.82 (17)
N2-C9-C10-C11	18.6 (3)	C25—O1—B1—N1	-177.06 (13)

N3 C9 C10 C11	-17567(16)	C25 O1 B1 N3	-58.47(10)
$N_{2} = C_{10} = C_{10} = C_{11}$	175.07(10)	$C_{25} = O_1 = D_1 = N_5$	(2.47.(19))
$N_2 - C_9 - C_{10} - C_{15}$	-138.69 (13)	$C_{23} = 01 = B_{1} = N_{3}$	03.47 (18)
N3—C9—C10—C15	6.99 (16)	C1—N1—B1—O1	-97.97 (16)
C15—C10—C11—C12	-2.4 (2)	C8—N1—B1—O1	95.08 (17)
C9—C10—C11—C12	-179.44 (15)	C1—N1—B1—N3	135.58 (14)
C10-C11-C12-C13	3.5 (2)	C8—N1—B1—N3	-31.36 (18)
C11—C12—C13—C14	-1.0 (2)	C1—N1—B1—N5	29.03 (18)
C12—C13—C14—C15	-2.5 (2)	C8—N1—B1—N5	-137.91 (13)
C13—C14—C15—C10	3.5 (2)	C16—N3—B1—O1	98.99 (17)
C13—C14—C15—C16	-179.89 (16)	C9—N3—B1—O1	-91.81 (17)
C11—C10—C15—C14	-1.1 (2)	C16—N3—B1—N1	-137.69 (13)
C9—C10—C15—C14	176.62 (13)	C9—N3—B1—N1	31.50 (18)
C11—C10—C15—C16	-178.43 (14)	C16—N3—B1—N5	-30.24 (18)
C9—C10—C15—C16	-0.71 (16)	C9—N3—B1—N5	138.96 (14)
C17—N4—C16—N3	9.7 (2)	C17—N5—B1—O1	-98.84 (17)
C17—N4—C16—C15	-154.90 (15)	C24—N5—B1—O1	95.14 (17)
C9—N3—C16—N4	-156.81 (14)	C17—N5—B1—N1	137.31 (13)
B1—N3—C16—N4	13.3 (2)	C24—N5—B1—N1	-28.71 (18)
C9—N3—C16—C15	10.97 (17)	C17—N5—B1—N3	30.30 (18)
B1—N3—C16—C15	-178.90 (13)	C24—N5—B1—N3	-135.72 (13)
C14—C15—C16—N4	-16.2 (3)		

(tert-Butanolato)(subphthalocyaninato)boron (d23115_a)

Crystal data

C₂₈H₂₁BN₆O $M_r = 468.32$ Monoclinic, P2₁/c a = 14.3815 (7) Å b = 8.2702 (4) Å c = 19.8660 (9) Å $\beta = 102.074$ (2)° V = 2310.55 (19) Å³ Z = 4

Data collection

Bruker Kappa APEX-DUO CMOS PHOTON II
diffractometer
Radiation source: Incoatec ImuS with multi-
layer optics
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\min} = 0.673, T_{\max} = 0.753$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.089$ S = 1.053994 reflections F(000) = 976 $D_x = 1.346 \text{ Mg m}^{-3}$ Cu *Ka* radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9907 reflections $\theta = 3.1-65.6^{\circ}$ $\mu = 0.68 \text{ mm}^{-1}$ T = 150 KShard, pink $0.17 \times 0.09 \times 0.02 \text{ mm}$

41764 measured reflections 3994 independent reflections 3363 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 66.4^\circ, \ \theta_{min} = 3.1^\circ$ $h = -17 \rightarrow 16$ $k = -9 \rightarrow 9$ $l = -23 \rightarrow 23$

329 parameters0 restraintsHydrogen site location: inferred from neighbouring sitesH-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.043P)^{2} + 0.6555P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.17 \text{ e} \text{ Å}^{-3}$

Special details

Extinction correction: SHELXL2019 (Sheldrick, 2015*b*), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0027 (2)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.13233 (7)	0.45659 (12)	0.34123 (5)	0.0322 (2)	
N1	0.25586 (8)	0.26134 (13)	0.35481 (6)	0.0257 (3)	
N2	0.38286 (8)	0.42521 (14)	0.33597 (6)	0.0273 (3)	
N3	0.29197 (8)	0.50116 (14)	0.41822 (6)	0.0261 (3)	
N4	0.26678 (8)	0.50795 (14)	0.53271 (6)	0.0282 (3)	
N5	0.19298 (8)	0.30535 (14)	0.45350 (6)	0.0269 (3)	
N6	0.18897 (8)	0.04134 (15)	0.40441 (6)	0.0295 (3)	
C1	0.23293 (10)	0.10185 (17)	0.35669 (7)	0.0264 (3)	
C2	0.28511 (10)	0.02031 (17)	0.31120 (7)	0.0269 (3)	
C3	0.28641 (11)	-0.13979 (18)	0.28963 (7)	0.0313 (3)	
H3A	0.246279	-0.218727	0.303556	0.038*	
C4	0.34791 (11)	-0.18023 (19)	0.24732 (8)	0.0358 (4)	
H4A	0.348608	-0.287988	0.230871	0.043*	
C5	0.40911 (11)	-0.06566 (19)	0.22827 (8)	0.0347 (4)	
H5A	0.450767	-0.097125	0.199282	0.042*	
C6	0.41009 (10)	0.09253 (18)	0.25084 (7)	0.0301 (3)	
H6A	0.453337	0.168813	0.238916	0.036*	
C7	0.34651 (10)	0.13761 (17)	0.29132 (7)	0.0263 (3)	
C8	0.32972 (10)	0.28996 (17)	0.32361 (7)	0.0253 (3)	
C9	0.36722 (10)	0.52164 (16)	0.38687 (7)	0.0264 (3)	
C10	0.43102 (10)	0.63519 (16)	0.42978 (7)	0.0277 (3)	
C11	0.51788 (10)	0.70194 (17)	0.42372 (8)	0.0314 (3)	
H11A	0.544142	0.680471	0.384550	0.038*	
C12	0.56482 (11)	0.80038 (17)	0.47634 (8)	0.0337 (3)	
H12A	0.623371	0.849009	0.472596	0.040*	
C13	0.52780 (11)	0.82968 (17)	0.53489 (8)	0.0335 (4)	
H13A	0.561216	0.898917	0.569887	0.040*	
C14	0.44356 (11)	0.75980 (17)	0.54275 (8)	0.0313 (3)	
H14A	0.419707	0.777328	0.583280	0.038*	
C15	0.39448 (10)	0.66299 (16)	0.48975 (7)	0.0283 (3)	
C16	0.30911 (10)	0.56455 (16)	0.48327 (7)	0.0272 (3)	
C17	0.21516 (10)	0.37185 (17)	0.51812 (7)	0.0275 (3)	
C18	0.19411 (10)	0.24788 (18)	0.56463 (7)	0.0282 (3)	
C19	0.20229 (10)	0.24625 (19)	0.63576 (7)	0.0315 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H19A	0.220049	0.340896	0.662455	0.038*
C20	0.18385 (11)	0.1032 (2)	0.66637 (8)	0.0376 (4)
H20A	0.186793	0.100649	0.714580	0.045*
C21	0.16091 (12)	-0.0380 (2)	0.62762 (8)	0.0423 (4)
H21A	0.149430	-0.134835	0.650270	0.051*
C22	0.15452 (12)	-0.0400 (2)	0.55722 (8)	0.0383 (4)
H22A	0.140249	-0.136935	0.531472	0.046*
C23	0.16970 (10)	0.10470 (18)	0.52524 (7)	0.0305 (3)
C24	0.17644 (10)	0.14261 (17)	0.45474 (7)	0.0281 (3)
C25	0.04743 (10)	0.53426 (18)	0.35279 (8)	0.0307 (3)
C26	0.00330 (13)	0.6075 (2)	0.28332 (9)	0.0488 (4)
H26A	-0.056878	0.660087	0.286012	0.073*
H26B	-0.008593	0.522026	0.248406	0.073*
H26C	0.046902	0.687616	0.270735	0.073*
C27	0.07026 (11)	0.66450 (19)	0.40753 (9)	0.0396 (4)
H27A	0.011984	0.723032	0.410430	0.059*
H27B	0.116618	0.740102	0.395416	0.059*
H27C	0.096944	0.614488	0.452109	0.059*
C28	-0.01812 (11)	0.4078 (2)	0.37321 (9)	0.0433 (4)
H28A	-0.080008	0.456834	0.373695	0.065*
H28B	0.009899	0.366219	0.419177	0.065*
H28C	-0.026529	0.318737	0.339947	0.065*
B1	0.20919 (11)	0.3904 (2)	0.38962 (8)	0.0270 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0296 (5)	0.0411 (6)	0.0274 (5)	0.0076 (4)	0.0091 (4)	0.0016 (4)
N1	0.0276 (6)	0.0273 (6)	0.0234 (6)	0.0002 (5)	0.0083 (5)	-0.0003 (5)
N2	0.0309 (6)	0.0273 (6)	0.0249 (6)	0.0010 (5)	0.0085 (5)	0.0025 (5)
N3	0.0294 (6)	0.0253 (6)	0.0250 (6)	0.0011 (5)	0.0084 (5)	-0.0006 (5)
N4	0.0313 (6)	0.0278 (6)	0.0271 (6)	0.0023 (5)	0.0095 (5)	-0.0010 (5)
N5	0.0281 (6)	0.0298 (6)	0.0245 (6)	-0.0007(5)	0.0092 (5)	-0.0011 (5)
N6	0.0302 (6)	0.0329 (7)	0.0273 (6)	-0.0052 (5)	0.0101 (5)	-0.0023 (5)
C1	0.0269 (7)	0.0274 (7)	0.0251 (7)	-0.0023 (6)	0.0062 (6)	-0.0003 (6)
C2	0.0290 (7)	0.0303 (7)	0.0215 (7)	0.0008 (6)	0.0057 (6)	-0.0001 (6)
C3	0.0342 (8)	0.0295 (8)	0.0311 (8)	-0.0011 (6)	0.0089 (6)	-0.0013 (6)
C4	0.0398 (9)	0.0309 (8)	0.0380 (9)	0.0029 (7)	0.0110 (7)	-0.0053 (7)
C5	0.0353 (8)	0.0371 (8)	0.0345 (8)	0.0048 (7)	0.0137 (7)	-0.0032 (6)
C6	0.0300 (7)	0.0337 (8)	0.0283 (8)	0.0008 (6)	0.0100 (6)	-0.0002 (6)
C7	0.0274 (7)	0.0289 (7)	0.0227 (7)	0.0013 (6)	0.0052 (6)	0.0008 (6)
C8	0.0268 (7)	0.0279 (7)	0.0222 (7)	0.0009 (6)	0.0078 (6)	0.0025 (6)
C9	0.0291 (7)	0.0254 (7)	0.0268 (7)	0.0021 (6)	0.0104 (6)	0.0043 (6)
C10	0.0317 (8)	0.0223 (7)	0.0296 (8)	0.0018 (6)	0.0076 (6)	0.0030 (6)
C11	0.0336 (8)	0.0270 (7)	0.0351 (8)	0.0022 (6)	0.0106 (7)	0.0025 (6)
C12	0.0297 (8)	0.0284 (8)	0.0418 (9)	0.0006 (6)	0.0047 (7)	0.0035 (6)
C13	0.0373 (8)	0.0247 (7)	0.0349 (8)	0.0010 (6)	-0.0011 (7)	0.0022 (6)
C14	0.0396 (8)	0.0245 (7)	0.0291 (8)	0.0036 (6)	0.0054 (6)	0.0030 (6)

C15	0.0333 (8)	0.0230(7)	0.0286 (8)	0.0025 (6)	0.0065 (6)	0.0029 (6)	
C16	0.0314 (8)	0.0253 (7)	0.0255 (7)	0.0032 (6)	0.0076 (6)	-0.0002 (6)	
C17	0.0279 (7)	0.0311 (8)	0.0254 (7)	0.0018 (6)	0.0098 (6)	-0.0024 (6)	
C18	0.0252 (7)	0.0344 (8)	0.0269 (7)	-0.0008 (6)	0.0101 (6)	-0.0002 (6)	
C19	0.0285 (7)	0.0403 (9)	0.0268 (8)	-0.0026 (6)	0.0082 (6)	-0.0013 (6)	
C20	0.0378 (9)	0.0502 (10)	0.0262 (8)	-0.0074 (7)	0.0099 (7)	0.0025 (7)	
C21	0.0507 (10)	0.0447 (9)	0.0334 (9)	-0.0138 (8)	0.0134 (8)	0.0048 (7)	
C22	0.0448 (9)	0.0382 (9)	0.0341 (9)	-0.0124 (7)	0.0130 (7)	-0.0005 (7)	
C23	0.0291 (8)	0.0371 (8)	0.0277 (8)	-0.0052 (6)	0.0113 (6)	-0.0004 (6)	
C24	0.0277 (7)	0.0312 (8)	0.0269 (7)	-0.0037 (6)	0.0089 (6)	-0.0010 (6)	
C25	0.0266 (7)	0.0333 (8)	0.0331 (8)	0.0027 (6)	0.0089 (6)	0.0001 (6)	
C26	0.0429 (10)	0.0640 (12)	0.0395 (9)	0.0200 (9)	0.0086 (8)	0.0086 (9)	
C27	0.0355 (9)	0.0340 (8)	0.0497 (10)	0.0012 (7)	0.0096 (7)	-0.0071 (7)	
C28	0.0351 (9)	0.0407 (9)	0.0568 (11)	-0.0060 (7)	0.0160 (8)	-0.0049 (8)	
B1	0.0285 (8)	0.0287 (8)	0.0254 (8)	0.0011 (7)	0.0096 (7)	-0.0004 (7)	

Geometric parameters (Å, °)

01—B1	1.4146 (19)	C11—H11A	0.9500
O1—C25	1.4399 (17)	C12—C13	1.398 (2)
N1—C8	1.3578 (17)	C12—H12A	0.9500
N1-C1	1.3620 (18)	C13—C14	1.380 (2)
N1—B1	1.5040 (19)	C13—H13A	0.9500
N2-C9	1.3432 (18)	C14—C15	1.392 (2)
N2-C8	1.3480 (18)	C14—H14A	0.9500
N3—C9	1.3675 (17)	C15—C16	1.456 (2)
N3—C16	1.3684 (18)	C17—C18	1.454 (2)
N3—B1	1.515 (2)	C18—C19	1.393 (2)
N4—C16	1.3434 (18)	C18—C23	1.422 (2)
N4—C17	1.3461 (19)	C19—C20	1.381 (2)
N5-C24	1.3679 (18)	C19—H19A	0.9500
N5—C17	1.3715 (18)	C20—C21	1.400 (2)
N5—B1	1.5110 (19)	C20—H20A	0.9500
N6-C1	1.3416 (18)	C21—C22	1.382 (2)
N6-C24	1.3450 (18)	C21—H21A	0.9500
C1—C2	1.4554 (19)	C22—C23	1.393 (2)
C2—C3	1.393 (2)	C22—H22A	0.9500
C2—C7	1.4222 (19)	C23—C24	1.4581 (19)
C3—C4	1.383 (2)	C25—C27	1.517 (2)
С3—НЗА	0.9500	C25—C28	1.519 (2)
C4—C5	1.398 (2)	C25—C26	1.519 (2)
C4—H4A	0.9500	C26—H26A	0.9800
C5—C6	1.382 (2)	C26—H26B	0.9800
C5—H5A	0.9500	C26—H26C	0.9800
С6—С7	1.389 (2)	C27—H27A	0.9800
С6—Н6А	0.9500	С27—Н27В	0.9800
С7—С8	1.4568 (19)	С27—Н27С	0.9800
C9—C10	1.457 (2)	C28—H28A	0.9800

C10—C11	1.394 (2)	C28—H28B	0.9800
C10—C15	1.418 (2)	C28—H28C	0.9800
C11—C12	1.384 (2)		
B1—O1—C25	129.23 (11)	N4—C16—N3	122.50 (13)
C8—N1—C1	113.47 (11)	N4—C16—C15	129.27 (13)
C8—N1—B1	123.58 (12)	N3—C16—C15	106.24 (11)
C1—N1—B1	122.73 (12)	N4—C17—N5	123.14 (12)
C9—N2—C8	116.87 (11)	N4—C17—C18	129.16 (13)
C9—N3—C16	112.29 (12)	N5—C17—C18	105.88 (12)
C9—N3—B1	122.59 (11)	C19—C18—C23	120.58 (13)
C16—N3—B1	123.92 (11)	C19—C18—C17	131.82 (13)
C16—N4—C17	116.60 (12)	C23—C18—C17	107.32 (12)
C24—N5—C17	112.64 (12)	C20-C19-C18	118.15 (14)
C24—N5—B1	122.08 (12)	С20—С19—Н19А	120.9
C17—N5—B1	123.57 (12)	C18—C19—H19A	120.9
C1—N6—C24	116.70 (12)	C19—C20—C21	121.16 (14)
N6-C1-N1	122.22 (12)	C19—C20—H20A	119.4
N6-C1-C2	130.26(13)	C_{21} C_{20} H_{20A}	119.4
N1-C1-C2	105.81 (11)	C^{22} C^{21} C^{20}	121.65 (15)
C_{3} C_{2} C_{7}	120.92 (13)	$C_{22} = C_{21} = C_{20}$	119.2
C_{3} C_{2} C_{1}	120.32(13) 132.32(13)	C_{20} C_{21} H_{21A}	119.2
C_{7} C_{2} C_{1}	106.68(12)	$C_{20} = C_{21} = H_{21} K$	117.85 (15)
$C_1 = C_2 = C_1$	117.02(14)	$C_{21} = C_{22} = C_{23}$	121.1
$C_4 = C_3 = C_2$	121.0	$C_{21} = C_{22} = H_{22A}$	121.1
$C_4 = C_5 = H_2 A$	121.0	$C_{23} = C_{22} = C_{12}^{22}$	121.1
$C_2 = C_3 = C_4 = C_5$	121.0	$C_{22} = C_{23} = C_{18}$	120.30(13)
$C_3 = C_4 = C_5$	121.31 (14)	$C_{22} = C_{23} = C_{24}$	132.13 (14)
C3—C4—H4A	119.3	C18 - C23 - C24	106.93 (12)
C5—C4—H4A	119.3	N6-C24-N5	123.26 (12)
C6—C5—C4	121.19 (14)	N6—C24—C23	128.78 (13)
C6—C5—H5A	119.4	N5—C24—C23	106.00 (12)
C4—C5—H5A	119.4	O1—C25—C27	111.56 (12)
C5—C6—C7	118.59 (14)	O1—C25—C28	109.25 (12)
С5—С6—Н6А	120.7	C27—C25—C28	110.53 (13)
С7—С6—Н6А	120.7	O1—C25—C26	103.89 (11)
C6—C7—C2	119.99 (13)	C27—C25—C26	110.78 (14)
C6—C7—C8	132.61 (13)	C28—C25—C26	110.64 (14)
C2—C7—C8	107.33 (11)	С25—С26—Н26А	109.5
N2-C8-N1	121.96 (12)	С25—С26—Н26В	109.5
N2—C8—C7	131.15 (12)	H26A—C26—H26B	109.5
N1—C8—C7	105.54 (11)	С25—С26—Н26С	109.5
N2—C9—N3	122.85 (13)	H26A—C26—H26C	109.5
N2—C9—C10	129.72 (12)	H26B—C26—H26C	109.5
N3—C9—C10	105.95 (12)	С25—С27—Н27А	109.5
C11—C10—C15	120.32 (13)	С25—С27—Н27В	109.5
C11—C10—C9	132.12 (13)	H27A—C27—H27B	109.5
C15—C10—C9	107.31 (12)	С25—С27—Н27С	109.5
C12—C11—C10	118.16 (14)	H27A—C27—H27C	109.5

C12—C11—H11A	120.9	H27B—C27—H27C	109.5
C10—C11—H11A	120.9	C25—C28—H28A	109.5
C11—C12—C13	121.32 (14)	C25—C28—H28B	109.5
C11—C12—H12A	119.3	H28A—C28—H28B	109.5
C13—C12—H12A	119.3	C25—C28—H28C	109.5
C14—C13—C12	121.18 (14)	H28A—C28—H28C	109.5
C14—C13—H13A	119.4	H28B—C28—H28C	109.5
C12—C13—H13A	119.4	O1—B1—N1	108.82 (12)
C13—C14—C15	118.26 (14)	O1—B1—N5	120.99 (12)
C13—C14—H14A	120.9	N1—B1—N5	102.59 (11)
C15—C14—H14A	120.9	O1—B1—N3	117.50 (12)
C14—C15—C10	120.70 (13)	N1—B1—N3	102.13 (11)
C14—C15—C16	132.32 (13)	N5—B1—N3	102.33 (11)
C10—C15—C16	106.79 (12)		
C24—N6—C1—N1	-6.2 (2)	C10-C15-C16-N4	156.41 (14)
C24—N6—C1—C2	156.75 (14)	C14—C15—C16—N3	177.62 (14)
C8—N1—C1—N6	155.21 (13)	C10-C15-C16-N3	-7.51 (15)
B1-N1-C1-N6	-19.7 (2)	C16—N4—C17—N5	-10.1 (2)
C8—N1—C1—C2	-11.33 (16)	C16—N4—C17—C18	152.35 (14)
B1—N1—C1—C2	173.79 (12)	C24—N5—C17—N4	154.67 (13)
N6-C1-C2-C3	18.9 (3)	B1—N5—C17—N4	-10.7 (2)
N1—C1—C2—C3	-176.02 (15)	C24—N5—C17—C18	-11.22 (15)
N6-C1-C2-C7	-157.83 (14)	B1-N5-C17-C18	-176.55 (12)
N1—C1—C2—C7	7.22 (15)	N4-C17-C18-C19	15.4 (3)
C7—C2—C3—C4	-1.2 (2)	N5-C17-C18-C19	-179.91 (15)
C1—C2—C3—C4	-177.55 (14)	N4-C17-C18-C23	-158.39 (14)
C2—C3—C4—C5	1.9 (2)	N5-C17-C18-C23	6.35 (15)
C3—C4—C5—C6	-0.3 (2)	C23—C18—C19—C20	-1.5 (2)
C4—C5—C6—C7	-2.1 (2)	C17—C18—C19—C20	-174.57 (15)
C5—C6—C7—C2	2.7 (2)	C18—C19—C20—C21	2.3 (2)
C5—C6—C7—C8	179.19 (15)	C19—C20—C21—C22	-0.8 (3)
C3—C2—C7—C6	-1.1 (2)	C20—C21—C22—C23	-1.4 (3)
C1—C2—C7—C6	176.06 (13)	C21—C22—C23—C18	2.1 (2)
C3—C2—C7—C8	-178.40 (13)	C21—C22—C23—C24	173.96 (16)
C1—C2—C7—C8	-1.19 (15)	C19—C18—C23—C22	-0.7 (2)
C9—N2—C8—N1	7.97 (19)	C17—C18—C23—C22	173.92 (14)
C9—N2—C8—C7	-156.70 (14)	C19—C18—C23—C24	-174.38 (13)
C1—N1—C8—N2	-157.53 (13)	C17—C18—C23—C24	0.21 (16)
B1—N1—C8—N2	17.3 (2)	C1—N6—C24—N5	10.0 (2)
C1—N1—C8—C7	10.55 (15)	C1—N6—C24—C23	-151.74 (14)
B1—N1—C8—C7	-174.62 (12)	C17—N5—C24—N6	-153.95 (13)
C6—C7—C8—N2	-15.5 (3)	B1-N5-C24-N6	11.6 (2)
C2—C7—C8—N2	161.26 (14)	C17—N5—C24—C23	11.36 (16)
C6—C7—C8—N1	177.95 (15)	B1—N5—C24—C23	176.94 (12)
C2—C7—C8—N1	-5.28 (15)	C22—C23—C24—N6	-15.2 (3)
C8—N2—C9—N3	-10.19 (19)	C18—C23—C24—N6	157.52 (14)
C8—N2—C9—C10	153.89 (14)	C22—C23—C24—N5	-179.40 (16)

C16—N3—C9—N2	155.48 (13)	C18—C23—C24—N5	-6.70 (16)
B1—N3—C9—N2	-12.4 (2)	B1-01-C25-C27	49.70 (19)
C16—N3—C9—C10	-11.85 (15)	B1-01-C25-C28	-72.81 (18)
B1-N3-C9-C10	-179.74 (12)	B1-01-C25-C26	169.09 (15)
N2-C9-C10-C11	14.4 (3)	C25—O1—B1—N1	154.31 (12)
N3—C9—C10—C11	-179.50 (14)	C25—O1—B1—N5	36.1 (2)
N2-C9-C10-C15	-159.66 (14)	C25—O1—B1—N3	-90.36 (17)
N3—C9—C10—C15	6.47 (15)	C8—N1—B1—O1	91.35 (16)
C15—C10—C11—C12	-2.5 (2)	C1—N1—B1—O1	-94.29 (15)
C9—C10—C11—C12	-175.92 (14)	C8—N1—B1—N5	-139.34 (13)
C10-C11-C12-C13	1.5 (2)	C1—N1—B1—N5	35.02 (17)
C11—C12—C13—C14	0.8 (2)	C8—N1—B1—N3	-33.56 (17)
C12—C13—C14—C15	-2.0 (2)	C1—N1—B1—N3	140.79 (12)
C13—C14—C15—C10	0.9 (2)	C24—N5—B1—O1	90.43 (17)
C13—C14—C15—C16	175.22 (14)	C17—N5—B1—O1	-105.58 (16)
C11—C10—C15—C14	1.4 (2)	C24—N5—B1—N1	-30.88 (17)
C9—C10—C15—C14	176.22 (12)	C17—N5—B1—N1	133.10 (13)
C11—C10—C15—C16	-174.24 (12)	C24—N5—B1—N3	-136.51 (13)
C9—C10—C15—C16	0.63 (15)	C17—N5—B1—N3	27.48 (17)
C17—N4—C16—N3	8.1 (2)	C9—N3—B1—O1	-88.02 (16)
C17—N4—C16—C15	-153.56 (14)	C16—N3—B1—O1	105.50 (15)
C9—N3—C16—N4	-153.00 (13)	C9—N3—B1—N1	30.93 (16)
B1—N3—C16—N4	14.7 (2)	C16—N3—B1—N1	-135.55 (13)
C9—N3—C16—C15	12.28 (15)	C9—N3—B1—N5	136.90 (12)
B1—N3—C16—C15	179.99 (12)	C16—N3—B1—N5	-29.58 (17)
C14—C15—C16—N4	-18.5 (3)		

Z = 1

F(000) = 1668 $D_x = 1.314 \text{ Mg m}^{-3}$

 $\theta = 2.7 - 63.9^{\circ}$

 $\mu = 0.65 \text{ mm}^{-1}$

 $0.24 \times 0.16 \times 0.06$ mm

T = 150 K

Shard, pink

Cu *K* α radiation, $\lambda = 1.54178$ Å

Cell parameters from 6400 reflections

(Octanolato)(subphthalocyaninato)boron (d23123_a)

Crystal data

 $\begin{array}{l} 6\mathrm{C}_{32}\mathrm{H}_{29}\mathrm{BN}_{6}\mathrm{O}{\cdot}2\mathrm{H}_{2}\mathrm{O}_{.50}\\ M_{r}=3166.55\\ \mathrm{Triclinic}, P\overline{1}\\ a=15.3028\ (7)\ \mathrm{\AA}\\ b=16.2278\ (7)\ \mathrm{\AA}\\ c=17.3604\ (7)\ \mathrm{\AA}\\ a=103.045\ (3)^{\circ}\\ \beta=105.716\ (3)^{\circ}\\ \gamma=94.022\ (3)^{\circ}\\ V=4003.0\ (3)\ \mathrm{\AA}^{3} \end{array}$

Data collection

Bruker Kappa APEX-DUO CMOS PHOTON II	110436 measured reflections
diffractometer	13816 independent reflections
Radiation source: Incoatec ImuS with multi-	10618 reflections with $I > 2\sigma(I)$
layer optics	$R_{\rm int} = 0.070$
φ and ω scans	$\theta_{\rm max} = 66.4^\circ, \ \theta_{\rm min} = 2.7^\circ$
Absorption correction: multi-scan	$h = -17 \rightarrow 18$
(SADABS; Krause et al., 2015)	$k = -19 \rightarrow 19$
$T_{\min} = 0.622, \ T_{\max} = 0.753$	$l = -20 \rightarrow 20$

Refinement

H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0697P)^2 + 2.1766P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$
Extinction correction: SHELXL2019
(Sheldrick, 2015 <i>b</i>),
$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Extinction coefficient: 0.00223 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
O1A	0.77624 (11)	0.36183 (10)	0.70390 (9)	0.0390 (4)	
N1A	0.65242 (12)	0.26603 (12)	0.59626 (10)	0.0316 (4)	
N2A	0.71668 (12)	0.13671 (12)	0.57327 (10)	0.0326 (4)	
N3A	0.72729 (12)	0.21399 (12)	0.71030 (10)	0.0303 (4)	
N4A	0.67121 (12)	0.23869 (12)	0.82811 (10)	0.0332 (4)	
N5A	0.62832 (12)	0.31692 (12)	0.72638 (11)	0.0332 (4)	
N6A	0.52633 (13)	0.34070 (12)	0.60570 (11)	0.0380 (5)	
C1A	0.57428 (15)	0.29578 (14)	0.56100 (13)	0.0337 (5)	
C2A	0.54488 (15)	0.24989 (15)	0.47383 (13)	0.0345 (5)	
C3A	0.46960 (17)	0.25264 (16)	0.40831 (14)	0.0395 (6)	
H3AA	0.430692	0.295265	0.414304	0.047*	
C4A	0.45320 (17)	0.19143 (17)	0.33424 (14)	0.0426 (6)	
H4AA	0.402382	0.192387	0.288788	0.051*	
C5A	0.50962 (17)	0.12849 (17)	0.32495 (14)	0.0406 (6)	
H5AA	0.496195	0.087195	0.273400	0.049*	
C6A	0.58470 (16)	0.12477 (16)	0.38906 (13)	0.0370 (5)	
H6AA	0.622853	0.081622	0.382273	0.044*	
C7A	0.60278 (15)	0.18617 (15)	0.46395 (13)	0.0328 (5)	
C8A	0.66774 (14)	0.19482 (14)	0.54496 (13)	0.0313 (5)	
C9A	0.74113 (14)	0.14480 (14)	0.65553 (13)	0.0309 (5)	
C10A	0.75977 (14)	0.07926 (15)	0.70003 (13)	0.0321 (5)	
C11A	0.77972 (15)	-0.00374 (16)	0.67651 (14)	0.0376 (5)	
H11A	0.789968	-0.024741	0.624462	0.045*	
C12A	0.78409 (17)	-0.05425 (17)	0.73115 (15)	0.0442 (6)	
H12A	0.798119	-0.110721	0.716502	0.053*	
C13A	0.76830 (18)	-0.02420 (17)	0.80787 (16)	0.0458 (6)	
H13A	0.771315	-0.060867	0.843862	0.055*	
C14A	0.74848 (16)	0.05751 (16)	0.83205 (14)	0.0390 (5)	

H14A	0.737483	0.077359	0.883948	0.047*
C15A	0.74499 (14)	0.11037 (15)	0.77825 (13)	0.0319 (5)
C16A	0.71809 (14)	0.19458 (15)	0.78081 (12)	0.0321 (5)
C17A	0.62236 (15)	0.29559 (14)	0.79709 (13)	0.0333 (5)
C18A	0.54126 (15)	0.32801 (14)	0.81356 (13)	0.0347 (5)
C19A	0.50171 (16)	0.32619 (15)	0.87688 (14)	0.0375 (5)
H19A	0.531442	0.305859	0.923105	0.045*
C20A	0.41774 (16)	0.35503 (15)	0.86993 (15)	0.0414 (6)
H20A	0.389700	0.354774	0.912483	0.050*
C21A	0.37301 (17)	0.38452 (15)	0.80207 (16)	0.0439 (6)
H21A	0.315361	0.403837	0.799509	0.053*
C22A	0.41091 (17)	0.38620 (15)	0.73843 (15)	0.0425 (6)
H22A	0.379886	0.405570	0.691973	0.051*
C23A	0.49608 (16)	0.35851 (15)	0.091973 0.74487 (14)	0.031
C24A	0.55087 (16)	0.34516(14)	0.68727(14)	0.0357(5)
C25A	0.83225(17)	0.39292(17)	0.08727(14) 0.78780(15)	0.0357(5)
H25A	0.802026	0.35272 (17)	0.824250	0.055*
1125A 1125D	0.802920	0.309790	0.824230	0.055*
П23Б	0.03/113	0.433976 0.2681 (2)	0.804270 0.70000 (18)	0.055
	0.92400 (19)	0.3081(2)	0.79900 (18)	0.0024 (8)
П20А 1126D	0.931904	0.380498	0.758791	0.075*
П20Б	0.920434	0.303130	0.787000	0.073°
U27A	0.98/96 (19)	0.4084 (2)	0.88/18(18)	0.0383 (7)
H2/A	0.988059	0.4/10//	0.8998/2	0.070*
H2/B	0.962854	0.386659	0.926818	0.070*
C28A	1.0846 (2)	0.3902 (2)	0.8993 (2)	0.0710 (9)
H28A	1.108246	0.408854	0.857407	0.085*
H28B	1.084609	0.327667	0.889598	0.085*
C29A	1.1493 (2)	0.4336 (2)	0.98479 (18)	0.0581 (7)
H29A	1.145916	0.495693	0.996609	0.070*
H29B	1.128971	0.411305	1.026644	0.070*
C30A	1.24692 (19)	0.41957 (19)	0.99252 (17)	0.0532 (7)
H30A	1.264479	0.435496	0.946411	0.064*
H30B	1.251065	0.357980	0.986755	0.064*
C31A	1.31477 (19)	0.46988 (17)	1.07356 (15)	0.0486 (6)
H31A	1.310528	0.531503	1.079745	0.058*
H31B	1.297984	0.453492	1.119810	0.058*
C32A	1.41249 (18)	0.45535 (17)	1.07933 (16)	0.0484 (6)
H32A	1.453270	0.489286	1.132747	0.073*
H32B	1.417524	0.394647	1.074539	0.073*
H32C	1.430073	0.472690	1.034459	0.073*
B1A	0.70321 (18)	0.29553 (17)	0.68701 (15)	0.0340 (6)
N1B	0.54418 (12)	0.17729 (11)	0.14279 (10)	0.0290 (4)
N2B	0.68560 (12)	0.15591 (11)	0.22919 (11)	0.0318 (4)
N3B	0.63544 (12)	0.29256 (11)	0.25022 (11)	0.0304 (4)
N4B	0.55947 (13)	0.39765 (12)	0.31570 (11)	0.0339 (4)
N5B	0.48129 (12)	0.30104 (11)	0.18579 (10)	0.0309 (4)
N6B	0.38246 (12)	0.17359 (11)	0.10262 (10)	0.0318 (4)
C1B	0.45758 (15)	0.13443 (14)	0.10575 (12)	0.0292 (5)

C2B	0.46782 (15)	0.04419 (14)	0.09085 (12)	0.0297 (5)	
C3B	0.40548 (16)	-0.03011 (14)	0.05101 (13)	0.0330 (5)	
H3BA	0.342689	-0.027384	0.025991	0.040*	
C4B	0.43778 (17)	-0.10798 (15)	0.04899 (13)	0.0372 (5)	
H4BA	0.396667	-0.159300	0.021258	0.045*	
C5B	0.52956 (17)	-0.11243 (15)	0.08691 (14)	0.0375 (5)	
H5BA	0.549824	-0.166753	0.083954	0.045*	
C6B	0.59174 (16)	-0.03945 (14)	0.12875 (13)	0.0341 (5)	
H6BA	0.653637	-0.042992	0.156134	0.041*	
C7B	0.56093 (15)	0.03915 (14)	0.12949 (12)	0.0300 (5)	
C8B	0.60736 (15)	0.12615 (14)	0.16756 (13)	0.0297 (5)	
C9B	0.69478 (14)	0.23733 (14)	0.27341 (13)	0.0311 (5)	
C10B	0.74647 (15)	0.27666 (14)	0.35949 (13)	0.0322 (5)	
C11B	0.81553 (15)	0.24968 (15)	0.41503 (14)	0.0362 (5)	
H11C	0.842541	0.200634	0.397411	0.043*	
C12B	0.84344 (17)	0.29682 (16)	0.49675 (14)	0.0408 (6)	
H12C	0.890512	0.279686	0.535696	0.049*	
C13B	0.80404 (17)	0.36904 (16)	0.52340 (14)	0.0407 (6)	
H13C	0.824908	0.399989	0.579932	0.049*	
C14B	0.73544 (16)	0.39605 (15)	0.46901 (14)	0.0371 (5)	
H14C	0.708348	0.444746	0.487447	0.045*	
C15B	0.70689 (15)	0.35006 (14)	0.38632 (13)	0.0322 (5)	
C16B	0.63209 (15)	0.35593 (14)	0.31657 (13)	0.0322 (5)	
C17B	0.48290 (15)	0.36609 (14)	0.25208 (13)	0.0321 (5)	
C18B	0.38776 (15)	0.37471 (15)	0.24656 (13)	0.0346 (5)	
C19B	0.34798 (17)	0.43257 (16)	0.29397 (15)	0.0415 (6)	
H19C	0.384550	0.477172	0.339221	0.050*	
C20B	0.25313 (18)	0.42293 (17)	0.27291 (16)	0.0471 (6)	
H20C	0.224098	0.462690	0.303123	0.057*	
C21B	0.19961 (18)	0.35591 (18)	0.20819 (16)	0.0474 (6)	
H21C	0.134749	0.351248	0.195306	0.057*	
C22B	0.23781 (16)	0.29607 (16)	0.16222 (15)	0.0411 (6)	
H22C	0.200487	0.249811	0.119247	0.049*	
C23B	0.33295 (16)	0.30587 (15)	0.18100 (13)	0.0353 (5)	
C24B	0.39575 (15)	0.25567 (14)	0.14705 (13)	0.0317 (5)	
O1B	0.59133 (11)	0.30152 (9)	0.10243 (9)	0.0359 (4)	
C25B	0.63545 (18)	0.38710 (15)	0.12029 (16)	0.0435 (6)	0.735 (5)
H25C	0.627306	0.421193	0.172233	0.052*	0.735 (5)
H25D	0.606933	0.413429	0.075114	0.052*	0.735 (5)
C26B	0.7365 (2)	0.3880 (2)	0.1291 (2)	0.0626 (7)	0.735 (5)
H26C	0.767364	0.447762	0.148176	0.075*	0.735 (5)
H26D	0.763897	0.357832	0.171537	0.075*	0.735 (5)
C27B	0.7525 (3)	0.3457 (3)	0.0487 (3)	0.0637 (12)	0.735 (5)
H27C	0.732392	0.381163	0.009393	0.076*	0.735 (5)
H27D	0.712649	0.289832	0.025785	0.076*	0.735 (5)
C28B	0.8512 (3)	0.3304 (4)	0.0517 (4)	0.0877 (16)	0.735 (5)
H28C	0.851797	0.303487	-0.005252	0.105*	0.735 (5)
H28D	0.889985	0.386726	0.069637	0.105*	0.735 (5)
					(.)

C29B	0.8957 (4)	0.2757 (4)	0.1074 (4)	0.1024 (17)	0.735 (5)
H29C	0.888217	0.297551	0.162934	0.123*	0.735 (5)
H29D	0.962232	0.281643	0.113476	0.123*	0.735 (5)
C30B	0.8554 (4)	0.1785 (3)	0.0748 (3)	0.1314 (16)	0.735 (5)
H30C	0.787696	0.171374	0.060540	0.158*	0.735 (5)
H30D	0.872783	0.152406	0.024752	0.158*	0.735 (5)
C31B	0.8961 (3)	0.1354 (4)	0.1454 (3)	0.0941 (17)	0.735 (5)
H31C	0.886617	0.167521	0.197569	0.113*	0.735 (5)
H31D	0.864446	0.076314	0.131499	0.113*	0.735 (5)
C32B	0.9955 (4)	0.1343 (4)	0.1564 (4)	0.144(2)	0.735 (5)
H32D	1.021209	0.107092	0.200944	0.217*	0.735 (5)
H32E	1.004480	0.101969	0.104803	0.217*	0.735(5)
H32F	1 026597	0 192952	0 170710	0.217*	0.735 (5)
C25D	0.63545(18)	0.38710(15)	0.12029 (16)	0.217 0.0435 (6)	0.755(5)
625D H25E	0.627306	0.421193	0.172233	0.052*	0.265(5)
H25E	0.606933	0.413429	0.075114	0.052*	0.265(5)
C26D	0.000933	0.119(2) 0.3880(2)	0.079117 0.1291(2)	0.052	0.265(5)
U20D	0.750478	0.3666 (2)	0.122305	0.0020(7)	0.205(5)
H26E	0.759478	0.386830	0.122303	0.075*	0.205(5)
C27D	0.7678 (8)	0.300039	0.130850	0.075	0.205(5)
C27D U27E	0.7078(8)	0.3223 (8)	0.0730 (9)	0.075(5)	0.205(5)
1127E 1127E	0.738322	0.322923	0.017478	0.090*	0.205(5)
П2/Г С29D	0.740793	0.200020	0.082409	0.090°	0.203(3)
	0.0750(8)	0.3314(0)	0.0910 (10)	0.064 (5)	0.203(3)
П20Е 1120Е	0.905607	0.337398	0.130738	0.100*	0.203(3)
H28F	0.895551	0.381663	0.075013	0.100*	0.265(5)
C29D	0.8904 (10)	0.2463 (7)	0.0364 (9)	0.098 (3)	0.265 (5)
H29E	0.854867	0.23/3/5	-0.022358	0.118*	0.265 (5)
H29F	0.956241	0.246088	0.040819	0.118*	0.265 (5)
C30D	0.8554 (4)	0.1785 (3)	0.0748 (3)	0.1314 (16)	0.265 (5)
H30E	0.852391	0.206273	0.130823	0.158*	0.265 (5)
H30F	0.792896	0.151282	0.040352	0.158*	0.265 (5)
C31D	0.9189 (10)	0.1114 (9)	0.0803 (9)	0.124 (3)	0.265 (5)
H31E	0.883335	0.056693	0.077173	0.149*	0.265 (5)
H31F	0.943316	0.102492	0.032204	0.149*	0.265 (5)
C32D	0.9955 (4)	0.1343 (4)	0.1564 (4)	0.144 (2)	0.265 (5)
H32M	1.034230	0.088641	0.156635	0.217*	0.265 (5)
H32N	1.031882	0.187663	0.159298	0.217*	0.265 (5)
H32O	0.971874	0.141843	0.204287	0.217*	0.265 (5)
B1B	0.56605 (17)	0.27289 (16)	0.16599 (15)	0.0312 (5)	
N1C	0.13334 (12)	0.19929 (11)	0.72603 (10)	0.0318 (4)	
N2C	-0.02401 (12)	0.14414 (12)	0.65772 (10)	0.0339 (4)	
N3C	0.07636 (12)	0.17606 (11)	0.58153 (10)	0.0306 (4)	
N4C	0.17635 (12)	0.14168 (12)	0.49917 (11)	0.0344 (4)	
N5C	0.23513 (12)	0.19534 (12)	0.64534 (11)	0.0325 (4)	
N6C	0.28824 (12)	0.17955 (11)	0.78215 (11)	0.0324 (4)	
C1C	0.20267 (15)	0.18497 (14)	0.78823 (13)	0.0316 (5)	
C2C	0.15901 (15)	0.15785 (14)	0.84433 (13)	0.0337 (5)	
C3C	0.19425 (17)	0.13847 (16)	0.92022 (13)	0.0397 (6)	

H3CA	0.258476	0.144692	0.945766	0.048*	
C4C	0.13259 (18)	0.10997 (19)	0.95682 (15)	0.0497 (7)	
H4CA	0.155069	0.097960	1.009178	0.060*	
C5C	0.03801 (19)	0.0983 (2)	0.91901 (15)	0.0540 (7)	
H5CA	-0.002178	0.078135	0.946022	0.065*	
C6C	0.00154 (17)	0.11549 (18)	0.84299 (14)	0.0464 (6)	
H6CA	-0.062778	0.106536	0.817119	0.056*	
C7C	0.06235 (15)	0.14635 (15)	0.80580 (13)	0.0359 (5)	
C8C	0.04847 (15)	0.16719 (14)	0.72637 (13)	0.0336 (5)	
C9C	-0.00699 (15)	0.14378 (14)	0.58546 (13)	0.0308 (5)	
C10C	-0.05796 (14)	0.09803 (13)	0.50040 (12)	0.0293 (5)	
C11C	-0.14766 (15)	0.05620 (14)	0.46462 (13)	0.0316 (5)	
H11B	-0.187949	0.052352	0.497165	0.038*	
C12C	-0.17588(15)	0.02045 (14)	0.37984 (13)	0.0336 (5)	
H12B	-0.237360	-0.006420	0.353825	0.040*	
C13C	-0.11654 (15)	0.02286 (14)	0.33174 (13)	0.0346 (5)	
H13B	-0.138655	-0.001474	0.273703	0.042*	
C14C	-0.02592(16)	0.06010 (14)	0.36707 (13)	0.0344 (5)	
H14B	0.015165	0.059095	0.334596	0.041*	
C15C	0.00316 (15)	0.09905 (14)	0.45160 (13)	0.0302 (5)	
C16C	0.09146 (15)	0.14334 (14)	0.50739 (13)	0.0315 (5)	
C17C	0.24669 (15)	0.16291 (14)	0.56954 (13)	0.0344 (5)	
C18C	0.33898 (15)	0.13995 (15)	0.58579 (14)	0.0359 (5)	
C19C	0.39147 (16)	0.11047 (17)	0.53419 (15)	0.0416 (6)	
H19B	0.369209	0.104444	0.476250	0.050*	
C20C	0.47704 (16)	0.09008 (17)	0.56928 (15)	0.0441 (6)	
H20B	0.514745	0.071477	0.535220	0.053*	
C21C	0.50874 (16)	0.09647 (16)	0.65411 (15)	0.0407 (6)	
H21B	0.566956	0.080349	0.676264	0.049*	
C22C	0.45746 (15)	0.12573 (15)	0.70684 (14)	0.0364 (5)	
H22B	0.479547	0.129540	0.764395	0.044*	
C23C	0.37277 (15)	0.14928 (14)	0.67285 (13)	0.0335 (5)	
C24C	0.30167 (15)	0.18014 (14)	0.70868 (13)	0.0325 (5)	
O1C	0.15664 (14)	0.31964 (11)	0.66693 (12)	0.0652 (6)	0.513 (4)
C25C	0.1609 (4)	0.3589 (3)	0.6120 (3)	0.0466 (12)	0.513 (4)
H25G	0.109155	0.332983	0.561700	0.056*	0.513 (4)
Н25Н	0.218272	0.349317	0.597403	0.056*	0.513 (4)
C26C	0.1585 (4)	0.4530 (3)	0.6350 (4)	0.0455 (13)	0.513 (4)
H26G	0.179991	0.478739	0.595716	0.055*	0.513 (4)
H26H	0.201974	0.477728	0.690846	0.055*	0.513 (4)
C27C	0.0651 (4)	0.4774 (4)	0.6353 (5)	0.0505 (14)	0.513 (4)
H27G	0.051034	0.466293	0.684721	0.061*	0.513 (4)
H27H	0.018538	0.440629	0.585768	0.061*	0.513 (4)
C28C	0.0579 (5)	0.5704 (5)	0.6357 (9)	0.0539 (19)	0.513 (4)
H28G	0.105235	0.606437	0.685079	0.065*	0.513 (4)
H28H	0.072989	0.580869	0.586412	0.065*	0.513 (4)
C29C	-0.0339 (4)	0.6006 (4)	0.6358 (4)	0.0590 (14)	0.513 (4)
H29G	-0.046559	0.596393	0.687862	0.071*	0.513 (4)

112011	0.092615	0 561047	0 590254	0.071*	0.512(4)
П29П С30С	-0.082013 -0.0384(4)	0.301947 0.6021 (4)	0.389334	$0.0/1^{\circ}$	0.513(4) 0.513(4)
U20C	0.0384 (4)	0.0921 (4)	0.0279 (3)	0.0030 (14)	0.513(4) 0.512(4)
	0.01/103	0.720030	0.007855	0.076*	0.515(4)
	-0.030310 -0.1210(5)	0.093033	0.571705	0.070°	0.513(4) 0.512(4)
	-0.1219(3)	0.7504 (5)	0.0420(0)	0.0604 (19)	0.515(4) 0.512(4)
	-0.113212 -0.124484	0.791002	0.040814	0.090*	0.515(4) 0.512(4)
	-0.124464	0.728930	0.098023	0.090°	0.515(4) 0.512(4)
	-0.2115(8)	0.0844 (8)	0.5797 (9)	0.125 (4)	0.513(4)
Н320	-0.202020	0.712114	0.592552	0.185*	0.515(4)
H32H	-0.210267	0.080825	0.524148	0.185*	0.513 (4)
H321	-0.21954/	0.624666	0.582006	0.185*	0.513(4)
OIE	0.15664 (14)	0.31964 (11)	0.66693 (12)	0.0652 (6)	0.48/(4)
C25E	0.0916 (3)	0.3650 (3)	0.6582 (3)	0.0408 (11)	0.487 (4)
H25J	0.064748	0.366466	0.704246	0.049*	0.487 (4)
H25K	0.043259	0.336133	0.606179	0.049*	0.487 (4)
C26E	0.1162 (5)	0.4543 (3)	0.6559 (4)	0.0387 (12)	0.487 (4)
H26J	0.133138	0.453758	0.604625	0.046*	0.487 (4)
H26K	0.170502	0.481387	0.703488	0.046*	0.487 (4)
C27E	0.0390 (4)	0.5076 (4)	0.6587 (4)	0.0457 (14)	0.487 (4)
H27J	0.027900	0.515021	0.713227	0.055*	0.487 (4)
H27K	-0.017703	0.476710	0.615781	0.055*	0.487 (4)
C28E	0.0598 (6)	0.5949 (5)	0.6446 (8)	0.0510 (18)	0.487 (4)
H28J	0.063627	0.586915	0.587408	0.061*	0.487 (4)
H28K	0.120840	0.622048	0.682711	0.061*	0.487 (4)
C29E	-0.0093 (4)	0.6559 (5)	0.6569 (4)	0.0615 (15)	0.487 (4)
H29J	-0.016984	0.660866	0.712551	0.074*	0.487 (4)
H29K	0.015268	0.713194	0.654933	0.074*	0.487 (4)
C30E	-0.1017 (4)	0.6279 (4)	0.5931 (5)	0.0760 (17)	0.487 (4)
H30J	-0.130677	0.574861	0.600377	0.091*	0.487 (4)
H30K	-0.093551	0.615192	0.537181	0.091*	0.487 (4)
C31E	-0.1651 (7)	0.6971 (6)	0.6003 (7)	0.075 (2)	0.487 (4)
H31J	-0.135608	0.751899	0.596813	0.090*	0.487 (4)
H31K	-0.179780	0.706188	0.653416	0.090*	0.487 (4)
C32E	-0.2526 (8)	0.6626 (8)	0.5266 (8)	0.120 (4)	0.487 (4)
H32J	-0.296217	0.704047	0.527533	0.180*	0.487 (4)
H32K	-0.236666	0.653725	0.474601	0.180*	0.487 (4)
H32L	-0.280579	0.608281	0.530872	0.180*	0.487 (4)
B1C	0.15010 (18)	0.23063 (16)	0.65562 (16)	0.0352 (6)	
O1W	0.4156 (8)	0.4621 (6)	0.5274 (6)	0.233 (7)	0.5
H1WB	0.446348	0.427861	0.548992	0.350*	
H1WA	0.422128	0.500970	0.570542	0.350*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1A	0.0391 (9)	0.0421 (9)	0.0293 (8)	-0.0029 (7)	0.0034 (7)	0.0068 (7)
N1A	0.0339 (10)	0.0331 (10)	0.0263 (9)	0.0033 (8)	0.0075 (7)	0.0065 (8)
N2A	0.0289 (9)	0.0430 (11)	0.0268 (9)	0.0059 (8)	0.0097 (7)	0.0084 (8)

Acta Cryst. (2024). C80

N3A	0.0286 (9)	0.0367 (10)	0.0244 (9)	0.0050 (8)	0.0076 (7)	0.0058 (8)
N4A	0.0331 (10)	0.0386 (11)	0.0252 (9)	0.0063 (8)	0.0075 (7)	0.0037 (8)
N5A	0.0362 (10)	0.0338 (10)	0.0271 (9)	0.0057 (8)	0.0079 (8)	0.0041 (8)
N6A	0.0445 (11)	0.0343 (11)	0.0326 (10)	0.0085 (9)	0.0070 (8)	0.0075 (8)
C1A	0.0355 (12)	0.0333 (12)	0.0317 (11)	0.0055 (10)	0.0075 (9)	0.0099 (10)
C2A	0.0391 (12)	0.0349 (13)	0.0290 (11)	0.0024 (10)	0.0076 (9)	0.0110 (9)
C3A	0.0448 (13)	0.0422 (14)	0.0328 (12)	0.0086 (11)	0.0085 (10)	0.0147 (10)
C4A	0.0454 (14)	0.0510(15)	0.0277 (12)	0.0017 (12)	0.0024 (10)	0.0149 (11)
C5A	0.0476 (14)	0.0467 (15)	0.0264 (11)	0.0025 (11)	0.0107 (10)	0.0089 (10)
C6A	0.0419 (13)	0.0415 (14)	0.0281 (11)	0.0035 (10)	0.0121 (10)	0.0082 (10)
C7A	0.0339 (11)	0.0385 (13)	0.0272 (11)	0.0011 (10)	0.0098 (9)	0.0109 (9)
C8A	0.0296 (11)	0.0376 (13)	0.0275 (11)	0.0026 (9)	0.0097 (9)	0.0086 (9)
C9A	0.0254 (10)	0.0391 (13)	0.0273 (11)	0.0043 (9)	0.0081 (8)	0.0063 (9)
C10A	0.0259 (11)	0.0409 (13)	0.0282 (11)	0.0073 (9)	0.0068 (8)	0.0071 (9)
C11A	0.0315 (12)	0.0448 (14)	0.0343 (12)	0.0109 (10)	0.0081 (9)	0.0061 (10)
C12A	0.0440 (14)	0.0437 (15)	0.0459 (14)	0.0162 (11)	0.0111 (11)	0.0131 (11)
C13A	0.0501 (15)	0.0488 (16)	0.0442 (14)	0.0140 (12)	0.0139 (11)	0.0213 (12)
C14A	0.0371 (12)	0.0502 (15)	0.0313 (11)	0.0100 (11)	0.0091 (10)	0.0136 (11)
C15A	0.0266 (11)	0.0401 (13)	0.0288 (11)	0.0076 (9)	0.0071 (9)	0.0086 (9)
C16A	0.0280 (11)	0.0413 (13)	0.0250 (10)	0.0042 (9)	0.0064 (9)	0.0066 (9)
C17A	0.0366 (12)	0.0337 (12)	0.0257 (11)	0.0035 (10)	0.0077 (9)	0.0023 (9)
C18A	0.0376 (12)	0.0291 (12)	0.0323 (11)	0.0033 (9)	0.0097 (9)	-0.0011 (9)
C19A	0.0420 (13)	0.0306 (12)	0.0361 (12)	0.0022 (10)	0.0129 (10)	-0.0001 (10)
C20A	0.0409 (13)	0.0341 (13)	0.0448 (13)	0.0019 (10)	0.0172 (11)	-0.0036 (10)
C21A	0.0366 (13)	0.0345 (14)	0.0530 (15)	0.0048 (10)	0.0139 (11)	-0.0044 (11)
C22A	0.0426 (13)	0.0329 (13)	0.0433 (13)	0.0090 (10)	0.0065 (11)	-0.0011 (10)
C23A	0.0381 (12)	0.0311 (12)	0.0347 (12)	0.0052 (10)	0.0084 (10)	-0.0005 (10)
C24A	0.0385 (12)	0.0295 (12)	0.0344 (12)	0.0075 (10)	0.0054 (10)	0.0048 (9)
C25A	0.0462 (14)	0.0421 (15)	0.0363 (13)	-0.0023 (11)	-0.0013 (11)	0.0042 (11)
C26A	0.0450 (16)	0.074 (2)	0.0550 (17)	0.0027 (14)	0.0019 (13)	0.0070 (15)
C27A	0.0467 (15)	0.0650 (19)	0.0505 (16)	0.0056 (14)	0.0041 (12)	0.0026 (14)
C28A	0.0510 (17)	0.079 (2)	0.0650 (19)	0.0185 (16)	0.0009 (14)	-0.0013 (16)
C29A	0.0570 (17)	0.0544 (18)	0.0496 (16)	0.0091 (14)	0.0032 (13)	0.0014 (13)
C30A	0.0557 (16)	0.0491 (16)	0.0465 (15)	0.0113 (13)	0.0056 (12)	0.0058 (12)
C31A	0.0606 (17)	0.0399 (15)	0.0387 (13)	0.0072 (12)	0.0065 (12)	0.0071 (11)
C32A	0.0542 (16)	0.0409 (15)	0.0439 (14)	0.0072 (12)	0.0080 (12)	0.0064 (11)
B1A	0.0360 (14)	0.0372 (15)	0.0268 (12)	0.0032 (11)	0.0071 (10)	0.0072 (11)
N1B	0.0358 (10)	0.0241 (9)	0.0266 (9)	0.0043 (8)	0.0087 (7)	0.0058 (7)
N2B	0.0347 (10)	0.0282 (10)	0.0326 (9)	0.0052 (8)	0.0109 (8)	0.0067 (8)
N3B	0.0341 (10)	0.0252 (9)	0.0301 (9)	0.0036 (8)	0.0082 (8)	0.0052 (7)
N4B	0.0396 (10)	0.0274 (10)	0.0323 (10)	0.0063 (8)	0.0085 (8)	0.0049 (8)
N5B	0.0363 (10)	0.0270 (10)	0.0279 (9)	0.0062 (8)	0.0072 (8)	0.0060 (7)
N6B	0.0374 (10)	0.0300 (10)	0.0256 (9)	0.0059 (8)	0.0060 (7)	0.0059 (8)
C1B	0.0352 (11)	0.0295 (12)	0.0232 (10)	0.0033 (9)	0.0086 (9)	0.0077 (9)
C2B	0.0396 (12)	0.0278 (11)	0.0233 (10)	0.0035 (9)	0.0127 (9)	0.0059 (9)
C3B	0.0409 (12)	0.0323 (12)	0.0258 (10)	0.0001 (10)	0.0128 (9)	0.0058 (9)
C4B	0.0543 (15)	0.0279 (12)	0.0305 (11)	-0.0023 (10)	0.0184 (10)	0.0047 (9)
C5B	0.0551 (15)	0.0268 (12)	0.0348 (12)	0.0085 (10)	0.0186 (11)	0.0092 (10)

