
1998 International Union of Crystallography Acta Crystallographica Section D
Printed in Great Britain ± all rights reserved ISSN 0907-4449 # 1998

1139

Acta Cryst. (1998). D54, 1139±1146

Protein Sequence Alignment Techniques

Geoffrey J. Barton

European Molecular Biology Laboratory Outstation, The European Bioinformatics Institute, Wellcome Trust
Genome Campus, Hinxton, Cambridge CB10 1SD, England. E-mail: geoff@ebi.ac.uk

(Received 21 May 1998; accepted 12 June 1998)

Abstract

The basic algorithms for alignment of two or more
protein sequences are explained. Alternative methods
for scoring substitutions and gaps (insertions and
deletions) are described, as are global and local
alignment methods. Multiple alignment techniques are
explained, including methods for pro®le comparison. A
summary is given of programs for the alignment and
analysis of protein sequences, either from sequence
alone, or from three-dimensional structure.

1. Introduction

Sequence-alignment techniques are central to modern
molecular biology. Alignment methods may be used to
search sequence databases for potential homologues.
Having identi®ed a family of sequences, then alignment
methods may be used to generate a multiple sequence
alignment that allows the identi®cation of structurally
and functionally important residues. Many different
programs for pair-wise and multiple sequence alignment
exist. In this article the underlying algorithms used by
these programs are summarized.

2. Alignment of two sequences

The most commonly used sequence-alignment techni-
ques have three components. The scoring scheme, the
gap model and the alignment-optimization algorithm.

2.1. The scoring scheme, substitution or pair-score matrix

The scoring scheme is a 20 � 20 matrix of numbers
that de®nes the value for aligning each of the possible
amino-acid pairs. The term substitution is often used for
the alignment of two amino-acid residues, since scoring
schemes are frequently derived from a model of evolu-
tion that considers two protein sequences to be related
via a series of point mutations. The pair-score matrix is
usually symmetrical, since Ala aligned with Gly has the
same meaning as Gly aligned with Ala. The simplest
scoring scheme is the identity matrix. This scores 1 for an
exact match of two amino acids, and 0 for a mismatch.
Although the identity matrix is appealing in its simpli-
city, it does not re¯ect adequately similarities observed

between proteins that have similar three-dimensional
structures. More sophisticated schemes take into
account conservative substitutions. For example, Val
aligned with Leu might score +4, but Glu with Leu, ÿ3.
Until recently, matrices referred to as PAM or Dayhoff
were the most widely used. PAM matrices were derived
by ®rst aligning a small number of families of protein
sequences by eye, then counting the observed amino-
acid substitutions within the families and normalizing
the counts before extrapolating the observed substitu-
tions to those expected at different evolutionary
distances (Dayhoff et al., 1978). The measure of evolu-
tionary distance used was the percentage of accepted
mutations, or PAM, and the most commonly applied
matrix was that at 250 PAMS, normally known as
PAM250.

In spite of its small training-set size, the PAM250
matrix captures the principal physico-chemical proper-
ties of the amino acids (Taylor, 1986a). Furthermore,
updates to the PAM matrix obtained from much larger
data sets, for example, the PET92 matrix (Jones et al.,
1992), show few differences to PAM250, except for
substitutions with the less common amino acids such as
tryptophan.

The BLOSUM series of matrices (Henikoff &
Henikoff, 1993) are also derived from an analysis of
observed substitutions in protein families. Unlike PAM
matrices, the starting point for BLOSUM is a set of
alignments without gaps, obtained by the BLAST
(Altschul et al., 1990) algorithm (Henikoff & Henikoff,
1992). The alignments include sequences that share
much lower sequence similarity than those used in the
Dayhoff studies. In extensive tests of sequence database
searching (Henikoff & Henikoff, 1992), pair-wise align-
ment (Vogt et al., 1995) and multiple sequence align-
ment (Raghava & Barton, 1998) the BLOSUM series of
matrices on average give results superior to the PAM
matrices and most other matrices. For this reason,
BLOSUM matrices are now the general matrix of choice
for protein sequence alignment, and are the default
matrices used by most popular sequence-alignment and
database-searching software.

