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An automated computational procedure for fitting a ligand

into its electron density with the use of the MMFF94 force

field and a Gaussian shape description has been developed. It

employs a series of adiabatic optimizations of gradually

increasing shape potential. Starting from a set of energy-

relaxed ligand conformations, the final results are structures

realistically strained to fit the crystallographic data.
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1. Introduction

Although protein crystal structure building is a well estab-

lished procedure and a number of software tools that perform

the task of automated construction of three-dimensional

protein coordinates are available to crystallographers [e.g

REFMAC (Murshudov et al., 1997), RESOLVE (Terwilliger,

2003), MAID (Levitt, 2001) or ARP/wARP (Perrakis et al.,

1999)], obtaining realistic ligand structures from the corre-

sponding electron density is still not a fully automatic process.

This is largely a consequence of the greater complexity of

medicinal chemistry and chemical informatics compared with

protein chemistry and information science and can be a

significant bottleneck in the application of high-throughput

crystallography to pharmaceutical lead identification.

Current methods of ligand fitting that are based on either

topological analysis of electron density (Menéndez-Velázquez

& Garcı́a-Granda, 2003), global optimization of position and

conformation of a ligand in a density blob (Diller et al., 1999),

interatomic distance matrices (Koch, 1974; Main & Hull, 1978;

Cascarano et al., 1991; Altomare et al., 2002; Zwart et al., 2004)

or on varying torsion dihedral angles of shape-matched ligand

conformations (Oldfield, 2001) are unable to prevent creation

of high-energy, sometimes even chemically unrealistic, ligand

models. As a result, there are a number of PDB ligands with

unlikely high-energy structures. For example, the PDB struc-

ture of an inhibitor of RNA polymerase (PDB code 1nhu) has

significant repulsion between the two methylene groups, or

consider the adenine dinucleotide PDB code 1xqd which has

highly distorted phosphorus–oxygen coordination geometries

(see below).

In a recent study of 100 public protein–ligand complexes

and a further 50 private structures, Perola & Charifson (2004)

determined that modern force fields (OPLS, MMFF) evaluate

90% of total strain energies, as defined relative to the global

solvated minima, as less than 38 kJ mol�1 and of local strain

energies, defined relative to the closest local minima, as less

than 21 kJ mol�1. As such, an alternate method of ligand

fitting suggests itself: start with an ensemble of low-energy

chemically correct conformations and adapt each to the ligand

density using a modern force field. Important aspects of this

approach would be the adequate sampling of conformational
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space, the appropriate combination of forces from the electron

density and the force field and the choice of a force field that is

general and accurate enough for the tasks faced by industrial

crystallography. In this report, we demonstrate such a proce-

dure.

Here, the potential function to be minimized is

V ¼ VFF þ �Vshape: ð1Þ

The independent variables here are the ligand coordinates or

internal degrees of freedom (e.g. torsions); VFF represents the

internal energy of the ligand and Vshape the (ligand/electron-

density) overlap. Details of both terms are presented in x2. � is

a mixing parameter between internal energy and the shape

overlap. It represents the degree to which we wish the shape of

the density to dominate. A common practice when confronted

with such hybrid functions is to find a value of � that works

generally, i.e. it is assigned an heuristic value. Such approaches

work in crystallographic refinement of proteins, presumably

because of the minimal chemical diversity of amino acids

compared with general chemistry. However, a single value

does not appear to work well for ligand refinement, leading to

either under-fitting to the density or over-straining of the

ligand. Instead, we have developed an adiabatic approach, as

described below, where a series of minimizations are

performed with gradually increasing values of �, each using

the previous minimization as a starting point. This allows us to

check for and avoid over- and under-fitting on a molecule-by-

molecule basis. We show that combining adiabatic optimiza-

tion with ligand electron-density identification, ligand

conformer generation and initial orientation of ligand to

electron density, we can generate low-energy, high-quality

ligand models in a fully automated manner.