C6B	0.0452 (13)	0.0307 (12)	0.0301 (11)	0.0089 (10)	0.0146 (10)	0.0100 (9)
C7B	0.0409 (12)	0.0275 (11)	0.0238 (10)	0.0051 (9)	0.0132 (9)	0.0067 (9)
C8B	0.0340 (11)	0.0297 (12)	0.0282 (10)	0.0068 (9)	0.0120 (9)	0.0092 (9)
C9B	0.0314 (11)	0.0285 (12)	0.0343 (11)	0.0041 (9)	0.0096 (9)	0.0100 (9)
C10B	0.0335 (11)	0.0285 (12)	0.0331 (11)	-0.0010 (9)	0.0084 (9)	0.0082 (9)
C11B	0.0350 (12)	0.0323 (12)	0.0399 (13)	0.0007 (10)	0.0079 (10)	0.0117 (10)
C12B	0.0424 (13)	0.0386 (14)	0.0374 (13)	0.0005 (11)	0.0031 (10)	0.0141 (11)
C13B	0.0469 (14)	0.0400 (14)	0.0304 (12)	-0.0037 (11)	0.0059 (10)	0.0091 (10)
C14B	0.0407 (13)	0.0320 (12)	0.0358 (12)	0.0002 (10)	0.0096 (10)	0.0063 (10)
C15B	0.0340 (11)	0.0287 (12)	0.0322 (11)	-0.0008(9)	0.0086 (9)	0.0075 (9)
C16B	0.0374 (12)	0.0244 (11)	0.0329 (11)	0.0009 (9)	0.0098 (9)	0.0051 (9)
C17B	0.0407 (12)	0.0242 (11)	0.0298 (11)	0.0056 (9)	0.0094 (9)	0.0048 (9)
C18B	0.0383 (12)	0.0326 (12)	0.0324 (11)	0.0106 (10)	0.0083 (9)	0.0083 (10)
C19B	0.0495 (14)	0.0365 (13)	0.0377 (12)	0.0120 (11)	0.0125 (11)	0.0063 (10)
C20B	0.0495 (15)	0.0481 (16)	0.0481 (14)	0.0190 (12)	0.0206 (12)	0.0099 (12)
C21B	0.0398 (13)	0.0523 (16)	0.0523 (15)	0.0140 (12)	0.0153 (12)	0.0133 (13)
C22B	0.0389 (13)	0.0408 (14)	0.0414 (13)	0.0085 (11)	0.0093 (10)	0.0084 (11)
C23B	0.0384 (12)	0.0347 (13)	0.0335 (11)	0.0108 (10)	0.0089 (10)	0.0104 (10)
C24B	0.0360 (12)	0.0310(12)	0.0266 (10)	0.0064 (9)	0.0063 (9)	0.0072 (9)
O1B	0.0454 (9)	0.0290 (8)	0.0345 (8)	0.0013 (7)	0.0139 (7)	0.0089 (6)
C25B	0.0540 (14)	0.0303 (12)	0.0479 (13)	0.0027 (11)	0.0158 (11)	0.0133 (10)
C26B	0.0606 (16)	0.0530 (16)	0.0702 (17)	-0.0051 (13)	0.0128 (14)	0.0197 (14)
C27B	0.062 (2)	0.067 (3)	0.069 (2)	0.001 (2)	0.021 (2)	0.031 (2)
C28B	0.064 (3)	0.096 (3)	0.105 (4)	0.006 (2)	0.023 (3)	0.032 (3)
C29B	0.080 (3)	0.105 (4)	0.114 (4)	0.005 (3)	0.017 (3)	0.027 (3)
C30B	0.089 (3)	0.136 (3)	0.136 (3)	0.002 (2)	-0.004 (2)	0.019 (3)
C31B	0.078 (3)	0.111 (4)	0.084 (3)	0.033 (3)	0.020 (3)	0.004 (3)
C32B	0.150 (5)	0.150 (5)	0.130 (4)	0.052 (4)	0.028 (4)	0.037 (4)
C25D	0.0540 (14)	0.0303 (12)	0.0479 (13)	0.0027 (11)	0.0158 (11)	0.0133 (10)
C26D	0.0606 (16)	0.0530 (16)	0.0702 (17)	-0.0051 (13)	0.0128 (14)	0.0197 (14)
C27D	0.064 (4)	0.076 (4)	0.089 (5)	0.008 (4)	0.026 (4)	0.025 (4)
C28D	0.065 (4)	0.093 (5)	0.092 (5)	0.009 (4)	0.012 (4)	0.037 (5)
C29D	0.074 (4)	0.116 (5)	0.099 (5)	0.017 (4)	0.013 (4)	0.030 (4)
C30D	0.089 (3)	0.136 (3)	0.136 (3)	0.002 (2)	-0.004 (2)	0.019 (3)
C31D	0.109 (5)	0.133 (6)	0.119 (6)	0.017 (5)	0.018 (5)	0.027 (5)
C32D	0.150 (5)	0.150 (5)	0.130 (4)	0.052 (4)	0.028 (4)	0.037 (4)
B1B	0.0367 (13)	0.0266 (13)	0.0294 (12)	0.0051 (10)	0.0087 (10)	0.0065 (10)
N1C	0.0340 (10)	0.0291 (10)	0.0269 (9)	0.0103 (8)	0.0019 (7)	0.0030 (7)
N2C	0.0341 (10)	0.0388 (11)	0.0258 (9)	0.0145 (8)	0.0049 (8)	0.0042 (8)
N3C	0.0338 (10)	0.0286 (10)	0.0270 (9)	0.0084 (8)	0.0032 (7)	0.0079 (7)
N4C	0.0350 (10)	0.0379 (11)	0.0307 (9)	0.0020 (8)	0.0062 (8)	0.0149 (8)
N5C	0.0336 (10)	0.0303 (10)	0.0299 (9)	0.0011 (8)	0.0020 (8)	0.0099 (8)
N6C	0.0330 (10)	0.0283 (10)	0.0300 (9)	0.0028 (8)	0.0024 (7)	0.0048 (8)
C1C	0.0333 (12)	0.0276 (11)	0.0270 (11)	0.0075 (9)	0.0016 (9)	0.0010 (9)
C2C	0.0368 (12)	0.0338 (12)	0.0256 (10)	0.0104 (10)	0.0059 (9)	0.0006 (9)
C3C	0.0412 (13)	0.0464 (14)	0.0254 (11)	0.0109 (11)	0.0039 (10)	0.0031 (10)
C4C	0.0506 (15)	0.0702 (19)	0.0267 (12)	0.0122 (13)	0.0080 (11)	0.0119 (12)
C5C	0.0474 (15)	0.083 (2)	0.0323 (13)	0.0091 (14)	0.0138 (11)	0.0140 (13)
CGC	0.0280(12)	0.0659 (19)	0.0201.(12)	0.0106(12)	0.0071(10)	0.0040(11)
------	--------------------------	--------------------------	--------------------------	--------------	--------------	-------------
C0C	0.0380(13) 0.0357(12)	0.0038(18) 0.0433(14)	0.0301(12) 0.0250(11)	0.0100(12)	0.0071(10)	0.0040(11)
	0.0337(12)	0.0433(14)	0.0230(11)	0.0141(10)	0.0007(9)	0.0014(10)
	0.0341(12)	0.0340(12)	0.0280(11) 0.0207(11)	0.0142(10)	0.0001(9)	0.0024(9)
C10C	0.0330(12)	0.0282(11) 0.0264(11)	0.0297(11)	0.0125(9)	0.0033(9)	0.0004(9)
	0.0333(11)	0.0204(11)	0.0270(10)	0.0113(9)	0.0048 (9)	0.0078(9)
CIEC	0.0333(11)	0.0307(12)	0.0306(11)	0.0100(9)	0.0078(9)	0.0080(9)
C12C	0.0558(12)	0.0297(12)	0.0319(11)	0.0008(9)	0.0047(9)	0.0028 (9)
	0.0401 (12)	0.0299(12)	0.0285 (11)	0.0068 (10)	0.0053 (9)	0.0021 (9)
C14C	0.0401(13)	0.0351(13)	0.0278 (11)	0.0095 (10)	0.0088 (9)	0.0080 (9)
	0.0350 (11)	0.02/1 (11)	0.0278 (11)	0.0078 (9)	0.0056 (9)	0.0092 (9)
CI6C	0.0377 (12)	0.0283 (12)	0.0284 (11)	0.0054 (9)	0.0057 (9)	0.0116 (9)
CI/C	0.0372 (12)	0.0329 (12)	0.0326 (12)	-0.0007 (10)	0.0068 (9)	0.0134 (10)
C18C	0.0312 (12)	0.0389 (13)	0.0360 (12)	-0.0033 (10)	0.0063 (9)	0.0137 (10)
C19C	0.0370 (13)	0.0514 (15)	0.0350 (12)	-0.0059 (11)	0.0094 (10)	0.0131 (11)
C20C	0.0346 (13)	0.0526 (16)	0.0435 (14)	-0.0029 (11)	0.0130 (11)	0.0104 (12)
C21C	0.0292 (12)	0.0470 (15)	0.0444 (13)	-0.0006 (10)	0.0085 (10)	0.0135 (11)
C22C	0.0304 (11)	0.0377 (13)	0.0364 (12)	-0.0019 (10)	0.0034 (9)	0.0102 (10)
C23C	0.0313 (11)	0.0332 (12)	0.0330 (11)	-0.0021 (9)	0.0048 (9)	0.0104 (9)
C24C	0.0322 (11)	0.0276 (12)	0.0312 (11)	-0.0002 (9)	0.0008 (9)	0.0064 (9)
01C	0.0783 (13)	0.0281 (9)	0.0611 (11)	0.0053 (9)	-0.0238 (10)	0.0099 (8)
C25C	0.048 (2)	0.039 (2)	0.054 (3)	0.007 (2)	0.014 (2)	0.015 (2)
C26C	0.044 (3)	0.035 (2)	0.060 (3)	0.005 (2)	0.014 (2)	0.020 (2)
C27C	0.049 (3)	0.040 (3)	0.065 (3)	0.005 (2)	0.017 (2)	0.020 (2)
C28C	0.055 (3)	0.044 (4)	0.068 (3)	0.010 (3)	0.017 (3)	0.025 (4)
C29C	0.059 (3)	0.047 (3)	0.079 (3)	0.010 (2)	0.024 (2)	0.029 (3)
C30C	0.064 (3)	0.056 (3)	0.088 (3)	0.018 (3)	0.031 (3)	0.039 (3)
C31C	0.076 (4)	0.070 (4)	0.118 (5)	0.023 (3)	0.042 (4)	0.050 (4)
C32C	0.097 (8)	0.106 (7)	0.158 (9)	-0.020 (6)	0.004 (7)	0.068 (7)
O1E	0.0783 (13)	0.0281 (9)	0.0611 (11)	0.0053 (9)	-0.0238 (10)	0.0099 (8)
C25E	0.041 (2)	0.031 (2)	0.053 (2)	0.0106 (19)	0.016 (2)	0.0133 (19)
C26E	0.035 (3)	0.033 (2)	0.052 (3)	0.011 (2)	0.014 (2)	0.015 (2)
C27E	0.047 (3)	0.035 (3)	0.061 (3)	0.012 (2)	0.021 (2)	0.017 (2)
C28E	0.059 (3)	0.040 (3)	0.065 (4)	0.014 (3)	0.021 (3)	0.029 (3)
C29E	0.072 (3)	0.050 (3)	0.073 (3)	0.018 (3)	0.029 (3)	0.025 (3)
C30E	0.068 (3)	0.066 (3)	0.104 (4)	0.020 (3)	0.023 (3)	0.040 (3)
C31E	0.076 (5)	0.065 (4)	0.101 (5)	0.027 (4)	0.027 (4)	0.050 (4)
C32E	0.143 (11)	0.093 (8)	0.135 (10)	0.036 (8)	0.039 (8)	0.047 (7)
B1C	0.0384 (14)	0.0281 (14)	0.0323 (13)	0.0072 (11)	-0.0004 (11)	0.0065 (11)
O1W	0.269 (12)	0.168 (9)	0.182 (9)	0.155 (9)	-0.043 (8)	-0.022 (7)
	· · ·					

Geometric parameters (Å, °)

O1A—B1A	1.416 (3)	C28B—H28D	0.9900	
01A—C25A	1.429 (3)	C29B—C30B	1.568 (6)	
N1A—C1A	1.362 (3)	C29B—H29C	0.9900	
N1A—C8A	1.367 (3)	C29B—H29D	0.9900	
N1A—B1A	1.503 (3)	C30B—C31B	1.553 (6)	
N2A—C8A	1.342 (3)	C30B—H30C	0.9900	

N2A—C9A	1347(3)	C30B—H30D	0 9900
N3A—C9A	1 368 (3)	C_{31B} C_{32B}	1 484 (6)
N3A—C16A	1 371 (3)	C_{31B} H_{31C}	0.9900
N3A_B1A	1.571(3)	C31B_H31D	0.9900
NAA C17A	1.310(3) 1.343(3)	C32B H32D	0.9900
N4A = C16A	1.3+3(3) 1.352(3)	C32B H32E	0.9800
N4A—CIOA	1.332(3) 1.362(2)	C32D H32E	0.9800
NSA C17A	1.302(3)	$C_{32}D = H_{32}F$	0.9800
NSA-CI/A	1.372(3)	C25D—C26D	1.511 (4)
NSA—BIA	1.508 (3)	C25D—H25E	0.9900
N6A—CIA	1.342 (3)	C25D—H25F	0.9900
N6A—C24A	1.347 (3)	C26D—C27D	1.447 (9)
C1A—C2A	1.457 (3)	C26D—H26E	0.9900
C2A—C3A	1.394 (3)	C26D—H26F	0.9900
C2A—C7A	1.419 (3)	C27D—C28D	1.557 (10)
C3A—C4A	1.384 (4)	C27D—H27E	0.9900
СЗА—НЗАА	0.9500	C27D—H27F	0.9900
C4A—C5A	1.393 (4)	C28D—C29D	1.573 (10)
C4A—H4AA	0.9500	C28D—H28E	0.9900
C5A—C6A	1.382 (3)	C28D—H28F	0.9900
С5А—Н5АА	0.9500	C29D—C30D	1.544 (10)
C6A—C7A	1.393 (3)	С29Д—Н29Е	0.9900
С6А—Н6АА	0.9500	C29D—H29F	0.9900
C7A—C8A	1.456 (3)	C30D—C31D	1.511 (10)
C9A—C10A	1.450 (3)	C30D—H30E	0.9900
C10A—C11A	1.397 (3)	C30D—H30F	0.9900
C10A—C15A	1.422 (3)	C31D—C32D	1.462 (10)
C11A—C12A	1.378 (4)	C31D—H31E	0.9900
C11A—H11A	0.9500	C31D—H31F	0.9900
C12A—C13A	1.403 (4)	C32D—H32M	0.9800
C12A - H12A	0.9500	C32D - H32N	0.9800
C13A - C14A	1 379 (4)	C32D - H32O	0.9800
C13A - H13A	0.9500	N1C-C8C	1.367(3)
$C_{14A} - C_{15A}$	1 397 (3)	NIC-CIC	1.369(3)
C14A - H14A	0.9500	NIC-BIC	1.509(3)
C_{15A} C_{16A}	1 449 (3)	N2C-C8C	1.300(3) 1.347(3)
C17A = C18A	1.454(3)	N2C COC	1.347(3)
C18A = C10A	1.434(3) 1 306(3)	$N_{2}C = C_{3}C$	1.347(3) 1.365(3)
C18A = C19A	1.390(3)		1.303(3)
C10A = C20A	1.419(3)	N3C D1C	1.309(3)
C19A = C20A	1.582 (5)	NAC CICC	1.307(3)
CI9A—HI9A	0.9500	N4C = C16C	1.346 (3)
C20A—C21A	1.396 (4)	N4C-C17C	1.347 (3)
C20A—H20A	0.9500	N5C	1.363 (3)
C21A—C22A	1.384 (4)	N5C—C17C	1.366 (3)
C21A—H21A	0.9500	N5C—B1C	1.496 (3)
C22A—C23A	1.393 (3)	N6C—C24C	1.348 (3)
C22A—H22A	0.9500	N6C—C1C	1.349 (3)
C23A—C24A	1.460 (3)	C1C—C2C	1.447 (3)
C25A—C26A	1.475 (4)	C2C—C3C	1.397 (3)

С25А—Н25А	0.9900	C2C—C7C	1.428 (3)
С25А—Н25В	0.9900	C3C—C4C	1.380 (4)
C26A—C27A	1.537 (4)	СЗС—НЗСА	0.9500
C26A—H26A	0.9900	C4C—C5C	1.397 (4)
C26A—H26B	0.9900	C4C—H4CA	0.9500
C27A—C28A	1,497 (4)	C5C—C6C	1.386 (4)
С27А—Н27А	0.9900	С5С—Н5СА	0.9500
С27А—Н27В	0.9900	C6C—C7C	1.393 (4)
C28A—C29A	1.520 (4)	C6C—H6CA	0.9500
C28A—H28A	0.9900	C7C—C8C	1.457 (3)
C28A—H28B	0.9900	C9C—C10C	1.463 (3)
C29A—C30A	1.502 (4)	C10C—C11C	1.396 (3)
C_{29A} H29A	0.9900	C10C - C15C	1.390(3) 1 424(3)
C29A—H29B	0.9900	$C_{11}C_{-}C_{12}C_{-}C_{-}C_{12}C_{-}C_{-}C_{12}C_{-}C_{12}C_{-}C_{-}C_{12}C_{-}C_{-}C_{12}C_{-}C_{-}C_{12}C_{-}C_{-}C_{12}C_{-}C_{-}C_{12}C_{-}C_{-}C_{-}C_{12}C_{-}C_{-}C_{-}C_{12}C_{-}C_{-}C_{-}C_{12}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-$	1.127(3) 1.387(3)
C_{30A} C_{31A}	1 515 (4)	C11C—H11B	0.9500
C30A - H30A	0.9900	C12C - C13C	1.394(3)
$C_{30}A - H_{30}B$	0.9900	C12C—H12B	0.9500
$C_{31}A - C_{32}A$	1 510 (4)	C12C - C14C	1.385(3)
$C_{31}A = H_{31}A$	0.9900	C13C - H13B	0.9500
C31A H31B	0.9900		1.303(3)
	0.9900	C14C = C13C	0.0500
C_{32A} H32R	0.9800		1.456(3)
C_{32A} H32C	0.9800	C17C = C18C	1.456(3)
NIR CR	1 363 (3)	$C_{1}C_{-}C_{1}C_{-}C_{1}C_{-}C_{1}C_{-}C_{1}C_{-}C_{1}C_{-}C_{1}C_{-}C_{1}C_{-}C_{1}C_{-}C_{1}C_{-}C_{1}C_{-}C_{-}C_{1}C_{-}C_{-}C_{1}C_{-}C_{-}C_{1}C_{-}C_{-}C_{1}C_{-}C_{-}C_{1}C_{-}C_{-}C_{1}C_{-}C_{-}C_{1}C_{-}C_{-}C_{1}C_{-}C_{-}C_{1}C_{-}C_{-}C_{1}C_{-}C_{-}C_{1}C_{-}C_{-}C_{1}C_{-}C_{-}C_{1}C_{-}C_{-}C_{1}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-$	1.430(3) 1.388(4)
NID-CID	1.303(3) 1.264(2)	$C_{18}C_{}C_{19}C_{}C_{1$	1.300(4) 1.427(2)
NID DID	1.304(3) 1 501(2)	$C_{10}C_{-}C_{20}C_{-}C_{10}C_{-}C_{-}C_{10}C_{-}C_{-$	1.427(3) 1.294(2)
	1.301(3) 1.242(2)	$C_{19}C_{}C_{20}C_{}C_{10}C_{}C_{}C_{10}C_{-$	1.364 (3)
N2D COD	1.345(3) 1.246(2)	C19C—H19B	0.9300
N2D COD	1.340(3) 1.267(2)	$C_{20}C_{-}U_{20}D_{$	1.397 (3)
N3D-C16D	1.307(3) 1.275(2)	$C_{20}C_{H20}B$	0.9300
	1.575(5)	$C_2 C_{-} C_2 $	1.387 (3)
N3B—BIB	1.306 (3)	C2IC—H2IB	0.9500
N4B—C16B	1.340 (3)	$C_{22}C_{-}C_{23}C_{-}C_{-}C_{23}C_{-}C_{-$	1.390 (3)
N4B—C17B	1.347 (3)	C22C—H22B	0.9500
N5B—C1/B	1.368 (3)	$C_{23}C_{}C_{24}C_{}C_{25}C_{}C_{}C_{25}C_{}C_{}C_{25}C_{-$	1.45/(3)
N5B-C24B	1.368 (3)	010-0250	1.2/4 (4)
N5B—BIB	1.504 (3)	OIC—BIC	1.406 (3)
N6B—C1B	1.346 (3)	C25C = C26C	1.494 (5)
N6B—C24B	1.350 (3)	C25C—H25G	0.9900
CIB—C2B	1.456 (3)	С25С—Н25Н	0.9900
C2B—C3B	1.395 (3)	C26C—C27C	1.510 (6)
C2B—C7B	1.418 (3)	C26C—H26G	0.9900
C3B—C4B	1.385 (3)	С26С—Н26Н	0.9900
C3B—H3BA	0.9500	C27C—C28C	1.520 (6)
C4B—C5B	1.395 (3)	C27C—H27G	0.9900
C4B—H4BA	0.9500	С27С—Н27Н	0.9900
C5B—C6B	1.384 (3)	C28C—C29C	1.520 (6)
C5B—H5BA	0.9500	C28C—H28G	0.9900
C6B—C7B	1.389 (3)	C28C—H28H	0.9900

C6B—H6BA	0.9500	C29C—C30C	1.527 (6)
C7B—C8B	1.455 (3)	C29C—H29G	0.9900
C9B—C10B	1.458 (3)	С29С—Н29Н	0.9900
C10B—C11B	1.393 (3)	C30C—C31C	1.517 (6)
C10B—C15B	1.416 (3)	C30C—H30G	0.9900
C11B—C12B	1.384 (3)	С30С—Н30Н	0.9900
C11B—H11C	0.9500	$C_{31}C - C_{32}C$	1.518 (8)
C12B—C13B	1,399 (4)	C31C—H31G	0.9900
C12B—H12C	0.9500	C31C—H31H	0.9900
C13B— $C14B$	1 378 (3)	$C_{32}C = H_{32}G$	0.9800
C13B—H13C	0.9500	C32C—H32H	0.9800
C14B— $C15B$	1 393 (3)	$C_{32}C_{H_{32}I}$	0.9800
C14B— $H14C$	0.9500	01E-C25E	1.276(4)
C15B-C16B	1,450(3)	OIF-BIC	1.270(4) 1 406 (3)
C17B $C18B$	1.450(3) 1.452(3)	C_{25E}	1.400(5) 1.484(6)
C18B-C19B	1.452(3) 1.390(3)	C25E—C26E	0.0000
C18B C23B	1.370(3)	C25E H25K	0.0000
C_{10} C_{20} C	1.425(3)	C_{25E} C_{25E} C_{27E}	1.5900
C19B = C20B	0.0500	$C_{20E} = C_{27E}$	1.310(7)
C20B C21B	1.303(4)	$C_{20E} = H_{20F}$	0.9900
$C_{20B} = C_{21B}$	0.0500	C20E— $I120K$	1.517(8)
$C_{20}D_{-1120}C_{20}$	1 380 (4)	$C_{27E} = C_{28E}$	1.317(0)
$C_{21}B = C_{22}B$	0.0500	$C_2/E_{12}/J$	0.9900
$C_{21}D_{-H_{21}}C_{22}D_{-H_{21}}C_{2$	0.9300	$C_2/E = C_20E$	0.9900
$C_{22} = C_{23} = C$	1.392 (3)	$C_{20E} = C_{29E}$	1.323(6)
$C_{22}D = H_{22}C$	0.9300	$C_{20E} = H_{20V}$	0.9900
$C_{23}D - C_{24}D$	1.401(3)	$C_{20E} = C_{20E}$	0.9900
	1.421(3) 1/420(2)	$C_{29E} = C_{30E}$	1.303(7)
01B-C25D	1.429(3)	$C_{29E} = H_{29J}$	0.9900
C_{25} C_{25} C_{26} C_{26}	1.429(3)	$C_{29E} = C_{21E}$	0.9900
$C_{23}D = C_{20}D$	0.0000	$C_{20E} = H_{20I}$	0.0000
$C_{23}D_{-H_{23}}C_{2$	0.9900	$C_{20E} = H_{20V}$	0.9900
$C_{23}D_{H_{23}}D_{C_{23$	0.9900	$C_{21E} = C_{22E}$	0.9900
$C_{20} = C_{27} B$	1.303 (3)	$C_{21E} = U_{21E}$	0.0000
$C_{20} = H_{20} C_{20}$	0.9900	$C_{21E} = H_{21V}$	0.9900
$C_{20}D_{-H_{20}}D_{$	0.9900	C22E H22L	0.9900
$C_2/D = C_2\delta D$	1.330 (3)	$C_{22E} = H_{22K}$	0.9800
$C_2/D - H_2/C$	0.9900	C_{22E} H_{22I}	0.9600
$C_2/D = H_2/D$	0.9900	C_{32E} $- H_{32E}$	0.9800
$C_{20}D = U_{20}C$	0.0000		0.0400
C28B—H28C	0.9900	OIW—HIWA	0.8400
P1A 01A C25A	117 20 (18)	H20C C20P H20D	109.6
C1A N1A C8A	117.29(18) 112.41(17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.0
C1A = N1A = C0A	112.41(17) 123.00(10)	$C_{32B} = C_{31B} = C_{30B}$	109.4 (3)
$C_{A} = N_{A} = D_{A}$	123.00(17) 123.16(18)	$C_{20} = C_{21} = C$	109.0
CA = NIA = DIA	123.10(10) 117.18(10)	$C_{22} = C_{21} = C$	109.0
COA N2A C16A	11/.10(17)	$C_{20} = C_{21} = C$	109.0
$C_{0A} = N_{0A} = C_{10A} = C_{10A}$	112.27(10)	$U_{210} = U_{210} = U_{210} = U_{210}$	109.8
UTA-INJA-BIA	122.19(18)		100.2

C16A—N3A—B1A	123.52 (18)	C31B—C32B—H32D	109.5
C17A—N4A—C16A	116.72 (18)	C31B—C32B—H32E	109.5
C24A—N5A—C17A	112.40 (19)	H32D—C32B—H32E	109.5
C24A—N5A—B1A	122.71 (18)	C31B—C32B—H32F	109.5
C17A—N5A—B1A	123.86 (18)	H32D—C32B—H32F	109.5
C1A—N6A—C24A	116.90 (19)	H32E—C32B—H32F	109.5
N6A—C1A—N1A	122.66 (19)	O1B—C25D—C26D	110.4 (2)
N6A—C1A—C2A	129.0 (2)	O1B—C25D—H25E	109.6
N1A—C1A—C2A	106.23 (19)	C26D—C25D—H25E	109.6
C3A—C2A—C7A	120.4 (2)	O1B—C25D—H25F	109.6
C3A—C2A—C1A	132.1 (2)	C26D—C25D—H25F	109.6
C7A—C2A—C1A	107.01 (18)	H25E—C25D—H25F	108.1
C4A—C3A—C2A	118.0 (2)	C27D—C26D—C25D	120.4 (5)
С4А—С3А—НЗАА	121.0	C27D—C26D—H26E	107.2
С2А—С3А—НЗАА	121.0	C25D—C26D—H26E	107.2
C3A—C4A—C5A	121.4 (2)	C27D—C26D—H26F	107.2
C3A—C4A—H4AA	119.3	C25D—C26D—H26F	107.2
C5A—C4A—H4AA	119.3	H26E—C26D—H26F	106.9
C6A - C5A - C4A	121.5 (2)	$C_{26}D - C_{27}D - C_{28}D$	114.8 (9)
C6A—C5A—H5AA	119.3	$C_{26D} = C_{27D} = H_{27E}$	108.6
C4A - C5A - H5AA	119.3	C_{28D} C_{27D} H_{27E}	108.6
C5A - C6A - C7A	118.0 (2)	$C_{26D} = C_{27D} = H_{27E}$	108.6
C5A - C6A - H6AA	121.0	C_{28D} C_{27D} H_{27F}	108.6
C7A - C6A - H6AA	121.0	H27E-C27D-H27F	107.5
C6A - C7A - C2A	120.6(2)	C27D-C28D-C29D	104 7 (8)
C6A - C7A - C8A	120.0(2) 132.0(2)	C27D $C28D$ $H28E$	110.8
C2A - C7A - C8A	106.88 (19)	C_{29D} C_{28D} H_{28E}	110.8
N2A - C8A - N1A	122.72 (18)	C27D $C20D$ $H20DC27D$ $C28D$ $H28F$	110.8
N2A - C8A - C7A	122.72(10) 128.9(2)	$C_{29}D - C_{28}D - H_{28}F$	110.8
N1A - C8A - C7A	106.27(18)	H28E— $C28D$ — $H28F$	108.9
N2A—C9A—N3A	122.64 (19)	C30D - C29D - C28D	101.8 (9)
N2A - C9A - C10A	122.01(17) 128.9(2)	C30D - C29D - H29F	111.4
N3A - C9A - C10A	126.9(2) 106.25(18)	C_{28D} C_{29D} H_{29E}	111.1
C_{11A} C_{10A} C_{15A}	120.7(2)	C30D $C29D$ $H29E$	111.1
C11A - C10A - C9A	132.1(2)	C_{28D} C_{29D} H_{29F}	111.1
C15A - C10A - C9A	106.94(19)	H29E— $C29D$ — $H29F$	109.3
C12A— $C11A$ — $C10A$	1180(2)	C31D - C30D - C29D	110 1 (9)
C12A— $C11A$ — $H11A$	121.0	C_{31D} C_{30D} H_{30F}	109.6
C10A - C11A - H11A	121.0	$C_{29}D - C_{30}D - H_{30}E$	109.6
$C_{11A} - C_{12A} - C_{13A}$	121.0 121.5(2)	$C_{31}D - C_{30}D - H_{30}E$	109.6
$C_{11A} - C_{12A} - H_{12A}$	119.2	C_{29D} C_{30D} H_{30F}	109.6
C_{13A} C_{12A} H_{12A}	119.2	$H_{30}E = C_{30}D = H_{30}E$	109.0
C14A - C13A - C12A	119.2 121.3 (2)	$C_{32}D - C_{31}D - C_{30}D$	113.0 (8)
C14A - C13A - H13A	119.4	C32D $C31D$ $H31F$	109.0
C12A = C13A = H13A	119.4	C30D - C31D - H31F	109.0
$C_{12}A = C_{13}A = C_{15}A$	118 3 (2)	C32D - C31D - H31F	109.0
$C_{13}A = C_{14}A = H_{14}A$	120.9	C30D - C31D - H31F	109.0
$C_{15A} = C_{14A} = H_{14A}$	120.9	$H_{31E} = C_{31D} = H_{21E}$	107.0
UIJA UIHA IIIHA	120.7		10/.0

C14A—C15A—C10A	120.3 (2)	C31D-C32D-H32M	109.5
C14A—C15A—C16A	132.1 (2)	C31D—C32D—H32N	109.5
C10A—C15A—C16A	107.21 (18)	H32M—C32D—H32N	109.5
N4A—C16A—N3A	122.7 (2)	C31D-C32D-H32O	109.5
N4A—C16A—C15A	129.2 (2)	H32M—C32D—H32O	109.5
N3A—C16A—C15A	106.07 (18)	H32N-C32D-H32O	109.5
N4A—C17A—N5A	122.4 (2)	O1B—B1B—N1B	110.72 (18)
N4A—C17A—C18A	129.7 (2)	O1B—B1B—N5B	117.42 (19)
N5A—C17A—C18A	106.05 (18)	N1B—B1B—N5B	102.59 (18)
C19A—C18A—C23A	120.6 (2)	O1B—B1B—N3B	118.1 (2)
C19A—C18A—C17A	132.0(2)	N1B—B1B—N3B	103.49 (17)
C23A—C18A—C17A	107.2 (2)	N5B—B1B—N3B	102.61 (18)
C_{20A} C_{19A} C_{18A}	107.2(2)	C8C - N1C - C1C	112.88 (19)
C_{20A} C_{19A} H_{19A}	121.2	C8C - N1C - B1C	123 24 (18)
C18A - C19A - H19A	121.2	C1C— $N1C$ — $B1C$	123.21(10) 122.78(19)
C19A - C20A - C21A	121.2 121.8(2)	C8C - N2C - C9C	122.70(17)
C19A - C20A - H20A	110 1	$C_{16} - N_{3} - C_{9} C_{16}$	113.7(2)
C_{21A} C_{20A} H_{20A}	119.1	$C_{16C} = N_{3C} = B_{1C}$	113.21(10) 122.8(2)
$C_{21A} = C_{20A} = H_{20A}$	119.1 121 A (2)	$C_{10}C_{1$	122.0(2) 123 20(10)
$C_{22A} = C_{21A} = C_{20A}$	121.4(2)	$C_{16}C_{16}C_{17}C_{1$	125.29(19) 116.72(10)
$C_{22}A = C_{21}A = H_{21}A$	119.3	C10C - N4C - C17C	110.72(19) 113.03(10)
$C_{20}A = C_{21}A = H_{21}A$	117.3 117.7(2)	$C_24C = N_5C = P_1C$	113.03(19) 123.58(10)
$C_{21A} = C_{22A} = C_{23A}$	117.7(2)	C_24C —N5C—B1C	123.38(19) 122.65(18)
$C_{21}A = C_{22}A = H_{22}A$	121.2	C1/C N/C $C1/C$	122.03 (18)
C23A = C22A = H22A	121.2	$C_24C - N6C - C1C$	117.39(17)
C22A = C23A = C18A	120.9 (2)	N6C—CIC—NIC	122.3(2)
C22A—C23A—C24A	131.8 (2)	N6C - C1C - C2C	130.14 (19)
C18A—C23A—C24A	106.92 (19)	NIC-CIC-C2C	105.85 (19)
N6A—C24A—N5A	122.7 (2)	C3C—C2C—C/C	120.5 (2)
N6A—C24A—C23A	129.5 (2)	C3C—C2C—C1C	132.3 (2)
N5A—C24A—C23A	106.23 (19)	C7C—C2C—C1C	107.12 (18)
O1A—C25A—C26A	111.6 (2)	C4C—C3C—C2C	117.7 (2)
O1A—C25A—H25A	109.3	C4C—C3C—H3CA	121.1
C26A—C25A—H25A	109.3	C2C—C3C—H3CA	121.1
O1A—C25A—H25B	109.3	C3C—C4C—C5C	121.8 (2)
C26A—C25A—H25B	109.3	C3C—C4C—H4CA	119.1
H25A—C25A—H25B	108.0	C5C—C4C—H4CA	119.1
C25A—C26A—C27A	111.7 (2)	C6C—C5C—C4C	121.5 (3)
C25A—C26A—H26A	109.3	C6C—C5C—H5CA	119.3
C27A—C26A—H26A	109.3	C4C—C5C—H5CA	119.3
C25A—C26A—H26B	109.3	C5C—C6C—C7C	117.8 (2)
C27A—C26A—H26B	109.3	C5C—C6C—H6CA	121.1
H26A—C26A—H26B	107.9	С7С—С6С—Н6СА	121.1
C28A—C27A—C26A	113.4 (3)	C6C—C7C—C2C	120.7 (2)
C28A—C27A—H27A	108.9	C6C—C7C—C8C	132.2 (2)
C26A—C27A—H27A	108.9	C2C—C7C—C8C	107.0 (2)
C28A—C27A—H27B	108.9	N2C—C8C—N1C	122.8 (2)
C26A—C27A—H27B	108.9	N2C—C8C—C7C	130.1 (2)
H27A—C27A—H27B	107.7	N1C—C8C—C7C	105.51 (18)

C27A—C28A—C29A	114.1 (3)	N2C—C9C—N3C	122.52 (18)
C27A—C28A—H28A	108.7	N2C—C9C—C10C	131.0 (2)
C29A—C28A—H28A	108.7	N3C—C9C—C10C	105.31 (18)
C27A—C28A—H28B	108.7	C11C—C10C—C15C	120.49 (19)
C29A—C28A—H28B	108.7	C11C—C10C—C9C	132.2 (2)
H28A—C28A—H28B	107.6	C15C—C10C—C9C	107.25 (19)
C30A—C29A—C28A	112.6 (2)	C12C—C11C—C10C	117.6 (2)
С30А—С29А—Н29А	109.1	C12C—C11C—H11B	121.2
С28А—С29А—Н29А	109.1	C10C—C11C—H11B	121.2
C30A—C29A—H29B	109.1	C11C—C12C—C13C	121.8 (2)
C28A—C29A—H29B	109.1	C11C—C12C—H12B	119.1
H29A—C29A—H29B	107.8	C13C—C12C—H12B	119.1
C29A—C30A—C31A	114.0 (2)	C14C—C13C—C12C	121.2 (2)
C29A—C30A—H30A	108.7	C14C—C13C—H13B	119.4
C31A—C30A—H30A	108.7	C12C—C13C—H13B	119.4
C29A—C30A—H30B	108.7	C13C— $C14C$ — $C15C$	118.0 (2)
C31A—C30A—H30B	108.7	C13C—C14C—H14B	121.0
H_{30A} C_{30A} H_{30B}	107.6	C15C - C14C - H14B	121.0
$C_{32}A - C_{31}A - C_{30}A$	112.9 (2)	C14C - C15C - C10C	121.0 120.7(2)
$C_{32}A - C_{31}A - H_{31}A$	109.0	C14C - C15C - C16C	132.3(2)
C30A - C31A - H31A	109.0	C10C - C15C - C16C	106.97(18)
$C_{32}A - C_{31}A - H_{31}B$	109.0	N4C-C16C-N3C	122.39(19)
C30A-C31A-H31B	109.0	N4C-C16C-C15C	122.55(15)
H31A—C31A—H31B	107.8	N3C-C16C-C15C	105.83(19)
$C_{31}A = C_{32}A = H_{32}A$	109.5	N4C-C17C-N5C	102.03(1)
C_{31A} C_{32A} H_{32B}	109.5	N4C-C17C-C18C	122.0(2) 130.0(2)
H_{32A} C_{32A} H_{32B}	109.5	N5C-C17C-C18C	105.8(2)
$C_{31}A - C_{32}A - H_{32}C$	109.5	C19C - C18C - C23C	120.7(2)
H32A - C32A - H32C	109.5	C19C - C18C - C17C	132.5(2)
H32B-C32A-H32C	109.5	$C_{23}C_{-}C_{18}C_{-}C_{17}C_{-}C_{-}C_{17}C_{-}C_{1$	102.0(2) 106.8(2)
O1A— $B1A$ — $N1A$	111.98 (19)	$C_{20}C_{-}C_{19}C_{-}C_{18}C$	118.3 (2)
O1A—B1A—N5A	116.5 (2)	C20C—C19C—H19B	120.8
N1A—B1A—N5A	103.26 (18)	C18C—C19C—H19B	120.8
O1A—B1A—N3A	117.28 (19)	C19C - C20C - C21C	120.9(2)
N1A—B1A—N3A	103.62 (18)	C19C—C20C—H20B	119.5
N5A—B1A—N3A	102.45 (18)	C21C—C20C—H20B	119.5
C8B—N1B—C1B	113.48 (18)	$C_{22}C_{-}C_{21}C_{-}C_{20}C_{$	121.7(2)
C8B—N1B—B1B	122.40 (18)	C22C—C21C—H21B	119.1
C1B— $N1B$ — $B1B$	123.49 (18)	$C_{20}C_{-}C_{21}C_{-}H_{21}B$	119.1
C8B—N2B—C9B	116.97 (18)	$C_{21}C_{-}C_{22}C_{-}C_{23}C_{$	117.9 (2)
C9B—N3B—C16B	112.23 (17)	C21C—C22C—H22B	121.0
C9B—N3B—B1B	122.45(18)	C23C—C22C—H22B	121.0
C16B = N3B = B1B	123 70 (18)	$C^{22}C - C^{23}C - C^{18}C$	120.3(2)
C16B—N4B—C17B	116.94 (18)	C22C - C23C - C24C	132.4 (2)
C17B—N5B—C24B	112.65 (18)	$C_{18C} - C_{23C} - C_{24C}$	107.14 (19)
C17B—N5B—B1B	123.72 (18)	N6C—C24C—N5C	122.1 (2)
C24B—N5B—B1B	122.88 (18)	N6C—C24C—C23C	130.92 (19)
C1B—N6B—C24B	116.74 (18)	N5C—C24C—C23C	105.76 (19)
· · · · · · · · · · · · · · · · · · ·			

N6B—C1B—N1B	122.37 (19)	C25C—O1C—B1C	125.3 (3)
N6B—C1B—C2B	130.8 (2)	O1C—C25C—C26C	116.1 (4)
N1B—C1B—C2B	105.49 (18)	O1C—C25C—H25G	108.3
C3B—C2B—C7B	120.3 (2)	C26C—C25C—H25G	108.3
C3B—C2B—C1B	132.6 (2)	01С—С25С—Н25Н	108.3
C7B—C2B—C1B	107.05 (18)	С26С—С25С—Н25Н	108.3
C4B—C3B—C2B	118.1 (2)	Н25G—С25С—Н25Н	107.4
С4В—С3В—Н3ВА	121.0	C25C—C26C—C27C	114.4 (5)
С2В—С3В—Н3ВА	121.0	C25C—C26C—H26G	108.7
C3B—C4B—C5B	121.2 (2)	C27C—C26C—H26G	108.7
C3B—C4B—H4BA	119.4	С25С—С26С—Н26Н	108.7
C5B—C4B—H4BA	119.4	С27С—С26С—Н26Н	108.7
C6B—C5B—C4B	121.5 (2)	Н26G—С26С—Н26Н	107.6
C6B—C5B—H5BA	119.3	C26C—C27C—C28C	113.4 (4)
C4B—C5B—H5BA	119.3	C26C—C27C—H27G	108.9
C5B—C6B—C7B	118.0 (2)	C28C—C27C—H27G	108.9
С5В—С6В—Н6ВА	121.0	С26С—С27С—Н27Н	108.9
С7В—С6В—Н6ВА	121.0	С28С—С27С—Н27Н	108.9
C6B—C7B—C2B	120.8 (2)	Н27G—С27С—Н27Н	107.7
C6B—C7B—C8B	131.7 (2)	C29C—C28C—C27C	117.0 (6)
C2B—C7B—C8B	107.41 (18)	C29C—C28C—H28G	108.0
N2B—C8B—N1B	122.66 (19)	C27C—C28C—H28G	108.0
N2B—C8B—C7B	130.29 (19)	С29С—С28С—Н28Н	108.0
N1B-C8B-C7B	105.32 (18)	С27С—С28С—Н28Н	108.0
N2B—C9B—N3B	122.60 (19)	H28G—C28C—H28H	107.3
N2B-C9B-C10B	129.37 (19)	C28C—C29C—C30C	113.8 (5)
N3B-C9B-C10B	105.95 (18)	C28C—C29C—H29G	108.8
C11B—C10B—C15B	120.7 (2)	C30C—C29C—H29G	108.8
C11B—C10B—C9B	131.6 (2)	С28С—С29С—Н29Н	108.8
C15B—C10B—C9B	107.33 (18)	С30С—С29С—Н29Н	108.8
C12B—C11B—C10B	117.7 (2)	Н29G—С29С—Н29Н	107.7
C12B—C11B—H11C	121.2	C31C—C30C—C29C	115.7 (5)
C10B—C11B—H11C	121.2	C31C—C30C—H30G	108.4
C11B—C12B—C13B	121.6 (2)	C29C—C30C—H30G	108.4
C11B—C12B—H12C	119.2	С31С—С30С—Н30Н	108.4
C13B—C12B—H12C	119.2	С29С—С30С—Н30Н	108.4
C14B—C13B—C12B	121.1 (2)	Н30G—С30С—Н30Н	107.4
C14B—C13B—H13C	119.5	C30C—C31C—C32C	113.5 (8)
C12B—C13B—H13C	119.5	C30C—C31C—H31G	108.9
C13B—C14B—C15B	118.2 (2)	C32C—C31C—H31G	108.9
C13B—C14B—H14C	120.9	С30С—С31С—Н31Н	108.9
C15B—C14B—H14C	120.9	С32С—С31С—Н31Н	108.9
C14B—C15B—C10B	120.6 (2)	Н31G—С31С—Н31Н	107.7
C14B—C15B—C16B	131.9 (2)	C31C—C32C—H32G	109.5
C10B—C15B—C16B	107.10 (19)	С31С—С32С—Н32Н	109.5
N4B—C16B—N3B	122.59 (19)	H32G—C32C—H32H	109.5
N4B—C16B—C15B	129.4 (2)	C31C—C32C—H32I	109.5
N3B—C16B—C15B	106.27 (19)	H32G—C32C—H32I	109.5

N4B—C17B—N5B	122.3 (2)	H32H—C32C—H32I	109.5
N4B-C17B-C18B	130.0 (2)	C25E—O1E—B1C	128.0 (3)
N5B—C17B—C18B	106.08 (18)	O1E—C25E—C26E	116.4 (4)
C19B—C18B—C23B	121.0 (2)	O1E—C25E—H25J	108.2
C19B—C18B—C17B	131.7 (2)	C26E—C25E—H25J	108.2
C23B—C18B—C17B	107.16 (19)	O1E—C25E—H25K	108.2
C20B—C19B—C18B	117.7 (2)	C26E—C25E—H25K	108.2
C20B—C19B—H19C	121.2	H25J—C25E—H25K	107.3
C18B—C19B—H19C	121.2	C25E—C26E—C27E	113.0 (5)
C19B—C20B—C21B	121.1 (2)	C25E—C26E—H26J	109.0
C19B—C20B—H20C	119.4	C27E—C26E—H26J	109.0
C21B—C20B—H20C	119.4	C25E—C26E—H26K	109.0
C22B—C21B—C20B	122.1 (2)	С27Е—С26Е—Н26К	109.0
C22B-C21B-H21C	119.0	H26J—C26E—H26K	107.8
C_{20B} C_{21B} H_{21C}	119.0	C26E—C27E—C28E	112.6 (5)
C_{21B} C_{22B} C_{23B}	117.7 (2)	C_{26E} C_{27E} H_{27I}	109.1
C_{21B} C_{22B} H_{22C}	121.2	C_{28E} C_{27E} H_{27I}	109.1
C_{23B} C_{22B} H_{22C}	121.2	$C_{26E} = C_{27E} = H_{27K}$	109.1
C_{22B} C_{23B} C_{18B}	120.3(2)	C_{28E} C_{27E} H_{27K}	109.1
$C_{22B} = C_{23B} = C_{24B}$	132.7(2)	H27I - C27E - H27K	107.8
C18B-C23B-C24B	106 97 (19)	C27E - C28E - C29E	107.0 115.5(7)
N6B-C24B-N5B	122 46 (19)	$C_{27E} = C_{28E} = H_{28I}$	108.4
N6B-C24B-C23B	1301(2)	$C_{29E} = C_{28E} = H_{28I}$	108.4
N5B-C24B-C23B	105.75(18)	C27E C28E H28K	108.4
B1B = O1B = C25B	119.09 (18)	C_{29F} C_{28F} H_{28K}	108.4
B1B = O1B = C25D	119.09 (18)	H_{28I} C_{28E} H_{28K}	107.5
01B-C25B-C26B	110.4 (2)	$C_{30}E_{-}C_{29}E_{-}C_{28}E_{-}$	113 3 (7)
01B - C25B - H25C	109.6	C30E—C29E—H29J	108.9
C_{26B} C_{25B} H_{25C}	109.6	$C_{28E} = C_{29E} = H_{29I}$	108.9
O1B— $C25B$ — $H25D$	109.6	C30E—C29E—H29K	108.9
C26B—C25B—H25D	109.6	C28E—C29E—H29K	108.9
H25C—C25B—H25D	108.1	H29J—C29E—H29K	107.7
C27B-C26B-C25B	111.5 (3)	$C_{29E} - C_{30E} - C_{31E}$	111.6 (6)
C27B—C26B—H26C	109.3	C29E—C30E—H30J	109.3
C25B—C26B—H26C	109.3	C31E—C30E—H30J	109.3
C27B—C26B—H26D	109.3	C29E—C30E—H30K	109.3
C25B—C26B—H26D	109.3	C31E—C30E—H30K	109.3
H26C—C26B—H26D	108.0	H30J—C30E—H30K	108.0
C26B—C27B—C28B	116.8 (4)	C30E—C31E—C32E	105.4 (8)
C26B—C27B—H27C	108.1	C30E—C31E—H31J	110.7
C28B—C27B—H27C	108.1	C32E—C31E—H31J	110.7
C26B—C27B—H27D	108.1	C30E—C31E—H31K	110.7
C28B—C27B—H27D	108.1	C32E—C31E—H31K	110.7
H27C—C27B—H27D	107.3	H31J—C31E—H31K	108.8
C29B—C28B—C27B	117.2 (5)	C31E—C32E—H32J	109.5
C29B—C28B—H28C	108.0	C31E—C32E—H32K	109.5
C27B—C28B—H28C	108.0	H32J—C32E—H32K	109.5
C29B—C28B—H28D	108.0	C31E—C32E—H32L	109.5

C27B—C28B—H28D	108.0	H32J—C32E—H32L	109.5
H28C—C28B—H28D	107.2	H32K—C32E—H32L	109.5
C28B—C29B—C30B	114.0 (5)	O1E—B1C—N5C	113.6 (2)
C28B—C29B—H29C	108.8	O1C—B1C—N5C	113.6 (2)
C30B—C29B—H29C	108.8	O1E—B1C—N1C	114.8 (2)
C28B—C29B—H29D	108.8	O1C—B1C—N1C	114.8 (2)
C30B—C29B—H29D	108.8	N5C—B1C—N1C	103.66 (17)
H29C—C29B—H29D	107.6	O1E—B1C—N3C	117.28 (18)
C31B—C30B—C29B	107.0 (4)	O1C—B1C—N3C	117.28 (18)
C31B—C30B—H30C	110.3	N5C—B1C—N3C	102.80 (18)
C29B—C30B—H30C	110.3	N1C—B1C—N3C	102.97 (19)
C31B—C30B—H30D	110.3	H1WB—O1W—H1WA	98.6
C29B—C30B—H30D	110.3		
C24A—N6A—C1A—N1A	-9.4 (3)	C18B—C19B—C20B—C21B	2.1 (4)
C24A—N6A—C1A—C2A	151.6 (2)	C19B—C20B—C21B—C22B	0.1 (4)
C8A—N1A—C1A—N6A	153.4 (2)	C20B—C21B—C22B—C23B	-1.8 (4)
B1A—N1A—C1A—N6A	-13.3 (3)	C21B—C22B—C23B—C18B	1.1 (3)
C8A—N1A—C1A—C2A	-11.3 (2)	C21B—C22B—C23B—C24B	179.1 (2)
B1A—N1A—C1A—C2A	-178.0 (2)	C19B—C18B—C23B—C22B	1.1 (3)
N6A—C1A—C2A—C3A	15.6 (4)	C17B—C18B—C23B—C22B	178.4 (2)
N1A—C1A—C2A—C3A	179.0 (2)	C19B—C18B—C23B—C24B	-177.3 (2)
N6A—C1A—C2A—C7A	-156.3 (2)	C17B—C18B—C23B—C24B	0.0 (2)
N1A—C1A—C2A—C7A	7.1 (2)	C1B—N6B—C24B—N5B	7.5 (3)
C7A—C2A—C3A—C4A	0.3 (3)	C1B—N6B—C24B—C23B	-155.6 (2)
C1A—C2A—C3A—C4A	-170.6 (2)	C17B—N5B—C24B—N6B	-154.7 (2)
C2A—C3A—C4A—C5A	0.3 (4)	B1B-N5B-C24B-N6B	15.7 (3)
C3A—C4A—C5A—C6A	-0.4 (4)	C17B—N5B—C24B—C23B	12.0 (2)
C4A—C5A—C6A—C7A	0.0 (4)	B1B-N5B-C24B-C23B	-177.59 (18)
C5A—C6A—C7A—C2A	0.6 (3)	C22B—C23B—C24B—N6B	-19.8 (4)
C5A—C6A—C7A—C8A	171.7 (2)	C18B—C23B—C24B—N6B	158.4 (2)
C3A—C2A—C7A—C6A	-0.8 (3)	C22B—C23B—C24B—N5B	174.9 (2)
C1A—C2A—C7A—C6A	172.2 (2)	C18B—C23B—C24B—N5B	-6.9 (2)
C3A—C2A—C7A—C8A	-173.9 (2)	B1B-01B-C25B-C26B	105.0 (2)
C1A—C2A—C7A—C8A	-0.9 (2)	O1B-C25B-C26B-C27B	65.9 (3)
C9A—N2A—C8A—N1A	8.4 (3)	C25B—C26B—C27B—C28B	-171.3 (4)
C9A—N2A—C8A—C7A	-152.9 (2)	C26B—C27B—C28B—C29B	59.0 (7)
C1A—N1A—C8A—N2A	-154.2 (2)	C27B—C28B—C29B—C30B	71.1 (7)
B1A—N1A—C8A—N2A	12.5 (3)	C28B—C29B—C30B—C31B	-170.4 (5)
C1A—N1A—C8A—C7A	10.8 (2)	C29B—C30B—C31B—C32B	-69.2 (6)
B1A—N1A—C8A—C7A	177.5 (2)	B1B-01B-C25D-C26D	105.0 (2)
C6A—C7A—C8A—N2A	-13.9 (4)	O1B-C25D-C26D-C27D	38.3 (9)
C2A—C7A—C8A—N2A	158.0 (2)	C25D—C26D—C27D—C28D	179.8 (10)
C6A—C7A—C8A—N1A	-177.6 (2)	C26D—C27D—C28D—C29D	171.4 (12)
C2A—C7A—C8A—N1A	-5.7 (2)	C27D-C28D-C29D-C30D	-62.7 (14)
C8A—N2A—C9A—N3A	-7.7 (3)	C28D—C29D—C30D—C31D	-139.0 (9)
C8A—N2A—C9A—C10A	153.0 (2)	C29D—C30D—C31D—C32D	87.0 (15)
C16A—N3A—C9A—N2A	153.0 (2)	C25B—O1B—B1B—N1B	-165.08 (18)

B1A—N3A—C9A—N2A	-13.8 (3)	C25D—O1B—B1B—N1B	-165.08 (18)
C16A—N3A—C9A—C10A	-11.5 (2)	C25B—O1B—B1B—N5B	77.6 (3)
B1A—N3A—C9A—C10A	-178.27 (19)	C25D—O1B—B1B—N5B	77.6 (3)
N2A—C9A—C10A—C11A	17.6 (4)	C25B—O1B—B1B—N3B	-46.1(3)
N3A—C9A—C10A—C11A	-179.3(2)	C25D—O1B—B1B—N3B	-46.1(3)
N2A—C9A—C10A—C15A	-1562(2)	C8B—N1B—B1B—O1B	951(2)
N3A - C9A - C10A - C15A	69(2)	C1B $N1B$ $B1B$ $O1B$	-946(2)
C_{15A} C_{10A} C_{11A} C_{12A}	0.3(2)	C8B N1B B1B N5B	-13882(10)
C_{13} C_{10} C_{11} C_{12} C_{12}	-172.8(2)	C1D N1D D1D N5D	130.02(19)
C_{9A} C_{10A} C_{12A} C_{12A} C_{12A}	-1/2.0(2)	CID-NID-BID-N3B	31.3(2)
C10A - C11A - C12A - C13A	0.6 (4)	CAB-NIB-BIB-N3B	-32.3(3)
C11A—C12A—C13A—C14A	-0.6 (4)	CIB—NIB—BIB—N3B	137.99 (19)
C12A—C13A—C14A—C15A	-0.4 (4)	C17B—N5B—B1B—O1B	-101.0 (2)
C13A—C14A—C15A—C10A	1.3 (3)	C24B—N5B—B1B—O1B	89.7 (3)
C13A—C14A—C15A—C16A	173.2 (2)	C17B—N5B—B1B—N1B	137.43 (19)
C11A—C10A—C15A—C14A	-1.3 (3)	C24B—N5B—B1B—N1B	-32.0 (2)
C9A—C10A—C15A—C14A	173.4 (2)	C17B—N5B—B1B—N3B	30.3 (3)
C11A—C10A—C15A—C16A	-175.02 (19)	C24B—N5B—B1B—N3B	-139.10 (19)
C9A—C10A—C15A—C16A	-0.3 (2)	C9B—N3B—B1B—O1B	-92.4 (3)
C17A—N4A—C16A—N3A	9.2 (3)	C16B—N3B—B1B—O1B	103.3 (2)
C17A—N4A—C16A—C15A	-152.6 (2)	C9B—N3B—B1B—N1B	30.3 (3)
C9A—N3A—C16A—N4A	-154.1 (2)	C16B—N3B—B1B—N1B	-134.0(2)
B1A—N3A—C16A—N4A	12.5 (3)	C9B—N3B—B1B—N5B	136.8 (2)
C9A—N3A—C16A—C15A	11.3 (2)	C16B—N3B—B1B—N5B	-27.6(3)
B1A—N3A—C16A—C15A	177.93 (19)	C24C—N6C—C1C—N1C	-6.6(3)
C14A - C15A - C16A - N4A	-149(4)	$C_24C - N6C - C1C - C2C$	1564(2)
C10A - C15A - C16A - N4A	1578(2)	C8C - N1C - C1C - N6C	153.4(2)
$C_{14} - C_{15} - C_{16} - N_{3}$	-1790(2)	$B1C_N1C_C1C_N6C$	-150(3)
C10A C15A C16A N3A	-63(2)	$C_{RC} = N_{1C} = C_{1C} = C_{2C}$	-13.1(2)
$C_{16A} = N_{16A} = C_{17A} = N_{5A}$	-8.4(2)	$\begin{array}{c} \text{Bic} \text{Nic} \text{cic} \text{cic} \\ \text{Cic} \text{Cic} \text{Cic} \\ \text{Cic} \text{Cic} \text{Cic} \\ \text{Cic} \text{Cic} \\ \text{Cic} \text{Cic} \\ \text{Cic} \text{Cic} \\ Cic$	13.1(2)
C16A = N4A = C17A = N3A	3.4(3)	$\mathbf{M} = \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M}$	178.30(19)
C10A = N4A = C17A = C10A	154.0(2)	N0C - C1C - C2C - C3C	17.0(4)
$C_{24}A = N_{5}A = C_{1}A = N_{4}A$	154.4 (2)	NIC = CIC = C2C = C3C	-1/6.4(2)
BIA—N5A—CI/A—N4A	-14.2(3)	N6C - C1C - C2C - C/C	-157.4 (2)
C_24A —N5A— C_1/A — C_{18A}	-11.6(2)		7.7(2)
BIA—N5A—CI/A—CI8A	179.84 (19)	C/C—C2C—C3C—C4C	-1.4(3)
N4A—C17A—C18A—C19A	16.3 (4)	C1C—C2C—C3C—C4C	-176.9 (2)
N5A—C17A—C18A—C19A	-179.2 (2)	C2C—C3C—C4C—C5C	1.7 (4)
N4A—C17A—C18A—C23A	-157.5 (2)	C3C—C4C—C5C—C6C	-0.5(5)
N5A—C17A—C18A—C23A	7.0 (2)	C4C—C5C—C6C—C7C	-1.1 (4)
C23A—C18A—C19A—C20A	0.0 (3)	C5C—C6C—C7C—C2C	1.4 (4)
C17A—C18A—C19A—C20A	-173.1 (2)	C5C—C6C—C7C—C8C	177.0 (3)
C18A—C19A—C20A—C21A	0.4 (3)	C3C—C2C—C7C—C6C	-0.1 (3)
C19A—C20A—C21A—C22A	0.0 (4)	C1C—C2C—C7C—C6C	176.3 (2)
C20A—C21A—C22A—C23A	-0.9 (3)	C3C—C2C—C7C—C8C	-176.7 (2)
C21A—C22A—C23A—C18A	1.3 (3)	C1C—C2C—C7C—C8C	-0.3 (2)
C21A—C22A—C23A—C24A	174.0 (2)	C9C—N2C—C8C—N1C	8.2 (3)
C19A—C18A—C23A—C22A	-0.9 (3)	C9C—N2C—C8C—C7C	-155.2 (2)
C17A—C18A—C23A—C22A	173.7 (2)	C1C—N1C—C8C—N2C	-154.0 (2)
C19A—C18A—C23A—C24A	-175.2 (2)	B1C—N1C—C8C—N2C	14.3 (3)