Rather than starting from alignments generated by
sequence comparison, Overington et al. (1992) only
consider proteins for which an experimentally deter-

mined three-dimensional structure is available. They
then align similar proteins on the basis of their structure
rather than sequence and use the resulting sequence
alignments as their database from which to gather
substitution statistics. In principle, the Overington
matrices should give more reliable results than either
PAM or BLOSUM. However, the comparatively small
number of available protein structures currently limits
the reliability of their statistics. Overington et al. (1992)
develop further matrices that consider the local envir-
onment of the amino acids.

2.2. Dealing with gaps

Insertions and deletions are observed within protein
families, and it is normally necessary to introduce such
indels when producing an alignment. The simplest
scheme for gaps introduces a new character that scores u
when aligned with any amino acid. Since gaps are
comparatively rare, u is usually made negative. As a
consequence, u is often referred to as the gap-penalty. In
this simple scheme, a gap of ten residues is penalized ten
times more highly than a gap of one residue. Within
protein families, this makes little sense since gaps of
more than one residue are needed to obtain structurally
reasonable alignments. The most commonly used
scoring scheme for gaps is a function of the form: ul + v,
where l is the length of the gap in residues. This form of
penalty function is referred to as af®ne and has ef®-
ciency advantages over more elaborate penalty func-
tions (Gotoh, 1982). The constants v and u are often
referred to as the penalties for creation and extension of
the gap, or length-independent and length-dependent
penalties, respectively. Gap penalties need not be
uniform across the sequence and such position speci®c
gap penalties are discussed in x2.4.

2.3. Finding the optimal alignment of two sequences

The optimal alignment of two protein sequences is the
alignment that maximizes the sum of pair-scores less any
penalty for introduced gaps. The problem is to ®nd an
ef®cient way of locating an alignment that satis®es these
conditions. If no gaps are allowed, then the task is
simple, just slide one sequence over the other and for
each position, sum the pair-scores from the chosen
matrix (e.g. BLOSUM62). This simple alignment algo-
rithm requires of the order of 200 alternative alignments
to be evaluated for two sequences of length 100. In
contrast, if gaps are allowed, then there are >1075

alternative alignments that must be considered! An
elegant solution to this intractable search problem is
given by a class of computer algorithm known as
dynamic programming. Dynamic programming allows
the optimal alignment of two sequences to be found in of
the order of mn steps, where m and n are the lengths of
the sequences. Dynamic programming for sequence
comparison was independently invented in several

®elds, many of which are discussed in Sankoff and
Kruskal's book (Sankoff & Kruskal, 1983). An intro-
duction to dynamic programming in the wider context of
string comparison can be found in Gus®eld (1997).
Needleman & Wunsch (1970) are often attributed as the
®rst application of dynamic programming in molecular
biology, while slightly different formulations of the same
algorithm were described by Sellers (1974) and
Waterman et al. (1976). Here, the basic Sellers (Sellers,
1974) dynamic programming algorithm for two
sequences is described, with a length-dependent gap-
penalty. A simple example of this algorithm is illustrated

Fig. 1. Example of a completed dynamic programming H matrix for
two short sequences ADLPQ and ALPQ aligning with the simple
identity matrix, which scores +1 for a match of two amino acids and
0 for a mismatch. As explained in the text, for proteins, a more
sophisticated scoring matrix is normally applied. The aim is to ®nd
the maximum score for the alignment of the two sequences allowing
for deletions in either sequence. The H matrix is ®lled by starting at
H0;0 and proceeding one row at a time. At each cell, equation (1) is
applied. In the 0th row and column, there is only one possible
predecessor cell and that corresponds to aligning each residue with
a gap. In all other cells, there are three possible predecessor cells. (i)
A diagonal move corresponds to a substitution. (ii) A horizontal
move corresponds to alignment of a residue in B with a gap. (iii) A
vertical move corresponds to alignment of a residue in A with a gap.
For example, at H4;3, the comparison of P at A4 with P at B3, the
score for the cell is the maximum of 1 + 1 (diagonal move), 0 ÿ 1
(horizontal move), and 1 ÿ 1 (vertical move). The arrows show the
cells that contributed to each cell. Some cells have more than one
arrow pointing into them since there can be ties for which cell gives
the maximum value in equation (1). The cell in the bottom right-
hand corner (H5;4) contains the best score for the alignment of the
two sequences. Following the bold arrows backwards to H0;0 gives
an alignment with the best score of 3. In this example, there is only
one possible alignment with this score since there is no ambiguity on
the path leading to H5;4.

