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Molecular replacement is fundamentally a simple trial-and-

error method of solving crystal structures when a suitable

related model is available. The underlying simplicity of the

method is often obscured by the mathematical trickery

required to make the searches computationally tractable. This

introduction sketches the essential issues in molecular

replacement without going into technical details. General

search strategies are discussed and the alternative Patterson

and likelihood approaches are outlined.
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1. Introduction

The term ‘molecular replacement’ (MR) is generally used to

describe the use of a known molecular model to solve the

unknown crystal structure of a related molecule. MR enables

the solution of the crystallographic phase problem by

providing initial estimates of the phases of the new structure

from a previously known structure, as opposed to the other

two main methods for solving the phase problem, i.e. experi-

mental methods (which measure the phase from isomorphous

or anomalous differences) or direct methods (which use

mathematical relationships between reflection triplets and

quartets to bootstrap a phase set for all reflections from phases

for a small or random ‘seed’ set of reflections). The use of MR

has naturally become more common as the database of known

structures expands. MR is currently used to solve up to 70% of

deposited macromolecular structures and at its best has the

advantages of being fast, cheap and highly automated.

In principle, MR is very simple. We have a model that we

assume approximates the unknown structure and a set of

measured diffraction intensities. We then try all possible

orientations and positions of the model in the unknown crystal

and find where the predicted diffraction best matches the

observed diffraction. The model at this point is the best fit to

the target structure. The phases for the reflections of the

unknown crystal are then ‘borrowed’ from the phases calcu-

lated from the model as if it were the model that had crys-

tallized in the unknown crystal and an initial map is calculated

with these borrowed phases and the experimentally observed

amplitudes. The crystallographer therefore relies on the

measured amplitudes to supply the information for rebuilding

of the model so that it more closely resembles the target

structure. At this point, the MR problem becomes a crystallo-

graphic refinement problem.

The MR method raises a number of issues and this paper

discusses these issues without attempting to explain the detail

of the calculations. These are the following:
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(i) how to choose a suitable model and how to improve

models;

(ii) how to score each orientation and position so as to find

when the model best fits the target structure: different target

functions will have different degrees of discrimination

between the solution and noise;

(iii) how to search for solutions: strategies for exploring

rotations and translations;

(iv) computational tricks to speed up calculations.

These four aspects of MR are essentially independent. Failure

of MR can arise from suboptimal choices in any of the cate-

gories. It is fairly obvious that a poor model, low-quality target

function or coarse sampling of search space could fail to give a

solution, but slow calculations can also prevent structure

solution because they limit the number of MR trials that can

be performed. Without the computational tricks that speed up

MR searches, the searches can take a very long time indeed,

even with current computer technology. The computational

tricks for speeding up the calculations require some relatively

sophisticated mathematics and descriptions of these tricks

dominate much of the literature, which can obscure the

underlying simplicity of the concepts.

This paper does not attempt to be a comprehensive review

of the literature. Early papers were collected by Michael

Rossmann, one of the pioneers of the method (Rossmann,

1972), and there are more recent reviews of rotation functions

(Navaza, 2001) and translation functions (Tong, 2001). There

is also a volume of previous CCP4 proceedings on MR, which

contains many useful papers (published as the October 2001

issue of Acta Crystallographica Section D), as well as the other

papers in this issue.

1.1. General search strategy

Each molecule needs six parameters to define its orienta-

tion and position: three rotation angles and three translations

(e.g. �, �, �; tx, ty, tz). If there are N molecules in the asym-

metric unit, then a total of 6N parameters are needed to define

the solution. An exhaustive search can take a very long time.

As a very rough example: for three angles over the range

0–360�, 0–180� and 0–360� at intervals of 2.5�, Nrotation = 1.5 �

106 grid points (this can be reduced to perhaps �0.9 � 106

points using Lattman angles; Lattman, 1972), and for three

translations in a unit cell of 100� 100� 100 Å at 1 Å intervals

Ntranslation = 106 grid points (or fewer in the Cheshire cell; see

x6.2). A six-dimensional search then covers Nrotation = 1.5 �

1012 points. This number is enormously reduced if the two

searches can be separated and the translation search only

carried out for the best point (or few best points) found in the

rotation search: the number of test points in this example is

then Nrotation + Ntranslation = 2.5 � 106 points per rotation

solution. For this reason, most programs split the search in this

way and pick a relatively small number of good solutions from

the rotation search to test in translation searches. Searches in

six dimensions are possible, but they may take a very long

time: programs using these methods generally avoid an

exhaustive six-dimensional search in favour of genetic or

evolutionary, random or limited sampling of solutions [e.g.