C17A—C18A—C23A—C24A	-0.6 (2)	C1C—N1C—C8C—C7C	12.9 (2)
C1A—N6A—C24A—N5A	9.4 (3)	B1C—N1C—C8C—C7C	-178.77 (19)
C1A—N6A—C24A—C23A	-154.0 (2)	C6C—C7C—C8C—N2C	-17.8 (4)
C17A—N5A—C24A—N6A	-155.6 (2)	C2C—C7C—C8C—N2C	158.3 (2)
B1A—N5A—C24A—N6A	13.2 (3)	C6C—C7C—C8C—N1C	176.7 (3)
C17A—N5A—C24A—C23A	11.2 (2)	C2CC7CC8CN1C	-7.3 (2)
B1A—N5A—C24A—C23A	179.9 (2)	C8C—N2C—C9C—N3C	-8.8 (3)
C22A—C23A—C24A—N6A	-14.1 (4)	C8C—N2C—C9C—C10C	157.1 (2)
C18A—C23A—C24A—N6A	159.4 (2)	C16C—N3C—C9C—N2C	157.42 (19)
C22A—C23A—C24A—N5A	-179.6 (2)	B1C—N3C—C9C—N2C	-13.0 (3)
C18A—C23A—C24A—N5A	-6.1 (2)	C16C—N3C—C9C—C10C	-11.6 (2)
B1A—O1A—C25A—C26A	110.0 (3)	B1C-N3C-C9C-C10C	177.97 (18)
O1A—C25A—C26A—C27A	174.7 (2)	N2C-C9C-C10C-C11C	16.3 (4)
C25A—C26A—C27A—C28A	-175.7 (3)	N3C-C9C-C10C-C11C	-176.0 (2)
C26A—C27A—C28A—C29A	176.8 (3)	N2C-C9C-C10C-C15C	-162.0 (2)
C27A—C28A—C29A—C30A	-175.4 (3)	N3C-C9C-C10C-C15C	5.7 (2)
C28A—C29A—C30A—C31A	173.6 (3)	C15C—C10C—C11C—C12C	-3.6(3)
C29A—C30A—C31A—C32A	-179.4 (2)	C9C—C10C—C11C—C12C	178.3 (2)
C25A—O1A—B1A—N1A	-177.44 (19)	C10C—C11C—C12C—C13C	2.4 (3)
C25A—O1A—B1A—N5A	64.0 (3)	C11C—C12C—C13C—C14C	1.1 (3)
C25A—O1A—B1A—N3A	-57.8 (3)	C12C—C13C—C14C—C15C	-3.2(3)
C1A—N1A—B1A—O1A	-95.9 (3)	C13C—C14C—C15C—C10C	2.0 (3)
C8A—N1A—B1A—O1A	98.8 (2)	C13C—C14C—C15C—C16C	-179.9 (2)
C1A—N1A—B1A—N5A	30.2 (3)	C11C—C10C—C15C—C14C	1.5 (3)
C8A—N1A—B1A—N5A	-135.1 (2)	C9C—C10C—C15C—C14C	180.00 (19)
C1A—N1A—B1A—N3A	136.8 (2)	C11C—C10C—C15C—C16C	-177.09 (19)
C8A—N1A—B1A—N3A	-28.5 (3)	C9C—C10C—C15C—C16C	1.4 (2)
C24A—N5A—B1A—O1A	93.1 (2)	C17C—N4C—C16C—N3C	9.0 (3)
C17A—N5A—B1A—O1A	-99.5 (3)	C17C—N4C—C16C—C15C	-156.6 (2)
C24A—N5A—B1A—N1A	-30.1 (3)	C9C—N3C—C16C—N4C	-156.07 (19)
C17A—N5A—B1A—N1A	137.4 (2)	B1C—N3C—C16C—N4C	14.4 (3)
C24A—N5A—B1A—N3A	-137.5 (2)	C9C—N3C—C16C—C15C	12.6 (2)
C17A—N5A—B1A—N3A	29.9 (3)	B1C-N3C-C16C-C15C	-176.95 (18)
C9A—N3A—B1A—O1A	-94.8 (2)	C14C—C15C—C16C—N4C	-19.1 (4)
C16A—N3A—B1A—O1A	99.9 (2)	C10C—C15C—C16C—N4C	159.2 (2)
C9A—N3A—B1A—N1A	29.1 (3)	C14C—C15C—C16C—N3C	173.5 (2)
C16A—N3A—B1A—N1A	-136.2 (2)	C10C—C15C—C16C—N3C	-8.1 (2)
C9A—N3A—B1A—N5A	136.29 (19)	C16C—N4C—C17C—N5C	-8.3 (3)
C16A—N3A—B1A—N5A	-29.0 (3)	C16C—N4C—C17C—C18C	155.5 (2)
C24B—N6B—C1B—N1B	-8.2 (3)	C24C—N5C—C17C—N4C	154.6 (2)
C24B—N6B—C1B—C2B	156.6 (2)	B1C—N5C—C17C—N4C	-15.9 (3)
C8B—N1B—C1B—N6B	156.63 (19)	C24C—N5C—C17C—C18C	-12.6(2)
B1B—N1B—C1B—N6B	-14.5 (3)	B1C-N5C-C17C-C18C	176.9 (2)
C8B—N1B—C1B—C2B	-11.5 (2)	N4C—C17C—C18C—C19C	19.7 (4)
B1B—N1B—C1B—C2B	177.39 (18)	N5C—C17C—C18C—C19C	-174.4 (2)
N6B—C1B—C2B—C3B	17.5 (4)	N4C—C17C—C18C—C23C	-157.6 (2)
N1B—C1B—C2B—C3B	-175.8 (2)	N5C—C17C—C18C—C23C	8.3 (2)
N6B—C1B—C2B—C7B	-160.0(2)	C23C—C18C—C19C—C20C	0.3 (4)
	× /		× /

N1B—C1B—C2B—C7B	6.7 (2)	C17C—C18C—C19C—C20C	-176.8 (2)
C7B—C2B—C3B—C4B	-1.4 (3)	C18C—C19C—C20C—C21C	1.9 (4)
C1B—C2B—C3B—C4B	-178.6(2)	C19C—C20C—C21C—C22C	-2.0(4)
C2B—C3B—C4B—C5B	1.2 (3)	C20C—C21C—C22C—C23C	-0.3 (4)
C3B—C4B—C5B—C6B	0.7 (3)	C21C—C22C—C23C—C18C	2.5 (3)
C4B—C5B—C6B—C7B	-2.3(3)	C21C—C22C—C23C—C24C	178.4 (2)
C5B—C6B—C7B—C2B	2.1 (3)	C19C—C18C—C23C—C22C	-2.5(3)
C5B—C6B—C7B—C8B	179.3 (2)	C17C—C18C—C23C—C22C	175.2 (2)
C3B—C2B—C7B—C6B	-0.2 (3)	C19C—C18C—C23C—C24C	-179.4 (2)
C1B—C2B—C7B—C6B	177.64 (19)	C17C—C18C—C23C—C24C	-1.6(2)
C3B—C2B—C7B—C8B	-178.10 (19)	C1C—N6C—C24C—N5C	7.4 (3)
C1B—C2B—C7B—C8B	-0.2 (2)	C1C—N6C—C24C—C23C	-157.9 (2)
C9B—N2B—C8B—N1B	8.1 (3)	C17C—N5C—C24C—N6C	-156.9 (2)
C9B—N2B—C8B—C7B	-154.6 (2)	B1C-N5C-C24C-N6C	13.5 (3)
C1B—N1B—C8B—N2B	-155.1 (2)	C17C—N5C—C24C—C23C	11.6 (2)
B1B—N1B—C8B—N2B	16.1 (3)	B1C—N5C—C24C—C23C	-178.02(19)
C1B—N1B—C8B—C7B	11.3 (2)	C22C—C23C—C24C—N6C	-14.9 (4)
B1B—N1B—C8B—C7B	-177.44 (18)	C18C—C23C—C24C—N6C	161.4 (2)
C6B—C7B—C8B—N2B	-18.9 (4)	C22C—C23C—C24C—N5C	178.1 (2)
C2B-C7B-C8B-N2B	158.6 (2)	C18C—C23C—C24C—N5C	-5.6(2)
C6B—C7B—C8B—N1B	176.1 (2)	B1C—O1C—C25C—C26C	174.3 (4)
C2B-C7B-C8B-N1B	-6.4(2)	O1C—C25C—C26C—C27C	-74.6 (6)
C8B—N2B—C9B—N3B	-10.1(3)	C25C—C26C—C27C—C28C	-164.4 (7)
C8B—N2B—C9B—C10B	151.0 (2)	C26C—C27C—C28C—C29C	179.9 (8)
C16B—N3B—C9B—N2B	154.0 (2)	C27C—C28C—C29C—C30C	-174.5 (8)
B1B—N3B—C9B—N2B	-11.9(3)	C28C—C29C—C30C—C31C	-169.9 (8)
C16B—N3B—C9B—C10B	-10.9(2)	C29C—C30C—C31C—C32C	-63.5 (10)
B1B-N3B-C9B-C10B	-176.88 (19)	B1C-01E-C25E-C26E	-166.9 (4)
N2B-C9B-C10B-C11B	16.2 (4)	O1E—C25E—C26E—C27E	-171.1 (5)
N3B—C9B—C10B—C11B	179.7 (2)	C25E—C26E—C27E—C28E	-172.2(7)
N2B—C9B—C10B—C15B	-156.8(2)	C26E—C27E—C28E—C29E	-172.9(7)
N3B—C9B—C10B—C15B	6.8 (2)	C27E—C28E—C29E—C30E	-67.4 (11)
C15B—C10B—C11B—C12B	0.2 (3)	C28E—C29E—C30E—C31E	-172.0(8)
C9B—C10B—C11B—C12B	-171.9 (2)	C29E—C30E—C31E—C32E	175.0 (8)
C10B—C11B—C12B—C13B	0.1 (4)	C25E—O1E—B1C—N5C	162.1 (4)
C11B—C12B—C13B—C14B	0.1 (4)	C25E—O1E—B1C—N1C	-78.8 (4)
C12B—C13B—C14B—C15B	-0.7 (4)	C25E—O1E—B1C—N3C	42.3 (5)
C13B—C14B—C15B—C10B	1.1 (3)	C25C—O1C—B1C—N5C	68.8 (4)
C13B—C14B—C15B—C16B	172.9 (2)	C25C—O1C—B1C—N1C	-172.2 (3)
C11B—C10B—C15B—C14B	-0.9 (3)	C25C—O1C—B1C—N3C	-51.0 (4)
C9B—C10B—C15B—C14B	173.0 (2)	C24C—N5C—B1C—O1E	95.8 (3)
C11B—C10B—C15B—C16B	-174.5 (2)	C17C—N5C—B1C—O1E	-94.7 (2)
C9B—C10B—C15B—C16B	-0.6 (2)	C24C—N5C—B1C—O1C	95.8 (3)
C17B—N4B—C16B—N3B	10.4 (3)	C17C—N5C—B1C—O1C	-94.7 (2)
C17B—N4B—C16B—C15B	-152.4 (2)	C24C—N5C—B1C—N1C	-29.5 (3)
C9B—N3B—C16B—N4B	-155.7 (2)	C17C—N5C—B1C—N1C	140.0 (2)
B1B-N3B-C16B-N4B	10.1 (3)	C24C—N5C—B1C—N3C	-136.5 (2)
C9B—N3B—C16B—C15B	10.6 (2)	C17C—N5C—B1C—N3C	33.0 (3)
	~ /		\[

B1B—N3B—C16B—C15B	176.33 (19)	C8C—N1C—B1C—O1E	98.4 (3)
C14B—C15B—C16B—N4B	-13.4 (4)	C1C—N1C—B1C—O1E	-94.4 (3)
C10B—C15B—C16B—N4B	159.3 (2)	C8C—N1C—B1C—O1C	98.4 (3)
C14B—C15B—C16B—N3B	-178.4 (2)	C1C—N1C—B1C—O1C	-94.4 (3)
C10B—C15B—C16B—N3B	-5.7 (2)	C8C—N1C—B1C—N5C	-137.1 (2)
C16B—N4B—C17B—N5B	-7.8 (3)	C1C—N1C—B1C—N5C	30.0 (3)
C16B—N4B—C17B—C18B	155.4 (2)	C8C—N1C—B1C—N3C	-30.3 (3)
C24B—N5B—C17B—N4B	154.7 (2)	C1C—N1C—B1C—N3C	136.90 (19)
B1B—N5B—C17B—N4B	-15.6 (3)	C16C—N3C—B1C—O1E	93.0 (3)
C24B—N5B—C17B—C18B B1B—N5B—C17B—C18B N4B—C17B—C18B—C19B	-12.0 (2) 177.66 (19) 18.6 (4)	C9C—N3C—B1C—O1E C16C—N3C—B1C—O1C C9C—N3C—B1C—O1C	-97.5(3) 93.0(3) -97.5(3) 22.4(2)
N3B—C17B—C18B—C19B N4B—C17B—C18B—C23B N5B—C17B—C18B—C23B C23B—C18B—C19B—C20B C17B—C18B—C19B—C20B	-176.1(2) -158.4(2) 6.9(2) -2.6(3) -179.3(2)	C9C—N3C—B1C—N5C C16C—N3C—B1C—N5C C16C—N3C—B1C—N1C C9C—N3C—B1C—N1C	-32.4 (3) 137.2 (2) -139.87 (19) 29.6 (3)
CI/B CI0B CI/B C20B	1,7.5 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
O1 <i>W</i> —H1 <i>WB</i> ···N6 <i>A</i>	0.84	2.16	3.005 (8)	179
$O1W$ —H1 WA ····N4 B^{i}	0.84	2.20	3.043 (9)	179

Symmetry code: (i) -x+1, -y+1, -z+1.

(Phenolato)(subphthalocyaninato)boron (d2335_a)

Crystal data

$C_{30}H_{17}BN_6O$	Z = 2
$M_r = 488.30$	F(000) = 504
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.431 {\rm Mg} {\rm m}^{-3}$
a = 10.0268 (10) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 10.7263 (12) Å	Cell parameters from 6094 reflections
c = 11.8090 (13) Å	$\theta = 2.3 - 27.2^{\circ}$
$\alpha = 85.879 \ (4)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 77.440 \ (3)^{\circ}$	T = 150 K
$\gamma = 66.151 \ (3)^{\circ}$	Shard, pink
V = 1133.6 (2) Å ³	$0.28 \times 0.15 \times 0.09 \text{ mm}$
Data collection	
Bruker Kappa ADEX DUO CMOS DUOTON II	26461 manyurad reflections

Bruker Kappa APEX-DUO CMOS PHOTON II	26461 measured reflections
diffractometer	5137 independent reflections
Radiation source: sealed tube with Bruker	3795 reflections with $I > 2\sigma(I)$
Triumph monochromator	$R_{\rm int} = 0.052$
φ and ω scans	$\theta_{\rm max} = 27.5^\circ, \ \theta_{\rm min} = 1.8^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 11$
(SADABS; Krause et al., 2015)	$k = -13 \rightarrow 13$
$T_{\min} = 0.687, \ T_{\max} = 0.746$	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$	Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from
$wR(F^2) = 0.095$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
5137 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0462P)^2 + 0.1591P]$
343 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
	$\Delta ho_{ m max} = 0.22 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$
Special details	

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.60836 (9)	0.58360 (9)	0.39809 (7)	0.0225 (2)	
N1	0.82829 (12)	0.20316 (11)	0.37311 (9)	0.0217 (2)	
N2	0.86304 (11)	0.41087 (11)	0.36391 (9)	0.0200 (2)	
N3	0.99417 (12)	0.54932 (11)	0.28170 (10)	0.0229 (2)	
N4	0.78717 (11)	0.55805 (10)	0.21103 (9)	0.0194 (2)	
N5	0.66845 (11)	0.50195 (10)	0.08169 (9)	0.0216 (2)	
N6	0.69756 (11)	0.38657 (10)	0.26052 (9)	0.0200 (2)	
C1	0.89779 (14)	0.27856 (13)	0.39799 (11)	0.0209 (3)	
C2	1.03999 (14)	0.23562 (13)	0.43385 (11)	0.0219 (3)	
C3	1.13027 (15)	0.11419 (14)	0.47752 (11)	0.0249 (3)	
H3A	1.097207	0.042659	0.498462	0.030*	
C4	1.26953 (15)	0.10072 (14)	0.48954 (12)	0.0282 (3)	
H4A	1.332206	0.018810	0.519985	0.034*	
C5	1.32060 (15)	0.20416 (15)	0.45819 (12)	0.0301 (3)	
H5A	1.417158	0.191245	0.467242	0.036*	
C6	1.23264 (15)	0.32495 (14)	0.41420 (12)	0.0279 (3)	
H6A	1.267864	0.394918	0.392013	0.033*	
C7	1.09155 (14)	0.34156 (13)	0.40321 (11)	0.0222 (3)	
C8	0.97963 (14)	0.44909 (13)	0.35198 (11)	0.0213 (3)	
C9	0.90088 (14)	0.59754 (13)	0.20773 (11)	0.0216 (3)	
C10	0.91289 (14)	0.66902 (13)	0.09880 (11)	0.0221 (3)	
C11	1.00034 (14)	0.74072 (13)	0.05127 (12)	0.0266 (3)	
H11A	1.069321	0.748820	0.091051	0.032*	
C12	0.98350 (15)	0.79963 (14)	-0.05555 (13)	0.0295 (3)	
H12A	1.038160	0.852913	-0.087655	0.035*	
C13	0.88785 (15)	0.78252 (14)	-0.11731 (12)	0.0284 (3)	
H13A	0.879883	0.823482	-0.190946	0.034*	
C14	0.80442 (14)	0.70726 (13)	-0.07371 (12)	0.0250 (3)	
H14A	0.742488	0.693035	-0.117405	0.030*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C15	0.81440 (14)	0.65294 (13)	0.03674 (11)	0.0217 (3)
C16	0.74174 (13)	0.57282 (12)	0.10831 (11)	0.0204 (3)
C17	0.65606 (13)	0.40411 (13)	0.15564 (11)	0.0206 (3)
C18	0.63636 (13)	0.28129 (13)	0.13500 (11)	0.0206 (3)
C19	0.59450 (14)	0.24229 (14)	0.04296 (12)	0.0244 (3)
H19A	0.563656	0.303407	-0.017647	0.029*
C20	0.59931 (15)	0.11185 (14)	0.04268 (12)	0.0273 (3)
H20A	0.568344	0.083898	-0.017991	0.033*
C21	0.64868 (15)	0.02013 (14)	0.12962 (12)	0.0258 (3)
H21A	0.650520	-0.068858	0.126791	0.031*
C22	0.69491 (14)	0.05581 (13)	0.21967 (12)	0.0230 (3)
H22A	0.731545	-0.008265	0.276977	0.028*
C23	0.68631 (13)	0.18853 (13)	0.22413 (11)	0.0208 (3)
C24	0.73460 (14)	0.25611 (13)	0.29959 (11)	0.0202 (3)
C25	0.48406 (14)	0.66715 (13)	0.35606 (11)	0.0213 (3)
C26	0.37130 (15)	0.62436 (15)	0.35710 (12)	0.0287 (3)
H26A	0.378545	0.538020	0.387713	0.034*
C27	0.24733 (16)	0.70750 (17)	0.31343 (13)	0.0359 (4)
H27A	0.170203	0.677554	0.313346	0.043*
C28	0.23567 (16)	0.83366 (17)	0.27007 (13)	0.0373 (4)
H28A	0.150759	0.890544	0.240092	0.045*
C29	0.34800 (16)	0.87679 (15)	0.27049 (13)	0.0330 (3)
H29A	0.339533	0.963989	0.241377	0.040*
C30	0.47267 (15)	0.79420 (14)	0.31288 (12)	0.0256 (3)
H30A	0.549959	0.824095	0.312488	0.031*
B1	0.72912 (16)	0.49125 (15)	0.31433 (13)	0.0202 (3)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0238 (5)	0.0221 (5)	0.0209 (5)	-0.0078 (4)	-0.0059 (4)	0.0012 (4)
N1	0.0255 (6)	0.0218 (6)	0.0196 (6)	-0.0112 (5)	-0.0053 (5)	0.0021 (4)
N2	0.0231 (5)	0.0187 (6)	0.0196 (6)	-0.0091 (4)	-0.0061 (4)	0.0021 (4)
N3	0.0251 (6)	0.0196 (6)	0.0262 (6)	-0.0096 (5)	-0.0087(5)	0.0019 (5)
N4	0.0204 (5)	0.0162 (5)	0.0212 (6)	-0.0066 (4)	-0.0053 (4)	0.0012 (4)
N5	0.0214 (5)	0.0176 (6)	0.0246 (6)	-0.0059 (4)	-0.0067 (4)	0.0023 (5)
N6	0.0212 (5)	0.0184 (5)	0.0208 (6)	-0.0079 (4)	-0.0059 (4)	0.0020 (4)
C1	0.0252 (6)	0.0190 (6)	0.0177 (7)	-0.0081(5)	-0.0051 (5)	0.0026 (5)
C2	0.0263 (7)	0.0227 (7)	0.0167 (7)	-0.0090(5)	-0.0058 (5)	-0.0007(5)
C3	0.0315 (7)	0.0223 (7)	0.0208 (7)	-0.0091 (6)	-0.0092 (6)	0.0022 (5)
C4	0.0329 (7)	0.0247 (7)	0.0231 (7)	-0.0042 (6)	-0.0127 (6)	0.0016 (6)
C5	0.0261 (7)	0.0338 (8)	0.0303 (8)	-0.0078 (6)	-0.0135 (6)	-0.0014 (6)
C6	0.0294 (7)	0.0277 (8)	0.0309 (8)	-0.0130 (6)	-0.0122 (6)	0.0006 (6)
C7	0.0268 (7)	0.0214 (7)	0.0196 (7)	-0.0085 (5)	-0.0091 (5)	0.0001 (5)
C8	0.0234 (6)	0.0201 (7)	0.0220 (7)	-0.0093 (5)	-0.0063 (5)	-0.0017 (5)
С9	0.0219 (6)	0.0171 (6)	0.0257 (7)	-0.0080(5)	-0.0039 (5)	-0.0012 (5)
C10	0.0203 (6)	0.0162 (6)	0.0257 (7)	-0.0045 (5)	-0.0026 (5)	0.0010 (5)
C11	0.0224 (6)	0.0216 (7)	0.0326 (8)	-0.0070 (5)	-0.0029 (6)	0.0017 (6)

C12	0.0249 (7)	0.0248 (7)	0.0329 (8)	-0.0090 (6)	0.0029 (6)	0.0053 (6)
C13	0.0287 (7)	0.0239 (7)	0.0235 (7)	-0.0052 (6)	0.0010 (6)	0.0045 (6)
C14	0.0243 (7)	0.0214 (7)	0.0235 (7)	-0.0044 (5)	-0.0027 (5)	0.0001 (5)
C15	0.0220 (6)	0.0154 (6)	0.0231 (7)	-0.0040 (5)	-0.0022 (5)	0.0007 (5)
C16	0.0194 (6)	0.0166 (6)	0.0215 (7)	-0.0035 (5)	-0.0047 (5)	0.0009 (5)
C17	0.0183 (6)	0.0204 (7)	0.0218 (7)	-0.0056 (5)	-0.0059 (5)	0.0003 (5)
C18	0.0177 (6)	0.0194 (7)	0.0245 (7)	-0.0072 (5)	-0.0045 (5)	0.0009 (5)
C19	0.0239 (7)	0.0240 (7)	0.0267 (7)	-0.0088 (6)	-0.0105 (6)	0.0032 (6)
C20	0.0286 (7)	0.0282 (7)	0.0286 (8)	-0.0125 (6)	-0.0097 (6)	-0.0029 (6)
C21	0.0280 (7)	0.0204 (7)	0.0306 (8)	-0.0112 (6)	-0.0056 (6)	-0.0012 (6)
C22	0.0248 (6)	0.0200 (7)	0.0245 (7)	-0.0098 (5)	-0.0046 (5)	0.0025 (5)
C23	0.0186 (6)	0.0216 (7)	0.0220 (7)	-0.0087 (5)	-0.0031 (5)	0.0020 (5)
C24	0.0211 (6)	0.0188 (6)	0.0204 (7)	-0.0085 (5)	-0.0030 (5)	0.0021 (5)
C25	0.0216 (6)	0.0229 (7)	0.0164 (6)	-0.0059 (5)	-0.0028 (5)	-0.0019 (5)
C26	0.0280 (7)	0.0329 (8)	0.0273 (8)	-0.0157 (6)	-0.0026 (6)	-0.0002 (6)
C27	0.0254 (7)	0.0519 (10)	0.0325 (9)	-0.0170 (7)	-0.0052 (6)	-0.0053 (7)
C28	0.0279 (7)	0.0438 (10)	0.0307 (8)	-0.0017 (7)	-0.0101 (6)	-0.0044 (7)
C29	0.0380 (8)	0.0249 (8)	0.0287 (8)	-0.0040 (6)	-0.0086 (6)	-0.0005 (6)
C30	0.0284 (7)	0.0225 (7)	0.0248 (7)	-0.0087 (6)	-0.0057 (6)	-0.0015 (6)
B1	0.0233 (7)	0.0177 (7)	0.0213 (8)	-0.0092 (6)	-0.0068 (6)	0.0025 (6)

Geometric parameters (Å, °)

O1—C25	1.3801 (15)	C11—C12	1.382 (2)
O1—B1	1.4407 (17)	C11—H11A	0.9500
N1-C1	1.3435 (17)	C12—C13	1.397 (2)
N1-C24	1.3459 (16)	C12—H12A	0.9500
N2-C8	1.3646 (16)	C13—C14	1.3840 (19)
N2-C1	1.3699 (16)	C13—H13A	0.9500
N2—B1	1.4907 (17)	C14—C15	1.3968 (18)
N3—C9	1.3434 (16)	C14—H14A	0.9500
N3—C8	1.3460 (17)	C15—C16	1.4553 (18)
N4—C9	1.3601 (16)	C17—C18	1.4531 (18)
N4—C16	1.3632 (16)	C18—C19	1.3922 (18)
N4—B1	1.4977 (18)	C18—C23	1.4229 (18)
N5-C16	1.3428 (16)	C19—C20	1.3806 (19)
N5—C17	1.3438 (16)	C19—H19A	0.9500
N6-C17	1.3673 (16)	C20—C21	1.3961 (19)
N6-C24	1.3677 (16)	C20—H20A	0.9500
N6—B1	1.4974 (18)	C21—C22	1.3815 (19)
C1—C2	1.4587 (18)	C21—H21A	0.9500
С2—С3	1.3910 (18)	C22—C23	1.3952 (18)
С2—С7	1.4227 (18)	C22—H22A	0.9500
C3—C4	1.3824 (19)	C23—C24	1.4553 (18)
С3—НЗА	0.9500	C25—C26	1.3791 (19)
C4—C5	1.396 (2)	C25—C30	1.3892 (19)
C4—H4A	0.9500	C26—C27	1.387 (2)
C5—C6	1.3802 (19)	C26—H26A	0.9500

С5—Н5А	0.9500	C27—C28	1.380 (2)
C6—C7	1.3866 (19)	С27—Н27А	0.9500
С6—Н6А	0.9500	C28—C29	1.381 (2)
C7—C8	1.4504 (18)	C28—H28A	0.9500
C9—C10	1.4569 (18)	C29—C30	1.3824 (19)
C10—C11	1.3945 (18)	С29—Н29А	0.9500
C10—C15	1.4187 (19)	С30—Н30А	0.9500
C25—O1—B1	115.60 (10)	C14—C15—C10	120.64 (12)
C1—N1—C24	117.24 (11)	C14—C15—C16	132.10 (12)
C8—N2—C1	112.86 (10)	C10-C15-C16	107.24 (11)
C8—N2—B1	122.15 (11)	N5—C16—N4	122.23 (11)
C1—N2—B1	123.00 (10)	N5-C16-C15	131.32 (12)
C9—N3—C8	116.66 (11)	N4—C16—C15	105.34 (11)
C9—N4—C16	113.67 (11)	N5—C17—N6	122.99 (11)
C9—N4—B1	122.62 (11)	N5—C17—C18	129.76 (12)
C16—N4—B1	123.41 (11)	N6-C17-C18	105.53 (11)
C16—N5—C17	116.65 (11)	C19—C18—C23	121.07 (12)
C17—N6—C24	113.19 (11)	C19—C18—C17	131.30 (12)
C17—N6—B1	122.71 (11)	C23—C18—C17	107.27 (11)
C24—N6—B1	122.97 (11)	C20—C19—C18	117.79 (12)
N1—C1—N2	122.77 (11)	С20—С19—Н19А	121.1
N1—C1—C2	129.71 (12)	C18—C19—H19A	121.1
N2-C1-C2	105.62 (11)	C19—C20—C21	121.44 (13)
C3—C2—C7	120.10 (12)	C19—C20—H20A	119.3
C3—C2—C1	132.70 (12)	C21—C20—H20A	119.3
C7—C2—C1	106.84 (11)	C22—C21—C20	121.50 (13)
C4—C3—C2	118.01 (13)	C22—C21—H21A	119.2
С4—С3—НЗА	121.0	C20—C21—H21A	119.2
С2—С3—НЗА	121.0	C21—C22—C23	118.18 (12)
C3—C4—C5	121.81 (13)	C21—C22—H22A	120.9
C3—C4—H4A	119.1	C23—C22—H22A	120.9
C5—C4—H4A	119.1	C22—C23—C18	119.95 (12)
C6—C5—C4	120.86 (13)	C22—C23—C24	132.56 (12)
С6—С5—Н5А	119.6	C18—C23—C24	107.14 (11)
С4—С5—Н5А	119.6	N1—C24—N6	122.38 (11)
C5—C6—C7	118.30 (13)	N1—C24—C23	130.16 (12)
С5—С6—Н6А	120.9	N6-C24-C23	105.55 (10)
С7—С6—Н6А	120.9	C26—C25—O1	119.91 (12)
C6—C7—C2	120.90 (12)	C26—C25—C30	120.12 (12)
C6—C7—C8	131.41 (13)	O1—C25—C30	119.97 (11)
C2—C7—C8	107.37 (11)	C25—C26—C27	119.92 (14)
N3—C8—N2	123.34 (11)	C25—C26—H26A	120.0
N3—C8—C7	128.92 (12)	C27—C26—H26A	120.0
N2	105.94 (11)	C28—C27—C26	120.19 (14)
N3—C9—N4	122.13 (11)	C28—C27—H27A	119.9
N3—C9—C10	131.07 (11)	С26—С27—Н27А	119.9
N4—C9—C10	105.36 (11)	C27—C28—C29	119.69 (14)

C11—C10—C15	120.64 (12)	C27—C28—H28A	120.2
C11—C10—C9	132.19 (12)	C29—C28—H28A	120.2
C15—C10—C9	107.16 (11)	C28—C29—C30	120.59 (14)
C12—C11—C10	117.91 (13)	С28—С29—Н29А	119.7
C12—C11—H11A	121.0	С30—С29—Н29А	119.7
C10—C11—H11A	121.0	C29—C30—C25	119.48 (13)
C11—C12—C13	121.42 (13)	С29—С30—Н30А	120.3
C11—C12—H12A	119.3	С25—С30—Н30А	120.3
C13—C12—H12A	119.3	01—B1—N2	112.61 (11)
C14-C13-C12	121.53 (13)	01—B1—N6	116.43 (11)
C14—C13—H13A	119.2	N2—B1—N6	104.58 (10)
C12—C13—H13A	119.2	01—B1—N4	114.90 (11)
C13 - C14 - C15	117.72 (13)	N2—B1—N4	104 01 (10)
C13—C14—H14A	121.1	N6—B1—N4	102.89(11)
C15— $C14$ — $H14A$	121.1		102.09 (11)
	121.1		
C24—N1—C1—N2	8.44 (18)	C16—N5—C17—N6	8.23 (17)
C24—N1—C1—C2	-153.51 (13)	C16—N5—C17—C18	-154.60(13)
C8—N2—C1—N1	-153.46(12)	C24—N6—C17—N5	-154.54(12)
B1—N2—C1—N1	10.81 (19)	B1—N6—C17—N5	13.66 (18)
C8—N2—C1—C2	12.21 (14)	C24—N6—C17—C18	11.84 (14)
B1—N2—C1—C2	176.49 (11)	B1—N6—C17—C18	-179.96 (11)
N1—C1—C2—C3	-16.5(2)	N5—C17—C18—C19	-15.1 (2)
N2-C1-C2-C3	179.24 (14)	N6—C17—C18—C19	179.80 (13)
N1-C1-C2-C7	156.39 (13)	N5-C17-C18-C23	157.89 (12)
N_{2} C_{1} C_{2} C_{7}	-7.92(14)	N6-C17-C18-C23	-7.22(13)
C7-C2-C3-C4	-0.11(19)	C_{23} C_{18} C_{19} C_{20}	1 68 (19)
$C_1 - C_2 - C_3 - C_4$	171 97 (13)	C17 - C18 - C19 - C20	173 85 (13)
$C_{2} = C_{3} = C_{4} = C_{5}$	-0.6(2)	C18 - C19 - C20 - C21	-1.9(2)
C_{3} C_{4} C_{5} C_{6}	0.3(2)	C19 - C20 - C21 - C22	0.0(2)
C4-C5-C6-C7	0.3(2)	C_{20} C_{21} C_{22} C_{23}	2 18 (19)
C_{5} C_{6} C_{7} C_{2}	-15(2)	C_{21} C_{22} C_{23} C_{18}	-2.36(19)
$C_{5} - C_{6} - C_{7} - C_{8}$	-17404(14)	$C_{21} = C_{22} = C_{23} = C_{24}$	-17466(13)
C_{3} C_{2} C_{7} C_{6}	12(2)	C19 - C18 - C23 - C22	0.45(19)
$C_1 - C_2 - C_7 - C_6$	-17274(12)	C17 - C18 - C23 - C22	-173 39 (11)
C_{3} C_{2} C_{7} C_{8}	175 34 (12)	C19 - C18 - C23 - C24	174 52 (11)
$C_1 - C_2 - C_7 - C_8$	142(14)	C17 - C18 - C23 - C24	0.68(14)
$C_{1} = C_{2} = C_{1} = C_{3}$	-10.55(18)	$C1_{N1_{C24_N6}}$	-6.90(18)
C9 - N3 - C8 - C7	151.96 (13)	C1 - N1 - C24 - C23	154.97(13)
$C_1 = N_2 = C_8 = N_3$	151.90(13) 154.57(12)	C17 N6 C24 N1	154.97(13) 154.29(12)
B1 N2 C8 N3	-9.85(10)	$\begin{array}{c} \text{B1} \text{N6} \text{C24} \text{N1} \\ \end{array}$	-13.87(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-11.36(15)	D1 - N0 - C24 - N1 C17 N6 C24 C23	-11.42(14)
$C_1 = N_2 = C_0 = C_7$	-175.78(11)	$P_1 = N_6 = C_2 4 = C_{23}$	-170.58(11)
$BI = N2 = C_0 = C_7$	-1/3.78(11)	B1 - N0 - C24 - C25	-1/9.38(11)
$C_{0} = C_{1} = C_{0} = C_{1}$	-150.22(12)	$C_{22} = C_{23} = C_{24} = INI$	-158.06(12)
$C_{2} = C_{1} = C_{0} = 143$	137.22(13) 178 05 (14)	$C_{10} - C_{23} - C_{24} - N_1$	130.00(13) 17014(12)
$C_{0} = C_{1} = C_{0} = C_{0} = C_{0}$	5.64(14)	$C_{22} = C_{23} = C_{24} = INO$	177.14(13) 6 12 (12)
$C_2 = C_1 = C_0 = INZ$	5.04 (14) 6.62 (18)	$C_{10} - C_{23} - C_{24} - INO$	0.12(13)
Co-1N3-C9-1N4	0.03 (18)	DI-01-023-020	09./1 (13)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—N3—C9—C10	-157.56 (13)	B1-01-C25-C30	-90.34 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—N4—C9—N3	-156.21 (12)	O1—C25—C26—C27	-179.12 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1—N4—C9—N3	17.75 (18)	C30—C25—C26—C27	0.9 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—N4—C9—C10	11.49 (14)	C25—C26—C27—C28	-0.7 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1-N4-C9-C10	-174.55 (11)	C26—C27—C28—C29	-0.1 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3-C9-C10-C11	-19.3 (2)	C27—C28—C29—C30	0.6 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4—C9—C10—C11	174.53 (13)	C28—C29—C30—C25	-0.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—C9—C10—C15	159.29 (13)	C26—C25—C30—C29	-0.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4—C9—C10—C15	-6.87 (14)	O1—C25—C30—C29	179.69 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—C10—C11—C12	2.48 (19)	C25—O1—B1—N2	176.22 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—C11—C12	-179.08 (13)	C25—O1—B1—N6	-63.00 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C12-C13	-3.3 (2)	C25—O1—B1—N4	57.36 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C12—C13—C14	0.8 (2)	C8—N2—B1—O1	-96.40 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C13—C14—C15	2.46 (19)	C1—N2—B1—O1	100.76 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C14—C15—C10	-3.18 (18)	C8—N2—B1—N6	136.25 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C14—C15—C16	178.71 (13)	C1—N2—B1—N6	-26.59 (16)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C11—C10—C15—C14	0.75 (19)	C8—N2—B1—N4	28.64 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—C15—C14	-178.05 (11)	C1—N2—B1—N4	-134.20 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C10—C15—C16	179.28 (11)	C17—N6—B1—O1	96.10 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—C15—C16	0.48 (14)	C24—N6—B1—O1	-96.85 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17—N5—C16—N4	-7.18 (17)	C17—N6—B1—N2	-138.93 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17—N5—C16—C15	158.90 (13)	C24—N6—B1—N2	28.12 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—N4—C16—N5	158.01 (11)	C17—N6—B1—N4	-30.50 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1—N4—C16—N5	-15.89 (18)	C24—N6—B1—N4	136.55 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—N4—C16—C15	-11.20 (14)	C9—N4—B1—O1	90.86 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1—N4—C16—C15	174.90 (11)	C16—N4—B1—O1	-95.77 (14)
C10—C15—C16—N5-161.76 (13)C16—N4—B1—N2140.67 (11)C14—C15—C16—N4-175.64 (13)C9—N4—B1—N6-141.56 (11)C10—C15—C16—N46.07 (13)C16—N4—B1—N631.80 (15)	C14—C15—C16—N5	16.5 (2)	C9—N4—B1—N2	-32.70 (15)
C14—C15—C16—N4-175.64 (13)C9—N4—B1—N6-141.56 (11)C10—C15—C16—N46.07 (13)C16—N4—B1—N631.80 (15)	C10—C15—C16—N5	-161.76 (13)	C16—N4—B1—N2	140.67 (11)
C10—C15—C16—N4 6.07 (13) C16—N4—B1—N6 31.80 (15)	C14—C15—C16—N4	-175.64 (13)	C9—N4—B1—N6	-141.56 (11)
	C10-C15-C16-N4	6.07 (13)	C16—N4—B1—N6	31.80 (15)

(Naphthalen-2-olato)(subphthalocyaninato)boron (d23108a_a)

Crystal data $C_{34}H_{19}BN_6O$ $M_r = 538.36$ Orthorhombic, *Pnma* a = 17.133 (3) Å b = 13.929 (2) Å c = 10.3669 (16) Å V = 2474.0 (7) Å³ Z = 4F(000) = 1112

Data collection

Bruker Kappa APEX-DUO CMOS PHOTON II
diffractometer
Radiation source: sealed tube with Bruker
Triumph monochromator
φ and ω scans

 $D_x = 1.445 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2369 reflections $\theta = 2.4-25.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 150 KShard, pink $0.26 \times 0.15 \times 0.08 \text{ mm}$

Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{min} = 0.609$, $T_{max} = 0.746$ 17347 measured reflections 2963 independent reflections

1878 reflections with $I > 2\sigma(I)$	$h = -21 \rightarrow 22$
$R_{\rm int} = 0.092$	$k = -12 \rightarrow 18$
$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$	$l = -13 \rightarrow 13$
Refinement	
Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.119$	neighbouring sites
S = 1.05	H-atom parameters constrained
2963 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0341P)^2 + 0.9945P]$
217 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta ho_{ m max} = 0.26 \ { m e} \ { m \AA}^{-3}$
	$\Delta ho_{ m min} = -0.28 \ m e \ m \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.59212 (11)	0.250000	0.05723 (17)	0.0314 (5)	
N1	0.57797 (12)	0.250000	0.2966 (2)	0.0192 (5)	
N2	0.59624 (9)	0.08455 (11)	0.34594 (14)	0.0225 (4)	
N3	0.68267 (9)	0.16555 (10)	0.20190 (14)	0.0206 (4)	
N4	0.80024 (13)	0.250000	0.1556 (2)	0.0235 (5)	
C1	0.43709 (11)	0.19995 (15)	0.66531 (18)	0.0280 (5)	
H1	0.411493	0.166663	0.733194	0.034*	
C2	0.47342 (10)	0.14803 (15)	0.56894 (18)	0.0252 (4)	
H2	0.473573	0.079829	0.569892	0.030*	
C3	0.50988 (10)	0.19921 (13)	0.47016 (17)	0.0204 (4)	
C4	0.55865 (11)	0.16829 (13)	0.36331 (17)	0.0206 (4)	
C5	0.66114 (11)	0.08664 (13)	0.27245 (17)	0.0210 (4)	
C6	0.72892 (11)	0.02434 (13)	0.27627 (17)	0.0233 (4)	
C7	0.74262 (12)	-0.06215 (14)	0.34004 (19)	0.0287 (5)	
H7A	0.701759	-0.094351	0.384388	0.034*	
C8	0.81729 (13)	-0.09982 (15)	0.3370 (2)	0.0335 (5)	
H8A	0.827620	-0.158970	0.379338	0.040*	
С9	0.87772 (13)	-0.05256 (16)	0.2730 (2)	0.0359 (5)	
H9A	0.928086	-0.081037	0.270487	0.043*	
C10	0.86578 (12)	0.03504 (15)	0.2129 (2)	0.0308 (5)	
H10A	0.907557	0.067706	0.171646	0.037*	
C11	0.79093 (11)	0.07398 (14)	0.21471 (18)	0.0249 (4)	
C12	0.76111 (11)	0.16782 (13)	0.17731 (16)	0.0223 (4)	
C13	0.45932 (13)	0.30777 (14)	0.0242 (2)	0.0255 (9)	0.5
H13	0.474810	0.373095	0.030414	0.031*	0.5
C14	0.51433 (10)	0.23520 (18)	0.03849 (18)	0.0211 (10)	0.5

C15	0.49167 (12)	0.13962 (16)	0.0294 (2)	0.0296 (10)	0.5
H15	0.529267	0.090016	0.039168	0.036*	0.5
C16	0.41400 (14)	0.11661 (13)	0.0060(2)	0.0324 (10)	0.5
H16	0.398511	0.051288	-0.000158	0.039*	0.5
C17	0.35899 (10)	0.18919 (16)	-0.00823 (14)	0.0240 (11)	0.5
C18	0.38165 (11)	0.28477 (15)	0.00085 (13)	0.0221 (12)	0.5
C19	0.32664 (16)	0.35734 (19)	-0.0134 (2)	0.0326 (12)	0.5
H19	0.342132	0.422667	-0.007226	0.039*	0.5
C20	0.24897 (15)	0.3343 (3)	-0.0368 (2)	0.0317 (15)	0.5
H20	0.211375	0.383944	-0.046552	0.038*	0.5
C21	0.22631 (10)	0.2388 (3)	-0.04587 (19)	0.0407 (14)	0.5
H21	0.173223	0.223042	-0.061839	0.049*	0.5
C22	0.28132 (11)	0.1662 (2)	-0.0316 (2)	0.0388 (17)	0.5
H22	0.265826	0.100863	-0.037800	0.047*	0.5
B1	0.63003 (17)	0.250000	0.1813 (3)	0.0205 (7)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0203 (11)	0.0549 (13)	0.0189 (9)	0.000	0.0012 (8)	0.000
N1	0.0167 (12)	0.0221 (11)	0.0189 (11)	0.000	0.0000 (9)	0.000
N2	0.0212 (8)	0.0235 (9)	0.0227 (8)	-0.0005 (7)	0.0014 (7)	-0.0016 (7)
N3	0.0211 (9)	0.0222 (8)	0.0186 (8)	-0.0002 (7)	0.0031 (7)	-0.0005 (6)
N4	0.0249 (12)	0.0259 (12)	0.0196 (11)	0.000	0.0023 (10)	0.000
C1	0.0210 (10)	0.0447 (12)	0.0184 (9)	-0.0031 (9)	0.0023 (8)	0.0035 (9)
C2	0.0183 (10)	0.0331 (11)	0.0243 (10)	-0.0023 (9)	-0.0001 (8)	0.0046 (9)
C3	0.0148 (9)	0.0282 (10)	0.0183 (9)	-0.0010 (8)	-0.0008 (7)	0.0009 (7)
C4	0.0188 (10)	0.0225 (10)	0.0206 (9)	-0.0026 (8)	-0.0021 (8)	0.0010 (8)
C5	0.0246 (10)	0.0202 (9)	0.0182 (9)	-0.0017 (8)	-0.0008 (8)	-0.0023 (8)
C6	0.0270 (11)	0.0227 (10)	0.0202 (10)	0.0014 (8)	0.0026 (8)	-0.0030 (8)
C7	0.0356 (12)	0.0235 (10)	0.0269 (10)	0.0012 (9)	0.0030 (9)	-0.0004 (8)
C8	0.0435 (14)	0.0271 (11)	0.0298 (11)	0.0114 (10)	0.0003 (10)	0.0018 (9)
C9	0.0339 (13)	0.0426 (13)	0.0311 (12)	0.0160 (10)	0.0050 (10)	0.0018 (10)
C10	0.0264 (11)	0.0361 (12)	0.0299 (11)	0.0045 (9)	0.0060 (9)	0.0006 (9)
C11	0.0278 (11)	0.0278 (10)	0.0192 (9)	0.0040 (9)	0.0028 (9)	-0.0017 (8)
C12	0.0224 (11)	0.0282 (11)	0.0163 (9)	0.0014 (8)	0.0032 (8)	-0.0021 (7)
C13	0.031 (2)	0.022 (2)	0.023 (2)	-0.0020 (18)	-0.0011 (18)	-0.0026 (17)
C14	0.0255 (17)	0.024 (3)	0.0142 (14)	0.0002 (18)	0.0016 (12)	0.0006 (17)
C15	0.033 (3)	0.035 (3)	0.020 (2)	-0.001 (2)	-0.0028 (18)	0.0035 (19)
C16	0.045 (3)	0.028 (2)	0.025 (2)	-0.010 (2)	0.003 (2)	0.0016 (17)
C17	0.025 (3)	0.026 (3)	0.021 (2)	-0.018 (2)	0.0038 (19)	-0.0007 (19)
C18	0.022 (2)	0.027 (3)	0.0172 (19)	0.0052 (18)	0.0000 (17)	-0.0003 (14)
C19	0.024 (3)	0.049 (3)	0.025 (2)	-0.008 (3)	-0.002 (2)	-0.010 (2)
C20	0.034 (4)	0.044 (3)	0.018 (2)	0.006 (3)	0.0035 (19)	-0.008 (2)
C21	0.0253 (19)	0.074 (4)	0.0224 (16)	-0.030 (4)	0.0011 (14)	-0.008 (4)
C22	0.037 (5)	0.057 (4)	0.022 (3)	-0.012 (3)	0.007 (2)	-0.005 (3)
B1	0.0187 (16)	0.0232 (16)	0.0195 (15)	0.000	0.0022 (12)	0.000

Geometric parameters (Å, °)

01—C14	1.362 (2)	C8—H8A	0.9500
O1—B1	1.441 (3)	C9—C10	1.385 (3)
N1-C4	1.372 (2)	С9—Н9А	0.9500
N1—C4 ⁱ	1.372 (2)	C10C11	1.393 (3)
N1—B1	1.491 (4)	C10—H10A	0.9500
N2—C4	1.345 (2)	C11—C12	1.456 (3)
N2—C5	1.348 (2)	C13—C14	1.3900
N3—C12	1.368 (2)	C13—C18	1.3900
N3—C5	1.371 (2)	C13—H13	0.9500
N3—B1	1.498 (2)	C14—C15	1.3900
N4-C12 ⁱ	1.345 (2)	C15—C16	1.3900
N4—C12	1.345 (2)	C15—H15	0.9500
C1—C2	1.382 (3)	C16—C17	1.3900
C1-C1 ⁱ	1.394 (4)	C16—H16	0.9500
C1—H1	0.9500	C17—C18	1.3900
С2—С3	1.395 (3)	C17—C22	1.3900
С2—Н2	0.9500	C18—C19	1.3900
C3—C3 ⁱ	1.415 (4)	C19—C20	1.3900
С3—С4	1.453 (3)	C19—H19	0.9500
С5—С6	1.450 (3)	C20—C21	1.3900
С6—С7	1.394 (3)	C20—H20	0.9500
C6—C11	1.419 (3)	C21—C22	1.3900
С7—С8	1.383 (3)	C21—H21	0.9500
C7—H7A	0.9500	C22—H22	0.9500
C8—C9	1.395 (3)		
C14—O1—B1	124.61 (19)	C6—C11—C12	107.13 (16)
C4-N1-C4 ⁱ	112.1 (2)	N4—C12—N3	122.70 (17)
C4—N1—B1	123.23 (11)	N4—C12—C11	129.31 (18)
C4 ⁱ —N1—B1	123.24 (11)	N3—C12—C11	105.91 (16)
C4—N2—C5	116.88 (15)	C14—C13—C18	120.0
C12—N3—C5	112.48 (15)	C14—C13—H13	120.0
C12—N3—B1	123.15 (16)	C18—C13—H13	120.0
C5—N3—B1	122.93 (16)	O1—C14—C13	124.63 (16)
C12 ⁱ —N4—C12	116.6 (2)	O1—C14—C15	115.33 (16)
C2-C1-C1 ⁱ	121.57 (12)	C13—C14—C15	120.0
C2-C1-H1	119.2	C14—C15—C16	120.0
C1 ⁱ C1H1	119.2	C14—C15—H15	120.0
C1—C2—C3	117.70 (19)	C16—C15—H15	120.0
C1—C2—H2	121.1	C15—C16—C17	120.0
С3—С2—Н2	121.1	C15—C16—H16	120.0
C2-C3-C3 ⁱ	120.73 (11)	C17—C16—H16	120.0
C2—C3—C4	131.72 (18)	C18—C17—C16	120.0
C3 ⁱ —C3—C4	107.25 (10)	C18—C17—C22	120.0
N2-C4-N1	122.45 (17)	C16—C17—C22	120.0
N2—C4—C3	129.41 (17)	C17—C18—C19	120.0

N1-C4-C3	106.08 (16)	C17—C18—C13	120.0
N2	122.73 (16)	C19—C18—C13	120.0
N2—C5—C6	129.21 (16)	C20—C19—C18	120.0
N3—C5—C6	106.19 (16)	C20—C19—H19	120.0
C7—C6—C11	120.55 (18)	C18—C19—H19	120.0
C7—C6—C5	131.67 (18)	C19—C20—C21	120.0
C11—C6—C5	107.19 (16)	C19—C20—H20	120.0
C8—C7—C6	118.21 (19)	C21—C20—H20	120.0
C8—C7—H7A	120.9	C_{20} C_{21} C_{22}	120.0
С6—С7—Н7А	120.9	C20—C21—H21	120.0
C7-C8-C9	121 21 (19)	$C_{22} = C_{21} = H_{21}$	120.0
C7—C8—H8A	119.4	$C_{21} - C_{22} - C_{17}$	120.0
C9-C8-H8A	119.4	$C_{21} = C_{22} = H_{22}$	120.0
C10-C9-C8	121 34 (19)	C17 - C22 - H22	120.0
C10-C9-H9A	119.3	01 - B1 - N1	120.0 116.5(2)
C8 - C9 - H9A	119.3	$01 - B1 - N3^{i}$	110.5(2) 113 48 (15)
C_{0} C_{10} C_{11}	119.5	$N1_B1_N3^i$	104.25(15)
C_{P} C_{10} H_{10A}	120.0	$\Omega_1 = B_1 = N_3$	104.23(15) 113.48(15)
C_{11} C_{10} H_{10A}	120.9	N1 B1 N3	104.25(15)
	120.7 120.37(18)	$N3^i B1 N3$	104.25(15) 103.5(2)
$C_{10} = C_{11} = C_{12}$	120.37(18) 132.01(19)	113 — D 1—113	105.5 (2)
010-011-012	132.01 (19)		
$C1^{i}$ $C1$ $C2$ $C3$	-0.5(2)	C6_C11_C12_N4	1561(2)
$C1 C2 C3 C3^{i}$	0.5(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-170.3(2)
$C_1 = C_2 = C_3 = C_4$	173 30 (10)	$C_{10} = C_{11} = C_{12} = N_3$	-7.52(10)
$C_1 = C_2 = C_3 = C_4$	87(3)	$R_1 = 01 = C_{12} = 13$	7.52(19)
$C_{5} = N_{2} = C_{4} = N_{1}$	-152.58(18)	B1 = 01 = C14 = C15	-85.62(15)
$C_3 = N_2 = C_4 = C_3$	-152.56(18)	B1 = 01 = 014 = 013	177.69(17)
C4 - N1 - C4 - N2	133.06(13)	$C_{18} = C_{13} = C_{14} = C_{15}$	177.08(17)
BI - NI - C4 - N2	15.0(5) 11.4(2)	C16 - C13 - C14 - C13	0.0
C4 - NI - C4 - C3	11.4(3) 178.0(2)	01 - 014 - 015 - 016	-1//.89(10)
BI = NI = C4 = C3	1/8.0(2)	C13 - C14 - C15 - C16	0.0
$C_2 = C_3 = C_4 = N_2$	-16.5(3)	C14 - C15 - C16 - C17	0.0
C3 - C3 - C4 - N2	157.01 (17)	C15 - C16 - C17 - C18	0.0
$C_2 = C_3 = C_4 = N_1$	1/9.88 (19)	C15 - C16 - C17 - C22	180.0
C3 - C3 - C4 - N1	-6.62 (16)	C16 - C17 - C18 - C19	180.0
C4 - N2 - C5 - N3	-9.7(3)	$C_{22} = C_{17} = C_{18} = C_{19}$	0.0
C4 - N2 - C5 - C6	152.53 (18)	C16 - C17 - C18 - C13	0.0
C12—N3—C5—N2	155.83 (17)	C22—C17—C18—C13	180.0
B1—N3—C5—N2	-10.9(3)	C14—C13—C18—C17	0.0
C12—N3—C5—C6	-9.90 (19)	C14—C13—C18—C19	180.0
B1—N3—C5—C6	-176.59 (17)	C17—C18—C19—C20	0.0
N2—C5—C6—C7	11.1 (3)	C13—C18—C19—C20	180.0
N3—C5—C6—C7	175.57 (19)	C18—C19—C20—C21	0.0
N2-C5-C6-C11	-159.89 (18)	C19—C20—C21—C22	0.0
N3—C5—C6—C11	4.58 (19)	C20—C21—C22—C17	0.0
C11—C6—C7—C8	-2.6 (3)	C18—C17—C22—C21	0.0
C5—C6—C7—C8	-172.59 (19)	C16—C17—C22—C21	180.0
C6—C7—C8—C9	0.5 (3)	C14—O1—B1—N1	-10.60 (13)

Symmetry code: (i) x, -y+1/2, z.