1140 PROTEIN SEQUENCE ALIGNMENT TECHNIQUES

and explained in Fig. 1. At each aligned position
between two sequences A � �A1;A2; . . . Am�, and
B � �B1;B2; . . . Bn� of length m and n, there are three
possible events,

substitution of Ai by Bj �scores wAi;Bj
�;

deletion of Bj �scores w�;Bj
�;

and deletion of Ai �scores wAi;�
�;

where � is the symbol for a single residue gap. The
substitution score (wAi;Bj

) is taken from the amino-acid
pair-score matrix such as BLOSUM62 (Henikoff &
Henikoff, 1992). The two deletion scores are the penalty
for aligning a single residue with a single gap. The total
score M for the alignment of A with B can be repre-
sented as s�A1...m;B1...n�. This is found by working along
each protein sequence from the N to the C terminus,
successively ®nding the best score for aligning A1...i with
B1...j for all i; j where 1 � i � m and 1 � j � n. The
values of s�A1...i;B1...j� are stored in a matrix H where
each element of H is calculated as follows:

Hi;j � max

Hiÿ1;jÿ1 � wAi;Bj

Hi;jÿ1 � w�;Bj

Hiÿ1;j � wAi;�

8<:
9=;: �1�

Once the matrix is complete, the element Hm;n contains
the total score for the alignment of the complete
sequences.

The processing steps described above determine the
best score possible for the alignment of the two
sequences given the gap-penalty and pair-score matrix.
However, they do not give the alignment. In order to
generate an alignment of A and B that gives the best
score, it is necessary to trace back through H. An ef®-
cient way of completing the trace-back is to save an
array of pointers that records which of the three possi-
bilities was the maximum at each Hi;j. It is possible for
there to be ties for the maximum chosen at any Hi;j. Ties
represent equally valid alternative alignments and the
manner in which ties are resolved is dependent on the
program implementation. For this reason, two computer
programs that correctly claim to implement the same
dynamic programming algorithm and give the same total
score for the alignment of two sequences, may produce
subtly different alignments.

Calculation of the best score is more complex if gap-
penalties of the form ul � v are employed since it is
necessary to determine for each cell whether a gap is
starting at that cell, or continuing from an earlier cell.
This algorithm typically runs a factor of three slower
than the simple algorithm.

2.4. Position-speci®c gap-penalties: domains and
secondary structure

In the simple example in the previous section, the
penalty for a gap is equal at all locations in the align-
ment. However, it often makes sense to penalize gaps
differently at the ends, or at different positions within
each sequence. For example, if a protein domain is being
aligned to a longer sequence that is known to contain
the domain, the penalties at the end of the domain
should be reduced to allow the domain to slide over the
longer sequence. If the secondary structure of one
protein in a pair to be aligned is known, then increasing
the gap-penalty within core secondary-structure
elements will reduce the likelihood of placing a gap in a
secondary structure (Barton & Sternberg, 1987a; Lesk et
al., 1986). Both changes require simple modi®cations to
the algorithm. End gaps are adjusted by changing the
gap-penalty constants for the 0th and last row and
column of the H matrix. Position-speci®c gaps are set by
having a vector of penalties P of length m rather than a
single constant �. This modi®es the calculation of Hi;j to

Hi;j � max

Hiÿ1;jÿ1 � wAi;Bj

Hi;jÿ1 � w�;Bj

Hiÿ1;j � Pi

8<:
9=;: �2�

In this example, the gap-vector P refers to sequence A.
Thus, the weight for aligning any residue in A with a gap
will depend on where the residue is in A. In contrast,
aligning a residue in B with a gap is penalized equally
irrespective of position.

There are many ways of modifying position-speci®c
gap-penalties. For example P can be applied to gaps in
both sequences, but dependent only on the position in
A, so eliminating the ®xed constant �, or a second gap-
penalty vector can be introduced for B.

