
research papers

1204 doi:10.1107/S0907444913000061 Acta Cryst. (2013). D69, 1204–1214

Acta Crystallographica Section D

Biological
Crystallography

ISSN 0907-4449

How good are my data and what is the resolution?

Philip R. Evans* and Garib N.

Murshudov

MRC Laboratory of Molecular Biology,

Hills Road, Cambridge CB2 0QH, England

Correspondence e-mail:

pre@mrc-lmb.cam.ac.uk

Following integration of the observed diffraction spots, the

process of ‘data reduction’ initially aims to determine the

point-group symmetry of the data and the likely space group.

This can be performed with the program POINTLESS. The

scaling program then puts all the measurements on a common

scale, averages measurements of symmetry-related reflections

(using the symmetry determined previously) and produces

many statistics that provide the first important measures of

data quality. A new scaling program, AIMLESS, implements

scaling models similar to those in SCALA but adds some

additional analyses. From the analyses, a number of decisions

can be made about the quality of the data and whether some

measurements should be discarded. The effective ‘resolution’

of a data set is a difficult and possibly contentious question

(particularly with referees of papers) and this is discussed in

the light of tests comparing the data-processing statistics with

trials of refinement against observed and simulated data, and

automated model-building and comparison of maps calculated

with different resolution limits. These trials show that adding

weak high-resolution data beyond the commonly used limits

may make some improvement and does no harm.
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1. Introduction

Following integration of the spots on a set of X-ray diffraction

images to produce a list of reflection intensities, a series of

operations are performed on the data, usually referred to as

‘data reduction’. These processes include determination of the

point group and if possible the space group, checking for

consistent indexing where there are alternatives, putting all of

the data on a common scale, deciding whether to reject parts

of the collected data or to cut the resolution and estimating

the structure amplitude |F| from intensity. Statistics on the

internal consistency of the data also provide a good indication

of the overall quality of the data set. Algorithms and methods

for data reduction have been well documented in many papers

(e.g. Fox & Holmes, 1966; Otwinowski et al., 2003; Evans, 2006,

2011; Kabsch, 2010) and the details will not be repeated here.

Scaling attempts to correct for contributions to the measured

intensities arising from experimental conditions which vary

during data collection, such as variations in the incident-beam

intensity, the volume of the crystal illuminated, absorption in

the primary or secondary beam and average radiation damage.

This is performed by trying to make all symmetry-related or

replicated measurements of a reflection intensity equal, i.e. to

make the data as internally consistent as possible.
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This paper describes a new data-scaling program,

AIMLESS, and discusses criteria for deciding the ‘resolution’

of a measured data set. In the CCP4 context (Winn et al.,

2011), AIMLESS is used immediately after the program

POINTLESS, which determines the likely point group and

possible space group, as well as optionally combining data

from multiple files each containing a ‘sweep’ of data and

putting them on a common indexing system if necessary

(Evans, 2011).1 AIMLESS is then followed by CTRUNCATE,

which calculates the structure amplitudes |F| from the inten-

sities and outputs various intensity statistics mainly to detect

twinning.

2. The scaling program AIMLESS

AIMLESS is a new implementation in C++ of a classic scaling

method, designed to make it easy to add new scaling models

and algorithms. It is a replacement for the earlier CCP4

program SCALA (Evans, 2006, 2011) and at present uses a

very similar scale model. The function minimized isP
h

P
l

whlðIhl � ghlhIhiÞ
2
þ parameter restraint terms; ð1Þ

where Ihl is the lth observation of reflection h, ghl is its asso-

ciated inverse scale, whl = 1/�2(Ihl) and hIhi is the weighted

average intensity for all observations l of reflection h or its

symmetry mates. The inverse scale ghl comes from the refined

scale model and is a function of the crystal rotation angle ’
as a proxy for primary beam direction s1 and for radiation

dose (or time) and the secondary beam direction s2:

g = gprimary(’)exp[�2B(’)sin2�/�2]gsecondary(s2). The relative

B-factor term is largely an average radiation-damage correc-

tion. The smoothed primary scale factors gprimary(’) and

relative B factors B(’) are determined at suitable intervals in

’ and are interpolated using Gaussian weights. The secondary

beam correction gsecondary(s2) is determined as a sum of

spherical harmonic terms. Parameter restraint terms (ties)

include a sphericity restraint on gsecondary(s2), tying all

spherical harmonic coefficients to zero and optional ties

between adjacent primary scales and relative B factors.

AIMLESS iterates the scaling step with an optimization of

the standard error estimates on each observation �(Ihl) and

outlier rejection. Note that the scaling process is generally

hugely overdetermined (many more observations than para-

meters, e.g. 45 000 observations for 30 parameters) and that

weak intensities do not contain much useful information about

the scales, so that the scaling can be made faster (roughly

linearly) by working with a selected subset of strong reflec-

tions. The principal steps in the process (in the current

version) are as follows.

(i) Read all observations into a reflection-list object

(SCALA does not store the observations but rereads them for

each scaling cycle etc., as storing large data sets was imprac-

ticable when SCALA was written). Sort symmetry-related

observations and partial observations together if necessary.

