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Assemblies with helical symmetry can be conveniently

formulated in many distinct ways. Here, a new convention is

presented which unifies the two most commonly used helical

systems for generating helical assemblies from asymmetric

units determined by X-ray fibre diffraction and EM imaging.

A helical assembly is viewed as being composed of identical

repetitive units in a one- or two-dimensional lattice, named

1-D and 2-D helical systems, respectively. The unification

suggests that a new helical description with only four

parameters [n1, n2, twist, rise], which is called the augmented

1-D helical system, can generate the complete set of helical

arrangements, including coverage of helical discontinuities

(seams). A unified four-parameter characterization implies

similar parameters for similar assemblies, can eliminate errors

in reproducing structures of helical assemblies and facilitates

the generation of polymorphic ensembles from helical atomic

models or EM density maps. Further, guidelines are provided

for such a unique description that reflects the structural

signature of an assembly, as well as rules for manipulating the

helical symmetry presentation.
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1. Introduction

Under physiological conditions, many biomolecules are either

organized in functional tubular forms or aggregated in

disease-related filaments. Tubular and filamentous structures

grow with a helical symmetry. The determination of helical

structures is important because it provides clues to functional

regulation and to the mechanisms of polymerization and

depolymerization, and can help in figuring out how to prevent

unwanted disease-related fibril aggregation. The most famous

example is the determination of the Watson–Crick double-

helical DNA structure in 1953 (Watson & Crick, 1953), which

created a new era in the history of molecular biology. In

proteins, even a slight difference in the interactions between

molecules is sufficient to create similar filamentous or tubular

structures with distinct helical symmetries. For this reason,

structural polymorphism is a common characteristic of tubular

or fibril entities. Depending on the specificity and rigidity of

the interacting molecules, some, such as the amyloidogenic

peptide A�1–40 (Sachse et al., 2008; Schmidt et al., 2009), can

exhibit a broad spectrum of polymorphic assemblies, whereas

others only show limited variability, as in the case of micro-

tubules (Sui & Downing, 2010). This underscores the impor-

tance of revealing the structural characteristics of helical

assemblies directly from a simple helical symmetry descrip-

tion.
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Helical symmetry can be formulated in many different ways.

Helical transformations can be classified into two categories:

one-dimensional (1-D) helical systems and two-dimensional

(2-D) helical systems. In structural determination by X-ray

fibre diffraction (Klug et al., 1958), a helical structure is

described as a set of n 1-D molecular helices related by an

n-fold axial symmetry. However, in both systems, if the heli-

cally repeating motif has C2 symmetry, the helical structure

has an additional dyad symmetry (Klug et al., 1958). Given the

asymmetric units, the helical assembly can be constructed by

rotohelical transformations which are defined by a specified

line group (Damnjanović et al., 2007). Because of the preva-

lence of structural polymorphism (DeRosier et al., 1999) and

helical discontinuities (seams; Kikkawa, 2004) in electron-

microscopy (EM) images, a description of helical assemblies

by a rolled planar 2-D lattice sheet was devised to solve the

EM structure in reciprocal space. In this representation, the

framework of a helical structure is viewed as a helical net; that

is, a set of equivalent points wrapped around a cylindrical

surface. Various 2-D lattice wrappings were defined by a

circumference vector c = n1a + n2b, where n1 and n2 are two

integer constants and a and b are the 2-D lattice vectors. On

the other hand, the reconstruction of helical structures in real

space is typically based on rotohelical transformations which

are applied iteratively using the single-particle method

(Sachse et al., 2007; Egelman, 2007, 2010).

A simple convention for defining the helical symmetry of

biological assemblies has been suggested in the remediated

Protein Data Bank (PDB; Lawson et al., 2008) and EM Data

Bank (Heymann et al., 2005) archives. Both have used a

definition of rotohelical transformation that does not fully

capture the underlying symmetry properties of helical

assemblies. It is therefore not surprising that two very similar

tubular structures might be described by very different helical

parameters that provide no clue to the fact that they are

actually quite similar. This is the case for the two bacterio-

phage major coat protein helical tubes determined by X-ray

fibre diffraction [PDB entries 1hgv (Pederson et al., 2001) and

1ifd (Marvin, 1990)]; the first is presented as a one-start and

the second as a five-start helical tube with each helix related

by a fivefold rotational symmetry. The discrepancy is under-

standable because the two PDB structures were the outcome

of structure-determination procedures in which the helical

symmetry was preset in the minimization procedure. This

shortcoming underscores the importance of a standard system

that would report helical structures and provide parameters

that reflect their structural characteristics. It appears that to

date an unambiguous, simple and systematic standard for

defining a unique helical specification for constructing helical

assemblies from asymmetric units is lacking.

In this paper, we present a new unified convention for the

construction of helical assemblies from asymmetric units

determined by X-ray fibre diffraction and EM imaging. The

unification is made possible by an augmented 1-D helical

system (described below) that extends the traditional 1-D

helical scheme to adopt the helical symmetry descriptor

[n1, n2] which is used in the 2-D helical system. A helical

structure can be prepared by rolling a planar sheet composed

of identical 2-D unit cells (Stewart, 1988). In order to create a

seamless 2-D lattice tube, two integer constants [n1, n2] define

the wrapping process: n1 refers to the number of cells that are

needed to complete a full round of cylinder wrapping and n2

to the number of cells sliding along the cell edge after the

wrapping. The helical symmetry of the tubular structure is

explicitly determined by [n1, n2] and the corresponding 2-D

wrapping transformations can be found in the literature (Tsai

et al., 2006; Kikkawa, 2004).

In a traditional 1-D helical system, a helical structure is

depicted as either a one-start or an n-start helical structure

(Egelman, 2007; Klug et al., 1958). For a one-start helical

structure, the assembly consists of only a single helix with two

helical parameters, twist (’) and rise (�); these denote the

transformation of the 1-D unit cell which is used to build

the entire structure. In fibre diffraction, a one-start helix is

formulated as u units in v turns with a helical repeat distance

of c, which straightforwardly gives ’ = 2�v/u and � = c/(uv). An

n-start helical structure has n helices related by an n-fold axial

symmetry (Cn), with the axis coinciding with the helical axis. In

the augmented 1-D helical system described below, in addition

to the rotational operation of the Cn symmetry there is an

extra translational operation along the helical axis. In the 2-D

helical system this extra translational operation is implicitly

included in the 2-D wrapping transformation; however, it is

ignored in the traditional 1-D helical scheme. This prevents

the 1-D and 2-D systems from being unified in a common

helical symmetry description. In contrast, the helical symmetry

in the augmented 1-D helical system with the four parameters

[n1, n2, twist, rise] is defined by two consecutive helical (screw)

operations: the first helical operation is specified by two helical

parameters [twist, rise] exactly as in the traditional 1-D helical

transformation and the second screw operation is defined

by two [n1, n2] constants. n1 refers to the n1-fold rotational

symmetry exactly as in the traditional 1-D helical transfor-

mation and n2 specifies the translation part of the second

screw operation. We will illustrate the operational transfor-

mations as well as the interconversion between the augmented

1-D helical system and the 2-D helical system below.

