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Abstract 

A Bayesian treatment for phase calculation in the 
multiwavelength anomalous diffraction (MAD) techni- 
que is presented. This approach explicitly treats effects 
of errors correlated among measurements at different 
wavelengths and between Bijvoet pairs. The resulting 
method, which is called Bayesian correlated MAD 
phasing, gives proper statistical consideration to all data 
and does not give special treatment to data from a 
particular wavelength. Results obtained using Bayesian 
correlated MAD phasing and two other strategies on 
both a model test case and on data obtained in two actual 
MAD experiments are compared. Although all proce- 
dures performed well when the completeness of the data 
was high, it is shown that Bayesian correlated MAD 
phasing is more robust with respect to incompleteness 
of data than the other methods are. At 60% complete- 
ness the improvement over other methods for the 
examples given was nearly 50% in the correlation 
coefficients, and made a substantial difference in the 
interpretability of an electron-density map. 

1. MAD data and its analysis 

In the multiwavelength anomalous diffraction (MAD) 
method, crystallographic phases are estimated from the 
wavelength dependence of diffracted intensities when an 
X-ray beam from a tunable source is stepped over an 
absorption edge of some heavy atoms present in small 
numbers in the asymmetric unit of a crystal (Karle, 
1980). MAD experiments measure amplitudes of 
Bijvoet pairs F + and F-  for a crystal at two or more 
wavelengths chosen so that the f '  values for the heavy 
atoms vary as much as possible among wavelengths and 
so that the f "  values are as large as possible 
(Hendrickson, 1985). As in a multiple isomorphous 
replacement (MIR) experiment, the locations of heavy 
atoms within the asymmetric unit are generally obtained 
using a Patterson or a difference Patterson synthesis, 
and parameters describing these heavy atoms are 
refined. Estimates of heavy-atom structure factors 
calculated from the heavy-atom model at each wave- 
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length, together with the observed F + and F - ,  form the 
basis for MAD phase calculations. 

A major strength of MAD lies in the perfect 
isomorphism of a given crystal at different wavelengths, 
in contrast to MIR in which the heavy-atom derivatives 
are frequently insufficiently isomorphous with the 
native structure to be usable. MAD has proven 
exceptionally useful for phasing macromolecular struc- 
tures (Hendrickson, 1991) and in a number of 
laboratories has become the technique of first choice 
(e.g. Hendrickson et al., 1989; Ramakrishnan, Finch, 
Graziano, Lee & Sweet, 1993; Leahy, Aukhil & 
Erickson, 1996; Peat et al., 1996). 

Although MAD phasing is conceptually somewhat 
like MIR, analysis of MAD data is less straightfor- 
ward and a number of approaches to MAD phasing 
have been proposed and used. One widely used 
approach (Karle, 1980; Hendrickson, 1985) combines 
an estimate from the measured data of the phase 
difference A~0 (between the overall structure factor 
for a reflection and the heavy-atom structure factor 
for that reflection) with an estimate of the heavy-atom 
structure factor calculated from the heavy-atom model 
to give a phase estimate for the overall structure 
factor. While this approach has the advantage of 
treating all data on an equal basis, it is not ideal in 
that the information embodied in the heavy-atom 
model is not directly used in estimating Aqg. Some 
related approaches make use of the heavy-atom model 
in a manner analogous to MIR phasing (Pahler, Smith 
& Hendrickson, 1990; Burling, Weis, Flaherty & 
Bl-finger, 1996). 

Another approach treats the data measured at one 
wavelength as a 'native' data set and data at the other 
wavelengths as isomorphous derivatives just as in the 
MIR method (Ramakrishnan et al., 1993; Ramakrish- 
nan & Biou, 1996). Heavy-atom structure factors for 
comparison of 'native' and 'derivative' data sets are 
then calculated using the differences in heavy-atom 
scattering factors at the wavelengths used from the 
'native' and derivative data sets. Although this approach 
is simple and fairly robust, it has the disadvantage that 
data at the 'native' wavelength is treated in a special 
way. If data are missing at that wavelength then no 
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phasing information is available for the missing 
reflections. 

