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Normal-mode analysis (NMA) can be used to generate

multiple structural variants of a given template model, thereby

increasing the chance of finding the molecular-replacement

solution. Here, it is shown that it is also possible to directly

refine the amplitudes of the normal modes against experi-

mental data (X-ray or cryo-EM), generalizing rigid-body

refinement methods by adding just a few additional degrees of

freedom that sample collective and large-amplitude move-

ments. It is also argued that the situation where several

(conformations of) models are present simultaneously in the

crystal can be studied with adjustable occupancies using

techniques derived from statistical thermodynamics and

already used in molecular modelling.
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1. Introduction

It is well known that the success of molecular replacement

(MR) depends strongly on the accuracy and completeness of

the structural model(s) at hand. Recently, several new tech-

niques and websites have been set up and made available to

the crystallographic community to address this issue by linking

together existing pieces of software in a very effective way

(see, for example, Claude et al., 2004; Keegan & Winn, 2007).

Because several decisions must be made concerning (i) trun-

cation of the model in uncertain parts; (ii) the actual protocol

for sequence alignment and homology modelling; and (iii) the

choice of the MR software, the consensus approach is to

derive a variety of models and try MR for all of them one by

one (see, for example, Delarue, 2007, and references therein).

In this review, we will try to address a different but related

problem, namely the problem of conformational sampling to

optimize the success rate of MR. In addition, we will be

concerned with the refinement of a model against X-ray or

cryo-EM experimental data in the presence of large-amplitude

structural changes arising either from ligand (or cofactor)

binding, crystallization in a different space group or simply

because the available models are from different species caught

in different conformations.

We argue that normal-mode analysis (NMA) is a powerful

tool to generate structural diversity (decoys) starting from just

one structure so that in some cases it can improve the signal-

to-noise ratio of the MR score in a dramatic way. Furthermore,

we show that it is possible to directly refine the amplitudes of

the normal modes against experimental data (X-ray or cryo-

EM), allowing a radius of convergence that is unattainable

with more standard and traditional refinement methods.

Finally, we briefly address the situation in which several

models are present simultaneously in the crystal asymmetric

unit (multi-copy refinement) and show that techniques

derived from molecular modelling and mean field theory
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(MFT) can handle this case in a natural way through the

refinement of adjustable occupancies (Koehl & Delarue,

1996). This also suggests that structural diversity can be

approached in MR not by scanning each possible model one

by one, but rather by treating all (fixed) models in an all-in-

one-go fashion and just refining their weights.

2. What are normal modes and what are they good for?

2.1. Definition

By definition, normal modes are the eigenvectors of the

matrix of the second derivatives (or Hessian matrix) of the

energy: Hij = @2V/@xi@xj. The frequencies !k are the square

roots of the associated eigenvalues �k. For a molecule

containing N atoms described in a Cartesian coordinate

system, the dimension of H is 3N� 3N. The 3N components of

each eigenvector (mode) describe the evolution of each

atomic coordinate along that mode. The modes can be sorted

by ascending associated frequency, starting with the first six

modes with zero frequencies that describe the overall trans-

lation and rotation motions of the molecule. At a given

temperature, the lowest frequency modes are the ones that are

the most likely to reproduce large-amplitude movements (see

below).

If the potential energy is purely harmonic and can be

written as xTHx (where xT denotes the transpose of x), which

is always the case locally if the first-order derivatives of the

potential energy are zero, i.e. if the mechanical system is at

equilibrium, then the equations of motion around this equi-

librium position can be written down analytically. The motion

ri(t) of each atom i is just the superposition (linear combina-

tion) of normal modes, modulated by sine functions of known

frequency !k with amplitudes ck and some phase shift ’k,

along eigenvectors uk
i ,

riðtÞ ¼
P

k

ck sinð!kt þ ’kÞu
i
k: ð1Þ

2.2. Simplified harmonic potentials: ENM and variants
thereof

Normal modes have been used since the mid-1980s for

macromolecules, following the work of Brooks & Karplus

(1983), Go et al. (1983) and Levitt et al. (1985). However, it

was not until recently that this method became truly wide-

spread. This change of affairs was permitted by two factors: (i)