(Acetato)(subphthalocyaninato)boron (d22121a_a)

Crystal data

 $C_{26}H_{15}BN_{6}O_{2}$ $M_{r} = 454.25$ Triclinic, *P*1 a = 9.3432 (9) Å b = 9.3548 (7) Å c = 12.3322 (12) Å a = 104.203 (2)° $\beta = 100.751$ (3)° $\gamma = 90.701$ (2)° V = 1024.69 (16) Å³

Data collection

Bruker Kappa APEX-DUO CMOS PHOTON II	21123 measur
diffractometer	4670 indepen
Radiation source: sealed tube with Bruker	3665 reflectio
Triumph monochromator	$R_{\rm int} = 0.038$
φ and ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ell$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(SADABS; Krause et al., 2015)	$k = -12 \rightarrow 11$
$T_{\min} = 0.710, \ T_{\max} = 0.746$	$l = -16 \rightarrow 15$
Refinement	

Refinement on F^2

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.096$ S = 1.034670 reflections 317 parameters 0 restraints Z = 2 F(000) = 468 $D_x = 1.472 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6060 reflections $\theta = 2.5-26.8^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 150 K Shard, purple $0.24 \times 0.22 \times 0.13 \text{ mm}$

21123 measured reflections 4670 independent reflections 3665 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -12 \rightarrow 12$ $k = -12 \rightarrow 11$ $l = -16 \rightarrow 15$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0473P)^2 + 0.293P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.32$ e Å⁻³ $\Delta\rho_{min} = -0.28$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.51457 (9)	0.16222 (10)	0.42428 (8)	0.0180 (2)	
O2	0.33335 (11)	0.11501 (11)	0.27076 (8)	0.0266 (2)	
N1	0.73832 (11)	0.31198 (12)	0.46314 (9)	0.0164 (2)	
N2	0.90693 (12)	0.12760 (12)	0.42234 (9)	0.0181 (2)	
N3	0.68811 (12)	0.13099 (12)	0.28825 (9)	0.0171 (2)	
N4	0.55469 (12)	0.20043 (12)	0.12679 (9)	0.0185 (2)	
N5	0.55739 (11)	0.34670 (11)	0.31392 (9)	0.0161 (2)	
N6	0.64703 (12)	0.54978 (12)	0.47176 (9)	0.0175 (2)	
C1	0.73959 (14)	0.45890 (14)	0.51425 (11)	0.0171 (3)	
C2	0.87244 (14)	0.49059 (14)	0.60151 (11)	0.0178 (3)	
C3	0.92841 (15)	0.61748 (15)	0.68630 (11)	0.0210 (3)	
H3A	0.877122	0.705362	0.695344	0.025*	
C4	1.06085 (15)	0.61146 (16)	0.75680 (12)	0.0232 (3)	
H4A	1.099424	0.695948	0.816275	0.028*	
C5	1.13944 (15)	0.48379 (16)	0.74260 (12)	0.0230 (3)	
H5A	1.229956	0.483405	0.792646	0.028*	
C6	1.08749 (14)	0.35795 (15)	0.65680 (11)	0.0202 (3)	
H6A	1.142441	0.272578	0.646052	0.024*	
C7	0.95253 (14)	0.36032 (14)	0.58689 (11)	0.0176 (3)	
C8	0.86760 (14)	0.25015 (14)	0.49070 (11)	0.0172 (3)	
C9	0.82094 (14)	0.07573 (14)	0.31928 (11)	0.0179 (3)	
C10	0.85492 (14)	-0.01303 (14)	0.21341 (11)	0.0188 (3)	
C11	0.96888 (15)	-0.10341 (15)	0.18993 (12)	0.0233 (3)	
H11A	1.042170	-0.119308	0.249708	0.028*	
C12	0.97183 (16)	-0.16921 (16)	0.07677 (13)	0.0285 (3)	
H12A	1.046424	-0.234067	0.059297	0.034*	
C13	0.86795 (16)	-0.14265 (16)	-0.01232 (13)	0.0280 (3)	
H13A	0.873896	-0.188946	-0.088928	0.034*	
C14	0.75651 (15)	-0.05006 (15)	0.00910 (12)	0.0220 (3)	
H14A	0.688062	-0.029366	-0.051605	0.026*	
C15	0.74784 (14)	0.01171 (14)	0.12215 (11)	0.0186 (3)	
C16	0.64749 (14)	0.11331 (14)	0.17299 (11)	0.0177 (3)	
C17	0.51454 (14)	0.31884 (14)	0.19836 (11)	0.0173 (3)	
C18	0.45372 (14)	0.45407 (14)	0.17736 (11)	0.0187 (3)	
C19	0.38252 (15)	0.48801 (16)	0.07794 (12)	0.0224 (3)	
H19A	0.361657	0.414911	0.007488	0.027*	
C20	0.34312 (17)	0.63161 (17)	0.08506 (13)	0.0283 (3)	
H20A	0.294024	0.657104	0.018336	0.034*	
C21	0.37395 (17)	0.73993 (17)	0.18817 (13)	0.0297 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H21A	0.345795	0.837585	0.189952	0.036*	
C22	0.44477 (15)	0.70809 (15)	0.28805 (12)	0.0241 (3)	
H22A	0.465685	0.782615	0.357717	0.029*	
C23	0.48448 (14)	0.56374 (14)	0.28350 (11)	0.0186 (3)	
C24	0.56196 (14)	0.49317 (14)	0.36891 (11)	0.0171 (3)	
C25	0.37765 (14)	0.11811 (14)	0.37020(11)	0.0181 (3)	
C26	0.28623 (15)	0.07167 (16)	0.44437 (13)	0.0241 (3)	
H26A	0.183080	0.082274	0.414825	0.036*	
H26B	0.314413	0.134049	0.522317	0.036*	
H26C	0.301221	-0.031754	0.444617	0.036*	
B1	0.61638 (15)	0.23270 (16)	0.37237 (12)	0.0162 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0147 (4)	0.0206 (5)	0.0201 (5)	0.0018 (4)	0.0038 (4)	0.0073 (4)
O2	0.0264 (5)	0.0315 (5)	0.0198 (5)	-0.0057 (4)	0.0001 (4)	0.0064 (4)
N1	0.0158 (5)	0.0186 (5)	0.0159 (5)	0.0029 (4)	0.0041 (4)	0.0053 (4)
N2	0.0183 (5)	0.0189 (5)	0.0182 (6)	0.0025 (4)	0.0041 (4)	0.0063 (4)
N3	0.0152 (5)	0.0180 (5)	0.0181 (6)	0.0017 (4)	0.0029 (4)	0.0048 (4)
N4	0.0157 (5)	0.0204 (6)	0.0191 (6)	0.0010 (4)	0.0030 (4)	0.0046 (4)
N5	0.0143 (5)	0.0180 (5)	0.0159 (5)	0.0014 (4)	0.0029 (4)	0.0042 (4)
N6	0.0163 (5)	0.0206 (6)	0.0165 (6)	0.0031 (4)	0.0048 (4)	0.0049 (4)
C1	0.0172 (6)	0.0190 (6)	0.0166 (6)	0.0014 (5)	0.0061 (5)	0.0049 (5)
C2	0.0158 (6)	0.0230 (7)	0.0165 (6)	0.0014 (5)	0.0047 (5)	0.0075 (5)
C3	0.0227 (7)	0.0209 (7)	0.0198 (7)	0.0010 (5)	0.0051 (5)	0.0049 (5)
C4	0.0228 (7)	0.0247 (7)	0.0198 (7)	-0.0035 (5)	0.0028 (6)	0.0025 (6)
C5	0.0159 (6)	0.0326 (8)	0.0201 (7)	-0.0009 (5)	0.0009 (5)	0.0076 (6)
C6	0.0166 (6)	0.0257 (7)	0.0196 (7)	0.0035 (5)	0.0043 (5)	0.0077 (5)
C7	0.0170 (6)	0.0220 (6)	0.0159 (6)	0.0009 (5)	0.0058 (5)	0.0067 (5)
C8	0.0158 (6)	0.0198 (6)	0.0179 (6)	0.0020 (5)	0.0039 (5)	0.0080 (5)
C9	0.0168 (6)	0.0179 (6)	0.0209(7)	0.0024 (5)	0.0052 (5)	0.0073 (5)
C10	0.0188 (6)	0.0167 (6)	0.0205 (7)	-0.0003 (5)	0.0043 (5)	0.0038 (5)
C11	0.0207 (7)	0.0222 (7)	0.0261 (7)	0.0036 (5)	0.0048 (6)	0.0040 (6)
C12	0.0235 (7)	0.0284 (8)	0.0311 (8)	0.0065 (6)	0.0090 (6)	-0.0001 (6)
C13	0.0281 (8)	0.0294 (8)	0.0229 (7)	0.0013 (6)	0.0084 (6)	-0.0029 (6)
C14	0.0212 (7)	0.0228 (7)	0.0195 (7)	-0.0020 (5)	0.0033 (5)	0.0014 (5)
C15	0.0174 (6)	0.0175 (6)	0.0200 (7)	-0.0013 (5)	0.0037 (5)	0.0032 (5)
C16	0.0161 (6)	0.0194 (6)	0.0164 (6)	-0.0017 (5)	0.0017 (5)	0.0033 (5)
C17	0.0137 (6)	0.0212 (6)	0.0172 (6)	0.0000 (5)	0.0022 (5)	0.0060 (5)
C18	0.0150 (6)	0.0226 (7)	0.0196 (7)	0.0030 (5)	0.0047 (5)	0.0064 (5)
C19	0.0215 (7)	0.0277 (7)	0.0180 (7)	0.0050 (6)	0.0035 (5)	0.0060 (6)
C20	0.0308 (8)	0.0338 (8)	0.0224 (7)	0.0124 (6)	0.0034 (6)	0.0121 (6)
C21	0.0364 (9)	0.0261 (8)	0.0282 (8)	0.0129 (6)	0.0046 (7)	0.0105 (6)
C22	0.0264 (7)	0.0230 (7)	0.0221 (7)	0.0057 (6)	0.0044 (6)	0.0043 (6)
C23	0.0152 (6)	0.0234 (7)	0.0186 (7)	0.0038 (5)	0.0044 (5)	0.0066 (5)
C24	0.0156 (6)	0.0190 (6)	0.0185 (6)	0.0031 (5)	0.0065 (5)	0.0058 (5)
C25	0.0172 (6)	0.0147 (6)	0.0217 (7)	0.0024 (5)	0.0033 (5)	0.0033 (5)

C26	0.0189 (7)	0.0282 (7)	0.0267 (8)	0.0004 (5)	0.0048 (6)	0.0098 (6)
B1	0.0148 (7)	0.0183 (7)	0.0158 (7)	0.0021 (5)	0.0031 (6)	0.0046 (6)

Geometric parameters (Å, °)

1	<i>,</i>		
O1—C25	1.3362 (15)	С7—С8	1.4587 (18)
O1—B1	1.4725 (17)	C9—C10	1.4573 (18)
O2—C25	1.2120 (16)	C10—C11	1.3962 (18)
N1-C1	1.3631 (17)	C10—C15	1.4264 (19)
N1-C8	1.3673 (16)	C11—C12	1.386 (2)
N1—B1	1.4823 (18)	C11—H11A	0.9500
N2-C9	1.3428 (17)	C12—C13	1.397 (2)
N2	1.3460 (17)	C12—H12A	0.9500
N3—C16	1.3689 (17)	C13—C14	1.384 (2)
N3—C9	1.3746 (16)	C13—H13A	0.9500
N3—B1	1.4904 (17)	C14—C15	1.3900 (19)
N4—C17	1.3419 (17)	C14—H14A	0.9500
N4-C16	1.3421 (17)	C15—C16	1.4574 (18)
N5—C17	1.3644 (17)	C17—C18	1.4539 (18)
N5-C24	1.3678 (17)	C18—C19	1.3923 (18)
N5—B1	1.4846 (17)	C18—C23	1.4290 (19)
N6-C24	1.3435 (17)	C19—C20	1.384 (2)
N6-C1	1.3465 (17)	C19—H19A	0.9500
C1—C2	1.4569 (18)	C20—C21	1.397 (2)
C2—C3	1.3956 (19)	C20—H20A	0.9500
C2—C7	1.4292 (18)	C21—C22	1.387 (2)
C3—C4	1.3837 (19)	C21—H21A	0.9500
С3—НЗА	0.9500	C22—C23	1.3954 (19)
C4—C5	1.401 (2)	C22—H22A	0.9500
C4—H4A	0.9500	C23—C24	1.4621 (18)
C5—C6	1.387 (2)	C25—C26	1.4941 (19)
C5—H5A	0.9500	C26—H26A	0.9800
C6—C7	1.3922 (18)	C26—H26B	0.9800
С6—Н6А	0.9500	C26—H26C	0.9800
C25—O1—B1	121 85 (10)	C14—C13—H13A	119.4
C1-N1-C8	113.88 (11)	C12—C13—H13A	119.4
C1-N1-B1	122.67 (11)	C13-C14-C15	117.97 (13)
C8—N1—B1	122.78 (11)	C13—C14—H14A	121.0
C9-N2-C8	117.21 (11)	C15—C14—H14A	121.0
C16-N3-C9	113.09 (11)	C14— $C15$ — $C10$	121.07 (12)
C16 - N3 - B1	122.79 (11)	C14-C15-C16	131.64 (13)
C9-N3-B1	122.33(11)	C10-C15-C16	107 17 (11)
C17 - N4 - C16	117.15 (11)	N4—C16—N3	122.87 (12)
C17—N5—C24	113.67 (11)	N4—C16—C15	130.06 (12)
C17—N5—B1	122.88 (11)	N3—C16—C15	105.63 (11)
C24—N5—B1	122.73 (11)	N4—C17—N5	122.44 (11)
C24 - N6 - C1	116.91 (11)	N4—C17—C18	130.67 (12)

N6—C1—N1	122.65 (12)	N5-C17-C18	105.39 (11)
N6—C1—C2	130.98 (12)	C19—C18—C23	121.12 (12)
N1—C1—C2	105.26 (11)	C19—C18—C17	131.76 (12)
C3—C2—C7	120.43 (12)	C23—C18—C17	107.07 (11)
C3—C2—C1	132.35 (12)	C20—C19—C18	117.86 (13)
C7-C2-C1	107 20 (11)	C20—C19—H19A	121.1
C4-C3-C2	118 01 (13)	C18—C19—H19A	121.1
C4—C3—H3A	121.0	C19 - C20 - C21	121.45(13)
C2—C3—H3A	121.0	C19—C20—H20A	119.3
$C_3 - C_4 - C_5$	121.0	C_{21} C_{20} H_{20A}	119.3
$C_3 - C_4 - H_4 A$	119.2	C^{22} C^{21} C^{20} C^{20}	121.47(13)
C5-C4-H4A	119.2	$C_{22} = C_{21} = C_{20}$	119.3
C6-C5-C4	121 19 (13)	C_{20} C_{21} H_{21A}	119.3
Сб-С5-Н5А	119.4	$C_{20} = C_{21} = C_{23}$	119.5
C4-C5-H5A	119.4	$C_{21} = C_{22} = C_{23}$	120.9
C_{5} C_{6} C_{7}	119.4	$C_{23} C_{22} H_{22A}$	120.9
$C_{5} = C_{6} = C_{7}$	120.0	$C_{23} = C_{22} = M_{22} = M_{22}$	120.9 110.83 (12)
C_{2}	120.9	$C_{22} = C_{23} = C_{18}$	117.03(12) 122.07(12)
C = C = H O A	120.9	$C_{22} = C_{23} = C_{24}$	152.97(15) 107.15(11)
$C_{0} - C_{1} - C_{2}$	120.00(12)	C10 - C23 - C24	107.13(11)
$C_{0} = C_{1} = C_{8}$	132.30(12)	N6-C24-N3	122.20(11)
$C_2 = C_1 = C_8$	107.08 (11)	N6-C24-C23	131.61 (12)
N2	122.27 (12)	N5-C24-C23	104.94 (11)
N2-C8-C/	131.19 (12)	02-025-01	123.07 (12)
NI	105.13 (11)	02-C25-C26	123.79 (12)
N2—C9—N3	122.59 (12)	01—C25—C26	113.13 (11)
N2—C9—C10	130.32 (12)	C25—C26—H26A	109.5
N3—C9—C10	105.35 (11)	C25—C26—H26B	109.5
C11—C10—C15	120.00 (12)	H26A—C26—H26B	109.5
C11—C10—C9	132.66 (12)	C25—C26—H26C	109.5
C15—C10—C9	107.25 (11)	H26A—C26—H26C	109.5
C12—C11—C10	117.98 (13)	H26B—C26—H26C	109.5
C12—C11—H11A	121.0	O1—B1—N1	109.01 (11)
C10-C11-H11A	121.0	O1—B1—N5	116.59 (11)
C11—C12—C13	121.72 (13)	N1—B1—N5	104.40 (10)
C11—C12—H12A	119.1	O1—B1—N3	116.01 (11)
C13—C12—H12A	119.1	N1—B1—N3	104.83 (10)
C14—C13—C12	121.15 (13)	N5—B1—N3	104.79 (11)
C24—N6—C1—N1	-6.98 (18)	C14—C15—C16—N4	-16.1 (2)
C24—N6—C1—C2	159.13 (13)	C10-C15-C16-N4	159.94 (13)
C8—N1—C1—N6	156.87 (12)	C14—C15—C16—N3	177.61 (14)
B1—N1—C1—N6	-13.95 (19)	C10-C15-C16-N3	-6.33 (14)
C8—N1—C1—C2	-12.30 (14)	C16—N4—C17—N5	-4.05 (18)
B1—N1—C1—C2	176.88 (11)	C16—N4—C17—C18	159.85 (13)
N6—C1—C2—C3	17.4 (2)	C24—N5—C17—N4	153.53 (12)
N1—C1—C2—C3	-174.73 (14)	B1—N5—C17—N4	-17.04 (19)
N6—C1—C2—C7	-160.90(13)	C24—N5—C17—C18	-13.86 (14)
N1—C1—C2—C7	7.01 (14)	B1—N5—C17—C18	175.56 (11)

C7—C2—C3—C4	-1.65 (19)	N4-C17-C18-C19	20.0 (2)
C1—C2—C3—C4	-179.73 (13)	N5-C17-C18-C19	-174.03 (14)
C2—C3—C4—C5	1.6 (2)	N4—C17—C18—C23	-157.47 (13)
C3—C4—C5—C6	0.1 (2)	N5-C17-C18-C23	8.48 (14)
C4—C5—C6—C7	-1.9(2)	C23—C18—C19—C20	0.3 (2)
C5—C6—C7—C2	1.80 (19)	C17—C18—C19—C20	-176.87 (14)
C5—C6—C7—C8	179.83 (13)	C18—C19—C20—C21	0.3 (2)
C3—C2—C7—C6	-0.06 (19)	C19—C20—C21—C22	-0.3(2)
C1—C2—C7—C6	178.45 (12)	C20—C21—C22—C23	-0.3(2)
C3—C2—C7—C8	-178.53 (12)	C21—C22—C23—C18	0.9 (2)
C1-C2-C7-C8	-0.02(14)	C21—C22—C23—C24	178.05 (14)
C9-N2-C8-N1	6.77 (18)	C19-C18-C23-C22	-0.9(2)
C9-N2-C8-C7	-157.61(13)	C_{17} C_{18} C_{23} C_{22}	17687(12)
C1-N1-C8-N2	-155.60(12)	C19-C18-C23-C24	-178.75(12)
B1 - N1 - C8 - N2	15 20 (19)	C_{17} C_{18} C_{23} C_{24}	-0.94(14)
C1 - N1 - C8 - C7	12.28 (14)	C1 - N6 - C24 - N5	6 48 (18)
B1-N1-C8-C7	-17691(11)	C1 - N6 - C24 - C23	$-159\ 10\ (13)$
C6-C7-C8-N2	-188(2)	C17 - N5 - C24 - N6	-155.67(12)
$C_{2} - C_{7} - C_{8} - N_{2}^{2}$	159 41 (13)	B1 - N5 - C24 - N6	133.07(12) 14 92 (19)
$C_{2} = C_{7} = C_{8} = N_{1}$	174 83 (13)	C_{17} N5 C_{24} C_{23}	13.22(19)
$C_{2} - C_{7} - C_{8} - N_{1}$	-6.95(13)	B1 - N5 - C24 - C23	$-176\ 19\ (11)$
$C_{2} = C_{1} = C_{2} = C_{1}$	-8.47(18)	C^{22} C^{23} C^{24} C^{25}	-169(2)
C8 = N2 = C9 = C10	$154\ 20\ (13)$	$C_{18} = C_{23} = C_{24} = N_6$	160.49(13)
$C_{16} N_{2} C_{9} N_{2}$	153 58 (12)	C_{22} C_{23} C_{24} N_{5}	175 67 (14)
$B1_N3_C9_N2$	-1154(19)	$C_{22} = C_{23} = C_{24} = N_3$	-6.92(14)
C16 N3 C9 C10	-12.79(14)	B1 = 01 = C25 = 024 = 105	9 79 (18)
B1 N3 C9 C10	-177.01(11)	B1 01 C25 C26	-170.89(11)
$N_{2} = C_{1} = C_{1} = C_{1}$	177.91(11) 10.6(2)	$C_{25} = 01 - 01 - 025 - 020$	161 53 (10)
$N_2 = C_2 = C_1 = C_{11}$	$-175 \ 47 \ (14)$	$C_{25} = O_1 = D_1 = N_1$	101.33(10)
$N_{2} = C_{10} = C_{10} = C_{11}$	-156.02(13)	$C_{25} = O_1 = D_1 = N_3$	-80.48(14)
$N_2 = C_9 = C_{10} = C_{15}$	8 00 (14)	C_{23} C_{1} N_{1} R_{1} O_{1}	-05.33(13)
$N_{3} = C_{9} = C_{10} = C_{13}$	0.00(14)	$C_1 - N_1 - B_1 - O_1$	-93.33(13)
$C_{13} - C_{10} - C_{11} - C_{12}$	-1.3(2) -177.50(14)	$C_0 - N_1 - D_1 - O_1$	94.00(15)
C_{9} C_{10} C_{11} C_{12} C_{12} C_{12}	-177.30(14)	CI - NI - DI - NJ	29.92(10)
C10-C11-C12-C13	2.4(2)	$C_0 = N_1 = D_1 = N_3$	-140.08(12)
C12 - C12 - C13 - C14	-0.0(2)	CI - NI - DI - N3	20.16 (12)
C12 - C13 - C14 - C13	-2.3(2)	$C_0 - N_1 - D_1 - N_3$	-30.10(13)
C13 - C14 - C15 - C10	5.5(2)	C1/-N5-B1-O1	-100.40(14)
C13 - C14 - C15 - C16	1/8.92 (14)	C_{24} N5 D1 N1	89.87 (15)
CII = CI0 = CI5 = CI4	-1.5(2)	C1/-N5-B1-N1	139.29 (12)
C9 - C10 - C15 - C14	1/5.51 (12)	C_{24} N5 B1 N2	-30.43(15)
CII = CI0 = CI5 = CI6	-1/8.11(12)	C1/-N5-B1-N3	29.34 (16)
C9—C10—C15—C16	-1.05(14)	C_{24} N3 B1 N3	-140.38 (11)
$U_1 / - N_4 - U_{10} - N_3$	/.59 (18)	C10 - N3 - B1 - O1	104.34 (14)
U1/-N4-U10-U15	-156.62(13)	$V_{M} = N_{M} = N_{M} = N_{M}$	-91.99 (14)
$V_{-}N_{-}V_{-$	-155.35(12)	$\bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i$	-135.39(12)
B1 - N3 - C16 - N4	9.09 (19)	$V_{M} = V_{M} = V_{M} = V_{M}$	28.29 (15)
C9—N3—C16—C15	12.16 (14)	C16-N3-B1-N5	-25.75 (16)
ві—N3—C16—C15	177.20(11)	C9—N3—BI—N5	137.92 (12)

(Benzoato)(subphthalocyaninato)boron (d22123a_a)

Crystal data

 $C_{31}H_{17}BN_6O_2$ $M_r = 516.31$ Monoclinic, $P2_1/c$ a = 15.671 (2) Å b = 11.1920 (13) Å c = 15.2363 (19) Å $\beta = 115.386$ (4)° V = 2414.3 (5) Å³ Z = 4

Data collection

Bruker Kappa APEX-DUO CMOS PHOTON II	49333 measured reflections
diffractometer	5530 independent reflections
Radiation source: sealed tube with Bruker	4050 reflections with $I > 2\sigma(I)$
Triumph monochromator	$R_{\rm int} = 0.071$
φ and ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -20 \rightarrow 19$
(SADABS; Krause et al., 2015)	$k = -14 \rightarrow 14$
$T_{\min} = 0.685, T_{\max} = 0.746$	$l = -18 \rightarrow 19$
Refinement	
Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.095$	neighbouring sites

neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0424P)^2 + 0.5643P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.23$ e Å⁻³ $\Delta\rho_{min} = -0.24$ e Å⁻³

F(000) = 1064

 $\theta = 2.4 - 26.5^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Shard, purple

 $0.30 \times 0.15 \times 0.12 \text{ mm}$

T = 150 K

 $D_{\rm x} = 1.420 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7016 reflections

Special details

5530 reflections

361 parameters 0 restraints

S = 1.03

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	<i>y</i>	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.23861 (7)	0.35273 (8)	0.50040 (7)	0.0209 (2)
O2	0.37184 (7)	0.41722 (9)	0.62313 (7)	0.0277 (2)
N1	0.36297 (8)	0.20804 (10)	0.49803 (8)	0.0187 (3)
N2	0.46030 (8)	0.17010 (10)	0.66567 (8)	0.0197 (3)
N3	0.29257 (8)	0.17210 (10)	0.60497 (8)	0.0185 (2)
N4	0.14395 (8)	0.07323 (10)	0.54412 (8)	0.0207 (3)
N5	0.20195 (8)	0.15311 (10)	0.43511 (8)	0.0183 (3)
N6	0.28428 (8)	0.13708 (10)	0.33543 (8)	0.0204 (3)
C1	0.36234 (10)	0.17422 (12)	0.41122 (9)	0.0192 (3)

C2	0.46093 (10)	0.15779 (12)	0.43022 (10)	0.0200 (3)
C3	0.50344 (10)	0.12818 (13)	0.36951 (10)	0.0232 (3)
H3A	0.467163	0.118337	0.301563	0.028*
C4	0.60064 (11)	0.11359 (13)	0.41186 (11)	0.0255 (3)
H4A	0.631602	0.096427	0.371656	0.031*
C5	0.65433 (10)	0.12346 (13)	0.51222 (11)	0.0265 (3)
H5A	0.720884	0.113456	0.538597	0.032*
C6	0.61234 (10)	0.14755 (13)	0.57398 (11)	0.0232 (3)
H6A	0.648565	0.150503	0.642391	0.028*
C7	0.51517 (10)	0.16730 (12)	0.53225 (10)	0.0202 (3)
C8	0.44935 (10)	0.18976 (12)	0.57478 (10)	0.0195 (3)
C9	0.38098 (10)	0.15422 (12)	0.67778 (9)	0.0192 (3)
C10	0.36703 (10)	0.08998 (12)	0.75356 (10)	0.0197 (3)
C11	0.43129 (10)	0.04217 (13)	0.84154 (10)	0.0232 (3)
H11A	0.496991	0.058001	0.865532	0.028*
C12	0.39635 (11)	-0.02920 (14)	0.89293 (10)	0.0264 (3)
H12A	0.438988	-0.062705	0.953114	0.032*
C13	0.29967 (11)	-0.05309(13)	0.85826 (10)	0.0258 (3)
H13A	0.277954	-0.100885	0.896093	0.031*
C14	0.23526 (10)	-0.00862(13)	0.77021 (10)	0.0226 (3)
H14A	0.169858	-0.026252	0.746470	0.027*
C15	0.26911 (10)	0.06298 (12)	0.71715 (9)	0.0199 (3)
C16	0.22426 (10)	0.10886 (12)	0.61832 (10)	0.0192 (3)
C17	0.13748 (9)	0.08822 (12)	0.45387 (10)	0.0192 (3)
C18	0.08486 (10)	0.01871 (13)	0.36687 (10)	0.0209 (3)
C19	0.01279 (10)	-0.06518 (13)	0.34499 (11)	0.0250 (3)
H19A	-0.016278	-0.077976	0.387578	0.030*
C20	-0.01502 (11)	-0.12889 (14)	0.25987 (11)	0.0299 (4)
H20A	-0.064764	-0.185408	0.243152	0.036*
C21	0.02850 (11)	-0.11216 (15)	0.19734 (11)	0.0298 (4)
H21A	0.008053	-0.158124	0.139473	0.036*
C22	0.10047 (10)	-0.03027 (14)	0.21811 (10)	0.0256 (3)
H22A	0.130006	-0.019926	0.175671	0.031*
C23	0.12866 (9)	0.03695 (13)	0.30318 (10)	0.0207 (3)
C24	0.20710 (10)	0.11861 (12)	0.35138 (9)	0.0192 (3)
C25	0.29049 (10)	0.43418 (13)	0.56571 (10)	0.0206 (3)
C26	0.23874 (10)	0.54689 (12)	0.56255 (10)	0.0224 (3)
C27	0.14812 (11)	0.56741 (14)	0.49178 (11)	0.0305 (4)
H27A	0.117876	0.509561	0.442499	0.037*
C28	0.10142 (13)	0.67269 (15)	0.49288 (13)	0.0388 (4)
H28A	0.039559	0.687250	0.443944	0.047*
C29	0.14523 (14)	0.75613 (15)	0.56536 (13)	0.0396 (4)
H29A	0.113295	0.827864	0.566469	0.048*
C30	0.23529 (13)	0.73522 (14)	0.63603 (12)	0.0350 (4)
H30A	0.264859	0.792507	0.685975	0.042*
C31	0.28302 (12)	0.63147 (14)	0.63486 (11)	0.0280 (3)
H31A	0.345463	0.618190	0.683025	0.034*
B1	0.27495 (11)	0.22967 (14)	0.51035 (11)	0.0189 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
01	0.0230 (5)	0.0174 (5)	0.0202 (5)	0.0011 (4)	0.0072 (4)	-0.0009 (4)
O2	0.0232 (6)	0.0271 (6)	0.0286 (5)	-0.0011 (4)	0.0073 (5)	-0.0031 (4)
N1	0.0193 (6)	0.0184 (6)	0.0180 (6)	-0.0005 (5)	0.0077 (5)	0.0003 (5)
N2	0.0206 (6)	0.0190 (6)	0.0195 (6)	-0.0012 (5)	0.0086 (5)	-0.0014 (5)
N3	0.0187 (6)	0.0188 (6)	0.0180 (6)	0.0013 (5)	0.0079 (5)	-0.0006 (5)
N4	0.0190 (6)	0.0236 (6)	0.0198 (6)	0.0020 (5)	0.0087 (5)	-0.0004 (5)
N5	0.0181 (6)	0.0189 (6)	0.0179 (6)	0.0014 (5)	0.0078 (5)	0.0011 (5)
N6	0.0209 (6)	0.0213 (6)	0.0184 (6)	0.0001 (5)	0.0078 (5)	0.0025 (5)
C1	0.0250 (8)	0.0165 (7)	0.0176 (7)	-0.0001 (5)	0.0103 (6)	0.0018 (5)
C2	0.0228 (7)	0.0154 (7)	0.0232 (7)	-0.0018 (5)	0.0111 (6)	0.0012 (6)
C3	0.0289 (8)	0.0196 (7)	0.0237 (7)	-0.0025 (6)	0.0137 (6)	-0.0001 (6)
C4	0.0291 (8)	0.0215 (8)	0.0325 (8)	-0.0010 (6)	0.0195 (7)	-0.0016 (6)
C5	0.0216 (8)	0.0227 (8)	0.0362 (8)	0.0005 (6)	0.0135 (7)	0.0006 (6)
C6	0.0221 (8)	0.0215 (8)	0.0254 (7)	-0.0009 (6)	0.0097 (6)	0.0007 (6)
C7	0.0221 (7)	0.0163 (7)	0.0234 (7)	-0.0010 (5)	0.0108 (6)	0.0008 (6)
C8	0.0191 (7)	0.0167 (7)	0.0210 (7)	-0.0011 (5)	0.0070 (6)	-0.0009 (5)
C9	0.0213 (7)	0.0171 (7)	0.0171 (6)	0.0001 (5)	0.0062 (6)	-0.0030 (5)
C10	0.0224 (7)	0.0190 (7)	0.0190 (6)	0.0023 (6)	0.0101 (6)	-0.0026 (6)
C11	0.0247 (8)	0.0248 (8)	0.0182 (7)	0.0021 (6)	0.0073 (6)	-0.0028 (6)
C12	0.0325 (9)	0.0262 (8)	0.0192 (7)	0.0042 (6)	0.0099 (6)	0.0023 (6)
C13	0.0369 (9)	0.0237 (8)	0.0218 (7)	0.0012 (6)	0.0172 (7)	0.0008 (6)
C14	0.0250 (8)	0.0233 (8)	0.0229 (7)	0.0019 (6)	0.0135 (6)	-0.0019 (6)
C15	0.0238 (7)	0.0190 (7)	0.0186 (6)	0.0035 (6)	0.0107 (6)	-0.0020 (5)
C16	0.0208 (7)	0.0192 (7)	0.0205 (7)	0.0015 (6)	0.0117 (6)	-0.0013 (6)
C17	0.0168 (7)	0.0198 (7)	0.0209 (7)	0.0025 (5)	0.0081 (6)	0.0001 (6)
C18	0.0174 (7)	0.0232 (8)	0.0198 (7)	0.0039 (6)	0.0058 (6)	0.0010 (6)
C19	0.0187 (7)	0.0286 (8)	0.0258 (7)	-0.0003 (6)	0.0078 (6)	0.0004 (6)
C20	0.0215 (8)	0.0310 (9)	0.0316 (8)	-0.0045 (6)	0.0062 (7)	-0.0053 (7)
C21	0.0255 (8)	0.0334 (9)	0.0254 (7)	-0.0014 (7)	0.0062 (7)	-0.0095 (7)
C22	0.0219 (8)	0.0321 (9)	0.0205 (7)	0.0019 (6)	0.0070 (6)	-0.0026 (6)
C23	0.0172 (7)	0.0226 (7)	0.0197 (7)	0.0040 (5)	0.0053 (6)	0.0014 (6)
C24	0.0207 (7)	0.0193 (7)	0.0164 (6)	0.0028 (5)	0.0069 (6)	0.0017 (5)
C25	0.0247 (8)	0.0215 (7)	0.0185 (7)	-0.0029 (6)	0.0120 (6)	0.0012 (5)
C26	0.0309 (8)	0.0186 (7)	0.0231 (7)	-0.0004 (6)	0.0165 (6)	0.0010 (6)
C27	0.0379 (9)	0.0253 (8)	0.0272 (8)	0.0054 (7)	0.0129 (7)	0.0011 (6)
C28	0.0466 (11)	0.0305 (9)	0.0390 (9)	0.0142 (8)	0.0179 (8)	0.0069 (8)
C29	0.0607 (12)	0.0217 (9)	0.0521 (11)	0.0098 (8)	0.0390 (10)	0.0054 (8)
C30	0.0509 (11)	0.0238 (8)	0.0436 (10)	-0.0077 (7)	0.0330 (9)	-0.0080(7)
C31	0.0349 (9)	0.0253 (8)	0.0311 (8)	-0.0068 (7)	0.0210 (7)	-0.0049 (6)
B1	0.0192 (8)	0.0187 (8)	0.0178 (7)	0.0011 (6)	0.0070 (6)	0.0003 (6)

Geometric parameters (Å, °)

01-C25	1.3374 (16)	C11—C12	1.385 (2)
01—B1	1.4731 (18)	C11—H11A	0.9500

O2—C25	1.2126 (17)	C12—C13	1.400 (2)
N1—C1	1.3718 (17)	C12—H12A	0.9500
N1—C8	1.3728 (17)	C13—C14	1.380 (2)
N1—B1	1.489 (2)	C13—H13A	0.9500
N2—C8	1.3385 (17)	C14—C15	1.394 (2)
N2-C9	1 3444 (18)	C14—H14A	0.9500
N3—C9	1 3684 (17)	C15-C16	1 4552 (19)
N3-C16	1 3693 (18)	C_{17} C_{18}	1.1502(19) 1.4509(19)
N3—B1	1.3093 (10)	C_{18} C_{19} C	1.4305(1)
N4-C16	1.4920(19) 1 3421 (18)	C_{18} C_{23}	1.373(2)
N4 C17	1.3421(10) 1.3453(17)	$C_{10} = C_{20}$	1.423(2)
N5 C24	1.3433(17) 1 3680 (17)	$C_{19} = C_{20}$	0.9500
N5 C17	1.3000(17) 1.3702(17)	C20 C21	1,402,(2)
N5 D1	1.3702(17) 1.4042(10)	C_{20} H_{20}	1.402(2)
NJ-BI	1.4942(19) 1.2295(19)	C20—H20A	0.9300
	1.3385 (18)	C21—C22	1.381 (2)
N6-C24	1.34//(18)	C2I—H2IA	0.9500
C1—C2	1.457 (2)	C22—C23	1.3964 (19)
C2—C3	1.392 (2)	C22—H22A	0.9500
C2—C7	1.4204 (19)	C23—C24	1.453 (2)
C3—C4	1.386 (2)	C25—C26	1.489 (2)
С3—НЗА	0.9500	C26—C27	1.385 (2)
C4—C5	1.398 (2)	C26—C31	1.391 (2)
C4—H4A	0.9500	C27—C28	1.391 (2)
C5—C6	1.386 (2)	С27—Н27А	0.9500
C5—H5A	0.9500	C28—C29	1.383 (2)
C6—C7	1.393 (2)	C28—H28A	0.9500
С6—Н6А	0.9500	C29—C30	1.380 (3)
С7—С8	1.456 (2)	С29—Н29А	0.9500
C9—C10	1.4541 (19)	C30—C31	1.386 (2)
C10—C11	1.3928 (19)	С30—Н30А	0.9500
C10—C15	1.423 (2)	C31—H31A	0.9500
C25—O1—B1	118.41 (11)	C14—C15—C16	131.88 (13)
C1—N1—C8	112.15 (11)	C10-C15-C16	106.87 (12)
C1—N1—B1	122.83 (11)	N4—C16—N3	122.61 (12)
C8—N1—B1	123.04 (11)	N4—C16—C15	129.00 (13)
C8—N2—C9	116.60 (12)	N3—C16—C15	105.94 (11)
C9—N3—C16	112.85 (11)	N4—C17—N5	122.69 (12)
C9—N3—B1	123.36 (12)	N4—C17—C18	129.14 (13)
C16—N3—B1	122.27(11)	N5-C17-C18	105.95(11)
$C_{16} - N_{4} - C_{17}$	1122.27(11) 117.16(12)	$C_{19} - C_{18} - C_{23}$	120.76 (13)
C_{24} N5 C_{17}	112 86 (11)	$C_{19} - C_{18} - C_{17}$	120.70(13) 131.61(13)
$C_{24} N_{5} B_{1}$	123.06 (12)	C_{23} $-C_{18}$ $-C_{17}$	107.14(12)
C17 - N5 - B1	122.00(12) 122.30(11)	C_{20} C_{19} C_{18}	118 07 (12)
C1 - N6 - C24	116.81 (12)	C_{20} C_{19} H_{19A}	121.0
N6-C1-N1	122 03 (12)	C_{18} C_{19} H_{10A}	121.0
N6-C1-C2	122.93(12) 120 17 (13)	C10 - C20 - C21	121.0 121 / 2 (1/)
$N_1 - C_1 - C_2$	105.05(11)	C_{19} C_{20} C	110 3
111 - 01 - 02	102.22 (11)	U17-U20-1120A	117.J

C3—C2—C7	120.86 (13)	C21—C20—H20A	119.3
C3—C2—C1	131.84 (13)	C22—C21—C20	121.37 (14)
C7—C2—C1	107.10 (12)	C22—C21—H21A	119.3
C4—C3—C2	117.53 (13)	C20—C21—H21A	119.3
С4—С3—НЗА	121.2	C21—C22—C23	118.21 (14)
С2—С3—НЗА	121.2	C21—C22—H22A	120.9
C3—C4—C5	121.73 (14)	C23—C22—H22A	120.9
C3—C4—H4A	119.1	C22—C23—C18	120.16 (13)
C5—C4—H4A	119.1	C22—C23—C24	132.10 (13)
C6—C5—C4	121.29 (14)	C18—C23—C24	107.24 (11)
С6—С5—Н5А	119.4	N6—C24—N5	122.76 (12)
C4—C5—H5A	119.4	N6—C24—C23	129.45 (12)
C5—C6—C7	117.71 (13)	N5-C24-C23	105.87 (11)
C5—C6—H6A	121.1	02-C25-O1	123.09 (13)
С7—С6—Н6А	121.1	02-C25-C26	123.05 (13)
C6-C7-C2	120.77 (13)	01-C25-C26	113.85 (12)
C6—C7—C8	131.94 (13)	C_{27} C_{26} C_{31}	120.03 (14)
$C^2 - C^7 - C^8$	107.12 (12)	$C_{27} - C_{26} - C_{25}$	121.86 (13)
N2-C8-N1	123 23 (13)	$C_{31} = C_{26} = C_{25}$	118 09 (13)
$N_2 - C_8 - C_7$	129.12 (13)	$C_{26} = C_{27} = C_{28}$	120.01 (15)
N1-C8-C7	105.94 (11)	C26—C27—H27A	120.0
N2-C9-N3	122.94 (12)	$C_{28} = C_{27} = H_{27A}$	120.0
$N_2 - C_9 - C_{10}$	129 56 (12)	$C_{29} = C_{28} = C_{27}$	119.86 (16)
N_{3} C9 C10	105,75(12)	C_{29} C_{28} H_{28A}	120.1
$C_{11} - C_{10} - C_{15}$	109.79(12) 120.51(13)	$C_{27} = C_{28} = H_{28A}$	120.1
$C_{11} - C_{10} - C_{9}$	120.51(13) 131.41(13)	$C_{20} = C_{20} = C_{20}$	120.11
C_{15} C_{10} C_{9}	107.44(12)	C_{30} C_{29} H_{29A}	120.01 (10)
C_{12} C_{11} C_{10} C_{10}	117 89 (14)	C_{28} C_{29} H_{29A}	120.0
C12 $C11$ $H11A$	121 1	$C_{20} = C_{20} = C_{31}$	120.0 120.63(15)
C10-C11-H11A	121.1	$C_{29} = C_{30} = H_{30A}$	119.7
C_{11} C_{12} C_{13}	121.1	C_{2}^{31} C_{30}^{30} H_{30A}^{30}	119.7
$C_{11} = C_{12} = C_{13}$	119.2	C_{30} C_{31} C_{26}	119.7
C13 - C12 - H12A	119.2	C_{30} C_{31} H_{31A}	119.45 (15)
C_{13} C_{12} C_{12} C_{12}	119.2 121 34 (14)	C_{26} C_{31} H_{31A}	120.3
C14 - C13 - C12	110.3	C_{20} $= C_{31}$ $= H_{31}$ A	120.3 118 49 (12)
C_{12} C_{13} H_{13A}	110.3	O1 = B1 = N3	(12)
$C_{12} = C_{13} = M_{5} + M_{5}$	117.00(14)	N1 B1 N3	113.97(12) 104.69(11)
$C_{13} = C_{14} = C_{15}$	121.0	$\Omega_1 = B_1 = N_5$	104.09(11) 108.79(11)
C_{13} C_{14} H_{14A}	121.0	N1 B1 N5	100.79(11) 104.83(11)
C14 C15 C10	121.0 120.72(13)	$N_1 \longrightarrow D_1 \longrightarrow N_2$ $N_2 \longrightarrow D_1 \longrightarrow D_2$	104.03(11) 104.01(11)
014-015-010	120.72 (13)	IN3-BI-IN3	104.91 (11)
C24 N6 C1 N1	-86(2)	C24 N5 C17 N4	154 42 (13)
$C_2 \rightarrow N_0 \rightarrow C_1 \rightarrow N_1$	153 16 (14)	$\mathbf{R}_{1} \mathbf{N}_{5} \mathbf{C}_{17} \mathbf{N}_{4}$	-10.8(2)
$C_{2} = 10 - C_{1} - C_{2}$	153.10(14) 152.01(13)	$C_{1} = 113 = C_{1} / = 114$	-10.0(2)
$\mathbf{R}_{1} \mathbf{N}_{1} \mathbf{C}_{1} \mathbf{N}_{6}$	-12 A (2)	$C_{4} = N_{3} = C_{17} = C_{10}$	-175.26(12)
$C_{\text{R}} = \frac{1}{10} + \frac{1}{10} $	12.4(2) -12.28(15)	$D_1 - N_3 - C_1 / - C_{10}$	1/3.20(12)
$C_{0} = 1 \times 1 = C_{1} = C_{2}$	13.30(13) -177.70(12)	104 - 017 - 010 - 019	14.9(3)
DI - INI - CI - C2	-1/1.19(12)	113 - 017 - 018 - 019	1//.99 (14)
No-CI-C2-C3	18.5 (2)	N4—C1/—C18—C23	-136.91 (14)

N1—C1—C2—C3	-177.36 (14)	N5-C17-C18-C23	6.19 (15)
N6—C1—C2—C7	-156.29 (14)	C23—C18—C19—C20	-0.5 (2)
N1—C1—C2—C7	7.86 (15)	C17—C18—C19—C20	-171.33 (15)
C7—C2—C3—C4	-2.7(2)	C18—C19—C20—C21	1.1 (2)
C1—C2—C3—C4	-176.90 (14)	C19—C20—C21—C22	-0.6(2)
C2—C3—C4—C5	2.4 (2)	C20—C21—C22—C23	-0.6(2)
C3—C4—C5—C6	0.5 (2)	C21—C22—C23—C18	1.2 (2)
C4—C5—C6—C7	-3.0(2)	C21—C22—C23—C24	171.92 (15)
C5—C6—C7—C2	2.7 (2)	C19—C18—C23—C22	-0.7(2)
C5—C6—C7—C8	177.27 (14)	C17—C18—C23—C22	172.17 (12)
$C_{3}-C_{2}-C_{7}-C_{6}$	0.2 (2)	C19-C18-C23-C24	-173.51(13)
C1—C2—C7—C6	175.67 (13)	C17—C18—C23—C24	-0.64(15)
$C_{3}-C_{2}-C_{7}-C_{8}$	-175.61(12)	C1—N6—C24—N5	10.2 (2)
C1-C2-C7-C8	-0.14(15)	C1 - N6 - C24 - C23	-151.73(14)
C9-N2-C8-N1	7 90 (19)	C17 - N5 - C24 - N6	-155.94(13)
C9-N2-C8-C7	-155.02(14)	B1-N5-C24-N6	9.2 (2)
C1 - N1 - C8 - N2	-152.99(13)	C17 - N5 - C24 - C23	9 63 (15)
B1 - N1 - C8 - N2	11 4 (2)	B1—N5—C24—C23	17472(12)
C1 - N1 - C8 - C7	13.30(15)	C^{22} C^{23} C^{24} C^{24} C^{25}	-125(3)
B1 - N1 - C8 - C7	177 66 (12)	$C_{18} = C_{23} = C_{24} = N_6$	12.3(3)
C6-C7-C8-N2	-176(3)	C_{22} C_{23} C_{24} N_{5}	-17677(15)
$C_{2} = C_{2} = C_{3} = C_{4} = C_{4}$	157 57 (14)	$C_{12} = C_{23} = C_{24} = N_5$	-5.16(15)
$C_{2} = C_{7} = C_{8} = N_{1}$	177 22 (14)	B1 = 01 = C25 = 024	12.02(19)
$C_{2} - C_{7} - C_{8} - N_{1}$	-7.62(15)	B1 - O1 - C25 - C26	-167.05(11)
$C_{2} = C_{7} = C_{9} = N_{3}$	-8.38(19)	$0^{2}-0^{2}5-0^{2}6-0^{2}7$	175 26 (14)
C8 = N2 = C9 = C10	15434(14)	$02 \ 025 \ 026 \ 027$	-5.67(19)
$C_{16} N_{2} C_{9} N_{2}$	154.54(14) 155.77(13)	$0^{2}-0^{2$	-64(2)
$B1_N3_C9_N2$	-104(2)	$01 - C^{25} - C^{26} - C^{31}$	$172\ 67\ (12)$
$C_{16} N_{3} C_{9} C_{10}$	-10.47(15)	C_{31} C_{26} C_{27} C_{28}	0.1(2)
B1 N3 C9 C10	-176.62(12)	$C_{21} = C_{20} = C_{27} = C_{28}$	178 42 (14)
$N_{2} = C_{1} = C_{1} = C_{1}$	1/0.02(12)	$C_{25} = C_{20} = C_{27} = C_{28}$	-0.7(2)
$N_2 = C_2 = C_1 $	10.0(2) 175.80(14)	$C_{20} = C_{21} = C_{20} = C$	0.7(2)
$N_{2} = C_{10} = C_{10} = C_{11}$	-150.73(14)	$C_{27} = C_{28} = C_{29} = C_{30}$	0.4(3)
$N_2 = C_2 = C_{10} = C_{15}$	5 26 (15)	$C_{20} = C_{20} = C_{30} = C_{31}$	0.3(2)
$N_{3} = C_{9} = C_{10} = C_{13}$	-1.7(2)	$C_{29} = C_{30} = C_{31} = C_{20}$	-1.1(2)
$C_{13} = C_{10} = C_{11} = C_{12}$	1.7(2) -171 21 (14)	$C_{27} = C_{20} = C_{31} = C_{30}$	0.0(2)
$C_{10} = C_{10} = C_{11} = C_{12} = C_{13}$	1/1.21(14)	$C_{25} = C_{20} = C_{51} = C_{50}$	-65.32(15)
$C_{11} = C_{12} = C_{13}$	0.0(2)	$C_{25} = O_1 = D_1 = N_1$	5854(16)
C12 - C13 - C14	1.3(2)	$C_{25} = 01 = B_1 = N_5$	38.34(10) 175 20 (11)
C12 - C13 - C14 - C15	-1.1(2)	C_{23} C_{1} N_{1} D_{1} O_{1}	1/3.20(11)
C13 - C14 - C13 - C10	-0.0(2)	CI = NI = DI = OI	-94.40(10)
C13 - C14 - C15 - C16	109.87(14)	C_{0} NI BI N2	102.82(15)
C11 - C10 - C13 - C14	2.1(2)	CI = NI = BI = N3	137.21(12)
C_{9} C_{10} C_{15} C_{14}	1/3.82 (12)	$ \begin{array}{c} C_{0} \\ C_{1} \\ N_{1} \\ D_{1} \\ D_{1} \\ N_{2} \\ N_{2} \\ N_{3} \\ N_{5} \\ N$	-25.51(17)
$C_{11} = C_{10} = C_{15} = C_{16}$	-1/0.55(12)	$C_1 = N_1 = B_1 = N_2$	2/.06 (1/)
$C_{12} = C_{10} = C_{15} = C_{16}$	1.22 (13)	$C_0 = N_1 = B_1 = N_2$	-135.66 (12)
$U_1 / - N_4 - U_{10} - N_3$	8.50 (19)	C_{1} N_{2} R_{1} O_{1}	-105.91(15)
C1/-N4-C16-C15	-151.17 (14)	C16 - N3 - B1 - O1	89.21 (15)
C9—N3—C16—N4	-152.44 (13)	C9—N3—B1—N1	25.11 (17)
B1—N3—C16—N4	13.9 (2)	C16—N3—B1—N1	-139.77 (12)
----------------	--------------	--------------	--------------
C9—N3—C16—C15	11.25 (15)	C9—N3—B1—N5	135.20 (12)
B1—N3—C16—C15	177.58 (12)	C16—N3—B1—N5	-29.68 (17)
C14—C15—C16—N4	-16.4 (3)	C24—N5—B1—O1	102.14 (14)
C10-C15-C16-N4	155.03 (14)	C17—N5—B1—O1	-94.15 (14)
C14—C15—C16—N3	-178.70 (14)	C24—N5—B1—N1	-25.54 (17)
C10-C15-C16-N3	-7.25 (15)	C17—N5—B1—N1	138.17 (12)
C16—N4—C17—N5	-10.01 (19)	C24—N5—B1—N3	-135.53 (13)
C16—N4—C17—C18	150.60 (14)	C17—N5—B1—N3	28.18 (16)

(Subphthalocyaninato)(trimethylsilanolato)boron (d23117_a)

Crystal data

C₂₇H₂₁BN₆OSi $M_r = 484.40$ Monoclinic, $P2_1/c$ a = 16.343 (3) Å b = 11.9655 (16) Å c = 12.5059 (19) Å $\beta = 99.996$ (11)° V = 2408.4 (6) Å³ Z = 4

Data collection

Bruker Kappa APEX-DUO CMOS PHOTON II
diffractometer
Radiation source: Incoatec ImuS with multi-
layer optics
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\min} = 0.629, \ T_{\max} = 0.753$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.123$ S = 1.054230 reflections 326 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1008 $D_x = 1.336 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 6743 reflections $\theta = 2.8-62.7^{\circ}$ $\mu = 1.13 \text{ mm}^{-1}$ T = 150 KPlate, pink $0.19 \times 0.15 \times 0.01 \text{ mm}$

57016 measured reflections 4230 independent reflections 2990 reflections with $I > 2\sigma(I)$ $R_{int} = 0.127$ $\theta_{max} = 69.6^{\circ}, \ \theta_{min} = 2.8^{\circ}$ $h = -19 \rightarrow 18$ $k = -14 \rightarrow 14$ $l = -14 \rightarrow 15$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + 2.7611P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.31$ e Å⁻³ $\Delta\rho_{min} = -0.24$ e Å⁻³ Extinction correction: SHELXL2019 (Sheldrick, 2015*b*), Fc*=kFc[1+0.001xFc² λ^3 /sin(2 θ)]^{-1/4} Extinction coefficient: 0.00173 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	12	7	Uim*/Um	
S i1	0.02106.(5)	0.56580 (8)	0.60300.(6)		
01	0.92190(3)	0.50509(8)	0.09390(0)	0.0419(3)	
N1	0.62133(11) 0.67572(14)	0.38327(17) 0.54454(10)	0.00302(14) 0.50336(16)	0.0404(3) 0.0215(5)	
INI NO	0.07372(14) 0.61070(12)	0.34434(19) 0.7152(2)	0.39330(10) 0.62674(16)	0.0313(3)	
INZ	0.01079(13)	0.7132(2) 0.71387(10)	0.02074(10)	0.0324(3)	
N3 N4	0.73048(13) 0.702(0.(12))	0.71287(19) 0.7112(2)	0.34038(10) 0.38152(17)	0.0311(5)	
IN4	0.79209 (13)	0.7113(2)	0.38133(17)	0.0337(3)	
N5 NC	0.76928 (13)	0.54202 (19)	0.47089 (16)	0.0315 (5)	
N0	0.69104 (15)	0.37895 (19)	0.49431 (17)	0.0362 (6)	
	0.65420 (17)	0.4375(2)	0.5652 (2)	0.0339 (6)	
C2	0.57669 (17)	0.4167 (2)	0.6060 (2)	0.0341 (7)	
C3	0.52886 (18)	0.3214 (3)	0.6107 (2)	0.0383 (7)	
H3A	0.544905	0.251917	0.584005	0.046*	
C4	0.45704 (19)	0.3303 (3)	0.6553 (2)	0.0411 (7)	
H4A	0.424840	0.265383	0.662027	0.049*	
C5	0.43160 (18)	0.4327 (3)	0.6903 (2)	0.0396 (7)	
H5A	0.381451	0.436591	0.718769	0.047*	
C6	0.47703 (17)	0.5288 (3)	0.6848 (2)	0.0353 (7)	
H6A	0.458409	0.598563	0.707774	0.042*	
C7	0.55133 (17)	0.5207 (2)	0.6443 (2)	0.0321 (6)	
C8	0.61404 (16)	0.6031 (2)	0.62890 (19)	0.0314 (6)	
C9	0.66603 (16)	0.7676 (2)	0.5752 (2)	0.0317 (6)	
C10	0.65924 (17)	0.8756 (2)	0.5218 (2)	0.0326 (6)	
C11	0.60688 (18)	0.9665 (2)	0.5262 (2)	0.0365 (7)	
H11A	0.568910	0.967777	0.575691	0.044*	
C12	0.61161 (19)	1.0550 (2)	0.4565 (2)	0.0401 (7)	
H12A	0.577332	1.118639	0.459568	0.048*	
C13	0.66574 (19)	1.0526 (3)	0.3817 (2)	0.0413 (7)	
H13A	0.667074	1.114729	0.334729	0.050*	
C14	0.71758 (18)	0.9627 (2)	0.3739 (2)	0.0362 (7)	
H14A	0.753403	0.961298	0.321717	0.043*	
C15	0.71516 (17)	0.8744 (2)	0.4455 (2)	0.0324 (6)	
C16	0.75527 (16)	0.7655 (2)	0.4544 (2)	0.0313 (6)	
C17	0.79452 (16)	0.5993 (2)	0.3877 (2)	0.0323 (6)	
C18	0.80059 (16)	0.5173 (2)	0.3038 (2)	0.0317 (6)	
C19	0.82400 (17)	0.5265 (3)	0.2025 (2)	0.0356 (7)	
H19A	0.844024	0.595257	0.179144	0.043*	
C20	0.81744 (17)	0.4334 (3)	0.1369 (2)	0.0388 (7)	
H20A	0.834223	0.437620	0.067973	0.047*	
C21	0.78666 (19)	0.3333 (3)	0.1699 (2)	0.0445 (8)	
H21A	0.782564	0.270531	0.122721	0.053*	
C22	0.76184 (19)	0.3225 (3)	0.2695 (2)	0.0436 (8)	
H22A	0.740326	0.253783	0.290727	0.052*	
C23	0.76918 (17)	0.4151 (2)	0.3380 (2)	0.0355 (7)	
C24	0.74429 (17)	0.4358 (2)	0.4426 (2)	0.0341 (6)	
C25	0.9463 (2)	0.5487 (4)	0.8434 (3)	0.0847 (15)	
· -					

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H25A	1.006156	0.536694	0.865852	0.127*	
H25B	0.929659	0.616126	0.878614	0.127*	
H25C	0.915995	0.484114	0.864899	0.127*	
C26	0.9766 (2)	0.6865 (3)	0.6480 (3)	0.0651 (10)	
H26A	1.036749	0.674094	0.665679	0.098*	
H26B	0.960095	0.695330	0.569359	0.098*	
H26C	0.962191	0.754221	0.684696	0.098*	
C27	0.9503 (2)	0.4385 (3)	0.6252 (3)	0.0544 (9)	
H27A	1.010494	0.427158	0.642697	0.082*	
H27B	0.921838	0.373842	0.650062	0.082*	
H27C	0.933464	0.446856	0.546533	0.082*	
B1	0.7561 (2)	0.5960 (3)	0.5750 (2)	0.0331 (7)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si1	0.0324 (4)	0.0598 (6)	0.0333 (4)	0.0051 (4)	0.0054 (3)	-0.0022 (4)
01	0.0334 (11)	0.0576 (14)	0.0303 (10)	0.0052 (9)	0.0057 (8)	-0.0006 (9)
N1	0.0350 (13)	0.0335 (14)	0.0271 (11)	0.0026 (10)	0.0087 (9)	0.0015 (10)
N2	0.0349 (13)	0.0374 (15)	0.0259 (11)	-0.0005 (11)	0.0081 (9)	-0.0009 (10)
N3	0.0335 (12)	0.0363 (14)	0.0256 (11)	-0.0018 (11)	0.0107 (9)	-0.0024 (10)
N4	0.0321 (13)	0.0387 (15)	0.0309 (12)	-0.0056 (11)	0.0075 (10)	-0.0026 (10)
N5	0.0330 (12)	0.0370 (14)	0.0262 (11)	0.0019 (10)	0.0103 (9)	0.0007 (10)
N6	0.0417 (14)	0.0355 (14)	0.0335 (12)	0.0050 (11)	0.0129 (10)	0.0027 (10)
C1	0.0389 (16)	0.0339 (17)	0.0295 (14)	0.0029 (13)	0.0077 (12)	0.0060 (12)
C2	0.0365 (15)	0.0395 (18)	0.0268 (13)	-0.0001 (13)	0.0071 (11)	0.0063 (12)
C3	0.0463 (18)	0.0412 (18)	0.0290 (14)	-0.0059 (14)	0.0109 (13)	0.0017 (12)
C4	0.0462 (18)	0.047 (2)	0.0307 (15)	-0.0111 (15)	0.0087 (13)	0.0020 (13)
C5	0.0350 (16)	0.054 (2)	0.0306 (14)	-0.0046 (15)	0.0076 (12)	0.0016 (14)
C6	0.0374 (16)	0.0428 (18)	0.0266 (13)	-0.0004 (14)	0.0080 (12)	0.0025 (12)
C7	0.0331 (15)	0.0392 (17)	0.0240 (13)	-0.0006 (13)	0.0053 (11)	0.0050 (12)
C8	0.0336 (15)	0.0386 (18)	0.0231 (12)	0.0026 (13)	0.0079 (11)	0.0014 (12)
C9	0.0312 (14)	0.0393 (17)	0.0248 (13)	-0.0019 (13)	0.0054 (11)	-0.0046 (12)
C10	0.0379 (16)	0.0341 (17)	0.0264 (13)	-0.0054 (13)	0.0070 (11)	-0.0034 (11)
C11	0.0420 (17)	0.0374 (18)	0.0313 (14)	-0.0001 (14)	0.0093 (12)	-0.0042 (12)
C12	0.0514 (18)	0.0325 (17)	0.0365 (15)	0.0016 (14)	0.0080 (13)	-0.0044 (13)
C13	0.0546 (19)	0.0342 (18)	0.0351 (15)	-0.0077 (15)	0.0081 (14)	-0.0007 (13)
C14	0.0458 (17)	0.0363 (17)	0.0277 (14)	-0.0092 (14)	0.0100 (12)	-0.0032 (12)
C15	0.0376 (16)	0.0319 (16)	0.0286 (14)	-0.0076 (13)	0.0078 (12)	-0.0054 (12)
C16	0.0313 (15)	0.0379 (17)	0.0264 (13)	-0.0060 (12)	0.0096 (11)	-0.0044 (12)
C17	0.0277 (14)	0.0382 (18)	0.0314 (14)	-0.0018 (12)	0.0059 (11)	0.0004 (12)
C18	0.0296 (14)	0.0407 (17)	0.0257 (13)	0.0029 (12)	0.0078 (11)	-0.0018 (12)
C19	0.0308 (15)	0.0437 (18)	0.0327 (14)	0.0023 (13)	0.0063 (12)	0.0006 (13)
C20	0.0370 (16)	0.050 (2)	0.0303 (14)	0.0008 (14)	0.0071 (12)	-0.0061 (13)
C21	0.0472 (19)	0.048 (2)	0.0400 (16)	0.0010 (15)	0.0128 (14)	-0.0132 (14)
C22	0.0446 (18)	0.0393 (19)	0.0496 (18)	-0.0023 (14)	0.0154 (15)	-0.0062 (14)
C23	0.0349 (15)	0.0380 (18)	0.0351 (14)	0.0018 (13)	0.0108 (12)	0.0002 (12)
C24	0.0363 (15)	0.0345 (17)	0.0336 (14)	0.0047 (13)	0.0121 (12)	0.0030 (12)

C25	0.047 (2)	0.162 (5)	0.044 (2)	0.030 (3)	0.0036 (16)	-0.001 (2)
C26	0.048 (2)	0.063 (3)	0.083 (3)	-0.0077 (18)	0.0090 (19)	-0.014 (2)
C27	0.0458 (19)	0.058 (2)	0.059 (2)	0.0088 (17)	0.0087 (16)	0.0019 (17)
B1	0.0326 (17)	0.040 (2)	0.0282 (15)	-0.0019 (15)	0.0078 (13)	0.0004 (14)

Geometric parameters (Å, °)

Sil—Ol	1.638 (2)	C10—C11	1.391 (4)	
Si1—C26	1.840 (4)	C10—C15	1.431 (4)	
Si1—C27	1.847 (3)	C11—C12	1.382 (4)	
Si1—C25	1.855 (3)	C11—H11A	0.9500	
O1—B1	1.415 (4)	C12—C13	1.394 (4)	
N1-C1	1.358 (3)	C12—H12A	0.9500	
N1—C8	1.364 (3)	C13—C14	1.384 (4)	
N1—B1	1.504 (4)	C13—H13A	0.9500	
N2—C8	1.342 (3)	C14—C15	1.389 (4)	
N2—C9	1.351 (3)	C14—H14A	0.9500	
N3—C16	1.368 (3)	C15—C16	1.455 (4)	
N3—C9	1.372 (3)	C17—C18	1.452 (4)	
N3—B1	1.502 (4)	C18—C19	1.390 (4)	
N4—C17	1.343 (3)	C18—C23	1.422 (4)	
N4C16	1.348 (3)	C19—C20	1.377 (4)	
N5-C24	1.363 (4)	C19—H19A	0.9500	
N5—C17	1.368 (3)	C20—C21	1.389 (4)	
N5—B1	1.502 (4)	C20—H20A	0.9500	
N6-C1	1.351 (3)	C21—C22	1.381 (4)	
N6-C24	1.354 (3)	C21—H21A	0.9500	
C1—C2	1.466 (4)	C22—C23	1.393 (4)	
C2—C3	1.390 (4)	C22—H22A	0.9500	
C2—C7	1.420 (4)	C23—C24	1.457 (4)	
C3—C4	1.388 (4)	C25—H25A	0.9800	
С3—НЗА	0.9500	C25—H25B	0.9800	
C4—C5	1.389 (4)	C25—H25C	0.9800	
C4—H4A	0.9500	C26—H26A	0.9800	
C5—C6	1.377 (4)	C26—H26B	0.9800	
C5—H5A	0.9500	C26—H26C	0.9800	
С6—С7	1.397 (4)	C27—H27A	0.9800	
С6—Н6А	0.9500	C27—H27B	0.9800	
C7—C8	1.459 (4)	C27—H27C	0.9800	
C9—C10	1.451 (4)			
O1—Si1—C26	110.09 (15)	C13—C14—C15	117.4 (3)	
O1—Si1—C27	109.70 (14)	C13—C14—H14A	121.3	
C26—Si1—C27	109.14 (17)	C15—C14—H14A	121.3	
O1—Si1—C25	105.64 (14)	C14—C15—C10	121.0 (3)	
C26—Si1—C25	111.7 (2)	C14—C15—C16	131.9 (2)	
C27—Si1—C25	110.48 (19)	C10—C15—C16	106.8 (2)	
B1—O1—Si1	141.00 (18)	N4C16N3	122.9 (2)	

