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Structural genomics seeks to expand rapidly the number of

protein structures in order to extract the maximum amount of

information from genomic sequence databases. The advent of

several large-scale projects worldwide leads to many new

challenges in the ®eld of crystallographic macromolecular

structure determination. A novel software package called

PHENIX (Python-based Hierarchical ENvironment for

Integrated Xtallography) is therefore being developed. This

new software will provide the necessary algorithms to proceed

from reduced intensity data to a re®ned molecular model and

to facilitate structure solution for both the novice and expert

crystallographer.
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1. Introduction

1.1. Structural genomics

The database of known sequences is growing at an expo-

nential rate and has already resulted in complete genomic

sequences for several organisms. This huge database of

information is expected to provide great insight into individual

organisms and life in general. The sequence information can

be interpreted in the light of known structures to deduce the

functional signi®cance of coding regions of the genomes.

However, only a fraction of the expected structural informa-

tion is currently known (Orengo et al., 1999). Although the

rate of protein structure determination is increasing, it has

been overtaken by the concerted efforts of the sequencing

projects. Trying to match the rate of sequence determination is

not a feasible task. Instead, it is proposed to direct structure-

determination efforts towards speci®c targets that would

produce information about unknown folds of structural

representatives of sequence families. By analogy with

sequencing projects, this has become known as structural

genomics (Burley et al., 1999). An expanded structural data-

base, in combination with knowledge of function, would

permit extraction of much more information from the

sequence databases than is currently possible. It is hoped that

in the long term it will become possible to derive at least an

approximate model for any sequence using the information in

the expanded structural database (Sali, 1998).

1.2. The need for automation

For structural genomics to be possible, structures will need

to be solved signi®cantly faster than is currently routinely

achievable. This high-throughput structure determination will

require automation to reduce the obstacles related to human

intervention. Several projects are under way worldwide to

automate the process of sample preparation, crystallization

and data acquisition. Currently, one of the main bottlenecks to



completion of a macromolecular crystal structure is compu-

tational. Manual interpretation of complex numerical data and

the repeated use of interactive three-dimensional graphics are

often required. This is time-consuming, often of the order of

weeks or months, and also has a signi®cant subjective

component (Mowbray et al., 1999) that can lead to delays in

reaching the ®nal structure. Thus, the automation of structure

solution is essential as it has the potential to produce mini-

mally biased models more ef®ciently. Automation will rely on

the development of algorithms that minimize or eliminate

subjective user input, the development of algorithms that

automate procedures that were traditionally performed by

hand and ®nally the development of software packages that

allow a tight integration between these algorithms. Truly

automated structure solution will require the software to make

decisions about how best to proceed in the light of the avail-

able data.

1.3. Existing crystallographic software

Improving the ef®ciency of structure solution has been a

goal for many software developers. The creation of faster and

more accurate algorithms serves to increase productivity.

However, as algorithms become more complex they often

become less portable, with expert knowledge being required

to implement or modify them. It is our experience that the

technical problems involved in combining algorithms to

generate a more powerful system are often prohibitive.

Similarly, there can be signi®cant technical barriers that make

it dif®cult to apply existing algorithms to new problems.

Therefore, the design limitations of existing crystallographic

software packages become a serious obstacle to their

advancement.

Most existing programs have legacy code written in an era

of procedure-oriented software design and monolithic appli-

cations. Owing to the lack of consistent software design, most

crystallography projects require the application of different

and incompatible software packages for various steps in the

calculation (data reduction, phasing, map calculation, model

building, model re®nement). There have been advances in the

standardization of ®le formats within the widely used CCP4

package (Collaborative Computational Project, Number 4,

1994). The use of programs has been simpli®ed with the

availability of graphical user interfaces. For example,

programs within CCP4 can be accessed through a graphical

user interface (ccp4i) and task ®les in the Crystallography &

NMR System (CNS) can be accessed through a web-browser

interface (BruÈ nger et al., 1998). However, even for the

experienced structural biologist the need to use several

diverse software packages presents a formidable barrier.

Dif®cult choices must be made between alternative methods,

relying on documentation that often inadequately describes

the underlying algorithms. This is exacerbated by the need for

repeated reformatting of data ®les in order to accommodate

the different packages. Combined with the need for frequent

manual intervention, the entire process can take months even

if it requires only modest computer time. The novice

crystallographer is often overwhelmed by the apparent tech-

nical complexities and has to rely heavily on personal expert

advice to accumulate the required knowledge. Lacking the

bene®ts of modern design principles, it is extremely dif®cult to

correct these de®ciencies.