(ii) Set up the scaling model depending on what data are

present and explicit user-given control instructions (if any).

For the smoothly varying scale and B factors, decide on

suitable interval for the scales for each ‘run’ or ‘sweep’ of

contiguous images, depending on the total length of the sweep

and default or specified values.

(iii) Obtain initial rough scale estimates from average

intensities.

(iv) First-round scaling with a sample of a few thousand

strong reflections with I/�(I) greater than a suitable minimum

value. At this stage the �(I) estimates read from the integra-

tion program may not be very accurate but are good enough

for this selection.

(v) First outlier rejection, using an algorithm similar to that

described in xA5 of Evans (2006).

(vi) For data from MOSFLM, which outputs two estimates

of each intensity, optimize the level of intensity Imid at which to

switch (smoothly) between using the profile-fitted value Iprf

for weak data and summation integration Isum for strong data,

I ¼ wIprf þ ð1� wÞIsum; w ¼ 1=½1þ ðI 0=ImidÞ
3
�; ð2Þ

where I0 is the summation integration intensity before appli-

cation of the Lorentz and polarization corrections. The exact

form of this weighted mean is not critical, as ideally the two

estimates are the same.

(vii) First optimization of �(I) estimates (see x2.1).

(viii) Main scaling with strong reflections chosen on

normalized intensities E2 (typically choosing only observa-

tions with 0.8 < E2 < 5). This gives a subset of data distributed

over all resolution ranges.

(ix) Second outlier rejection as before.

(x) Final optimization of �(I) estimates as before.

(xi) Final outlier rejection as before.

(xii) Accumulate and print statistics.

(xiii) Output merged or unmerged reflection lists to files.

2.1. Standard error estimates

Initial estimates of the standard error of each intensity

observation, �(Ihl), are generally underestimated by all inte-

gration programs, so AIMLESS, like SCALA, updates the

�(I) estimates in an attempt to make the average standard

error match the average scatter of observations as a function

of intensity only. The mismatch arises partly from the

unknown ‘gain’ of the detector (i.e. detector units per photon),

which scales the Poisson-statistic error estimates (as well as

correcting for the detector point-spread function), and partly

from a variety of instrumental instabilities which cause an

increase in error with increasing intensity. If the error estimate

were correct in explaining the observed discrepancies within

the data set, then the normalized deviations

�hl ¼
nh � 1

nh

� �1=2

ðIhl � hIhiÞ=�
0ðIhlÞ ð3Þ

(where nh is the number of observations of reflection h and

here Ihl is the scale-corrected value, i.e. Ihl/ghl) should be
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distributed with a mean of 0.0 and a standard deviation of 1.0.2

The standard error estimate is then adjusted to

�0ðIhlÞ ¼ Sdfac ½�ðIhlÞ
2
þ SdB Ihl þ ðSdAdd IhlÞ

2
�
1=2; ð4Þ

optimizing the values of the ‘correction’ factors SdFac, SdB

and SdAdd to make variance(�hl) equal to 1.0 over all intensity

ranges. The value of the term inside the square root is (arbi-

trarily) set to a minimum value of 0.1�(Ihl)
2 to avoid possible

negative values (a rare possibility). A separate set of correc-

tion factors is determined for each ‘run’ (usually, although an

option is available to use the same value for all runs) and

separately for fully recorded and partially recorded observa-

tions (if relevant). This is performed by minimizingP
i wi½1� varð�hlÞ�

2 summed over all intensity ranges i,

currently with equal weights wi on each intensity bin and loose

restraints on SdB parameters to avoid extreme values. Final

values of variance(�hl) as a function of intensity for each run

are plotted in the output of the program as an indication of the

success (or otherwise) of this ‘correction’. Sdfac can be iden-

tified primarily with the uncertainty in the detector gain and

Sdadd with general instability factors which lead to an error

proportional to intensity (see, for example, Diederichs, 2010),

but SbB has no obvious physical interpretation. However, this

factor helps to flatten the plot of variance(�hl) against intensity

and may be justified as an empirical ‘correction’ factor. It

should be noted that this ‘correction’ to the error estimates is a

fairly crude approximation, as it assumes there are no major

residual systematic errors (such as those arising from radiation

damage, for example) and that the correction can be para-

meterized purely on intensity.

3. Analysis of data quality

Once we have a set of scale factors to put all the intensities on

a common scale and improved estimates of the error on each

intensity, then we can analyse the data for internal consistency

and for signal-to-noise ratio. We can do this as a function of

image number (equivalent to time or crystal rotation) to

detect radiation damage and weak or inconsistent regions of

data and against resolution to decide on a high-resolution

cutoff (see x4). Note that internal consistency measures are

likely to underestimate the true error, since symmetry-related

observations may suffer from the same systematic error.