In x2 we describe our potential function (1) and the

computational procedures for adiabatic fitting, ligand

electron-density identification, conformer generation and

initial ligand placement. In x3.1 we tested the technique

against a model set of 800 docked ligands represented either

as molecular volumes or estimated electron density. These

docked structures were minimized against their target protein

and so included both local and global strain. Finally, in x3.2 we

present the results of fitting ligands into their experimental

electron density obtained from X-ray structure determination

of the corresponding receptor–ligand complexes. We demon-

strate that when starting with only an electron-density map

and connectivity record of the ligand, this method can reliably

produce low-energy ligand models that are very close in

Cartesian space to the ligand models submitted to the PDB.

2. Theory and methods

2.1. Potential function

We have chosen the Merck Molecular Force Field

(MMFF94) as the first term, VFF, of potential (1),

VFF ¼ VMMFF94; ð2Þ

where the functional form of VMMFF94 is described by Halgren

(Halgren, 1994a,b,c,d; Halgren & Nachbar, 1996). Halgren

designed MMFF94 to cover a wide range of chemical func-

tionalities encountered in medicinal chemistry to an accuracy

frequently encountered in ab initio quantum mechanics. As

such, it appears to be an optimal choice for ligand fitting. In

our implementation, we allow the optional removal of

Coulomb terms from VMMFF94. It is a predicate of this

approach not to use the protein structure to guide the ligand

positioning, so as not to bias the result with already uncertain

information. However, protein electrostatics can dramatically

influence the ligand strain, for instance by compensating for

internal electrostatic repulsions. As such, a mimic of protein

electrostatic compensation is to remove the Coulombic term.

Consequences and examples are discussed in x3.2.2.

The term ‘shape potential’ used in this paper is derived from

the work of Grant et al. (1996). They have pioneered the use of

Gaussian functions to represent molecular volumes and

overlaps. Here, the overlap between two molecular Gaussian

volume functions representing molecules A and B is

VAB ¼
R
�A�B dr; ð3Þ

where �A and �B are Gaussian shape densities for molecules A

and B defined in terms of atomic Gaussian functions gi, where

ri is the distance from atom i.

�A ¼ 1�
Q

i2A

ð1� giÞ; ð4Þ

gi ¼ pi expð��ir
2
i Þ: ð5Þ

Owing to the simplicity of the functional form (5), the value of

the shape overlap (3) and its derivatives are easy to calculate

analytically or from a grid representation. In the above

formula, the Gaussian widths �i have distinct values for every

element. The value of �i for atom i determines its ‘Gaussian

atomic radii’, �i,

�i ¼ �i=�
2
i ; ð6Þ

where the parameter �i depends on the prefactor pi and is

chosen in such a way that the volume integral over Gaussian

(5) is equal to the volume of a sphere of radius �i (Grant et al.,

1996). Assigning a single Gaussian function to an atom and

careful selection of a prefactor pi (2.7 from Grant & Pickup,

1995) can result in very accurate molecular-shape functions,

e.g. to with 0.1% of the hard-sphere molecular volume. In this

report we use the same parameterization but ignore the atom–

atom overlaps generated in (4).

When fitting to electron density, further improvement might

be expected from molecular representations that use more

than one Gaussian atom-centered functions in linear combi-

nation,
Pn

k¼1 pk expð��kr2
i Þ, by analogy to the calculation of

X-ray scattering factors approximated by a combination of

two or five Gaussians (Agarwal, 1978). In the current work, we

have used both single and multiple Gaussian representations

for validation. In the latter case, we adopted the five prefactors
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and widths per atom published in International Tables for

X-ray Crystallography (1974, Vol. IV).