2.5. Position-speci®c weights: pro®le comparison

In the examples in the previous sections, residue
substitution weights have all come from a single pair-
score matrix such as BLOSUM62. However, the
substitution weights (wAi;Bj

) can be made position-
speci®c in the same way as gap-penalties. If the weights
are position speci®c relative to A it means that the
weight for matching a residue from A of a particular
type to any other residue will depend upon the location
of the residue in A as well as the type of the residue in B.
For example, a Gly at A32 aligning with a Gly in B may
have a weight of +7, while a Gly at A76 aligned with a
Gly in B has a weight ofÿ5. Position-speci®c weights are
useful since they allow the importance of speci®c
substitutions to be emphasized at particular positions
along the sequence. This might mean increasing the
weight for aligning a known active-site residue in A with
a residue of the same type, or more general properties

GEOFFREY J. BARTON 1141

such as increasing the weight for known buried hydro-
phobic residues to align with similar residues in B.

In order to calculate an alignment score by dynamic
programming that includes position-speci®c weights, a
position-speci®c weight matrix or pro®le Qm;20 for
sequence A must be de®ned. Q contains m rows where
each row has 20 weights for substitutions with each
amino-acid type at that position. Thus, Q3;S is the
substitution weight for a serine in B with position 3 of A.
The equivalent of having no position-speci®c weights is
to populate each Qi;A...Y with the appropriate row from
the BLOSUM62 or other pair-score matrix. However, if
the power of position-speci®c weights is to be exploited,
additional information about A must be included in the
derivation of Q. This might be knowledge of the three-
dimensional structure of the protein with sequence A,
where position-speci®c weights re¯ect the local envir-
onment of the amino acids (e.g. Overington et al., 1992).
Or more commonly, the frequencies of observed amino
acids at each position in a multiple sequence alignment
of sequences similar to A (Gribskov et al., 1987; Barton
& Sternberg, 1987b, 1990). Hi;j when calculated with
position-speci®c weights and gaps for A is modi®ed to

Hi;j � max

Hiÿ1;jÿ1 �Qi;Bj

Hi;jÿ1 � w�;Bj

Hiÿ1;j � Pi

8<:
9=;: �3�

Since their parallel development by many authors in the
mid 1980's (Gribskov et al., 1987; Barton & Sternberg,
1987b; Taylor, 1986b), position-speci®c weighting
schemes, or pro®les, have formed the basis of many
methods for sensitive sequence comparison. In addition,
the principle of position-speci®c weights is at the heart
of currently popular techniques such as Hidden Markov
Models (HMM's) (Krogh et al., 1994) and generalized
pro®les (Bucher et al., 1996). A generalization of posi-
tion-speci®c weight matrices is to create two Q matrices,
one for each sequence. When calculating each element
of H, the substitution weights may be combined by
averaging. Comparison of two pro®les is fundamental to
hierarchical multiple alignment algorithms discussed in
x3.3.

2.6. Local alignment algorithm

The general algorithm described in x2.3 is a global
alignment algorithm. If it is not known in advance that
the sequences are similar over most of their length, then
a local alignment algorithm is preferred. To convert the
basic algorithm to a local algorithm for a pair-score
matrix that is centred on zero, the 0th row and column of
H are initialized to zero, then the calculation of each
element of H is modi®ed to

Hi;j � max

Hiÿ1;jÿ1 � wAi;Bj

Hi;jÿ1 � w�;Bj

Hiÿ1;j � wAi;�

0

8>><>>:
9>>=>>;: �4�

The only difference is the addition of a zero (Smith &
Waterman, 1981) which has the effect of terminating any
path in the H matrix whose score drops below zero. The
maximum local alignment score for comparison of A and
B is given by the maximum value in H. The alignment is
traced back from this cell until cells on the path drop to
zero. There may be more than one local alignment
between two sequences, perhaps representing repeats,
or multiple shared domains. Algorithms exist to ®nd
most (Barton, 1993a) or all (Waterman & Eggert, 1987)
of the alternative local alignments.

2.7. Alternative alignments for the same two sequences

The possibility of ties when constructing the H matrix,
and hence alternative equally valid alignments has
already been discussed in x2.3. A more general problem
is that there may be many alternative alignments with
scores close to the optimum. Any one of the alternative
alignments could be the `true' biologically meaningful
alignment and so it is useful to be able to generate all
alignments `close' to the optimal alignment.