EPMR (Kissinger et al., 1999), SOMoRe (Jamrog et al., 2003),

Queen Of Spades (Glykos & Kokkinidis, 2001) and COMO

(Tong, 1996); see also Fujinaga & Read, 1987; Chang & Lewis,

1997].

Splitting the search does have a major consequence. In a

six-dimensional search or the second three-dimensional

search, all parameters (�, �, �; tx, ty, tz) are defined at each

search point, so the correct structure factor Fc(�, �, �; tx, ty, tz)

can be calculated and then compared with the observed Fobs in

a scoring function. However, in the first three-dimensional

search on rotation, the correct Fc(�, �, �) cannot be calculated

with an unknown translation and so cannot be compared

directly with Fobs. There are two ways around this problem,

using different approaches and different scoring functions.

(i) ‘Traditional’ rotation searches are based on the

Patterson function, scoring the overlap between observed and

model Pattersons in a region around the origin where the

function is dominated by self-vectors from within the molecule

which are independent of translation (x3.2).

(ii) ‘Maximum-likelihood’ methods use a statistical

approach in reciprocal space to average over all possible

values of the unknown translation (x4).

2. Selecting a model

Choosing and preparing a suitable model is arguably the most

critical step in MR. Good models have low r.m.s. deviation

from the target structure and high completeness; that is, they

model a high proportion of the scattering from the target

structure with high accuracy. When MR fails, it is nearly

always because the model does not match the unknown

structure well enough. However, it is impossible to describe

‘well enough’ by giving general limits on r.m.s. deviations and

completeness. Moreover, a model that has previously failed to

give a solution for a target structure in one crystal form may be

able to solve the same target structure for the target in a

different space group or with better experimental data for the

same crystal form. Almost by definition, better models

increase the signal to noise of the MR search, but for different

sets of experimental variables the noise in the search will vary

enormously although the ‘signal’ from the search model may

be the same.

Generally, low r.m.s. deviation between two structures is

indicated by high sequence identity. Potential model structure

templates are therefore identified by sequence-comparison

searches. It is best to then improve upon the model structure

templates by omitting regions of large sequence diversity,

which are likely to be different and therefore merely add noise

to the search, and possibly truncating different side chains to

common atoms (Vagin & Teplyakov, 1997), C� atoms

(Schwarzenbacher et al., 2004) or alanine. Since the B factors

of the atoms also determine the scattering, modifications to

the B factors, for example lowering the B factors for the

hydrophobic core of the protein and increasing them in the

surface-exposed residues, can also make for a better model

(Lebedev et al., 2008; see MOLREP documentation, http://
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www.ccp4.ac.uk/dist/html/molrep.html). Where there are

several possible models, none of which is expected to be

significantly better than another a priori, the search should be

repeated with each model or alternatively all the models

grouped together as an ensemble (as in Phaser). It is worth

considering that if an MR search is difficult primarily because

the model is extremely poor then the time spent attempting to

obtain a solution with that model is usually inversely

proportional to the usefulness of a solution once it has been

obtained (see x9).

Unfortunately, proteins with similar sequences do not

always have similar tertiary structures. It is not necessarily true

even for identical sequences, as the binding of ligands or even

different crystal packing environments can lead to rigid-body

motions of groups of secondary-structure elements (i.e. hinge

motions between structure domains). Some proteins can even

undergo a conformational change that rearranges secondary-

structure elements (for example, the serpin family of

proteins). Although the latter case would be extremely diffi-

cult to predict even if such a change was expected, potential
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Figure 1
The separation between self-vectors and cross-vectors as a function of vector length (radius from the Patterson origin) for some example structures. In
each case, the solid line is the number of self-vectors, the dashed line is the number of cross-vectors and the dotted line is the self/cross vector ratio. (a) A
small protein, 119 residues, size �23 � 23 � 50 Å, space group P212121, PDB code 1gyu. (b) A larger heterotetramer, 1730 residues, �80 � 80 � 100 Å,
space group P3121, PDB code 1gw5. (c) An elongated monomer, 217 residues,�25� 25� 110 Å, space group P3121, PDB code 1uru. (d) The equivalent
dimer, 434 residues, �25 � 25 � 145 Å, calculated in space group P31.



conformational changes involving rigid-body motions of

domains can usually be spotted by the presence of obvious

hinge regions in a structure. For use as a model, these template

structures should either be split into the separate domains and

the domains used separately as MR models (allowing the

change in orientation and position between domains to be

picked up by the MR search) or the conformational change

should be modelled in advance, for instance along calculated

normal modes (Suhre & Sanejouand, 2004; Delarue, 2008).