Yet another approach to MAD phasing is one in 
which all the measured MAD data are converted to a 
form identical to single isomorphous replacement with 
anomalous scattering (SIRAS) (Terwilliger, 1994b, 
1996). No matter how many wavelengths data are 
collected at, the information obtained in a MAD 
experiment consists essentially of three independent 
numbers: an anomalous difference that (if small 
enough) scales between wavelengths according to the 
value o f f "  at each wavelength, a dispersive difference 
that scales between pairs of wavelengths according to 
the differences in values of f ' ,  and a value of the 
structure factor corresponding to all atoms but the heavy 
atoms in the structure. These three values are readily 
calculated from the original MAD data and can be used 
to construct a pseudo-native data set and a pseudo- 
derivative with anomalous scattering data set that can be 
analyzed with conventional SIRAS approaches (e.g. 
Blundell & Johnson, 1976). This pseudo-SIRAS 
approach has the advantage that all the observed 
MAD data are treated equally, but the disadvantage 
that this approach depends on a synthetic data set 
derived from the observed MAD data, a scheme for 
which statistical evaluation of the most probable phase 
is complicated. 

Although all the approaches to MAD phasing 
described above work quite well, none makes full use 
of the heavy-atom model and at the same time takes into 
account the correlation of errors. All methods in 
common use thus far treat errors among measurements 
at different wavelengths as if they were independent, 
even though in practice errors frequently are signifi- 
cantly correlated due to errors in the heavy-atom model. 
Bayesian approaches (Box & Tiao, 1973; Box, 1980) to 
this problem are particularly attractive because through 
them information about possible sources of error can be 
explicitly described and used to improve phase esti- 
mates. Recently, Bayesian maximum likelihood refine- 
ment of heavy-atom parameters has proven very useful 
for macromolecular structure determination (Otwi- 
nowski, 1991), and Bayesian approaches to analysis of 
MIR data with correlated errors have been developed 
(Terwilliger & Berendzen, 1996). A very general 
Bayesian framework on which analysis of MAD data 
can be hung has been presented (Chiadmi, Kahn, de la 
Fortelle & Fourme, 1993). This has recently been 
implanted in the program SHARP (de la Fortelle & 
Bricogne, 1997) and applied to MAD structure 
determination (Boissy et al., 1996). 

In the present work, we employ a Bayesian approach 
to the specific problem of calculating from MAD data 
while taking into account correlated errors between 
measurements at different wavelengths and between 
Bijvoet pairs at the same wavelength. The resulting 
analysis approach, which we call 'Bayesian correlated 

System 

Model 

IF3-C 

GVP 

Table 1. Selenium scattering factors 

Wavelength (.~) f '  f t t  

0.9798 -9 .8  2.9 
0.9794 -8 .6  4.9 
0.9000 -1 .6  3.3 

0.9802 -9 .5  3.2 
0.9795 -7 .4  5.8 
0.9150 -1 .7  3.4 

0.9798 -9 .6  2.2 
0.9794 -7 .7  5.8 
0.9000 -1 .6  3.4 

MAD phasing', has advantages over the approaches 
mentioned above because it treats all the data on an 
equal basis, because it takes the heavy-atom model and 
its correlated errors into full consideration, and because 
it uses the measured data directly (e.g., without 
conversion to pseudo-SIRAS data). 

2. Bayesian estimation of MAD phases 

The approach we will use here is closely related to our 
approach to MIR phasing in the presence of correlated 
non-isomorphism (Terwilliger & Berendzen, 1996). 
The key element in both is the recognition that the 
analyses of measured structure factors (whether related 
as for different derivatives, Bijvoet pairs, or for 
different wavelengths) are not independent. In MIR, 
this effect can arise from non-isomorphism that is 
shared among derivatives; errors in estimating deriva- 
tive structure factors based on native structure factors 
and the heavy-atom model will then be correlated 
among derivatives. In severe cases of correlated error, 
proper treatment of this correlated error can dramati- 
cally improve the accuracy of phase calculations. 
Similarly, in a MAD experiment, errors in the heavy- 
atom model will be shared between all Bijvoet pairs and 
among all wavelengths. Such correlated errors can arise 
not only through failure to identify and model all heavy- 
atom binding sites, but also through the more common 
problem of inaccuracy in estimating heavy-atom 
coordinates and thermal parameters. Although we do 
not treat them explicitly here, other contributions to 
correlated error can include the effects of radiation 
damage in experiments where different wavelengths are 
collected in separate sweeps, and inaccuracies in 
scaling. In MAD phasing methods that involve inter- 
mediate estimates of structure factors without heavy- 
atom contributions (e.g. Pahler et al., 1990; Burling et 
al., 1996), errors in calculated synthetic structure 
factors will lead to correlated errors at all wavelengths, 
too. 

