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Phaser.MRage is a molecular-replacement automation frame-

work that implements a full model-generation workflow and

provides several layers of model exploration to the user. It

is designed to handle a large number of models and can

distribute calculations efficiently onto parallel hardware. In

addition, phaser.MRage can identify correct solutions and use

this information to accelerate the search. Firstly, it can quickly

score all alternative models of a component once a correct

solution has been found. Secondly, it can perform extensive

analysis of identified solutions to find protein assemblies

and can employ assembled models for subsequent searches.

Thirdly, it is able to use a priori assembly information (derived

from, for example, homologues) to speculatively place and

score molecules, thereby customizing the search procedure to

a certain class of protein molecule (for example, antibodies)

and incorporating additional biological information into

molecular replacement.
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1. Introduction

Molecular replacement is by far the most frequently used

method for solving the phase problem, accounting for nearly

80% of the structures deposited in the Protein Data Bank

(Berman et al., 2003) in 2012. One factor that has contributed

to its overwhelming popularity is the rapid growth of available

structures that provide an increasingly complete structural

coverage of protein families. In addition, advances in auto-

matic model building, especially the integration of structure

modelling in, for example, phenix.mr_rosetta (DiMaio et al.,

2011) and AMPLE (Bibby et al., 2012), have increased

the radius of convergence for refinement and led to

successful structure determination from borderline molecular-

replacement solutions. Simultaneously, improvements in the

accuracy of homology detection (Jaroszewski et al., 2005;

Söding et al., 2005) and developments in model improvement

(Schwarzenbacher et al., 2004; Bunkóczi & Read, 2011) have

enabled the reliable identification of more distant homologues

and improved their applicability as suitable molecular-

replacement models.

In a general case, when solving a structure by molecular

replacement many alternative models need to be tried, but

increased numbers of potential molecular-replacement models

can make manual execution of searches tedious and in some

cases unfeasible. Automation of molecular replacement and

integration with homology detection and model improvement

is a promising solution to this problem (Long et al., 2008;

Keegan & Winn, 2008; Keegan et al., 2011; Stokes-Rees & Sliz,

2010).

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB31
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Although access to computing resources has improved

significantly over the last two decades, the size of molecular-

replacement problems can still be overwhelming, and

therefore it is important to automate the process in an

efficient manner. Phaser.MRage, a recently developed

molecular-replacement automation program, uses an artificial

intelligence approach to organize and execute searches. In this

paper, the architecture and design goals are introduced and

the functionality is illustrated with examples.

2. Implementation

The controlling logic is based on the blackboard pattern

(Buschmann et al., 1996), which is commonly used in artificial

intelligence applications. In short, the ‘blackboard’ is a

common knowledge base, which initially contains the problem

specification and is iteratively updated by a group of semi-

autonomous specialists (‘knowledge sources’) to arrive at

a solution (http://en.wikipedia.org/wiki/Blackboard_system).

There are no hardwired processing logics; knowledge sources

are activated opportunistically when there is a contribution to

make. Therefore, the blackboard pattern makes it particularly

simple to incorporate new manipulation steps or change the

solution strategy, even at runtime. On the other hand, a

notable weakness of the blackboard pattern is that it cannot

handle concurrency. Therefore, it is combined with the

master–slave pattern (Buschmann et al., 1996), which dele-

gates CPU-intensive calculations to child processes and thus

offloads the artificial intelligence layer. An additional advan-

tage of this pattern is that it hides the actual mode of execution

and allows it to be replaced without any changes to other

components. Phaser.MRage uses a recently developed open-

source library module in the Computational Crystallography

Toolbox (cctbx; Grosse-Kunstleve et al., 2002) that allows

programs to use multiple processors (CPUs or CPU cores)

either in the local machine or in clusters accessible through

batch submission queues (Bunkóczi & Echols, 2012, 2013).

Popular batch queue systems (including Sun Grid Engine and

Portable Batch System) are supported and are fully

customizable from the command line (contributions or

requests for novel systems are also welcome). Deployment

onto clusters requires no additional setup, apart from making

the installation accessible from each node and specifying

custom options for the submission command line (for

example, submission to a particular queue). All communica-

tion with the spawned subprocesses is handled internally

either through a network-based or a file-system-based

channel, and from the user perspective setting up a multi-

processor job only requires selecting the number of CPUs and

the execution medium.

2.1. Calculations

Phaser.MRage uses Phaser (McCoy et al., 2007) to perform

molecular-replacement calculations. Functionality is exported

via Boost.Python bindings (Abrahams & Grosse-Kunstleve,

2003) and is used via Python (http://www.python.org) function

calls. Algorithmic improvements in the Phaser molecular-

replacement code are therefore immediately available to

phaser.MRage and there is no need for code duplication.