the use of simpler energy potential functions, which renders

unnecessary the energy-minimization step before diagonal-

izing H, and (ii) the realisation that only the calculation of the

top 5–10% lowest frequency modes is really necessary, instead

of the full spectrum. These two factors allowed much faster

normal-mode calculations, while at the same time the simple

elastic potential first derived by Tirion (1996) was shown to be

able to capture most of the interesting and biologically rele-

vant movements of proteins (Tama & Sanejouand, 2001) and

molecular motors such as polymerases (Delarue & Sane-

jouand, 2002), the GroEL chaperonin (Zheng, Liao et al.,

2007), helicases (Zheng, Brooks et al., 2007) and even the

ribosome (Tama et al., 2003).

The Tirion potential energy (elastic network model or

ENM) is of the type

V ¼
C

2

P
ði;jÞ

ðdij � d0
ijÞ

2; ð2Þ

where the sum is restricted to those pairs of atoms (i, j) whose

distance dij is less than a certain cutoff, usually 10 Å, and dij
0 is

the equilibrium value of dij (see also Bahar et al., 1997).

This potential energy was further simplified by Hinsen

(1998), who showed that a coarse-grained potential based on

the same idea but restricted to CA-only coordinates

performed almost equally well. Finally, Sanejouand and

coworkers developed a method to calculate ENM normal

modes for all atoms in almost the same CPU time as the CA-

only model, using the so-called rotation–translation–block

(RTB) method that projects all degrees of freedom of a given

group of atoms (one residue or more) onto the six rotation–

translation degrees of freedom of that block (Tama &

Sanejouand, 2001).
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Figure 1
Elastic network representation of the glutamine-binding protein 1ggg, as
output by NOMAD-Ref (Lindahl et al., 2006). This figure was drawn with
PyMOL (DeLano, 2002).



2.3. Collective and large-amplitude movements are well
described by low-frequency modes

Because of the graph-like and highly connected nature of

the model (see Fig. 1), it is clear from the outset that the ENM

should be good for predicting collective movements: if one

pulls one residue, its neighbours will be moved through the

spring network, then the neighbours of the neighbours and so

on. Also, the models produced by deformation along normal

modes should retain protein-like geometry because the

interatomic distances are restrained to near-native values; in

particular, secondary structures are preserved. Moreover,

because of the equipartition of energy, each normal mode

carries the same energy, which implies that at a given

temperature the amplitudes of movement along low-

frequency normal modes are always larger than the amplitude

of movement along high-frequency modes (see Fig. 2). Finally,

because of the speed of the calculation, it became possible to

check the relevance of the ENM low-frequency modes to the

description of known structural transitions on a database

scale. This was first accomplished by Krebs et al. (2002), who

used the so-called ‘overlap coefficient’ Ok (Hinsen, 1998;

Tama & Sanejouand, 2001) to quantify the agreement between

the movement predicted for a particular normal mode and an

‘observed’ movement, namely through the dot product of the

difference vector �r between two known structures of the

same macromolecule and each normal mode uk (see Fig. 3),

Ok ¼
P

i

�ri � u
i
k=

P
i

ð�riÞ
2
�
P

i

ðui
kÞ

2

� �1=2

: ð3Þ

These authors showed that the mean value of the maximum

overlap coefficient was around 0.56 and that on average

known structural transitions can be described with two modes

that happen to tend to be among the very lowest frequency

ones (Krebs et al., 2002).

Further tests of the validity of the ENM model and the

deduced NMA were conducted by systematically comparing

predicted and measured crystallographic B factors (Kundu et

al., 2002; Kondrashov et al., 2006). This led to a mean overall

correlation coefficient of 0.64 for more than 100 high-

resolution X-ray structures when packing interactions are

included.