1.4. Scripting languages, object-oriented design and rapid
prototyping

The use of scripting languages is widespread in many ®elds.

Indeed, the success of the World Wide Web lies partly with the

availability of languages such as PERL (Schwartz & Chris-

tiansen, 1997). The use of a powerful scripting language can

potentially reduce the problems associated with technical

complexity by expressing scienti®c algorithms in a plain easy-

to-understand syntax. CNS provides such a system for X-ray

crystallography (BruÈ nger et al., 1998). It includes a high-level

interpreted scripting language, which makes it very easy to test

and implement new ideas. Basic scripting languages are also

used in other crystallographic systems, frequently in the form

of Unix shell scripts to control the application of programs.

However, a tighter integration between the scripting language

and the underlying scienti®c algorithms is required for true

automation.

Many of the scripting languages available follow a proce-

dural programming style. This should be contrasted with the

object-oriented style used by many modern programming

languages. In the object-oriented programming model,

abstraction, encapsulation and modularity provide mechan-

isms to organize a problem in a hierarchy so that the higher

level objects need not know how the lower level objects

operate. The resulting code is very ¯exible, easy to maintain

and lends itself to shared collaborative development by

multiple groups. Since tasks are organized into discrete

modules with extendable properties, it is easy to reuse existing

code to handle new situations.

Although object-oriented design is clearly superior for

organizing large computational projects and scripting is

bene®cial for rapid development of high-level ideas, the two
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Figure 1
Architecture of the PHENIX system. The Python scripting language
provides the backbone of the system. The Boost.Python library is used to
integrate core C++ code into Python. On top of this, the data objects,
crystallographic tasks, strategies and ®nally a graphical user interface are
constructed. The Project Data Storage makes use of the pickle
mechanism in Python to store data on the ®le system.
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frameworks have historically been mutually exclusive. In the

early 1990s, however, the Python programming environment

was designed to merge the virtues of both approaches. Python

is a portable interpreted object-oriented programming

language (Lutz & Ascher, 1999). It incorporates modules,

dynamic variable typing and classes. The dynamic typing

distinguishes Python from statically typed object-oriented

languages such as C++ and Java. A recent study came to the

conclusion that program development with Python is

approximately twice as fast as development with C++ or Java

(Prechelt, 2000). Therefore, Python is often referred to as a

language for rapid prototyping. In addition, there are now a

vast selection of modular and object-oriented open-source

packages implementing graphical user interfaces, databases,

network communication and numerical algorithms available

for Python. Building a new software system with Python as a

foundation provides the developer with access to this large

pool of pre-existing resources.

2. Software design and implementation

2.1. Architecture

One of the primary goals of the PHENIX project is to

create a tight integration between reusable software compo-

nents written both in a compiled language and a ¯exible

scripting language. Our prior experience implementing CNS

has shown that this promotes highly ef®cient software devel-

opment. High-level algorithms such as complex re®nement

protocols or phasing procedures can be developed most

rapidly in a scripting language. By contrast, numerically

intensive core algorithms such as the computation of structure

factors or discrete Fourier transforms must be implemented in

a compiled language for performance reasons.

An evaluation of available technologies led us to choose

Python (http://python.org/) as the scripting language and C++

as the compiled language (see Grosse-Kunstleve et al., 2002 for

further details about these choices). Importantly, the

Boost.Python Library (http://www.boost.org/) is available for

conveniently integrating C++ and Python. It is used to directly

connect C++ classes and functions to Python without

obscuring the C++ interface. We have worked with one of the

primary authors of the Boost.Python Library (David Abra-

hams) to extend its functionality to better suit the needs of the

PHENIX project. The overall architecture of the PHENIX

system is shown in Fig. 1 and our progress to date is presented

below. Everything described here has been fully tested on

three different Unix platforms (Redhat Linux, Compaq Tru64

and SGI Irix version 6.5) and Windows 2000.

2.2. Data objects and tools

In order to build a complex integrated system such as

PHENIX, certain basic data objects must be available. We

have implemented some of the important objects required for

crystallographic computations.

(i) Structure-factor objects, which hold reciprocal-space

data. Data containers have been implemented in C++ and are

made available in Python using the Boost.Python library. This

design permits the reuse of the `objects' by future developers

within either a compiled C++ program or an interpreted

Python script (Fig. 2). For the typical end user, complex

calculations can be performed on structure-factor data from

the Python scripting language (see Fig. 3).

(ii) Map objects, which hold real-space data such as

electron-density maps. Data containers have been imple-

mented in C++ and will be made available in Python in the

near future.