Saqi & Sternberg (1991) determine alternative sub-
optimal alignments by ®rst calculating the H matrix and
best path. They then identify the cells that contributed
to the best path and reduce these by a preset value
(normally 10% of the typical scoring matrix value). A
new H matrix is then calculated and a new best path and
alignment. This process is repeated iteratively to
generate a series of global sub-optimal alignments.
Zuker (1991) and Vingron & Argos (1990) describe
methods to visualize alternative sub-optimal alignments
on a dot-plot. A simple way to probe for stable parts of
an alignment is to generate an alignment with standard
parameters, then modify the gap penalties slightly, re-
align and observe which regions of the alignment change
(if any).

2.8. Aligning sequences in linear space

The standard dynamic programming algorithm
requires storage of at least one m � n matrix in order to
calculate the alignment. On current computers, this is
not a problem for protein sequences, but for large DNA
sequences, or complete genomes, space requirements
can be prohibitive. Linear-space algorithms for dynamic
programming (Myers & Miller, 1988) overcome this
problem by a recursive strategy, albeit at some sacri®ce
in execution time.

1142 PROTEIN SEQUENCE ALIGNMENT TECHNIQUES

2.9. Comparing sequences without alignment

Few generally available programs allow the ¯exible
investigation of alternative alignments. A way of
avoiding the problem is to make use of one of the
earliest methods of comparing two sequences, the dot-
plot, or diagonal plot (Gibbs & McIntyre, 1970; Staden,
1982). Although the dot-plot does not give an alignment
directly, it is an effective technique to view simulta-
neously all similarities between two sequences. Simila-
rities may be obvious in a dot-plot, but missed entirely
by a dynamic programming sequence alignment
program that only displays the top-scoring alignment.

For two sequences A and B of length m and n,
respectively, a matrix Dm;n is generated where each
element Di;j represents the similarity between sequence
segments centred on Ai and Bj. In its simplest form,
Di;j � 1 if Ai � Bj and Di;j � 0 if Ai 6� Bj. A graph is
plotted with A and B on each axis and a dot plotted
whenever Di;j > 0. Regions of sequence similarity
appear as diagonal lines on the plot and repeats as
parallel lines. Insertions and deletions show up as steps
in the diagonals as the diagonal moves from one diag-
onal to another. The most sophisticated dot-plot tech-
niques calculate Di;j from a sliding window, and score
similarities by a pair-score matrix such as BLOSUM62
or PAM250. Dotter (Sonnhammer & Durbin, 1995)
provides a particularly rich set of features including an
interactive dot-plot `contrast' adjustment that simpli®es
the interpretation of plots.

3. Multiple sequence alignment

3.1. Extending dynamic programming to more than two
sequences

A multiple sequence alignment is an alignment that
contains three or more sequences. In theory, dynamic
programming methods for two sequences can be
generalized to N sequences by adding dimensions to the
H matrix. For three sequences H becomes a cube, and so
on. In practice, although software has been developed
that will allow three sequences to be aligned by full
dynamic programming (e.g. Murata et al., 1995), aligning
more than three is impractical both in terms of CPU
time and memory.

A common technique to save time and space when
calculating the global alignment of two sequences is to
`cut corners'. Instead of calculating the entire H matrix,
only a window either side of the main diagonal is
calculated. This general principle has been extended to
the global alignment of multiple sequences (Lipman et
al., 1989). The program MSA that implements these
ideas reliably performs simultaneous alignment of small
numbers of sequences (typically <10).

3.2. Genetic algorithms

As an alternative to dynamic programming, the
genetic algorithm has been applied to multiple sequence
alignment (Notredame & Higgins, 1996). It is shown that
alignments as mathematically optimal as those gener-
ated by MSA (Lipman et al., 1989) may be produced.

3.3. Hierarchical methods of multiple sequence alignment

Hierarchical methods for multiple sequence align-
ment are by far the most commonly applied technique
since they are fast and accurate. Hierarchical methods
proceed in three steps. A schematic example of the
stages in hierarchical multiple alignment is illustrated
for seven globin sequences in Fig. 2.