2.2. Monitoring shape similarity

The ligand density-fitting process requires a monitoring of

the progress of the overlap between the molecule and the

crystallographic electron density. For this purpose, we use a

Tanimoto coefficient, which is a well known similarity measure

between objects (Sneath & Sokal, 1973; Willet et al., 1998),

calculated at every �,

Tð�Þ ¼
Vlt

Vl þ Vt � Vlt

; ð7Þ

where Vl and Vt are self-volume overlaps of the fitted ligand

and electron-density target, respectively, and Vlt is the overlap

volume between the two objects. The fit is terminated when

the function T(�) reaches either a maximum or an apparent

plateau or the strain energy reaches a predetermined limit.

Determining a plateau region can be difficult, especially for

low-resolution density where the noise in the data can produce

false local mimina in the adiabatic process. To prevent

premature termination, the T(�) curve is smoothed with the

uniform cubic B-spline curve,

Taveð�Þ ¼
1
6 ½Tð����Þ þ 4Tð�Þ þ Tð�þ��Þ�: ð8Þ

In these plateau regions, small increases in the Tanimoto

coefficient correspond to large jumps in force-field energy VFF,

typically seen in compressions of bond lengths and angles. This

can lead to abnormal strain energies in a minority of cases.

These can be fixed by an optional process that relaxes the

ligand under MMFF with a flat-bottom harmonic potential of

width 0.05 Å imposed on all heavy-atom coordinates and � = 0.

Although such a relaxation causes a negligible displacement

(of the order of 10�2 Å in r.m.s.d.), it can sometimes remove

significant strain (e.g. 80% of the internal energy). That such a

procedure is useful was unsurprising. Although the Tanimoto

maxima criteria is powerful, it is still a heuristic measure as to

the optimal real-space fit and occasionally leads to unneces-

sary strain.

2.3. Identifying electron-density shapes

A starting point for our method is the definition of an

electron-density shape or ‘blob’. The source data may be a full

density map or a difference map. We apply a blob-finding

algorithm to enumerate all closed surfaces produced by

isocontouring the electron density. The isocontour value used

is the smallest that still produces a discrete contour of volume

comparable to the ligand molecule. This approach can fail with

low-resolution density maps. The solution we adopted in such

cases is to interpolate and smooth the electron-density grid to

a finer resolution. We validated this procedure on 11 protein–

ligand electron-density maps of 2mFo�DFc type downloaded

from the Electron Density Server (Kleywegt et al., 2004) in

ccp4 format. The results of ligand fitting into resultant

electron-density blobs are reported in x3.2.

2.4. Conformations and starting positions

Once the electron-density blob corresponding to the ligand

has been determined, an ensemble of ligand conformations

are generated. Here, we use the well known conformational

expansion tool Omega (Open Eye Scientific Software, Santa

Fe, NM, USA). One of the advantages of Omega is the facility

to generate almost exhaustive lists of conformations for a

given input of connectivity. The number of conformations

generated depends on the flexibility and composition of the

molecule, but can range from hundreds to tens of thousands. It

would be impractical at this time to apply the adiabatic

approach to every such conformer. Instead, each is first rigidly

overlaid onto the density blob by alignment of moments of

inertia. This produces four starting points for non-symmetric

ligands. It is possible that highly symmetric ligands may

require more starting orientations, but this has not been

observed in practice. Each pose is then rigid-body optimized

and sorted according to overlap Tanimoto. The top scoring

conformers, typically five to ten, are then flexibly fitted to the

electron density.

2.5. Model ligands and model electron density

As a preliminary test, the techniques presented here were

validated on a set of 800 small molecules docked into human
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Figure 1
Tanimoto coefficient (a) and shape-strain energies (b) as functions of
shape perturbation parameter � for fitting molecule 1 onto its model
structure. The maximum Tanimoto coefficient occurs at a � value of about
0.85.



p38 MAP kinase (PDB code 1kv2) and minimized with MMFF

(P. Charifson, personal communication). In the first test, (3)

was used as Vshape, validating that the method could mix

MMFF energies with simple molecular shape to reproduce

geometries. Because of the entirely analytic potential used in

this series of test calculations, no averaging of the monitored

Tanimoto coefficient (8) was necessary. In the second test,

electron density for each model ligand was simulated by a

linear combination of five Gaussians as described above and

used either analytically or via a grid

representation to validate the approach

closer to intended use.