(iii) Molecular objects, which hold the coordinates and

topology of a structure. Data containers have initially been

implemented in Python for speed of testing and development.

Coordinate ®les from the Protein Data Bank can be read into

PHENIX and the appropriate connectivity between atoms

determined.

Implementation of these objects makes use of the Computa-

tional Crystallography Toolbox (cctbx; Grosse-Kunstleve et al.,

2002). This is a library of reusable core crystallographic soft-

ware components for macromolecular structure determination

that have been designed for integration into large modular

layered software systems. The cctbx source code is freely

available under an Open Source license for both non-pro®t

and commercial use at http://cctbx.sourceforge.net/.

2.3. Algorithms

A broad range of algorithms for structure solution will be

implemented. Experimental phasing using both MAD/SAD

and MIR/SIR methods will be optimized by the use of well

established automated Patterson methods for heavy-atom

location (Terwilliger & Berendzen, 1999; Grosse-Kunstleve &

Brunger, 1999) combined with new maximum-likelihood

scoring functions. Once sites have been located, ef®cient new

algorithms for phasing that take account of correlations in the

errors between derivatives and wavelengths will be used

(Terwilliger & Berendzen, 1996, 1997; Read, 1991). Alter-

natively, the use of new maximum-likelihood targets for

molecular replacement, which have been tested in the

program BEAST (Read, 2001), will increase the success rate

of this method using search models of lower structural

similarity. The phases obtained from experimental phasing

or molecular replacement will be optimized by the application

of maximum-likelihood density-modi®cation algorithms,

currently implemented in the RESOLVE program, to produce

minimally biased electron-density maps (Terwilliger, 2001).

Electron-density maps will be automatically interpreted using

template matching (Terwilliger, 2001) as implemented in

RESOLVE and pattern-recognition methods as implemented

in TEXTAL (Holton et al., 2000). Automated map inter-

pretation will be iterated with maximum-likelihood re®ne-

ment targets (Pannu & Read, 1996; Pannu et al., 1998) and

simulated-annealing optimization algorithms (BruÈ nger et al.,

1987; Adams et al., 1997, 1999). We expect that this combi-

nation will permit automated structure completion even when

diffraction data are only available up to a modest resolution

limit (approximately 3 AÊ ).



2.4. Strategies and the graphical user interface

Many crystallographic software packages either provide the

user with a collection of tools for analysis of the data or with a

monolithic `black box' application that performs all the rele-

vant tasks in an automated fashion. Neither situation is

optimal for the user. In the ®rst case, the user is required to use

the tools in the correct sequence and also make decisions

based on the results at each stage. Although this has proved a

successful mode for the expert user, it makes software dif®cult

to use for the non-expert user and often leads to time-

consuming mistakes. The use of self-contained automated

systems that lack user control can be productive for the novice

user. However, when problems are encountered (i.e. the

automation fails), it is often very dif®cult to identify the

problem or implement a solution.

We have introduced the concept of strategies into PHENIX

to avoid these problems. Strategies provide a way to construct

complex networks of tasks to perform a higher level function.

For example, the steps required to go from initial data to a ®rst

electron-density map in a SAD experiment can be broken

down into well de®ned tasks which can be reused in other

procedures. Instead of requiring the user to run these tasks in

the correct order, they are connected together by the software

developer and can thus be run in an automated way. However,

because the connection between tasks is dynamic, they can be

recon®gured or modi®ed and new tasks introduced as neces-

sary if problems occur. This provides the ¯exibility of user

input and control, while still permitting complete automation

when decision-making algorithms are incorporated into the

environment.

The tasks and their connection into strategies rely on the

use of task ®les written using the Python scripting language.

This implementation was chosen so as to not restrict the use of

PHENIX to a graphical user interface. These task ®les and the

Python objects describing a strategy can be used from other

programs or in a non-graphical environment. However, they

can also be readily displayed in a graphical environment. We

have used the wxPython graphical interface development tool

to implement a graphical user interface (GUI) for PHENIX.