We wish to obtain, for a particular reflection in a 
MAD experiment, a probability distribution for the 
complex structure factor F k corresponding to all the 
atoms in the structure of interest at a given wavelength 
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2 k in the presence of errors that may be correlated 
among wavelengths or between Bijvoet pairs. ~k need 
not be a wavelength at which a measurement took place; 
it is merely a bookeeping device, a reference wave- 
length with particular values of f, f ' ,  and f "  for the 
anomalously scattering atoms to which all measure- 
ments and calculations will be referred. A useful 
reference 'wavelength' is one for which f '  and f"  are 
defined to be equal to zero, that it, a 'wavelength' at 
which only normal scattering and no anomalous 
scattering occurs. In this case the Fourier synthesis 
obtained using the structure factors F k will be an 
electron-density map corresponding to all the atoms in 
the structure. These F k are equivalent to the °Fr(h  ) in 
the MAD analysis approach described by Hendrickson 
(Hendrickson, 1991). We begin by describing the F + 
and F -  structure factors at each wavelength in terms of 
a structure-factor amplitude and phase at 2 k (F k and 0), 
the heavy-atom structure factor calculated from a 
model, and correlated and non-correlated sources of 
error. We will then integrate over possible values of the 
error terms to obtain expressions for probability 
distributions governing F k and 0. As in our previous 
treatment of MIR data, the calculations will be along the 
lines of the Blow-Crick formulation, and we will 
approximate many of the component probability dis- 
tributions and complex sums to first order (e.g., by 
normal distributions). It is important to note that only 
the error terms are approximated in this fashion. This 
means that the analysis is equally applicable to cases in 
which anomalous scattering effects are large or small. It 
only becomes inapplicable in cases where the errors in 
estimates of scattering from the heavy-atom model are 
large relative to the total scattering factors, a case that is 
rare in MAD phasing. 

2.1. Correlated and uncorrelated errors 

X-ray diffraction from the non-anomalously scatter- 
ing atoms in a protein crystal can be described for a 
particular reflection by a complex structure factor F N 
For a MAD experiment, we will have to consider a set 
of structure factors for each reflection, since measure- 
ments are typically made for both F + and F -  at each of 
several wavelengths. We can write the complex 
structure factor corresponding to F + at the measured 
wavelength 2j, denoted by F[ ,  as 

= + [lrf,  + + S;I. (1) 

The second term on the right, F+~, is the calculated 
structure factor of the heavy atoms at 2j, which 
includes the effects of including anomalous scattering. 
This calculation is based on the current model, which 
describes the heavy-atom positions, occupancies, and 
Debye-Waller factors. The model is presumed to 
contain some errors, which we describe by the third 
and fourth terms, R+(2j )+  S[.  R+(2j) corresponds to 

errors in the heavy-atom model itself and as such is 
assumed to be correlated across all wavelengths and 
to have a simple wavelength dependence determined 
by the nature of the anomalously scattering atoms in 
the structure. The last term, S.. + represents any error 
in F~. ~ that J '  is specific to wavelength ),j. The sum 
R+(/.~)'+S + accounts for all errors arising from 
inadequacies of the model, whether arising from 
errors in the heavy-atom model or other sources. A 
similar expression can be written for Fj-. Note that 
we have not yet included experimental errors. 
Application of (1) again allows us to express F [  in 
terms of the complex structure factor at the reference 
wavelength 2, as 

F [  = F~- + ( F+cHj - -  F+cH k )  
(2) 

+ - + ( S ;  - 

Defining ~+ ± ~'+" ~'+' ~'+: L k T - H i  -- rnk as r j  , putting in the 
explicit wavelength dependence of the R+'s  (the 
heavy-atom model error terms), which are propor- 
tional to f + f ' ( 2 j ) +  if"(2j), and defining the reference 
wavelength ,~k so that both f'(2k) and f"(2k) are equal 
to zero, we obtain 

F + = F +c + f i R  + ~"R + (S~- - S~-), (3) 
J 

where R is the normalized error in the non-anomalous 
part of the heavy-atom scattering factor. An expression 
for Fj- can be written that differs by the substitution of 
- i  for the i in (3). At this point, calculations can be 
considerably simplified if we allow that the error terms 
are small compared with F +c. This assumption was used 
in our previous treatment of correlated MIR phasing 
and will generally be quite good. It will only be a poor 
assumption if the errors in the model describing the 
anomalously scattering atoms are exceptionally large 
and at the same time the scattering from these atoms is 
exceptionally strong. In the usual case where the error 
terms are small, the contributions to Fj +, the amplitude 