2.6. Fitting to experimental electron
density

As a final validation of our method-

ology, we generated ligand models for

11 ligand–receptor complexes from the

PDB. In each case, we started with an

electron-density map and a coordinate-

free representation of the ligand. The

electron-density map was prepared by

removing the density arising from the

protein model and its crystallographic symmetry partners. The

blob-finding algorithm was then used to identify the portion of

electron density most likely to represent the ligand density. An

ensemble of conformers for the ligand were generated and

rigidly oriented and optimized to the ligand density. We then

applied the adiabatic fitting process to the best five to ten

conformers of each ligand. In several cases, the optimization

process was critically influenced by the absence of formal

charges present in the protein model. To compensate for this

bias, an MMFF force-field without Coulombic terms was

primarily used during the adiabatic optimization. Finally, each

ligand model was compared by r.m.s.d. with its PDB crystal

structure and by evaluation of its strain energy.

3. Results and discussion

3.1. Fitting to the model electron density

Gradual increase of the shape component in potential (1)

results in structures with both higher strain and shape simi-

larity to the target. Typical increases of both quantities with �
are shown in Fig. 1 for one of the test compounds, N-naphthyl

benzamide (compound 1 in Fig. 2). The figures illustrate the

importance of determining an appropriate stopping criteria,

i.e. when the improvement of shape fit is not significant

compared with the ever-increasing strain energy. Occasionally,

adiabatic forcing fails, i.e. there is an abrupt shift in the

response of the system, the shape fit, to the change of the

adaptive parameter �. In the theory of adiabatic evolution this

corresponds to barrier crossing; the system has changed from

one state to another. Here, the new state corresponds to an

energy well of a different initial conformer. This can be an

advantage, i.e. this second conformation may have been

missing in the original conformational sampling or it may have

been an unstable state in the absence of shape-forcing.

However, there are also potential disadvantages. The value of

� for the second conformation may be inappropriately high

given it was developed for the original structure. The appro-

priate course is to perform hysteresis, i.e. to perform the

reverse experiment on the final structure by slowly ramping �
back down. This is illustrated in the two graphs in Fig. 3 for the

adiabatic fitting of molecule 2 (Fig. 2) in which the eight-

membered ring undergoes a significant conformational change
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Figure 2
Examples of docked ligands into human p38 MAP kinase.

Figure 3
Tanimoto coefficient (a) and shape-strain energies (b) as functions of
shape-perturbation parameter � for fitting molecule 2 onto its model
structure. Circles represent the decrease of both quantities upon
backward ramping of �. The maximum Tanimoto coefficient occurs at a
� value of about 0.89.