The former case has the advantage that fewer searches need to

be run, but may fail because the completeness of the structure

is low in the search for the first domain. The latter case has the

advantage of high completeness of the model but, unless

potential hinge motions are sampled extremely finely, even the

best model amongst the set is likely to have a relatively high

r.m.s. deviation from the target structure.

3. Patterson methods

3.1. Properties of the Patterson function

The Patterson function is the Fourier transform of the

squared structure amplitude |F|2 with phases set to zero. It is

equivalent to FT(FF*) = FT(F)� FT(F*), where FT() denotes

Fourier transform, F* is the complex conjugate of F and �

denotes convolution, i.e. the convolution of the structure

[FT(F)] with the structure inverted through the origin

[FT(F*)]. This corresponds to a map of interatomic vectors (or

strictly interpoint vectors) with the weights of the vectors

proportional to the scattering from the atoms.

Pattersons are extremely useful because they can be

calculated directly from the observed data, as phase infor-

mation is not required. They can also be calculated from the

model by ignoring the phase component of the calculated

structure factor. The Patterson derived from the observed

data is the vector map of the contents of the crystal and thus

contains not only intramolecular self-vectors but also other

vectors (see below) generated by the presence of crystallo-

graphic and noncrystallographic symmetry. The Patterson of

the model structure would be equally complicated if generated

in the same crystal form. However, the model Patterson can be

calculated in any crystal form. For the purposes of MR it is

much better (in fact essential) to put the model structure in a

P1 crystal with a large unit cell such that there is a large space

between molecules (the resulting ‘crystal’ is not physically

reasonable). The unit cell needs to be large enough that the

corresponding Patterson consists of a set of vectors clustered

around the origin, separated by a gap from the vector cluster

around the neighbouring origins in the Patterson lattice. The

model’s intramolecular self-vectors, and only the self-vectors,

then lie within a sphere around the origin.

The crystal Patterson is more complicated than the model

Patterson from a model in a large P1 unit cell. Depending on

the space group, it contains the following:

(i) multiple sets of self-vectors rotated by the crystal

symmetry rotations;

(ii) overlap between self-vector sets from neighbouring

origins;

(iii) cross-vectors between different molecules which

depend on unknown translations.

Unlike the model Patterson, cutting out a sphere around the

origin does not give a simple Patterson of one molecule, but

nonetheless if the sphere is small enough then most of the

enclosed vectors will be intramolecular self-vectors, since

vectors between molecules are generally longer. We can use

this property to select mostly self-vectors in a rotation search

when the translation is unknown.

How well are the self-vectors separated from the cross-

vectors? Clearly, this depends on the structure and the packing

in the crystal. Fig. 1 shows how the ratio of self-vectors to

cross-vectors varies as a function of vector length for a few

examples. A larger cutoff radius is appropriate for a larger

structure. Fig. 1(a) shows a small protein (119 residues) where

the cross-over point with 50% of cross-vectors is 22 Å: a

suitable integration radius might be �10–15 Å. For the large

complex in Fig. 1(b) (1730 residues) the cross-over point is

47 Å and an integration radius of 25–30 Å could be used.

Large molecules have more ‘inside’ than smaller ones, which is

why a large molecule may be easier to solve by MR than a

small one.

Elongated molecules and oligomers present particular

problems. For an elongated model, a spherical integration

mask is obviously not ideal. If the model is a monomer that is

part of a tight oligomer, then there are many short cross-

vectors between monomers. Fig. 1(c) shows the vector

separation for an elongated monomer which is part of the

dimer shown in Fig. 1(d): in such a case, a dimer model may be

a better search object as the many short cross-vectors for the

monomer become self-vectors in the dimer. Another way of

looking at this is that you already know the relationship

between the monomers, so you might as well use this infor-

mation.

3.2. Patterson rotation function

The Patterson has the property that rotating the model

rotates the intermolecular vectors by the same angle. For the

Patterson rotation function (see, for example, Navaza, 2001),

we rotate the radius-limited Patterson of the model and score

how well it matches the unrotated radius-limited Patterson

from the observed data. Restricting the radius evades the

problem of not knowing the translation. It is important that

the model is placed in a box which is large enough that all

intermolecular vectors are outside the search volume; the box

size must be at least the largest molecular radius plus the

search sphere radius.