2. Methods

In our definition, a helical structure is composed of repetitive

identical units, similar to a single crystal which is built from

a three-dimensional (3-D) lattice. The definition of repetitive

relates to the entire helical structures, which are built from a

unit cell with a specified helical symmetry. The unit cell is

either a 2-D lattice or a 1-D line segment. The definition of

identical implies that each repetitive unit in the construct has

exactly the same environment; that is, the independent vari-

ables of a helical structure include only parameters involved

in helical transformation and coordinates of asymmetric units

within a unit cell. Identical implies that when evaluating the

energy of the assembly there is no need to include the inter-

actions between all units but just the interactions between one

unit cell and its surrounding cells.
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Given a 3-D unit cell, it is straightforward to generate the

entire single crystal with fractional coordinates. The newly

generated fractional coordinates are the number of cells

(na, nb, nc) away from the origin (0, 0, 0) along each edge. The

Cartesian coordinates of a new cell can be converted from the

fractional coordinates by an orthogonal matrix (Evans, 2001)

computed from 3-D lattice constants, a, b, c, �, � and �.

However, unlike the 3-D crystal system, a specified helical

transformation is needed to generate the helical assembly

from a given 1-D or 2-D unit cell. In the following, the

equations for the 2-D wrapping and the augmented 1-D helical

transformation will be derived and explained in detail.

2.1. 2-D helical system

As stated in x1, a planar sheet of 2-D lattice can be wrapped

into a tube. If all sheet units are identical, the two constant

integers n1 and n2 are sufficient to define all possible distinct

tubes obtained by rolling it. Here, n1 is the number of cells

along one edge of the 2-D lattice (a) which are required to

make a full round of wrapping and n2 refers to the number

of cells sliding along the other edge of the lattice (b) after

wrapping.

If we place edge a along the x axis of the Cartesian co-

ordinate and a 2-D lattice (a, b, �) is placed on the xy plane,

the wrapping equations for an [n1, n2] tube are

xw ¼ �ðzc þ rÞty sin �þ ðxctx þ yctyÞtx;

yw ¼ ðzc þ rÞtx sin �þ ðxctx þ yctyÞty;

zw ¼ ðzc þ rÞ cos�;

where

r ¼ ½ðn1aþ n2b cos �Þ2 þ ðn2b cos �Þ2�1=2;

tx ¼ n2b sin �=ð2�rÞ;

ty ¼ �ðn1aþ n2b cos �Þ=ð2�rÞ;

� ¼ ð�xcty þ yctxÞ=r;

(xw, yw, zw) are the wrapped Cartesian coordinates of the tube

and (xc, yc, zc) are the Cartesian coordinates of the associated

2-D sheet. In the wrapping equations, the 2-D lattice sheet is at

a distance of the tube radius (r) from the tube axis (tx, ty, 0).

The helical transformation is implicitly specified by the helical

twist � and the helical rise xctx + ycty. Fig. 1 provides a

graphical summary of the 2-D helical transformation. A more

detailed description has been given previously (Tsai et al.,

2006). Given asymmetric units in a 2-D lattice and a helical

symmetry specified by the 2-D helical system in five para-

meters [n1, n2, a, b, �], one can build a complete helical

construct based on the 2-D helical transformation equations

formulated above.

2.2. Augmented 1-D helical system

Instead of rolling a planar 2-D sheet, a helical structure can

also be expressed by a single helix or n helices, with the n

helices related by an n-fold screw axis instead of just a rota-

tional axis. Because the helical assembly must consist of

identical subunits, the rotational part of the screw axis must

display a Cn rotational symmetry and the translational part

should be limited by some discrete numbers. In the augmented

1-D helical system, the four parameters [n1, n2, ’, �] indicate

that there are n1 helices in the assembly, with each individual

helix characterized by a unit twist (’) and a unit rise (�).

Because the helices are also related by an n1-fold screw axis,

each helix denoted by m1 = 0, 1, 2, . . . , n1 � 1 has an addi-

tional twist of m1(2�/n1) and a rise of m1(n2/n1)�. Note that the

rise, which is specified by n2 with a quantity of n2/n1�, was not

included in the traditional 1-D helical system. Note also that

m1 = n1 refers back to the first helix as specified by (’, �),

which will give n2� rise after a complete round of n1 rotations.

In the 2-D helical system, this corresponds to the number of

cells involved in the helix sliding after a complete wrapping.

A helical structure in the symmetrical construct is identified

by the cell coordinates [m1, m2]. The asymmetric units are

given in cell [0, 0] and an [m1, m2] cell is located in the m1 helix

m2 units away from the cell [m1, 0] along the helix. If the

helical axis is parallel to the y axis and passes through the

origin (0, 0, 0), the helical transformation equations for an

[m1, m2] cell in an [n1, n2] helical construct are

xw ¼ xc cos�þ zc sin �;

yw ¼ yc þ h’�;

zw ¼ �xc sin �þ zc cos �;

where

h’ ¼ m2 �m1ðn2=n1Þ;

� ¼ h’’þm1ð2�=n1Þ;

(xw, yw, zw) are the transformed Cartesian coordinates for the

cell [m1, m2] and (xc, yc, zc) are the Cartesian coordinates of

asymmetric units in cell [0, 0]. h’ and � specify the overall rise

and twist for the [m1, m2] cell as specified by an n1-fold screw

axis with n2 unit shift. In the case of a helical structure with a

single helix, in which n1 = 1 and m1 = 0, the helical transfor-

mation above reduces to a simple helical operation defined by

[’, �] only. A graphical summary of the augmented 1-D helical

transformation is given in Fig. 2.

2.3. 2-D helical system ! augmented 1-D helical system

There are four ways to convert a helical system from 2-D to

1-D: view the continuation of lattice edge b as a helix, view

the continuation of lattice edge a as a helix or view the

continuation along the vector of a + b or along the vector of

a � b. The first is the most convenient choice. By selecting the

vector b as an individual helix, the new 1-D helical system

retains the same symmetry notation as the 2-D helical system

[n1, n2]. The unit twist ’ (in unit of radians) and rise � of the

n1-start helices are calculated as

’ ¼ ð�xcty þ yctxÞ=r;

� ¼ xctx þ ycty;

where tx, ty are the helical axes of the 2-D helical system and

xc, yc are the planar Cartesian coordinates at the cell origin
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(0, 1). Because the tube axis of

the 1-D helical tube (along the y

axis) is different from the 2-D

helical tube (on the xy plane), the

Cartesian coordinates referenced

in the 2-D system require some

transformations in order to

correspond to the new 1-D

system. This can be performed

either directly in wrapped Carte-

sian coordinates or in native

fractional coordinates. In Carte-

sian coordinates, the transforma-

tion is equivalent to aligning the

2-D helical axis of the xy plane

back onto the y axis with the z

axis (0, 0, 1) as the rotational axis.

Under the right-handed rota-

tional system, the angle �
between the old tube axis and the

y axis is calculated as atan(�tx/ty)

and the transformations are

xw1 ¼ xw2 cos � þ yw2 sin �;

yw1 ¼ �xw2 sin � þ yw2 cos �;

where xw1, yw1 are the wrapped

Cartesian coordinates of the new

1-D helical system and xw2, yw2

are the wrapped Cartesian coor-

dinates of the old 2-D helical

system.