+ of Fj , will be dominated by the components parallel to 
+~ Fj :. Introducing new notation we can write Fj + as 

approximately given by 

Fj + ~ IF~Cl + f iR '  +f j 'R"  + Sf,  (4) 

where R' and R" refer to the components of R 
parallel and perpendicular to F + ' ,  respectively, and 
where S + refers to the component of S~--S~- 
parallel to F [  ' .  Rewriting IFyI, the calculated 
amplitude for this reflection at wavelength 2j, as 
Fj +C, and expressing the observed wavelength struc- 
ture factor FT° as the sum of F 7 and a measurement 
error, e l ,  we obtain 

V?° V?C + :'R' + :"Z ' ,j ,j + sT + 7 (5) 

The amplitude of the measured structure factor for the 
F + observation at 2j therefore differs from that 
calculated based from the structure factor at the 
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arbitrary wavelength 2 k by two terms with correlations 
across all wavelengths, f iR'  and f/ 'R", and two terms 
unique to the jth F + observation, S/ and e l .  General- 
izing (5) for F + and F -  measurements we can write that 

F 7 _~ Fj¢ + fiR'  i f j ' R "  + Sj + e:., (6) 

where the positive branch is for F + and the negative 
branch is for F - .  

2.2. Probability distribution for  F k and 0 

To obtain a probability distribution for the structure- 
factor amplitude and phase at wavelength 2 k (F k and 0), 
we begin by using Bayes' rule (Box & Tiao, 1973) to 
write an expression for the posterior probability 
distribution for F k and 0 given that we have made 
measurements F ~ ' . . . F  ° of the n structure factors are 
various wavelengths for this reflections, 

p(Fk, OIF~ . . .F~,) o~ p(F~ . . .F°IFk, O)Po(F k, 0), (7) 

where the measurements F~I... F ° can each be either an 
F + or and F -  observation. The prior probability 
distribution for the structure factor at wavelength 2 k, 
Po(Fk, 0), is usually flat and uninformative because we 
do not know anything about this structure factor in 
advance. However, if there is information available 
from another experiment this probability distribution 
can reflect this prior information. 

We cannot directly calculate the probability distribu- 
tion p ( F ~ . . .  F°IFk, O) on the right hand side of (7), but 
using (4) and (5) we can write the related probability 
distribution p(Ff  . . . F°IFk, O, R', R", S 1 . . .  Sn) assuming 
that the ej are normally distributed, 

P(F~. . .F°IFk ,  O,R' ,R" ,SI  . . . S , )  cx 1-I N ' ( F T - F j ,  O-~), 
j=l.n 

(8) 
where N'(x, o-2) = 1/o-(2n)l/2 exp(_x2/2o-2) represents 
a normal distribution with variance o "2, and the o-j are 
the uncertainties in measurement of F 7. (8) states that if 
we knew the values of F k, 0, R', R", and the Sj, then the 
probability that we would measure a value Ff is 
normally distributed about Fj, calculated from (4) 
using the F + or F -  term as appropriate. 

If we obtain information about distributions for R', 
R", and the Sj, we can obtain an estimate of 
p ( F f . . .  F°IFk, O) by integrating (8) over the 'nuisance' 
variables R', R" and S i in the process known as 
'marginalization' (Box, 1980). Assuming that R', R" 
and Sj are independent of F k and 0, we can write, 

p(F~. . .F°IFk, O) (x f p (Ff  . . .F°IFk, O,R',R",  SI . . .an) 

x po(R') dR'po(R" ) 1--I po(Sj) dSj, 
j=l,n 

(9) 

where Po(R'), Po(R") and p0(Sj) are estimates of the prior 
probability distributions for R', R" and Sj. 