and improvement of fit at � = 0.56. Clearly, the jump to the

second conformation (which is not stable without shape forces,

i.e. when � is equal to zero) involves a change to a surface with

quite different shape–� properties, i.e. had we been able to

start with this second conformation, we might have already

terminated the adiabatic process. In our tests against model

systems, most examples of over-strain resulted from adiabatic

failure. Fortunately, either hysteresis analysis or the con-

strained end-of-fit minimization described above are effica-

cious countermeasures. Ideally, the stress applied in

shape-fitting should not significantly exceed the strain of the

docked ligand. Indeed, as Fig. 4(a) shows, this is the general

case. It is seen that although the majority of ligands are aligned

with strain energy close to the docked ligand energy, a few do

not. Closer examination revealed that some anomalies corre-

spond to the above-mentioned barrier crossing between

conformations. These typically end with a lower than average

shape overlap, e.g. T � 0.98. For example, in Fig. 4(a) the

ligand (compound 3 in Fig. 2) displays significantly larger (by

about 48 kJ mol�1) strain than its corresponding target

structure energy of about 46 kJ mol�1. Here, the fitted struc-

ture with T = 0.95 is trapped in a potential well with the

cyclopropane ring rotated with respect to the target confor-

mation. Some ‘under-stressed’ ligands also show differences

between fitted and target conformations, primarily arising

from incorrect assessment of the shape–� maxima. However,

the majority of cases are accurately reproduced. Similar data

were obtained with the use of analytical gradients of the shape

function where five ‘structure-factor’-like Gaussian functions

per atom were used in the shape component. These are shown

in Fig. 4(b). Only a tiny improvement in the structure overlap

measured with the average r.m.s.d. between fitted and target

structures of 0.01 Å was observed upon the usage of five
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Figure 4
Shape-strain energy required to align fitted and target conformations
versus energy difference between docked and relaxed ligands. Plots (a)
and (b) were obtained with analytical gradients of potential (1) via
equation (3) with one and five Gaussians per atom, respectively. The data
in plot (c) were obtained with a target shape density (7) represented by
grid representations at 0.25 Å spacing.

Figure 5
(a) R.m.s.d. between ligand structures obtained in the current procedure
and their PDB structures and (b) shape-strain energies as functions of ��
used for ligand fitting. Protein ligands are retinoic acid/transport protein
(diamonds), allosteric inhibitor in �-lactamase (squares) and quinazoline/
p38 kinase (circles).



Gaussians per atom relative to the results with one Gaussian

per atom. In both cases optimized structures differed from the

model structures by an average of 0.07 and 0.08 Å r.m.s.d.,

respectively.

Next, we examined the fitting of ligands into simulated

electron density generated on a grid from each model struc-

ture according to the protocol described in x2.5. The resultant

series of scalar and gradient grids of 0.25 Å resolution was

used with the same protocol of variation of � as in the case of

analytical gradients. Fig. 4(c) shows the shape strain versus

model ligand energy for this series of fits. A significantly larger

scatter of strain energies with respect to the same experiments

with analytical gradients is clearly visible. This is likely to be a

consequence of numerical error in gradient interpolation as

the scatter reduces with resolution.

However, on average all structures were

aligned within 0.12 Å r.m.s.d., compared

with 0.08 and 0.07 Å for analytical

gradient alignments in the case of one

and five Gaussians per atom, respec-

tively. Given such a small differences,

grid resolutions higher than the 0.25 Å

used in the experiment currently seem

unjustified.

3.2. Fitting to experimental electron
density

3.2.1. Step size, number of Gaussian
grids and grid interpolation. Practical

usage of potential (1) requires selection

of the size of ��, i.e. the adiabatic

increment. If �� is too large the fitting

procedure may cross barriers without

signature, leading to overstraining. On

the other hand, steps that are too small

are inefficient and, owing to finite

precision in minimization, may lead to

premature termination of the adiabatic

procedure. Fig. 5 shows that for

�� � 0.02 ligands are indeed under-

fitted, as is evident from the large

r.m.s. deviations from the published

structures.

In fact, in one of the examples shown

in Fig. 5 (retinoic acid and its transport

protein) the decrease of �� from 0.02

to 0.005 results in a tenfold increase in

r.m.s.d. from the PDB structure. ��
values around 0.05 appear to be a good

compromise.

The overlap of a Gaussian function

with an electron-density map is a

convolution. Efficiency is gained by

precalculating convolutions for a series

of widths of Gaussians and then inter-

polating between members of this set
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Figure 6
(a) R.m.s.d. between fitted structure of a single retinoic acid conformer and its PDB structure with
the use of different set of convoluted electron-density grids calculated at 0.25 Å resolution
(diamonds) and 0.5 Å resolution subsequently interpolated to 0.25 Å resolution (squares). The ��
values on the horizontal axis are increments between Gaussian functions used for convolution of
electron density. (b) Corresponding CPU times.