For N sequences, all N�N ÿ 1�=2 unique pair-wise
comparisons are made and the similarity scores for the
comparisons recorded in a table. The similarity scores,
may be simple percentage identities, or more sophisti-
cated measures. For example, the SD score is calculated
by ®rst aligning the pair of sequences by dynamic
programming and saving the raw score V for the align-
ment. The two sequences are then shuf¯ed and aligned,
usually at least 100 times. The score for each shuf¯ed
pair comparison is saved and the mean �x and standard
deviation � of the scores calculated. The SD score is
then given by �V ÿ �x�=�. SD scores correct for the
length and composition of the sequences, and so are
preferable to raw alignment scores, or percentage
identity.

An example table of pair-wise SD scores is illustrated
at the top left of Fig. 2. Hierarchical cluster analysis is
then performed on the table of pair-wise scores. This
process generates a dendrogram or tree that groups the
most similar pair, the next most similar pair and so on.
The tree is illustrated at the bottom left of Fig. 2. Finally,
the multiple sequence alignment is generated by
following the dendrogram from its leaves to the root.
The detailed stages in this process are described in the
legend to Fig. 2.

One often-stated drawback to hierarchical methods is
that gaps once introduced are ®xed. Thus, an error made
at an early stage in the alignment process will propagate.
Some methods allow a second pass through the align-
ment where each sequence is re-aligned to the complete
alignment in order to correct the worst of these errors
(Barton & Sternberg, 1987b; Gotoh, 1996).

The main differences between different hierarchical
methods rest with the techniques used to score the initial
pair-wise alignments, the hierarchical clustering method
and the treatment of gaps in the multiple alignment. For
example, pair-wise alignments may be scored by simple
percentage identity, normalized alignment score (where
the raw score for alignment of two sequences is divided
by the length of the alignment) or a statistical SD score
from Monte Carlo shuf¯ing of the sequences. Clustering
may be a simple `add one sequence at a time' method

GEOFFREY J. BARTON 1143

(Barton & Sternberg, 1987b), or single linkage cluster
analysis (Barton, 1990), or neighbour joining
(Thompson et al., 1994), though any clustering method
may be applied. Gaps in the multiple-alignment process
may be weighted simply, or position dependent
(Thompson et al., 1994). One of the most sophisticated
hierarchical multiple-alignment programs is CLUS-
TALW (Thompson et al., 1994). CLUSTALW applies
different pair-score matrices when aligning sequences of
differing similarity. The program also modi®es gap-
penalties in a position-speci®c fashion according to
analyses of gap preferences in protein sequences
(Pascarella & Argos, 1992).

4. How well do alignment methods work?

The pair-wise sequence-alignment algorithms outlined
in the previous sections are guaranteed to produce a
mathematically optimal alignment for two sequences
given the chosen pair-score matrix (e.g. BLOSUM62)

and gap-penalty function. However, the fact that an
alignment is optimal for the matrix and penalty does not
mean that the alignment is biologically or structurally
meaningful. One can take any two sequences and opti-
mally align them, but an optimal alignment of, say, a
globin (an all-� protein) and an immunoglobulin (all-�)
is meaningless.

The standard most commonly applied is to test how
well the method reproduces the alignment obtained
from comparison of the protein three-dimensional
structures. In recent tests against structural alignments
of 693 test families of domains (Raghava & Barton,
1998), most popular hierarchical methods for multiple
sequence alignment aligned over 85% of core residues
in agreement with the structural alignment. Alignment
accuracy is correlated with sequence similarity (Barton
& Sternberg, 1987b) and for families with average pair-
wise sequence identities of over 30%, the sequence
alignments were over 90% in agreement with the
reference alignment in the core. In contrast, for those

Fig. 2. Illustration of the stages in hierarchical multiple alignment of seven sequences with the identifying codes: HAHU, HBHU, HAHO, HBHO,
MYWHP, P1LHB, LGHB. The table at the top left of the ®gure shows the pair-wise SD scores for comparison of each sequence pair. Higher
numbers mean greater similarity (see text). Hierarchical cluster analysis of the SD score table generates the dendrogram or tree shown at the
bottom left of the ®gure. Items joined towards the right of the tree are more similar than those linked at the left. Thus, LGHB is the sequence
that is least similar to the other sequences in the set, while HBHU and HBHO are the most similar pair. The ®rst four steps in building the
multiple alignment are shown on the right of the ®gure. The ®rst two steps are pair-wise alignments by dynamic programming (see x2.3). The
third step is a comparison of pro®les from the two alignments generated in steps 1 and 2 (see x2.5). The fourth step adds a single sequence
(MYWHP) to the alignment generated at step 3. Further sequences are added in a similar manner.