Crystal symmetry makes the observed Patterson more

complicated: if there are Nsym rotational (primitive) symmetry

operators then there are Nsym sets of intramolecular vectors

around the origin which smear out the signal, so the signal-to-

noise ratio is worse for high-symmetry space groups (also

because there are more cross-vector sets which contribute to

the noise). In the full rotation search, the model Patterson will
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overlay correctly with the true structure Nsym times, so there

will be Nsym related solutions. Alternatively, at least in some

cases, the known crystallographic symmetry can be used to

reduce the required range of the search.

The match can be measured as various functions in

Patterson space, such as a product function or a correlation

coefficient, or as the equivalent to the Patterson product

function in reciprocal space. The Patterson product function

RF is

RFðRÞ ¼
Rrmax

rmin

PobservedðuÞPmodelðR; uÞ du; ð1Þ

that is, the product of the observed crystal Patterson

Pobserved(u) and the rotated model Patterson Pmodel(R, u)

integrated over all points u in Patterson space within a sphere

of radius rmax centred on the origin and excluding the origin

peak out to a radius rmin. At any rotation R, the contribution

of a point u is only large if peaks coincide in both the crystal

Patterson and the rotated model Patterson. This function can

be evaluated either in Patterson space (Huber, 1965; Brünger,

1990), as implemented in the programs X-PLOR and CNS),

over any volume, not necessarily a sphere (Vellieux, 1995), or

by a Fourier transform in reciprocal space. The reciprocal-

space version can be made fast by a clever factorization, the

‘fast rotation function’ (Crowther, 1972; Navaza, 1994), but

only for a sphere.

3.3. Patterson translation function

If the crystal has any rotational symmetry operators (i.e.

does not belong to space group P1), then the Patterson also

contains ‘cross-vectors’ between atoms belonging to different

molecules related by symmetry. If we translate the molecule

relative to the symmetry operator (in the plane perpendicular

to the axis), then the symmetry-related molecule moves in a

different direction and the cross-vectors change. The cross-

vectors are thus sensitive to the translation (relative to a

symmetry axis) while the self-vectors are not. If one of the

axes does not have a symmetry axis perpendicular to it (e.g.

the monoclinic axis in P21), then translation along this axis

does not change the Patterson: however, since the origin is

defined with respect to symmetry axes, in such a case the

translation is arbitrary: there is no translation to define!

If we know (or wish to test) the orientation of the model

from the rotation search, we can calculate model structure

factors for every possible shift vector t. The best match with

the observed data can then be found by a Patterson product

(correlation) search (Fujinaga & Read, 1987). The translation

search is relative to the crystallographic symmetry operators:

with no symmetry (space group P1) if the model is translated

the Patterson stays the same, so we can place the model

anywhere we like in the cell and there is no need for a search.

As the model is translated in the plane perpendicular to a

rotation axis, the cross-vectors change. Self-vectors within the

molecule remain the same and can be subtracted from both

the observed and calculated Pattersons to improve the signal-

to-noise ratio. The Patterson translation function for a trans-

lation t is defined as the product of the observed and model

Pattersons, integrated over the whole cell,

T2ðtÞ ¼
R
V

PobservedðuÞ �
PNsym

j¼1

PjjðuÞ

" #
Pmodelðu; tÞ �

PNsym

j¼1

PjjðuÞ

" #
du;

ð2Þ

where Pobserved(u) is the crystal Patterson at point u,

Pmodel(u, t) is the model Patterson shifted by the search vector

t and the Pjj terms are the calculated self-vectors. As for the

rotation function, this function can be evaluated as a three-

dimensional search combining all symmetry operators, either

in Patterson space or efficiently in reciprocal space by a fast

Fourier transform (Harada et al., 1981; Navaza & Vernoslova,

1995; Tong, 2001).

4. A probability approach

The ‘maximum-likelihood’ method asks the question: for any

postulated orientation and position of the model (R, t), what is

the probability of obtaining the structure amplitudes that we

observe? We can then choose the most likely solution

(Bricogne, 1992; Read, 2001), an intuitively obvious approach

(McCoy, 2004).

Patterson functions are relatively easily to visualize, since

they have a physical meaning (a vector map); it is much more

difficult to visualize what is going on in reciprocal space. The

functions used for the maximum-likelihood rotation and

translation functions are best understood by visualizing

probability functions in reciprocal space. We can approximate

the probability functions for the reciprocal-space structure

factors as Gaussian functions (‘bell-shaped’ curves). The

Gaussian probabilities arise from the basic ‘central limit’

theorem (that the distribution of an average tends to a

Gaussian, even when the distribution from which the average

is calculated is non-Gaussian: this was historically known as

the ‘law of errors’) and ‘random walks’ in reciprocal space.