For a given open/closed structural transition (e.g. adenylate

kinase or hexokinase), normal modes derived from the open

form are usually better at describing the structural change

than those derived from the closed form: a possible explana-

tion is that the open form, which has less links and contacts

than the closed form, has a less steep harmonic well, thereby

shifting the crossing point between the two harmonic curves

towards the final state in a naı̈ve one-dimensional repre-

sentation (see Fig. 2). This means that one can travel further

towards the final state along normal modes derived from the

open state, compared with the reverse situation where normal

modes are derived from the closed state and the target is the

open state.

2.4. How many modes are needed to represent the full
transition?

At this stage, it should be made clear that even though

normal modes generally represent a much better basis set to

describe a structural transition than a randomly generated

basis set, the full transition can only be described by the

complete set of normal modes. We refer the reader to Van

Wynsberghe & Cui (2006) for the point that more than just a

handful of modes are needed to reproduce the atomic

displacement correlation matrix. Normal modes are never-

theless convenient because a partial set of them (usually the

10–20 lowest frequency ones) can often describe most of the
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Figure 2
Influence of a steeper and steeper harmonic potential for the closed form
compared with a constant harmonic curve for the open form on the
crossing point between the two curves. The closed form is represented by
a family of harmonic curves on the right and the open form is on the left
with just one harmonic curve. It can be seen that the steeper the potential
of the closed form, the closer the crossing point to the closed form. At a
constant temperature (horizontal line), the amplitude of the movement
away from the equilibrium position is smaller for steeper potentials.

Figure 3
Overlap coefficient Ok (see equation 3) for low-frequency modes
(k = 1–106) for the open and closed forms of the glutamine-binding
protein (PDB codes 1ggg and 1wdn). The cumulated score is also
represented (dashed line).



transition, routinely 90–95% (see, for example, Delarue &

Sanejouand, 2002). Here, the range 90–95% refers to the

cumulated square tn =
P

k¼1;n O2
k of the overlap coefficient Ok,

which is the correct way to measure how the different ortho-

gonal normal modes (1 . . . n) cooperate to describe a given

transition. Interestingly, the quantity tn allows the a priori

calculation of how much the root-mean-square deviation

(r.m.s.d.) between the two forms can be reduced by applying

the best amplitudes c1 . . . cn (in the sense of minimum r.m.s.d.

with the target) along this subset of normal modes (1 . . . n),

r:m:s:d:ðnÞ2=r:m:s:d:ð0Þ2 ¼ ð1� tnÞ; ð4Þ

where r.m.s.d.(n) is the r.m.s.d. of a model deformed along n

normal modes after applying the best amplitudes to obtain the

minimum r.m.s.d. with the target model and r.m.s.d.(0) is the

initial r.m.s.d. of the unperturbed model (Lindahl & Delarue,

2005).

This formula gives a posteriori the maximum possible

reduction of the r.m.s.d. when deforming a model along a

given subset of normal modes (up to mode number n) and

explains most of the data of Petrone & Pande (2006). The

take-home lesson (and warning message) is that even with a

cumulated overlap of 90% (or 95%), there is still 32% (or

22%) of the r.m.s.d. decrease to be explained. Still, for a

structural transition with a 7 Å r.m.s.d., such as in adenylate

kinase, this means a reduction of the r.m.s.d. to 2.2 Å (or

1.5 Å), which is enough to bring the model into the radius of

convergence of conventional refinement programs. The

problem of course is that one does not know a priori how

many modes are necessary and which are the most relevant.

2.5. How to select the biologically relevant modes

A recurrent question in the field is how to select a priori the

best subset of normal modes. Two recent studies have

addressed this problem. One of them argues that the bio-

logically relevant modes are the most robust ones when using

slightly different versions of the ENM (Nicolay & Sanejouand,

2006). The other one relies on more biological (evolutionary)

information, namely a multialignment of closely related

sequences, to strengthen or weaken the links between the

pairs of atoms in the ENM (Zheng et al., 2006) depending on

the degree of sequence conservation of the different positions

involved.