2.4. Augmented 1-D helical
system ! 2-D helical system

The conversion from a 1-D to a

2-D helical system is not as

straightforward as the opposite

conversion. This is partly because

a 2-D lattice is loosely defined by

a single helix structure and partly

because of the necessity to revert

from the wrapped tube coordi-

nates back to 2-D planar Carte-

sian coordinates. Given a 1-D

helical structure, we first calculate

the implicit helical radius from

the center of mass of the repre-

sentative units by assuming that

the center of the 1-D helical

assembly is located at the origin

(0, 0, 0). Secondly, we either use

the original n1 of the 1-D system

or determine a new n1 for the 2-D

helical system and define accord-

ingly two wrapped coordinates,

(xw1, yw1, zw1) and (xw2, yw2, zw2),
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Figure 2
A brief graphic summary of the 1-D helical system. For simplicity, on the left-hand side of the figure, only a
single helix is drawn to illustrate the 1-D helical transformation. The helical axis t is along the Cartesian y
axis and the 1-D cell (asymmetric subunits) is sitting at (xc, yc, zc) which is labeled as the (0, 0) cell. The
transformed Cartesian coordinates (xw, yw, zw) labeled as (0, m2) accordingly are calculated by the matrix
operations with a rotational angle of m2’ and a translational rise of m2� in the upper right-hand side of the
figure. For the augmented 1-D helical system with four parameters [n1, n2, ’, �], the helical transformation
equation expressed by matrix operations is given in the lower right corner highlighted in color. � and h�
respectively specify the overall helical twist and helical rise for the (m1, m2) subunits with respect to the (0,
0) asymmetric subunits, with m1 referring to the n1-order helix and m2 referring to the subunits along the
denoted helix.

Figure 1
A brief graphic summary of the 2-D helical system. On the left, a 2-D lattice wrapping specified by a
circumference vector, w = n1a + n2b, is sketched with an example of n1 = 7 and n2 = 4. The 2-D lattice is
highlighted in color with the angle � between the two axes a and b. The lattice lies on the Cartesian xy plane
and the axis a lies along the Cartesian x axis. Thus, the axis a in Cartesian coordinates is (a, 0 ,0) and b is
(b cos�, b sin�, 0). The wrapped helical coordinates (xw, yw, zw) of the Cartesian coordinates (xc, yc, zc) in
the 2-D planar system can then be calculated by the helical transformation in terms of the helical axis t
(which is perpendicular to w) with the two parameters � and h, twist angle and rise distance, respectively. It
is then straightforward to determine the circumferential unit vector wu, the helical radius r and the helical
axis t as formulated on the right-hand side of the sketch with the summarized wrapping equations
highlighted in color at the bottom. Note that vector (tx, ty, tz) as calculated from wu is also a unit vector.
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from the 1-D helical system to serve as the origin of cells (1, 0)

and (0, 1) of the new 2-D helical system, respectively. Thirdly,

we reverse the two wrapped coordinates back to unwrapped

planar Cartesian coordinates, (xc1, yc1, zc1) and (xc2, yc2, zc2).

With the new calculated planar coordinates, it is straightfor-

ward to calculate the 2-D lattice constants as follows:

a ¼ ðx2
c1 þ y2

c1Þ
1=2
;

b ¼ ðx2
c2 þ y2

c2Þ
1=2
;

� ¼ ðxc1xc2 þ yc1yc2Þ=ðabÞ:

Fourthly, given the newly determined r, a, b, � and n1, n2, the

new 2-D helical tube can be determined by solving the

quadratic equation b2x2 + 2n1ab cos � x + (n1a)2
� (2�r)2 = 0.

Finally, all Cartesian coordinates of the old 1-D system are

reversed back to the new 2-D planar coordinates.

2.5. Properties of [n1, n2] helical system

We have shown that both the 1-D and 2-D helical systems

can be represented by two integers, [n1, n2], and that the

helical assembly can be built through the helical transforma-

tion with the associated parameters. However, the helical

symmetry specified by these two integers can also be inter-

preted in a way different from the helical systems’ definitions.

In the traditional helical description, an assembly with [n1, n2]

symmetry can be viewed as two sets of n-start helices in which

either the arrangement of the n1-start helices is specified by n2

or, vice versa, that of the n2-start helices is specified by n1. The

best way to illustrate [n1, n2] helical symmetry is by using

a helical net: an unwrapped flattened 2-D net bound by the

circumference in one direction and extended to infinity

parallel to the helical axis. Figs. 3(a) and 3(b) illustrate an

example of wrapping and unwrapping of the helical net with

the EM structure of a microtubule with [11, 3] symmetry (Sui

& Downing, 2010). The colored circular dots in the helical net

represent asymmetric units and a line passing through a set of

dots is a helix. The number of intersections (n) between the set

of parallel lines with the circumference is exactly the number n

of helices that are required to fill the helical assembly. This is

the origin of the n-start helices definition. In terms of a helical

net description, the helical symmetry can be specified by

picking a particular set of two intersecting lines (helices)

corresponding to n1-start and n2-start lines. The intersections

define the locations of repeating asymmetric units in the

Figure 3
Illustrations of [n1, n2] helical symmetry with respect to helical nets. In (a), an EM segment of the microtubule structure is shown in a wrapped helical net
with [11, 3] symmetry. The corresponding flattened unwrapped helical net is demonstrated in (b). A section of the corresponding [11, 3] helical net is
drawn in (c), with the x axis covering the helical circumference, a twist range of 2� and the y axis parallel to the helical axis, corresponding to the helical
rise. The colored circular dots in the net are the asymmetric subunits and a solid line that passes through a set of dots is a helix. A helical net can be
redefined by any two sets of lines with their intersections covering all dots. With n2 fixed at 3, there are ten additional sets of helices which can be used to
define the same helical structure. See text for an explanation of why only limited sets of helices are feasible with n2 fixed at 3. In (c), feasible sets of helices
are marked beside the dots with the value of n1 colored red. Two of the new helical nets with helical symmetry [8, 3] and [14, 3] are superimposed in (c).
The individual lattice drawn under the helical nets is to help in the visualization of individual helical nets.



helical structure. In addition to the [11, 3] symmetry, two

feasible helical nets with symmetries [8, 3] and [14, 3] are also

depicted in Fig. 3(c) for the same helical structure. In the

special case of a one-start helix, the entire assembly is built

from a single helix instead of a set of helices (n-start helices).

Although n2 is not required in helical symmetry denoted as a

one-start helix, it is still represented in the [1, n2] notation.

Based on the augmented 1-D helical system, it is not diffi-

cult to realise that a helical symmetry with [n1, n2, twist, rise]

is equivalent to [�n1, �n2, twist, rise], [�n1, n2, �twist, �rise]

and [n1, �n2, �twist, �rise]. To reduce the redundancy in the

helical symmetry representation, we set several simple rules.