While the implementation is possible to replace,

phaser.MRage does depend on some properties inherent to

the maximum-likelihood molecular-replacement calculation.

One particularly important property is that scores may be

directly compared, i.e. if two models are evaluated against the

same data the better one gives a higher score. This is exploited

at several points in the decision making.

2.2. Parallel processing

Instead of using the MR_AUTO mode of Phaser,

phaser.MRage runs the steps of molecular replacement sepa-

rately, which has several advantages. Firstly, this allows

resource allocation to grow linearly with the complexity of the

search, i.e. after each branch point the number of independent

jobs created equals the degree of branching. Therefore, given

unlimited resources and an ideal computing environment, the

simplest molecular-replacement search containing one model

and one clear peak and a complex one containing several

models and a high degree of branching would take the same

time. Secondly, this allows resource reallocation to searches

that are progressing more slowly than others.

Certain steps in molecular replacement (e.g. the packing

function) can be faster than the overhead of starting a child

process. To overcome this issue, phaser.MRage supports the

pooling of fast calculations and packaging them into a single

job. Although this reduces the degree of parallelism, it

increases the efficiency of the search as a whole.

2.3. Dependencies and availability

Phaser.MRage is built around Phaser (McCoy et al., 2007)

and crystallographic algorithms provided by cctbx (Grosse-

Kunstleve et al., 2002). It is currently distributed with the

PHENIX package (Adams et al., 2010). The program can be

run on a wide range of commodity hardware starting with a

simple laptop, although for moderately complex searches a

multi-core workstation is recommended but is not essential.

Support for queuing systems allows it to scale to hundreds of

processors on managed clusters.

Phaser.MRage can be run either by preparing an input file

or through the PHENIX GUI (Echols et al., 2012). A tutorial

introduction (explaining input preparation through the

GUI, but also showing the resulting command script)

is available at http://www.phaser.cimr.cam.ac.uk/index.php/

Molecular_replacement_with_MRage.

3. Functionality

Automated molecular replacement is a complex process

involving a range of methods from bioinformatics to

crystallography. Although a perfect automation framework

would offer a complete collection of tools available for each

workflow step, it is clear that such a system would not be

feasible either from the maintenance (requiring frequent
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updates to follow changes in all the dependencies) or from the

system-administration (managing external dependencies, for

example homology-search software) point of view. However,

restricting users at these steps to a few choices made by the

authors is also not an optimal strategy, because those methods

could be superseded and limit the utility of the whole system.

For this reason, phaser.MRage employs a mix of these two

extremes. Firstly, molecular-replacement and model-editing

calculations are limited to those provided by the PHENIX

package (Adams et al., 2010). Secondly, when an external tool

is used a default option is provided, with the choice of default

sometimes guided by convenience rather than power.

However, in these steps users are given the opportunity to use

other external tools, input the results and bypass the built-in

tool. Results can be input to the program in popular formats

which are relatively well established (requiring less main-

tenance) and also potentially ubiquitous (output from many

external tools can be converted to this format).

A good example is homology search. Phaser.MRage offers

the possibility to perform a homology search using either a

locally installed BLAST executable (Altschul et al., 1990) or

through the NCBI web service (http://blast.ncbi.nlm.nih.gov/

Blast.cgi). However, BLAST is not optimal for identifying or

aligning weak homologues (lower than 25% identical to the

target). Alternatives are, for example, PSI-BLAST (Altschul

et al., 1997), FFAS (Jaroszewski et al., 2005) and HHpred

(Söding et al., 2005), which all require up-to-date databases

and local installations are therefore not easy to manage.

However, all of these are available through web servers and

(with the exception of FFAS) their output can be input to

phaser.MRage. This naturally requires that users perform the

initial step manually, but it also enables them to employ the

most appropriate tool for the problem at hand.

3.1. Input

Phaser.MRage requires an X-ray data set and a description

of potential models to run; for novice users, this will most

often be the protein sequence. It can handle arbitrary numbers

of copies of an arbitrary number of components. The
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Figure 1
Phaser.MRage workflow showing the model-generation hierarchy. The Ensembles stage (indicated with white text on a light green background) is used
directly in molecular-replacement calculations. Blue arrows indicate existing processing steps. The empty arrow highlights a possible automation step
that could select models for a multi-model ensemble from a set of hits detected by a homology search. Users can select models using any combination of
the displayed stages, and the highlighted steps will be performed to convert those into the Ensembles stage. The molecular graphics in this figure were
rendered with CCP4mg (McNicholas et al., 2011).



description of models is organized into a hierarchy of

processing stages for each search component. Stages higher on

the hierarchy are more generic and can lead to several lower,

more specialized, stages. Therefore, a single input file at the

top-level processing stage can lead to hundreds of potential

search models (Fig. 1).