This problem is particularly acute when studying structural

transitions that are not a priori well described by low-

frequency normal modes, namely loop movements. However,

in certain cases, such as the TIM-barrel active site (Kurk-

cuoglu et al., 2006), it could be shown that normal modes can

actually be used in a meaningful way. This is also the case for

some Ser-Thr kinases, which undergo large loop movements

upon activation. By carefully filtering for normal modes that

do have an influence on the particular loop they are interested

in, Abagyian and coworkers showed they could identify a

restricted subset of normal modes explaining most of the

transition (Casavotto et al., 2005).

2.6. Generating decoys

We terminate this section by concluding that normal modes,

when used with caution, form an excellent basis set for

deforming a model around an equilibrium position and

sampling its conformations using as few degrees of freedom as

possible. This actually has recently been used by Summa &

Levitt (2007) to generate decoys and test various energy

functions with a powerful minimizer for their ability to refine

back the decoys to the true energy minimum. Equivalently, it

is clear that normal modes can be used to improve the chance

of successful refinement in the presence of experimental data,

i.e. to increase the radius of convergence of such methods.

2.7. Websites

A number of websites have recently been implemented to

make these methods available in a user-friendly manner;

these include NOMAD-Ref from our group (http://

lorentz.dynstr.pasteur.fr/index1.php; Lindahl et al., 2006) and

also elNémo (http://www.elnemo.org; Suhre & Sanejouand,

2004a), ANM from I. Bahar’s group (http://www.ccbb.pitt.edu/

anm; Eyal et al., 2006) and AD-ENM from W. Zheng (http://

enm.lobos.nih.gov), as well as webnm@ (http://www.bioinfo.no/

tools/normalmodes; Hollup et al., 2005) derived from K.

Hinsen’s MMTK Toolkit.

3. NMA and crystallography

3.1. Crystallographic B factors: early use of NMA to refine
them and validation of the ENM

Historically, the refinement of B factors was the first

application of normal-mode analysis to X-ray macromolecular

crystallography. This was accomplished by several groups at

the beginning of the 1990s (Diamond, 1990; Kidera & Go,

1992; Kidera et al., 1992) using standard force fields for NMA.

However, this type of refinement was superseded by TLS

(Painter & Merritt, 2006 and references therein).

Conversely, the fit between calculated B factors

[B = (8�2/3)hu2
i] and experimental B factors was first used to

evaluate the relevance of the ENM to the reproduction of

biologically significant movements by Bahar et al. (1997) using

a scalar version of the elastic model (the Gaussian Network

Model) and then by Phillips and coworkers to test several

variants of the ENM (Kundu et al., 2002; Kondrashov et al.,

2006) on a larger scale of over 100 high-resolution X-ray

structures. In particular, these authors were able to show that

by using two different elastic constants for linked pairs of

atoms within less than Rc = 10 Å, depending on whether these

atoms were chemically bonded or not, they could improve the

correlation coefficient between the calculated and measured B

factors from 0.64 to 0.75. More recently, Song & Jernigan

(2007) showed that by including rigid-body movements the

correlation coefficient increases to 0.81.

Finally, but quite recently, the full vectorial prediction

power of the ENM was put to the test by the same group

(Kondrashov et al., 2007) using a set of high-resolution X-ray

structures with refined anisotropic B factors or ADPs. In this
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case, several implementations of the ENM were again tested

as well as normal modes derived from the CHARMM

potential. Given the very encouraging results, it is likely that

the use of ENM and NMA will gain wider use for B-factor

refinement. Indeed, the group of J. Ma recently published two

papers showing the benefit of a variant of the CA-based ENM

(including harmonic constraints on bond angles and pseudo-

dihedral angles) to refine large macromolecular systems at

medium resolution (Poon et al., 2007; Chen et al., 2007) with

about an order of magnitude fewer parameters than the TLS

method.

In most applications of the ENM (see, for example, Lindahl

& Delarue, 2005), the B factors are used to calibrate the elastic

constant C of the model (see equation 2). The use of molecular

dynamics to calibrate C in the presence of explicit solvent can

be found in Hinsen et al. (2000).