Firstly, n1 is always positive. For consistency in the inter-

conversion between the 1-D and 2-D helical systems (with

the sign of n2 kept unchanged), we choose the rise to also be

positive. Secondly, the value of n2 is always smaller than that of

n1. In this way, the handedness of the n1 helices is determined

by the sign of twist: if positive the n1 helix is right-handed,

otherwise it is left-handed. The sign of n2 gives the handedness

of the n2 helices: if negative it is a right-handed helix, other-

wise it is left-handed. To calculate the [twist, rise] of the n2-

start helices the helical symmetry can be swapped from [n1, n2]

to [n2, n1].

2.6. Local C2 (dyad) symmetry

Above, the helical symmetry operation has been applied to

asymmetric subunits without first assigning a plausible local

symmetry. In order to generate all symmetric subunits in a

planar 2-D lattice, the local symmetry can be specified by one

of the 17 wallpaper groups. However, the local symmetry in

the planar 2-D lattice is largely lost by the [n1, n2] helical

transformation; therefore, we only describe pseudo-local

symmetry. A local C2 symmetry operation is an exception: not

only is it maintained between asymmetric subunits within the

unit cell, but also in the entire helical construct. In terms of the

1-D helical system, the C2 symmetry is defined as an additional

dyad symmetry (with axial C2 along the z axis and the helical

axis along the y axis). To include a local C2 symmetry opera-

tion, we can assign a wallpaper group p2 before applying the

helical transformation.

2.7. Manipulation of [n1, n2] symmetry

A helical symmetry can be described by many [n1, n2]

combinations. For a particular preset n2 there are a limited

number of n1; similarly, a preset n1 will have a limited selection

of n2 for the same helical assembly. To understand the

manipulation and limitations of changing from one [n1, n2] to

another, the helical net is the best reference. For illustration,

we use the [11, 3] helical symmetry of the polymorphic helical

structure of the microtubule. In terms of the (h, k; n) notation

(Toyoshima & Unwin, 1990; Toyoshima, 2000), the set of

n-start helices can be specified by the equation

n ¼ hn10 � kn01;

where n10 = 11 and n01 = 3 for the [11, 3] symmetry. Note that

the (h, k) index has to be confined within the circumference

range. Starting with the [11, 3] symmetry and a fixed n2 = 3, the

redundant helical symmetry [n1, 3] can have n1 = h 11 � k 3,

with h = �1. On the other hand, given a fixed n1 = 11, we can

have many redundant [11, n2] helical symmetries with

n2 = h 11 � k 3 and k = �1. In the case of (h = 1, k = �1), we

have new redundant helical symmetries of [8, 3] and [14, 3]

(Fig. 3c), respectively. The complete list of redundant [n1, 3]

symmetries with h = 1 are [26, 3], [23, 3], [20, 3], [17,3], [14,3],

[11,3], [8, 3], [5, 3], [2, 3], [�1, 3] and [�4, 3]. For [n1, 3] there is

an infinite number of helical symmetries in a planar 2-D lattice

rather than just the 11 sets restricted by the circumference.

In Fig. 3(c), the corresponding redundant sets of helical

symmetries are noted next to the helical dots. For the redun-

dant symmetry [�1, 3], we have created an equivalence

between 11-start helices [11, 3] and one-start helix [�1, 3] (or

[1, �3]) symmetry.

In order to check whether the (h, k) index is within the

circumference, we convert the 1-D system to its equivalent

planar 2-D helical net. It is then straightforward to calculate

the new helical parameters ’ for the new n-start helix. If |’| is

less than � then it falls within the circumference range.

2.8. Relevance to X-ray fibre diffraction and the EM method

In helical structure determination by X-ray fibre diffraction

or EM based on the Fourier–Bessel method (in reciprocal

space), the first step is indexing the layer-line diffraction

pattern to a specified helical symmetry. There are two possible

systems for indexing a diffraction pattern. In the first,

assuming that a helical assembly can be described by a single

(one-start) helix, the ‘selection rule’ l = tn + um can be utilized

to assign (n, l) pairs to layer-lines in which each layer-line

is associated with a set of n-start helices. A more general

formalism using (n, Zl) instead of (n, l), which removes the

requirement for t/u to be a rational number, is more appro-

priate for fibre diffraction. However, for simplicity, we prefer

to use the (n, l) system here. A successful layer-line indexing

then gives the helical organization as the selection rule

implies: u units require t turns of the one-start helix to

complete a true repeat with a rise distance of c. A second more

systematic (h, k; n) indexing system (Toyoshima & Unwin,

1990; Toyoshima, 2000) interprets diffraction patterns based

on the helical surface lattice. In a planar 2-D lattice, diffraction

by a set of lines gives a row of dots in reciprocal space.

Therefore, it is straightforward to determine a 2-D planar

symmetry from an ideal diffraction pattern. For a helical

structure which is obtained by wrapping of a 2-D lattice, a set

of lines now becomes a set of helices and the corresponding

diffraction dots become layer-lines. To define a surface lattice,

two indices, (1, 0; n10) and (0, 1; n01), are first assigned where

n is the start number of the associated helices, which can be

estimated from its peak position in the layer-line diffraction

(Toyoshima & Unwin, 1990; Toyoshima, 2000). If the

remaining layer-lines can be indexed and related by the

equation n = hn10 � kn01 then the helical symmetry is deter-

mined. Fig. 4 illustrates the relationship between the new

[n1, n2] helical scheme and the symmetry in both indexing
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systems. The nodes in Fig. 4 represent (i) asymmetric units

based on a simple helical structure which is described by a

one-start helix (t = 4 and u = 13), i.e. with 13 units and four

turns completing a true repeat of distance c, and (ii) a

simplified diffraction pattern of the same helical structure.

However, instead of the layer-line pattern for n-order Bessel

diffraction, each dot gives the position of (n, l) diffraction

where the layer-line pattern has a maximum diffraction peak

at the �n + 2 position (Diaz et al., 2010). In the figure, [n1, n2]

of the new helical scheme correspond to the choice of n10 and

n01 in the (h, k; n) indexing system. The same (t = 4 and u = 13)

structure is related by two different helical systems [3, 1] and

[3, �2] in Figs. 4(a) and 4(b), respectively, for a simplified

diffraction pattern in terms of n and �l. The figure only shows

one fourth of the diffraction pattern. For example, the n = 4,

l = 3 diffraction is at the left-upper corner of the figure without

a label of (h, k; n, l, m).

2.9. General guidelines for presenting a helical structure

There is no clear-cut advantage in treating a helical

assembly as a 1-D or a 2-D system; both systems have pluses

and minuses. However, we believe that the augmented 1-D

helical system is more suitable than the 2-D system for

describing a helical structure, even though the two systems are

equivalent and interchangeable. There are two reasons for

favoring the 1-D helical system for describing a helical

symmetry. Firstly, the 1-D helical system is simpler than the

2-D system, with one fewer parameter. Secondly, the 1-D

helical scheme is independent of the helical radius, while the

surface lattice parameters (a, b, �) in the 2-D system will

change with different radii. Here, based on a 1-D helical

system we suggest general guidelines for helical structure

representation. With our guidelines, if the assembly units can

be unambiguously defined and follow the helical paths, each

helical assembly is expected to provide a unique symmetry

[n1, n2, ’, �] that also explicitly reflects the helical structural

characteristics.