2.3. Prior probability distributions for  the errors 

We now make estimates of the prior distributions 
po(R'),po(R"), and Po(S1). . .po(S,) .  We assume as in 
our treatment of correlated MIR phasing that the 
probability distributions that govern the magnitudes of 
R', R" and the Sj are independent of each other so that 
the value of any of their products averaged over many 
reflections would be zero. So long as the previous 
assumptions that R', R" and Sj are small relative to F k 
hold, this is reasonable. However, while the assumption 
of independence is good if the errors in the heavy-atom 
model arise from inaccurate positioning of heavy-atom 
sites or from underestimates of occupancies of heavy- 
atom sites, it will be a poorer assumption if the 
occupancies of heavy-atom sites are overestimated. In 
this case, the components of R' and R" from the heavy- 
atom model error will be negatively correlated with Ff. 

So long as error in the heavy-atom structure factor R 
arises from scattering or changes in scattering at a 
number of locations in the unit cell of the crystals, its 
prior probability distribution can be quite reasonably 
described by Wilson statistics (Wilson, 1949). In this 
case the components R' and R" along the direction of the 
native structure factor will have normal prior prob- 
ability distributions with variances, dependent on the 
resolution of the reflection. Since R' and R" are 
orthogonal projections of the same structure factor R, 
their prior probability distributions are identical and 
given by, 

po(g') = p0(g") = N'(IRI, otEZ), (10) 

where c~ is equal to the expected intensity factor 
(Stewart & Karle, 1976) for centric reflections and 
half this value for acentric reflections (Terwilliger & 
Eisenberg, 1987) and E 2 is a measure of the total 
normalized error in the heavy-atom model. 

We can estimate the normalized error in the heavy- 
atom model E 2 using a method similar to the one we 
previously developed for estimation of errors for single 
isomorphous replacement and for correlated MIR 
phasing (Terwilliger & Eisenberg, 1987). From (5) 
we can write two correlations, each of which is 
expected to yield a reasonable estimate of E 2 for an 
appropriate range of resolution if the values of F k and 0 
were known exactly. Changing notation slightly to refer 
to anomalous differences and average amplitudes of 
structure factors at each wavelength, these are, 

((A ° - A~)(A:. ° -- A~)/4o~f/'~") "- E 2, (11) 

((F ° - Ff)(F: ° - Ff ) l~ f i '  f j )  "" E 2, (12) 

where A ° is the anomalous difference (F +° - F T ° ) ,  F ° 
is the average structure factor (F+°+ F-° ) /2 ,  and the 
angled brackets represent averages over all pairs of 
measured wavelengths. 



THOMAS C. TERWILLIGER AND JOEL BERENDZEN 575 

We do not know the value of F k and 0 in (11) and 
(12), so our best estimate of E 2 from each reflection is 
given by the weighted average of the terms in (11) and 
(12), integrated over all values of F k and 0, and 
weighted by the phase probability to be developed 
below. 

The quantities Sj, representing errors unique to a 
particular F + or F -  measurement at wavelength )~j, can 
be analyzed in a similar fashion. Assuming a normal 
distribution of errors and that the mean-square ampli- 
tudes of these errors for this wavelength are given by 
ctA 2, this leads to the prior probability distribution for Sj 
of 

po(Sj) = N'(Sj, ctA2). (13) 

In a MAD experiment, the principal sources of error 
should ordinarily be instrumental uncertainties in 
measurement and errors in the heavy-atom model. If 
these are the only errors, then the values of A 2 will all 
be zero and the Sj can be neglected. In some cases, there 
may be errors in measurement not reflected in the 
estimated variances, o'} and in those cases the appro- 
priate values of A 2 may be non-zero. We will assume 
here that the A 2 in a particular shell of resolution all 
have the same value, A 2, and that this value is usually 
zero. A method to estimate its value if it is non-zero will 
be described below. 

2.4. The Bayesian correlated MAD phasing equation 

We are now in a position to calculate the probability 
distribution for the desired structure factor at wave- 
length 2k, Fk. Substituting (8), (10) and (13) into (9), 
and using (4) to replace Fj, we can write that 

The first term in (17), X 2, is the familiar statistic from 
the case that there are no correlated errors R' and R", 
namely 

x E ( 8  ° -  = F) ) /o' . j ,  (18) 
j=l,n 

where 

4~ = c~A~ + 4 "  (19) 

The second term in (17) is a correction due to the 
correlation of errors, whose terms are, 