3.2. NMA and structural diversity in MR: one-dimensional
scans and template generation

However, as stated earlier, there is an even more obvious

application of NMA to X-ray crystallography and that is the

generation of model variants produced by systematically

varying the amplitude of a given mode in a given range.

Systematic one-dimensional scans of a given mode can be

easily implemented, as well as two-dimensional scans: for each

point of the grid search, the model is deformed and its crys-

tallographic score, i.e. R factor, is then calculated (Suhre &

Sanejouand, 2004a,b). Generating random linear combina-

tions of a limited set of modes is also possible, deforming the

initial model ri
0 into

ri ¼ r0
i þ

PNmod

l¼1

cku
ðiÞ
k ; ð5Þ

with randomly generated amplitudes ck; it is then possible to

sample conformational flexibility within a given r.m.s.d. range

(NOMAD-Ref; Lindahl et al., 2006). Scanning more than two

modes is computationally prohibitive. One then has to resort

to direct minimization of an R factor or, equivalently, the

maximization of a correlation factor.

3.3. Direct refinement of NM amplitudes against X-ray data:
radius of convergence

The nonlinear problem of fitting the amplitudes of a

restricted set of (low-frequency) normal modes to a given

diffraction data set is easily stated. Each structure factor

Fcalc(H) of a model deformed with amplitudes ck along a

subset of normal modes (1 . . . Nmod) takes the form

FcalcðHÞ ¼
PNatom

i¼1

fi exp 2i�H � r0
i þ

PNmod

k¼1

Cku
ðiÞ
k

� �� �
: ð6Þ

Its modulus |Fcalc(H)| is then used to calculate the global score

that needs to be maximized.

CCðjFobsj; jFcalcjÞ ¼P
H

½jFobsðHÞj � hjFobsji�½jFcalcðHÞj � hjFcalcji�

P
H

½jFobsðHÞj � hjFobsji�
2 P

H

½jFcalcðHÞj � hjFcalcji�
2

� �1=2
; ð7Þ

where CC represents the usual correlation coefficient. This can

be achieved by standard conjugate-gradient minimization

routines that only need first derivatives of the score. These

derivatives can be obtained analytically. This is actually very

similar to what was originally performed by M. Tirion using

X-ray fibre-diffraction data (Tirion et al., 1995).

For single-crystal diffraction data a number of tests have

been performed with both calculated and experimental data

(Delarue & Dumas, 2004). Firstly, these tests showed that the

program can function as a rigid-body minimizer by using only

the first six degrees of freedom. Secondly, if more degrees of

freedom are allowed than those used to generate the calcu-

lated diffraction data, the program correctly refines their

amplitude to 0. Thirdly, by generating many deformed models

of a given mean r.m.s.d. and recording what proportion of

these models is correctly refined back to the true solution, it

could be established that the radius of convergence of the

model was about 8 Å using 8 Å resolution calculated diffrac-

tion data. Finally, the program was tested with real experi-

mental data obtained from the PDB for the two forms of

citrate synthase (PDB codes 5csc and 6csc) and maltodextrin-

binding protein (PDB codes 1anf and 1omp) and the results

were excellent using either five or ten modes (Delarue &

Dumas, 2004). A direct application to MR was presented in

the case of polymerase � (PDB codes 1bpx and 1bpy), which

showed that when replacing the rigid-body fitting program

after the translation function by the normal-mode amplitude

refinement (NOMAD-Ref; Lindahl et al., 2006), the score of

the list of potential solutions was modified in such a way that

false positives were down-weighted and the true solution now

emerged as that with the highest score (Delarue & Dumas,

2004).

3.4. Available software and websites

NOMAD-Ref (Lindahl et al., 2006; http://lorentz.dynstr.

pasteur.fr/index1.php) and elNémo (Suhre & Sanejouand,

2004a; http://www.elnemo.org) are available online. Both offer

the generation of systematically perturbed models along a

given set of normal modes, either separately or as a random

mixture of modes matching a user-preset r.m.s.d. The gener-

ated trajectories are concatenated PDB files that can be

visualized either with PyMOL (DeLano, 2002) or VMD

(Humphrey et al., 1996).