C1 N1 C9	112 2 (2)	N4 C16 C15	120.0(2)
CI = NI = DI	113.3(2)	N4	129.0(2)
CI-NI-BI	122.7(2)	N3-C16-C15	106.4 (2)
C8—NI—BI	123.6 (2)	N4—C17—N5	122.5 (2)
C8—N2—C9	116.5 (2)	N4—C17—C18	129.5 (2)
C16—N3—C9	112.2 (2)	N5—C17—C18	106.2 (2)
C16—N3—B1	123.3 (2)	C19—C18—C23	120.9 (3)
C9—N3—B1	123.0 (2)	C19—C18—C17	132.0 (3)
C17—N4—C16	116.7 (2)	C23—C18—C17	106.9 (2)
C24—N5—C17	112.7 (2)	C20—C19—C18	118.3 (3)
C24—N5—B1	123.0 (2)	С20—С19—Н19А	120.8
C17—N5—B1	123.5 (2)	C18—C19—H19A	120.8
C1—N6—C24	116.7 (2)	C19—C20—C21	121.0 (3)
N6-C1-N1	122.3 (2)	C19—C20—H20A	119.5
N6-C1-C2	130.6 (3)	C21—C20—H20A	119.5
N1—C1—C2	105.7 (2)	C22—C21—C20	121.8 (3)
C3—C2—C7	120.3 (2)	C22—C21—H21A	119.1
C3—C2—C1	132.8 (3)	C20—C21—H21A	119.1
C7—C2—C1	106.8 (2)	C21—C22—C23	118.2 (3)
C4-C3-C2	118.4 (3)	C21—C22—H22A	120.9
C4—C3—H3A	120.8	C_{23} C_{22} H_{22A}	120.9
C^2 — C^3 — H^3A	120.8	C^{22} C^{23} C^{18}	120.9 119.8(2)
$C_2 = C_2 = C_2$	120.0	$C_{22} = C_{23} = C_{10}$	132.8(3)
$C_3 - C_4 - H_4 \Delta$	110 5	C12 C23 C24	107.2(2)
$C_5 C_4 H_{4A}$	110.5	N6 C24 N5	107.2(2) 122.2(2)
C_{5}	119.5	$N_{0} = C_{24} = N_{3}$	122.2(2) 120.2(2)
C6 C5 H5A	121.9 (5)	$N_{0} = C_{24} = C_{23}$	130.3(3) 105.0(2)
$C_0 = C_5 = H_5 A$	119.1	$N_{3} = C_{24} = C_{23}$	105.9 (2)
C4—C5—H5A	119.1	SII—C25—H25A	109.5
	118.0 (3)	SII—C25—H25B	109.5
С5—С6—Н6А	121.0	H25A—C25—H25B	109.5
С/—С6—Н6А	121.0	S11—C25—H25C	109.5
C6—C/—C2	120.4 (3)	H25A—C25—H25C	109.5
C6—C7—C8	132.5 (3)	H25B—C25—H25C	109.5
C2—C7—C8	107.1 (2)	Si1—C26—H26A	109.5
N2—C8—N1	122.4 (2)	Si1—C26—H26B	109.5
N2—C8—C7	130.7 (2)	H26A—C26—H26B	109.5
N1—C8—C7	105.7 (2)	Si1—C26—H26C	109.5
N2—C9—N3	122.8 (2)	H26A—C26—H26C	109.5
N2—C9—C10	129.0 (2)	H26B—C26—H26C	109.5
N3—C9—C10	106.3 (2)	Si1—C27—H27A	109.5
C11—C10—C15	120.1 (3)	Si1—C27—H27B	109.5
C11—C10—C9	132.6 (2)	H27A—C27—H27B	109.5
C15—C10—C9	106.9 (2)	Si1—C27—H27C	109.5
C12—C11—C10	118.2 (3)	H27A—C27—H27C	109.5
C12—C11—H11A	120.9	H27B—C27—H27C	109.5
C10—C11—H11A	120.9	O1—B1—N3	116.5 (2)
C11—C12—C13	121.2 (3)	O1—B1—N5	116.7 (2)
C11—C12—H12A	119.4	N3—B1—N5	103.1 (2)
C13—C12—H12A	119.4	O1—B1—N1	113.5 (2)
	-		(-)

C14—C13—C12	122.0 (3)	N3—B1—N1	102.6 (2)
C14—C13—H13A	119.0	N5—B1—N1	102.5 (2)
С12—С13—Н13А	119.0		
C_{26} Si1 $- O_{1}$ B1	654(4)	C9—N3—C16—C15	11.8 (3)
C_{27} Si1 $-O_{1}$ B1	-54.7(4)	B1 - N3 - C16 - C15	177.9(2)
C_{25} Si1 $-O_{1}$ B1	-173 8 (3)	C14 - C15 - C16 - N4	-152(5)
C_{24} N6-C1-N1	-7.2(4)	C10-C15-C16-N4	158.2(3)
C_{24} N6-C1-C2	1569(3)	C14 - C15 - C16 - N3	1799(3)
C8-N1-C1-N6	155.7(2)	C10-C15-C16-N3	-67(3)
B1-N1-C1-N6	-179(4)	C16 - N4 - C17 - N5	-7.8(4)
C8-N1-C1-C2	-11.9(3)	C16 - N4 - C17 - C18	1547(3)
B1-N1-C1-C2	1745(2)	C_{24} N5 C_{17} N4	155.2(2)
N6-C1-C2-C3	20.3(5)	B1 - N5 - C17 - N4	-146(4)
$N_1 - C_1 - C_2 - C_3$	-1735(3)	$C_{24} N_{5} C_{17} C_{18}$	-10.9(3)
N6-C1-C2-C7	-1586(3)	B1 - N5 - C17 - C18	1793(2)
$N_1 - C_1 - C_2 - C_7$	76(3)	N4-C17-C18-C19	162(5)
$C_{7}^{-}C_{2}^{-}C_{3}^{-}C_{4}^{-}$	-1.1(4)	N_{5} C_{17} C_{18} C_{19}	-1791(3)
$C_1 - C_2 - C_3 - C_4$	-1799(3)	N_{4} C_{17} C_{18} C_{23}	-1584(3)
$C_1 - C_2 - C_3 - C_4$	27(4)	N5 C17 C18 C23	63(3)
$C_2 - C_3 - C_4 - C_5$	2.7(4)	$C_{23} = C_{18} = C_{19} = C_{23}$	-1.2(4)
$C_{3} - C_{4} - C_{5} - C_{0}$	-1.1(4)	$C_{23} = C_{13} = C_{13} = C_{20}$	-175 2 (3)
$C_{+-}C_{5-}C_{6-}C_{7$	1.1(4)	C17 - C18 - C19 - C20	173.2(3)
$C_{3} = C_{0} = C_{7} = C_{2}$	2.0(4) -170.0(3)	$C_{10} = C_{10} = C_{20} = C_{21}$	-0.2(5)
$C_{3} = C_{1} = C_{8}$	-1/9.0(3)	C19 - C20 - C21 - C22	-0.3(3)
$C_{3} - C_{2} - C_{7} - C_{6}$	-1.3(4)	$C_{20} = C_{21} = C_{22} = C_{23}$	-0.7(3)
C1 - C2 - C7 - C8	177.0(2)	$C_{21} = C_{22} = C_{23} = C_{18}$	0.8(4)
$C_{3} - C_{2} - C_{7} - C_{8}$	1/9.8 (2)	$C_{21} - C_{22} - C_{23} - C_{24}$	1/4.9 (3)
$C_1 = C_2 = C_1 = C_8$	-1.2(3)	C19 - C18 - C23 - C22	0.2(4)
C9 - N2 - C8 - N1	7.9 (4) 157 0 (2)	C1/-C18-C23-C22	1/5.5 (3)
$C_{2} = N_{2} = C_{3} = C_{7}$	-157.9(3)	C19 - C18 - C23 - C24	-1/5.4(2)
CI = NI = C8 = N2	-15/./(2)	C1/-C18-C23-C24	0.0(3)
BI = NI = C8 = N2	15.9 (4)	C1 - N6 - C24 - N5	9.2 (4)
CI—NI—C8—C/	11.2 (3)	C1 - N6 - C24 - C23	-154.0 (3)
BI—NI—C8—C/	-175.3(2)	C17 - N5 - C24 - N6	-155.9 (2)
C6-C/-C8-N2	-16.6(5)	B1—N5—C24—N6	13.9 (4)
C2-C/-C8-N2	161.9 (3)	C17—N5—C24—C23	10.8 (3)
C6-C/-C8-N1	175.9 (3)	B1—N5—C24—C23	-179.3 (2)
C2-C7-C8-N1	-5.6 (3)	C22—C23—C24—N6	-15.7 (5)
C8—N2—C9—N3	-9.5 (4)	C18—C23—C24—N6	159.0 (3)
C8—N2—C9—C10	152.8 (3)	C22—C23—C24—N5	179.1 (3)
C16—N3—C9—N2	153.8 (2)	C18—C23—C24—N5	-6.2 (3)
B1—N3—C9—N2	-12.4 (4)	Si1—O1—B1—N3	-96.9 (3)
C16—N3—C9—C10	-12.0 (3)	Si1—O1—B1—N5	25.4 (5)
B1—N3—C9—C10	-178.2 (2)	Si1—O1—B1—N1	144.3 (2)
N2-C9-C10-C11	16.4 (5)	C16—N3—B1—O1	100.6 (3)
N3—C9—C10—C11	-179.0 (3)	C9—N3—B1—O1	-94.8 (3)
N2—C9—C10—C15	-157.5 (3)	C16—N3—B1—N5	-28.5 (3)
N3-C9-C10-C15	7.1 (3)	C9—N3—B1—N5	136.1 (2)

-1.0 (4) -174.2 (3) 1.6 (4) -0.4 (4) -1.3 (4) 1.9 (4) 174.5 (3) -0.8 (4) 174.0 (2) -175.1 (2) -0.3 (3) 9.2 (4) -153.6 (3)	C16—N3—B1—N1 C9—N3—B1—N1 C24—N5—B1—O1 C17—N5—B1—O1 C24—N5—B1—N3 C17—N5—B1—N3 C24—N5—B1—N1 C17—N5—B1—N1 C1—N1—B1—O1 C8—N1—B1—O1 C1—N1—B1—N3 C8—N1—B1—N3 C1—N1—B1—N5	$\begin{array}{c} -134.8 (2) \\ 29.9 (3) \\ 92.2 (3) \\ -99.1 (3) \\ -138.8 (2) \\ 30.0 (3) \\ -32.6 (3) \\ 136.2 (2) \\ -92.3 (3) \\ 94.8 (3) \\ 141.2 (2) \\ -31.8 (3) \\ 34.5 (3) \end{array}$
-153.6 (3) -154.2 (2) 11.9 (4)	C1—N1—B1—N5 C8—N1—B1—N5	34.5 (3) -138.5 (2)
	$\begin{array}{c} -1.0 (4) \\ -174.2 (3) \\ 1.6 (4) \\ -0.4 (4) \\ -1.3 (4) \\ 1.9 (4) \\ 174.5 (3) \\ -0.8 (4) \\ 174.0 (2) \\ -175.1 (2) \\ -0.3 (3) \\ 9.2 (4) \\ -153.6 (3) \\ -154.2 (2) \\ 11.9 (4) \end{array}$	$\begin{array}{cccccccc} -1.0 \ (4) & C16-N3-B1-N1 \\ -174.2 \ (3) & C9-N3-B1-N1 \\ 1.6 \ (4) & C24-N5-B1-O1 \\ -0.4 \ (4) & C17-N5-B1-O1 \\ -1.3 \ (4) & C24-N5-B1-N3 \\ 1.9 \ (4) & C17-N5-B1-N3 \\ 174.5 \ (3) & C24-N5-B1-N1 \\ -0.8 \ (4) & C17-N5-B1-N1 \\ -0.8 \ (4) & C17-N5-B1-N1 \\ 174.0 \ (2) & C1-N1-B1-O1 \\ -175.1 \ (2) & C8-N1-B1-O1 \\ -0.3 \ (3) & C1-N1-B1-N3 \\ 9.2 \ (4) & C8-N1-B1-N3 \\ -153.6 \ (3) & C1-N1-B1-N5 \\ -154.2 \ (2) & C8-N1-B1-N5 \\ 11.9 \ (4) \end{array}$

(2,3,4,5,6-Pentafluorobenzenethiolato)(subphthalocyaninato)boron (d23110_a)

Crystal data

 $C_{30}H_{12}BF_5N_6S$ $M_r = 594.33$ Triclinic, *P*1 *a* = 10.7010 (5) Å *b* = 11.8651 (6) Å *c* = 22.4968 (13) Å *a* = 95.863 (2)° *β* = 92.861 (2)° *y* = 115.433 (2)° *V* = 2552.1 (2) Å³

Data collection

Bruker Kappa APEX-DUO CMOS PHOTON II	
diffractometer	
Radiation source: sealed tube with Bruker	
Triumph monochromator	
φ and ω scans	
Absorption correction: multi-scan	
(SADABS; Krause et al., 2015)	
$T_{\min} = 0.713, \ T_{\max} = 0.746$	
Rafinament	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.102$ S = 1.0211711 reflections 775 parameters 0 restraints Z = 4 F(000) = 1200 $D_x = 1.547 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9956 reflections $\theta = 2.7-27.4^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$ T = 150 KShard, pink $0.35 \times 0.24 \times 0.05 \text{ mm}$

75917 measured reflections 11711 independent reflections 7793 reflections with $I > 2\sigma(I)$ $R_{int} = 0.073$ $\theta_{max} = 27.5^\circ$, $\theta_{min} = 1.9^\circ$ $h = -13 \rightarrow 13$ $k = -15 \rightarrow 15$ $l = -29 \rightarrow 29$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0407P)^2 + 0.8213P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.39$ e Å⁻³ $\Delta\rho_{min} = -0.30$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1A	0.49981 (5)	0.53057 (5)	0.88589 (2)	0.02616 (12)	
F1A	0.70408 (13)	0.72707 (11)	0.98271 (5)	0.0396 (3)	
F2A	0.87347 (15)	0.69748 (13)	1.06595 (6)	0.0555 (4)	
F3A	0.86448 (16)	0.46768 (15)	1.07207 (6)	0.0605 (4)	
F4A	0.68146 (16)	0.26465 (13)	0.99579 (6)	0.0546 (4)	
F5A	0.51425 (13)	0.29185 (11)	0.91116 (6)	0.0408 (3)	
N1A	0.59322 (15)	0.61609 (14)	0.77505 (7)	0.0215 (3)	
N2A	0.73161 (16)	0.83583 (15)	0.80554 (7)	0.0242 (4)	
N3A	0.77455 (15)	0.68489 (14)	0.85414 (7)	0.0215 (3)	
N4A	0.89447 (16)	0.55887 (15)	0.86719 (7)	0.0243 (4)	
N5A	0.67759 (15)	0.47455 (14)	0.80606 (7)	0.0215 (3)	
N6A	0.54706 (15)	0.42765 (14)	0.71034 (7)	0.0239 (4)	
C1A	0.53955 (18)	0.53801 (17)	0.72171 (8)	0.0222 (4)	
C2A	0.51256 (18)	0.61359 (18)	0.68042 (9)	0.0232 (4)	
C3A	0.45649 (19)	0.5861 (2)	0.62048 (9)	0.0279 (4)	
H3AA	0.420030	0.502772	0.599805	0.034*	
C4A	0.4556 (2)	0.6839 (2)	0.59199 (10)	0.0322 (5)	
H4AA	0.417881	0.667264	0.551164	0.039*	
C5A	0.5091 (2)	0.8069 (2)	0.62219 (10)	0.0322 (5)	
H5AA	0.506186	0.871727	0.601473	0.039*	
C6A	0.56586 (19)	0.83616 (19)	0.68124 (9)	0.0278 (4)	
H6AA	0.602715	0.920053	0.701251	0.033*	
C7A	0.56762 (18)	0.73904 (18)	0.71074 (9)	0.0241 (4)	
C8A	0.63000 (19)	0.73977 (17)	0.76930 (8)	0.0226 (4)	
C9A	0.80774 (19)	0.80627 (18)	0.84451 (8)	0.0233 (4)	
C10A	0.9500 (2)	0.88135 (18)	0.87186 (8)	0.0261 (4)	
C11A	1.0384 (2)	1.00860 (19)	0.87489 (9)	0.0320 (5)	
H11A	1.005876	1.065382	0.861224	0.038*	
C12A	1.1753 (2)	1.0506 (2)	0.89839 (10)	0.0370 (5)	
H12A	1.237145	1.137540	0.901278	0.044*	
C13A	1.2244 (2)	0.9674 (2)	0.91794 (9)	0.0347 (5)	
H13A	1.318807	0.999044	0.934015	0.042*	
C14A	1.1379 (2)	0.8396 (2)	0.91432 (9)	0.0298 (5)	
H14A	1.172164	0.783299	0.927093	0.036*	
C15A	0.99935 (19)	0.79625 (18)	0.89140 (8)	0.0252 (4)	
C16A	0.88793 (19)	0.66983 (18)	0.87543 (8)	0.0226 (4)	
C17A	0.79314 (19)	0.46576 (18)	0.82956 (8)	0.0227 (4)	
C18A	0.79684 (19)	0.35882 (17)	0.79304 (9)	0.0242 (4)	
C19A	0.8868 (2)	0.30175 (18)	0.79667 (10)	0.0292 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H19A	0.957599	0.327545	0.829189	0.035*
C20A	0.8695 (2)	0.20672 (19)	0.75150 (10)	0.0327 (5)
H20A	0.927164	0.164496	0.753782	0.039*
C21A	0.7686(2)	0.17136 (19)	0.70237 (10)	0.0328 (5)
H21A	0.761129	0.107275	0.671469	0.039*
C22A	0.6794 (2)	0.22745 (18)	0.69774 (9)	0.0291 (5)
H22A	0.611713	0.203445	0.664093	0.035*
C23A	0.69218 (19)	0.32043 (17)	0.74412 (9)	0.0244 (4)
C24A	0.62320 (18)	0.40202 (17)	0.75149 (8)	0.0226 (4)
C25A	0.60524 (19)	0.51087 (18)	0.94308 (8)	0.0245 (4)
C26A	0.6973 (2)	0.61149 (19)	0.98424 (9)	0.0285 (4)
C27A	0.7847(2)	0.5979 (2)	1.02709 (9)	0.0352(5)
C28A	0.7799(2)	0.4815 (2)	1.03038 (9)	0.0375(5)
C29A	0.6884(2)	0.3795 (2)	0.99165 (9)	0.0353 (5)
C30A	0.6022(2)	0.39450 (19)	0.94868 (9)	0.0275 (4)
BIA	0.6405(2)	0.5772 (2)	0.82919 (10)	0.0219(5)
S1B	0.05882(5)	0.33569(5)	0.26516(2)	0.02715(12)
F1B	0.04317(13)	0.09077 (11)	0.29706(6)	0.0424(3)
F2B	0.14031(15)	0.04637(13)	0.39967(7)	0.0585(4)
F3B	0.26808(17)	0.23581(17)	0.49192(6)	0.0701(5)
F4B	0.20000(17) 0.30082(17)	0.47153 (16)	0.47987(7)	0.0698(5)
F5B	0.20496(13)	0 51909 (11)	0.37741 (6)	0.0433(3)
N1B	-0.23801(15)	0.23867 (14)	0.23854(7)	0.0193(3) 0.0207(3)
N2B	-0.30813(16)	0.25007(11) 0.06499(15)	0.29462(7)	0.0254(4)
N3B	-0.15998(15)	0.00199(15) 0.27250(15)	0.29102(7) 0.34106(7)	0.0231(1) 0.0228(3)
N4B	-0.10216(16)	0.47125 (16)	0.39815(8)	0.0220(3) 0.0307(4)
N5B	-0.13423(15)	0.17129(10) 0.44460(14)	0.29154(7)	0.0237(4)
N6B	-0.27014(16)	0 40254 (14)	0.29151(7) 0.19762(7)	0.0237(1) 0.0249(4)
C1B	-0.29694(19)	0.28062(18)	0.19606(8)	0.0219(1) 0.0221(4)
C2B	-0.40868(19)	0.16806 (18)	0.16220 (8)	0.0221(1) 0.0237(4)
C3B	-0.5002(2)	0.1510(2)	0.10220(0) 0.11228(9)	0.0287(1) 0.0285(4)
H3BA	-0.492009	0 219762	0.091914	0.034*
C4B	-0.6034(2)	0.0308(2)	0.09323(9)	0.0344(5)
H4BA	-0.665957	0.016571	0.058757	0.041*
C5B	-0.6174(2)	-0.0702(2)	0.12372(10)	0.0364(5)
H5BA	-0.690252	-0.151387	0.109873	0.044*
C6B	-0.5279(2)	-0.05479(19)	0.17342 (9)	0.0310(5)
H6BA	-0.538709	-0.123884	0.194044	0.037*
C7B	-0.42164(19)	0.06468 (18)	0.19246 (8)	0.0243 (4)
C8B	-0.31642(19)	0.11382 (17)	0.24397 (9)	0.0228 (4)
C9B	-0.23438(19)	0.14713 (19)	0.34350(9)	0.0251(4)
C10B	-0.2379(2)	0.1365 (2)	0.40754 (9)	0.0300(5)
C11B	-0.2983(2)	0.0321(2)	0 43806 (10)	0.0400(6)
HIIB	-0.342530	-0.051183	0.417192	0.048*
C12B	-0.2910(3)	0 0554 (3)	0 50023 (11)	0.0526(7)
H12B	-0.330177	-0.013614	0.522317	0.063*
C13B	-0.2278(3)	0.1772 (3)	0.53090 (11)	0.0561(7)
HI3B	-0.224288	0 188703	0 573469	0.067*
	5.221200	0.100/05	0.075107	0.007

C14B	-0.1697 (2)	0.2822 (3)	0.50167 (10)	0.0437 (6)
H14B	-0.128543	0.364963	0.523142	0.052*
C15B	-0.1743 (2)	0.2611 (2)	0.43919 (9)	0.0318 (5)
C16B	-0.13312 (19)	0.3478 (2)	0.39478 (9)	0.0274 (4)
C17B	-0.11308 (19)	0.51507 (19)	0.34637 (9)	0.0280 (4)
C18B	-0.13774 (19)	0.62262 (19)	0.33445 (10)	0.0320 (5)
C19B	-0.1270 (2)	0.7287 (2)	0.37161 (12)	0.0426 (6)
H19B	-0.094618	0.743089	0.413044	0.051*
C20B	-0.1650 (2)	0.8119 (2)	0.34621 (14)	0.0501 (7)
H20B	-0.156079	0.885709	0.370620	0.060*
C21B	-0.2161 (2)	0.7912 (2)	0.28592 (13)	0.0461 (6)
H21B	-0.241384	0.850687	0.270219	0.055*
C22B	-0.2304 (2)	0.68553 (19)	0.24864 (12)	0.0376 (5)
H22B	-0.266527	0.670671	0.207679	0.045*
C23B	-0.19008 (19)	0.60121 (18)	0.27311 (10)	0.0295 (5)
C24B	-0.19621 (19)	0.48072 (18)	0.24739 (9)	0.0247 (4)
C25B	0.12095 (18)	0.30688 (18)	0.33317 (9)	0.0241 (4)
C26B	0.1063 (2)	0.18742 (19)	0.34126 (9)	0.0292 (5)
C27B	0.1549 (2)	0.1632 (2)	0.39406 (11)	0.0367 (5)
C28B	0.2192 (2)	0.2582 (3)	0.44062 (10)	0.0426 (6)
C29B	0.2361 (2)	0.3779 (2)	0.43455 (10)	0.0408 (6)
C30B	0.1874 (2)	0.4015 (2)	0.38137 (9)	0.0303 (5)
B1B	-0.1227 (2)	0.3236 (2)	0.28434 (10)	0.0218 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	0.0222 (2)	0.0340 (3)	0.0249 (3)	0.0136 (2)	0.0059 (2)	0.0076 (2)
F1A	0.0545 (8)	0.0296 (7)	0.0365 (7)	0.0221 (6)	-0.0012 (6)	-0.0010 (5)
F2A	0.0630 (9)	0.0541 (9)	0.0418 (8)	0.0258 (8)	-0.0208 (7)	-0.0145 (7)
F3A	0.0809 (11)	0.0797 (11)	0.0376 (8)	0.0549 (9)	-0.0187 (7)	0.0003 (7)
F4A	0.0915 (11)	0.0470 (8)	0.0410 (8)	0.0453 (8)	-0.0020(7)	0.0093 (7)
F5A	0.0473 (8)	0.0287 (7)	0.0396 (8)	0.0117 (6)	-0.0016 (6)	0.0015 (6)
N1A	0.0187 (8)	0.0230 (9)	0.0233 (9)	0.0094 (7)	0.0035 (7)	0.0040 (7)
N2A	0.0221 (8)	0.0252 (9)	0.0260 (9)	0.0118 (7)	0.0035 (7)	-0.0001 (7)
N3A	0.0220 (8)	0.0253 (9)	0.0182 (8)	0.0114 (7)	0.0028 (6)	0.0025 (7)
N4A	0.0260 (8)	0.0287 (9)	0.0202 (9)	0.0128 (8)	0.0046 (7)	0.0070(7)
N5A	0.0195 (8)	0.0230 (8)	0.0213 (9)	0.0078 (7)	0.0044 (6)	0.0064 (7)
N6A	0.0191 (8)	0.0237 (9)	0.0251 (9)	0.0054 (7)	0.0024 (7)	0.0048 (7)
C1A	0.0166 (9)	0.0242 (10)	0.0225 (10)	0.0057 (8)	0.0019 (8)	0.0038 (8)
C2A	0.0167 (9)	0.0290 (11)	0.0257 (11)	0.0106 (8)	0.0045 (8)	0.0071 (8)
C3A	0.0203 (10)	0.0346 (12)	0.0283 (11)	0.0116 (9)	0.0006 (8)	0.0042 (9)
C4A	0.0252 (10)	0.0464 (14)	0.0285 (12)	0.0176 (10)	0.0019 (9)	0.0113 (10)
C5A	0.0262 (11)	0.0423 (13)	0.0371 (13)	0.0202 (10)	0.0080 (9)	0.0186 (10)
C6A	0.0205 (10)	0.0288 (11)	0.0372 (12)	0.0124 (9)	0.0062 (9)	0.0098 (9)
C7A	0.0168 (9)	0.0293 (11)	0.0291 (11)	0.0117 (8)	0.0059 (8)	0.0068 (9)
C8A	0.0214 (9)	0.0243 (10)	0.0250 (10)	0.0119 (8)	0.0068 (8)	0.0056 (8)
C9A	0.0243 (10)	0.0260 (11)	0.0210 (10)	0.0129 (9)	0.0051 (8)	-0.0005 (8)

C10A	0.0265 (10)	0.0287 (11)	0.0216 (10)	0.0122 (9)	0.0017 (8)	-0.0036 (8)
C11A	0.0316 (11)	0.0261 (11)	0.0347 (12)	0.0117 (9)	0.0005 (9)	-0.0051(9)
C12A	0.0317 (11)	0.0299 (12)	0.0404 (13)	0.0078 (10)	0.0008 (10)	-0.0070(10)
C13A	0.0225(10)	0.0408 (13)	0.0313 (12)	0.0087(10)	-0.0023(9)	-0.0097(10)
C14A	0.0275(10)	0.0397(13)	0.0209(11)	0.0153(10)	-0.0007(8)	-0.0024(9)
C15A	0.0245(10)	0.0302(11)	0.0187(10)	0.0108 (9)	0.0028 (8)	-0.0006(8)
C16A	0.0215(10) 0.0226(10)	0.0302(11)	0.0155(9)	0.0100(9)	0.0020(0) 0.0031(7)	0.0000(0)
$C17\Delta$	0.0220(10) 0.0224(10)	0.0253(10)	0.0135(9)	0.0110(9)	0.0051(7)	0.0011(8)
	0.0224(10) 0.0243(10)	0.0235(10) 0.0216(10)	0.0223(10) 0.0271(11)	0.0104(9) 0.0084(8)	0.0007(0)	0.0100(8)
	0.0245(10)	0.0210(10)	0.0271(11) 0.0385(12)	0.0004(0)	0.0003(0)	0.0095(0)
C_{20A}	0.0230(10)	0.0257(11)	0.0305(12)	0.0100(0)	0.0091(9)	0.0130(0)
C20A	0.0339(11) 0.0398(12)	0.0233(11) 0.0214(11)	0.0430(14) 0.0374(13)	0.0103(10)	0.0153(10)	0.0150(10)
C21A	0.0390(12) 0.0320(11)	0.0214(11)	0.0374(13) 0.0302(12)	0.0120(10)	0.0152(10)	0.0058(9)
C22A	0.0320(11) 0.0243(10)	0.0221(11)	0.0302(12)	0.0080(9)	0.0009(9)	0.0038(9)
C23A	0.0243(10)	0.0199(10)	0.0281(11) 0.0222(10)	0.0009(8)	0.0080(8)	0.0033(8)
C24A	0.0198(9)	0.0204(10)	0.0225(10)	0.0030(8)	0.0042(8)	0.0032(8)
C25A	0.0232(10)	0.0317(11)	0.0214(10)	0.0137(9)	0.0088 (8)	0.0000(8)
C26A	0.0326 (11)	0.0299 (11)	0.0256 (11)	0.0100(10)	0.00/1 (9)	0.0027(9)
C2/A	0.038/(12)	0.0423 (13)	0.0235 (11)	0.0192 (11)	-0.0020(9)	-0.0040 (10)
C28A	0.0458 (13)	0.0540 (15)	0.0215 (11)	0.0312(12)	-0.0026 (10)	0.0038 (10)
C29A	0.0528 (14)	0.03/3(13)	0.0273 (12)	0.0293 (12)	0.0070 (10)	0.0081 (10)
C30A	0.0313 (11)	0.0292 (11)	0.0209 (10)	0.0121 (9)	0.0060 (9)	0.0020 (9)
BIA	0.0209 (10)	0.0234 (12)	0.0215 (11)	0.0089 (9)	0.0050 (9)	0.0048 (9)
S1B	0.0247 (2)	0.0386 (3)	0.0241 (3)	0.0174 (2)	0.0081 (2)	0.0107 (2)
F1B	0.0457 (8)	0.0275 (7)	0.0490 (8)	0.0130 (6)	-0.0004 (6)	-0.0006 (6)
F2B	0.0599 (9)	0.0552 (9)	0.0758 (11)	0.0336 (8)	0.0095 (8)	0.0360 (8)
F3B	0.0752 (11)	0.1215 (15)	0.0381 (9)	0.0635 (11)	-0.0019 (7)	0.0260 (9)
F4B	0.0746 (11)	0.0881 (12)	0.0421 (9)	0.0411 (10)	-0.0204 (8)	-0.0242 (8)
F5B	0.0436 (7)	0.0329 (7)	0.0528 (9)	0.0185 (6)	0.0031 (6)	-0.0045 (6)
N1B	0.0220 (8)	0.0198 (8)	0.0217 (8)	0.0099 (7)	0.0039 (6)	0.0043 (7)
N2B	0.0285 (9)	0.0272 (9)	0.0258 (9)	0.0157 (8)	0.0071 (7)	0.0081 (7)
N3B	0.0198 (8)	0.0287 (9)	0.0209 (9)	0.0113 (7)	0.0035 (7)	0.0034 (7)
N4B	0.0208 (8)	0.0373 (11)	0.0298 (10)	0.0109 (8)	0.0018 (7)	-0.0047 (8)
N5B	0.0204 (8)	0.0239 (9)	0.0257 (9)	0.0092 (7)	0.0024 (7)	0.0010 (7)
N6B	0.0235 (8)	0.0233 (9)	0.0294 (9)	0.0106 (7)	0.0047 (7)	0.0075 (7)
C1B	0.0224 (9)	0.0254 (10)	0.0217 (10)	0.0124 (8)	0.0057 (8)	0.0063 (8)
C2B	0.0245 (10)	0.0259 (10)	0.0221 (10)	0.0121 (9)	0.0059 (8)	0.0023 (8)
C3B	0.0291 (11)	0.0353 (12)	0.0233 (11)	0.0165 (10)	0.0040 (8)	0.0015 (9)
C4B	0.0314 (11)	0.0428 (13)	0.0243 (11)	0.0141 (10)	-0.0003 (9)	-0.0046 (10)
C5B	0.0330 (12)	0.0331 (12)	0.0296 (12)	0.0043 (10)	0.0043 (9)	-0.0082 (10)
C6B	0.0360 (12)	0.0228 (11)	0.0286 (12)	0.0077 (9)	0.0101 (9)	0.0001 (9)
C7B	0.0269 (10)	0.0244 (10)	0.0226 (10)	0.0121 (9)	0.0067 (8)	0.0014 (8)
C8B	0.0250 (10)	0.0207 (10)	0.0259 (11)	0.0121 (8)	0.0075 (8)	0.0038 (8)
C9B	0.0241 (10)	0.0323 (11)	0.0254 (11)	0.0167 (9)	0.0081 (8)	0.0097 (9)
C10B	0.0269 (10)	0.0475 (13)	0.0272 (11)	0.0245 (10)	0.0087 (9)	0.0146 (10)
C11B	0.0436 (13)	0.0567 (15)	0.0385 (14)	0.0341 (12)	0.0157 (11)	0.0250 (11)
C12B	0.0626 (17)	0.080 (2)	0.0411 (15)	0.0474 (16)	0.0236 (13)	0.0373 (15)
C13B	0.0678 (18)	0.096(2)	0.0279 (14)	0.0536 (18)	0.0158 (13)	0.0234 (15)
C14B	0.0447(13)	0.0743(18)	0.0239(12)	0.0368 (13)	0.0045 (10)	0.0069(12)
~						······································

C15B	0.0256 (10)	0.0527 (14)	0.0252 (11)	0.0243 (11)	0.0032 (9)	0.0068 (10)
C16B	0.0186 (9)	0.0428 (13)	0.0211 (11)	0.0145 (9)	0.0017 (8)	0.0006 (9)
C17B	0.0186 (9)	0.0293 (11)	0.0316 (12)	0.0080 (9)	0.0033 (8)	-0.0035 (9)
C18B	0.0192 (10)	0.0246 (11)	0.0476 (14)	0.0063 (9)	0.0079 (9)	-0.0025 (10)
C19B	0.0286 (11)	0.0307 (12)	0.0604 (16)	0.0084 (10)	0.0090 (11)	-0.0096 (11)
C20B	0.0322 (12)	0.0245 (12)	0.089 (2)	0.0108 (10)	0.0141 (13)	-0.0098 (13)
C21B	0.0287 (12)	0.0230 (12)	0.086 (2)	0.0117 (10)	0.0064 (13)	0.0039 (12)
C22B	0.0230 (10)	0.0259 (11)	0.0642 (16)	0.0105 (9)	0.0062 (10)	0.0076 (11)
C23B	0.0175 (9)	0.0205 (10)	0.0476 (14)	0.0056 (8)	0.0075 (9)	0.0033 (9)
C24B	0.0193 (9)	0.0227 (10)	0.0330 (12)	0.0090 (8)	0.0061 (8)	0.0065 (9)
C25B	0.0192 (9)	0.0314 (11)	0.0247 (11)	0.0129 (9)	0.0064 (8)	0.0054 (9)
C26B	0.0256 (10)	0.0330 (12)	0.0311 (12)	0.0141 (9)	0.0049 (9)	0.0061 (9)
C27B	0.0325 (12)	0.0432 (14)	0.0441 (14)	0.0226 (11)	0.0075 (10)	0.0188 (11)
C28B	0.0382 (13)	0.0706 (18)	0.0314 (13)	0.0335 (13)	0.0032 (10)	0.0161 (12)
C29B	0.0352 (12)	0.0589 (16)	0.0273 (12)	0.0238 (12)	-0.0037 (10)	-0.0102 (11)
C30B	0.0253 (10)	0.0339 (12)	0.0348 (12)	0.0165 (10)	0.0041 (9)	0.0003 (10)
B1B	0.0207 (10)	0.0252 (12)	0.0217 (11)	0.0120 (9)	0.0027 (9)	0.0037 (9)

Geometric parameters (Å, °)

S1A—C25A	1.7679 (19)	S1B—C25B	1.7608 (19)
S1A—B1A	1.955 (2)	S1B—B1B	1.958 (2)
F1A-C26A	1.346 (2)	F1BC26B	1.340 (2)
F2A—C27A	1.344 (2)	F2B	1.347 (2)
F3A—C28A	1.341 (2)	F3BC28B	1.341 (2)
F4A—C29A	1.346 (2)	F4B—C29B	1.338 (3)
F5A—C30A	1.344 (2)	F5B—C30B	1.339 (2)
N1A—C8A	1.369 (2)	N1B—C1B	1.366 (2)
N1A—C1A	1.369 (2)	N1B—C8B	1.376 (2)
N1A—B1A	1.486 (3)	N1B—B1B	1.481 (3)
N2A—C9A	1.339 (2)	N2B—C8B	1.346 (2)
N2A—C8A	1.343 (2)	N2B—C9B	1.347 (3)
N3A—C16A	1.371 (2)	N3B—C9B	1.361 (2)
N3A—C9A	1.371 (2)	N3B—C16B	1.366 (2)
N3A—B1A	1.484 (3)	N3B—B1B	1.468 (3)
N4A—C17A	1.342 (2)	N4B—C17B	1.343 (3)
N4A—C16A	1.343 (2)	N4B—C16B	1.349 (3)
N5A—C24A	1.367 (2)	N5B—C17B	1.368 (2)
N5A—C17A	1.370 (2)	N5B—C24B	1.369 (2)
N5A—B1A	1.489 (3)	N5B—B1B	1.487 (3)
N6A—C24A	1.345 (2)	N6B—C1B	1.345 (2)
N6A—C1A	1.346 (2)	N6B—C24B	1.345 (2)
C1A—C2A	1.455 (3)	C1B—C2B	1.457 (3)
C2A—C3A	1.395 (3)	C2B—C3B	1.391 (3)
C2A—C7A	1.424 (3)	C2B—C7B	1.422 (3)
C3A—C4A	1.386 (3)	C3B—C4B	1.383 (3)
СЗА—НЗАА	0.9500	СЗВ—НЗВА	0.9500
C4A—C5A	1.399 (3)	C4B—C5B	1.397 (3)

C4A—H4AA	0.9500	C4B—H4BA	0.9500
C5A—C6A	1.378 (3)	C5B—C6B	1.379 (3)
С5А—Н5АА	0.9500	C5B—H5BA	0.9500
C6A—C7A	1.394 (3)	C6B—C7B	1.389 (3)
С6А—Н6АА	0.9500	C6B—H6BA	0.9500
C7A—C8A	1.444 (3)	C7B—C8B	1.456 (3)
C9A—C10A	1.456 (3)	C9B—C10B	1.460 (3)
C10A—C11A	1.387 (3)	C10B—C11B	1.397 (3)
C10A—C15A	1.421 (3)	C10B—C15B	1.424 (3)
C11A—C12A	1.385 (3)	C11B—C12B	1.389 (3)
C11A—H11A	0.9500	C11B—H11B	0.9500
C12A—C13A	1.397 (3)	C12B—C13B	1.390 (4)
C12A—H12A	0.9500	C12B—H12B	0.9500
C13A—C14A	1.387 (3)	C13B—C14B	1.383 (4)
C13A—H13A	0.9500	C13B—H13B	0.9500
C14A—C15A	1.394 (3)	C14B—C15B	1.397 (3)
C14A—H14A	0.9500	C14B—H14B	0.9500
C15A—C16A	1.453 (3)	C15B—C16B	1.455 (3)
C17A—C18A	1.456 (3)	C17B—C18B	1.457 (3)
C18A—C19A	1.398 (3)	C18B—C19B	1.395 (3)
C18A—C23A	1.417 (3)	C18B—C23B	1.418 (3)
C19A—C20A	1.381 (3)	C19B—C20B	1.380 (3)
C19A—H19A	0.9500	C19B—H19B	0.9500
C20A—C21A	1.400 (3)	C20B—C21B	1.393 (4)
C20A—H20A	0.9500	C20B—H20B	0.9500
C21A—C22A	1.383 (3)	C21B—C22B	1.380 (3)
C21A—H21A	0.9500	C21B—H21B	0.9500
C22A—C23A	1.395 (3)	C22B—C23B	1.396 (3)
C22A—H22A	0.9500	C22B—H22B	0.9500
C23A—C24A	1.450 (3)	C23B—C24B	1.459 (3)
C25A—C30A	1.386 (3)	C25B—C30B	1.389 (3)
C25A—C26A	1.388 (3)	C25B—C26B	1.390 (3)
C26A—C27A	1.378 (3)	C26B—C27B	1.379 (3)
C27A—C28A	1.369 (3)	C27B—C28B	1.364 (3)
C28A—C29A	1.366 (3)	C28B—C29B	1.376 (3)
C29A—C30A	1.380 (3)	C29B—C30B	1.382 (3)
C25A—S1A—B1A	95.25 (9)	C25B—S1B—B1B	100.93 (9)
C8A—N1A—C1A	112.74 (15)	C1B—N1B—C8B	112.98 (15)
C8A—N1A—B1A	122.29 (16)	C1B—N1B—B1B	123.47 (15)
C1A—N1A—B1A	123.18 (15)	C8B—N1B—B1B	121.84 (15)
C9A—N2A—C8A	116.86 (16)	C8B—N2B—C9B	116.87 (16)
C16A—N3A—C9A	112.63 (15)	C9B—N3B—C16B	114.69 (16)
C16A—N3A—B1A	122.86 (16)	C9B—N3B—B1B	122.56 (16)
C9A—N3A—B1A	122.64 (15)	C16B—N3B—B1B	122.52 (17)
C17A—N4A—C16A	116.84 (15)	C17B—N4B—C16B	117.07 (17)
C24A—N5A—C17A	112.72 (15)	C17B—N5B—C24B	113.19 (16)
C24A—N5A—B1A	123.01 (15)	C17B—N5B—B1B	122.36 (16)

C17A—N5A—B1A	122.26 (16)	C24B—N5B—B1B	122.91 (16)
C24A—N6A—C1A	116.87 (16)	C1B—N6B—C24B	116.82 (16)
N6A—C1A—N1A	122.72 (16)	N6B—C1B—N1B	122.63 (17)
N6A—C1A—C2A	129.83 (17)	N6B—C1B—C2B	130.16 (16)
N1A—C1A—C2A	105.55 (16)	N1B—C1B—C2B	105.71 (15)
C3A—C2A—C7A	120.40 (18)	C3B—C2B—C7B	120.70 (18)
C3A—C2A—C1A	132.43 (18)	C3B—C2B—C1B	132.07 (18)
C7A—C2A—C1A	106.97 (16)	C7B—C2B—C1B	107.08 (16)
C4A—C3A—C2A	118.01 (19)	C4B—C3B—C2B	117.91 (19)
С4А—С3А—НЗАА	121.0	C4B—C3B—H3BA	121.0
С2А—С3А—НЗАА	121.0	С2В—С3В—Н3ВА	121.0
C3A—C4A—C5A	121.27 (19)	C3B—C4B—C5B	121.2 (2)
C3A—C4A—H4AA	119.4	C3B—C4B—H4BA	119.4
C5A—C4A—H4AA	119.4	C5B—C4B—H4BA	119.4
C6A - C5A - C4A	121.61 (19)	C6B—C5B—C4B	121.6 (2)
C6A—C5A—H5AA	119.2	C6B—C5B—H5BA	119.2
C4A - C5A - H5AA	119.2	C4B-C5B-H5BA	119.2
C5A - C6A - C7A	118.01 (19)	C5B-C6B-C7B	119.2
C5A - C6A - H6AA	121.0	C5B-C6B-H6BA	121.0
C7A - C6A - H6AA	121.0	C7B-C6B-H6BA	121.0
C6A - C7A - C2A	120.69 (18)	C6B-C7B-C2B	120.49 (18)
C6A - C7A - C8A	131 67 (19)	C6B - C7B - C8B	131.90 (18)
C2A - C7A - C8A	107 36 (16)	$C^2B - C^7B - C^8B$	107 43 (16)
N2A = C8A = N1A	123 01 (16)	N2B - C8B - N1B	107.15(10) 122.60(17)
N2A - C8A - C7A	129.01 (10)	N2B C8B C7B	122.00(17) 130.50(17)
N1A - C8A - C7A	105.73(16)	N1B-C8B-C7B	105.30(17) 105.37(15)
N2A - C9A - N3A	103.75(10) 123.00(17)	N2B-C9B-N3B	103.37(13) 122.19(17)
N2A - C9A - C10A	129.34(18)	N2B - C9B - C10B	122.19(17) 131.59(18)
N3A - C9A - C10A	105.93 (16)	N3B - C9B - C10B	104.77(17)
$C_{11} = C_{10} = C_{15}$	120.83 (18)	C11B - C10B - C15B	104.77(17) 120.9(2)
$C_{11A} = C_{10A} = C_{15A}$	131 68 (18)	$C_{11B} = C_{10B} = C_{15B}$	120.9(2)
C_{15} C_{10} C_{9} C_{9}	107.07(17)	C15P $C10P$ $C0P$	107.0(2)
C12A $C11A$ $C10A$	107.07(17) 118.2(2)	C12B $C10B$ $C10B$	107.30(18) 117.1(2)
$C_{12A} = C_{11A} = C_{10A}$	110.2 (2)	C12B $C11B$ $H11B$	117.1(2)
C10A $C11A$ $H11A$	120.9	CIOR CIIR HIIR	121.4
$C_{11A} = C_{12A} = C_{12A}$	120.3 121.2(2)	$C_{11}D_{12}D_{12}D_{13}D_{14}D_{1$	121.4
C11A - C12A - C13A	121.5 (2)	$C_{11}D = C_{12}D = C_{13}D$	121.0(2)
C12A = C12A = H12A	119.4	C12D - C12D - D12D	119.2
C13A - C12A - H12A	119.4	C13D - C12D - C12D	119.2
C14A = C13A = C12A	121.29 (19)	C14D = C13D = U12D	122.4 (2)
C12A = C12A = H12A	119.4	C12D C12D H12D	118.8
C12A - C13A - H13A	119.4	C12B—C13B—H13B	118.8
C13A - C14A - C15A	118.08 (19)	C13B - C14B - C15B	117.0(2)
C15A - C14A - H14A	121.0	C15B = C14B = H14B	121.5
C13A - C14A - H14A	121.0	C13B - C14B - H14B	121.5
C14A - C15A - C16A	120.35 (19)	C14B - C15B - C10B	120.9(2)
C14A - C15A - C16A	151.84 (18)		151.4 (2)
CIUA—CI5A—CI6A	10/.36 (16)	CIOB—CISB—CI6B	107.52 (17)
N4A—C16A—N3A	122.66 (17)	N4B—C16B—N3B	122.09 (18)

N4A—C16A—C15A	129.55 (16)	N4B—C16B—C15B	131.92 (18)
N3A—C16A—C15A	105.83 (16)	N3B—C16B—C15B	104.74 (18)
N4A—C17A—N5A	123.08 (16)	N4B—C17B—N5B	122.35 (18)
N4A—C17A—C18A	129.28 (16)	N4B—C17B—C18B	130.83 (18)
N5A—C17A—C18A	105.48 (16)	N5B—C17B—C18B	105.38 (17)
C19A—C18A—C23A	120.70 (18)	C19B—C18B—C23B	120.1 (2)
C19A—C18A—C17A	131.89 (18)	C19B—C18B—C17B	132.3 (2)
C23A—C18A—C17A	107.21 (16)	C23B—C18B—C17B	107.44 (17)
C20A—C19A—C18A	117.88 (19)	C20B—C19B—C18B	117.8 (2)
C20A—C19A—H19A	121.1	C20B—C19B—H19B	121.1
С18А—С19А—Н19А	121.1	C18B—C19B—H19B	121.1
C19A—C20A—C21A	121.30 (19)	C19B—C20B—C21B	122.1 (2)
C19A—C20A—H20A	119.4	C19B—C20B—H20B	118.9
C21A—C20A—H20A	119.4	C21B—C20B—H20B	118.9
C22A—C21A—C20A	121.62 (19)	C22B—C21B—C20B	121.0 (2)
C22A—C21A—H21A	119.2	C22B—C21B—H21B	119.5
C20A—C21A—H21A	119.2	C20B—C21B—H21B	119.5
$C_{21}A - C_{22}A - C_{23}A$	117.76 (19)	C_{21B} C_{22B} C_{23B}	117.8 (2)
C21A—C22A—H22A	121.1	C21B—C22B—H22B	121.1
C23A—C22A—H22A	121.1	C23B—C22B—H22B	121.1
C22A—C23A—C18A	120.67 (17)	C22B—C23B—C18B	121.08 (19)
C22A—C23A—C24A	131.79 (18)	C22B—C23B—C24B	131.7 (2)
C18A—C23A—C24A	107.26 (16)	C18B—C23B—C24B	107.14 (17)
N6A—C24A—N5A	123.10 (16)	N6B—C24B—N5B	122.85 (16)
N6A—C24A—C23A	129.36 (17)	N6B-C24B-C23B	130.29 (17)
N5A - C24A - C23A	105.87 (15)	N5B-C24B-C23B	105.43(17)
C30A - C25A - C26A	116.31 (18)	C30B-C25B-C26B	116.38 (18)
C30A—C25A—S1A	121.85 (15)	C30B—C25B—S1B	122.24 (15)
$C_{26A} - C_{25A} - S_{1A}$	121.84 (15)	C_{26B} C_{25B} S_{1B}	121.38(15)
F1A—C26A—C27A	117.95 (18)	F1B-C26B-C27B	117.55 (19)
F1A—C26A—C25A	119.92 (17)	F1B-C26B-C25B	120.24 (18)
C27A - C26A - C25A	122.12 (19)	C_{27B} C_{26B} C_{25B}	122.2 (2)
F2A—C27A—C28A	119.74 (19)	F2B-C27B-C28B	119.8 (2)
F2A—C27A—C26A	120.62 (19)	F2B-C27B-C26B	120.3(2)
C28A—C27A—C26A	119.6 (2)	C28B—C27B—C26B	119.9 (2)
F3A—C28A—C29A	120.0(2)	F3B-C28B-C27B	120.3(2)
F3A—C28A—C27A	119.9 (2)	F3B-C28B-C29B	119.8 (2)
C_{29A} C_{28A} C_{27A}	120.07 (19)	C27B—C28B—C29B	119.8 (2)
F4A—C29A—C28A	120.06 (19)	F4B-C29B-C28B	119.9 (2)
F4A—C29A—C30A	120.2 (2)	F4B-C29B-C30B	120.2(2)
C_{28A} C_{29A} C_{30A}	119 73 (19)	C_{28B} C_{29B} C_{30B}	1199(2)
F5A-C30A-C29A	117.86 (18)	F5B-C30B-C29B	119.9(2)
F_{5A} C_{30A} C_{25A}	120.04(17)	F5B-C30B-C25B	120.16(18)
C29A - C30A - C25A	122.10 (19)	C29B-C30B-C25B	121.8 (2)
N3A—B1A—N1A	105.58 (15)	N3B—B1B—N1B	105.47 (16)
N3A—B1A—N5A	105.31 (15)	N3B—B1B—N5B	105.02(15)
N1A—B1A—N5A	105.43 (15)	N1B-B1B-N5B	105.31(15)
N3A—B1A—S1A	113 72 (14)	N3B-B1B-S1B	111 66 (13)
DIA DIA DIA	113.72 (17)		111.00 (15)

N1A—B1A—S1A	111.33 (13)	N1B—B1B—S1B	113.09 (13)
N5A—B1A—S1A	114.69 (14)	N5B—B1B—S1B	115.45 (14)
C24A - N6A - C1A - N1A	-6.8(3)	C24B—N6B—C1B—N1B	-85(3)
$C_{24A} = NGA = C_{1A} = NIA$	155 10 (18)	$C_2 + B = N6B = C1B = C2B$	$155 \ A1 \ (10)$
$C_{24A} = NOA = C_{1A} = C_{2A}$	155.10(10) 152.15(17)	$C_2 + D - NOD - C_1 D - C_2 D$	153.41(19)
CoA—INTA—CTA—NOA	155.15(17)	Cod—NID—CID—NOD	134.90 (17)
BIA—NIA—CIA—NoA	-11.9(3)	BIB-NIB-CIB-N6B	-10.4(3)
C8A—NIA—CIA—C2A	-12.54 (19)	C8B—NIB—CIB—C2B	-12.4 (2)
B1A—N1A—C1A—C2A	-177.56 (15)	B1B—N1B—C1B—C2B	-177.74 (16)
N6A—C1A—C2A—C3A	16.9 (3)	N6B—C1B—C2B—C3B	17.3 (3)
N1A—C1A—C2A—C3A	-178.82 (19)	N1B—C1B—C2B—C3B	-176.70 (19)
N6A—C1A—C2A—C7A	-157.83 (18)	N6B—C1B—C2B—C7B	-158.19 (19)
N1A—C1A—C2A—C7A	6.46 (19)	N1B—C1B—C2B—C7B	7.80 (19)
C7A—C2A—C3A—C4A	-0.4 (3)	C7B—C2B—C3B—C4B	0.0 (3)
C1A—C2A—C3A—C4A	-174.53 (19)	C1B—C2B—C3B—C4B	-175.04 (19)
C2A—C3A—C4A—C5A	0.0 (3)	C2B—C3B—C4B—C5B	1.2 (3)
C3A—C4A—C5A—C6A	0.5 (3)	C3B—C4B—C5B—C6B	-1.0(3)
C4A—C5A—C6A—C7A	-0.6(3)	C4B—C5B—C6B—C7B	-0.5(3)
C_{5A} C_{6A} C_{7A} C_{2A}	0.2(3)	C5B-C6B-C7B-C2B	16(3)
C_{5A} C_{6A} C_{7A} C_{8A}	173 23 (19)	$C_{5B} = C_{6B} = C_{7B} = C_{8B}$	176 15 (19)
$C_{3A} = C_{2A} = C_{7A} = C_{6A}$	0.3(3)	C_{3B} C_{2B} C_{7B} C_{6B}	-14(3)
$C_{1A} = C_{2A} = C_{7A} = C_{6A}$	175,80(16)	C_{1}^{1} C_{2}^{2} C_{7}^{2} C_{6}^{2}	1.7(3)
$C_{1A} = C_{2A} = C_{7A} = C_{6A}$	173.00(10) 174.25(16)	C1B - C2B - C7B - C0B	1/4./1(1/) 177.12(16)
$C_{A} = C_{A} = C_{A} = C_{A}$	-1/4.23(10)	$C_{3}D = C_{2}D = C_{7}D = C_{8}D$	-1//.13 (10)
CIA - CZA - C/A - C8A	1.23 (19)	CIB - C2B - C/B - C8B	-1.0(2)
C9A—N2A—C8A—N1A	7.0 (3)	C9B—N2B—C8B—N1B	9.5 (2)
C9A—N2A—C8A—C7A	-154.32 (18)	C9B—N2B—C8B—C7B	-154.26 (18)
C1A—N1A—C8A—N2A	-151.72 (17)	C1B—N1B—C8B—N2B	-155.48 (16)
B1A—N1A—C8A—N2A	13.5 (3)	B1B—N1B—C8B—N2B	10.1 (3)
C1A—N1A—C8A—C7A	13.34 (19)	C1B—N1B—C8B—C7B	11.7 (2)
B1A—N1A—C8A—C7A	178.51 (15)	B1B—N1B—C8B—C7B	177.36 (15)
C6A—C7A—C8A—N2A	-18.4 (3)	C6B—C7B—C8B—N2B	-15.3 (3)
C2A—C7A—C8A—N2A	155.33 (18)	C2B—C7B—C8B—N2B	159.74 (18)
C6A—C7A—C8A—N1A	177.79 (18)	C6B-C7B-C8B-N1B	178.87 (19)
C2A—C7A—C8A—N1A	-8.47 (19)	C2B—C7B—C8B—N1B	-6.09 (19)
C8A—N2A—C9A—N3A	-9.0 (3)	C8B—N2B—C9B—N3B	-6.3 (2)
C8A—N2A—C9A—C10A	153.80 (19)	C8B—N2B—C9B—C10B	157.78 (18)
C_{16A} N_{3A} C_{9A} N_{2A}	155 46 (17)	C16B— $N3B$ — $C9B$ — $N2B$	157 76 (16)
B1A = N3A = C9A = N2A	-94(3)	B1B N3B C9B N2B	-169(3)
$C_{16A} = N_{3A} = C_{9A} = C_{10A}$	-10.8(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-10.0(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-175.61(16)	$\begin{array}{c} \text{P1D} \\ \text{N2D} \\ \text{C0D} \\ \text{C1D} \\ C1D$	10.0(2)
$\mathbf{B}\mathbf{I}\mathbf{A} = \mathbf{N}\mathbf{S}\mathbf{A} = \mathbf{C}\mathbf{I}\mathbf{O}\mathbf{A}$	-1/3.01(10)	BID - N3D - C9D - C10D	1/3.35(13)
N2A - C9A - C10A - C11A	13.2 (3)	N2B - C9B - C10B - C11B	14.0 (3)
N3A—C9A—C10A—C11A	1/8.3 (2)	N3B-C9B-C10B-C11B	-1/9.86 (19)
N2A—C9A—C10A—C15A	-159.18 (19)	N2B—C9B—C10B—C15B	-160.80 (19)
N3A—C9A—C10A—C15A	5.9 (2)	N3B—C9B—C10B—C15B	5.31 (19)
C15A—C10A—C11A—C12A	-1.1 (3)	C15B—C10B—C11B—C12B	-1.2 (3)
C9A—C10A—C11A—C12A	-172.6 (2)	C9B—C10B—C11B—C12B	-175.47 (19)
C10A—C11A—C12A—C13A	0.8 (3)	C10B—C11B—C12B—C13B	0.7 (3)
C11A—C12A—C13A—C14A	0.3 (3)	C11B—C12B—C13B—C14B	0.6 (4)