In terms of a helical net, a helical structure is composed of

a set of n helices in which the individual helix is named an

n-start helix. If a helical structure can be expressed by just a

single helix, it is a one-start helical structure. In the augmented

1-D helical system, the [n1, n2] representation implies that

the organization of the n1 helices is specified by n2, with the

individual n1-start helix defined by [’, �]. We can also swap the

representation to say that there are n2 helices in the structure

related by n1. Since there are many [n1, n2] combinations for a

particular helical structure, the first and the most important

guideline is to define the rule for choosing a unique [n1, n2]

specification. In order to reflect the helical structural char-

acteristics, the rule states that only protofilaments will be

candidates for the [n1, n2] selection. In our definition, if

adjacent asymmetric subunits in an assigned helix are in

physical contact, this helix is a protofilament. Therefore, we

first sort protofilaments according to the extent of contacts

between adjacent asymmetric subunits. Of the best four

protofilaments, the one with the twist angle closest to zero is

set as the primary protofilament n1 and the next best proto-

filament is selected as the secondary protofilament n2. Note

that n1 is always larger than |n2| under this guideline.

To ensure a unique helical symmetry representation for a

helical assembly, redundancy needs to be reduced to singular

[n1, n2, ’, �]. The reduction guideline requires that

n1, � > 0 and n1 > |n2|. In the case of n1 < 0, one can apply

the equivalent rule that the new [n1, n2] = [�n1, �n2].

If � is negative, one can simply apply the equivalent rule

[n1, n2, ’, �] = [n1, �n2, �’, ��] to make it a positive value.
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Figure 4
The relationship between the [n1, n2] helical scheme and the helical
symmetry utilized in two common indexing systems. The dots in the figure
represent two properties. Firstly, they represent asymmetric units based
on a simple helical structure which is described by a one-start helix (t = 4
and u = 13) with 13 subunits and four turns completing a repeat of
distance c. Secondly, they describe a simplified diffraction pattern of the
same helical structure. Thus, instead of showing the layer-line pattern for
n-order Bessel diffraction, each dot gives the position of (n, l) diffraction
where the layer-line pattern has a maximum diffraction peak at the�n + 2
position (Diaz et al., 2010). The diffraction pattern in terms of �l and n is
related to the helical net description with 13 subunits enclosed by orange
lines as a repeating unit. The two implicit helical symmetries, l = tn + um
and n = h n10 � k n01, are then related by the [3, 1] and [3, �2] helical
symmetry in (a) and (b), respectively, with n10 = n1 and n01 = n2. In the
figure, each dot is labeled with an (h, k; n, l, m) index and the helical lines
are in terms of the [n1, n2] helical symmetry.



3. Results

There are many helical filaments and tubular structures in the

PDB which have been solved either directly by X-ray fibre

diffraction or by fitting individual crystal structures into cryo-

EM density maps. Similar to X-ray crystal structures where

only the coordinates of the asymmetric units are included in

the PDB file, most of the helical structures deposited in the

PDB also contain only asymmetric units. Therefore, in prin-

ciple, the entire helical structures should be constructed

from the deposited asymmetric units by a specified helical

symmetry. In the case of crystal structures, a space group and

six lattice constants are defined in the keyword ‘CRYST1’ in

the PDB for calculating all symmetric units in the unit cell.

However, owing to the lack of a simple, complete and widely

accepted system for helical symmetry, no keyword has been

set to define the helical symmetry and helical parameters are

implicitly stated in the comments. Furthermore, the creation

of the entire helical structure relies on a set of translational

and rotational matrices which are hard-coded in the PDB.

We have applied the augmented 1-D helical scheme along

with the suggested guidelines to all helical structures depos-

ited in the PDB. A small portion of the results are given in

Table 1 and a complete list is available on the web at http://

protein3d.ncifcrf.gov/helicalSymmetry/table1.html. The newly

determined helical parameters [n1, n2, twist, rise] not only

directly reflect the helical characteristics but also provide

sufficient information for constructing an entire helical

structure from given asymmetric units. Here, we propose four

helical parameters in a new keyword named HELSYM in the

PDB for the specified helical symmetry to avoid using matrices

and comments when specifying a helical symmetry.

In the PDB, the axial symmetry of a helical structure is

conventionally along the z axis and passes through the origin

(0, 0, 0). The helical symmetry specified in the PDB usually

follows the rotohelical description, which provides the helical

parameters (’, �) for a single helix or n helices related by a Cn

rotational axis. The manually extracted data, the helical twist

’ and the helical rise �, are first verified against the helical

transformation matrices if also given in the PDB file. The

corresponding augmented 1-D helical parameters will then be

either [1, 0, ’, �] or [n, 0, ’, �] for one-start helices or n-start

helices, respectively. We then use our graphics tool named

PNAS (Protein Nanoscale Architecture by Symmetry), in-

house software running both under Linux and Windows, to

search for the first four protofilaments with the largest contact

between the asymmetric units and determine their n1, n2, ’, �
values accordingly. Next, we select among them the helical

protofilament with the lowest absolute value of twist angle as
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Table 1
Helical parameters for helical structures solved by X-ray fibre diffraction and EM imaging.

The first and second columns provide the PDB code and molecular name of the helical structure. The third column indicates whether the helical assembly was
solved by X-ray fibre diffraction (XFD) or cryo-EM imaging (CryoEM). If the structure was solved by cryo-EM imaging, the PDB file records atomic models which
have been docked into the corresponding EM map. If the EM map was deposited in EMDB, the entry gives its EMDB ID code. The next three columns (Cn, ’, �)
report the helical symmetry if specified in the PDB or EMDB. The following two columns give the unified helical symmetry of [n1, n2] by following the symmetry-
determination guideline (provided in the text). Next are the newly determined helical parameters [’, �] of the 1-D helical system and the lattice constants (a, b, �)
of the 2-D helical system.

PDB code Molecule XFD/cryoEM Cn Twist ’ (PDB) (�) Rise � (PDB) (Å) n1 n2 Twist ’ (1-D) (�) Rise � (1-D) (Å) a b �

1ifd Inovirus XFD C5 �33.23 16.00 10 �5 5.54 32.00 21.16 32.06 37.35
1hgv PH75 inovirus XFD C1 66.67 2.90 11 �6 13.33 31.90 23.05 32.29 32.01
1cgm Mosaic virus XFD C1 22.04 1.44 16 �1 �7.34 23.11 22.59 24.31 104.34
2zwh F-actin model XFD C1 �166.40 27.59 2 1 27.20 55.18 69.06 56.14 77.07
3a5x L-type flagellar CryoEM C1 65.30 4.79 11 5 �1.70 52.65 42.96 52.68 125.82
1mwk ParM filament open EMD-5128 C1 165.20 24.30 2 �1 �29.50 48.60 62.30 49.67 78.94
1mwk ParM filament closed EMD-5129 C1 165.00 24.20 2 �1 �30.10 48.60 62.75 49.73 79.47
2hi5 Bacteriophage EMD-1240 C5 �34.62 17.40 10 �5 2.60 34.80 22.50 34.82 138.88
3b5u Acrosomal actin EMD-1088 C1 �164.90 27.75 2 1 23.34 54.60 67.74 55.27 75.18
3dik HIV-1 CA EMD-5136 13 2 �11.00 89.80 96.64 96.68 119.96
3a69 Flagellar hook EMD-1647 C1 64.79 4.12 11 �6 �7.31 45.32 38.37 45.93 52.25
3dco Microtubule EMD-5038 13 3/2 0.00 80.00 51.94 80.00 100.24