This GUI permits strategies to be visualized and manipulated

(Fig. 4). These manipulations include loading a strategy

distributed with PHENIX, customizing and saving it for future

recall. Customization of the task input parameters is achieved

via the interface displayed on the right of the ®gure. Insertion

of new tasks is performed by choosing from the tree menu on
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Figure 2
C++ (a) and Python (b) interfaces for PHENIX code. The two code samples use as similar a syntax as is permissible by the constraints of the respective
languages, yet the ®rst is compiled and the second interpreted. There is a performance penalty associated with running a scripting language. However,
because the majority of the time is spent in the compiled C++ routines, the execution times for the two interfaces are roughly equivalent on all platforms
tested.
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the left of the main window. The GUI also provides a means

for the user to view results of calculations (Fig. 5). PyMOL

(DeLano, 2002), a molecular-graphics system written in C and

Python, allows easy viewing of structures and maps via close

integration with PHENIX. Graphical data is transferred from

PHENIX to PyMOL through a socket connection. Simple

results can be represented by native PHENIX display

windows as shown in the left of the ®gure.

2.5. The Project Data Storage (PDS)
One of the major problems facing the crystallographer is

the organization, tracking and archiving of data. Programs

produce an array of different output ®les, often in different

formats. Different trials in the structure-determination process

can generate output that is eventually discarded because this

path was later abandoned. These problems are signi®cantly

compounded by the move to high-throughput crystallography,

Figure 4
PHENIX strategy interface showing a simple strategy and a task-parameter input.

Figure 3
Left, a PHENIX script ®le that reads amplitudes and phases from a text ®le, then performs a Fourier transform and generates an electron-density map.
Right, the electron-density map visualized using PyMOL (DeLano, 2002).



which leaves no time for user control of data management.

Therefore, in PHENIX we have introduced the concept of the

Project Data Storage (PDS). This is a data-management

system that oversees the information generated for each

structure determination (or `Project') and contains a complete

history of each structure solution, along with all of the

generated structural information. The PDS is essential for the

purposes of preserving data integrity, communication between

the components of PHENIX, data mining and ultimately

structure deposition to the PDB (Berman et al., 2000). The

ability for reliable information gathering via the PDS will be

crucial in determining the criteria and ®gures of merit that are

required to develop automated decision-making algorithms.

2.6. Distributed computing

In order to make full use of the computing resources

typically available to researchers, we have developed and

implemented a distributed computing model for PHENIX.

This permits the remote execution of computationally inten-

sive tasks (for example, a job can be set up on a user's desktop

PC, but sent to a high-performance computing platform for

execution). Once a job has been started it can also be moni-

tored and controlled remotely by multiple instances of the

graphical user interface running on different machines. This

distributed computing model relies on a PHENIX daemon

that coordinates the information ¯ow for each user project

(see Fig. 6).

3. Conclusions

The development of PHENIX is a collaborative project whose

primary goal is the creation of a comprehensive integrated

system for automated crystallographic structure determina-

tion. However, we also hope that PHENIX can be more than

this alone. The PHENIX infrastructure is designed to be open

and easily shared with other researchers. Source code will be

distributed to academic groups and the use of the Python

scripting language will facilitate interfacing with the system

and its use in different contexts. Other developers will be able

to `plug in' their algorithms to the PHENIX environment, thus

providing easy access to a large number of crystallographic

and computational tools. The high-level graphical program-

ming environment in PHENIX is designed to let researchers

easily link crystallographic tasks together, thus creating
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Figure 6
PHENIX distributed computing mechanism. The PHENIX daemon
coordinates the ¯ow of information between the various components and
also controls the creation and termination of processes. Multiple
instances of the GUI can interact with the daemon to view the progress
of a job. `Desktop', `Project' and `Compute Engine' components can be
run on the same machine or optionally on different computing hosts and
communicate with each other over the internet using sockets.

Figure 5
PHENIX strategy interface showing graphical output. (a) A simple graph showing the Wilson plot, ®tted line and parameters derived from the plot. (b)
A graphical representation of a molecule imported in PHENIX for a molecular-replacement translation search. Visualized using the PyMOL program,
which has been integrated into the PHENIX environment.
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complex algorithms without having to resort to low-level

programming. The graphical interface and the underlying

Python scripting language also provide a framework suitable

for implementing decision-making algorithms that will be

critical for robust and reliable automation.

Many of the features of the PHENIX system are not speci®c

to macromolecular crystallography. The graphical strategy-

manipulation interface provides a generic tool for visual

programming that is based on the Python scripting language.

This interface could be used to link together more traditional

command-line software packages while still presenting the

user with an integrated system. Alternatively, the graphical

interface and other underlying tools could be used in other

areas of structural biology such as single-particle cryo-electron

microscopy, electron diffraction and NMR. The PHENIX

system thus provides a framework for the integration of

different experimental approaches to probing macromolecular

structure.

This work was funded by NIH/NIGMS under grant number

1P01GM063210, with initial funding to PDA from the

Department of Energy under contract No. DE-AC03-

76SF00098.
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