Although we think of the solution for the rotation and

translation of the model with respect to the target structure in

terms of only one asymmetric unit, to obtain this solution all

copies in the unit cell have to be considered. In the Patterson

functions, this means the consideration of cross-vectors. In the

likelihood function, it means considering the structure factors

from all the copies in the unit cell and how they sum to form

the total structure factor for each reflection h,

FðhÞ ¼
P

j

P
i

fi exp½2�ih � ðCjxi þ djÞ�

¼
P

j

expð2�ih � djÞ
P

i

fi expð2�ih � CjxiÞ

¼
P

j

expð2�ih � djÞFðh; jÞ; ð3Þ

where Cj and dj are the rotation and translation parts of the jth

crystal symmetry operator, xj are fractional coordinates and

F(h, j) is the (complex) molecular transform of the molecule

corresponding to the jth symmetry operator. The orientation

of a model gives rise to the amplitude of the structure-factor
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contributions; the position gives rise to the phase of the model

contributions.

4.1. Likelihood translation function

For a given (possibly correct, possibly not) orientation of

the model, the model is placed sequentially at grid points

throughout the translationally unique volume of the unit cell.

At each search position the amplitude and the phase of all the

structure factors making up the total structure factor sum is

known and therefore the total structure factor can be calcu-

lated. This is a key point: although the correct position of the

model is not known, for each hypothesis of the position of the

model the translation (and hence phase) is known. For each

reflection, each partial structure factor in the sum will have a

small error arising from errors in the model, which can be

modelled as a two-dimensional Gaussian (by the central limit

theorem). The total error is also a two-dimensional Gaussian

(again by the central limit theorem) of variance ��
2 (Fig. 2a)

centred on DFc, where D (0 	 D 	 1) is given by the corre-

lated component of the atomic errors (see Read, 1990 and

McCoy, 2004 for a more complete explanation of D and ��).

This then is the probability of observing a particular Fo, i.e.

P(Fo|Fc).

If the observed structure factors were phased, we would not

need any further manipulations to calculate the probability

that we want (although we also would not have a phase

problem!). The phased observed structure factor Fo would lie

in the complex plane, as does the probability distribution for

Fo given the calculated structure factor P(Fo|Fc). However, we

do not know the phase of the observed structure factor and so

the probability function for the phased calculated structure

factor must be converted to that for an unphased calculated

structure factor. The loss of an unknown variable (called a

nuisance variable) from a probability distribution can be

achieved by ‘integrating out’ the variable. The removal of the

nuisance phase variable leads to the so-called Rice distribu-

tion for P(|Fo| | |Fc|) (Sim, 1959; Read, 1990). This Rice func-

tion gives the probability for each putative translation, from

which the most likely is selected as the solution to the trans-

lation problem.

4.2. Likelihood rotation function

The maximum-likelihood rotation function is conceptually

similar to the maximum-likelihood translation function (or, at

least, more similar than the Patterson-based rotation and

translation functions). For a maximum-likelihood rotation

function, the model is rotated sequentially on an angular grid

through the unique angular space and the orientation that

predicts the data with highest probability is selected. Again,

although the correct orientation of the model is unknown, for

each hypothesis the orientation is known. At each search

orientation only the amplitude of the structure factors for each

symmetry-related component making up the total structure-

factor sum is known. The relative phase of each component is

not known, so the total structure factor cannot be calculated.

However, there is still something that we can say statistically

about the calculated structure factor. Although we cannot sum

up the structure-factor components, we know whether they

are large or small. A lot of small structure factors could only

lead to a small structure factor, while large structure factors

could lead to a much larger total structure factor. This is

expressed statistically as a random walk of the components,

which again leads to a two-dimensional Gaussian. This two-

dimensional Gaussian is much broader (has a much higher

variance) than the two-dimensional Gaussian probability

distribution for the translation function, which only arises

from the errors in the positions of the atoms (in fact, this small

error contribution is also added to the random-walk error for

the rotation function). Again, this probability function

describes the probability of P(Fo|Fc) and the nuisance phase

must be integrated out, giving another Rice distribution for

P(|Fo| | |Fc|). A slightly better probability function can be

derived by arbitrarily fixing the phase of the largest compo-

nent structure factor, leading to a two-dimensional Gaussian

offset from the origin (Fig. 2b; for a full explanation, see Read,

2001; McCoy, 2004).
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Figure 2
Error distributions for a structure factor in the complex plane. (a) The full
structure factor for a translation search arises from the summation of
contributions from each asymmetric unit (in this case six), leading to a
two-dimensional Gaussian probability distribution. (b) In a rotation
search five of the contributions (coloured arrows) can be considered as a
random walk from the sixth (Fbig), leading to a larger two-dimensional
Gaussian (three example random walks are shown).