Cl f ; ( F ; -  c = F~ )~o'B,, (20) 
j=l.n 

c2 = E + f ; ' ( F ;  - c F~ )/o'8,, (21) 
j=l,n 

D1 = 1/c~E 2 + ~ JJ¢'2/"2/~%' (22) 
j=l.n 

D2 1 / a E 2 +  ~ tt,2- 2 = Jj /o-Bj, (23) 
j=l,n 

Dl 2 ~ _.[_ . . . . . .  2 = Jj Jj Io-kj, (24) 
j=l,n 

and where the + and - choices again correspond to F + 
and F -  measurements, respectively. If there is no 
correlated heavy-atom error then E 2--  0 and the 
correction term is zero as well. The Bayesian correlated 
MAD phasing equations (16)-(24) are similar to the 
correlated MIR phasing equation (Terwilliger & 
Berendzen, 1996), except that for MAD phasing there 
are effectively two correlations to consider, correlations 
between Bijvoet pairs and correlations among measure- 

p ( F f . . . F ° I F k ,  O) c~ f./V'(R', o~E 2) dR'N'(R", orE 2) dR" 1-I N'[F) - (Fj ° + f i R '  + f } ' R " +  Sj), %.2] JV'(Sj, c~A 2) dSj (14) 
j=l,n 

where the + or - signs are taken for the F + and F -  
observations, respectively. The integrations over the Sj 
can each be carried out independently, leading to 

ments at different wavelengths, instead of a single 
principal correlation for MIR phasing, the correlated 
non-isomorphism. 

p(F~' . . .  U'F, k, O) cx,l'N'(R', aE2) dR' I] N'(R",aEZ) dR"Af[Ff -(F) +f'R'+JJ fj'R"),a}. + c~AZ]. 
j=l.n 

(15) 

Finally, noting that R' and R" are each present in each 
term of the product in (15), carrying out the integrations 
over R' and R", and substituting of the result into (7), 
yields the Bayesian correlated MAD phasing equation, 

p(F  k, O) cx Po(Fk, 0) exp(--X2/2), (16) 

where 

X2 8 = X2 _ C2D2 + C2DI - 2C, C2D,2 
DID2 _ O~12 (17) 

As mentioned above, in most circumstances the 
values of the A 2 will be zero for MAD phasing and 
o'2 becomes simply the experimental uncertainty of f . In 
some cases, however, there may be errors in measure- 
ment not reflected in 2 the variances o-). In this case, an 
overall estimate of A 2 to be applied to all reflections in a 
range of resolution may be estimated by identifying the 
value of A 2 that leads to an overall X 2 value equal to the 
number of measurements. This is similar to the 
procedure of renormalizing variances by finding a 
scale factor that leads to a reduced X 2 value of 
approximately unity (Bevington, 1969). 
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Note that (16)-(24) yield a probability distribution for 
the vector F k. This means that a two-dimensional 
integration over Fk and 0 must be carried out to obtain 
all the available information on this structure factor. 

The centroid or 'best '  electron-density map is then one 
in which all values of F k are considered and are 
weighted by their relative probabilities. Similarly, the 
'best '  estimate of F k is the one in which this quantity is 

0.70 

0.62 

0.54 

0.46 

0.38: 

0.30 

0.70 V 

0"40 I 

0.30 

0.201 

• Bayesian 

• pseudo-MIR 
F + MADLSQ 
I I I I I 

(a) 

IF3-C 

I I I I 

(b) 

0.70 

0.60 

0.50 

0.40 

0.30 

0.20 

GVP 

I A & I I 

40 50 60 70 80 90 100 

(c) 
% completeness 

Fig. 1. Analysis of three-wavelength MAD data with varying completeness. The quality of the MAD phasing was evaluated in each case by 
calculating the correlation coefficient between the 'best' (centroid) electron-density map for each method and a reference electron-density map 
calculated either from known structure factors for the simulated data set or from the electron-density map calculated from the refined 
structures of the two proteins. (a) A model MAD data set containing 1730 reflections with random phases in space group C2 from 3 to 20 A 
constructed previously was used as a test data set (Terwilliger, 1994a). Simulated MAD data from the model was calculated at three 
wavelengths as shown in Table 1. Random errors (mean of 5 %) were added to the MAD data to simulate measurement errors. The heavy-atom 
model used throughout consisted of two of the three Se atoms. The heavy-atom parameters were refined using origin-removed difference 
Patterson refinement after conversion of the full MAD data set to pseudo-SIRAS data using MADMRG (Terwilliger, 1994b). (b) and (c) 
Analysis of three-wavelength MAD data from the C-terminal domain of initiation factor 3 (IF3-C) and gene V protein (GVP) with varying 
amounts of missing data. MAD data sets collected on selenomethionne-containing IF3-C and GVP were analyzed as in (a) by calculating the 
correlation coefficient between MAD electron-density maps and maps calculated from the refined coordinates of IF3-C (Biou et al., 1995, 
PDB entry ltig.ent) or GVP (Skinner et al., 1994, PDB entry lbgh.ent). The IF3-C MAD data had 86% of the possible data from 20 to 1.95 A 
with F > 0 in space group C2, and the GVP data set had 94% of the possible data from 20 to 2.6:k with F > 0 in space group C2. The heavy- 
atom models used for the IF3-C and GVP data sets contained two and one Se atoms in each asymmetric unit, respectively. 
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averaged over all F k and 0, weighted in the same way. 
In practice, we find that the two-dimensional integration 
is very nearly approximated by a one-dimensional 
integration over 0, and choosing for each 0 the most 
likely value of F k. This is the method that will be used 
here. 