C12A—C13A—C14A—C15A	-1.0 (3)	C12B—C13B—C14B—C15B	-1.4 (3)
C13A—C14A—C15A—C10A	0.7 (3)	C13B—C14B—C15B—C10B	0.8 (3)
C13A—C14A—C15A—C16A	171.95 (19)	C13B—C14B—C15B—C16B	175.0 (2)
C11A—C10A—C15A—C14A	0.3 (3)	C11B—C10B—C15B—C14B	0.5 (3)
C9A—C10A—C15A—C14A	173.74 (17)	C9B-C10B-C15B-C14B	175.99 (17)
C11A—C10A—C15A—C16A	-172.86 (17)	C11B—C10B—C15B—C16B	-174.97 (17)
C9A—C10A—C15A—C16A	0.5 (2)	C9B—C10B—C15B—C16B	0.5 (2)
C17A—N4A—C16A—N3A	9.3 (3)	C17B—N4B—C16B—N3B	6.9 (3)
C17A—N4A—C16A—C15A	-152.40 (19)	C17B—N4B—C16B—C15B	-158.25 (19)
C9A—N3A—C16A—N4A	-154.32(17)	C9B—N3B—C16B—N4B	-158.29(17)
B1A—N3A—C16A—N4A	10.5 (3)	B1B—N3B—C16B—N4B	16.4 (3)
C9A—N3A—C16A—C15A	11.1 (2)	C9B—N3B—C16B—C15B	10.3 (2)
B1A—N3A—C16A—C15A	175.90 (16)	B1B—N3B—C16B—C15B	-175.01(15)
C14A - C15A - C16A - N4A	-148(3)	C14B— $C15B$ — $C16B$ — $N4B$	-139(4)
C10A - C15A - C16A - N4A	157 29 (19)	C10B - C15B - C16B - N4B	160.87(19)
C14A - C15A - C16A - N3A	-1789(2)	C14B— $C15B$ — $C16B$ — $N3B$	1791(2)
C10A - C15A - C16A - N3A	-68(2)	C10B-C15B-C16B-N3B	-61(2)
C_{164} N_{44} C_{174} N_{54}	-8.4(3)	C_{16B} M_{2B} C_{10B} M_{2B} C_{10B} M_{2B}	-9.5(3)
C16A = N4A = C17A = C18A	152 33 (18)	$C_{16B} = M_{4B} = C_{17B} = M_{3B}$	9.5(3)
$C_{10A} = N_{7A} = C_{17A} = C_{16A}$	152.55(10) 152.10(17)	$C_{10} = 10 = 0.00 = $	154.72(19)
$C_2 + A - N_5 A - C_1 / A - N_4 A$	-122(3)	$\begin{array}{c} C24D \longrightarrow N5D \longrightarrow C17D \longrightarrow N4D \\ \hline \end{array}$	-10.7(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.2(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-122(2)
C_{24A} N_{5A} C_{17A} C_{18A}	-12.3(2) -176.86(16)	$\begin{array}{c} C_{24} D \longrightarrow 0 \\ D_{10} D \longrightarrow 0 \\$	-12.2(2) -17841(16)
$\mathbf{DIA} = \mathbf{NJA} = \mathbf{CI} \mathbf{A} = \mathbf{CIA}$	-1/0.80(10)	DID - NJD - CI/D - CI0D	-1/8.41(10)
N4A = C17A = C18A = C19A	19.3 (3)	N4B - C17B - C18B - C19B	10.7(4)
N5A - C1/A - C18A - C19A	-1//.40(19)	N5B - C1/B - C18B - C19B	-1//.1(2)
N4A—C1/A—C18A—C23A	-155.39 (19)	N4B—C1/B—C18B—C23B	-158.9 (2)
N5A—C1/A—C18A—C23A	7.9 (2)	N5B—C17B—C18B—C23B	7.3 (2)
C23A—C18A—C19A—C20A	-0.5(3)	C23B—C18B—C19B—C20B	-1.8(3)
C17A—C18A—C19A—C20A	-174.55 (19)	C17B—C18B—C19B—C20B	-176.9 (2)
C18A—C19A—C20A—C21A	2.3 (3)	C18B—C19B—C20B—C21B	1.6 (3)
C19A—C20A—C21A—C22A	-1.8 (3)	C19B—C20B—C21B—C22B	-0.2(4)
C20A—C21A—C22A—C23A	-0.6(3)	C20B—C21B—C22B—C23B	-1.0(3)
C21A—C22A—C23A—C18A	2.3 (3)	C21B—C22B—C23B—C18B	0.8 (3)
C21A—C22A—C23A—C24A	175.47 (19)	C21B—C22B—C23B—C24B	177.4 (2)
C19A—C18A—C23A—C22A	-1.9 (3)	C19B—C18B—C23B—C22B	0.6 (3)
C17A—C18A—C23A—C22A	173.52 (17)	C17B—C18B—C23B—C22B	176.85 (17)
C19A—C18A—C23A—C24A	-176.50 (17)	C19B—C18B—C23B—C24B	-176.74 (18)
C17A—C18A—C23A—C24A	-1.1 (2)	C17B—C18B—C23B—C24B	-0.5(2)
C1A—N6A—C24A—N5A	7.9 (3)	C1B—N6B—C24B—N5B	8.5 (3)
C1A—N6A—C24A—C23A	-155.16 (18)	C1B—N6B—C24B—C23B	-155.83 (19)
C17A—N5A—C24A—N6A	-154.60 (17)	C17B—N5B—C24B—N6B	-155.70 (17)
B1A—N5A—C24A—N6A	9.6 (3)	B1B-N5B-C24B-N6B	10.4 (3)
C17A—N5A—C24A—C23A	11.9 (2)	C17B—N5B—C24B—C23B	11.9 (2)
B1A—N5A—C24A—C23A	176.07 (16)	B1B-N5B-C24B-C23B	178.02 (16)
C22A—C23A—C24A—N6A	-14.6 (3)	C22B—C23B—C24B—N6B	-17.1 (4)
C18A—C23A—C24A—N6A	159.18 (18)	C18B—C23B—C24B—N6B	159.83 (19)
C22A—C23A—C24A—N5A	-179.97 (19)	C22B—C23B—C24B—N5B	176.5 (2)
C18A—C23A—C24A—N5A	-6.1 (2)	C18B—C23B—C24B—N5B	-6.5 (2)

B1A—S1A—C25A—C30A	-93.53 (17)	B1B—S1B—C25B—C30B	-84.01 (17)
B1A—S1A—C25A—C26A	85.40 (17)	B1B—S1B—C25B—C26B	96.28 (17)
C30A—C25A—C26A—F1A	-178.39 (17)	C30B—C25B—C26B—F1B	179.89 (17)
S1A—C25A—C26A—F1A	2.6 (3)	S1B-C25B-C26B-F1B	-0.4 (3)
C30A—C25A—C26A—C27A	2.2 (3)	C30B—C25B—C26B—C27B	-0.1 (3)
S1A—C25A—C26A—C27A	-176.77 (16)	S1B-C25B-C26B-C27B	179.64 (16)
F1A—C26A—C27A—F2A	0.0 (3)	F1B-C26B-C27B-F2B	1.0 (3)
C25A—C26A—C27A—F2A	179.41 (18)	C25B—C26B—C27B—F2B	-179.01 (18)
F1A—C26A—C27A—C28A	179.43 (19)	F1B-C26B-C27B-C28B	-179.61 (19)
C25A—C26A—C27A—C28A	-1.2 (3)	C25B—C26B—C27B—C28B	0.4 (3)
F2A—C27A—C28A—F3A	-0.4 (3)	F2B-C27B-C28B-F3B	0.1 (3)
C26A—C27A—C28A—F3A	-179.9 (2)	C26B—C27B—C28B—F3B	-179.34 (19)
F2A—C27A—C28A—C29A	179.0 (2)	F2B-C27B-C28B-C29B	179.0 (2)
C26A—C27A—C28A—C29A	-0.5 (3)	C26B—C27B—C28B—C29B	-0.4 (3)
F3A—C28A—C29A—F4A	0.9 (3)	F3B-C28B-C29B-F4B	-0.1 (3)
C27A—C28A—C29A—F4A	-178.5 (2)	C27B—C28B—C29B—F4B	-179.1 (2)
F3A—C28A—C29A—C30A	-179.7 (2)	F3B-C28B-C29B-C30B	179.10 (19)
C27A—C28A—C29A—C30A	0.9 (3)	C27B—C28B—C29B—C30B	0.2 (3)
F4A—C29A—C30A—F5A	-1.1 (3)	F4B-C29B-C30B-F5B	-1.2 (3)
C28A—C29A—C30A—F5A	179.53 (19)	C28B—C29B—C30B—F5B	179.53 (19)
F4A—C29A—C30A—C25A	179.61 (18)	F4B-C29B-C30B-C25B	179.37 (19)
C28A—C29A—C30A—C25A	0.2 (3)	C28B—C29B—C30B—C25B	0.1 (3)
C26A—C25A—C30A—F5A	178.96 (17)	C26B—C25B—C30B—F5B	-179.54 (17)
S1A—C25A—C30A—F5A	-2.0 (3)	S1B-C25B-C30B-F5B	0.7 (3)
C26A—C25A—C30A—C29A	-1.7 (3)	C26B—C25B—C30B—C29B	-0.2 (3)
S1A—C25A—C30A—C29A	177.24 (16)	S1B-C25B-C30B-C29B	-179.89 (16)
C16A—N3A—B1A—N1A	-137.85 (16)	C9B—N3B—B1B—N1B	31.7 (2)
C9A—N3A—B1A—N1A	25.4 (2)	C16B—N3B—B1B—N1B	-142.52 (16)
C16A—N3A—B1A—N5A	-26.6 (2)	C9B—N3B—B1B—N5B	142.72 (16)
C9A—N3A—B1A—N5A	136.68 (16)	C16B—N3B—B1B—N5B	-31.5 (2)
C16A—N3A—B1A—S1A	99.80 (18)	C9B—N3B—B1B—S1B	-91.46 (18)
C9A—N3A—B1A—S1A	-96.93 (18)	C16B—N3B—B1B—S1B	94.28 (18)
C8A—N1A—B1A—N3A	-27.3 (2)	C1B—N1B—B1B—N3B	135.81 (17)
C1A—N1A—B1A—N3A	136.30 (16)	C8B—N1B—B1B—N3B	-28.3 (2)
C8A—N1A—B1A—N5A	-138.50 (16)	C1B—N1B—B1B—N5B	25.0 (2)
C1A—N1A—B1A—N5A	25.1 (2)	C8B—N1B—B1B—N5B	-139.04 (16)
C8A—N1A—B1A—S1A	96.55 (17)	C1B—N1B—B1B—S1B	-101.90 (17)
C1A—N1A—B1A—S1A	-99.83 (17)	C8B—N1B—B1B—S1B	94.02 (18)
C24A—N5A—B1A—N3A	-135.37 (17)	C17B—N5B—B1B—N3B	28.8 (2)
C17A—N5A—B1A—N3A	27.3 (2)	C24B—N5B—B1B—N3B	-136.01 (17)
C24A—N5A—B1A—N1A	-24.0 (2)	C17B—N5B—B1B—N1B	139.91 (17)
C17A—N5A—B1A—N1A	138.70 (16)	C24B—N5B—B1B—N1B	-24.9 (2)
C24A—N5A—B1A—S1A	98.83 (18)	C17B—N5B—B1B—S1B	-94.60 (19)
C17A—N5A—B1A—S1A	-98.46 (18)	C24B—N5B—B1B—S1B	100.57 (18)

(4-Methylbenzenethiolato)(subphthalocyaninato)boron (d23112_a_tw_sq)

Crystal data

 $C_{31}H_{19}BN_6S$ $M_r = 518.39$ Monoclinic, C2/c a = 49.653 (4) Å b = 12.1268 (10) Å c = 27.559 (2) Å $\beta = 114.838$ (4)° V = 15059 (2) Å³ Z = 24

Data collection

Bruker Kappa APEX-DUO CMOS PHOTON II
diffractometer
Radiation source: Incoatec ImuS with multi-
layer optics
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\min} = 0.633, \ T_{\max} = 0.753$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.098$ H-atom parameters constrained $wR(F^2) = 0.242$ $w = 1/[\sigma^2(F_0^2) + (0.0341P)^2 + 145.1404P]$ *S* = 1.09 where $P = (F_0^2 + 2F_c^2)/3$ 12819 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ 1059 parameters $\Delta \rho_{\rm max} = 0.89 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.57 \text{ e} \text{ Å}^{-3}$ 0 restraints Primary atom site location: structure-invariant Extinction correction: SHELXL2019 direct methods (Sheldrick, 2015b), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00058 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. **Refinement**. Refined as a 2-component twin.

F(000) = 6432

 $\theta = 3.5 - 62.5^{\circ}$ $\mu = 1.41 \text{ mm}^{-1}$

T = 150 K

Plate, pink

 $R_{\rm int} = 0.091$

 $h = -58 \rightarrow 58$ $k = -14 \rightarrow 14$ $l = -21 \rightarrow 32$

 $D_{\rm x} = 1.372 {\rm Mg} {\rm m}^{-3}$

 $0.28 \times 0.27 \times 0.02 \text{ mm}$

 $\theta_{\text{max}} = 66.3^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$

12819 measured reflections 12819 independent reflections 10107 reflections with $I > 2\sigma(I)$

Cu Ka radiation, $\lambda = 1.54178$ Å

Cell parameters from 6283 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
S1A	0.59339 (3)	0.51753 (12)	0.73057 (6)	0.0332 (4)	
N1A	0.59808 (10)	0.5166 (4)	0.63321 (19)	0.0319 (11)	
N2A	0.56798 (11)	0.3623 (4)	0.5883 (2)	0.0362 (12)	
N3A	0.54799 (10)	0.5100 (4)	0.62041 (19)	0.0340 (11)	
N4A	0.52161 (10)	0.6784 (4)	0.60952 (19)	0.0345 (11)	
N5A	0.57430 (10)	0.6766 (4)	0.64365 (19)	0.0308 (11)	

NICA	0.61055(10)	0 6027 (4)	0.62271.(10)	0.0225(11)
NOA C1A	0.01933(10)	0.0927(4)	0.033/1(19)	0.0333(11) 0.0224(12)
CIA	0.01884(12)	0.5823(5)	0.6276(2)	0.0334(13)
C2A C2A	0.63308 (13)	0.5140 (5)	0.6021(2)	0.0363 (14)
C3A	0.65616 (13)	0.5368 (6)	0.5868 (3)	0.0401 (15)
H3AA	0.666057	0.605947	0.594543	0.048*
C4A	0.66399 (14)	0.4552 (6)	0.5603 (3)	0.0452 (16)
H4AA	0.679585	0.468532	0.549612	0.054*
C5A	0.64946 (14)	0.3538 (6)	0.5487 (3)	0.0446 (16)
H5AA	0.655837	0.298714	0.531338	0.053*
C6A	0.62604 (14)	0.3308 (6)	0.5618 (2)	0.0413 (15)
H6AA	0.615838	0.262355	0.552509	0.050*
C7A	0.61790 (13)	0.4118 (5)	0.5892 (2)	0.0349 (14)
C8A	0.59385 (13)	0.4191 (5)	0.6056 (2)	0.0325 (13)
C9A	0.54495 (13)	0.4124 (5)	0.5934 (2)	0.0338 (13)
C10A	0.51306 (13)	0.3972 (5)	0.5631 (2)	0.0365 (14)
C11A	0.49668 (14)	0.3119 (6)	0.5302 (2)	0.0403 (15)
H11A	0.506026	0.247966	0.524520	0.048*
C12A	0.46574 (14)	0.3245 (6)	0.5058 (3)	0.0453 (16)
H12A	0.453893	0.266894	0.483772	0.054*
C13A	0.45193 (14)	0.4187 (6)	0.5129 (3)	0.0466 (17)
H13A	0.430901	0.423987	0.495932	0.056*
C14A	0.46833 (13)	0.5054 (6)	0.5444 (3)	0.0414 (15)
H14A	0.458900	0.570878	0.548139	0.050*
C15A	0.49906 (13)	0.4934 (6)	0.5703 (2)	0.0362 (14)
C16A	0.52231 (12)	0.5687 (5)	0.6040 (2)	0.0323 (13)
C17A	0.54772 (12)	0.7320 (5)	0.6269 (2)	0.0317 (13)
C18A	0.55452 (13)	0.8458 (5)	0.6203 (2)	0.0333 (13)
C19A	0.53729 (14)	0.9420 (6)	0.6065 (2)	0.0402 (15)
H19A	0.517001	0.939765	0.600476	0.048*
C20A	0.55014 (16)	1.0400 (6)	0.6019 (3)	0.0444 (16)
H20A	0.538811	1.106064	0.593581	0.053*
C21A	0.57980 (16)	1.0422 (6)	0.6095 (3)	0.0468 (16)
H21A	0.588281	1.110399	0.606119	0.056*
C22A	0 59720 (14)	0.9482 (5)	0.6217(2)	0.0384(14)
H22A	0.617209	0.950849	0.626024	0.046*
C23A	0.58454(13)	0.8503 (5)	0.6274(2)	0.0344(13)
C24A	0.50454(15) 0.59621(12)	0.0303(5) 0.7387(5)	0.6274(2) 0.6388(2)	0.0320(13)
C25A	0.57037(12)	0.5904(5)	0.0500(2) 0.7551(2)	0.0320(13) 0.0327(13)
C26A	0.57057(12) 0.55151(14)	0.5325 (6)	0.7551(2) 0.7712(3)	0.0327(13) 0.0409(15)
H26A	0.549561	0.5525 (0)	0.7712 (3)	0.0407 (13)
1120A	0.549301 0.52520 (14)	0.434834	0.700438	0.049
U27A	0.55520 (14)	0.5695 (0)	0.7940 (3)	0.0423 (10)
П2/А С28А	0.522525	0.349167	0.803390	0.031°
C28A	0.55/40(15)	0.7018(6)	0.8019(2)	0.0372(14)
U29A	0.550372	0.7379(3)	0.780002	0.0342 (13)
H29A	0.5582/2	0.833383	0.789992	0.041*
C3UA	0.57274 (12)	0.7044 (5)	0.7623 (2)	0.0320 (13)
H30A	0.585579	0.745279	0./51451	0.038*
C31A	0.51886 (14)	0.7624 (7)	0.8245 (3)	0.0503 (18)

H31A	0.522446	0.841826	0.824314	0.075*
H31B	0.524201	0.737849	0.861285	0.075*
H31C	0.497821	0.746979	0.802649	0.075*
B1A	0.57748 (14)	0.5575 (6)	0.6563 (3)	0.0310 (14)
S1B	0.70480 (3)	0.12941 (13)	0.54527 (5)	0.0330 (4)
N1B	0.75052 (9)	0.1664 (4)	0.64832 (18)	0.0259 (10)
N2B	0.73408 (9)	0.3260 (4)	0.67907 (18)	0.0285 (10)
N3B	0.70331 (9)	0.1666 (4)	0.64869 (18)	0.0263 (10)
N4B	0.68356 (10)	-0.0029 (4)	0.66323 (18)	0.0282 (10)
N5B	0.72493 (9)	-0.0007 (4)	0.64095 (18)	0.0273 (10)
N6B	0.77646 (10)	-0.0037 (4)	0.66115 (18)	0.0293 (10)
C1B	0.77611 (12)	0.1075 (5)	0.6624 (2)	0.0276 (12)
C2B	0.80016 (12)	0.1853 (5)	0.6884 (2)	0.0288 (12)
C3B	0.83085 (12)	0.1732 (5)	0.7092 (2)	0.0303 (12)
H3BA	0.839539	0.105418	0.705949	0.036*
C4B	0.84822 (12)	0.2619 (5)	0.7346 (2)	0.0337 (13)
H4BA	0.869198	0.255873	0.748314	0.040*
C5B	0.83550 (12)	0.3618 (5)	0.7408 (2)	0.0323 (13)
H5BA	0.848048	0.421961	0.758434	0.039*
C6B	0.80492 (12)	0.3738 (5)	0.7216(2)	0.0311 (13)
H6BA	0.796367	0.440026	0.727068	0.037*
C7B	0.78730 (11)	0.2855 (5)	0.6941 (2)	0.0271 (12)
C8B	0.75513 (12)	0.2692 (5)	0.6715 (2)	0.0275 (12)
C9B	0.70903 (12)	0.2702 (5)	0.6704 (2)	0.0267 (12)
C10B	0.68695 (12)	0.2891 (5)	0.6915 (2)	0.0287 (12)
C11B	0.68130 (12)	0.3792 (5)	0.7165 (2)	0.0317 (13)
H11B	0.692027	0.446073	0.720578	0.038*
C12B	0.65958 (13)	0.3696 (5)	0.7354 (2)	0.0366 (14)
H12B	0.654985	0.431143	0.751909	0.044*
C13B	0.64448 (12)	0.2709 (5)	0.7306 (2)	0.0356 (14)
H13B	0.629667	0.266694	0.743884	0.043*
C14B	0.65024 (12)	0.1797 (5)	0.7074 (2)	0.0302 (13)
H14B	0.640028	0.112341	0.705296	0.036*
C15B	0.67155 (11)	0.1880 (5)	0.6868 (2)	0.0286 (12)
C16B	0.68418 (11)	0.1081 (5)	0.6630 (2)	0.0274 (12)
C17B	0.70515 (12)	-0.0555 (5)	0.6548 (2)	0.0278 (12)
C18B	0.71713 (12)	-0.1672(5)	0.6689 (2)	0.0336 (13)
C19B	0.70641 (14)	-0.2611 (5)	0.6833 (2)	0.0358 (14)
H19B	0.687557	-0.261993	0.684404	0.043*
C20B	0.72429 (15)	-0.3530(6)	0.6958 (3)	0.0478 (17)
H20B	0.717224	-0.418854	0.705152	0.057*
C21B	0.75224 (15)	-0.3540(5)	0.6956 (3)	0.0441 (16)
H21B	0.763789	-0.419539	0.704640	0.053*
C22B	0.76322 (13)	-0.2598(5)	0.6821 (2)	0.0370 (14)
H22B	0.782448	-0.259470	0.682484	0.044*
C23B	0.74577 (13)	-0.1664(5)	0.6680 (2)	0.0312 (13)
C24B	0.75077 (12)	-0.0554(5)	0.6532 (2)	0.0300 (12)
C25B	0.67610 (12)	0.0277 (5)	0.5266 (2)	0.0323(13)
	()			(10)

COO	0 (504((12)	0.0452 (5)	0.5246 (2)	0.0254 (1.4)
C26B	0.65046 (12)	0.0452 (5)	0.5346 (2)	0.0354 (14)
H26B	0.64/228	0.114/1/	0.54/0//	0.042*
C2/B	0.62986 (13)	-0.03/5 (6)	0.5245 (2)	0.0397 (15)
H27B	0.612757	-0.023714	0.530755	0.048*
C28B	0.63306 (14)	-0.1393 (6)	0.5056 (2)	0.0414 (15)
C29B	0.65804 (15)	-0.1544 (6)	0.4943 (3)	0.0473 (17)
H29B	0.660582	-0.222266	0.479532	0.057*
C30B	0.67888 (14)	-0.0714 (6)	0.5044 (2)	0.0412 (15)
H30B	0.695360	-0.082835	0.495964	0.049*
C31B	0.61155 (16)	-0.2325 (6)	0.4988 (3)	0.0531 (19)
H31D	0.611549	-0.250304	0.533455	0.080*
H31E	0.617600	-0.297530	0.484722	0.080*
H31F	0.591564	-0.209982	0.473728	0.080*
B1B	0.72051 (13)	0.1155 (5)	0.6211 (2)	0.0263 (13)
S1C	0.59674 (3)	0.00520 (14)	0.75499 (6)	0.0351 (4)
N1C	0.64464 (10)	-0.0089 (4)	0.85662 (19)	0.0343 (11)
N2C	0.66937 (12)	0.1610 (5)	0.8589 (2)	0.0444 (13)
N3C	0.61870 (10)	0.1582 (4)	0.84376 (19)	0.0350 (11)
N4C	0.57961 (12)	0.1708 (5)	0.8714 (2)	0.0413 (13)
N5C	0.59878 (10)	-0.0031 (4)	0.86186 (19)	0.0329 (11)
N6C	0.63067 (11)	-0.1585 (4)	0.89589 (19)	0.0381 (12)
C1C	0.65042 (13)	-0.1077 (5)	0.8820 (2)	0.0366 (14)
C2C	0.68224 (13)	-0.1231 (6)	0.9004 (2)	0.0433 (17)
C3C	0.70084 (16)	-0.2118 (7)	0.9261 (2)	0.055 (2)
H3C	0.693213	-0.277165	0.934668	0.066*
C4C	0.73082 (18)	-0.2007(10)	0.9385 (3)	0.071 (3)
H4CA	0.743743	-0.261659	0.952994	0.085*
C5C	0.74220 (17)	-0.1016 (10)	0.9301 (3)	0.076 (3)
H5CA	0.763031	-0.095861	0.941152	0.091*
C6C	0.72503 (15)	-0.0121 (8)	0.9068 (3)	0.057 (2)
H6CA	0.733431	0.055046	0.901987	0.069*
C7C	0.69402 (13)	-0.0241(7)	0.8902(2)	0.0459 (18)
C8C	0.66960 (13)	0.0509 (6)	0.8652 (2)	0.0394 (15)
C9C	0.64407 (15)	0.2138 (6)	0.8515 (2)	0.0404 (15)
C10C	0.63896 (17)	0.3269 (6)	0.8620(3)	0.0507 (18)
CIIC	0.6560 (2)	0.4232(7)	0.8700 (3)	0.066 (2)
HIIC	0.674481	0 422407	0.867333	0.079*
C12C	0.6449(3)	0 5191 (8)	0.8818(3)	0.079(3)
H12C	0.655796	0.585541	0.885750	0.095*
C13C	0.6183 (3)	0.5225 (7)	0.8882(3)	0.079(3)
H13C	0.611761	0.5225 (7)	0.897216	0.094*
C14C	0.6016(2)	0.4263 (6)	0.897210 0.8813 (3)	0.094
H14C	0.583765	0.4265 (0)	0.886015	0.000 (2)
C15C	0.585705 0.61181 (17)	0.420002	0.8672(3)	0.072
C16C	0.01101(17)	0.2183 (6)	0.8584(2)	0.0492(17) 0.0405(15)
C10C	0.00011(14) 0.58067(12)	0.2103 (0)	0.0304(2) 0.8761(2)	0.0403(13) 0.0355(14)
C1/C	0.30007(12)	-0.0112(6)	0.0701(2)	0.0333(14) 0.0282(15)
	0.3/04/(13)	-0.0113(0)	0.90/1(2)	0.0362(13)
0190	0.55125 (14)	0.0084 (7)	0.9316 (3)	0.0495 (18)

H19C	0.540768	0.076079	0.926546	0.059*
C20C	0.54811 (14)	-0.0745 (8)	0.9634 (3)	0.054 (2)
H20C	0.535243	-0.063491	0.980550	0.064*
C21C	0.56364 (16)	-0.1745 (7)	0.9708 (3)	0.0526 (19)
H21C	0.560742	-0.230226	0.992365	0.063*
C22C	0.58285 (15)	-0.1937 (6)	0.9477 (2)	0.0454 (16)
H22C	0.593796	-0.260483	0.953975	0.055*
C23C	0.58581 (13)	-0.1113 (6)	0.9145 (2)	0.0371 (14)
C24C	0.60596 (13)	-0.1025 (5)	0.8889 (2)	0.0332 (13)
C25C	0.56426 (12)	0.0896 (5)	0.7315 (2)	0.0308 (13)
C26C	0.56611 (13)	0.2000 (5)	0.7208 (3)	0.0379 (14)
H26C	0.584909	0.231148	0.727599	0.045*
C27C	0.54095 (13)	0.2661 (6)	0.7002 (3)	0.0402 (15)
H27C	0.542897	0.341742	0.693317	0.048*
C28C	0.51321 (13)	0.2243 (5)	0.6896 (2)	0.0353 (14)
C29C	0.51136 (13)	0.1125 (5)	0.6996 (3)	0.0388 (15)
H29C	0.492510	0.080992	0.692196	0.047*
C30C	0.53641 (13)	0.0463 (5)	0.7202 (2)	0.0356 (14)
H30C	0.534470	-0.029607	0.726607	0.043*
C31C	0.48627 (15)	0.2975 (6)	0.6687 (3)	0.0513 (18)
H31I	0.492169	0.372800	0.664658	0.077*
H31J	0.477036	0.297331	0.693911	0.077*
H31G	0.472036	0.269956	0.633913	0.077*
B1C	0.61421 (14)	0.0393 (6)	0.8298 (3)	0.0312 (14)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	0.0307 (7)	0.0330 (8)	0.0379 (8)	0.0026 (6)	0.0165 (6)	0.0009 (6)
N1A	0.032 (2)	0.027 (3)	0.039 (3)	-0.001 (2)	0.017 (2)	-0.006 (2)
N2A	0.035 (3)	0.031 (3)	0.045 (3)	0.003 (2)	0.020(2)	0.000(2)
N3A	0.029 (2)	0.036 (3)	0.040 (3)	0.002 (2)	0.017 (2)	-0.003 (2)
N4A	0.031 (3)	0.037 (3)	0.037 (3)	-0.001 (2)	0.017 (2)	-0.005 (2)
N5A	0.029 (2)	0.029 (3)	0.036 (3)	0.004 (2)	0.015 (2)	-0.004 (2)
N6A	0.032 (3)	0.037 (3)	0.032 (3)	0.001 (2)	0.014 (2)	0.000(2)
C1A	0.026 (3)	0.040 (4)	0.031 (3)	0.000 (3)	0.010(2)	-0.003 (3)
C2A	0.031 (3)	0.043 (4)	0.033 (3)	0.006 (3)	0.012 (3)	0.000 (3)
C3A	0.032 (3)	0.046 (4)	0.046 (4)	0.004 (3)	0.021 (3)	0.000 (3)
C4A	0.039 (4)	0.051 (4)	0.053 (4)	0.010 (3)	0.027 (3)	-0.002 (3)
C5A	0.044 (4)	0.044 (4)	0.050 (4)	0.017 (3)	0.024 (3)	-0.002 (3)
C6A	0.043 (4)	0.040 (4)	0.042 (3)	0.014 (3)	0.019 (3)	0.000 (3)
C7A	0.033 (3)	0.036 (4)	0.038 (3)	0.007 (3)	0.017 (3)	0.002 (3)
C8A	0.033 (3)	0.028 (3)	0.034 (3)	0.003 (3)	0.012 (2)	-0.001 (2)
C9A	0.032 (3)	0.029 (3)	0.042 (3)	-0.001 (3)	0.018 (3)	-0.001 (3)
C10A	0.033 (3)	0.037 (4)	0.041 (3)	-0.002 (3)	0.017 (3)	-0.001 (3)
C11A	0.042 (4)	0.039 (4)	0.041 (3)	-0.007 (3)	0.019 (3)	-0.002 (3)
C12A	0.036 (3)	0.042 (4)	0.052 (4)	-0.010 (3)	0.013 (3)	0.000 (3)
C13A	0.029 (3)	0.059 (5)	0.048 (4)	-0.009 (3)	0.013 (3)	0.000 (3)

C14A	0.034 (3)	0.041 (4)	0.050 (4)	0.002 (3)	0.019 (3)	0.000(3)
C15A	0.030 (3)	0.043 (4)	0.039 (3)	0.003 (3)	0.017 (3)	0.000 (3)
C16A	0.030 (3)	0.031 (3)	0.041 (3)	0.004 (3)	0.020 (3)	0.001 (3)
C17A	0.030 (3)	0.030 (3)	0.037 (3)	0.006 (3)	0.017 (3)	-0.001(3)
C18A	0.039 (3)	0.028 (3)	0.033 (3)	0.005 (3)	0.015 (3)	-0.002(2)
C19A	0.042 (3)	0.040 (4)	0.036 (3)	0.009 (3)	0.013 (3)	-0.005(3)
C20A	0.058 (4)	0.033 (4)	0.039 (3)	0.012 (3)	0.018 (3)	0.003 (3)
C21A	0.056 (4)	0.041 (4)	0.044 (4)	-0.002(3)	0.023 (3)	0.001 (3)
C22A	0.043 (3)	0.043 (4)	0.031 (3)	0.000 (3)	0.017 (3)	-0.002(3)
C23A	0.040 (3)	0.035 (4)	0.031 (3)	0.002 (3)	0.018 (3)	-0.005(2)
C24A	0.029 (3)	0.039 (4)	0.030 (3)	-0.003(3)	0.015 (2)	-0.005(2)
C25A	0.029 (3)	0.035 (3)	0.035 (3)	0.000 (3)	0.014(2)	0.001 (3)
C26A	0.038(3)	0.037(4)	0.050 (4)	-0.009(3)	0.021(3)	0.002(3)
C27A	0.037(3)	0.051 (4)	0.050(4)	-0.004(3)	0.030(3)	0.004(3)
C28A	0.031(3)	0.049(4)	0.035(3)	0.001(3)	0.017(3)	0.000(3)
C29A	0.021(3) 0.028(3)	0.039(4)	0.035(3)	0.001(3)	0.013(3)	-0.004(3)
C30A	0.020(3)	0.029(3)	0.038(3)	-0.003(2)	0.015(3)	-0.002(2)
C31A	0.037(4)	0.029(5)	0.050(5)	0.000(2)	0.010(3) 0.027(3)	-0.002(2)
B1A	0.029(3)	0.009(3) 0.029(4)	0.036(3)	0.000(3)	0.027(3)	-0.001(3)
S1B	0.029(3)	0.029(1)	0.030(5)	-0.002(5)	0.013(3)	0.0028 (6)
N1B	0.022(2)	0.027(3)	0.032(2)	-0.0017(19)	0.0153(19)	0.0020(0)
N2B	0.022(2)	0.021(3)	0.035(3)	0.001(2)	0.0120(13)	0.003 (2)
N3B	0.022(2)	0.026(3)	0.034(2)	-0.0008(19)	0.0153(19)	0.0023(19)
N4B	0.026(2)	0.027(3)	0.034(2)	-0.006(2)	0.015(2)	-0.004(2)
N5B	0.025(2)	0.027(3)	0.034(2)	0.000(2)	0.016(2)	0.002(2)
N6B	0.026(2)	0.029(3)	0.034(2)	-0.003(2)	0.014(2)	-0.001(2)
C1B	0.030(3)	0.021(3)	0.037(3)	-0.001(2)	0.018(2)	0.002(2)
C2B	0.026 (3)	0.033(3)	0.032(3)	-0.003(2)	0.017(2)	0.001(2)
C3B	0.025(3)	0.031 (3)	0.036(3)	0.004(2)	0.014(2)	0.004(2)
C4B	0.025 (3)	0.040 (4)	0.037 (3)	-0.004(3)	0.015(2)	0.002(3)
C5B	0.027(3)	0.031 (3)	0.040 (3)	-0.007(2)	0.014(2)	-0.005(3)
C6B	0.030(3)	0.033(3)	0.035(3)	0.001(3)	0.018(2)	0.002 (3)
C7B	0.022(3)	0.030(3)	0.035(3)	0.000(2)	0.017(2)	0.001(2)
C8B	0.025(3)	0.027(3)	0.034(3)	0.003(2)	0.017(2)	0.006(2)
C9B	0.027(3)	0.027(3)	0.029 (3)	-0.004(2)	0.015(2)	0.001 (2)
C10B	0.024(3)	0.032(3)	0.033(3)	0.003 (2)	0.015(2)	0.002(2)
C11B	0.027(3)	0.030(3)	0.039(3)	-0.001(2)	0.014(2)	0.002(2)
C12B	0.034(3)	0.039(4)	0.043(3)	0.000(3)	0.023(3)	-0.003(3)
C13B	0.027(3)	0.039(4)	0.044(3)	0.000(3)	0.018(3)	0.003(3)
C14B	0.026(3)	0.023(3)	0.041(3)	0.003(2)	0.018(2)	0.005(2)
C15B	0.019(3)	0.028(3)	0.029(3)	0.002(2)	0.010(2)	0.002(2)
C16B	0.022(3)	0.028(3)	0.032(3)	-0.003(2)	0.011(2)	0.001(2)
C17B	0.026(3)	0.026(3)	0.032(3)	-0.007(2)	0.013(2)	-0.003(2)
C18B	0.030(3)	0.031(3)	0.040(3)	-0.004(3)	0.015(2)	-0.007(3)
C19B	0.038(3)	0.028(3)	0.045(3)	-0.008(3)	0.021(3)	-0.004(3)
C20B	0.053 (4)	0.030 (4)	0.066 (5)	-0.001(3)	0.031 (4)	0.007 (3)
C21B	0.046 (4)	0.021 (3)	0.068 (4)	0.005 (3)	0.027 (3)	0.003(3)
C22B	0.033 (3)	0.033 (4)	0.045 (4)	0.001 (3)	0.016 (3)	-0.002(3)
	····· · · · · · · · · · · · · · · · ·		··· · · · · · · · · · · · · · · · · ·	···· (-)	···· · (-)	

C23B	0.033 (3)	0.027 (3)	0.037 (3)	0.000(2)	0.018 (3)	-0.002 (2)
C24B	0.028 (3)	0.029 (3)	0.036 (3)	0.000 (2)	0.016 (2)	-0.002(2)
C25B	0.032 (3)	0.039 (4)	0.026 (3)	0.001 (3)	0.012 (2)	0.001 (2)
C26B	0.029 (3)	0.039 (4)	0.037 (3)	0.004 (3)	0.013 (3)	-0.001 (3)
C27B	0.026 (3)	0.051 (4)	0.040 (3)	-0.001(3)	0.012 (3)	0.004 (3)
C28B	0.039 (3)	0.047 (4)	0.035 (3)	-0.007(3)	0.013 (3)	0.006 (3)
C29B	0.051 (4)	0.041 (4)	0.050 (4)	-0.006(3)	0.022 (3)	-0.012(3)
C30B	0.038 (3)	0.047 (4)	0.041 (3)	0.000 (3)	0.018 (3)	-0.006(3)
C31B	0.055 (4)	0.057 (5)	0.047 (4)	-0.018 (4)	0.021 (3)	0.002 (3)
B1B	0.023 (3)	0.026 (3)	0.031 (3)	-0.004(3)	0.012 (3)	-0.002(3)
S1C	0.0300 (7)	0.0436 (9)	0.0328 (7)	0.0036 (6)	0.0142 (6)	0.0001 (6)
N1C	0.027 (2)	0.043 (3)	0.036 (3)	0.004 (2)	0.016 (2)	0.003 (2)
N2C	0.041 (3)	0.053 (4)	0.044 (3)	-0.007(3)	0.022 (3)	-0.003(3)
N3C	0.032 (3)	0.036 (3)	0.039 (3)	0.001 (2)	0.016 (2)	0.000 (2)
N4C	0.040 (3)	0.047 (4)	0.035 (3)	0.011 (3)	0.015 (2)	0.004 (2)
N5C	0.029 (2)	0.040 (3)	0.032 (3)	0.003 (2)	0.015 (2)	0.002 (2)
N6C	0.040 (3)	0.043 (3)	0.031 (3)	0.004 (2)	0.014 (2)	-0.003(2)
C1C	0.034 (3)	0.044 (4)	0.032(3)	0.004 (3)	0.014 (3)	-0.005(3)
C2C	0.032 (3)	0.066 (5)	0.026(3)	0.019 (3)	0.007 (3)	-0.008(3)
C3C	0.050(4)	0.085 (6)	0.028 (3)	0.032 (4)	0.013 (3)	-0.006(3)
C4C	0.053 (5)	0.121 (9)	0.033 (4)	0.050(5)	0.012 (3)	-0.006(5)
C5C	0.036 (4)	0.134 (10)	0.051 (5)	0.026 (5)	0.013 (4)	-0.016(5)
C6C	0.034 (4)	0.096 (7)	0.046 (4)	0.006 (4)	0.021 (3)	-0.015(4)
C7C	0.024 (3)	0.081 (6)	0.032(3)	0.003 (3)	0.012 (3)	-0.011(3)
C8C	0.034 (3)	0.057(5)	0.034(3)	-0.001(3)	0.020 (3)	-0.008(3)
C9C	0.050 (4)	0.042 (4)	0.036 (3)	-0.009(3)	0.024 (3)	0.000 (3)
C10C	0.067 (5)	0.042 (4)	0.042 (4)	-0.012(4)	0.022(3)	0.001 (3)
C11C	0.094 (6)	0.051 (5)	0.060 (5)	-0.019(5)	0.040 (5)	0.002 (4)
C12C	0.141 (9)	0.047 (5)	0.061 (5)	-0.029(6)	0.053 (6)	-0.008(4)
C13C	0.140 (9)	0.038 (5)	0.058 (5)	0.012 (5)	0.042 (6)	0.003 (4)
C14C	0.089 (6)	0.041 (5)	0.046 (4)	0.014 (4)	0.025 (4)	0.005 (3)
C15C	0.064 (5)	0.044 (4)	0.041 (4)	0.015 (4)	0.024(3)	0.007(3)
C16C	0.043 (4)	0.042 (4)	0.035 (3)	0.013 (3)	0.014 (3)	0.004 (3)
C17C	0.028 (3)	0.048(4)	0.029 (3)	0.005 (3)	0.011 (2)	-0.004(3)
C18C	0.028 (3)	0.055 (4)	0.033 (3)	0.001 (3)	0.015 (3)	0.001 (3)
C19C	0.031 (3)	0.081 (6)	0.039 (3)	-0.001(3)	0.017 (3)	-0.003(4)
C20C	0.031 (3)	0.099 (7)	0.036 (3)	-0.014(4)	0.019 (3)	-0.002(4)
C21C	0.047 (4)	0.074 (6)	0.035 (3)	-0.017(4)	0.016 (3)	0.004 (3)
C22C	0.044 (4)	0.053 (4)	0.036 (3)	-0.009(3)	0.013 (3)	0.005 (3)
C23C	0.034 (3)	0.050 (4)	0.028 (3)	-0.006(3)	0.014 (3)	-0.001(3)
C24C	0.034 (3)	0.033 (3)	0.031 (3)	0.001 (3)	0.013 (3)	0.001 (2)
C25C	0.027(3)	0.039 (4)	0.029 (3)	-0.002(3)	0.015 (2)	-0.002(2)
C26C	0.026 (3)	0.039 (4)	0.048 (4)	-0.006(3)	0.014 (3)	0.005 (3)
C27C	0.034 (3)	0.038 (4)	0.048 (4)	-0.005(3)	0.017 (3)	0.000 (3)
C28C	0.033 (3)	0.040 (4)	0.034 (3)	0.003 (3)	0.016 (3)	0.002 (3)
C29C	0.030 (3)	0.040 (4)	0.047 (4)	-0.006(3)	0.017 (3)	0.002(3)
C30C	0.036 (3)	0.032 (3)	0.040 (3)	-0.005(3)	0.017 (3)	0.004(3)
C31C	0.043 (4)	0.049(5)	0.065 (5)	0.002 (3)	0.025 (4)	0.006(4)
	(')					

B1C	0.032 (3)	0.030 (4)	0.033 (3)	0.003 (3)	0.015 (3)	0.004 (3)
Geometr	ric parameters (Å,	, °)				
S1A—C	25A	1.786 (6)	C12	.B—C13B		1.388 (9)
S1A—B	1A	1.922 (7)	C12	B—H12B		0.9500
N1A—C	C1A	1.363 (7)	C13	B—C14B		1.368 (8)
N1A—C	C8A	1.374 (7)	C13	B—H13B		0.9500
N1A—E	81A	1.497 (8)	C14	B-C15B		1.399 (7)
N2A—C	C9A	1.354 (7)	C14	B—H14B		0.9500
N2A—C	C8A	1.355 (8)	C15	B—C16B		1.452 (8)
N3A—C	C16A	1.361 (7)	C17	B-C18B		1.465 (8)
N3A—C	C9A	1.372 (8)	C18	B—C19B		1.383 (8)
N3A—E	31A	1.495 (8)	C18	B—C23B		1.432 (8)
N4A—C	C16A	1.341 (8)	C19	B-C20B		1.376 (9)
N4A—C	C17A	1.346 (7)	C19	B—H19B		0.9500
N5A—C	C24A	1.375 (7)	C20	B—C21B		1.391 (9)
N5A—C	C17A	1.376 (7)	C20	B—H20B		0.9500
N5A—E	81A	1.479 (8)	C21	B—C22B		1.382 (9)
N6A—C	C24A	1.346 (7)	C21	B—H21B		0.9500
N6A—C	C1A	1.348 (8)	C22	B—C23B		1.379 (8)
C1A—C	C2A	1.448 (8)	C22	B—H22B		0.9500
C2A—C	23A	1.404 (8)	C23	B—C24B		1.458 (8)
C2A—C	C7A	1.416 (9)	C25	B—C30B		1.381 (9)
C3A—C	C4A	1.380 (9)	C25	B—C26B		1.396 (8)
СЗА—Н	I3AA	0.9500	C26	B—C27B		1.375 (9)
C4A—C	25A	1.394 (10)) C26	B—H26B		0.9500
C4A—H	I4AA	0.9500	C27	B—C28B		1.375 (10)
C5A—C	C6A	1.383 (9)	C27	B—H27B		0.9500
С5А—Н	I5AA	0.9500	C28	B—C29B		1.412 (9)
C6A—C	27A	1.397 (9)	C28	B—C31B		1.511 (9)
С6А—Н	I6AA	0.9500	C29	B-C30B		1.385 (9)
C7A—C	28A	1,447 (8)	C29	B—H29B		0.9500
С9А—С	C10A	1.459 (8)	C30	B—H30B		0.9500
C10A—	C11A	1.390 (9)	C31	B—H31D		0.9800
C10A—	C15A	1.414 (9)	C31	B—H31E		0.9800
C11A—	C12A	1.403 (9)	C31	B—H31F		0.9800
C11A—	H11A	0.9500	S1C	C25C		1.786 (6)
C12A—	C13A	1.388 (10)) S1C	B1C		1.915 (7)
C12A—	H12A	0.9500	N1C	C—C1C		1.357 (8)
C13A—	C14A	1.388 (9)	N10	C—C8C		1.368 (8)
C13A—	H13A	0.9500	N1C	C—B1C		1.494 (8)
C14A—	C15A	1.394 (8)	N2C	C—C8C		1.345 (9)
C14A—	H14A	0.9500	N2C	С—С9С		1.347 (8)
C15A—	C16A	1.459 (9)	N3C	C—C16C		1.364 (8)
C17A—	C18A	1.450 (9)	N3C	С—С9С		1.364 (8)
C18A—	C19A	1.401 (9)	N3C	C—B1C		1.486 (9)
C18A—	C23A	1.421 (8)	N4C	C—C16C		1.342 (8)

C19A—C20A	1.379 (10)	N4C—C17C	1.344 (8)
С19А—Н19А	0.9500	N5C—C17C	1.361 (7)
C20A—C21A	1.399 (10)	N5C—C24C	1.383 (8)
C20A—H20A	0.9500	N5C—B1C	1.484 (8)
C21A—C22A	1.384 (9)	N6C—C1C	1.343 (8)
C21A—H21A	0.9500	N6C—C24C	1.344 (8)
C22A—C23A	1.383 (9)	C1C—C2C	1.454 (8)
C22A—H22A	0.9500	C2C—C3C	1.400 (10)
C23A—C24A	1.453 (9)	C2C—C7C	1.415 (11)
C25A—C26A	1.384 (8)	C3C—C4C	1.387 (11)
C25A—C30A	1.395 (8)	СЗС—НЗС	0.9500
C26A—C27A	1.410 (9)	C4C—C5C	1.388 (14)
C26A—H26A	0.9500	C4C—H4CA	0.9500
C27A—C28A	1.374 (9)	C5C—C6C	1.362 (13)
С27А—Н27А	0.9500	C5C—H5CA	0.9500
C28A—C29A	1.385 (8)	C6C—C7C	1.417 (9)
C28A—C31A	1.505 (8)	С6С—Н6СА	0.9500
C29A—C30A	1.384 (8)	C7C—C8C	1.439 (10)
С29А—Н29А	0.9500	C9C—C10C	1.446 (10)
C30A—H30A	0.9500	C10C—C11C	1.404 (11)
C31A—H31A	0.9800	C10C—C15C	1.414 (10)
C31A—H31B	0.9800	C11C—C12C	1.382 (13)
C31A—H31C	0.9800	C11C—H11C	0.9500
S1B—C25B	1.789 (6)	C12C—C13C	1.405 (14)
S1B—B1B	1.907 (6)	C12C—H12C	0.9500
N1B—C1B	1.364 (7)	C13C—C14C	1.397 (13)
N1B—C8B	1.376 (7)	C13C—H13C	0.9500
N1B—B1B	1.491 (7)	C14C—C15C	1.390 (10)
N2B—C8B	1.338 (7)	C14C—H14C	0.9500
N2B—C9B	1.346 (7)	C15C—C16C	1.454 (10)
N3B—C16B	1.369 (7)	C17C—C18C	1.451 (9)
N3B—C9B	1.370 (7)	C18C—C23C	1.401 (9)
N3B—B1B	1.495 (7)	C18C—C19C	1.401 (8)
N4B—C16B	1.345 (7)	C19C—C20C	1.385 (11)
N4B—C17B	1.349 (7)	С19С—Н19С	0.9500
N5B—C24B	1.355 (7)	C20C—C21C	1.405 (11)
N5B—C17B	1.366 (7)	C20C—H20C	0.9500
N5B—B1B	1.494 (8)	C21C—C22C	1.371 (10)
N6B—C1B	1.349 (7)	C21C—H21C	0.9500
N6B—C24B	1.354 (7)	C22C—C23C	1.403 (9)
C1B—C2B	1.453 (8)	C22C—H22C	0.9500
C2B—C3B	1.392 (7)	C23C—C24C	1.451 (8)
C2B—C7B	1.412 (8)	C25C—C26C	1.383 (9)
C3B—C4B	1.373 (8)	C25C—C30C	1.386 (8)
СЗВ—НЗВА	0.9500	C26C—C27C	1.389 (9)
C4B—C5B	1.409 (9)	С26С—Н26С	0.9500
C4B—H4BA	0.9500	C27C—C28C	1.379 (8)
C5B—C6B	1.390 (8)	С27С—Н27С	0.9500
	~ /		-

C5B—H5BA	0.9500	C28C—C29C	1.394 (9)
C6B—C7B	1.389 (8)	C28C—C31C	1.504 (9)
C6B—H6BA	0.9500	C29C—C30C	1.386 (9)
C7B—C8B	1.464 (7)	C29C—H29C	0.9500
C9B—C10B	1.458 (7)	C30C—H30C	0.9500
C10B—C11B	1.382 (8)	C31C—H31I	0.9800
C10B—C15B	1.422 (8)	C31C—H31J	0.9800
C11B—C12B	1.387 (8)	C31C—H31G	0.9800
C11B—H11B	0.9500		
C25A—S1A—B1A	103.7 (3)	N4B—C16B—N3B	122.7 (5)
C1A—N1A—C8A	112.8 (5)	N4B—C16B—C15B	130.5 (5)
C1A—N1A—B1A	122.6 (5)	N3B—C16B—C15B	105.5 (5)
C8A—N1A—B1A	123.2 (5)	N4B—C17B—N5B	122.3 (5)
C9A—N2A—C8A	117.0 (5)	N4B—C17B—C18B	131.0 (5)
C16A—N3A—C9A	113.4 (5)	N5B—C17B—C18B	105.4 (5)
C16A—N3A—B1A	122.6 (5)	C19B—C18B—C23B	121.0 (6)
C9A—N3A—B1A	123.0 (5)	C19B—C18B—C17B	132.4 (5)
C16A—N4A—C17A	116.9 (5)	C23B—C18B—C17B	106.6 (5)
C24A—N5A—C17A	112.7 (5)	C20B—C19B—C18B	117.0 (6)
C24A—N5A—B1A	123.2 (5)	C20B—C19B—H19B	121.5
C17A—N5A—B1A	123.3 (5)	C18B—C19B—H19B	121.5
C24A—N6A—C1A	116.5 (5)	C19B—C20B—C21B	123.1 (6)
N6A—C1A—N1A	123.2 (5)	C19B—C20B—H20B	118.5
N6A—C1A—C2A	129.5 (6)	C21B—C20B—H20B	118.5
N1A—C1A—C2A	105.5 (5)	C22B—C21B—C20B	120.1 (6)
C3A—C2A—C7A	120.8 (6)	C22B—C21B—H21B	119.9
C3A—C2A—C1A	131.3 (6)	C20B—C21B—H21B	119.9
C7A—C2A—C1A	107.8 (5)	C23B—C22B—C21B	118.8 (6)
C4A—C3A—C2A	117.7 (6)	C23B—C22B—H22B	120.6
С4А—С3А—НЗАА	121.1	C21B—C22B—H22B	120.6
С2А—С3А—НЗАА	121.1	C22B—C23B—C18B	120.1 (6)
C3A—C4A—C5A	121.3 (6)	C22B—C23B—C24B	132.6 (5)
СЗА—С4А—Н4АА	119.4	C18B—C23B—C24B	107.3 (5)
С5А—С4А—Н4АА	119.4	N6B—C24B—N5B	122.8 (5)
C6A—C5A—C4A	122.0 (6)	N6B—C24B—C23B	129.9 (5)
С6А—С5А—Н5АА	119.0	N5B—C24B—C23B	105.6 (5)
С4А—С5А—Н5АА	119.0	C30B—C25B—C26B	118.0 (6)
C5A—C6A—C7A	117.7 (7)	C30B—C25B—S1B	120.8 (4)
С5А—С6А—Н6АА	121.1	C26B—C25B—S1B	121.3 (5)
С7А—С6А—Н6АА	121.1	C27B—C26B—C25B	120.5 (6)
C6A—C7A—C2A	120.4 (6)	C27B—C26B—H26B	119.7
C6A—C7A—C8A	132.5 (6)	C25B—C26B—H26B	119.7
C2A—C7A—C8A	106.9 (5)	C26B—C27B—C28B	122.5 (6)
N2A—C8A—N1A	122.2 (5)	C26B—C27B—H27B	118.8
N2A—C8A—C7A	130.2 (5)	C28B—C27B—H27B	118.8
N1A—C8A—C7A	105.7 (5)	C27B—C28B—C29B	116.8 (6)
N2A—C9A—N3A	122.5 (5)	C27B—C28B—C31B	122.1 (6)

N2A—C9A—C10A	130.1 (5)	C29B—C28B—C31B	121.1 (7)
N3A—C9A—C10A	105.4 (5)	C30B—C29B—C28B	120.9 (6)
C11A—C10A—C15A	121.2 (6)	C30B—C29B—H29B	119.6
C11A—C10A—C9A	131.7 (6)	C28B—C29B—H29B	119.6
C15A—C10A—C9A	107.1 (5)	C25B—C30B—C29B	121.1 (6)
C10A—C11A—C12A	117.0 (6)	C25B—C30B—H30B	119.5
C10A—C11A—H11A	121.5	C29B—C30B—H30B	119.5
C12A—C11A—H11A	121.5	C28B—C31B—H31D	109.5
C13A—C12A—C11A	121.9 (6)	C28B—C31B—H31E	109.5
C13A—C12A—H12A	119.1	H31D-C31B-H31E	109.5
C11A—C12A—H12A	119.1	C28B—C31B—H31F	109.5
C14A - C13A - C12A	121.1 (6)	H_{31D} C_{31B} H_{31F}	109.5
C14A - C13A - H13A	119 5	H_{31F} C31B H_{31F}	109.5
C12A - C13A - H13A	119.5	N1B-B1B-N5B	109.5 104 1 (5)
C13A - C14A - C15A	119.5	N1B_B1B_N3B	101.1(3) 1037(4)
C13A - C14A - H14A	121.0	N5B_B1B_N3B	103.7(4) 103.4(4)
C15A - C14A - H14A	121.0	NIB_BIB_SIB	103.4(4) 112 1(4)
C_{14A} C_{15A} C_{10A}	121.0	N5B_B1B_S1B	112.1(4) 114.5(4)
C14A - C15A - C16A	120.7 (0)	N3B_B1B_S1B	117.5(4)
C_{10A} C_{15A} C_{16A}	107.5(0)	$C_{25}C_{5}S_{1}C_{5}B_{1}C_{5}$	101.4(3)
N44 - C164 - N34	107.3(5) 123.1(5)	C1C - N1C - C8C	101.4(3) 113.5(5)
N4A - C16A - C15A	129.1(5)	C1C NIC B1C	113.5(5) 123.5(5)
N3A - C16A - C15A	125.5(5) 105.3(5)	C_{RC} NIC BIC	123.3(3) 122.2(5)
$N_{AA} = C_{17A} = C_{15A}$	105.5(5) 121.9(5)	$C_{RC} = N_{RC} = D_{RC}$	122.2(3) 1167(5)
$N_{A} = C_{17A} = N_{3A}$	121.9(5) 130.9(5)	$C_{16} C_{16} $	110.7(5) 112.6(5)
$N_{A} = C_{17A} = C_{18A}$	130.9(3) 105.4(5)	C16C N3C B1C	112.0(3) 123.3(5)
$\begin{array}{c} \text{C10A} \text{C18A} \text{C23A} \\ \end{array}$	105.4(5) 119.4(6)	$C_{0}C_{0}N_{3}C_{0}B_{1}C_{0}$	123.3(3) 123.3(5)
C10A C18A C17A	117.4(0) 132.7(6)	$C_{16}C_{16}C_{17}C_{1$	125.5(5) 116.8(5)
$C_{13}A = C_{18}A = C_{17}A$	132.7(0) 107.7(5)	C17C N5C $C24C$	110.0(5)
$C_{23}A = C_{10}A = C_{17}A$	107.7(3) 110.3(6)	C17C M5C B1C	112.9(3) 123.1(5)
$C_{20A} = C_{10A} = C_{10A}$	119.5 (0)	$C_{1}^{2}C_{1}^{2}N_{2}^{2}C_{1}^{2}$	123.1(3) 122.8(5)
$C_{20A} = C_{10A} = H_{10A}$	120.4	$C_{1}C_{1}N_{5}C_{2}C_{1}C_{5}$	122.0(3) 117.3(5)
C10A = C10A = C11A	120.4	N6C C1C N1C	117.3(3) 122.0(5)
C10A = C20A = C21A	120.1 (0)	N6C - C1C - C2C	122.0(3) 131.1(6)
$C_{19}A = C_{20}A = H_{20}A$	120.0	N1C C1C C2C	101.0(0)
$C_{21A} = C_{20A} = \Pi_{20A}$	120.0 122.1(7)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	104.9(0) 120.8(6)
$C_{22A} = C_{21A} = C_{20A}$	122.1 (7)	$C_{3}C_{-}C_{2}C_{-}C_{1}C_{-}C_{-}C_{1}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-$	120.8(0) 131.7(7)
$C_{22A} = C_{21A} = H_{21A}$	119.0	$C_{2}C_{-}C_{2}C_{-}C_{1$	107.5(6)
$\begin{array}{c} c_{20A} \\ c_{21A} \\$	117.0 (6)	$C_{1}C_{-}C_{2}C_{-}C_{1}C_{-}C_{-$	107.5(0) 117.5(0)
$C_{23A} = C_{22A} = C_{21A}$	121.0	$C_{4}C_{-}C_{3}C_{-}H_{3}C_{-}$	121.2
$C_{23}A = C_{22}A = H_{22}A$	121.0	$C_{4}C_{-}C_{3}C_{-}H_{3}C_{-}C_{3}C_{-}H_{3}C_{-}C_{3}C_{-}H_{3}C_{-}C_{3}C_{-}H_{3}C_{-}C_{3}C_{-}H_{3}C_{-}C_{3}C_{-}H_{3}C_{-}C_{3}C_{-}H_{3}C_{-}C_{3}C_{-}H_{3}C_{-}C_{3}C_{-}H_{3}C_{-}C_{3}C_{-}H_{3}C_{-}C_{-}C_{3}C_{-}H_{3}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-$	121.2
$C_{21}A = C_{22}A = C_{12}A$	121.0	$C_2C = C_3C = C_5C$	121.2 120.0(8)
$C_{22A} = C_{23A} = C_{16A}$	121.2(0) 131.7(6)	$C_{3C} = C_{4C} = U_{4C}$	120.9 (8)
$C_{22A} = C_{23A} = C_{24A}$	131.7(0) 1071(5)	$C_{5C} = C_{4C} = H_{4CA}$	119.0
$C_{10A} = C_{23A} = C_{24A}$	107.1(3) 122.3(5)	$C_{5}C_{-}C_{4}C_{-}II_{4}CA$	117.0
N6A C24A C22A	122.3(3) 130.3(5)	$C_{0}C_{-}C_{0}C_{-}C_{+}C_{-}C_{+}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-$	123.3 (0)
N54 - C244 - C23A	105.5(5)	C4C - C5C - H5CA	118.3
$C_{26A} = C_{25A} = C_{20A}$	100.7(0) 1100(6)	$C_{1}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2$	116.8 (0)
ULUA-ULJA-UJUA	112.0 (0)		110.0(7)