Nomad-Ref (Lindahl et al., 2006) can also accept normal-

mode amplitude refinement jobs in any space group; the user

is asked to give the input PDB file for the model to be refined

and the formatted data set of the X-ray data, along with the

space group, unit-cell parameters and number of modes.

Successful subsequent examples of the use of this software

are described by Kondo et al. (2006) for NOMAD-Ref and by

Akif et al. (2005) for CaspR and elNémo.
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We terminate this section by stressing that the conjugate-

gradient refinement of amplitudes described above (Delarue

& Dumas, 2004) and implemented in NOMAD-Ref (Lindahl et

al., 2006) is meant to be used after rotation and translation

functions in MR, in place of the rigid-body refinement

program (Navaza, 2001). It requires the rough positioning of

the model but can tolerate large errors in the positioning.

4. NMA and cryo-EM (flexible fitting)

When a map, even at low resolution, is available, refinement

can be performed either in real space or reciprocal space. The

same principles at work in NMA refinement using X-ray data

can also be applied with low-resolution cryo-EM data. This is

easily seen in real space and was indeed described as ‘normal-

mode flexible fitting’, with test cases by Tama and coworkers

(Tama et al., 2004a,b), and was subsequently applied to various

experimental situations (Mitra et al., 2005). A slightly more

elaborate version of this method was implemented by Hinsen

et al. (2005), also in a real-space formulation, and applied to

Ca2+ sarkoplasmic ATPase cryo-EM data. We also described

the same type of idea but in a reciprocal-space formulation

(Delarue & Dumas, 2004). The only modification concerns the

score in (3), which should now deal with phased structure

factors, and this is performed by replacing every product A�B

of two real numbers A and B by the complex analogue

Re(A�B*).

CCðFobs;FcalcÞ ¼

P
H

Re½FobsðHÞ � FcalcðHÞ
�
�

P
H

FobsðHÞ � FobsðHÞ
�
P
H

FcalcðHÞ � FcalcðHÞ
�

� �1=2
;

ð8Þ

where it is understood that the mean value hF(H)i has been

subtracted from each phased structure factor. It works

extremely well for all the test cases that we have tried, with

either synthetic data (citrate synthase, r.m.s.d. = 3.0 Å;

adenylate kinase, r.m.s.d. = 7.1 Å) or real experimental data

(Ca2+ sarkoplastic ATPase, data courtesy of K. Hinsen & J. J.

Lacapère). As is already well known, the radius of conver-

gence is even larger in the presence of phase information than

when using only structure-factor moduli.

The case of adenylate kinase is described in more detail in

Fig. 4, with the envelope in cyan and the CA-trace model in

magenta. The starting model is the open form (Fig. 4a) and the

target is the calculated envelope at 10 Å resolution of the

closed form (Fig. 4b). The amplitudes of ten modes were

refined and found to match the expected values closely.

Other simpler approaches consist of generating system-

atically perturbed models along one particular mode using, for

example, the elNémo web server and then proceeding with the

standard MR procedure into the cryo-EM map (Trapani et al.,

2006) for each perturbed model.

The advantage of working in reciprocal space is that it can

in principle deal with any kind of regular periodic system. We

also implemented a version of the algorithm that works with

noncrystallographic symmetry (NCS). As usual, it is best to

use an Rfree criterion (in this case, a ‘CCfree’ criterion) to

prevent overfitting (Brünger, 1993).

The program was used with success by Schaffitzel et al.

(2006) for a large macromolecular assembly through the web

interface NOMAD-Ref (Lindahl et al., 2006).