1144 PROTEIN SEQUENCE ALIGNMENT TECHNIQUES

families with 0±10% sequence identity, the average
agreement in the core was <25%.

5. Software for sequence and structure comparison and
analysis

The basic algorithms for pair-wise and multiple
sequence alignment have been described. Here,
programs from the author's group that implement some
of these algorithms are brie¯y summarized. All software
is available via the URL http://barton.ebi.ac.uk.

5.1. SCANPS ± fast local alignment database searching

SCANPS implements local alignment methods (Smith
& Waterman, 1981; Barton, 1993a) for protein and
nucleic acid sequence database searching. The program
has been made to run ef®ciently in parallel on Silicon
Graphics hardware. A WWW server that allows
searching of the SWALL non-redundant database of
protein sequences is available at the EBI on http://
www2.ebi.ac.uk/scanps/. Alternative software is the
SSEARCH program that is distributed in the FASTA
package from W. Pearson (ftp://ftp.virginia.edu).

5.2. AMPS ± pair-wise and multiple alignment of
sequences

The AMPS package of programs implements pair-
wise global alignment with assessment of statistical
signi®cance by Monte Carlo methods. It also implements
position-speci®c weights and a variety of pro®le-based
searching and alignment methods. However, the main
function of AMPS is to produce multiple sequence
alignments by a hierarchical method. Most features of
the package are reviewed by Barton (1990). CLUS-
TALW (Thompson et al., 1994) is an alternative to
AMPS for multiple alignment. The program is available
from many ftp sites.

5.3. STAMP ± multiple alignment from protein three-
dimensional structure comparison

STAMP (structural alignment of multiple proteins)
(Russell & Barton, 1992) produces sequence alignments
from comparison of protein three-dimensional struc-
tures. The algorithm is similar to that described for
hierarchical multiple-sequence alignment, but STAMP
works from the co-ordinates of C� atoms rather than
amino-acid characters. The program allows two or more
structures to be compared, and a gapped pair-wise or
multiple alignment and superposition are produced. The
quality of each aligned position is assigned a value that
allows the reliable regions of the structural alignment to
be identi®ed. STAMP also allows searching of a struc-
ture against a database of structures and has a number
of utilities to simplify the manipulation of protein

coordinate ®les and the preparation of publication-
quality ®gures.

5.4. AMAS ± analysis of multiply aligned sequences

AMAS (Livingstone & Barton, 1993, 1996) assists in
the identi®cation of functionally important residues
from large protein-sequence alignments. A by-product
of this process is a coloured and annotated representa-
tion of the alignment. An AMAS WWW server is
available on http://barton.ebi.ac.uk/servers/amas_server.
html.

5.5. ALSCRIPT ± annotation and colouring of a multiple
sequence alignment

ALSCRIPT (Barton, 1993b) allows ¯exible annota-
tion of a sequence alignment. Annotations include the
display of helix and strand symbols as well as alignment
characters in any font and font size. Output is as a
PostScript ®le that can be printed or viewed.

5.6. OC ± general hierarchical cluster analysis

The AMPS package includes a simple clustering
program, ORDER, to determine a tree for multiple
alignment. ORDER is limited at compile time in the
number of items it can cluster. In contrast, OC is limited
only by the computer resources. OC also implements a
wider range of clustering methods that may be applied
to any data for hierarchical clustering.

References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D.
J. (1990). J. Mol. Biol. 215, 403±410.

Barton, G. J. (1990). Methods Enzymol. 183, 403±428.
Barton, G. J. (1993a). Comput. Appl. Biosci. 9, 729±734.
Barton, G. J. (1993b). Protein Eng. 6, 37±40.
Barton, G. J. & Sternberg, M. J. E. (1987a). Protein Eng. 1, 89±

94.
Barton, G. J. & Sternberg, M. J. E. (1987b). J. Mol. Biol. 198,

327±337.
Barton, G. J. & Sternberg, M. J. E. (1990). J. Mol. Biol. 212,

389±402.
Bucher, P., Karplus, K., Moeri, N. & Hofmann, K. (1996).