(i) Ensemble. This is the bottom stage of the processing

hierarchy and involves no further processing. This model will

be used without modification. It is expected that it covers the

full sequence of the search component, but there is no other

requirement.

(ii) Model collection. This is a set of models that can

be converted into a multi-model ensemble. The program

Ensembler, which is also distributed as a standalone applica-

tion with the PHENIX (Adams et al., 2010) and CCP4 (Winn

et al., 2011) packages, is used to perform superposition and

optional trimming.

(iii) Model template. This is the structure of a homologue

that can be used as a molecular-replacement model after

improvement. If no sequence alignment with the target is

provided, an alignment will be made using MUSCLE (Edgar,

2004). Sculptor (Bunkóczi & Read, 2011) will be used to

convert these to a number of ensembles, depending on the

selected sculpting protocols (by default, all protocols will be

tried). Phaser.MRage will also use the alignment to determine

which parts of the target sequence are modelled by the

homologue.

(iv) Homology-search result. The result of a homology

search against the sequence of the component. Output is

accepted from several popular homology-search programs

including BLAST (Altschul et al., 1990), PSI-BLAST

(Altschul et al., 1997) and HHpred (Söding et al., 2005). It is

processed into a number of model templates, depending on

the number of hits, extracting the alignments contained in the

homology search.

(v) Sequence. This is used to define the scattering power

of the component. In addition, it can be used to perform a

homology search, which has to be requested explicitly or it will

not take place.

If there are two or more components, the estimated

stoichiometry in the putative complex needs to be provided.

All model descriptions specified for a search component will

be used as alternative models, but

more specialized inputs are given

priority in the search. It is also

valid to specify a component

sequence with no models or

homology search requested;

indeed, this is necessary so that

it can be taken into account for

composition calculations.

The asymmetric unit content

can either be specified or left for

the program to establish, in which

case the program will select the

most likely composition based on

the Matthews coefficient, taking

into account all components with

the specified stoichiometry. If this

is an overestimate, the program

can still identify the correct

composition, albeit with some

added computing overhead. In

the case of underestimated

composition, the search will

be finished after reaching the

requested number of complexes,

therefore leading to a partial

solution.

3.2. Extension-cycle processing
steps

The program runs a series of

extension cycles, in which it tries

to extend active partial solutions

(or an initial empty solution in

the first round) with all compa-
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Figure 2
Simplified molecular-replacement workflow of an extension cycle, including solution analyses. The process
starts with partial solutions taken from the previous cycle (marked with a light blue box) and ends with
refined solutions that will be propagated to the next cycle (marked with white text on a light green
background), if any. Common molecular-replacement steps are performed with each model that is
applicable to a given partial structure (decided by the composition). If a clear solution is identified, quick
scoring by superposition can be performed. The dead-end ‘Rejected packing’ is shown to highlight a
potential automation step, namely automatic model pruning, if rejected solutions are found with good
statistics. The grey dashed box highlights solution-analysis steps. Assemblies identified after refinement (or
specified by the user) are used to fill in missing molecules (also shown as white text on a light green
background), which enter the workflow as a translation peak (in the following cycle; indicated by the empty
arrow). Assemblies can also be used to augment the model list (if requested). With the exception of
solution categorization and steps in solution analysis, all processing steps indicated by arrows can run in
parallel. The molecular graphics in this figure were rendered with CCP4mg (McNicholas et al., 2011).



tible models. After each extension cycle, it checks whether

there are any new results. If no possible extension is found for

any of the extendable partial models, the search is finished.

This can arise if no components are missing from the current

partial solutions (i.e. a full solution is found) or if all possible

extended models are rejected (e.g. on packing grounds). The

workflow is shown schematically in Fig. 2.

3.2.1. Composition analysis. At the beginning of each

extension cycle, for each partial structure located in the

previous step phaser.MRage establishes the composition

missing with respect to the defined contents of the asymmetric

unit. It then collects all defined or potential models (such as

templates and homology-search hits) and checks whether or

not they are contained in the missing composition. This is

performed using a sequence-based algorithm. For templates

and homology-search hits the associated alignment is taken

into account to determine which segments are covered.

Models that are acceptable on composition grounds are then

marked and will be used for molecular-replacement searches.