C26A—C25A—S1A	119.8 (5)	С5С—С6С—Н6СА	121.6
C30A—C25A—S1A	121.0 (4)	C7C—C6C—H6CA	121.6
C25A—C26A—C27A	119.6 (6)	C2C—C7C—C6C	120.4 (7)
C25A—C26A—H26A	120.2	C2C—C7C—C8C	107.3 (5)
C27A—C26A—H26A	120.2	C6C—C7C—C8C	132.2 (8)
C28A—C27A—C26A	121.7 (6)	N2C—C8C—N1C	123.0 (6)
C28A—C27A—H27A	119.1	N2C—C8C—C7C	130.5 (6)
С26А—С27А—Н27А	119.1	N1C—C8C—C7C	105.5 (6)
C27A—C28A—C29A	117.6 (6)	N2C—C9C—N3C	122.0 (6)
C27A—C28A—C31A	121.2 (6)	N2C—C9C—C10C	130.7 (6)
C29A—C28A—C31A	121.1 (6)	N3C—C9C—C10C	105.8 (6)
C30A—C29A—C28A	122.1 (6)	C11C—C10C—C15C	120.0 (8)
С30А—С29А—Н29А	119.0	C11C—C10C—C9C	132.4 (7)
С28А—С29А—Н29А	119.0	C15C—C10C—C9C	107.5 (6)
C29A—C30A—C25A	120.0 (6)	C12C—C11C—C10C	117.6 (9)
С29А—С30А—Н30А	120.0	C12C—C11C—H11C	121.2
C25A—C30A—H30A	120.0	C10C—C11C—H11C	121.2
C_{28A} C_{31A} H_{31A}	109 5	C11C $C12C$ $C13C$	122.8 (9)
C_{28A} C_{31A} H_{31B}	109.5	C11C $C12C$ $H12C$	118.6
H_{31A} C_{31A} H_{31B}	109.5	C13C - C12C - H12C	118.6
C_{28A} C_{31A} H_{31C}	109.5	C14C - C13C - C12C	119.6 (8)
H_{31A} $-C_{31A}$ $-H_{31C}$	109.5	C14C - C13C - H13C	120.2
H_{31B} C_{31A} H_{31C}	109.5	C12C - C13C - H13C	120.2
N5A_B1A_N3A	104.0 (5)	C15C - C14C - C13C	118 4 (9)
N5A_B1A_N1A	104.0(5)	C15C - C14C - H14C	120.8
N3A_BIA_NIA	104.4(5) 104.2(5)	C13C - C14C - H14C	120.8
N5A_B1A_S1A	116.9(4)	C14C - C15C - C10C	120.6
N3A_B1A_S1A	117.2(4)	C14C - C15C - C16C	121.0(0) 131.5(7)
NIA BIA SIA	117.2(4) 108.7(4)	C10C C15C C16C	106.8 (6)
C_{25B}	99.4(3)	N4C - C16C - N3C	100.3(0) 122.2(6)
C1B N1B C8B	112.9(A)	N4C = C16C = N3C	122.2 (0)
C1P N1P P1P	112.9(4) 122.7(5)	$N_{4}^{2} = -C_{10}^{2} = -C_{15}^{2} = -C$	105.0(0)
C8R N1R R1R	122.7(3) 123.0(4)	$N_{4}C = C_{1}C = C_{1}C$	103.9(0) 122.5(6)
C_{0} C_{0	125.0(4) 115.0(5)	N4C = C17C = C18C	122.3(0) 130.2(6)
$C_{0} = N_{2} = C_{0} = C_{0$	113.9(3) 113.0(4)	$N_{4}C = C_{17}C = C_{18}C$	130.2(0)
C16P N2P P1P	113.0(4) 123.0(5)	$C_{23}^{23}C_{18}^{23}C_{18}^{23}C_{19}^{23}C_{18}^{2$	103.3(0) 121.1(6)
COR N3R R1R	123.0(3) 123.0(4)	$C_{23}C_{}C_{18}C_{}C_{17}C_{}C_{-$	121.1(0) 107.5(5)
$C_{3}D_{-N_3}D_{-D_1$	125.0(4)	$C_{23}C_{}C_{18}C_{}C_{17}C_{}C_{-$	107.3(3) 1311(7)
$C_{10} = 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10$	110.0(4)	$C_{19} = C_{18} = C_{17} = C_{18} = C$	131.1(7)
$C_{24}D = N_{3}D = C_{1}/B$	114.0(3) 122.1(5)	$C_{20}C_{}C_{19}C_{}C_{18}C_{}C_{18}C_{}C_{19}C_{}C_{18}C_{}C_{18}C_{}C_{19}C_{}C_{18}C_{}C_{1$	117.3(7)
$C_{24}D \longrightarrow D_{10}D$	122.1(5)	$C_{20}C_{-}C_{19}C_{-}H_{19}C_{-}$	121.5
C1D NGD $C24D$	125.5(5)	С18С—С19С—П19С	121.5
VID CID NID	110.5(5)	C19C - C20C - C21C	121.2 (0)
NGD CID C2D	122.3(3) 120.2(5)	C19C - C20C - H20C	119.4
N1D C1D C2D	150.2(5)	$C_{21}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{$	119.4 101 7 (7)
$ \begin{array}{ccc} \text{INID} & $	103.9(3) 120.8(5)	$C_{22}C_{-}C_{21}C_{-}U_{21}C_{$	121.7 (7)
$C_{2D} = C_{2D} = C_{1D}$	120.0(3)	C_{22} C_{21} C_{12} C	119.1
$C_{2D} = C_{2D} = C_{1D}$	131./(0) 107.2(5)	$C_{20} = C_{21} = C_{22} = C$	117.0 (7)
U/B-U2B-UIB	107.5 (5)	$C_{21}C - C_{22}C - C_{23}C$	117.8(7)

C4B—C3B—C2B	118.2 (5)	C21C—C22C—H22C	121.1
С4В—С3В—Н3ВА	120.9	C23C—C22C—H22C	121.1
С2В—С3В—Н3ВА	120.9	C18C—C23C—C22C	120.7 (6)
C3B—C4B—C5B	121.2 (5)	C18C—C23C—C24C	108.0 (5)
СЗВ—С4В—Н4ВА	119.4	C22C—C23C—C24C	130.7 (6)
C5B—C4B—H4BA	119.4	N6C—C24C—N5C	122.1 (5)
C6B—C5B—C4B	121.2 (5)	N6C—C24C—C23C	131.9 (6)
C6B—C5B—H5BA	119.4	N5C—C24C—C23C	104.6 (5)
C4B—C5B—H5BA	119.4	C26C—C25C—C30C	117.9 (5)
C7B—C6B—C5B	117.7 (5)	C26C—C25C—S1C	120.1 (4)
С7В—С6В—Н6ВА	121.2	C30C—C25C—S1C	121.9 (5)
C5B—C6B—H6BA	121.2	$C_{25}C_{-}C_{26}C_{-}C_{27}C_{$	121.1 (6)
C6B - C7B - C2B	120.9 (5)	$C_{25}C_{-}C_{26}C_{-}H_{26}C_{-}$	119.4
C6B - C7B - C8B	120.9(5) 131.3(5)	$C_{27}C_{-}C_{26}C_{-}H_{26}C_{-}$	119.1
C^{2B} C^{7B} C^{8B}	107.5 (5)	$C_{28}C_{-}C_{27}C_{-}C_{26}C_{$	121 4 (6)
N2B C8B N1B	107.5(5) 123.4(5)	$C_{28C} = C_{27C} = C_{20C}$	110.3
N2B C8B C7B	123.4(5)	$C_{26}C_{-}C_{27}C_{-}H_{27}C_{-}$	119.5
$N1D C^{9}D C^{7}D$	150.4(5)	$C_{20}C_{-}C_{27}C_{-}H_{27}C_{-}C_{20}C_{$	117.2 (6)
NID-COD N2D	103.0(4) 122.0(5)	$C_2/C_{-}C_{28}C_{-}C_{29}C_{-}$	117.3(0)
N2D COD CLOD	123.0(3)	$C_2/C_{}C_2 SC_{}C_3 IC$	120.8 (6)
N2B - C9B - C10B	130.1 (5)	$C_{29}C_{-}C_{28}C_{-}C_{31}C_{-}C_{29}C_{-}C_{31}C_{-}C_{29}C_{-}C_{31}C_{$	121.9 (6)
	105.4 (5)	$C_{30}C_{-}C_{29}C_{-}C_{28}C_{$	121.4 (6)
CIIB—CI0B—CI5B	120.9 (5)	С30С—С29С—Н29С	119.3
C11B—C10B—C9B	131.8 (5)	С28С—С29С—Н29С	119.3
C15B—C10B—C9B	107.1 (5)	C29C—C30C—C25C	120.8 (6)
C10B—C11B—C12B	118.3 (6)	С29С—С30С—Н30С	119.6
C10B—C11B—H11B	120.9	С25С—С30С—Н30С	119.6
C12B—C11B—H11B	120.9	C28C—C31C—H31I	109.5
C11B—C12B—C13B	120.7 (6)	C28C—C31C—H31J	109.5
C11B—C12B—H12B	119.6	H31I—C31C—H31J	109.5
C13B—C12B—H12B	119.6	C28C—C31C—H31G	109.5
C14B—C13B—C12B	122.1 (5)	H31I—C31C—H31G	109.5
C14B—C13B—H13B	119.0	H31J—C31C—H31G	109.5
C12B—C13B—H13B	119.0	N5C—B1C—N3C	103.9 (5)
C13B—C14B—C15B	118.3 (6)	N5C—B1C—N1C	103.7 (5)
C13B—C14B—H14B	120.8	N3C—B1C—N1C	103.9 (5)
C15B—C14B—H14B	120.8	N5C—B1C—S1C	116.9 (4)
C14B—C15B—C10B	119.7 (5)	N3C—B1C—S1C	116.1 (4)
C14B—C15B—C16B	132.8 (6)	N1C—B1C—S1C	110.8 (4)
C10B—C15B—C16B	107.4 (4)		
C24A—N6A—C1A—N1A	-8.7(8)	C16B—N4B—C17B—N5B	-6.8(8)
$C_{24} = N_{6} = C_{1} = C_{2}$	154.1 (6)	C16B—N4B—C17B—C18B	157.5 (6)
C8A - N1A - C1A - N6A	155.5 (5)	C_{24B} N5B C_{17B} N4B	156.6 (5)
BIA—NIA—CIA—N6A	-11.3(9)	B1B - N5B - C17B - N4B	-15.3(8)
C8A - N1A - C1A - C2A	-10.8(6)	$C_{24B} N_{5B} C_{17B} C_{18B}$	-11.2 (6)
B1A - N1A - C1A - C2A	-1776(5)	B1B - N5B - C17B - C18B	176 9 (5)
N64 - C14 - C24 - C24	155(11)	N4R - C17R - C18R - C10P	176(11)
NIA CIA C2A C2A	-170.2(6)	N5D C C C C C C C C C C C C C C C C C C C	-176.2(6)
NIA—UIA—U2A—U3A	-1/9.3(0)	N3D-U1/B-U18B-U18B	-1/0.2(0)

N6A—C1A—C2A—C7A	-159.9 (6)	N4B—C17B—C18B—C23B	-159.7 (6)
N1A—C1A—C2A—C7A	5.3 (6)	N5B-C17B-C18B-C23B	6.5 (6)
C7A—C2A—C3A—C4A	-1.7 (9)	C23B—C18B—C19B—C20B	-0.9 (9)
C1A—C2A—C3A—C4A	-176.5 (6)	C17B—C18B—C19B—C20B	-177.9 (6)
C2A—C3A—C4A—C5A	0.2 (10)	C18B—C19B—C20B—C21B	1.2 (10)
C3A—C4A—C5A—C6A	1.9 (10)	C19B—C20B—C21B—C22B	-0.2 (11)
C4A—C5A—C6A—C7A	-2.4(10)	C20B—C21B—C22B—C23B	-1.3(10)
C5A—C6A—C7A—C2A	0.9 (9)	C21B—C22B—C23B—C18B	1.6 (9)
C5A—C6A—C7A—C8A	175.1 (6)	C21B—C22B—C23B—C24B	178.4 (6)
C3A—C2A—C7A—C6A	1.1 (9)	C19B—C18B—C23B—C22B	-0.5 (9)
C1A—C2A—C7A—C6A	177.1 (5)	C17B—C18B—C23B—C22B	177.2 (5)
C3A—C2A—C7A—C8A	-174.4 (6)	C19B—C18B—C23B—C24B	-178.0(5)
C1A—C2A—C7A—C8A	1.6 (7)	C17B—C18B—C23B—C24B	-0.4 (6)
C9A—N2A—C8A—N1A	8.1 (8)	C1B—N6B—C24B—N5B	7.5 (8)
C9A—N2A—C8A—C7A	-154.0 (6)	C1B—N6B—C24B—C23B	-155.4 (6)
C1A—N1A—C8A—N2A	-154.1 (6)	C17B—N5B—C24B—N6B	-155.5(5)
B1A—N1A—C8A—N2A	12.6 (9)	B1B—N5B—C24B—N6B	16.5 (8)
C1A—N1A—C8A—C7A	11.8 (7)	C17B—N5B—C24B—C23B	11.0 (6)
B1A—N1A—C8A—C7A	178.5 (5)	B1B—N5B—C24B—C23B	-177.0(5)
C6A—C7A—C8A—N2A	-18.2(11)	C22B-C23B-C24B-N6B	-17.9(11)
C2A—C7A—C8A—N2A	156.6 (6)	C18B—C23B—C24B—N6B	159.2 (6)
C6A—C7A—C8A—N1A	177.5 (6)	C22B—C23B—C24B—N5B	176.9 (6)
C2A—C7A—C8A—N1A	-7.8 (6)	C18B—C23B—C24B—N5B	-6.0(6)
C8A—N2A—C9A—N3A	-7.7 (8)	B1B—S1B—C25B—C30B	-107.4(5)
C8A—N2A—C9A—C10A	154.2 (6)	B1B—S1B—C25B—C26B	71.7 (5)
C16A—N3A—C9A—N2A	155.0 (6)	C30B—C25B—C26B—C27B	5.0 (9)
B1A—N3A—C9A—N2A	-13.6(9)	S1B-C25B-C26B-C27B	-174.2(5)
C16A—N3A—C9A—C10A	-10.7(7)	C25B—C26B—C27B—C28B	-0.9(9)
B1A—N3A—C9A—C10A	-179.3 (5)	C26B—C27B—C28B—C29B	-3.1 (9)
N2A—C9A—C10A—C11A	18.6 (11)	C26B—C27B—C28B—C31B	175.0 (6)
N3A—C9A—C10A—C11A	-177.2 (6)	C27B—C28B—C29B—C30B	3.1 (10)
N2A—C9A—C10A—C15A	-158.9(6)	C31B—C28B—C29B—C30B	-175.1 (6)
N3A—C9A—C10A—C15A	5.3 (6)	C26B—C25B—C30B—C29B	-5.0 (9)
C15A—C10A—C11A—C12A	-1.6(9)	S1B-C25B-C30B-C29B	174.2 (5)
C9A—C10A—C11A—C12A	-178.9(6)	C28B—C29B—C30B—C25B	1.0 (10)
C10A—C11A—C12A—C13A	1.5 (10)	C1B-N1B-B1B-N5B	30.1 (6)
C11A - C12A - C13A - C14A	0.5 (10)	C8B-N1B-B1B-N5B	-135.6(5)
C12A—C13A—C14A—C15A	-2.3(10)	C1B— $N1B$ — $B1B$ — $N3B$	138.0 (5)
C13A - C14A - C15A - C10A	2.1 (9)	C8B—N1B—B1B—N3B	-27.7(7)
C13A - C14A - C15A - C16A	177.6 (6)	C1B $N1B$ $B1B$ $S1B$	-94.2(5)
C11A - C10A - C15A - C14A	-0.2(9)	C8B—N1B—B1B—S1B	1001(5)
C9A - C10A - C15A - C14A	177.7 (6)	C24B—N5B—B1B—N1B	-32.4(7)
C11A - C10A - C15A - C16A	-176.6(6)	C17B $N5B$ $B1B$ $N1B$	1389(5)
C9A - C10A - C15A - C16A	13(7)	C_{24B} N5B B1B N3B	-140.5(5)
C17A - N4A - C16A - N3A	73(8)	C17B $N5B$ $B1B$ $N3B$	30.8 (7)
C17A - N4A - C16A - C15A	-155.9 (6)	$C_{24B} N_{5B} B_{1B} S_{1B}$	90.4 (6)
C9A - N3A - C16A - N4A	-1553(6)	C17B N5B $B1B$ $S1B$	-98 3 (5)
B1A N3A C16A M4A	13.4 (9)	C16B = N3B = B1B = 01D	-1383(5)
	13.7 (7)		130.3 (3)

C9A—N3A—C16A—C15A	11.4 (7)	C9B—N3B—B1B—N1B	29.7 (7)
B1A—N3A—C16A—C15A	-179.9 (5)	C16B—N3B—B1B—N5B	-29.8(6)
C14A—C15A—C16A—N4A	-17.8 (11)	C9B—N3B—B1B—N5B	138.1 (5)
C10A—C15A—C16A—N4A	158.1 (6)	C16B—N3B—B1B—S1B	97.4 (6)
C14A—C15A—C16A—N3A	176.7 (6)	C9B - N3B - B1B - S1B	-94.7 (6)
C10A-C15A-C16A-N3A	-74(6)	$C^{24}C - N6C - C1C - N1C$	-70(8)
C16A - N4A - C17A - N5A	-6.7(8)	$C_24C - N_6C - C_1C - C_2C$	154 9 (6)
C_{16A} N4A C_{17A} C_{18A}	155.9 (6)	C8C - N1C - C1C - N6C	1541(5)
$C_{24} = N_{54} = C_{174} = N_{44}$	153.9(0) 154.9(5)	B1C - N1C - C1C - N6C	-158(9)
B1A = N5A = C17A = N4A	-14.8(8)	C8C - N1C - C1C - C2C	-11.8(6)
$C_{24} = N_{54} = C_{174} = C_{184}$	-11.6(6)	B1C - N1C - C1C - C2C	178.3(5)
B1A = N5A = C17A = C18A	178 7 (5)	$N_{6} - C_{1} - C_{2} - C_{3} - C_{3$	204(11)
$N_{A} = C_{17A} = C_{18A} = C_{19A}$	176.7(3) 18.6(11)	$\frac{100}{100} - \frac{100}{100} - $	-1755(6)
$N_{A} = C_{1/A} = C_{18A} = C_{19A}$	-1767(6)	N6C C1C C2C C7C	-157.0(6)
$N_{A} = C_{1/A} = C_{18A} = C_{19A}$	-157.8(6)	N1C C1C C2C C7C	71(6)
N4A - C1/A - C18A - C23A	137.8 (0)	C_{C}^{2}	-31(0)
$C_{22A} = C_{12A} = C_{10A} = C_{20A}$	-2.2(0)	$C_{1}C_{2}C_{2}C_{3}C_{2}C_{4}C_{4}C_{5}C_{5}C_{6}C_{4}C_{5}C_{6}C_{6}C_{6}C_{6}C_{6}C_{6}C_{6}C_{6$	3.1(9)
$C_{23A} = C_{18A} = C_{19A} = C_{20A}$	-178.2(6)	C1C - C2C - C3C - C4C	179.8(0)
C18A = C10A = C20A = C21A	-178.2(0)	$C_{2}C_{-}C_{3}C_{-}C_{4}C_{-}C_{5}C_{-}C_{6}C_{-}C_{-$	-3.8(10)
$C_{10A} = C_{10A} = C_{21A} = C_{21A}$	1.7(9)	$C_{3}C_{-}C_{4}C_{-}C_{3}C_{-}C_{6}C_{-}C_{7}C_{-}C_{7$	-3.8(12)
C19A - C20A - C21A - C22A	-1.2(0)	C4C - C3C - C0C - C7C	-0.9(11)
$C_{20A} = C_{21A} = C_{22A} = C_{23A} = C_{23A}$	-1.2(9)	$C_{3}C_{-}C_{2}C_{-}C_{-}C_{-}C_{0}C_{-}C_{0}C_{0}C_{0}C_{0}C_{0}C_{0}C_{0}C_{0$	-1.4(9)
$C_{21A} = C_{22A} = C_{23A} = C_{18A}$	0.7(9)	C1C - C2C - C7C - C8C	1/0.3(0) -178.2(5)
$C_{21}A = C_{22}A = C_{23}A = C_{24}A$	1/8.0(0)	$C_{3}C_{-}C_{2}C_{-}C_{-}C_{-}C_{8}C_{-}C_{1}C_{-}C_{8}C_{-}C_{1}C_{-}C_{8}C_{-}C_{1}C_{-}C_{8}C_{-}C_{1}C_{-}C_{8}C_{-}C_{1}C_{-}C_{-$	-1/8.3(3)
C17A = C18A = C23A = C22A	0.9(9)	$C_{1}C_{-}C_{2}C_{-}C_{-}C_{-}C_{3}C_{-}C_{-$	-0.0(7)
C17A - C18A - C23A - C22A	-177.4(5)	$C_{5}C_{-}C_{6}C_{-}C_{-}C_{-}C_{2}C_{-}C_{5}C_{-}C_{-}C_{5}C_{-}C_{-}C_{5}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-$	3.4(9)
C17A = C18A = C23A = C24A	-1/7.4(3)	$C_{0}C_{0} = C_{0}C_{0} = C_{0}C_{0} = C_{0}C_{0}$	1/9.3(7)
C1A = C18A = C24A = C24A	-0.3(0)	C9C = N2C = C8C = C7C	9.8(9)
C1A = N6A = C24A = N3A	1.2(0)	$C_{9}C_{-}N_{2}C_{-}C_{8}C_{-}N_{2}C_{-}C_{6}C_{-}N_{2}C_{-}C_{6}C_{-}N_{2}C_{-}C_{6}C_{-}N_{2}C_{-}C_{6}C_{-}N_{2}C_{-}C_{6}C_{-}N_{2}C_{-}C_{6}C_{-}N_{2}C_{-}C_{6}C_{-}N_{2}C_{-}C_{6}C_{-}N_{2}C_{-}C_{6}C_{-}N_{2}C_{-}C_{6}C_{-}N_{2}C_{-}C_{6}C_{-}N_{2}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-$	-137.2(0)
C17A N5A C24A C25A	-155.0(0) -155.1(5)	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	-138.3(0)
C1/A - N5A - C24A - N6A	-133.1(3)	BIC-NIC-C8C-N2C	11.8 (9)
$ \begin{array}{c} BIA - NSA - C24A - NOA \\ C17A - NSA - C24A - C22A \\ \end{array} $	14.0(8) 11.2(6)	CIC - NIC - CSC - C/C	11.3(0) 1784(5)
C1/A = N5A = C24A = C23A	11.3(0) 1700(5)	BIC - NIC - C8C - C/C	-1/8.4(5)
BIA - NSA - C24A - C25A	-1/9.0(3)	$C_{2}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-$	102.3(0)
$C_{22A} - C_{23A} - C_{24A} - NOA$	-19.4(11)	$C_{0}C_{-}C_{-}C_{-}C_{0}C_{-}N_{1}C_{-}C_{-$	-13.8(11)
$C_{18A} = C_{23A} = C_{24A} = N_{0A}$	138.7 (0)	$C_2C = C_7C = C_8C = N1C$	-0.2(0)
$C_{22A} - C_{23A} - C_{24A} - N_{3A}$	1/3.7(0)	$C_{0}C_{-}C_{-}C_{0}C_{-}N_{1}C_{-}C_{0}C_{-$	177.3(0)
C18A - C25A - C24A - N5A	-0.2(0)	$C_{8}C_{12}C_{2}C_{10}$	-6.5(9)
BIA SIA C25A C20A	112.4(3)	$C_{8}C_{N2}C_{0}C_{0}C_{0}C_{0}C_{0}C_{0}C_{0}C_{0$	155.5(7)
BIA - SIA - C25A - C30A	-72.8(3)	$\mathbf{P}_{10} = \mathbf{N}_{20} = \mathbf{C}_{90} = \mathbf{N}_{20} = \mathbf{N}_{20}$	155.0(0)
$C_{20A} = C_{20A} = C_{20A} = C_{27A}$	-0.1(9)	BIC - N3C - C9C - N2C	-13.2(9)
$C_{25A} = C_{26A} = C_{27A} = C_{27A}$	1/4.0(3)	P1C = N3C = C9C = C10C	-12.1(7)
$C_{25A} = C_{20A} = C_{27A} = C_{20A}$	0.1(10)	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	177.7(3)
$C_{20A} - C_{27A} - C_{28A} - C_{29A}$	0.0(10)	$N_{2}C = C_{9}C = C_{10}C = C_{11}C$	-1750(8)
$C_{20A} = C_{27A} = C_{20A} = C_{2$	-0.1(0)	$N_{2}C = C_{2}C = C_{1}C = C_{1}C$	-173.9(8) -157.6(7)
$C_{2/A} = C_{20A} = C_{20A} = C_{20A}$	0.1 (9) -177 1 (6)	$N_{2}C = C_{9}C = C_{10}C = C_{15}C$	-137.0(7)
$C_{28} \land C_{20} \land C$	1/7.1(0)	$C_{15}C_{-}C_{10}C_{$	-1.2(1)
$C_{20A} = C_{27A} = C_{20A} = C_{20A} = C_{20A}$	0.1(9)	C13C - C10C - C11C - C12C	1.2(11) -1771(0)
UZUA-UZJA-UJUA-UZ9A	0.1 (9)	U7U-U10U-U11U-U12U	-1//.1(8)

S1A-C25A-C30A-C29A	-174.8 (4)	C10C—C11C—C12C—C13C	2.7 (13)
C24A—N5A—B1A—N3A	-138.6 (5)	C11C—C12C—C13C—C14C	-1.6 (14)
C17A—N5A—B1A—N3A	30.1 (7)	C12C—C13C—C14C—C15C	-1.1 (12)
C24A—N5A—B1A—N1A	-29.5 (7)	C13C—C14C—C15C—C10C	2.5 (11)
C17A—N5A—B1A—N1A	139.1 (5)	C13C—C14C—C15C—C16C	178.4 (7)
C24A—N5A—B1A—S1A	90.5 (6)	C11C—C10C—C15C—C14C	-1.4 (11)
C17A—N5A—B1A—S1A	-100.8(6)	C9C—C10C—C15C—C14C	175.4 (6)
C16A—N3A—B1A—N5A	-29.4 (7)	C11C—C10C—C15C—C16C	-178.2(6)
C9A—N3A—B1A—N5A	138.2 (5)	C9C—C10C—C15C—C16C	-1.4(8)
C16A—N3A—B1A—N1A	-138.5 (5)	C17C—N4C—C16C—N3C	8.5 (9)
C9A—N3A—B1A—N1A	29.1 (7)	C17C—N4C—C16C—C15C	-156.6(7)
C16A—N3A—B1A—S1A	101.4 (6)	C9C—N3C—C16C—N4C	-157.1(6)
C9A—N3A—B1A—S1A	-91.0 (6)	B1C—N3C—C16C—N4C	13.1 (9)
C1A—N1A—B1A—N5A	27.9(7)	C9C-N3C-C16C-C15C	11.3 (7)
C8A—N1A—B1A—N5A	-137.6(5)	B1C-N3C-C16C-C15C	-1785(5)
C1A—N1A—B1A—N3A	136.8 (5)	C14C-C15C-C16C-N4C	-15.0(12)
C8A—N1A—B1A—N3A	-28.7(7)	C10C-C15C-C16C-N4C	161 3 (7)
C1A— $N1A$ — $B1A$ — $S1A$	-97.5(6)	C14C - C15C - C16C - N3C	1780(7)
C8A—N1A—B1A—S1A	97.0 (6)	C10C - C15C - C16C - N3C	-56(7)
C_{24B} N6B C_{1B} N1B	-100(8)	$C_{16C} - N_{4C} - C_{17C} - N_{5C}$	-86(9)
$C_{24B} = N_{6B} = C_{1B} = C_{2B}$	154 2 (6)	$C_{16C} - N_{4C} - C_{17C} - C_{18C}$	154 3 (6)
C8B—N1B—C1B—N6B	1555(5)	$C_{24}C_{N5}C_{17}C_{N4}C$	154.8 (6)
BIB-NIB-CIB-N6B	-115(8)	B1C - N5C - C17C - N4C	-130(9)
C8B—N1B—C1B—C2B	-120(6)	$C_{24}C_{}N_{5}C_{}C_{17}C_{}C_{18}C_{}C_{}C_{18}C_{}C_{}C_{}C_{18}C_{$	-11.7(6)
B1B = N1B = C1B = C2B	-1790(5)	B1C - N5C - C17C - C18C	-1795(5)
N6B-C1B-C2B-C3B	163(10)	N4C - C17C - C18C - C23C	-1587(6)
N1B - C1B - C2B - C3B	-1775(6)	$N_{1} = 0170 - 0180 - 0230$	63(6)
N6B-C1B-C2B-C7B	-1593(6)	N4C - C17C - C18C - C19C	15.6(11)
N1B-C1B-C2B-C7B	69(6)	N5C-C17C-C18C-C19C	-179.3(6)
C7B-C2B-C3B-C4B	-10(8)	$C_{23} - C_{18} - C_{19} - C_{20} - C$	179.3(0)
C1B $C2B$ $C3B$ $C4B$	-176.2(6)	$C_{17} = C_{18} = C_{19} = C_{20} = C_{19} = C_{20} = C_{19} = C$	-1735(6)
C_{1D} C_{2D} C_{3D} C_{4D} C_{5D}	1/0.2(0)	$C_{17}^{17}C_{}^{}C_{18}^{18}C_{}^{}C_{19}^{17}C_{}^{}C_{20}^{21}C_{}^{}C_{20}^{17}C_{}^{-}C_{20}^{17}C_{}^{-}C_{20}^{17}C_{}^{-}C_{20}^{17}C_{}^{-}C_{20}^{17}C_{}^{-}C_{20}^{17}C_{}^{-}C_{20}^{17}C_{}^{-}C_{20}^{17}C_{}^{-}C_{20}^{17}C_{}^{-}C_{20}^{17}C_{}^{-}C_{20}^{17}C_{}^{-}C_{20}^{1$	173.3(0)
$C_{2B} = C_{4B} = C_{4B} = C_{5B}$	1.0(0)	$C_{19}C_{-}C_{20}C_{-}C_{21}C_{-}C_{22}C_{-}C_{21}C_{-}C_{22}C_{-}C_{21}C_{-}C_{22}C_{-}C_{21}C_{-}C_{22}C_{-}C_{21}C_{-}C_{22}C_{-}C_{21}C_{-}C_{22}C_{-}C_{21}C_{-}C_{22}C_{-}C_{21}C_{-}C_{22}C_{-}C_{21}C_{-}C_{21}C_{-}C_{22}C_{-}C_{21}C_{$	0.0(10)
C_{3B} C_{4B} C_{5B} C_{6B} C_{7B}	-27(8)	$C_{19}^{-0}C_{-0}^{-0}C_{20}^{-0}C_{-0}^{-0}C_{20}^{-0}C_{-0}^{-0}C_{20}^{-0}C_{-0}^{-0}C_{20}^{-0}C_{-0}^{-0}C_{20}^{-0}C_{-0}^{-0}C_{20}^{-0}C_{-0}^{-0}C_{20}^{-0}C_{-0}^{-0}C_{20}^{-0}C_{-0}^{-0}C_{20}^{-0}C_{-0}^{-0}C_{20}^{-0}C_{-0}^{-0}C_{20}^{-0}C_{-0}^{-0}C_{20}^{-0}C_{-0}^{-0}C_{20}^{-0}C_{-0}^{-0}C_{20}^{-0}C_{-0}^{-0}C_{20}^{-0}C_{-0}^{-0}C_{20}^{-0}C_{-0}^{-0}C_{20}^{-0}C_{-0}^{-0}C_{20}^{-0}C_{-0}^{-0}C_{20}^{-0}C_{-0}^{-$	-23(10)
$C_{+B} = C_{+B} = C_{+B} = C_{+B}$	2.7(8)	$C_{20}C_{-}C_{21}C_{-}C_{22}C_{-}C_{23}C_{$	-1.5(9)
$C_{3B} = C_{0B} = C_{7B} = C_{2B}$	3.2(0)	C17C - C18C - C23C - C22C	1.5(9) 173 5(6)
$C_{3B} = C_{2B} = C_{7B} = C_{6B}$	-14(8)	$C_{17}C_{}C_{18}C_{}C_{23}C_{}C_{22}C_{}C_{22}C_{}C_{24}C_{-$	-1743(6)
$C_{3B} = C_{2B} = C_{7B} = C_{6B}$	1.4(0) 1748(5)	C17C = C18C = C23C = C24C	1/4.3(0)
C_{1B} C_{2B} C_{7B} C_{8B}	-1761(5)	$C_{11}^{-11}C_{-$	0.3(7)
C1B C2B C7B C8B	0.1(6)	$C_{21}C_{-}C_{22}C_{-}C_{23}C_{-}C_{10}C_{$	2.3(0)
C1D - C2D - C7D - C0D	0.1(0)	$C_{21}C_{-}C_{22}C_{-}C_{23}C_{-}C_{24}C_{-}C_{24}C_{-}C_{24}C_{-}N_{5}C_{-}C_{24}C_{-}N_{5}C_{-}C_{24}C_{-}N_{5}C_{-}C_{24}C_{-}N_{5}C_{-}C_{24}C_{-}N_{5}C_{-}C_{24}C_{-}N_{5}C_{-}C_{24}C_{-}N_{5}C_{-}C_{-}C_{24}C_{-}N_{5}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-$	1/3.4(0)
$C_{9D} = N_{2D} = C_{9D} = N_{1D}$	-155.2(6)	C1C = N6C = C24C = C23C	-155.5(6)
$C_{2D} = 1 \times 2D = C_{0D} = C_{1D}$	-156.5(5)	C17C M5C C24C M5C	-155.8(0)
CID - INID - COD - INZD $RIR NIR C SP NIP$	10.3(3)	B1C N5C C24C N6C	133.0(3)
C1P N1P C2P C7P	12.0 (6)	C17C N5C C24C C22C	12.0(9)
CID-INID-COD-C/D RIR NIR COD C7P	12.0(0) 178.0(5)	B1C N5C C24C C23C	12.1(0)
CAP C7P C9P NOP	-124(10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	150.0(3)
CD = C7D = C0D = N2D	15.4 (10)	$C_{10} - C_{23} - C_{4} - N_{6} - N_{6} - C_{23} - C_{24} - N_{6} - N_{6} - C_{24} - N_{6} - C_{24} - N_{6} - C_{24} -$	-120.0(0)
$U2D - U/B - U\delta B - N2B$	100.4 (0)	U22U-U23U-U24U-NOU	-13.0(12)

C6B—C7B—C8B—N1B	179.2 (6)	C18C—C23C—C24C—N5C	-7.4 (6)
C2B—C7B—C8B—N1B	-7.0 (6)	C22C—C23C—C24C—N5C	-179.2 (6)
C8B—N2B—C9B—N3B	-8.1 (8)	B1C—S1C—C25C—C26C	82.0 (5)
C8B—N2B—C9B—C10B	155.8 (6)	B1C—S1C—C25C—C30C	-102.3 (5)
C16B—N3B—C9B—N2B	154.6 (5)	C30C—C25C—C26C—C27C	1.2 (9)
B1B—N3B—C9B—N2B	-14.5 (8)	S1C-C25C-C26C-C27C	177.0 (5)
C16B—N3B—C9B—C10B	-12.7 (6)	C25C—C26C—C27C—C28C	-0.2 (10)
B1B-N3B-C9B-C10B	178.2 (5)	C26C—C27C—C28C—C29C	-0.9 (9)
N2B-C9B-C10B-C11B	15.7 (10)	C26C—C27C—C28C—C31C	178.3 (6)
N3B-C9B-C10B-C11B	-178.2 (6)	C27C—C28C—C29C—C30C	0.9 (9)
N2B-C9B-C10B-C15B	-158.7 (6)	C31C—C28C—C29C—C30C	-178.3 (6)
N3B—C9B—C10B—C15B	7.4 (6)	C28C—C29C—C30C—C25C	0.1 (9)
C15B—C10B—C11B—C12B	-2.0 (8)	C26C—C25C—C30C—C29C	-1.1 (9)
C9B-C10B-C11B-C12B	-175.8 (6)	S1C-C25C-C30C-C29C	-176.9 (5)
C10B—C11B—C12B—C13B	1.7 (9)	C17C—N5C—B1C—N3C	29.2 (7)
C11B—C12B—C13B—C14B	0.2 (10)	C24C—N5C—B1C—N3C	-137.4 (5)
C12B—C13B—C14B—C15B	-1.6 (9)	C17C—N5C—B1C—N1C	137.6 (5)
C13B—C14B—C15B—C10B	1.3 (8)	C24C—N5C—B1C—N1C	-29.0 (7)
C13B—C14B—C15B—C16B	175.8 (6)	C17C—N5C—B1C—S1C	-100.0 (6)
C11B—C10B—C15B—C14B	0.5 (8)	C24C—N5C—B1C—S1C	93.4 (6)
C9B—C10B—C15B—C14B	175.7 (5)	C16C—N3C—B1C—N5C	-29.4 (7)
C11B—C10B—C15B—C16B	-175.2 (5)	C9C—N3C—B1C—N5C	139.8 (5)
C9B—C10B—C15B—C16B	-0.1 (6)	C16C—N3C—B1C—N1C	-137.6 (5)
C17B—N4B—C16B—N3B	7.6 (8)	C9C—N3C—B1C—N1C	31.5 (7)
C17B—N4B—C16B—C15B	-157.3 (5)	C16C—N3C—B1C—S1C	100.4 (6)
C9B—N3B—C16B—N4B	-155.5 (5)	C9C—N3C—B1C—S1C	-90.4 (6)
B1B-N3B-C16B-N4B	13.6 (8)	C1C—N1C—B1C—N5C	31.1 (7)
C9B—N3B—C16B—C15B	12.7 (6)	C8C—N1C—B1C—N5C	-138.0 (5)
B1B-N3B-C16B-C15B	-178.3 (5)	C1C—N1C—B1C—N3C	139.5 (5)
C14B—C15B—C16B—N4B	-15.3 (10)	C8C—N1C—B1C—N3C	-29.6 (7)
C10B—C15B—C16B—N4B	159.7 (6)	C1C—N1C—B1C—S1C	-95.2 (6)
C14B—C15B—C16B—N3B	177.8 (6)	C8C—N1C—B1C—S1C	95.7 (6)
C10B—C15B—C16B—N3B	-7.2 (6)		

(N-Phenylbenzamido)(subphthalocyaninato)boron (d2339_a)

Crystal data

 $\begin{array}{l} C_{31}H_{20}BN_{7}\cdot0.14H_{2}O\\ M_{r}=503.87\\ Triclinic, P1\\ a=11.4897~(5) Å\\ b=11.7489~(5) Å\\ c=19.3046~(8) Å\\ a=73.348~(2)^{\circ}\\ \beta=81.941~(2)^{\circ}\\ \gamma=76.167~(2)^{\circ}\\ V=2417.05~(18) Å^{3} \end{array}$

Z = 4 F(000) = 1046 $D_x = 1.385 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9824 reflections $\theta = 4.0-65.7^{\circ}$ $\mu = 0.68 \text{ mm}^{-1}$ T = 150 K Shard, pink $0.20 \times 0.15 \times 0.08 \text{ mm}$ Data collection

Bruker Kappa APEX-DUO CMOS PHOTON II diffractometer	60606 measured reflections 8275 independent reflections
Radiation source: Incoatec ImuS with multi-	7193 reflections with $I > 2\sigma(I)$ $R_{12} = 0.046$
φ and ω scans	$\theta_{\rm max} = 66.0^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$
SADABS (Krause et al., 2015)	$k = -13 \rightarrow 13$
$T_{\min} = 0.657, \ T_{\max} = 0.753$	$l = -22 \rightarrow 22$
Refinement	
Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: mixed
$wR(F^2) = 0.093$	H-atom parameters constrained
S = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0453P)^2 + 0.687P]$
8275 reflections	where $P = (F_o^2 + 2F_c^2)/3$
713 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\min} = -0.29 \text{ e } \text{\AA}^{-3}$
Special details	

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
-0.01647 (9)	0.70429 (10)	0.08430 (6)	0.0216 (2)	
-0.00691 (9)	0.49963 (10)	0.15298 (6)	0.0228 (2)	
0.16519 (9)	0.58812 (10)	0.13041 (6)	0.0229 (2)	
0.29543 (10)	0.68828 (11)	0.16512 (6)	0.0279 (3)	
0.13649 (10)	0.80098 (10)	0.09047 (6)	0.0240 (2)	
-0.06157 (10)	0.91739 (10)	0.06937 (6)	0.0250 (2)	
0.16020 (10)	0.68676 (10)	-0.00712 (6)	0.0251 (2)	
-0.09554 (11)	0.81378 (12)	0.07385 (7)	0.0230 (3)	
-0.21422 (12)	0.78506 (13)	0.08656 (7)	0.0251 (3)	
-0.32857 (13)	0.85814 (14)	0.07843 (8)	0.0332 (3)	
-0.339567	0.943705	0.059301	0.040*	
-0.42578 (13)	0.80261 (15)	0.09901 (9)	0.0385 (4)	
-0.504640	0.850486	0.092060	0.046*	
-0.41054 (13)	0.67746 (15)	0.12984 (9)	0.0365 (4)	
-0.479314	0.642303	0.144975	0.044*	
-0.29758 (12)	0.60402 (13)	0.13871 (8)	0.0280 (3)	
-0.287886	0.519170	0.160426	0.034*	
-0.19825 (11)	0.65711 (12)	0.11511 (7)	0.0230 (3)	
-0.06908 (11)	0.60808 (12)	0.11715 (7)	0.0218 (3)	
0.10872 (11)	0.49409 (12)	0.16254 (7)	0.0231 (3)	
0.18630 (12)	0.41069 (13)	0.21727 (7)	0.0252 (3)	
	x $-0.01647 (9)$ $-0.00691 (9)$ $0.16519 (9)$ $0.29543 (10)$ $0.13649 (10)$ $-0.06157 (10)$ $0.16020 (10)$ $-0.09554 (11)$ $-0.21422 (12)$ $-0.32857 (13)$ $-0.32857 (13)$ $-0.32857 (13)$ -0.504640 $-0.41054 (13)$ -0.479314 -0.287886 $-0.19825 (11)$ $-0.06908 (11)$ $0.10872 (11)$ $0.18630 (12)$	xy $-0.01647 (9)$ $0.70429 (10)$ $-0.00691 (9)$ $0.49963 (10)$ $0.16519 (9)$ $0.58812 (10)$ $0.29543 (10)$ $0.68828 (11)$ $0.13649 (10)$ $0.80098 (10)$ $-0.06157 (10)$ $0.91739 (10)$ $0.16020 (10)$ $0.68676 (10)$ $-0.09554 (11)$ $0.81378 (12)$ $-0.21422 (12)$ $0.78506 (13)$ $-0.32857 (13)$ $0.85814 (14)$ -0.339567 0.943705 $-0.42578 (13)$ $0.80261 (15)$ -0.504640 0.850486 $-0.41054 (13)$ $0.67746 (15)$ $-0.29758 (12)$ $0.60402 (13)$ -0.287886 0.519170 $-0.19825 (11)$ $0.65711 (12)$ $-0.06908 (11)$ $0.49409 (12)$ $0.10872 (11)$ $0.41069 (13)$	xyz $-0.01647 (9)$ $0.70429 (10)$ $0.08430 (6)$ $-0.00691 (9)$ $0.49963 (10)$ $0.15298 (6)$ $0.16519 (9)$ $0.58812 (10)$ $0.13041 (6)$ $0.29543 (10)$ $0.68828 (11)$ $0.16512 (6)$ $0.13649 (10)$ $0.80098 (10)$ $0.09047 (6)$ $-0.06157 (10)$ $0.91739 (10)$ $0.06937 (6)$ $0.16020 (10)$ $0.68676 (10)$ $-0.00712 (6)$ $-0.09554 (11)$ $0.81378 (12)$ $0.07385 (7)$ $-0.21422 (12)$ $0.78506 (13)$ $0.08656 (7)$ $-0.32857 (13)$ $0.85814 (14)$ $0.07843 (8)$ -0.339567 0.943705 0.059301 $-0.42578 (13)$ 0.850486 0.092060 $-0.41054 (13)$ $0.67746 (15)$ $0.12984 (9)$ -0.479314 0.642303 0.144975 $-0.29758 (12)$ $0.60402 (13)$ $0.13871 (8)$ -0.287886 0.519170 0.160426 $-0.19825 (11)$ $0.65711 (12)$ $0.11715 (7)$ $0.10872 (11)$ $0.49409 (12)$ $0.16254 (7)$ $0.18630 (12)$ $0.41069 (13)$ $0.21727 (7)$	xyz $U_{iso}*/U_{eq}$ -0.01647 (9)0.70429 (10)0.08430 (6)0.0216 (2)-0.00691 (9)0.49963 (10)0.15298 (6)0.0228 (2)0.16519 (9)0.58812 (10)0.13041 (6)0.0229 (2)0.29543 (10)0.68828 (11)0.16512 (6)0.0279 (3)0.13649 (10)0.80098 (10)0.09047 (6)0.0240 (2)-0.06157 (10)0.91739 (10)0.06937 (6)0.0250 (2)0.16020 (10)0.68676 (10)-0.00712 (6)0.0251 (2)-0.09554 (11)0.81378 (12)0.07385 (7)0.0230 (3)-0.21422 (12)0.78506 (13)0.08656 (7)0.0251 (3)-0.32857 (13)0.85814 (14)0.07843 (8)0.0332 (3)-0.3395670.9437050.0593010.040*-0.42578 (13)0.80261 (15)0.09901 (9)0.0385 (4)-0.5046400.8504860.0920600.046*-0.41054 (13)0.67746 (15)0.12984 (9)0.0365 (4)-0.4793140.6423030.1449750.044*-0.29758 (12)0.60402 (13)0.13871 (8)0.0280 (3)-0.2878860.5191700.1604260.034*-0.19825 (11)0.65711 (12)0.11715 (7)0.0218 (3)0.10872 (11)0.49409 (12)0.16254 (7)0.0231 (3)0.18630 (12)0.41069 (13)0.21727 (7)0.0252 (3)
C11	0.17561 (13)	0.30096 (13)	0.26734 (8)	0.0291 (3)
------	--------------	--------------	--------------	------------
H11A	0.110620	0.263722	0.267657	0.035*
C12	0.26251 (14)	0.24755 (14)	0.31676 (8)	0.0355 (3)
H12A	0.257140	0.172320	0.351045	0.043*
C13	0.35778 (14)	0.30231 (15)	0.31706 (9)	0.0383 (4)
H13A	0.416995	0.262606	0.350776	0.046*
C14	0.36757 (13)	0.41301 (14)	0.26931 (8)	0.0329 (3)
H14A	0.431531	0.450678	0.270490	0.039*
C15	0.28107 (12)	0.46783 (13)	0.21940 (8)	0.0272 (3)
C16	0.25890 (11)	0.58633 (13)	0.16753 (7)	0.0259 (3)
C17	0.22837 (11)	0.79456 (13)	0.13026 (7)	0.0264 (3)
C18	0.21547 (12)	0.91685 (13)	0.13773 (8)	0.0286 (3)
C19	0.28483 (13)	0.96887 (15)	0.16923 (8)	0.0352 (4)
H19A	0.356331	0.922151	0.191056	0.042*
C20	0.24601 (15)	1.09026 (15)	0.16757 (9)	0.0388 (4)
H20A	0.293367	1.128054	0.187015	0.047*
C21	0.13861 (15)	1.15892 (15)	0.13793 (8)	0.0374 (4)
H21A	0.114973	1.242308	0.137504	0.045*
C22	0.06604 (14)	1.10814 (13)	0.10922 (8)	0.0322 (3)
H22A	-0.008343	1.154240	0.090895	0.039*
C23	0.10615 (12)	0.98678 (13)	0.10819 (7)	0.0270 (3)
C24	0.05306 (12)	0.90673 (12)	0.08295 (7)	0.0242 (3)
C25	0.28121 (12)	0.69402 (13)	-0.03300 (7)	0.0254 (3)
C26	0.36217 (13)	0.59752 (14)	-0.05290 (8)	0.0315 (3)
H26A	0.336981	0.524086	-0.048062	0.038*
C27	0.47876 (14)	0.60706 (15)	-0.07962 (9)	0.0386 (4)
H27A	0.531879	0.540775	-0.093837	0.046*
C28	0.51855 (14)	0.71100 (15)	-0.08581 (9)	0.0408 (4)
H28A	0.599024	0.716652	-0.103336	0.049*
C29	0.43931 (14)	0.80749 (15)	-0.06607 (9)	0.0384 (4)
H29A	0.466225	0.879469	-0.069503	0.046*
C30	0.32135 (13)	0.80070 (14)	-0.04137 (8)	0.0317 (3)
H30A	0.267394	0.869113	-0.030052	0.038*
C31	0.11511 (13)	0.59755 (14)	-0.02957 (8)	0.0319 (3)
H31A	0.031735	0.598047	-0.009695	0.048*
H31B	0.118520	0.618280	-0.082630	0.048*
H31C	0.164840	0.516517	-0.011427	0.048*
B1	0.11629 (13)	0.69448 (14)	0.06916 (8)	0.0237(3)
N8	0.80208 (10)	0.22661 (10)	0.44369 (6)	0.0248 (2)
N9	0.97660 (10)	0.31154 (11)	0.40625 (6)	0.0273 (3)
N10	0.79477 (10)	0.40585 (10)	0.34885 (6)	0.0249 (2)
N11	0.60890 (10)	0.54894 (11)	0.33121 (6)	0.0289 (3)
N12	0.61599 (10)	0.34840 (10)	0.40642 (6)	0.0247 (2)
N13	0.62459 (10)	0.20647 (11)	0.52258 (6)	0.0275 (3)
N14	0.74153 (10)	0.23329 (10)	0.31662 (6)	0.0258 (3)
C32	0.74483 (12)	0.17952 (12)	0.50877 (7)	0.0259 (3)
C33	0.83819 (13)	0.12217 (12)	0.55928 (8)	0.0277 (3)
C34	0.83378 (14)	0.05840 (13)	0.63239 (8)	0.0329 (3)

H34A	0.760386	0.041292	0.657945	0.040*
C35	0.93989 (14)	0.02096 (14)	0.66637 (8)	0.0369 (4)
H35A	0.939374	-0.023987	0.715860	0.044*
C36	1.04779 (14)	0.04769 (14)	0.62961 (8)	0.0361 (3)
H36A	1.119249	0.019380	0.654424	0.043*
C37	1.05289 (13)	0.11445 (13)	0.55789 (8)	0.0319 (3)
H37A	1.126004	0.134737	0.533697	0.038*
C38	0.94727 (12)	0.15113 (13)	0.52213 (8)	0.0274 (3)
C39	0.91895 (12)	0.22814 (13)	0.45033 (7)	0.0257 (3)
C40	0.91044 (12)	0.40437 (13)	0.35936 (7)	0.0256 (3)
C41	0.92861 (13)	0.52674 (13)	0.32510(7)	0.0275 (3)
C42	1.02796 (14)	0.57922 (14)	0.31861 (8)	0.0327 (3)
H42A	1.102593	0.531800	0.335909	0.039*
C43	1.01408 (16)	0.70269 (15)	0.28612 (8)	0.0402 (4)
H43A	1.081017	0.739948	0.279910	0.048*
C44	0.90370 (17)	0.77357 (15)	0.26230 (8)	0.0411 (4)
H44A	0.897586	0.857825	0.239768	0.049*
C45	0.80302 (15)	0.72415 (14)	0.27068 (8)	0.0345 (3)
H45A	0.727590	0.773501	0.255953	0.041*
C46	0.81619 (13)	0.59917 (13)	0.30156 (7)	0.0285 (3)
C47	0.73002 (12)	0.52042 (13)	0.32209 (7)	0.0267 (3)
C48	0.55510 (12)	0.46415 (13)	0.37720 (7)	0.0273 (3)
C49	0.43838 (12)	0.47681 (14)	0.41828 (8)	0.0309 (3)
C50	0.33515 (13)	0.56869 (15)	0.40909 (9)	0.0380 (4)
H50A	0.333399	0.641871	0.371602	0.046*
C51	0.23524 (14)	0.54967 (17)	0.45645 (10)	0.0448 (4)
H51A	0.162836	0.609666	0.450205	0.054*
C52	0.23860 (14)	0.44417 (18)	0.51322 (9)	0.0454 (4)
H52A	0.167837	0.433276	0.544077	0.054*
C53	0.34236 (13)	0.35509 (16)	0.52568 (8)	0.0369 (4)
H53A	0.345181	0.285741	0.566037	0.044*
C54	0.44269 (12)	0.37063 (14)	0.47694 (8)	0.0302 (3)
C55	0.56274 (12)	0.29493 (13)	0.47186 (7)	0.0264 (3)
C56	0.67307 (12)	0.14705 (12)	0.32086 (7)	0.0251 (3)
C57	0.64720 (14)	0.12150 (14)	0.25856 (8)	0.0339 (3)
H57A	0.676114	0.163778	0.212068	0.041*
C58	0.57979 (15)	0.03512 (15)	0.26419 (9)	0.0417 (4)
H58A	0.563730	0.019383	0.221245	0.050*
C59	0.53559 (15)	-0.02839 (15)	0.33041 (9)	0.0400 (4)
H59A	0.488893	-0.086606	0.333504	0.048*
C60	0.56122 (13)	-0.00485 (14)	0.39217 (9)	0.0345 (3)
H60A	0.531533	-0.047420	0.438366	0.041*
C61	0.62956 (12)	0.07987 (13)	0.38775 (8)	0.0290 (3)
H61A	0.647346	0.092735	0.431168	0.035*
C62	0.81233 (14)	0.26659 (14)	0.24757 (8)	0.0348 (3)
H62A	0.857108	0.326886	0.249300	0.052*
H62B	0.868840	0.194126	0.238969	0.052*
H62C	0.758458	0.301048	0.208202	0.052*

B2	0.73887 (14)	0.29648 (14)	0.37514 (8)	0.0247 (3)	
O1W	0.4210 (4)	0.7569 (3)	0.2715 (2)	0.0384 (14)	0.281 (4)
H2O	0.387836	0.725753	0.247583	0.058*	0.281 (4)
H1O	0.485406	0.707403	0.283633	0.058*	0.281 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0188 (5)	0.0265 (6)	0.0220 (5)	-0.0075 (4)	-0.0001 (4)	-0.0087 (4)
N2	0.0196 (5)	0.0282 (6)	0.0233 (6)	-0.0059 (5)	-0.0010 (4)	-0.0106 (5)
N3	0.0171 (5)	0.0301 (6)	0.0251 (6)	-0.0064 (5)	0.0001 (4)	-0.0123 (5)
N4	0.0179 (5)	0.0392 (7)	0.0320 (6)	-0.0086 (5)	0.0017 (5)	-0.0176 (5)
N5	0.0208 (5)	0.0308 (6)	0.0248 (6)	-0.0109 (5)	0.0034 (4)	-0.0124 (5)
N6	0.0264 (6)	0.0283 (6)	0.0218 (6)	-0.0089(5)	0.0002 (4)	-0.0073 (5)
N7	0.0225 (6)	0.0321 (6)	0.0259 (6)	-0.0114 (5)	0.0034 (4)	-0.0136 (5)
C1	0.0223 (7)	0.0280 (7)	0.0196 (6)	-0.0061 (5)	-0.0009 (5)	-0.0072 (5)
C2	0.0218 (7)	0.0321 (7)	0.0236 (7)	-0.0061 (6)	-0.0014 (5)	-0.0107 (6)
C3	0.0255 (7)	0.0339 (8)	0.0405 (9)	-0.0023 (6)	-0.0054 (6)	-0.0123 (7)
C4	0.0191 (7)	0.0449 (9)	0.0527 (10)	-0.0011 (6)	-0.0036 (6)	-0.0191 (8)
C5	0.0200 (7)	0.0466 (9)	0.0471 (9)	-0.0113 (6)	0.0027 (6)	-0.0178 (7)
C6	0.0220 (7)	0.0352 (8)	0.0297 (7)	-0.0101 (6)	0.0005 (5)	-0.0110 (6)
C7	0.0201 (6)	0.0316 (7)	0.0207 (6)	-0.0072 (5)	-0.0005 (5)	-0.0113 (5)
C8	0.0200 (6)	0.0282 (7)	0.0209 (6)	-0.0088(5)	0.0002 (5)	-0.0101 (5)
C9	0.0202 (6)	0.0288 (7)	0.0241 (7)	-0.0065 (5)	0.0004 (5)	-0.0128 (6)
C10	0.0222 (7)	0.0305 (7)	0.0261 (7)	-0.0019 (6)	-0.0017 (5)	-0.0154 (6)
C11	0.0291 (7)	0.0304 (8)	0.0295 (7)	-0.0016 (6)	-0.0030 (6)	-0.0138 (6)
C12	0.0400 (9)	0.0331 (8)	0.0323 (8)	0.0004 (7)	-0.0085 (6)	-0.0109 (6)
C13	0.0337 (8)	0.0441 (9)	0.0377 (9)	0.0048 (7)	-0.0145 (7)	-0.0171 (7)
C14	0.0233 (7)	0.0435 (9)	0.0357 (8)	-0.0004 (6)	-0.0073 (6)	-0.0194 (7)
C15	0.0203 (7)	0.0355 (8)	0.0291 (7)	-0.0012 (6)	-0.0012 (5)	-0.0178 (6)
C16	0.0159 (6)	0.0375 (8)	0.0286 (7)	-0.0056 (6)	0.0004 (5)	-0.0166 (6)
C17	0.0181 (6)	0.0393 (8)	0.0279 (7)	-0.0119 (6)	0.0043 (5)	-0.0166 (6)
C18	0.0261 (7)	0.0373 (8)	0.0287 (7)	-0.0153 (6)	0.0075 (6)	-0.0159 (6)
C19	0.0285 (8)	0.0501 (10)	0.0377 (8)	-0.0188 (7)	0.0065 (6)	-0.0241 (7)
C20	0.0427 (9)	0.0500 (10)	0.0384 (9)	-0.0278 (8)	0.0090 (7)	-0.0252 (7)
C21	0.0519 (10)	0.0351 (8)	0.0326 (8)	-0.0208 (7)	0.0064 (7)	-0.0156 (7)
C22	0.0420 (8)	0.0322 (8)	0.0255 (7)	-0.0149 (7)	0.0045 (6)	-0.0102 (6)
C23	0.0299 (7)	0.0331 (8)	0.0225 (7)	-0.0151 (6)	0.0063 (5)	-0.0116 (6)
C24	0.0249 (7)	0.0284 (7)	0.0212 (7)	-0.0094 (6)	0.0034 (5)	-0.0087 (5)
C25	0.0236 (7)	0.0326 (7)	0.0204 (7)	-0.0079 (6)	0.0021 (5)	-0.0078 (6)
C26	0.0307 (8)	0.0319 (8)	0.0314 (8)	-0.0069 (6)	0.0024 (6)	-0.0095 (6)
C27	0.0303 (8)	0.0391 (9)	0.0407 (9)	-0.0014 (7)	0.0075 (7)	-0.0109 (7)
C28	0.0252 (8)	0.0478 (10)	0.0441 (9)	-0.0102 (7)	0.0092 (7)	-0.0073 (7)
C29	0.0322 (8)	0.0405 (9)	0.0440 (9)	-0.0172 (7)	0.0091 (7)	-0.0112 (7)
C30	0.0286 (7)	0.0341 (8)	0.0345 (8)	-0.0117 (6)	0.0084 (6)	-0.0133 (6)
C31	0.0328 (8)	0.0401 (8)	0.0308 (8)	-0.0156 (6)	0.0038 (6)	-0.0185 (7)
B1	0.0198 (7)	0.0294 (8)	0.0254 (8)	-0.0088 (6)	0.0003 (6)	-0.0106 (6)
N8	0.0233 (6)	0.0289 (6)	0.0234 (6)	-0.0076 (5)	0.0000 (4)	-0.0077 (5)