Figure 5
A helical structure with various distinct descriptions of helical assembly.
The helical structure of bacteriophage major coat protein (PDB entry
1ifd) is used as an example here to illustrate the variations. In the figure,
an individual asymmetric subunit is presented by a color isosurface entity
and each color represents a helix specified by the helical symmetry. The
first [5, 0] helical symmetry given in the PDB file has a corresponding 1-D
helical symmetry of [5, 0, �33.2, 16.0]. The other two helical symmetry
assignments, which are more meaningful in terms of reflecting structural
characteristics of the helical assembly, are given as [5, 0, 38.8, 16.0] and
[10, �5, 5.5, 32.0]



the primary n1 helix and its associated twist and rise are set

as the 1-D helical parameters [’, �]. Finally, the highest contact

protofilament other than the chosen primary helix is assigned

as the secondary n2 helix to complete the determination of

[n1, n2, ’, �].
In Fig. 5, the helical assembly of the bacteriophage major

coat protein (PDB entry 1ifd; Marvin, 1990) is assigned into

three different 1-D helical symmetries: [5, 0, �33.2, 16.0],

[5, 0, 38.8, 16.0] and [10,�5, 5.5, 32.0]. The first symmetry [5, 0]

corresponds to the rotohelical assignment in the PDB.

Apparently, each individual helix is not a protofilament since

no contact between helical subunits (shown in the same color)

is observed. Therefore, the helical structural characteristics

will not be conveyed clearly from its helical parameters. The

second [5 ,0] symmetry is based on the first protofilament with

the largest number of contacts between helical subunits.

However, the guideline suggests using the [10, �5] helical

symmetry to represent this structure. This symmetry is

advantageous for three reasons: firstly, the [10, �5] symmetry

corresponding to the second and first protofilaments in the

structure presents the best structural characteristics, unlike the

second [5, 0] assignment which only contains information for

the first protofilament; secondly, by looking down the helical

axis the structure is composed of ten helices, not just five; and

thirdly, another inovirus coat protein (PDB entry 1hgv;

Pederson et al., 2001) also gives a similar structure with

[11, �6] helical symmetry. Here, the primary (11-start) helix is

the first protofilament and the secondary (six-start) helix is

the second protofilament. These two examples show that the

augmented 1-D helical representation not only describes

similar helical structures by similar parameters but at the same

time also differentiates between similar helical organizations.

In Fig. 6, three additional helical structures are depicted in 1-D

symmetry. Pictorial descriptions with 1-D helical symmetry for

the complete list of known helical structures can be accessed

from links on the webpage http://protein3d.ncifcrf.gov/

helicalSymmetry/table1.html.

For helical structures deposited in the EMDB (Lawson et

al., 2011) only the helical classification is indicated but no

helical symmetry is explicitly given in the data bank. However,

it is not difficult to deduce the 1-D helical parameters if the

helical axis can be determined from the EM density map. The

graphics tool PNAS can be utilized to assign 1-D helical

symmetry to the EM structure. Firstly, we determine the

location of the primary protofilament by visual inspection of

the density map when shown in various isosurface presenta-

tions. Looking down the EM map along the helical axis, the

number of assigned protofilaments can be counted to give the

n1 helical parameter. PNAS then determines the position of

the helical axis using either the given map center or the

calculated coordinates of the center of density. Next, we

determine the [’, �] pair for the visually assigned primary

protofilament by calculating the correlation coefficient

(Grubisic et al., 2010) between the origin map density and the

helical transformed density specified by a pair of manually

adjustable parameters [’, �]. In this procedure, we follow the

guideline to keep the helical twist as close to zero as possible

and at the same time change the twist and rise to reach the
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Figure 6
Pictorial 1-D helical symmetry description of three helical structures
determined by X-ray fibre diffraction. The three depicted helical
structures are the filamentous bacteriophage ph75 (PDB entry 1hgv),
F-actin (PDB entry 2zwh) and the cucumber green mottle mosaic virus
(PDB entry 1cgm). The same isosurface and color definition described in
Fig. 5 is used for the three helical assemblies. The pictorial presentation
directly indicates the helical signatures of the three helical structures in
11, two and 16 colored protofilaments, which are respectively implied by
the specified [11, �5], [2, �1] and [16, �1] helical symmetry.

Figure 7
The procedure of serial density-map superimpositions illustrates the
determination of the 1-D helical symmetry from a helical EM structure.
The bateriophage fd coat protein (EMD-1240) is used here for
demonstration. The original EM structure is displayed as a yellow
isosurface and the symmetry-transformed density map is shown as a red
isosurface. A first superimposition, denoted by the 1-D helical symmetry
operation [1, 0, 0.0, 34.8], gives the result of a 34.8 Å translation only.
Following an additional rotation of 2.6� denoted by [1, 0, 2.6, 34.8], the
outcome of perfect superposition determines the [’, �] of 1-D helical
symmetry for the set of ten-start primary protofilaments. Applying a
tenfold rotation [10, 0, 2.6, 34.8] then gives the third superimposition.
Finally, an extra translation defined by n2 = 5 completes the
determination of 1-D helical symmetry [10, 5, 2.6, 34.8] for the EMD-
1240 structure.



best match as guided by visual superimposition between the

origin and the transformed density map in isosurface presen-

tation. The optimal correlation coefficient should be very close

to 1.0. Now, we can use the newly determined helical para-

meters n1, ’ and � to determine n2: simply try integer numbers

between �n1 and n1 and perform the 1-D helical transfor-

mation to determine n2 from the result of the superimposition

as stated above.

To illustrate the procedure of 1-D helical symmetry deter-

mination, four superimpositions between the original EM

(EMD-1240; bateriophage fd coat protein B; Wang et al., 2006)

and transformed density maps relating to the four stages are

given in Fig. 7. The first two superimpositions illustrate the

determination of [’, �] for the assigned primary protofilament.

The last two superimpositions illustrate the determination

of the secondary protofilament n2, giving the 1-D helical

symmetry [10, 5, 2.6, 34.8]. The 1-D helical symmetry for each

helical EM map deposited in the EMDB has been determined

with the graphics tool PNAS. Some of the results are listed in

Table 1 and a complete list is reported on the webpage http://

protein3d.ncifcrf.gov/helicalSymmetry/table1.html. To high-

light the importance of a comprehensive helical scheme,

Table 2 provides a comparison between the reported helical

symmetries determined in the EM reconstruction and the new

helical symmetries for six polymorphic helical structures of

the microtubule. The results clearly show that the inherent

structural characteristics of the microtubule obtained by the

new helical scheme can directly discover polymorphic

ensembles. The very similar surface lattice within different

helical symmetries implies very similar subunit–subunit

interactions which the microtubule uses to assemble into

divergent helical organizations.

4. Discussion

4.1. Will the guidelines give a unique [n1, n2, u, d] helical
system?

A helical description using four parameters [n1, n2, ’, �],
determined according to the augmented 1-D helical symmetry

guidelines (in x2) provides the helical signature of the struc-

ture. This is because the two sets of defined helices, the n1-start

and the n2-start, correspond to the two sets of protofilaments.