Internal consistency has traditionally been measured by R

factors relating an individual observation Ihl (after scaling) to

the (weighted) average of all symmetry-related or replicate

observations of the unique reflection h, hIhi. The multiplicity-

weighted Rmeas is an improvement over Rmerge, as it is rela-

tively insensitive to data multiplicity (Diederichs & Karplus,

1997; Weiss & Hilgenfeld, 1997; Weiss, 2001), whereas Rmerge

tends to increase with increasing multiplicity, even though the

averaged intensities are improving. Rp.i.m. provides an estimate

of data quality after merging multiple observations.

Rmerge ¼
P

h

P
i

jIhi � hIhij=
P

h

P
i

hIhi: ð5Þ

Rmeas ¼ Rr:i:m: ¼
P

h

P
i

nh

nh � 1

� �1=2

jIhi � hIhij=
P

h

P
i

hIhi: ð6Þ

Rp:i:m: ¼
P

h

P
i

1

nh � 1

� �1=2

jIhi � hIhij=
P

h

P
i

hIhi: ð7Þ

An alternative way of measuring internal consistency for

the analysis against resolution is to split the observations

randomly into halves and then calculate the linear correlation

coefficient between the halves. This is arguably the most

reliable measure and is discussed further below.

3.1. Analysis against ‘batch’ or image number

Analysis of various parameters as a function of batch or

image number, a proxy for crystal rotation, time or radiation

dose, is useful to determine whether the crystal has suffered

unduly from radiation damage or whether there are any other

parts of the data which should be discarded. AIMLESS plots

similar graphs of Rmerge and of scale and relative B factors to

those produced by SCALA (see, for example, Fig. 2 of Evans,

2011). Increasing negative values of the relative B factor are

an indicator of deterioration with dose, although the B factor

is also affected by factors other than radiation damage.

AIMLESS adds two new plots against batch number: a rough

estimate of the maximum resolution for each image and a

cumulative completeness (for all data and anomalous pairs;

see Fig. 1). The ‘maximum resolution’ is estimated from the

point at which hI/�(I)i falls below 1.0 for each batch: note that

this hI/�(I)i is without averaging multiple measurements

(which would not generally occur on the same image), so will

be smaller than the hI/�i after averaging (x3.2.1). The plot

shows the noisy values for each batch, as well as a smoothed

plot typically averaged over a 5� range. This is only a rough

estimate of resolution (see x4), but serves to illustrate any

trends. The cumulative completeness plot helps in deciding

whether cutting back data from the end because of radiation

damage would compromise the completeness. Such decisions

are more complicated if the data have been measured from

multiple ‘sweeps’ or multiple crystals.

3.2. Analysis against resolution

In order to estimate the useful ‘resolution’ of the data, i.e.

the resolution at which the data may be truncated without

losing significant information, AIMLESS plots various

measures of signal to noise and internal consistency against

resolution. There is at present no general consensus on the

optimum criteria for interpretation of these plots and how to

estimate the point at which adding additional high-resolution

data is not adding anything useful: the true ‘resolution’ of a

data set has often been a point of contention with referees of

papers.

3.2.1. Signal-to-noise ratio. One obvious way to judge data

significance is from the average signal-to-noise ratio of the
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merged intensities as a function of resolution. This is calcu-

lated as

hI=�i ¼ hhIhi=�
0
ðhIhiÞi ð8Þ

[after ‘correcting’ the �0(Ihl) estimates; x2.1], i.e. for each

reflection h the average intensity over symmetry mates hIhi is

divided by its estimated error �(hIhi) and this ratio is averaged

in resolution bins [reported as Mn(I/sd) in the program

output]. Commonly used resolution-cutoff levels are typically

in the range 1–2: even in a resolution bin with hI/�i = 1 a

proportion of intensities are significantly above the noise level

[�5–7% I > 3�, �20–25% negative]. hI/�i is a good criterion

for resolution cutoff, but it does suffer from uncertainties in

the estimation of �(I), both from inadequacies in the inte-

gration program and the necessary �(I) ‘correction’ (see x2.1;

Ian Tickle, in a private communication, has pointed out that

the major correction applies to large intensities and therefore

would not affect the weak high-resolution data relevant to

determination of resolution cutoff). It should be noted that

hI/�i is not independent of measures of internal consistency

because the corrections to �0(I) are adjusted to match the

scatter of observations. Thus, �0(I) estimates are still likely to

be underestimates of the true standard deviations.