Comput. Chem. 20(1), 3±23.
Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. (1978). A

Model of Evolutionary Change in Proteins. Matrices for
Detecting Distant Relationships. In Atlas of Protein Sequence
and Structure, Vol. 5, edited by M. O. Dayhoff, pp. 345±358.
Washington DC: National Biomedical Research Foundation.

Gibbs, A. J. & McIntyre, G. A. (1970). Eur. J. Biochem. 16, 1±
11.

Gotoh, O. (1982). J. Mol. Biol. 162, 705±708.
Gotoh, O. (1996). J. Mol. Biol. 264(4), 823±838.
Gribskov, M., McLachlan, A. D. & Eisenberg, D. (1987). Proc.

Natl Acad. Sci. USA, 84, 4355±4358.

GEOFFREY J. BARTON 1145

Gus®eld, D. (1997). Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational Biology.
Cambridge University Press.

Henikoff, S. & Henikoff, J. G. (1992). Proc. Natl Acad. Sci.
USA, 89, 10915±10919.

Henikoff, S. & Henikoff, J. G. (1993). Proteins Struct. Funct.
Genet. 17, 49±61.

Jones, D. T., Taylor, W. R. & Thornton, J. M. (1992). Comput.
Appl. Biosci. 8, 275±82.

Krogh, A., Brown, M., Mian, I. S., Sjolander, K. & Haussler, D.
(1994). J. Mol. Biol. 235, 1501±1531.

Lesk, A. M., Levitt, M. & Chothia, C. (1986). Protein Eng. 1,
77±78.

Lipman, D. J., Altschul, S. F. & Kececioglu, J. (1989). Proc. Natl
Acad. Sci. USA, 86, 4412±4415.

Livingstone, C. D. & Barton, G. J. (1993). Comput. Appl.
Biosci. 9, 745±756.

Livingstone, C. D. & Barton, G. J. (1996). Methods Enzymol.
266, 497±512.

Murata, M., Richardson, J. S. & Sussman, J. L. (1985). Proc.
Natl Acad. Sci. USA, 82, 3073±3077.

Myers, E. W. & Miller, W. (1988). Comput. Appl. Biosci. 4, 11±
17.

Needleman, S. B. & Wunsch, C. D. (1970). J. Mol. Biol. 48, 443±
453.

Notredame, C. & Higgins, D. G. (1996). Nucleic Acid. Res.
24(8), 1515±1524.

Overington, J., Donnelly, D., Johnson, M. S., Sali, A. &
Blundell, T. L. (1992). Protein Sci. 1, 216±226.

Pascarella, S. & Argos, P. (1992). J. Mol. Biol. 224,
461±471.

Raghava, G. P. S. & Barton, G. J. (1998). Protein Sci.
Submitted.

Russell, R. B. & Barton, G. J. (1992). Proteins Struct. Funct.
Genet. 14, 309±323.

Sankoff, D. & Kruskal, J. B. (1983). Editors. Time Warps, String
Edits and Macromolecules: the Theory and Practice of
Sequence Comparison. New York: Addison Wesley.

Saqi, M. A. S. & Sternberg, M. J. E. (1991). J. Mol. Biol. 219,
727±732.

Sellers, P. H. (1974). SIAM J. Appl. Math. 26, 787±793.
Smith, T. F. & Waterman, M. S. (1981). J. Mol. Biol. 147, 195±

197.
Sonnhammer, E. L. L. & Durbin, R. (1995). Gene-Combis. 167,

1±10.
Staden, R. (1982). Nucleic Acid. Res. 10(9), 2951±2961.
Taylor, W. R. (1986a). J. Theor. Biol. 119, 205±218.
Taylor, W. R. (1986b). J. Mol. Biol. 188, 233±258.
Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). Nucleic

Acid. Res. 22, 4673±4680.
Vingron, M. & Argos, P. (1990). Protein Eng. 3, 565±569.
Vogt, G., Etzold, T. & Argos, P. (1995). J. Mol. Biol. 249, 816±

831.
Waterman, M. S. & Eggert, M. (1987). J. Mol. Biol. 197, 723±

728.
Waterman, M. S., Smith, T. F. & Beyer, W. A. (1976). Adv.

Math. 20, 367±387.
Zuker, M. (1991). J. Mol. Biol. 221, 403±420.

1146 PROTEIN SEQUENCE ALIGNMENT TECHNIQUES