3.2.2. Homology search and data fetch. If the sequence

of the component is specified and a homology search is

requested, the program will perform a BLAST search

(Altschul et al., 1990) using either a local installation or at the

NCBI site (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Additional

services with suitable programmatic interfaces may be inte-

grated in the near future.

Template PDB files for homology-search hits are fetched

from the wwPDB (Berman et al., 2003). These are then paired

up with the corresponding alignment from the homology

search to create a model template.

3.2.3. Model editing and ensembling. Model templates

need to be improved before they are used in molecular

replacement (Schwarzenbacher et al., 2004). Phaser.MRage

uses Sculptor (Bunkóczi & Read, 2011) to process the

templates. Protocols for pruning atoms and adjusting B factors

are selected by the user. While in all other cases strict ordering

is possible based on model quality, there is only very limited a

priori knowledge about the relative performance of different

protocols and therefore the program tries them in a random

order that may change between executions of the program.

Phaser.MRage uses Ensembler to superpose predefined sets

of models (i.e. model-collection input) and optionally to trim

the resulting ensemble. Because procedures for optimally

selecting ensemble components from homology-search hits

have yet to be established, models obtained from homology

searches are used individually in molecular-replacement

searches. Pre-made ensembles can also be input directly and

are used without further processing.

3.2.4. Molecular replacement. The workflow is organized

into the standard Phaser rotation-function, translation-

function and packing-function steps, in order of increasing

priority. Owing to the priority of evaluation, this leads to a

depth-first traversal of the molecular-replacement search tree,

while reversing the priorities would result in a breadth-

first traversal (http://en.wikipedia.org/wiki/Tree_traversal).

Although breadth-first has certain unique advantages, such as

the availability of scores for all children of a given node, which

enables accurate pruning of low-scoring peaks, in the current

setting depth-first traversal is potentially more efficient

because it enables the identification of clear solutions early on,

which can save significant amounts of computer time. The

steps are executed independently and can be run in parallel.

In the presence of a solution prediction (e.g. from solution

analysis performed in the previous extension cycle; see x3.5),

the program creates the solution and calculates a score. If the

created solution is judged to be significant by the solution-

identification procedure, the program can bypass the search

phase and go directly to adding the next component.

3.2.5. Peak categorization. Each translation peak that

passes the packing stage is evaluated to determine whether or

not it is a clear solution. This is currently based on high values

of the translation-function Z-score (McCoy et al., 2005). Clear

solutions are automatically selected for refinement and also

participate in post-search analyses, even if they fail to pass the

threshold score before the refinement step (Fig. 2). However,

propagation to the next stage is strictly determined by the log-

likelihood score from Phaser (McCoy et al., 2007). This feature

is designed to retain solutions found for minor components

that are overshadowed by good results obtained for larger

components and to combine them with partial solutions

without performing a search.

3.2.6. Refinement and peak propagation. After all searches

have been completed, the program finds the best-scoring peak

based on the log-likelihood score from Phaser (McCoy et al.,

2007). Peaks failing the packing test are excluded from the

selection. A threshold score is determined by calculating the

score improvement for the best-scoring peak in the current

extension cycle and subtracting a percentage of its absolute

value from the best score, and all peaks above the threshold

are selected. These are then subjected to refinement. An

additional thresholding step is performed to reduce the

number of partial structures if a peak refines significantly

better than the others, and selected peaks are propagated to

the next extension cycle as partial structures.

3.3. Solution strategies

Phaser.MRage currently offers two strategies or modes.

These both include basic model-preparation (Fig. 1) and

molecular-replacement (upper part of Fig. 2) steps. Although

the actions performed are not identical, these both give the

same results if no clear solutions are found in the categor-

ization step and only differ after the first clear solution is

obtained.

(i) In ‘full’ mode, the traversal of the search tree continues

with the current workflow until it is complete.

(ii) In ‘quick’ mode, the traversal of the search tree is

terminated once a clear solution is found (although it is

important to note that even in this mode multiple clear solu-

tions may be found, for example, if the search employs

multiple CPUs). The strategy is modified by removing the

rotation and translation functions from the workflow (the

packing function is not removed, because it is believed to be

fast enough that there is more value in processing already
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obtained translation peaks compared with the time saving

gained by discarding them). In addition, the procedure

performing quick rescoring with alternative models is acti-

vated.

The ‘quick’ mode can lead to significant time savings.

Phaser.MRage prioritizes all calculations in decreasing prob-

ability of success and therefore the clearest solutions are

expected from the calculations near the top of the list, which

are processed first. In addition, it can prevent a combinatorial

explosion of clear solutions at the expense of calculating an

approximation to the best solution (see x4.2.2, aminopeptidase

example). In addition, it also allows more exhaustive searches

to be run by default, which would explore weaker peaks if

necessary, but not affect the runtime if a clear solution is

found.