3.2.2. Measures of internal consistency. The traditional R

factors measuring internal consistency, Rmerge or better Rmeas

(x3), are not suitable measures for setting a resolution cutoff

(Evans, 2011; Karplus & Diederichs, 2012), despite their

apparent popularity with referees. As pointed out by Karplus

and Diederichs, these R factors cannot be compared with the

R factors in refinement, since Rmerge and Rmeas both tend to

infinity as the data become weaker, while Rcryst (either Rwork

or Rfree) tends to a constant (see Appendix A1 and Luzzati,

1953). This means that there is no sensible way of setting a

maximum acceptable level. Note that this is a difference
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Figure 1
New graphs from AIMLESS against ‘batch’ or image number. (a, c) Nominal resolution estimated as the point at which hI/�(I)i falls below 1.0, showing a
trend to lower resolution with increasing radiation damage, with both values for individual batches and values smoothed over a 5� range. (b, d)
Cumulative completeness for all data and anomalous differences. (a) and (b) show that in this good case the damaged data in the last third of the sweep
can be safely discarded without reducing the completeness. (c) and (d) show graphs for a poor and incomplete data set from two crystals. At the end of
this data collection the anomalous data are still very incomplete. Breaks in the x axis separate the two crystals.
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Figure 2
Plots of data-processing and refinement statistics against resolution. In (a), (b), (e) and (f), CC1/2 is shown as a dashed red line and hhIi/�(hIi)i is shown as
a pale blue dotted line (right-hand axes). (a), (b), (c) and (d) are from example 1, (e) is from example 4 and (f) is from example 5. (a) Data-processing
statistics and Rfree for the observed data (black); against simulated data beyond 2.4 Å resolution, expected |F | (blue); and |F | from two or three sets of
random intensities (green). (b) Similar statistics in cones around the three principal directions of anisotropy d1 (red), d2 (= b*, black) and d3 (blue),
omitting the F(random) values. (c) Rfree(F from I) values for refinement against measured and random simulated intensities. (d) ML scale that indicates
the contribution of these reflections to electron-density calculations. (e) As (a) but for example 4. (f) The same for example 5



between an R factor on intensity, which can be measured as

zero or negative, and an R factor on amplitude |F |, which

cannot be negative and will be biased positive if, for example,

the TRUNCATE procedure of French & Wilson (1978) has

been applied (or indeed any protocol which sets negative

values to positive). Rmerge or Rmeas are useful metrics for

monitoring variation with batch (x3.1), and their value for the

strongest intensities (top intensity bin or low-resolution bin) is

a good indicator of overall data quality. A large R factor for

the strong data may indicate a problem [a serious cause for

concern if Rmerge(strong) > 0.10; ideally it should be <0.05], but

they are not good indicators for weak data. In general, since R

factors are dependent on the distribution of the data (see, for

example, Murshudov, 2011) they are not good indicators of

model quality or internal consistency, whereas the correlation

coefficients are indicators of the degree of linear dependence

between data sets and are less dependent on the distribution of

the data, so they may be better indicators (see Appendix A1).

A better measure for assessing the ‘resolution’ of a data set

is the correlation coefficient between random half data sets,

CC1/2 (labelled ‘CC_Imean’ in older versions of SCALA;

Evans, 2006, 2011; Karplus & Diederichs, 2012). This statistic

is plotted against resolution in both SCALA and AIMLESS

(Fig. 2). A related statistic, Fourier shell correlation, has been

used for assessing the resolution of electron-microscopy

reconstructions since the early 1980s (see, for example,

Rosenthal & Henderson, 2003; Henderson et al., 2012). The

advantage of a correlation coefficient is that it has a well

defined range: +1.0 for a good correlation and 0 for no

correlation. CC1/2 is generally close to 1 at low resolution and

falls sharply to near zero at higher resolution as the intensities

become weaker (Fig. 2).

3.2.3. Anisotropy. Most data sets are anisotropic to some

extent, which complicates analysis and decision making. The

anisotropy of the data is analysed in AIMLESS using both

CC1/2 and hI/�i. The two or three orthogonal principal direc-

tions of anisotropy are constrained by the lattice symmetry: no

anisotropy for cubic symmetry, two principal directions, the

unique c (c*) axis and the ab plane, for tetragonal, hexagonal

and trigonal, three orthogonal axes for orthorhombic, the

unique b (b*) axis and two orthogonal axes in the ac plane for

monoclinic and three general orthogonal axes for the triclinic

system. The general directions for triclinic and in the mono-

clinic ac plane are determined from the eigenvectors of a fitted

anisotropic scale factor. Anisotropy is then analysed in cones

around the principal axes (default semi-angle 20�) and within

the same angle of a principal plane, or alternatively as

projections onto the two or three principal directions. In the

former case, observations are weighted with a cosine weight

declining from 1 along the principal direction to 0 at the edge

of the region. Plots of CC1/2 and hI/�i then allow assessment of

resolution in different directions in the same way as for the

overall resolution and with the same difficulties.

4. Tests of resolution cutoffs

How can we decide where to apply a resolution cutoff? On the

one hand, using high-resolution data which are so weak as to

be insignificant will add nothing useful, may add unwanted

noise to maps and may lead us to overconfidence in the quality

of our model (although the relationship between data quality

and model quality is not clear). On the other hand, we do not

want to exclude useful data which might aid structure solution

and improve the final model. Anisotropy in the data compli-

cates this decision, as it is not clear whether it is better to

include data based on the best direction, the worst, or some-

thing in between. Anisotropic cutoffs are likely to cause

artefacts in map calculation. The problem of anisotropic data

and how to deal with them in refinement and map calculation

is an open question, and future work needs to address this

problem, with the goal of developing clear protocols.

To examine these questions, a number of tests were carried

out using data integrated beyond what would normally be

considered acceptable using the example data sets listed in

Table 1.