N9	0.0240 (6)	0.0332 (6)	0.0255 (6)	-0.0074 (5)	0.0019 (5)	-0.0097 (5)
N10	0.0263 (6)	0.0281 (6)	0.0218 (6)	-0.0079 (5)	-0.0008 (4)	-0.0077 (5)
N11	0.0318 (6)	0.0318 (6)	0.0260 (6)	-0.0059 (5)	-0.0070 (5)	-0.0103 (5)
N12	0.0220 (6)	0.0306 (6)	0.0236 (6)	-0.0067(5)	-0.0017 (4)	-0.0097 (5)
N13	0.0264 (6)	0.0346 (7)	0.0250 (6)	-0.0118 (5)	-0.0003 (5)	-0.0096 (5)
N14	0.0267 (6)	0.0294 (6)	0.0231 (6)	-0.0102 (5)	0.0018 (5)	-0.0077 (5)
C32	0.0281 (7)	0.0278 (7)	0.0236 (7)	-0.0106 (6)	-0.0001 (5)	-0.0068 (6)
C33	0.0299 (7)	0.0256 (7)	0.0278 (7)	-0.0069 (6)	-0.0023 (6)	-0.0067 (6)
C34	0.0374 (8)	0.0312 (8)	0.0294 (8)	-0.0102 (6)	-0.0029 (6)	-0.0041 (6)
C35	0.0443 (9)	0.0334 (8)	0.0289 (8)	-0.0047 (7)	-0.0083 (7)	-0.0019 (6)
C36	0.0350 (8)	0.0346 (8)	0.0360 (8)	0.0019 (6)	-0.0107 (7)	-0.0090 (7)
C37	0.0276 (7)	0.0328 (8)	0.0349 (8)	-0.0023 (6)	-0.0043 (6)	-0.0109 (6)
C38	0.0279 (7)	0.0272 (7)	0.0276 (7)	-0.0047 (6)	-0.0018 (6)	-0.0092 (6)
C39	0.0214 (7)	0.0304 (7)	0.0264 (7)	-0.0055 (6)	0.0008 (5)	-0.0104 (6)
C40	0.0240 (7)	0.0331 (8)	0.0225 (7)	-0.0094 (6)	0.0029 (5)	-0.0114 (6)
C41	0.0332 (7)	0.0344 (8)	0.0189 (7)	-0.0136 (6)	0.0042 (5)	-0.0106 (6)
C42	0.0366 (8)	0.0415 (9)	0.0266 (7)	-0.0181 (7)	0.0081 (6)	-0.0161 (6)
C43	0.0512 (10)	0.0451 (9)	0.0339 (8)	-0.0285 (8)	0.0106 (7)	-0.0170 (7)
C44	0.0643 (11)	0.0335 (8)	0.0300 (8)	-0.0227 (8)	0.0044 (7)	-0.0087 (7)
C45	0.0502 (9)	0.0318 (8)	0.0236 (7)	-0.0124 (7)	-0.0015 (6)	-0.0078 (6)
C46	0.0388 (8)	0.0311 (8)	0.0191 (7)	-0.0123 (6)	0.0001 (6)	-0.0089 (6)
C47	0.0319 (7)	0.0299 (7)	0.0200 (7)	-0.0073 (6)	-0.0040 (5)	-0.0077 (6)
C48	0.0274 (7)	0.0318 (8)	0.0265 (7)	-0.0047 (6)	-0.0073 (6)	-0.0123 (6)
C49	0.0260 (7)	0.0404 (8)	0.0332 (8)	-0.0049 (6)	-0.0057 (6)	-0.0203 (7)
C50	0.0317 (8)	0.0450 (9)	0.0448 (9)	0.0003 (7)	-0.0108 (7)	-0.0266 (8)
C51	0.0289 (8)	0.0640 (12)	0.0515 (10)	0.0036 (8)	-0.0078 (7)	-0.0395 (9)
C52	0.0278 (8)	0.0780 (13)	0.0415 (10)	-0.0077 (8)	0.0032 (7)	-0.0387 (10)
C53	0.0280 (8)	0.0594 (10)	0.0320 (8)	-0.0119 (7)	0.0021 (6)	-0.0252 (7)
C54	0.0240 (7)	0.0440 (9)	0.0299 (8)	-0.0085 (6)	-0.0020 (6)	-0.0197 (7)
C55	0.0249 (7)	0.0345 (8)	0.0248 (7)	-0.0115 (6)	0.0004 (5)	-0.0125 (6)
C56	0.0219 (7)	0.0245 (7)	0.0292 (7)	-0.0032 (5)	-0.0021 (5)	-0.0087 (6)
C57	0.0388 (8)	0.0356 (8)	0.0299 (8)	-0.0121 (7)	-0.0039 (6)	-0.0086 (6)
C58	0.0504 (10)	0.0444 (9)	0.0395 (9)	-0.0178 (8)	-0.0089 (7)	-0.0164 (7)
C59	0.0406 (9)	0.0365 (9)	0.0496 (10)	-0.0175 (7)	-0.0039 (7)	-0.0137 (7)
C60	0.0337 (8)	0.0326 (8)	0.0376 (8)	-0.0113 (6)	0.0027 (6)	-0.0089 (7)
C61	0.0290 (7)	0.0298 (7)	0.0301 (8)	-0.0074 (6)	0.0002 (6)	-0.0110 (6)
C62	0.0422 (9)	0.0388 (9)	0.0273 (8)	-0.0176 (7)	0.0069 (6)	-0.0117 (6)
B2	0.0233 (8)	0.0268 (8)	0.0238 (8)	-0.0071 (6)	-0.0001 (6)	-0.0060 (6)
O1W	0.045 (2)	0.032 (2)	0.038 (2)	0.0009 (17)	-0.0176 (17)	-0.0095 (17)

Geometric parameters (Å, °)

N1—C8	1.3616 (17)	N8—C39	1.3714 (17)	
N1—C1	1.3655 (17)	N8—B2	1.5213 (19)	
N1—B1	1.4952 (18)	N9—C39	1.3408 (18)	
N2—C8	1.3455 (17)	N9—C40	1.3481 (18)	
N2—C9	1.3505 (17)	N10—C47	1.3648 (18)	
N3—C9	1.3651 (17)	N10-C40	1.3676 (17)	

		NILO DO	1 5000 (10)
N3-C16	1.3675 (16)	N10—B2	1.5002 (19)
N3—B1	1.5096 (19)	N11—C48	1.3404 (19)
N4—C17	1.3451 (19)	N11-C47	1.3498 (18)
N4—C16	1.3475 (18)	N12—C48	1.3687 (18)
N5—C24	1.3601 (18)	N12—C55	1.3701 (18)
N5—C17	1.3661 (17)	N12—B2	1.5134 (19)
N5—B1	1.4997 (19)	N13—C55	1.3425 (18)
N6—C1	1.3413 (17)	N13—C32	1.3475 (18)
N6—C24	1.3484 (17)	N14—C56	1.4026 (17)
N7—C25	1.4238 (17)	N14—C62	1.4632 (18)
N7—C31	1.4622 (17)	N14—B2	1.5128 (19)
N7—B1	1.5093 (18)	C32—C33	1.4583 (19)
C1—C2	1.4533 (18)	C33—C34	1.396 (2)
C2—C3	1.389 (2)	C33—C38	1.419 (2)
C2—C7	1.421 (2)	C34—C35	1.383 (2)
C3—C4	1.381 (2)	C34—H34A	0.9500
С3—НЗА	0.9500	C35—C36	1.397 (2)
C4—C5	1.397 (2)	С35—Н35А	0.9500
C4—H4A	0.9500	C36—C37	1.383 (2)
C5—C6	1.379 (2)	С36—Н36А	0.9500
C5—H5A	0.9500	C37—C38	1.396 (2)
C6—C7	1 3896 (19)	C37—H37A	0.9500
С6—Н6А	0.9500	C_{38} — C_{39}	1 4534 (19)
C7—C8	1 4596 (18)	C40-C41	1 452 (2)
C_{9} C_{10}	1 4573 (19)	C_{41} C_{42}	1.132(2) 1.397(2)
C10-C11	1 393 (2)	C41 - C46	1.377(2)
C_{10} C_{15}	1.375(2)	$C_{41} = C_{40}$	1.420(2) 1.385(2)
C_{11} C_{12}	1.4199(19) 1.387(2)	C_{42} C_{43} C_{42} C_{43}	1.385 (2)
$C_{11} = C_{12}$	0.0500	C42 - 1142 A	0.3300
CI2 CI2	0.9300	C_{43} C	1.397 (3)
	1.397 (2)	C43—R43A	0.9300
CI2—HIZA	0.9500	C44—C45	1.384 (2)
	1.381 (2)	C44—H44A	0.9500
CI3—HI3A	0.9500	C45—C46	1.397 (2)
C14—C15	1.392 (2)	C45—H45A	0.9500
C14—H14A	0.9500	C46—C47	1.453 (2)
C15—C16	1.452 (2)	C48—C49	1.457 (2)
C17—C18	1.455 (2)	C49—C50	1.393 (2)
C18—C19	1.400 (2)	C49—C54	1.420 (2)
C18—C23	1.420 (2)	C50—C51	1.384 (2)
C19—C20	1.381 (2)	C50—H50A	0.9500
C19—H19A	0.9500	C51—C52	1.396 (3)
C20—C21	1.399 (2)	C51—H51A	0.9500
C20—H20A	0.9500	C52—C53	1.383 (2)
C21—C22	1.384 (2)	С52—Н52А	0.9500
C21—H21A	0.9500	C53—C54	1.395 (2)
C22—C23	1.395 (2)	С53—Н53А	0.9500
C22—H22A	0.9500	C54—C55	1.459 (2)
C23—C24	1.4541 (19)	C56—C61	1.401 (2)

C25—C26	1.394 (2)	C56—C57	1.405 (2)
C25—C30	1.396 (2)	C57—C58	1.389 (2)
C26—C27	1.385 (2)	С57—Н57А	0.9500
C26—H26A	0.9500	C58—C59	1.379 (2)
$C_{27} - C_{28}$	1 372 (2)	C58—H58A	0.9500
С27—Н27А	0.9500	C59—C60	1 382 (2)
C_{28} C_{29}	1 384 (2)	C59—H59A	0.9500
C28_H28A	0.9500	C60-C61	1.386(2)
$C_{20} = C_{30}$	1 385 (2)	C60 H60A	0.9500
C_{29} H_{29A}	0.9500	C61 H61A	0.9500
$C_{20} = H_{20} \Lambda$	0.9500	C62 H62A	0.9500
C31 H31A	0.9500	C62 H62B	0.9800
C21 H21P	0.9800	C62 H62C	0.9800
	0.9800	01W + 120	0.9800
Nº C22	0.9800	01W H10	0.8401
No-C32	1.3042 (17)	OIW—HIO	0.8400
C8—N1—C1	113.38 (10)	C32—N8—B2	124.40 (11)
C8—N1—B1	124.01 (11)	C39—N8—B2	122.09 (11)
C1—N1—B1	122.20(11)	$C_{39} N_{9} C_{40}$	116.86 (11)
C8 - N2 - C9	116 50 (11)	C47 - N10 - C40	112,78 (11)
C9-N3-C16	112,49 (11)	C47 - N10 - B2	122.91 (11)
C9—N3—B1	123 58 (11)	C40 - N10 - B2	123.59(12)
C16 - N3 - B1	123.03(11)	C48 - N11 - C47	125.59(12) 116 64 (12)
C17 - N4 - C16	117 11 (11)	C48 - N12 - C55	112 39 (11)
$C_{24} N_{5} C_{17}$	113 28 (11)	C_{48} N12 B2	122.23 (11)
$C_{24} = N_{5} = B_{1}$	122 27 (11)	C_{55} N12 B2	122.23(11) 124.57(11)
$C_{17} N_{5} B_{1}$	122.27(11) 123.49(12)	$C_{55} = N_{12} = D_2$	124.37(11) 116.47(12)
C1 - N6 - C24	116 38 (11)	$C_{56} = N_{14} = C_{62}$	114 88 (11)
$C_{1} = 10 - C_{2}$	110.30(11) 114.43(11)	$C_{56} = N14 = C_{62}$	124.55(11)
$C_{25} = N_{7} = C_{51}$	119.69 (11)	$C_{30} = N_{14} = B_{2}$	124.33(11) 120.43(11)
$C_{23} = N_7 = B_1$	113.68 (11)	N13 C32 N8	120.45(11) 123.15(12)
$N_{\rm M} = N_{\rm M} = N_{\rm M}$	122 43 (11)	N13 C32 C33	129.15(12) 120.25(12)
$N_{0} = C_{1} = N_{1}$	122.43(11) 130.60(12)	NIS-C32-C33	129.23(12) 106.20(11)
$N_0 = C_1 = C_2$	130.00(12) 105.20(11)	103 - 032 - 033	100.29(11) 120.82(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103.39(11) 120.80(12)	$C_{34} = C_{33} = C_{38}$	120.82(13) 122.17(13)
$C_{3} = C_{2} = C_{1}$	120.00(12) 121.07(12)	$C_{34} = C_{33} = C_{32}$	132.17(13)
$C_{3} - C_{2} - C_{1}$	131.97(13) 107.17(11)	$C_{35} = C_{35} = C_{32}$	100.80(12) 117.74(14)
$C_1 = C_2 = C_1$	107.17(11) 117.06(14)	$C_{25} = C_{24} = C_{25}$	117.74 (14)
C4 - C3 - C2	117.90 (14)	$C_{33} = C_{34} = H_{34A}$	121.1
$C_4 = C_5 = H_2 A$	121.0	$C_{33} = C_{34} = C_{34} = C_{34}$	121.1 121.52(14)
$C_2 = C_3 = H_3 A$	121.0	$C_{34} = C_{35} = C_{36}$	121.55 (14)
$C_3 = C_4 = C_5$	121.35 (14)	C34—C35—H35A	119.2
C3—C4—H4A	119.3	C36—C35—H35A	119.2
C5—C4—H4A	119.3	$C_{37} = C_{36} = C_{35}$	121.44 (14)
$U_0 - U_0 - U_4$	121.23 (13)	$C_3/-C_30$ -H36A	119.3
Co-Co-HSA	119.4	C35—C36—H36A	119.3
U4—U5—H5A	119.4	$C_{30} - C_{3} / - C_{38}$	11/.95 (14)
C5—C6—C7	118.40 (14)	C36—C37—H37A	121.0
С5—С6—Н6А	120.8	С38—С37—Н37А	121.0

С7—С6—Н6А	120.8	C37—C38—C33	120.45 (13)
C6—C7—C2	120.12 (12)	C37—C38—C39	132.18 (13)
C6—C7—C8	132.66 (13)	C33—C38—C39	107.11 (12)
C2—C7—C8	107.08 (11)	N9—C39—N8	122.90 (12)
N2—C8—N1	122.62 (11)	N9—C39—C38	128.68 (12)
N2—C8—C7	131.06 (12)	N8—C39—C38	106.02 (11)
N1—C8—C7	105.40 (11)	N9—C40—N10	122.31 (12)
N2-C9-N3	122.39(12)	N9-C40-C41	130.29(12)
$N_{2} - C_{9} - C_{10}$	130.04(12)	N10-C40-C41	105.29(12) 105.90(12)
N_{3} C9 C10	106.02(11)	C_{42} C_{41} C_{46}	120.67(13)
C_{11} C_{10} C_{15}	120.29(12)	C_{42} C_{41} C_{40}	120.07(13) 131.84(14)
$C_{11} = C_{10} = C_{13}$	120.25(12) 132.45(12)	$C_{42} = C_{41} = C_{40}$	107.24(12)
$C_{10} = C_{10} = C_{20}$	106.02(12)	$C_{40} = C_{41} = C_{40}$	107.24(12) 117.82(15)
$C_{13} = C_{10} = C_{9}$	100.92(12) 118 15 (14)	$C_{43} = C_{42} = C_{41}$	117.62 (13)
C12 - C11 - C10	110.13 (14)	C43 - C42 - H42A	121.1
CI2—CII—HIIA	120.9	C41 - C42 - H42A	121.1
CIU—CII—HIIA	120.9	C42 - C43 - C44	121.38 (14)
C11—C12—C13	121.26 (15)	С42—С43—Н43А	119.3
С11—С12—Н12А	119.4	С44—С43—Н43А	119.3
C13—C12—H12A	119.4	C45—C44—C43	121.67 (15)
C14—C13—C12	121.31 (14)	C45—C44—H44A	119.2
C14—C13—H13A	119.3	C43—C44—H44A	119.2
C12—C13—H13A	119.3	C44—C45—C46	117.69 (15)
C13—C14—C15	118.13 (14)	C44—C45—H45A	121.2
C13—C14—H14A	120.9	C46—C45—H45A	121.2
C15—C14—H14A	120.9	C45—C46—C41	120.69 (13)
C14—C15—C10	120.79 (14)	C45—C46—C47	132.07 (14)
C14—C15—C16	131.87 (13)	C41—C46—C47	107.03 (12)
C10—C15—C16	107.13 (11)	N11—C47—N10	122.46 (12)
N4—C16—N3	122.16 (13)	N11—C47—C46	129.81 (13)
N4—C16—C15	129.87 (12)	N10—C47—C46	106.02 (12)
N3—C16—C15	105.96 (11)	N11—C48—N12	122.61 (12)
N4—C17—N5	122.55 (12)	N11—C48—C49	130.11 (13)
N4—C17—C18	130.64 (12)	N12—C48—C49	105.88 (12)
N5-C17-C18	10545(12)	C50-C49-C54	120 88 (14)
C19-C18-C23	$120\ 20\ (14)$	C_{50} C_{49} C_{48}	120.00(11) 132(12)(15)
C19 - C18 - C17	13259(14)	C_{54} C_{49} C_{48}	102.12(10) 107.00(12)
C_{23} C_{18} C_{17}	107 15 (11)	$C_{51} - C_{50} - C_{49}$	117 69 (16)
$C_{23} = C_{13} = C_{17}$	117.89 (15)	$C_{51} = C_{50} = C_{45}$	121.2
$C_{20} = C_{19} = C_{18}$	117.09 (15)	$C_{31} = C_{30} = H_{50A}$	121.2
C_{20} C_{19} H_{10A}	121.1	$C_{49} = C_{50} = H_{50} = H_{50}$	121.2
С10 С20 С21	121.1	$C_{50} = C_{51} = C_{52}$	121.40 (13)
C19 - C20 - C21	121.39 (14)	C50—C51—H51A	119.5
C19 - C20 - H20A	119.2	C_{22} C_{22} C_{21} H_{21} H	119.5
$C_2 I - C_2 U - H_2 U A$	119.2	$C_{53} - C_{52} - C_{51}$	121.6/(15)
C22—C21—C20	121.52 (15)	C53—C52—H52A	119.2
C22—C21—H21A	119.2	C51—C52—H52A	119.2
C20—C21—H21A	119.2	C52—C53—C54	117.69 (16)
C21—C22—C23	117.53 (15)	C52—C53—H53A	121.2
C21—C22—H22A	121.2	С54—С53—Н53А	121.2

C23—C22—H22A	121.2	C53—C54—C49	120.51 (14)
C22—C23—C18	121.17 (13)	C53—C54—C55	132.38 (15)
C22—C23—C24	131.68 (13)	C49—C54—C55	107.10 (12)
C18—C23—C24	107.11 (12)	N13—C55—N12	122.55 (12)
N6—C24—N5	123.03 (12)	N13—C55—C54	130.57 (13)
N6-C24-C23	129.86 (12)	N12—C55—C54	105.60 (12)
N5—C24—C23	105.70 (11)	C61—C56—N14	121.49 (12)
C26—C25—C30	117.79 (13)	C61—C56—C57	116.67 (13)
C26—C25—N7	121.72 (12)	N14—C56—C57	121.82 (12)
C30—C25—N7	120.46 (12)	C58—C57—C56	120.76 (14)
C27—C26—C25	121.02 (14)	С58—С57—Н57А	119.6
С27—С26—Н26А	119.5	С56—С57—Н57А	119.6
C25—C26—H26A	119.5	C59—C58—C57	121.78 (15)
C28—C27—C26	120.85 (15)	С59—С58—Н58А	119.1
С28—С27—Н27А	119.6	С57—С58—Н58А	119.1
С26—С27—Н27А	119.6	C58—C59—C60	118.05 (14)
C_{27} C_{28} C_{29}	118.79 (14)	С58—С59—Н59А	121.0
C27—C28—H28A	120.6	С60—С59—Н59А	121.0
C29—C28—H28A	120.6	C59—C60—C61	121.04 (14)
C_{28} C_{29} C_{30}	121.02 (15)	C59—C60—H60A	119.5
C28—C29—H29A	119.5	C61—C60—H60A	119.5
C30—C29—H29A	119.5	C60-C61-C56	121 67 (13)
$C_{29} = C_{30} = C_{25}$	120 46 (14)	C60-C61-H61A	119.2
C29—C30—H30A	119.8	C56—C61—H61A	119.2
$C_{25} = C_{30} = H_{30A}$	119.8	N14—C62—H62A	109.5
N7-C31-H31A	109 5	N14—C62—H62B	109.5
N7-C31-H31B	109.5	H62A - C62 - H62B	109.5
$H_{31}A = C_{31} = H_{31}B$	109.5	N14-C62-H62C	109.5
N7-C31-H31C	109.5	H62A - C62 - H62C	109.5
$H_{31}A = C_{31} = H_{31}C$	109.5	H62B - C62 - H62C	109.5
H_{31B} C_{31} H_{31C}	109.5	N10R2N14	112 75 (11)
N1R1N5	102.87 (11)	N10 B2 N12	102.73(11)
N1—B1—N7	113.06 (11)	N14—B2—N12	102.23(11) 116 53 (11)
N5N7	116.61 (11)	N10-B2-N8	102.36(11)
N1N3	102 27 (11)	N14_B2_N8	102.30(11) 119.22(12)
N5N3	102.27(11) 102.77(11)	N12N8	101.40(11)
N7 B1 N3	102.77(11) 117.25(12)	H_{2} $O_{1}W$ $H_{1}O$	101.40 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	117.23(12) 112.03(11)	1120—01 w—1110	100.2
052-108-059	112.03 (11)		
C24_N6_C1_N1	-6.41(18)	C55_N13_C32_N8	-8.12(19)
$C_{24} = N_{6} = C_{1} = C_{2}$	157.01 (13)	C_{55} N13 C_{32} C33	156.97(14)
$C_{24} = 100 C_{1} = 02$	153 70 (12)	C_{39} N8 C_{32} N13	155.97(14) 155.20(13)
B1 - N1 - C1 - N6	-19.18(19)	$B_2 N_8 C_{32} N_{13}$	-111(2)
C_{8} N1 $-C_{1}$ $-C_{2}$	-13.32(14)	C_{39} N8 C_{32} C_{33}	-12.83(15)
B1-N1-C1-C2	173 80 (11)	$B_{2}N_{8}C_{32}C_{33}$	-179 16 (12)
$N_{6} - C_{1} - C_{2} - C_{3}$	204(2)	N13 - C32 - C33 - C34	141(3)
$N_1 - C_1 - C_2 - C_3$	-174 04 (14)	N8 - C32 - C33 - C34	-178.85(15)
$N_{1} = C_{1} = C_{2} = C_{3}$	-156 65 (12)	N12 C22 C23 C29	-160.50(13)
100-01-02-0/	130.03 (13)	1113-032-033-038	100.30 (14)

N1—C1—C2—C7	8.88 (14)	N8—C32—C33—C38	6.53 (15)
C7—C2—C3—C4	0.1 (2)	C38—C33—C34—C35	-2.2(2)
C1—C2—C3—C4	-176.66 (14)	C32—C33—C34—C35	-176.24 (15)
C2—C3—C4—C5	2.6 (2)	C33—C34—C35—C36	1.2 (2)
C3—C4—C5—C6	-2.2(2)	C34—C35—C36—C37	1.0 (2)
C4—C5—C6—C7	-1.0(2)	C35—C36—C37—C38	-2.2(2)
C5—C6—C7—C2	3.6(2)	$C_{36} - C_{37} - C_{38} - C_{33}$	1.2 (2)
C5—C6—C7—C8	178.76 (14)	$C_{36} - C_{37} - C_{38} - C_{39}$	174.66 (15)
$C_{3}-C_{2}-C_{7}-C_{6}$	-3.2(2)	C_{34} C_{33} C_{38} C_{37}	1.1 (2)
C1 - C2 - C7 - C6	$174\ 25\ (12)$	$C_{32} = C_{33} = C_{38} = C_{37}$	17642(13)
C_{3} C_{2} C_{7} C_{8}	-17948(12)	C_{34} C_{33} C_{38} C_{39}	-173.89(13)
$C_1 - C_2 - C_7 - C_8$	-2.02(14)	C_{32} C_{33} C_{38} C_{39}	1 47 (15)
C9-N2-C8-N1	7 69 (18)	C40-N9-C39-N8	7 64 (19)
$C_{1}^{0} = N_{2}^{0} = C_{3}^{0} = C_{1}^{0}$	-15965(13)	C40 - N9 - C39 - C38	$-152\ 21\ (14)$
$C_1 = N_1 = C_3 = C_7$	-158.07(12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-150.03(13)
C1 - N1 - C0 - N2 P1 - N1 - C8 - N2	136.07(12) 14.66(10)	$R_{2} = N_{3} = C_{3} = N_{3}$	150.03(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14.00(19) 12.06(14)	$D_2 = N_0 = C_{33} = N_3$	10.7(2)
$CI = NI = C\delta = C7$	12.00(14)	C_{32} N8 C20 C28	13.73(13)
$BI = NI = C \delta = C / C \delta = C / C \delta = C \delta $	-1/5.21(11)	$B_2 = N_8 = C_{39} = C_{38}$	-1/9.58(12)
$C_{0} = C_{1} = C_{0} = N_{2}$	-12.3(2)	$C_{37} = C_{38} = C_{39} = N_9$	-20.5(3)
$C_2 = C_1 = C_8 = N_2$	163.34 (13)	C33 - C38 - C39 - N9	153.60 (14)
$C_{0} - C_{0} - C_{0} - N_{1}$	1/8.//(14)	$C_{37} - C_{38} - C_{39} - N_8$	1/6.99 (15)
C2-C/-C8-N1	-5.62 (14)	C33—C38—C39—N8	-8.90 (15)
C8—N2—C9—N3	-7.82 (18)	C39—N9—C40—N10	-9.49 (19)
C8—N2—C9—C10	155.91 (13)	C39—N9—C40—C41	154.45 (14)
C16—N3—C9—N2	155.30 (12)	C47—N10—C40—N9	157.11 (12)
B1—N3—C9—N2	-14.09 (19)	B2—N10—C40—N9	-13.4 (2)
C16—N3—C9—C10	-11.81 (14)	C47—N10—C40—C41	-10.22 (15)
B1—N3—C9—C10	178.80 (11)	B2—N10—C40—C41	179.28 (12)
N2—C9—C10—C11	13.2 (2)	N9—C40—C41—C42	13.8 (2)
N3—C9—C10—C11	178.95 (14)	N10-C40-C41-C42	179.78 (14)
N2—C9—C10—C15	-159.83 (13)	N9—C40—C41—C46	-160.26 (14)
N3—C9—C10—C15	5.93 (14)	N10-C40-C41-C46	5.67 (14)
C15—C10—C11—C12	-2.7 (2)	C46—C41—C42—C43	-2.4 (2)
C9—C10—C11—C12	-174.92 (14)	C40—C41—C42—C43	-175.84 (14)
C10-C11-C12-C13	0.6 (2)	C41—C42—C43—C44	1.7 (2)
C11—C12—C13—C14	1.5 (2)	C42—C43—C44—C45	0.7 (2)
C12—C13—C14—C15	-1.4 (2)	C43—C44—C45—C46	-2.3 (2)
C13—C14—C15—C10	-0.7 (2)	C44—C45—C46—C41	1.6 (2)
C13—C14—C15—C16	173.40 (14)	C44—C45—C46—C47	175.55 (14)
C11—C10—C15—C14	2.8 (2)	C42—C41—C46—C45	0.7 (2)
C9—C10—C15—C14	176.81 (12)	C40—C41—C46—C45	175.62 (12)
C11—C10—C15—C16	-172.62 (12)	C42—C41—C46—C47	-174.55 (12)
C9—C10—C15—C16	1.43 (14)	C40—C41—C46—C47	0.35 (14)
C17—N4—C16—N3	6.41 (19)	C48—N11—C47—N10	9.80 (18)
C17—N4—C16—C15	-155.14 (13)	C48—N11—C47—C46	-153.14 (14)
C9—N3—C16—N4	-152.66(12)	C40—N10—C47—N11	-155.99(12)
B1—N3—C16—N4	16.80 (19)	B2-N10-C47-N11	14.58 (19)
C9-N3-C16-C15	12.70 (14)	C40-N10-C47-C46	10.44 (15)
			(10)

B1—N3—C16—C15	-177.84 (11)	B2—N10—C47—C46	-178.98 (11)
C14—C15—C16—N4	-19.1 (2)	C45—C46—C47—N11	-15.7 (2)
C10-C15-C16-N4	155.57 (13)	C41—C46—C47—N11	158.82 (13)
C14—C15—C16—N3	177.09 (14)	C45—C46—C47—N10	179.22 (14)
C10-C15-C16-N3	-8.24 (14)	C41—C46—C47—N10	-6.25 (14)
C16—N4—C17—N5	-8.54 (19)	C47—N11—C48—N12	-8.67 (18)
C16—N4—C17—C18	156.14 (13)	C47—N11—C48—C49	155.79 (13)
C24—N5—C17—N4	156.40 (12)	C55—N12—C48—N11	153.61 (12)
B1—N5—C17—N4	-12.61 (19)	B2—N12—C48—N11	-16.58 (19)
C24—N5—C17—C18	-11.60 (15)	C55—N12—C48—C49	-14.09 (14)
B1-N5-C17-C18	179.39 (11)	B2—N12—C48—C49	175.73 (11)
N4—C17—C18—C19	17.0 (3)	N11-C48-C49-C50	20.8 (2)
N5—C17—C18—C19	-176.36 (15)	N12—C48—C49—C50	-172.79 (14)
N4—C17—C18—C23	-160.04 (14)	N11—C48—C49—C54	-158.87 (13)
N5-C17-C18-C23	6.61 (14)	N12—C48—C49—C54	7.55 (14)
C23—C18—C19—C20	-2.8(2)	C54—C49—C50—C51	-3.7(2)
C17—C18—C19—C20	-179.47 (14)	C48—C49—C50—C51	176.72 (14)
C18—C19—C20—C21	2.3 (2)	C49—C50—C51—C52	2.3 (2)
C19—C20—C21—C22	0.3 (2)	C50—C51—C52—C53	1.4 (2)
C20—C21—C22—C23	-2.5(2)	C51—C52—C53—C54	-3.6(2)
C21—C22—C23—C18	2.1 (2)	C52—C53—C54—C49	2.2 (2)
C21—C22—C23—C24	179.51 (14)	C52—C53—C54—C55	-177.52 (14)
C19—C18—C23—C22	0.6 (2)	C50—C49—C54—C53	1.4 (2)
C17—C18—C23—C22	178.05 (12)	C48—C49—C54—C53	-178.85 (12)
C19—C18—C23—C24	-177.44 (12)	C50—C49—C54—C55	-178.78(12)
C17—C18—C23—C24	0.04 (14)	C48—C49—C54—C55	0.92 (15)
C1—N6—C24—N5	9.36 (18)	C32—N13—C55—N12	5.74 (19)
C1—N6—C24—C23	-155.11 (13)	C32—N13—C55—C54	-159.42 (14)
C17—N5—C24—N6	-156.04(12)	C48—N12—C55—N13	-153.71 (12)
B1—N5—C24—N6	13.13 (19)	B2—N12—C55—N13	16.2 (2)
C17—N5—C24—C23	11.64 (15)	C48—N12—C55—C54	14.63 (14)
B1—N5—C24—C23	-179.19 (11)	B2—N12—C55—C54	-175.46(12)
C22—C23—C24—N6	-17.9 (2)	C53—C54—C55—N13	-22.3 (3)
C18—C23—C24—N6	159.82 (13)	C49—C54—C55—N13	158.00 (14)
C22—C23—C24—N5	175.58 (14)	C53—C54—C55—N12	170.69 (14)
C18—C23—C24—N5	-6.70 (14)	C49—C54—C55—N12	-9.04 (14)
C31—N7—C25—C26	-23.22(18)	C62—N14—C56—C61	160.96 (13)
B1—N7—C25—C26	116.85 (15)	B2—N14—C56—C61	-23.3(2)
C31—N7—C25—C30	154.75 (13)	C62—N14—C56—C57	-17.44 (19)
B1—N7—C25—C30	-65.19 (18)	B2—N14—C56—C57	158.30 (13)
C30—C25—C26—C27	0.4 (2)	C61—C56—C57—C58	1.1 (2)
N7—C25—C26—C27	178.44 (13)	N14—C56—C57—C58	179.60 (14)
C_{25} C_{26} C_{27} C_{28}	1.4 (2)	C56—C57—C58—C59	0.2 (3)
C26—C27—C28—C29	-1.1 (3)	C57—C58—C59—C60	-0.7(3)
C27—C28—C29—C30	-0.9 (3)	C58—C59—C60—C61	-0.1(2)
C28—C29—C30—C25	2.7 (2)	C59—C60—C61—C56	1.5 (2)
C26—C25—C30—C29	-2.4 (2)	N14—C56—C61—C60	179.57 (13)
N7-C25-C30-C29	179 54 (14)	C57 - C56 - C61 - C60	-19(2)
1., 020 000 029			··· (~)

C8—N1—B1—N5	-136.81 (12)	C47—N10—B2—N14	92.61 (15)
C1—N1—B1—N5	35.30 (16)	C40—N10—B2—N14	-97.83 (14)
C8—N1—B1—N7	96.56 (15)	C47—N10—B2—N12	-33.31 (16)
C1—N1—B1—N7	-91.33 (15)	C40—N10—B2—N12	136.26 (12)
C8—N1—B1—N3	-30.44 (16)	C47—N10—B2—N8	-138.06 (12)
C1—N1—B1—N3	141.67 (11)	C40—N10—B2—N8	31.51 (16)
C24—N5—B1—N1	-32.34 (16)	C56—N14—B2—N10	-164.96 (12)
C17—N5—B1—N1	135.72 (12)	C62—N14—B2—N10	10.56 (18)
C24—N5—B1—N7	91.99 (15)	C56—N14—B2—N12	-47.17 (18)
C17—N5—B1—N7	-99.96 (15)	C62—N14—B2—N12	128.35 (14)
C24—N5—B1—N3	-138.32 (12)	C56—N14—B2—N8	75.00 (17)
C17—N5—B1—N3	29.73 (16)	C62—N14—B2—N8	-109.48 (15)
C25—N7—B1—N1	171.31 (11)	C48—N12—B2—N10	34.20 (15)
C31—N7—B1—N1	-48.35 (16)	C55—N12—B2—N10	-134.76 (12)
C25—N7—B1—N5	52.36 (17)	C48—N12—B2—N14	-89.21 (15)
C31—N7—B1—N5	-167.30 (12)	C55—N12—B2—N14	101.83 (15)
C25—N7—B1—N3	-70.06 (16)	C48—N12—B2—N8	139.70 (12)
C31—N7—B1—N3	70.28 (15)	C55—N12—B2—N8	-29.26 (16)
C9—N3—B1—N1	30.12 (16)	C32—N8—B2—N10	132.17 (13)
C16—N3—B1—N1	-138.18 (12)	C39—N8—B2—N10	-32.85 (16)
C9—N3—B1—N5	136.56 (12)	C32—N8—B2—N14	-102.64 (15)
C16—N3—B1—N5	-31.74 (16)	C39—N8—B2—N14	92.34 (16)
C9—N3—B1—N7	-94.14 (15)	C32—N8—B2—N12	26.77 (17)
C16—N3—B1—N7	97.56 (15)	C39—N8—B2—N12	-138.24 (12)

F(000) = 1040

 $\theta = 4.3 - 65.8^{\circ}$

 $\mu = 0.68 \text{ mm}^{-1}$

Shard, purple

 $0.19 \times 0.14 \times 0.09 \text{ mm}$

T = 150 K

 $D_{\rm x} = 1.390 {\rm Mg} {\rm m}^{-3}$

Cu *K* α radiation, $\lambda = 1.54178$ Å

Cell parameters from 9219 reflections

(N-Phenylbenzamido)(subphthalocyaninato)boron (d22150_a)

Crystal data

 $C_{31}H_{20}BN_7$ $M_r = 501.35$ Monoclinic, $P2_1/c$ a = 10.3502 (4) Å b = 20.7509 (8) Å c = 12.2816 (5) Å $\beta = 114.734$ (2)° V = 2395.80 (17) Å³ Z = 4

Data collection

Bruker Kappa APEX-DUO CMOS PHOTON II	41606 measured reflections
diffractometer	4159 independent reflections
Radiation source: Inoatec ImuS with multi-layer	3432 reflections with $I > 2\sigma(I)$
optics	$R_{\rm int} = 0.111$
φ and ω scans	$\theta_{\rm max} = 66.4^\circ, \ \theta_{\rm min} = 4.3^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(SADABS; Krause et al., 2015)	$k = -24 \rightarrow 24$
$T_{\min} = 0.462, \ T_{\max} = 0.753$	$l = -14 \longrightarrow 14$

Refinement

Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.1179P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$
Extinction correction: SHELXL2019
(Sheldrick, 2015 <i>b</i>),
$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Extinction coefficient: 0.0101 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.65532 (16)	0.59175 (7)	0.21413 (13)	0.0257 (4)
N2	0.73697 (17)	0.69317 (7)	0.17604 (13)	0.0281 (4)
N3	0.75068 (16)	0.66827 (7)	0.36934 (13)	0.0258 (4)
N4	0.87250 (17)	0.63159 (8)	0.57049 (13)	0.0286 (4)
N5	0.73686 (17)	0.55959 (7)	0.41500 (13)	0.0268 (4)
N6	0.69933 (16)	0.48035 (7)	0.26647 (13)	0.0287 (4)
N7	0.50830 (17)	0.62224 (7)	0.33581 (14)	0.0295 (4)
B1	0.6507 (2)	0.61169 (10)	0.33133 (18)	0.0260 (5)
C1	0.66648 (19)	0.52872 (9)	0.18618 (16)	0.0274 (4)
C2	0.67281 (19)	0.52945 (9)	0.07061 (16)	0.0279 (5)
C3	0.6813 (2)	0.48015 (10)	-0.00334 (17)	0.0326 (5)
H3A	0.675160	0.436222	0.015789	0.039*
C4	0.6988 (2)	0.49697 (11)	-0.10515 (18)	0.0385 (5)
H4A	0.704486	0.464057	-0.156727	0.046*
C5	0.7083 (2)	0.56135 (11)	-0.13372 (18)	0.0399 (5)
H5A	0.719779	0.571278	-0.204686	0.048*
C6	0.7015 (2)	0.61122 (10)	-0.06111 (16)	0.0335 (5)
H6A	0.709225	0.654920	-0.080673	0.040*
C7	0.68294 (19)	0.59499 (10)	0.04165 (16)	0.0291 (5)
C8	0.68407 (19)	0.63353 (9)	0.14095 (16)	0.0271 (4)
C9	0.7765 (2)	0.70803 (9)	0.29241 (16)	0.0259 (4)
C10	0.8777 (2)	0.75606 (9)	0.36766 (16)	0.0268 (4)
C11	0.9404 (2)	0.80922 (9)	0.34031 (17)	0.0297 (5)
H11A	0.914763	0.821832	0.259550	0.036*
C12	1.0412 (2)	0.84310 (9)	0.43435 (18)	0.0340 (5)
H12A	1.082772	0.880434	0.417544	0.041*
C13	1.0837 (2)	0.82399 (10)	0.55379 (19)	0.0345 (5)

H13A	1.154291	0.848103	0.616179	0.041*
C14	1.0241 (2)	0.77033 (9)	0.58198 (18)	0.0308 (5)
H14A	1.054145	0.756741	0.662766	0.037*
C15	0.9192 (2)	0.73697 (9)	0.48870 (16)	0.0274 (4)
C16	0.8426 (2)	0.67775 (9)	0.48600 (16)	0.0266 (4)
C17	0.8247 (2)	0.57179 (9)	0.53119 (16)	0.0274 (5)
C18	0.8719 (2)	0.50927 (9)	0.58638 (16)	0.0285 (4)
C19	0.9529 (2)	0.49073 (10)	0.70445 (17)	0.0315 (5)
H19A	0.989752	0.521786	0.766778	0.038*
C20	0.9779 (2)	0.42583 (10)	0.72813 (18)	0.0340 (5)
H20A	1.029217	0.411922	0.808573	0.041*
C21	0.9292 (2)	0.38011 (10)	0.63620 (18)	0.0331 (5)
H21A	0.948039	0.335780	0.655653	0.040*
C22	0.8544 (2)	0.39775 (9)	0.51793 (19)	0.0317 (5)
H22A	0.826125	0.366534	0.455678	0.038*
C23	0.8217 (2)	0.46271 (9)	0.49248 (17)	0.0279 (4)
C24	0.7415 (2)	0.49745 (9)	0.38169 (16)	0.0277 (4)
C25	0.4518 (2)	0.68471 (9)	0.32846 (17)	0.0298 (5)
C26	0.4561 (2)	0.72829 (10)	0.24303 (18)	0.0338 (5)
H26A	0.493158	0.714706	0.187913	0.041*
C27	0.4072 (2)	0.79084 (11)	0.2374 (2)	0.0413 (5)
H27A	0.414424	0.820032	0.180682	0.050*
C28	0.3480 (2)	0.81124 (11)	0.3135 (2)	0.0452 (6)
H28A	0.313590	0.854061	0.308949	0.054*
C29	0.3396 (2)	0.76848 (12)	0.3959 (2)	0.0454 (6)
H29A	0.297853	0.781872	0.447959	0.054*
C30	0.3913 (2)	0.70597 (10)	0.40425 (19)	0.0366 (5)
H30A	0.385245	0.677382	0.462364	0.044*
C31	0.4606 (2)	0.57447 (10)	0.3988 (2)	0.0382 (5)
H31A	0.487879	0.531267	0.383831	0.057*
H31B	0.356914	0.576775	0.369558	0.057*
H31C	0.505052	0.583395	0.485013	0.057*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0278 (8)	0.0275 (9)	0.0265 (8)	-0.0002 (6)	0.0159 (6)	-0.0006 (6)
N2	0.0313 (9)	0.0293 (9)	0.0274 (8)	0.0018 (7)	0.0159 (7)	0.0015 (6)
N3	0.0302 (8)	0.0260 (8)	0.0266 (8)	0.0006 (6)	0.0172 (7)	0.0000 (6)
N4	0.0369 (9)	0.0273 (9)	0.0279 (8)	0.0006 (7)	0.0200 (7)	-0.0001 (6)
N5	0.0302 (9)	0.0269 (9)	0.0282 (8)	-0.0002 (6)	0.0169 (7)	-0.0006 (6)
N6	0.0292 (8)	0.0303 (9)	0.0303 (9)	-0.0018 (7)	0.0162 (7)	-0.0015 (7)
N7	0.0337 (9)	0.0274 (9)	0.0358 (9)	0.0006 (7)	0.0228 (7)	0.0013 (6)
B1	0.0293 (11)	0.0270 (11)	0.0256 (11)	0.0007 (9)	0.0154 (9)	0.0011 (8)
C1	0.0261 (10)	0.0299 (10)	0.0290 (9)	-0.0022 (8)	0.0144 (8)	-0.0036 (8)
C2	0.0237 (10)	0.0348 (11)	0.0275 (9)	-0.0012 (8)	0.0129 (8)	-0.0027 (8)
C3	0.0283 (10)	0.0368 (11)	0.0321 (10)	0.0004 (8)	0.0120 (8)	-0.0066 (8)
C4	0.0380 (12)	0.0453 (13)	0.0368 (11)	-0.0008 (10)	0.0203 (9)	-0.0099 (9)

C5	0.0437 (13)	0.0520 (14)	0.0300 (11)	-0.0046 (10)	0.0214 (9)	-0.0048 (9)
C6	0.0361 (11)	0.0412 (12)	0.0267 (10)	-0.0040 (9)	0.0167 (8)	-0.0024 (8)
C7	0.0254 (10)	0.0362 (11)	0.0279 (10)	-0.0015 (8)	0.0134 (8)	-0.0020 (8)
C8	0.0269 (10)	0.0328 (11)	0.0250 (9)	0.0014 (8)	0.0142 (8)	0.0014 (7)
C9	0.0293 (10)	0.0270 (10)	0.0266 (9)	0.0039 (8)	0.0168 (8)	0.0027 (7)
C10	0.0329 (10)	0.0247 (10)	0.0305 (10)	0.0032 (8)	0.0207 (8)	-0.0011 (7)
C11	0.0356 (11)	0.0277 (11)	0.0339 (10)	0.0042 (8)	0.0227 (9)	0.0025 (8)
C12	0.0387 (11)	0.0271 (10)	0.0447 (12)	-0.0021 (8)	0.0259 (9)	-0.0011 (8)
C13	0.0371 (11)	0.0307 (11)	0.0398 (11)	-0.0028 (8)	0.0201 (9)	-0.0063 (8)
C14	0.0375 (11)	0.0278 (10)	0.0311 (10)	0.0021 (8)	0.0184 (9)	-0.0020 (8)
C15	0.0353 (10)	0.0242 (10)	0.0307 (10)	0.0025 (8)	0.0217 (8)	-0.0016 (7)
C16	0.0312 (10)	0.0275 (10)	0.0276 (10)	-0.0003 (8)	0.0186 (8)	-0.0016 (7)
C17	0.0329 (10)	0.0291 (10)	0.0259 (10)	0.0005 (8)	0.0179 (8)	0.0005 (7)
C18	0.0315 (10)	0.0280 (10)	0.0324 (10)	-0.0001 (8)	0.0199 (8)	0.0027 (8)
C19	0.0312 (10)	0.0364 (11)	0.0316 (10)	-0.0020 (8)	0.0178 (8)	0.0030 (8)
C20	0.0290 (11)	0.0374 (12)	0.0379 (11)	0.0040 (8)	0.0161 (9)	0.0095 (9)
C21	0.0299 (11)	0.0307 (11)	0.0455 (12)	0.0045 (8)	0.0223 (9)	0.0092 (9)
C22	0.0306 (10)	0.0287 (11)	0.0449 (12)	0.0006 (8)	0.0248 (9)	0.0010 (8)
C23	0.0264 (10)	0.0304 (11)	0.0341 (10)	0.0006 (8)	0.0198 (8)	0.0034 (8)
C24	0.0304 (10)	0.0266 (10)	0.0332 (10)	-0.0001 (8)	0.0203 (8)	-0.0003 (8)
C25	0.0278 (10)	0.0318 (11)	0.0320 (10)	-0.0010 (8)	0.0146 (8)	-0.0019 (8)
C26	0.0309 (10)	0.0387 (12)	0.0343 (11)	0.0033 (9)	0.0163 (8)	0.0042 (8)
C27	0.0389 (12)	0.0407 (13)	0.0450 (13)	0.0040 (9)	0.0182 (10)	0.0096 (10)
C28	0.0449 (13)	0.0367 (12)	0.0522 (14)	0.0098 (10)	0.0184 (11)	-0.0012 (10)
C29	0.0458 (13)	0.0500 (14)	0.0466 (13)	0.0096 (11)	0.0256 (11)	-0.0068 (10)
C30	0.0402 (12)	0.0396 (12)	0.0365 (11)	0.0038 (9)	0.0226 (9)	-0.0007 (9)
C31	0.0401 (12)	0.0386 (12)	0.0470 (13)	-0.0024 (9)	0.0293 (10)	0.0044 (9)

Geometric parameters (Å, °)

N1—C8	1.368 (2)	C11—H11A	0.9500
N1—C1	1.369 (2)	C12—C13	1.401 (3)
N1—B1	1.518 (2)	C12—H12A	0.9500
N2—C9	1.348 (2)	C13—C14	1.385 (3)
N2—C8	1.349 (3)	C13—H13A	0.9500
N3—C16	1.362 (2)	C14—C15	1.389 (3)
N3—C9	1.362 (2)	C14—H14A	0.9500
N3—B1	1.504 (3)	C15—C16	1.456 (3)
N4—C17	1.348 (2)	C17—C18	1.450 (3)
N4—C16	1.350 (2)	C18—C19	1.392 (3)
N5—C17	1.357 (2)	C18—C23	1.425 (3)
N5-C24	1.360 (2)	C19—C20	1.379 (3)
N5—B1	1.501 (3)	C19—H19A	0.9500
N6-C24	1.342 (2)	C20—C21	1.397 (3)
N6-C1	1.347 (2)	C20—H20A	0.9500
N7—C25	1.409 (3)	C21—C22	1.379 (3)
N7—C31	1.464 (3)	C21—H21A	0.9500
N7—B1	1.513 (3)	C22—C23	1.393 (3)

C1—C2	1,448 (3)	C22—H22A	0.9500
C2—C3	1.395 (3)	C23—C24	1.454 (3)
$C^2 - C^7$	1 421 (3)	$C_{25} = C_{30}$	1 394 (3)
$C_3 - C_4$	1.381(3)	$C_{25} = C_{26}$	1.391(3) 1 400 (3)
C3—H3A	0.9500	$C_{26} = C_{27}$	1.100(3) 1 384(3)
CA = C5	1 305 (3)	C_{26} H_{26A}	0.9500
$C_4 = C_3$	0.0500	C_{20} C	1 380 (3)
C5 C6	1.397(2)	$C_{27} = C_{28}$	1.580 (5)
$C_{5} = C_{0}$	0.0500	$C_2 = \frac{112}{A}$	0.9300
CS—RJA	0.9300	C_{20}	1.570 (5)
	1.395 (3)	C28—H28A	0.9500
C6—H6A	0.9500	C29—C30	1.391 (3)
C7—C8	1.454 (3)	С29—Н29А	0.9500
C9—C10	1.461 (3)	C30—H30A	0.9500
C10—C11	1.390 (3)	C31—H31A	0.9800
C10—C15	1.420 (3)	C31—H31B	0.9800
C11—C12	1.381 (3)	C31—H31C	0.9800
C8—N1—C1	112.10 (15)	C12—C13—H13A	119.6
C8—N1—B1	123.51 (16)	C13—C14—C15	118.07 (18)
C1—N1—B1	122.53 (15)	C13—C14—H14A	121.0
C9—N2—C8	116.83 (15)	C15—C14—H14A	121.0
C16—N3—C9	112.88 (15)	C14—C15—C10	120.93 (17)
C16—N3—B1	121.73 (15)	C14—C15—C16	132.07 (17)
C9—N3—B1	124.51 (15)	C10—C15—C16	106.76 (15)
C17—N4—C16	116.49 (16)	N4—C16—N3	122.75 (17)
C17—N5—C24	113.64 (15)	N4—C16—C15	129.35 (17)
C17—N5—B1	122.02 (15)	N3-C16-C15	106.25 (15)
$C_{24} N_{5} B_{1}$	124 24 (15)	N4—C17—N5	122.15(17)
$C_{24} - N_{6} - C_{1}$	116 48 (16)	N4-C17-C18	122.13(17) 130.88(17)
$C_{25} N_{7} C_{31}$	115 73 (16)	N5-C17-C18	105.00(17) 105.73(16)
$C_{25} N_{7} B_{1}$	120.98 (15)	C19 - C18 - C23	100.75(10) 120.82(18)
$C_{23} = N_7 = B_1$	118.03 (15)	$C_{10} = C_{10} = C_{20}$	120.02(10) 132.26(18)
$N_5 = R_1 = N_2$	102.03(15)	$C_{13}^{} C_{13}^{} C_{17}^{} C_{17}^{$	102.20(18)
N5 D1 N7	102.41(13) 112.84(16)	$C_{23} = C_{18} = C_{17}$	100.90(10)
$N_2 = D_1 = N_7$	112.04 (10)	$C_{20} = C_{19} = C_{18}$	117.69 (19)
N5 D1 N1	113.47(10)	C18 C10 H10A	121.1
N3—BI—NI	101.96 (15)	C18—C19—H19A	121.1
N3—BI—NI	102.49 (15)	C19 - C20 - C21	121.34 (19)
N/—BI—NI	119.45 (16)	C19—C20—H20A	119.3
N6—C1—N1	123.37 (16)	C21—C20—H20A	119.3
N6—C1—C2	128.62 (17)	C22—C21—C20	121.64 (19)
N1—C1—C2	106.19 (15)	C22—C21—H21A	119.2
C3—C2—C7	120.52 (18)	C20—C21—H21A	119.2
C3—C2—C1	132.17 (18)	C21—C22—C23	118.01 (19)
C7—C2—C1	107.09 (16)	C21—C22—H22A	121.0
C4—C3—C2	118.15 (19)	C23—C22—H22A	121.0
С4—С3—НЗА	120.9	C22—C23—C18	120.14 (17)
С2—С3—НЗА	120.9	C22—C23—C24	132.81 (18)
C3—C4—C5	121.31 (19)	C18—C23—C24	107.04 (16)

C3—C4—H4A	119.3	N6-C24-N5	122.07 (16)
C5—C4—H4A	119.3	N6—C24—C23	131.43 (17)
C6—C5—C4	121.65 (19)	N5—C24—C23	105.47 (15)
С6—С5—Н5А	119.2	C30—C25—C26	117.39 (18)
C4—C5—H5A	119.2	C30—C25—N7	122.60 (18)
C5—C6—C7	117.7 (2)	C26—C25—N7	120.01 (17)
C5—C6—H6A	121.1	C_{27} C_{26} C_{25}	121.2 (2)
C7—C6—H6A	121.1	C27—C26—H26A	119.4
C6-C7-C2	120.67 (18)	C_{25} C_{26} H_{26A}	119.4
C6-C7-C8	120.07(10) 132.07(19)	$C_{23} = C_{27} = C_{26}$	120.7(2)
C_{2} C_{7} C_{8}	106.08 (16)	C_{28} C_{27} H_{27A}	110.6
$N_{2} = C_{1} = C_{3}$	100.98(10) 122.84(16)	$C_{26} = C_{27} = H_{27A}$	119.0
N2 C8 C7	122.04(10) 120.21(17)	$C_{20} = C_{27} = H_{27} = H_{27}$	119.0 118.0(2)
$N_2 = C_0 = C_7$	129.21(17)	$C_{29} = C_{20} = C_{27}$	118.9 (2)
N1 - Co - C7	103.93(10) 102.42(17)	C_{29} C_{20} H_{20A}	120.6
N2 - C9 - N3	122.43(17)	$C_2/-C_{28}$ -H_28A	120.6
N2-C9-C10	130.26 (16)	$C_{28} = C_{29} = C_{30}$	121.0 (2)
N3—C9—C10	105.73 (15)	С28—С29—Н29А	119.5
C11—C10—C15	120.45 (17)	С30—С29—Н29А	119.5
C11—C10—C9	132.22 (17)	C29—C30—C25	120.9 (2)
C15—C10—C9	107.14 (15)	С29—С30—Н30А	119.6
C12—C11—C10	117.86 (18)	С25—С30—Н30А	119.6
C12—C11—H11A	121.1	N7—C31—H31A	109.5
C10—C11—H11A	121.1	N7—C31—H31B	109.5
C11—C12—C13	121.87 (19)	H31A—C31—H31B	109.5
C11—C12—H12A	119.1	N7—C31—H31C	109.5
C13—C12—H12A	119.1	H31A—C31—H31C	109.5
C14—C13—C12	120.76 (19)	H31B—C31—H31C	109.5
C14—C13—H13A	119.6		
C17—N5—B1—N3	37.5 (2)	C15—C10—C11—C12	-1.3 (3)
C24—N5—B1—N3	-138.68 (17)	C9—C10—C11—C12	-175.58 (19)
C17—N5—B1—N7	-87.3 (2)	C10-C11-C12-C13	2.1 (3)
$C_{24} N_{5} B_{1} N_{7}$	96.5 (2)	C11—C12—C13—C14	-0.9(3)
C17 - N5 - B1 - N1	143.34 (16)	C12-C13-C14-C15	-1.3(3)
$C_{24} N_{5} B_{1} N_{1}$	-32.8(2)	C13—C14—C15—C10	2.1 (3)
C16 = N3 = B1 = N5	-34.8(2)	C_{13} C_{14} C_{15} C_{16}	175 63 (19)
C9-N3-B1-N5	13372(17)	$C_{11} - C_{10} - C_{15} - C_{14}$	-0.8(3)
C_16 N3 B1 N7	88 3 (2)	$C_{10} - C_{10} - C_{15} - C_{14}$	17477(17)
$C_{0}N_{3}B_{1}N_{7}$	-1033(2)	C_{11} C_{10} C_{15} C_{14}	-175.80(17)
C_16 N2 R1 N1	-140.10(16)	C_{10} C_{10} C_{15} C_{16}	-0.24(10)
$C_{10} = N_{10} = D_{10} = N_{10}$	140.19(10)	$C_{2} = C_{10} = C_{13} = C_{10}$	0.24(19)
$C_{2} = 1 + 0 = 0 = 0$	20.3(2) 141.40(17)	C17 = N4 = C10 = N3	10.2(3) -152(12)(10)
$C_{23} = \frac{1}{10} \frac{1}{10} = \frac{1}{10} \frac{1}{10}$	1+1.47(1/) -11.8(2)	$C_{1} = \frac{14}{14} + \frac{16}{14} + \frac{16}{14$	133.12(19) -155.24(17)
$C_{25} N_7 D_1 N_2$	-11.0(2)	$\begin{array}{c} \text{C9-}\text{IN3-}\text{C10-}\text{IN4}\\ \text{D1-}\text{N2-}\text{C16-}\text{N4}\\ \end{array}$	-133.34(17)
$C_{23} = N / - B_{1} = N_{3}$	24.2 (2)	D1 - N3 - C10 - N4	14.4 (5)
$C_{25} N_{2} D_{1} N_{3}$	-129.11(18)	$U_{2} = N_{2} = U_{10} = U_{10} = U_{10}$	11.5 (2)
$C_{23} = N / - B_{1} = N_{1}$	-98.8 (2)		-1/9.02 (16)
C31 - N' - B1 - N1	107.9 (2)	C14—C15—C16—N4	-15.1 (3)
C8—N1—B1—N5	-133.49(17)	C10-C15-C16-N4	159.09 (19)

C1—N1—B1—N5	29.8 (2)	C14-C15-C16-N3	179.45 (19)
C8—N1—B1—N3	-27.7 (2)	C10-C15-C16-N3	-6.32 (19)
C1—N1—B1—N3	135.54 (16)	C16—N4—C17—N5	-7.6 (3)
C8—N1—B1—N7	101.4 (2)	C16—N4—C17—C18	157.72 (19)
C1—N1—B1—N7	-95.3 (2)	C24—N5—C17—N4	156.89 (18)
C24—N6—C1—N1	-9.3 (3)	B1—N5—C17—N4	-19.7 (3)
C24—N6—C1—C2	153.20 (19)	C24—N5—C17—C18	-11.6 (2)
C8—N1—C1—N6	152.83 (17)	B1—N5—C17—C18	171.81 (17)
B1-N1-C1-N6	-12.1 (3)	N4—C17—C18—C19	18.9 (4)
C8—N1—C1—C2	-13.0 (2)	N5-C17-C18-C19	-174.0 (2)
B1—N1—C1—C2	-177.97 (15)	N4-C17-C18-C23	-159.61 (19)
N6-C1-C2-C3	16.8 (3)	N5-C17-C18-C23	7.5 (2)
N1—C1—C2—C3	-178.39 (19)	C23-C18-C19-C20	-2.6 (3)
N6—C1—C2—C7	-157.64 (18)	C17—C18—C19—C20	179.1 (2)
N1—C1—C2—C7	7.2 (2)	C18—C19—C20—C21	2.8 (3)
C7—C2—C3—C4	-0.4 (3)	C19—C20—C21—C22	0.2 (3)
C1—C2—C3—C4	-174.19 (19)	C20—C21—C22—C23	-3.3 (3)
C2—C3—C4—C5	0.2 (3)	C21—C22—C23—C18	3.5 (3)
C3—C4—C5—C6	0.4 (3)	C21—C22—C23—C24	-177.12 (19)
C4—C5—C6—C7	-0.8 (3)	C19—C18—C23—C22	-0.6 (3)
C5—C6—C7—C2	0.6 (3)	C17—C18—C23—C22	178.12 (17)
C5—C6—C7—C8	173.7 (2)	C19—C18—C23—C24	179.91 (17)
C3—C2—C7—C6	0.0 (3)	C17—C18—C23—C24	-1.4 (2)
C1—C2—C7—C6	175.20 (17)	C1—N6—C24—N5	6.9 (3)
C3—C2—C7—C8	-174.65 (16)	C1—N6—C24—C23	-159.73 (19)
C1—C2—C7—C8	0.6 (2)	C17—N5—C24—N6	-158.89 (17)
C9—N2—C8—N1	7.4 (3)	B1—N5—C24—N6	17.6 (3)
C9—N2—C8—C7	-154.15 (19)	C17—N5—C24—C23	10.7 (2)
C1—N1—C8—N2	-151.92 (17)	B1—N5—C24—C23	-172.81 (17)
B1—N1—C8—N2	12.9 (3)	C22-C23-C24-N6	-16.4 (4)
C1—N1—C8—C7	13.3 (2)	C18—C23—C24—N6	163.04 (19)
B1—N1—C8—C7	178.11 (16)	C22—C23—C24—N5	175.3 (2)
C6—C7—C8—N2	-17.9 (3)	C18—C23—C24—N5	-5.2 (2)
C2—C7—C8—N2	155.87 (18)	C31—N7—C25—C30	19.0 (3)
C6—C7—C8—N1	178.1 (2)	B1—N7—C25—C30	-134.9 (2)
C2—C7—C8—N1	-8.09 (19)	C31—N7—C25—C26	-161.42 (18)
C8—N2—C9—N3	-7.2 (3)	B1—N7—C25—C26	44.7 (3)
C8—N2—C9—C10	156.40 (18)	C30—C25—C26—C27	2.5 (3)
C16—N3—C9—N2	155.68 (17)	N7—C25—C26—C27	-177.08 (19)
B1—N3—C9—N2	-13.7 (3)	C25—C26—C27—C28	-2.4 (3)
C16—N3—C9—C10	-11.4 (2)	C26—C27—C28—C29	0.6 (3)
B1—N3—C9—C10	179.27 (16)	C27—C28—C29—C30	0.8 (4)
N2—C9—C10—C11	15.9 (3)	C28—C29—C30—C25	-0.6 (3)
N3—C9—C10—C11	-178.48 (19)	C26—C25—C30—C29	-1.1(3)
N2—C9—C10—C15	-158.94 (19)	N7—C25—C30—C29	178.54 (19)
N3—C9—C10—C15	6.70 (19)		X -)