Note that the larger the number of symmetry operators, the

larger the uncertainty introduced by the random walk, which

is why the rotation search is less clear in higher symmetry

space groups. On the other hand, with more symmetry

operators, the random walk is approximated better as a

Gaussian (Read, 2001).

4.3. Combining probabilities

The Rice functions describing the probabilities for each

reflection are combined to give the overall probability func-

tion: the best solution will not score the highest likelihood for

each reflection, but will give the highest likelihood over the

whole data set. If the reflections are assumed to be indepen-

dent, then the total likelihood is the product of the reflection

likelihoods. This is an approximation, as the presence of

solvent and noncrystallographic symmetry means that the

reflections are not independent. The correlations between

reflections are very important to solvent flattening, noncrys-

tallographic symmetry averaging and direct methods, but they

impossibly complicate the problem for maximum-likelihood

MR (and refinement, since the maximum-likelihood

translation-function likelihood is the same as the ML refine-

ment target) and the correlations are ignored by necessity.

Fortunately, in the context of MR the errors introduced by the

approximation are minor compared with other larger errors.

The probabilities for each reflection can be combined into a

total score as a function of rotation or translation, total

probability P(R, t) = �hP[|Fo(h)| | |Fc(h, R, t)|] or, more

usefully, the log probability log[P(R, t)] =
P

h logfP½jFoðhÞj

j jFcðh;R; tÞj�g, which avoids numerical extremes, which are

inconvenient in a computer. The program Phaser (McCoy et

al., 2007) uses a log-likelihood gain relative to an expected

‘random’ score and a ‘Z score’, a multiple of the r.m.s. value

taken from a random sample of rotations or translations.

5. Comparison of Patterson and likelihood methods

The maximum-likelihood method explicitly models errors,

both experimental (�F) and of the model (r.m.s. coordinate

error), whereas Patterson methods assume there are no errors,

which is clearly not true. This is one of the reasons that like-

lihood methods are more robust and generally give clearer

solutions in difficult cases (Read, 2001).

The two approaches use different methods to deal with the

unknown translation problem in the rotation search. Patterson

methods restrict the scoring to a volume (sphere) around the

origin, which largely selects intramolecular vectors, while the

likelihood method integrates out the unknown translation by a

random walk. It can be shown that the Patterson rotation

function is a mathematical approximation to the full rotation

likelihood function, being essentially the first term in the

Taylor series expansion of the likelihood rotation function

(Storoni et al., 2004). The likelihood rotation-function method

has the significant advantage that fragments of the structure

already placed can be easily used to enhance the signal for the

subsequent placement of other components in the asymmetric

unit.

Both methods have some control parameters set by the

user, in addition to the choice of model. The resolution of the

data used is one variable: higher resolution gives better

discrimination between correct and incorrect solutions for a

correct model, but less tolerance of an inappropriate model.

Likelihood methods should be less sensitive to resolution

cutoffs, as high-resolution data are automatically down-

weighted, depending on the error estimates. Typically, 2.5–4 Å

is a good range to try. Other user variables are the radius of

integration in Patterson rotation searches and the error esti-

mate on the model in likelihood methods. Although a

successful MR solution does not demand high-resolution data,

nor unusually accurate data, losing all the strong low-

resolution reflections, e.g. by overloading the detector, is bad

at least for Patterson methods, since these reflections domi-

nate the Patterson function.

6. Search strategies and descriptions

For the purposes of MR, the coordinates of a molecule are

described as a series of vectors in an orthogonal coordinate

frame in angstroms and we need to describe rotations and

translations which move the coordinates into a new frame; for

each atom i, xi
0 = Rxi + t, where R is a rotation matrix and t is a

translation vector. Translations are generally straightforward,

but it is usually more convenient to describe a rotation as

three angles rather than as a rotation matrix. Unfortunately,

there are many different ways of doing this: these are

discussed for instance in Evans (2001) (see also Navaza, 2001),

but briefly rotation in three dimensions may be expressed (i)

as polar angles, e.g. as a rotation by an angle � around an axis

whose direction is defined by two other angles (e.g. ! from the

pole and ’ around the equator, somewhat like latitude and

longitude), (ii) as Eulerian angles, as three successive rotations

around principal axes, e.g. a rotation by � around z, by �
around y and then by � around z [the convention used by