4.1. Comparison with simulated data

By comparing refinement against measured data with

refinement against simulated data, we can judge the resolution

point at which the measured data become no better than

simulated data and compare this with the data-processing

statistics. Figs. 2(a)–2(d) show various analyses for example 1,

for which simulated data were generated beyond 2.4 Å reso-

lution in several ways with simulations based on the observed

intensity distribution but not on the structure itself (see

Appendix A2 for details of the simulation): (i) the expected

value of |F | at the resolution and anisotropic position of each

reflection, i.e. all |F |s close together in reciprocal space are

the same (denoted Fexpected), (ii) a number of data sets with

random intensities around the expected intensities with the

same distribution as the measured intensities at the same

resolution. These simulated intensities were converted to

amplitudes (denoted Frandom) with the CCP4 program

CTRUNCATE using the same procedure as used for the

experimental data (French & Wilson, 1978).

The model was then refined with REFMAC (Murshudov et

al., 2011) to 1.83 Å resolution against the observed data (Fobs)

and also against various simulated data sets. As shown in

Fig. 2(a), Rfree values (and Rwork; not shown) for the experi-
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Table 1
Details of the example data sets used in the tests.

‘Resolution’ is the maximum resolution used for integration.

Example PDB code
Resolution
(Å)

No. of
residues

Space
group

Unit-cell parameters
(Å, �)

1 3zym 1.83 3 � 310 C2 a = 161.1, b = 100.3,
c = 104.0, � = 118.9

2 Unpublished 2.3 211 P41212 a = b = 60.8, c = 144.1
3 Unpublished 2.57 2 � 595

+ 91
P43212 a = b = 128.8,

c = 267.4
4 3zr5 1.8 656 +

7 NAG
R32:H a = b = 249.9,

c = 77.8, � = 120
5 3zyl 1.45 2 � 271 C2 a = 95.6, b = 121.1,

c = 62.5, � = 110.7



mental data increase with increasing resolution as expected,

while against the simulated data there is a sudden increase at

2.4 Å resolution where the refinement switches from the

experimental data, but beyond about 1.95 Å resolution Rfree

for Fobs is no better than that for Fexpected, while refinement

against random data sets (with different errors) gives Rfree

values which converge towards the values from Fobs and

Fexpected at higher resolution at around R = 0.42, the expected

value (see Appendix A1). We could conclude from this that

there is no gain in including data beyond about 1.95 Å reso-

lution, at which point CC1/2 is 0.27 and hI/�i is 0.9: a more

conventional cutoff point at hI/�i = 2.0 would be at 2.06 Å

resolution. This data set is significantly anisotropic, with

orthogonal principal axes along d1 = 0.97h + 0.23l, d2 = k,

d3 = �0.75h + 0.67l, with the resolutions at which hI/�i = 2.0

along d1, d2 and d3 being 2.23, 1.98 and 2.05 Å, respectively

(Fig. 2b). Analysis of R factors in cones in the same way (x3.2.3

and Fig. 2b) shows a similar pattern to the overall values, with

a convergence of R factors against Fobs and Fexpected in the

range 2.08–1.91 Å.

The TRUNCATE procedure for inferring |F | from experi-

mentally measured I produces a positive bias for weak

intensities, which complicates the comparison with simulated

data. To test the effect of this, refinement was also carried out

against observed and simulated intensities instead of against

amplitudes: Rfree values against simulated data were larger

from 2.4 Å resolution as before, but had converged by

�1.98 Å resolution (Fig. 2c). Following refinement against

intensities, REFMAC calculates R factors in a way that mimics

R factors on F (Murshudov et al., 2011), but these R factors rise

sharply with resolution (ultimately to infinity), rather than

flattening out as do those on |F |.

RðF from IÞ

¼
P maxð�3�; IoÞ � Ic

½max 0:01�; Ioð Þ�
1=2
þ I1=2

c

�����
�����
�P
½maxð0:01�; IoÞ�

1=2;

where � ¼ � Ioð Þ

’
P jIo � Icj

Fo þ Fc

=
P

Fo ¼
P
jFo � Fcj=

P
Fo

if Io > 0 and Fo ¼ I1=2
o : ð9Þ

Another estimate of the significance of the data is shown

by the maximum-likelihood scale factor D. The best electron

density after refinement is calculated using coefficients

2mFo � DFc, where m is dependent on D. The values of D

within resolution shells indicate how much these reflections

contribute to electron density, with a value close to zero

indicating that these reflections make little contribution.

Fig. 2(d) shows that (for example 1) D falls with resolution but

is still greater than the values for simulated data even at the

resolution edge.

Similar tests were carried out for examples 4 and 5 (see

Figs. 2e and 2f), with similar conclusions that by the time CC1/2

has fallen to around 0.2–0.4, or hI/�i to around 0.5–1.5, there is

little information remaining, but that it would be hard to make

a definite rule. With increasing resolution the R factors and

D values for experimental data converge towards the values

from simulated data, but the point at which they coalesce

relative to the data-processing scores varies between different

scores and different data sets.