However, will the guidelines also always give a unique [n1, n2]

combination for a given helical structure? The answer is yes, as

illustrated by the example below. The docked atomic model of

the bacterial flagellar hook (Fujii et al., 2009; PDB entry 3a69)

contains an asymmetric subunit with three protein domains

spanning the inner, middle and outer layers of the helical cryo-

EM map. In terms of individual protein domains, the best

protofilament of each domain yields an 11-start, five-start and

six-start helix, respectively, from the inner to the outer layers.

Even though different helical descriptions of different layers

are observed, the guidelines still give an unambiguous helical

symmetry of [11, �6, �7.31, 45.32] for this structure. The

assignment is based on two clear elements in the structural

data: the 11-start helix (the third protofilament in the protein)

has a twist angle closest to zero and the six-start helix is the

first protofilament. In Fig. 8, each color presents an assigned

helix and the assembly illustrates six, five and 11 helices,

respectively, for the [6, �1], [5, �1] and [11, �6] symmetries.

research papers

Acta Cryst. (2011). D67, 716–728 Tsai & Nussinov � Helical symmetry 725

Table 2
Comparison of helical parameters between the reported symmetries determined in the EM reconstruction and the new helical symmetries for six
polymorphic microtubule structures.

See Table 1 for column name description. The last column gives the helical radius where the 2-D lattice was defined.

CryoEM Cn Twist ’ Rise � n1 n2 Twist ’ (1-D) Rise � (1-D) a b � Radius (COD)

EMD-5191 C1 �32.47 11.08 11 3 0.95 40.6 52.58 40.63 100.03 90.71
EMD-5192 C1 �29.88 10.16 12 3 0.50 40.6 52.35 40.61 99.97 98.49
EMD-5193 C1 �27.69 9.39 13 3 0.00 40.6 52.59 40.60 100.26 107.07
EMD-5194 C1 �25.77 8.72 14 3 �0.25 40.6 51.92 40.60 100.35 113.81
EMD-5195 C1 �23.83 10.81 15 4 0.65 40.6 51.00 40.62 100.34 119.85
EMD-5196 C1 �22.40 10.18 16 4 0.40 40.6 51.12 40.61 100.19 128.16

Figure 8
1-D helical symmetry determination for a complicated helical structure.
This example illustrates that the guideline defined for 1-D helical
symmetry determination is capable of giving a unique symmetry
assignment [n1, n2, ’, �] to an intricate helical structure. The asymmetric
subunit of the bacterial flagellar hook (Fujii et al., 2009; PDB entry 3a69;
EMD-1647) contains three protein domains spanning the inner, middle
and outer layers of the helical structure. Based on individual domains, the
best protofilament in each domain forms a set of six-start, five-start and
11-start helices, respectively, from the outer to the inner layer of the
helical structure. The pictorial helical descriptions for three different
symmetry assignments are given under [6, �1], [5, �1] and [11, �6]
symmetry. The guideline prefers the [11,�6] symmetry assignment simply
because the 11-start helix has a twist angle closest to zero and the six-start
helix is the protofilament with the largest number of contacts between the
asymmetric units along the protofilament.



Not all helical structures have unambiguous primary

protofilaments, especially when the growth mechanism does

not follow a helical path. The tubular structure of the HIV-1

capsid protein (CA; Byeon et al., 2009) is such an example.

In solution, CA forms a dimer via the association of its

C-terminal domain (CTD). The cryo-EM tubular structure

(EMD-5136) reveals that the basic unit is a trimer of CA

dimers with a pseudo-threefold at the CTD–CTD interfaces

and the CA dimer is shared between two trimers. Following

our guideline, we obtain a helical symmetry of [24, 13, 7.39,

165.78] for the CA tubular structure. The unit cell depicted by

the [24,13] symmetry does not correspond to the observed CA

hexamer; however, after applying the symmetry-manipulation

rules (n1 = n1 � n2, [n1, n2] swapping and n2 = n2 + n1) the

new helical symmetry of [13, 2, �11.00, 89.80] gives the cell

dimensions of the hexamer. The surface lattices for both

helical symmetries are highlighted in red in Fig. 9. The fact

that the assigned asymmetric units in both helical symmetries

([24, 13] and [13, 2]) do not correspond to the assembly unit

implies that the path of a trimer of CA dimers is not helical.

In this case, our guidelines will fail to offer an unambiguous

helical specification.

The guidelines have two limitations in fulfilling the aim that

every helical structure would have a unique [n1, n2, ’, �] helical

symmetry. The first arises when the primary protofilament is

ambiguous, as discussed above, and the second is encountered

when there is a continuous helical density along a protofila-

ment in the cryo-EM structure rather than a clear boundary

between asymmetric units. Under such circumstances, for a

determined [n1, n2] symmetry the helical structure can be

described by an infinite number of [’, �] pairs, which are

always related by a constant. The helical structure of the

tubular A�1–42 amyloid with a hollow core (Miller et al., 2010;

Zhang et al., 2009) is an example of this limitation. The cryo-

EM structure gives a [2, 0] (or [2, 1]) helical symmetry and the

two helical parameters [’, �] = [�3.75c, 4.8c], where c is a

constant.

4.2. Relevance to experimental diffraction patterns

The diffraction patterns of helical structures consist of a

series of layer-lines. Assuming that the layer-lines do not

overlap, each layer-line is the result of diffraction by a set of

n-start helices. The position of the peak with the maximum

diffraction intensity in each layer-line can be indexed to

correspond to a node in the helical net. The relationship

between the 1-D helical system [n1, n2] symmetry and the

diffraction pattern is detailed in Figs. 4(a) and 4(b). The two

figures illustrate the different assignments of n10 and n01,

which give different helical symmetries, [3, 1] and [3, �2], for

the same structure that has a simple helical symmetry of t = 4

and u = 13. The assignment of n10 with the first peak close to

the equator (n) of the diffraction pattern is consistent with the

guideline for selecting the n1-start helices with a twist angle

closest to zero. The assignment of n01 to the position of the

diffraction which is close to the origin is also likely to

constitute a main protofilament of the given helical structure.

4.3. The minimal number of helices needed for a complete
helical structure description

From the rotohelical transformation, we learnt that a single

(one-start) helix description is not always sufficient to

generate the entire helical structure from given asymmetric

units. The helix may need to be related by a Cn rotational

symmetry, which implies that a minimum of n helices are

required to cover the entire helical assembly. Given an [n1, n2]

symmetry, there are n1 or n2 assigned helices for the entire

helical description. To determine the minimal number of

helices for complete structural description (or to be correlated

with the rotohelical transformation), the [n1, n2] symmetry is

reduced to an equivalent symmetry with n2 = 1 or 0. In the case

of a reduced [n1, 0] symmetry, the new n1 is the minimal

number of helices.

It is straightforward to deduce the minimal number of

helices for a given [n1, n2] helical symmetry. If the numbers n1

and n2 do not have a common factor, the symmetry can

always be reduced to a one-start helix description by using a

combination of the swap and the equivalence rules of

n = h n10 � k n01 as described in x2. For example, [7, 3] can be

reduced to [1, 3] with h = 0, k = 2. On the other hand, the

largest common factor between n1 and n2 is the minimal

number of helices for a complete helical structure description.