Table 1
Protein–ligand systems used for testing shape–force-field refinement.

PDB
code

Resolution
(Å)

B-factor
range† (Å2) Protein Ligand

1di9 2.60 24.0–32.3 P38 kinase Quinazoline
1a28 1.80 19.2–31.8 Progesterone receptor Progesterone
1xqd 1.80 14.0–21.6 P450NOR Dinucleotide
1cbs 1.80 9.2–16.2 Transport protein Retinoic acid
1ld8 1.80 15.3–26.2 Farnesyltransferase IC49 inhibitor
1obd 1.40 15.8–27.1 Saicar synthase ATP
1pzp 1.45 27.5–44.2 �-Lactamase Allosteric inhibitor
1ajx 2.00 14.6–26.8 HIV protease Cyclic urea
1err 2.60 30.5–50.9 Estrogen receptor Raloxifene
1b0f 3.00 2.0–27.7 Neutrophil elastase Peptide mimic‡
1ibw 3.20 35.8–49.3 HIS decarboxylase HME§

† Ligand B factors. ‡ Peptidyl pentafluoroethyl ketone. § Histidine methyl ester.

Figure 7
PDB (left) and adiabatically refined structures of the adenine dinucleotide molecule (nicotinic acid
adenine dinucleotide) with complete MMFF94 potential (right) and with excluded Coulombic terms
(middle). The image of the PDB structure also shows a planar coordination for the three O atoms in
the PO4 group (see text).



for any particular width. As the calculation of these convo-

lutions is time-intensive and, in particular, memory-intensive,

the determination of the number of such grids was of impor-

tance to the procedure. In addition, we considered the effect

of convoluting on a course grid and interpolating to a finer

grid. Fig. 6 illustrates results of this investigation, both in terms

of speed and fitting accuracy. These results were used to

optimize the efficiency of our ligand-refinement algorithm.

The reduction of the number of Gaussians widths used for the

calculation of Gaussians overlap with electron density also

leads to less accurate forces in quasi-Newton optimization for

every �, leading to more iterations. In practice, a minimum is

observed, as shown in Fig. 6(b).

3.2.2. Examples of refined ligands. A list of the protein–

ligand systems used for testing our refinement method is

shown in Table 1. Table 2 contains the shape-strain energies

and r.m.s.d. from the corresponding PDB structures for the

best shape matches of the ligands.

There are several observations to be made from the results

in Tables 1 and 2. While the ligand temperature factors do not

seem to be correlated with the differences

between structures refined with our method

and those from the PDB, poorer experi-

mental resolution (>2.8 Å) can, but does not

necessarily, lead to larger deviations

(compare 1xqd, 1b0f and 1ibw). The worst

resolution structure (1ibw) yields a

solution only 0.45 Å from the PDB model

and an exceptionally low strain energy

(4.19 kJ mol�1). The most striking observa-

tion, however, is the improvement of results

on removing electrostatic terms from VFF.

Without electrostatics, the strain on any

ligand is at most 21 kJ mol�1, in line with

expectations from Charifson’s work, and the

maximum r.m.s.d. from a crystal structures is

0.82 Å observed for a poor experimental

resolution system 1b0f), with an average of

0.31 Å. With electrostatics the maximum

strain is almost double, the average r.m.s.d.

is 0.56 Å, equal to the maximum r.m.s.d.

without electrostatics, and there is a clear

‘miss’ with 1xqd. In this case the ligand,

adenine dinucleotide, is highly charged. We

illustrate what happens with and without

electrostatics in Fig. 7.

With electrostatics (right), the pyridine

ring is rotated to maximize the distance

between carboxylic acid group and nega-

tively charged O atoms of the phosphate

group, while the X-ray structure (left) has a

relatively short distance of 3.7 Å between

those two groups, probably as a result of the

interaction between Thr234 and Arg174 of

the P450NOR protein. The structure from

the adiabatic fit without electrostatics

(middle) is much closer to the reported

structure, although it is still one of our worst

results at 0.54 Å. We looked more closely

and noticed that one of the PO4 groups in

the X-ray structure is nearly planar rather

than pyramidal and hence quite chemically

unrealistic. As such, we believe our struc-

ture to be the more reasonable of the two.