4.2. Tests with automated model building

There have been anecdotal reports that extending the

resolution to include weak data may help automated model-

building procedures. Unfortunately, this has been hard to

prove: the examples tried here either worked at all resolutions

or largely failed at all resolutions. Example 2 was used to test

model building from a rather poor map with experimental

phases to 2.5 Å resolution and model building with the

Buccaneer/REFMAC pipeline (Cowtan, 2012) tested at reso-

lutions of 2.3, 2.4, 2.5 and 2.6 Å. Models built at all of these

resolutions had some correct and some incorrect parts, with

the assigned sequence being largely wrong, but there was no

consistent pattern over the different resolutions in the number

of residues built or sequence assignment or in the correctness

of the models. Another test was performed on example 3, a 2:1

complex, starting with a molecular-replacement model with

the two large molecules (595 residues each) and building the

smaller 91-residue molecule. In this case the smaller compo-

nent was built more or less consistently at any resolution

between 2.57 and 3.3 Å, although perhaps with fewer errors

away from these extremes at between 2.7 and 3.1 Å. Similar

results were obtained with example 4, omitting the last domain

(207 residues): this could be rebuilt more or less successfully

at resolutions between 1.8 and 2.8 Å, although maybe slightly

more correctly at higher resolutions. However, extending the

resolution at least seemed to do no harm. It might indicate

that the Buccaneer/REFMAC pipeline for model building at

least is more dependent on phase error rather than quality of

structure-factor amplitudes (and hence resolution). In cases of

difficulty, it may be worth trying model building with data to

different resolutions.

4.3. Electron density in OMIT maps

The effect of resolution on the visual appearance of

difference maps was tested on regions of the model which

were not included in refinement. This is important in manual

building and completion of structures. Part of a structure was

omitted, the remaining coordinates were perturbed by a

random shift of up to 0.3 Å to reduce model bias and the

structure was refined in REFMAC with different resolution

cutoffs. Fig. 3 shows two examples of maximum-likelihood

difference maps at different resolutions for examples 4 and 1.

There is not much difference between the maps, although

there may be a slight improvement in sharpness in example 1

(Fig. 3b) on extending from 2.4 to 2.0 Å resolution, consistent

with the refinement results in x4.1 (Fig. 2a). Again, as for the

automated model building (x4.2), extending the resolution

seems at least to do no harm.
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5. Discussion
The program AIMLESS performs essentially the same task as

SCALA and gives similar results. However, it is significantly

faster (about three times) and is a better framework for adding

new scaling models and analyses. In due course, the three

programs POINTLESS, AIMLESS and CTRUNCATE may

be combined into one.

The extensive statistics produced by AIMLESS are mostly

similar to those produced by SCALA, so the questions and

decisions for the user are as discussed in Evans (2011): (i)

What is the point group (Laue group)? (ii) What is the space

group? (iii) Is there radiation damage and should the most

damaged regions of data be excluded? (iv) What resolution

cutoff should be applied (see below)? (v) Is there a detectable

anomalous signal? (vi) Are the data twinned? (vii) Is this data

set better than those previously collected?

With regard to this last point, one traditional way of

improving weak or incomplete data is to merge data from

different crystals, provided that they are isomorphous. With

the advent of cryocooling, this has fallen out of fashion

except for the most desperate cases, but recent work from

Hendrickson’s group (Liu et al., 2012, 2013) makes a good case

for merging data from many crystals to enhance the very weak

anomalous signal from sulfur. The current tools for checking

isomorphism between crystals are rather undeveloped, but

this technology is improving (see Giordano et al., 2012). With

the fast data collection on modern synchrotrons, it is common

to collect several or many more-or-less equivalent data sets

and merging them may be better than just choosing the best.

At the end, model quality depends on data quality and

merging many data sets usually improves the signal-to-noise

ratio in the data; however, it is not clear how to merge data

when there is severe non-isomorphism or radiation damage.

Blindly merging data may do more harm than good. It is

necessary to analyse the joint distribution of all data sets and

to merge using this distribution. In an ideal world all data sets

would be used without merging, thus ensuring that the

extraction of information from the data would be optimal at

all stages of structure analysis: the distribution of the data and

the amount of information available at each stage of analysis

would define what needs to be used.

A major cause of user indecision and conflicts with journal

referees is the resolution cutoff. We cannot set definite rules

for this, as it depends on what the data are to be used for. It is

therefore a mistake to prematurely apply a harsh cutoff at the

data-reduction stage: data can always be excluded later. It is

also unclear how best to handle anisotropy: do you choose the

best direction or the worst? It is probably best to include data

to the limit in the best direction. Tests carried out here to

relate the resolution statistics to final model building and

refinement do suggest that extending the data somewhat

beyond the traditional limits such as hI/�i = 2 may improve

structure determination, as do the ‘paired-refinement’ tests of

Karplus & Diederichs (2012). At the very least, adding these

weak data seems to do no harm for the purposes of either

automatic or manual model building. The main problem is that

we have become accustomed to using the nominal resolution

as an indicator of model quality, and it is not a good indicator,

particularly as important biological and chemical conclusions

from a structure often depend on local rather than global

correctness. Nor indeed can any global score can indicate

the correctness of any local structural feature. Clearly, well

measured data to 1.5 Å resolution contain more information

than a data set to 3.5 Å resolution and are therefore likely to
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Figure 3
OMIT difference maps (mFo � DFc) at different resolutions, along with data-processing statistics plotted against resolution. (a) A sugar (NAG) chain
from example 4. (b) An omitted residue from example 1.