The same type of algorithm was also implemented in a new

program and website called NORMA (Suhre et al., 2006)

based on the earlier rigid-body refinement and molecular-

replacement program URO designed for cryo-EM data by

Navaza et al. (2002), as well as the normal-modes calculation

package of Y.-H. Sanejouand. The main differences from

NOMAD-Ref are (i) the search for the best amplitudes of the

normal modes is stochastic, using the simplex method in a

simulated-annealing scheme (Press et al., 2002), and (ii) there

is a much more elaborate algorithm involving macrocyles

which periodically recalculates normal modes in alternation

with regularization cycles for the geometry of the chain using

REFMAC (Murshudov et al., 1997). Examples and test cases

are described both online (http://www.elnemo.org/NORMA)

and in the original article (Suhre et al., 2006).

5. Dealing with structural diversity and refinement:
plugging in all possible models and refining their
weights

In the preceding section, we have shown that knowledge and

generation of conformational diversity through a well para-

meterized model can help MR. Because trying all models one

by one is a very tedious process, this naturally leads to the

following question: can one try to refine all the available

possible models in a single cycle by weighting each of them

with an adjustable weight and refining these weights? The

expectation is of course that irrelevant models will be refined

to zero occupancy if they make no contribution to the

experimental data Fobs(H).

This is actually related to another issue that has recently

been repeatedly raised in the crystallographic community (de

Bakker et al., 2006), namely how to most faithfully represent

the conformational diversity of a model in the crystal envir-

onment, especially at low resolution (Furnham, Blundell et al.,

2006; Furnham, Dore et al., 2006). This goes back to the

concept of ‘multicopy refinement’ as defined by Burling &

Brünger (1994). The idea is to simultaneously refine a number

of models (typically 8–10) that ‘do not see each other’ but

contribute equally to the agreement with the experimental

Fobs(H). The problem of course is that in doing so one intro-

duces 8–10 times more parameters (coordinates) to be refined,

thereby often leading to overfitting. One possible cure to the

problem is to resort to dihedral (internal) angle refinement,

with about 7–8 times less variables than in the Cartesian

coordinates system (Pellegrini et al., 1997), leaving the ratio

(No. of observations/No. of fitted parameters) virtually

unchanged. We think that the weights of the different models

should also be refined, because there is no reason to believe

that each state is equally populated. This actually adds a very

small number of variables and our feeling is that it ought to be

supported by any refinement program for physical reasons.
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In the following test case, we address the simpler case in

which the models are fixed and their weight is adjustable and

refined against the experimental data (R factor). In MR, this

could also be implemented in the usual translation function

with little modification of the original code. In the same vein, it

should be possible to derive a multicopy version of the rota-

tion function with a score that uses

calculated structure factors as the

weighted means of structure factors of

the possible individual models; the idea

is then to refine the weights for each

orientation in an effort to increase the

signal-to-noise ratio (work in progress).

To test the feasibility of this

approach, we performed the following

experiment: a total of 25 different

models corresponding to 25 increasing

amplitudes along one particular normal

mode was generated for citrate

synthase. Calculated structure factors

were generated for one particular

model corresponding to amplitude

m = 20 and set as Fobs. As a starting

point all models are equally probable

and receive an equal initial probability

pm = 1/25. The calculated structure

factor for this particular ensemble of

models is just the weighted average of

all structure factors of the different

models Fm(H),

FcalcðHÞ ¼
P
m

pmFmðHÞ: ð9Þ

Next we performed mean-field optimi-

zation of the weights using the correla-

tion between Fcalc and Fobs as a score.

The mean field main cycle performs in

the usual way, deriving first the ‘energy’

of each model in the framework of

mean field theory; this energy is then

converted into a probability using a

Boltzmann-like formula (Koehl &

Delarue, 1994, 1996). When this has

been performed for all models, a new

energy can be computed and the next

cycle can begin until the weights no

longer vary (self-consistency condition;

see flowchart in Fig. 5).

More precisely, if one defines a free

energy of the form

F ¼ R� TS; ð10Þ

where S is the entropy �
P

m pm log pm,

T is the temperature and R is the usual

crystallographic factor, then minimizing

the free energy with respect to pm gives

(Kubo, 1965)

pm ¼ ð1=ZÞ expð��EmÞ; ð11Þ

where � = 1/T and Em = @R/@pm.
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Figure 5
Mean field refinement of the weights of 25 different models against diffraction data calculated solely
from model 20. The flowchart of the algorithm (see Koehl & Delarue, 1994, 1996) is shown, with an
inset representing the result of the mean field refinement of amplitudes (continuous line) and
comparison with a normal conjugate-gradient refinement (dashed line).