The differences observed with and without

an electrostatic component are, of course,

reasonable. We are not including protein
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Figure 8
Fitted (left) and PDB structures (right). (a) 1di9, quinazoline in p38 kinase. (b) 1ajx, cyclic urea
in HIV protease. (c) 1ld8, IC49 in farnesyltransferase.



information, which includes strong van der Waals and

Coulombic forces. Although both these forces can contain

attractive and repulsive effects, van der Waals attractive forces

are weak compared with Coulombic attractive forces. As such,

it should not be surprising that we sometimes fail to account

for a reduction in ligand strain from complementary protein

electrostatics. This is a drawback in our current approach and

might be addressed by adding, for instance, a multipole

representation of the protein electrostatic field in the vicinity

of the ligand density. This is a current research direction. In

structure 1ajx, the ligand is a cyclic urea and the effect of

electrostatics is to actually lower the ligand energy from the

starting conformation. This occurs owing to a non-adiabatic

change to a different ring conformation that was not included

in the original conformational sampling. Both the electro-

statically strained and unstrained results are remarkably close

to the X-ray structure (middle panel, Fig. 8).

Finally, Table 2 also illustrates the importance of a correct

starting conformation from Omega; the closer the initial

conformation, the more exact the eventual match. Programs

that generate conformations typically filter ensembles such

that structures too similar (in r.m.s.d.) from lower energy

conformers are deleted. Although this is a powerful approach

for most uses of conformational ensembles, it is a disadvantage

in adiabatic fitting because the true conformation might be

deleted by a conformation with a lower (unbound) energy.

Ongoing work has shown that removing this r.m.s.d. culling

improves results with little effect on efficiency.

Examples of fitted ligands are shown on Fig. 8. Small

differences between the refined and PDB structures are visible

in all three cases: ligands refined with the force-field–shape

potential seem to occupy slightly more central positions in

their electron-density blobs. This raises the issue as to whether

the ligand structures generated by this procedure are poten-

tially better then those generated by traditional methods. In

some cases, such as the dinucleotide in 1xqd with the non-

pyramidal PO4 group, the adiabatic solution is clearly better;

in others, where the chemistry is correct, this can only be

assessed by re-refining the structure with the new ligand

coordinates. A comprehensive study is currently under way,

with early indications that adiabatic structures are equivalent

to the best produced by other approaches, but with far fewer

of the mistakes that plague the PDB.

4. Conclusions

We have demonstrated significant advantages to a real-space

procedure that uses a Gaussian-based shape function and a

modern small-molecule force field to adiabatically fit low-

energy conformations to electron density. The protocol can

generate high-quality, low-energy models automatically from

a ligand-connection table. No protein information, save that in

determining the ligand density, is required, although we have

noted that the lack of protein electrostatics sometimes

requires compensation by the removal of the Coulombic term

from the force field. We have shown the procedure is relatively

efficient and extensible. Using the optimal values for the

parameter steps, grid spacing and convolution frequency

reported here, model generation takes about a minute per

ligand and can be applied to ligands of considerable flexibility

without loss of utility (we have been successful with ligands

containing 20 rotatable bonds). Current research directions

include adding representations of protein electrostatics and

analysis of a large number of previously reported structures by

re-refinement.

This work was inspired by the premise that many crystal

structures of drug-like ligand complexes show the ligand

binding with very little strain energy (Perola & Charifson,

2004). However, there are many examples in the PDB with

highly strained ligand conformations (e.g. 1nhu). We plan to

explore rerefinement of these cases with the method described

here to explore the possibility of proposing alternate models

that fit the density but have low strain energies.
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