3. Evaluation of Bayesian correlated MAD phasing 

3.1. Application to a model data set 

We first examined the utility of Bayesian correlated 
MAD phasing by applying it to a set of model MAD 
data we had previously used to test analysis of MAD 
data as pseudo-SIRAS data (TerwiUiger, 1994a,b). This 
data set contains 1730 reflections from 20 to 3 A at three 
wavelengths. The amplitudes of structure factors are 
derived from a model of a polypeptide chain with 86 
amino acids containing three Se atoms. The heavy-atom 
model used in analysis included only two of the three Se 
atoms. One set of heavy-atom parameters was used for 
all the phase calculations so that changes in model 
parameters would not bias comparison of the phasing 
formulations. Fig. l(a) shows a comparison of the 
quality of electron-density maps obtained using Baye- 
sian correlated MAD phasing, using pseudo-MIR 
phasing with 21 data as 'native' (Ramakrishnan et al., 
1993; Ramakrishnan & Biou, 1996), and using 
MADLSQ and the MADSYS suite of programs (Hen- 
drickson, 1991). When all the data is included in the 
analysis, the three phasing methods give comparable 
results, with correlation coefficients between calculated 
and known electron-density maps ranging from 0.62 to 
0.68. When fewer data are available for analysis, 
however, Bayesian correlated MAD phasing performs 
better than either the MIR-like or the MADLSQ 
procedures. At a completeness of 60%, for example, 
Bayesian correlated MAD phasing yields a correlation 
coefficient to the known map of 0.58, while the MIR- 
like procedure has a correlation coefficient of 0.43 and 
the MADLSQ approach yields a correlation coefficient 
of 0.41. There are most likely several reasons for the 
relative insensitivity of the correlated phasing procedure 
to missing data. One is that in cases where measure- 
ments of both F + and F -  at the 'native' wavelength are 
missing, the MIR-like procedure produces no phase 
information at all, and the MADLSQ procedure has a 
greatly reduced accuracy. A second reason is that only 
the Bayesian correlated MAD phasing method takes into 
account the very large correlated error that is present in 
this simulated data set and model, in which the structure 
factor from the third selenium site was not included. 

3.2. Application to two real cases 

We next compared the three approaches on two 
structure that have recently been solved using MAD 
phasing, the C-terminal domain of initiation factor 3 

(IF3-C), which was solved using MIR-like MAD 
phasing (Biou, Shu & Ramakrishnan, 1995), and gene 
V protein (GVP) from bacteriophage f l ,  which was 
solved using the pseudo-SIRAS approach with 
MADMRG (Skinner et al., 1994). For both data sets, 
heavy-atom parameters were again obtained just once 
and used for all the phase calculations on that data set. 
The quality of the phasing obtained was evaluated by 
calculation of the correlation coefficient of the resulting 
electron-density maps to those calculated from the 
refined models of IF3-C and GVP, respectively. Fig. 
l(b) shows a comparison of correlated MAD phasing 

(a) 

(b) 

Fig. 2. Portion of electron-density maps obtained for IF3-C using (a) 
Bayesian correlated MAD phasing and (b) MADLSQ. The electron- 
density maps are contoured at 1.5 times their r.m.s, values and are 
superimposed on the refined structure of IF3-C (Biou et al., 1995). 
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with MIR-like phasing and MADLSQ-based phasing on 
IF3-C. This data set had about 86% of the data with 
F > 0, and when all the available data was included in 
the analysis all three methods give correlations in the 
range 0.61-0.64 to the Feaze map. As fewer data are 
available for analysis, however, Bayesian correlated 
MAD phasing once again proves more robust than the 
other two methods, yielding a correlation of 0.58 at a 
completeness of 60% compared with 0.50 for the MIR- 
like procedure and 0.47 for MADLSQ. 