lead to a more correct structure, but nominal resolution in

itself just tells us how many reflections were used, rather than

their quality. From our limited tests here, it seems that chan-

ging the resolution cutoff over a considerable range (e.g. from

2.2 to 1.9 Å) makes only a small difference, so the exact cutoff

point is not a question to agonize over, but it seems sensible to

set a generous limit so as not to exclude data containing real (if

weak) information. There is no reason to suppose that cutting

back the resolution of the data will improve the model. These

tests were performed with current programs and our current

procedures at all stages could be improved to extract the

maximum information from weak noisy data.

APPENDIX A
Statistical methods

A1. Behaviour of crystallographic R values

Crystallographic R factors are calculated using the formula

R ¼

P��jFoj � jFcj
��P

jFoj
; ð10Þ

where the summation is over the reflections used to calculate

the R value (in the case of twinning a generalization of this

formula is used; see, for example, Murshudov, 2011).

Obviously, the behaviour of this statistic depends on the

statistical properties of the structure factors. Therefore, it can

be expected that properties of the model, crystal and observed

data such as (i) noisy data, (ii) twinning, (iii) modulation in

crystals and (iv) model errors will affect the behaviour of the R

value. Luzzati (1953) analysed the effect of model errors on R

values in the absence of any other peculiarity and came to

the conclusion that R values calculated for structure factors

calculated from random atoms would be around 0.58 for

acentric reflections. Murshudov (2011) carried out a similar

analysis for cases of hemihedral twinning and demonstrated

that R values for cases of hemihedral twinning are system-

atically lower than those for single crystals. Here, we analyse

the effect of the procedure used to estimate the amplitude |F|

from the measured intensity I when data are very noisy. Since

weak intensities may be measured as negative, while the true

amplitude |F| cannot be negative, |F| is generally estimated

using the TRUNCATE procedure (French & Wilson, 1978).

Under the assumption that true structure factors come from a

crystal filled with atoms randomly distributed over the unit cell

and the noise in the experimental intensities has a normal

distribution, the TRUNCATE procedure estimates the

amplitudes of structure factors using a Bayesian estimation

with the formula

EðjFjÞ ¼
R1
0

J1=2PðJ; Io; crystalÞ dJ; ð11Þ

where P(J; Io, crystal) is the conditional distribution of ideal

intensities of structure factors (J) when observed intensities

(Io) are known and it is known that the data came from a

crystal. Noting that |F| = J1/2, and using the explicit form of

P(J; Io, crystal), the conditional distribution for |F| can be

written

PðjFjJ; Io; crystalÞ ¼
jFj exp � ðIo�jFj

2Þ
2

2�2

h i
exp � jFj

2

"�

� �
R1
0

jFj exp � ðIo�jFj
2Þ

2

2�2

h i
exp � jFj

2

"�

� �
djFj

;

ð12Þ

where "� = E(|F|2), the expected value of |F|2, is estimated

using the data in the resolution bins, Io is the experimental

observed intensity and � is its standard deviation. Thus, the

expected values of the amplitudes of structure factors are

estimated using the formula

EðjFjÞ ¼

R1
0

jFj2 exp � ðIo�jFj
2Þ

2

2�2

h i
exp � jFj

2

"�

� �
djFj

R1
0

jFj exp � ðIo�jFj
2Þ

2

2�2

h i
exp � jFj

2

"�

� �
djFj

: ð13Þ

Although this formulation has served the community well

over the years, it has certain problems. These problems include

the following. (i) It is assumed that � is a smooth function of

resolution, which breaks down in the presence of pseudo-

translation, DNA/RNA helices etc. (ii) It is assumed that the

data are from single crystals. In cases of twinning the formu-

lation may not work, although if the twinning fraction is

known and there is no noncrystallographic rotation parallel to

the twin operators then it is straightforward to account for

twinning. However, in general not all properties of the crystal/

data are known or possible to model. (iii) It is assumed that

the observed data have a normal distribution. This assumption

may break down, especially for weak reflections where profiles

of neighbourhood spots are used for integration.