Phaser (McCoy et al., 2007), AMoRe (Navaza, 1994) and

MOLREP (Vagin & Teplyakov, 1997)], i.e. R =

Rz(�)Ry(�)Rz(�) or (iii) as Lattman angles, defined in terms

of Euler angles as �+ (= � + �), � and �� (= � � �) (Lattman,

1972). Note that in any angular representation there are points

of ambiguity, so that there may be multiple ways of decom-

posing a rotation matrix into angles. For instance, in polar

angles if � = 0, i.e. no rotation, it does not matter which axis

you do not rotate about. With the typical definition of

Eulerian angles, if � = 0 or 180� the outer rotations by � and �
become coincident, so only � + � or � � � are defined.

The main difference between the use of the different angle

conventions is the ease with which the rotation can be visua-

lized and whether a uniform sampling of space can be

achieved. The three Euler angles are simpler to store and print

than nine-element rotation matrices. Rotations in terms of

polar angles are the easiest transformations to visualize,

particularly when the results are plotted on � sections.

Lattman angles are locally orthogonal, so provide a better
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search space than the original Euler angles for generating, for

example, a pseudo-hexagonal close-packed grid of angles.

Confusions in rotations can also arise as some authors prefer

to consider rotating the axis system, rather than rotating the

object in the opposite direction. It is also common to move the

model prior to use in the search, so that the centre of mass is at

the origin and the moments of inertia lie along the axes. The

transformation may then apply to this reoriented model rather

that to the original model coordinates. Programs such as

Phaser hide these internal machinations from the user, but

AMoRe, for instance, does not.

6.1. Rotation searches and symmetry

There will be a solution to the rotation problem for each

orientation of the target structure in the unit cell. However,

most search programs only search a unique volume of rota-

tional space. The expression of crystallographic symmetry in

Eulerian angles is quite complex, although the resulting

restrictions on the search volumes in terms of Eulerian angles

are relatively straightforward. If there is more than one

component of the asymmetric unit to be searched for (with the

same or different search models), this pre-defined unique

rotational search volume will not necessarily result in solu-

tions that give close-packed molecules. Note that crystal-

lographic symmetry operators work on fractional rather than

orthogonal coordinates.

6.2. Translational search volume

In any crystal containing symmetry elements there are

multiple ways of defining the cell origin. For example, in the

two-dimensional example in Fig. 3 the cell origin may be

placed on any of the dyads and there are four distinct options

differing by a translation of half a unit cell in either direction.

Shifting the origin by half a cell changes the unknown phases

but does not change the amplitudes, so the alternatives are not

distinguishable in a translation search. A translation search is

relative to a symmetry element, so will give solutions which

repeat each half a cell, i.e. we only need to search a quarter of

this two-dimensional cell: this is the so-called ‘Cheshire cell’

(see, for example, Tong, 2001). Defining the Cheshire cell used

to be an intellectual challenge left to the user, but modern

programs have the volumes tabulated.

If there is more than one molecule per asymmetric unit,

placing the first molecule defines the origin, so searches for

additional molecules need to cover the whole (primitive) unit

cell.

6.3. Space groups

Unlike structures phased by isomorphous replacement

methods, it is not possible to obtain a structure in the wrong

enantiomorph by MR, since the correct hand is implicit in the

search model. However, systematic absences are not always a

reliable indicator of translational symmetry operators and

they cannot distinguish between enantiomorphic space

groups. The rotation search depends only on the crystal point

group, but it is often necessary to test multiple space groups in

the translation search in order to distinguish different enan-

tiomorphic groups (e.g. P41 and P43) or groups with different

translations (e.g. all eight possible space groups of the form

P2x2x2x in the orthorhombic system). This need only be

performed for the first molecule in the asymmetric unit.

7. Computational tricks

A simple-minded brute-force search is very slow even on

modern computers, so various tricks have been used to speed

up calculations. Much of the difficulty in reading the literature

on molecular replacement arises from these tricks and their

mathematical details.

7.1. Splitting into three-dimensional searches

Splitting the search into two three-dimensional searches

was discussed above and appears not to miss solutions that

would be found in a full six-dimensional search, provided that

sufficient rotation solutions are used in the translation

searches: this is equivalent to a limited six-dimensional search.

7.2. Factorization

Many score functions (e.g. the Patterson product function)

can be factorized into a part dependent on the molecule alone
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Figure 3
Alternative origins in plane group p2. The cell origin may be placed on
any of the dyad axes, giving four possibilities: two are shown in blue and
yellow. A translation search need only search a quarter of the cell, the
‘Cheshire’ cell, shown as a thin black line.