For example, [8, 4] can be reduced to [4, 0] with the number 4,

the largest common factor of 4 and 8.

4.4. A new description of helical symmetry

Despite the fact that so many helical structures have been

determined, a universal formulation for representing helical

symmetry is still lacking. The absence of agreement in the

community has been attributed to three main reasons. The first

apparent reason is a consequence of the fact that helical
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Figure 9
Different surface lattices with different helical symmetry assignment. The
span of the surface lattice of the tubular structure of HIV-1 capsid protein
(EMD-5136) is highlighted in red for two helical symmetries of [24, 13]
and [13, 2].



symmetries have been formulated in distinct ways to fulfill a

particular requirement or convenience in different structure-

determination methods. The diversified helical representa-

tions can be classified into two commonly adopted helical

schemes named the 1-D and 2-D helical systems. In this study,

the two helical schemes were unified into a single helical

specification by two constants [n1, n2] and we have shown that

the two systems are interchangeable and complementary to

each other. Because of the simplicity of using one less para-

meter and the lack of involvement of the axial radius, we

suggest using the augmented 1-D helical system with four

parameters [n1, n2, twist, rise] for representing a helical

structure.

The second hurdle for defining a helical description is that

a helical structure can be pictured in many ways, i.e. in many

[n1, n2] combinations as two (n1-start and n2-start) sets of

helices. However, in principle, the generalized guidelines for

describing a helical symmetry are expected to give a unique

[n1, n2] specification that reflects the characteristics of the

structure, although in a limited number of cases a unique

specification is impossible.

The fact that no standard helical symmetry has been

accepted so far can be attributed to the last obstacle: a com-

plete coverage of helical description includes the capability of

handling helical discontinuity (a seam). However, building an

entire helical construct with a seam from given asymmetric

units requires no additional modification in our formulation of

helical transformation. Instead, a helical structure with a seam

is simply reflected in the value of n2. By definition, the helical

discontinuity indicates that n2 is no longer an integer but a

rational number.

4.5. Presentation of a structure with a helical discontinuity

An implicit requirement of the 2-D helical system (x2.1) is

that in a seamless helical arrangement [n1, n2] must be speci-

fied by integer numbers. By treating two consecutive asym-

metric subunits in the primary protofilament as a new single

asymmetric subunit, the new augmented 1-D helical symmetry

becomes [n1, n2/2, 2’, 2�], which is equivalent to the original

helical symmetry [n1, n2, ’, �] except that the asymmetric units

are doubled in size. When the tubulin subunit is treated not

as a dimer of �� subunits but as a single subunit by ignoring

the small difference between the � and � subunits (Sui &

Downing, 2010), we do not encounter the microtubule seam

problem. However, when treating the �� dimer as an asym-

metric subunit in the new 1-D helical symmetry, helical

structures with an odd number for the n2 symmetry (in single

subunit representation) create a seam with a new rational n2.

The microtubule EM structure (Cochran et al., 2009; EMD-

5038) presents such a helical discontinuity when treating the

dimer of �� subunits as the asymmetric unit. The augmented

1-D helical symmetry in four parameters [13, 3/2, 0.0, 80.0] is

sufficient to generate the entire helical structure with a seam,

based on the helical transformation matrix summarized in

Fig. 2. Owing to the helical discontinuity, the repetitive

asymmetric unit is no longer an identical unit. Instead, a

complete round of n1 subunits (13 dimers in the microtubule

case) now constitutes the identical unit in the helical structure

with a seam. Therefore, the subunit coordination index

[m1, m2] can no longer have an index with m1 � n1 when

applying the helical transformation to generate the repetitive

subunits for a helical structure with a seam.

A seam in a helical structure can be classified visually with

respect to its helical axis into a strictly vertical seam or a seam

that wraps around the helix. The microtubule case above is an

example of a vertical seam. Under the restriction that only a

rational n2 and integer n1 > |n2| are allowed in the augmented

1-D helical representation, the corresponding helical structure

always produces a vertical seam and the handedness of the

seam is determined by the sign of n2, with positive indicating a

left-handed seam and negative a right-handed seam. In con-

trast, a seam described by a rational n1 > |n2| and integer n2

should correspond to the type of seam that wraps around the

helix.

4.6. Application to polymorphic structural assemblies

Both the 1-D and 2-D helical systems are designed to create

helical assemblies from asymmetric subunits with specified

helical parameters. The conformational heterogeneity of

molecular assemblies is known to set limits on solving cryo-

EM structures at high resolution. Polymorphism is particularly

problematic in the determination of structures with helical

symmetry since even a slight deviation in the interactions

between two asymmetric subunits will create distinct struc-

tures with different symmetries. We have seen such an

example in Table 2 for the microtubule structure. The question

is can all such polymorphic structures be generated based on a

single helical structure which is given in an atomic model or an

EM map? The answer is yes, because the interactions between

the asymmetric subunits are preserved in the definition of

the 2-D helical system. Thus, to create distinct polymorphic

structures with almost the same subunit–subunit interactions

we only need to change the specific [n1, n2] helical symmetry.

5. Conclusions

In this paper, we give two helical formulations (augmented

1-D and 2-D) to describe a helical structure. Unlike the

rotohelical transformation (1-D formulation) with a helical

plus an additional rotational operation, a new augmented 1-D

formulation with two consecutive helical operations enables

unification with the widely adopted 2-D formulation, giving a

common helical symmetry descriptor with two integers [n1, n2].

The new formulation requires only four parameters [n1, n2,

twist, rise] for the augmented 1-D helical system and five

parameters [n1, n2, a, b, �] for a 2-D helical system to generate

the entire structural assembly from given asymmetric units.

We propose using the augmented 1-D helical system with four

parameters to describe a helical structure owing to its

simplicity and independence from the helical radius compared

with the 2-D helical system.
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In terms of a helical net representation, a helical structure

with an [n1, n2] symmetry indicates that its organization is

specified by two sets of helices (n1-start and n2-start). Because

many different [n1, n2] combinations exist for the same

structure, we suggest general guidelines for selecting a unique

[n1, n2] symmetry which reflects the structural characteristics

of a given helical structure. We provide a computational

graphics tool for this purpose which can be used for any helical

structure determined by X-ray fibre diffraction or EM

imaging.

While there are multiple ways to construct equations that

generate the same helical structure, an [n1, n2, twist, rise]

description provides the following advantages: firstly, it

provides full helical coverage, including a helical discontinuity

(seam) which is indicated by a rational n2; secondly, it reflects

the structural characteristics of the assembly (formation

mechanism) directly by four helical parameters; that is, similar

structures give similar parameters; thirdly, the unnecessary

error in reproducing the entire helical structures, such as

editing wrong transformation matrices in the PDB or in the

deposited EM parameters in the EMDB, will be prevented;

and lastly, the new helical symmetry is expected to be useful

for maintaining a pre-determined helical symmetry in struc-

tural refinement as well as for the generation of all ‘mean-

ingful’ polymorphic structural assemblies from a given helical

atomic model or EM density map.
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