A similar result was obtained for GVP. When all 
available data is used to calculate phases, all three 
procedures work equally well, with correlation coeffi- 
cients to the Fcalc map ranging from 0.47 to 0.48. 
Bayesian correlated MAD phasing is again less sensitive 
than the other two approaches to the effects of missing 
data. When 61% of the data is used, for example, the 
Bayesian correlated MAD phasing procedure still has a 
correlation coefficient of 0.42 while the MIR-like and 
MADLSQ procedures each have a correlation of 0.35. 

We next examined whether the insensitivity of the 
Bayesian correlated MAD procedure to missing data 
demonstrated in Fig. 1 would have a marked effect on 
one's ability to interpret an actual electron-density map. 
A region of the electron-density maps calculated for 
IF3-C using correlated phasing and using MADLSQ, 
based on 60% of the data are shown in Fig. 2, along 
with the coordinates of the refined model of IF3-C. In 
this calculation, the estimated figure of merit of the map 
phased with Bayesian correlated MAD phasing was 
0.65, with 6002 or 6005 reflections phased, and the 
correlation of this map with a map calculated from the 
refined coordinates of IF3-C was 0.58. The estimated 
figure of merit of the MADLSQ-phased map was 0.85, 
with 3522 of 6005 reflections phased, and the correla- 
tion of this map to the Fcalc map was 0.47. It is clear 
from Fig. 2 that in this case the higher correlation of 
final and Bayesian correlated MAD phasing maps 
corresponds to features that would facilitate map 
interpretation. 

4. Assessment of the approach 

Analysis of a MAD data set that is accurately measured 
and highly complete can be readily accomplished with 
any of several existing methods (e.g., Hendrickson, 
1985, 1991; Pahler et al., 1990; Burling et al., 1996; 
Ramakrishnan et al., 1993; Ramakrishnan & Biou, 
1996; Terwilliger, 1994b, 1996). Our results and those 
of more extensive comparative studies (Ramakrishnan 
& Biou, 1996) indicate there are only small differences 
in the quality of the electron-density maps obtained with 
any of a variety of methods if the data are complete. 

When a measured MAD data set is significantly 
incomplete, however, different approaches display a 
wide variation in the quality of phasing obtained. Our 
tests indicate that the phasing procedure described here, 

which treats all Bijvoet pairs and measurements of a 
reflection at different wavelengths on an equal footing 
and which takes into account the correlations of errors 
among these measurements, is much more robust to the 
effects of missing data than are others in common use. 
Fig. l(b) shows that Bayesian correlated MAD phasing 
operating on a data set that is 70% complete, for 
example, can produce an electron-density map of a 
quality for which MADLSQ (Hendrickson, 1985) would 
have required a 86% completeness in order to equal. 
We conclude from these tests that Bayesian correlated 
MAD phasing will be a particularly useful tool in the 
analysis of MAD data sets that are missing a substantial 
fraction of the data. We also expect that correlated 
MAD phasing will be useful in cases where there are 
very small anomalous and dispersive differences 
because this approach takes the correlated errors that 
are present in these cases into consideration. 

The estimates of the structure-factor amplitudes F k 

obtained from this analysis can be expected to be 
improved over those measured at any particular 
wavelength because they include information from all 
the measured data. For example, if data are missing at 
wavelength ,~1 for a particular reflection, then a solvent- 
flattening analysis using the ,~ data would be missing 
this reflection, while F k data would still be available for 
this reflection if any data were measured at any other 
wavelength. For this reason, not only Fourier 
syntheses, but also any other analyses of the MAD 
data carried out after Bayesian correlated MAD phasing 
ordinarily should optimally be carried out using the F k 
estimates, not using the raw measured data at one 
wavelength. 

The authors wish to thank V. Ramakrishnan for use 
of the IF3-C MAD data. The authors are also grateful 
for support from the National Institutes of Health and 
from the Laboratory Directed Research and Develop- 
ment program of Los Alamos National Laboratory. 
Bayesian MAD phasing has been implemented in 
version 4 of the package HEAVY, available by 
contacting TT at terwilliger@lanl.gov. 
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