Figure 4
Refinement in an envelope: the case of adenylate kinase (PDB codes 1ake and 4ake). Left, the open
form (CA trace) and its envelope at 10 Å resolution (cyan). Right, the refined open form (CA trace)
in the envelope of the closed form at 10 Å resolution (cyan).



The refinement starts with uniform values of the weights,

which are updated at each cycle of the refinement until a self-

consistent solution is obtained; at each cycle the derivatives

are evaluated at the current solution, i.e. the current set of

(pm) values (see Delarue & Orland, 2000). The proportionality

factor Z is determined by using the normalization condition

1 =
P

m pm. The temperature governs the contrast between the

different populations. We implemented this method and tested

it for the above-mentioned example. For the sake of simplicity

the derivatives were calculated numerically, but they could of

course be calculated analytically. Convergence was achieved

in about 20–30 cycles, leading to a dominant weight for the

true expected solution. A control experiment in which the

weights were simply refined by conjugate-gradient techniques

failed to give the expected result (see inset in Fig. 5).

In a more general way, it is clear that techniques derived

from molecular modelling can be used in the context of

crystallographic model refinement by adding one more term to

the energy criterion, as derived by imposing the conformity of

the Fcalc(H) to the Fobs(H) moduli. Specifically, the issue of

dealing with different conformers could benefit from standard

statistical thermodynamics techniques, attributing a adjustable

weight to each possible copy, which has been used by many

authors for side-chain positioning (Koehl & Delarue, 1994). If

a map is available, this could be performed in real space (see

MUMBO; Stiebritz & Muller, 2006) with a score that is just the

opposite of the electron density at the tentative position of the

atoms. If no phases are available, one would have to resort to a

reciprocal-space score based on structure-factor moduli. The

derivatives in the ‘mean field energy’ in (11) then give rise to

pseudo-two-body interactions that can effectively be dealt

with by mean field techniques (Koehl & Delarue, 1996).

6. Conclusion

Because the normal-mode representation of conformational

flexibility has been validated both through the analysis of a

database of protein movements and correlation with experi-

mental B factors, its use as a refinement tool has recently

emerged. This is true not only for B-factor refinement but also

for model refinement. One simple idea that has proved useful

is to refine the amplitudes of the normal modes against

diffraction data so as to reproduce model deformations

through a much reduced set of degrees of freedom.

Furthermore, the inherent flexibility of macromolecules is

now well documented and widely recognized as an essential

feature that is necessary to explain their biological activity. It

seems best to guide the generation of meaningful structural

variants with experimental data, e.g. NMR (Best et al., 2006)

or crystallography (Levin et al., 2007). Performing an en-

semble average in crystallography where each copy receives

an equal weight is not really possible, as statistical sampling

would require many thousands of copies to be refined with a

single data set (hopefully, the stable conformations would

appear many times in the refined ensemble). Instead, the

number of copies that can be refined simultaneously is limited

to about 10–12. However, refining the weights of this limited

number of copies is possible and does not appreciably change

the ratio No. of observed data/No. of fitted parameters. Recent

studies using an equal weight for each copy convincingly show

that it helps to reduce both Rwork and Rfree (Levin et al., 2007),

but that the number of copies needed to explain the data, as

assessed by the decrease in Rfree, can vary from one system to

another. We argue here that refining the weights of the

different copies, while adding a negligable number of degrees

of freedom, should precisely take care of this problem:

unneeded copies will have their weight refined to a very small

value (pm < 0.01). Additionally, assigning a weight to each

possible (fixed) structural model in MR may accelerate

structure solution in a straightforward manner. Preliminary

tests show that such a weight refinement against experimental

data for a series of structural variants of a given model is

indeed possible and robust.
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