When the data are very noisy (i.e. the standard deviation of

the observation becomes very large) this procedure produces

the expected value of Wilson’s distribution (Wilson, 1949),

EðjFjÞ�!1 ¼ lim
�!1

R1
0

jFj2 exp � ðIo�jFj
2Þ

2

2�2

h i
exp � jFj

2

"�

� �
djFj

R1
0

jFj exp � ðIo�jFj
2Þ

2

2�2

h i
exp � jFj

2

"�

� �
djFj

¼
2

"�

R1
0

jFj2 exp �
jFj2

"�

� �
djFj ¼

ð�"�Þ1=2

2
: ð14Þ

Thus, in the limiting case if all estimation of parameters

proceeds smoothly and there are no crystal-growth peculi-

arities, then the TRUNCATE procedure would give the

expected value of the Wilson distribution. It is interesting to

analyse the crystallographic R values for these cases. Let us

assume that the R value is calculated in the resolution bins

where � was estimated. Then, in the limiting case of noisy data

the R value would have the following form (here, we assume

that reciprocal-space points are sufficiently dense and the

summation can be replaced by the integration),
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EðRÞ ¼

P
Fc � EðjFjÞ
�� ��P

EðjFjÞ

¼

N
R1
0

Fc � EðjFjÞ
�� ��PðjFj; crystalÞ djFj

N
R1
0

EðjFjÞPðjFj; crystalÞ djFj

¼
E
��jFcj � EðjFjÞ

��� 	
EðjFjÞ

: ð15Þ

Now if we use the fact that the distribution of |Fc| is the

same as the distribution of |F |, that is the Wilson distribution,

and denote 	 = E(|F |) = E(|Fc|), then after some manipulation

of integrals we can derive

	 ¼
ð�"�Þ1=2

2

R ¼ 2erfc
	

ð"�Þ1=2


 �
¼ 2erfc

�1=2

2

� �
’ 0:42; ð16Þ

where erfc is the complementary error function,

erfcðxÞ ¼
2

�1=2

R1
0

expð�t2Þ dt: ð17Þ

Thus, we see that if structure factors are replaced by the

expected value of the Wilson distribution then it can be

expected that the calculated R values will be around 0.42. This

is exactly what happens with observed values from the

TRUNCATE procedure when errors in the experimental

intensities become very large. It should be noted that this

behaviour of R values is a property of data from single crystals

with no other peculiarities.

Note that for perfect hemihedral twinning

PðF; �Þ ¼
8jFj2

ð"�Þ2
exp �2

jFj2

"�

� �
;

	 ¼
3ð2�Þ1=2

8
"�: ð18Þ

If the perfect twinning assumption is used in the TRUN-

CATE procedure then for very noisy data we can obtain

EðRÞ ¼

8
ð"�Þ2

R1
0

jF � 	jjFj3 exp �2 jFj
2

"�

� �
dF

	

¼ exp½�2ð	="�Þ2� þ 2erfcð21=2	="�Þ

’ 0:291: ð19Þ

A2. Generation of random intensities from Gaussian v2

distribution

Under the assumption that the ‘true’ structure factors came

from the population with a Wilson distribution and experi-

mental intensities have a normal distribution with mean value

equal to the ‘true’ intensities and with experimental uncer-

tainties equal to �, the distribution of observed intensities can

be written

PðIo; �Þ ¼
1

ð2�Þ1=2��

R1
0

exp �
ðIo � IÞ

2

2�2


 �
exp �

I

�

� �
dI:

ð20Þ

To use this formula for random intensity generation it is

necessary to estimate the unknown parameters (�). If we want

to generate ‘data’ beyond the resolution of the observed data

we need to parameterize � as a smooth function of resolution.

We use the parameterization

� ¼ k expð�Bjsj2=4Þ expð�sTUsÞf ðjsjÞ; ð21Þ

where k is the overall scale, B is the overall isotropic

temperature factor, f(s) is the empirical intensity curve

designed by Popov & Bourenkov (2003), s is a reciprocal-

space vector, |s| is the length of the reciprocal-space vector and

U is the overall anisotropic U value with properties

trðUÞ ¼ 0;

RT
symURsym ¼ U; ð22Þ

where tr is the trace, Rsym is the rotation part of a symmetry

operator (here, we use the orthogonal version of the symmetry

operators) and the superscript T denotes the transpose of the

operator. The second condition in (22) is for all symmetry

operators of the crystal. Since (21) is a continuous function of

�, it can be used for any resolution including resolutions

beyond the observed resolution.

The procedure for estimation of parameters and generation

of random intensities is as follows.

(i) Using E(Io) = "�, var(Io) = ("�)2, build a Gaussian

approximation for the distribution of the observed intensities

and estimate parameters of � as defined by (21).

(ii) Using the distribution (20), build the likelihood function

and improve the estimation of the parameters of � using

maximum-likelihood estimation.

(iii) Generate expected values of the amplitudes of struc-

ture factors for reflections within defined resolution using the

formula E(|F|) = (�"�)1/2/2.

(iv) Generate random intensity from the population defined

by the distribution (20). For this, a two-stage procedure is

used: (a) generate a random number from the exponential

distribution with mean "� and denote it Iexp and (b) generate

a random number from the normal distribution with mean Iexp

and standard deviation �. � is extrapolated to the given

resolution and � is taken from the observed data or from the

defined signal-to-noise ratio.

(v) Generate random numbers from the population with

Wilson distribution with the parameter "�.
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