(the molecular transform) and a part dependent on the search

variable (rotation or translation) in such a way that a fast

Fourier transform can be used to calculate the score. If the

optimum score function cannot be factorized, it may be

possible to calculate an approximation which can be factorized

and thus be calculated rapidly in order to find candidate

solutions and then to rescore these with the full slow function:

this is performed, for example, for the rotation search in

Phaser, where the likelihood target cannot be factorized

(Storoni et al., 2004).

A simple case of factorization can be seen in factorizing the

structure factor needed for a translational search; factorizing

the expressions for a rotation search is more complicated. If

we shift the molecule by a search vector t, the structure-factor

expression becomes

Fðh; tÞ ¼
P

j

P
i

fi expf2�ih � ½Cjðxi þ tÞ þ dj�g

¼
P

j

exp½2�ih � ðCjtþ djÞ�
P

i

fi exp½2�ih � Cjxi�

¼
P

j

exp½2�ih � ðCjtþ djÞ�Fðh; jÞ: ð4Þ

The molecular-transform terms F(h, j) for each symmetry

operator j can thus be calculated once for all translations and

summed over all reflections and over all symmetry operators.

7.3. Grid size

The grid size for the search needs to be fine enough that

solutions are not missed, but the potential solutions can be

optimized by rigid-body refinement, avoiding the need for a

very fine grid.

8. Search-tree strategies

If there are multiple molecules in the asymmetric unit, then

the molecules have to be found one at a time, which leads to a

complicated tree search of all possibilities. As an example, the

following is a rough outline of the search strategy in Phaser

(other automated programs follow a similar scheme).

(i) Rotation search for the first molecule: this should pick up

the orientations of all the molecules, as well as possibly false

solutions. Select candidate solutions (e.g. by default, Phaser

selects scores >75% of the difference between the search

mean and the maximum score).

(ii) For each selected solution, search translations, perhaps

in multiple space groups (often the crystal point group is

known, but the space group is ambiguous). Choose the best

space group and select solutions to keep.

(iii) For each translation solution, check crystal packing and

reject solutions that overlap.

(iv) Rigid-body refinement of all solutions, cluster solutions

which are close together and prune out duplicates.

(v) For each solution from step (iv), consider this as a fixed

solution for molecule 1 (this defines the origin for space

groups with ambiguity in the position of the origin) and begin

the search for the next (second) molecule. Repeat from step

(i) until all molecules are found.

(vi) Rank the overall solutions.

In such a search, there is a difficult balance between effi-

ciency from early pruning of ‘wrong’ solutions and incorrectly

rejecting true solutions. Other search strategies may be more

appropriate for difficult MR problems (McCoy, 2007).

This search strategy takes advantage of the property of the

rotational likelihood target function that molecules already

placed in the asymmetric unit can be used to enhance the

signal in the search for subsequent molecules. Patterson search

methods do not easily lend themselves to the use of this

information and so the rotational search must be performed

for each search model in isolation.

9. How do you know that the solution is right?

The R factor for the initial solution can be very high (55%)

even though the models are correctly placed. If the MR

process gives one solution that clearly stands out in scores

from the next best solution, it is likely to be correct. The

principal test for a correct and useful solution is that the maps

phased from the solution model should show new and plau-

sible information that was not present in the model. This might

be side chains or loops that were different in the model and

the unknown structure. If in doubt, you can deliberately leave

out parts of the model to see if these parts reappear in the

resulting maps. Composite omit maps are a systematic and

exhaustive check using this principle. Blocks of the model are

successively omitted from the map calculation and the

resulting densities for the volumes of the omitted blocks

spliced together so that none of the density has ‘seen’ the

portion of the model it covers (Bhat, 1988; Vellieux &

Dijkstra, 1997; Hodel et al., 1992). The prime-and-switch

method uses more sophisticated density-modification methods

to remove model bias (Terwilliger, 2004). At high resolution,

automatic model-building procedures such as ARP/wARP are

good ways of confirming the solution and reducing model bias.

At low resolution (say worse than 3 Å) you should be very

cautious and suspicious of the results. Very poor models may

not enable anything new to be interpreted in the maps and

although the solution may be correct, refinement is unsuc-

cessful in removing the severe model bias. One of the most

important tricks of MR is to know when to give up and use

experimental phasing!

We would like to thank Randy Read, Eleanor Dodson and

Andrew Leslie for useful discussions.
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