It would theoretically be possible to allow users to define

custom strategies at runtime, but this would increase the

user-interface complexity significantly. In addition, a separate

analysis step would need to be performed to check whether

the defined strategy is functional. On the other hand, a wider

selection of preset strategies can be added to the existing ones

in order to cater for custom scenarios, and this is the current

direction of future development.

3.4. Evaluation of alternatives

After a clear solution has been found, it is possible to

generate an equivalent solution for all alternative models of

the same component by superposition (provided there is

sequence overlap), which can subsequently be scored.

However, the structure of homologues can differ considerably

(Chothia & Lesk, 1986), especially where functional confor-

mational changes are present. In addition, an optimal super-

position based on structure is not identical to that based on

electron density, which would be more adequate for the

problem at hand. For this reason, refinement of rotational and

translational parameters for the model to be evaluated needs

to be performed in order to obtain a meaningful score. The

only exception seems to be models sharing the same template

(generated using different Sculptor protocols), which can be

scored without refinement.

Superposition is performed using secondary-structure

matching (Krissinel & Henrick, 2004), as it is fast and accurate.

If superposition fails, the model is not evaluated.

This technique is very efficient in finding the best model

from a series of alternatives. In addition to saving time, it also

overcomes a search artefact, namely that the search is

performed on a finite grid. The solutions generated are

marked as clear solutions irrespective of the score.

3.5. Solution analyses

After an extension cycle is completed, the program analyses

clear solutions (identified in the peak-categorization step) to

scavenge useful information (such as solution-ancestry and

molecular-assembly relations) that may speed up the search

for missing components. It is assumed that the solutions

analysed are correct but potentially incomplete. The analysis

step can either predict a more complete solution or find a

more complete model (Fig. 2).

3.5.1. Amalgamation. This procedure exploits the fact that

two clear solutions originating from the same partial solution

only differ in the molecules added in the last extension cycle,

but otherwise both of them are correct. Therefore, it is

possible to combine them into a more complete solution. This

is performed by creating an association between the solutions.

At the beginning of the next extension cycle, phaser.MRage

checks for these associations and performs a quick packing

and scoring job, followed by solution identification. If the

association results in a clear solution the search can be skipped

and the resulting more complete solution is propagated. If the

starting partial solution is empty, the origin is not defined and

the program tries all possible origin shifts for nonpolar space

groups. For polar space groups, the rotation is extracted and

only the rotation search is skipped.

3.5.2. Assembly identification and completion. The

program analyses all molecules related by noncrystallographic

symmetry (NCS), transparently transforming related alter-

native models, to determine whether they are related by an

operation that can be a member of a point group. All such

operations and point groups are collected and identical groups

and subgroups are merged.

The program then takes each molecule that can participate

in an assembly and checks whether all possible members of the

assembly are present. If not, the missing position is associated

with the current solution. At the beginning of the next

extension cycle, the program scores these predictions. If one of

the predictions turns out to give a clear peak, the search can be

skipped and the results propagated to refinement.

In addition, full model assemblies can be used in the search.

This can potentially improve the signal by increasing the size

of the model searched. Assembly models are used as rigid

bodies when performing rotation-function/translation-function

calculations, but are disassembled at the refinement stage.

As solutions become more complete, the NCS operators

become more precise and require updating. This is also

performed at this stage. Point groups of known assemblies are

compared with freshly established point groups and equiva-

lent ones are updated.

In addition, it is possible to input known assembly infor-

mation. This is not restricted to homomeric assemblies and

does not have to obey point-group symmetry. If a member of a

known assembly has been located with a clear signal, the

program generates all missing members for evaluation in the

next step. However, the assembly can be imprecise and is often

outside the convergence radius of refinement (this is in

contrast to the automatically determined assemblies, since

these are observed in the current structure). Therefore, the

program performs a local search around the predicted position

and picks the highest scoring orientation and position.

3.6. Space-group identification

Phaser.MRage allows three levels of space-group uncer-

tainty: (i) the exact space group is known; (ii) enantiomorph
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ambiguity; and (iii) only the point group is known. Molecular

replacement is performed in all possible space groups

compatible with the user choice and the results are compared

after each extension cycle. The best solution among all space

groups is selected and a threshold is calculated. Space groups

whose best solution is above the threshold are propagated

with all current partial solutions to the next cycle. This

algorithm aims at delaying space-group selection until a clear

choice can be made. In the case that no space group proves to

be clearly superior to others, the program produces results for

all active space groups.

3.7. Reducing excessive branching

The exponential growth of potential alternatives after each

branching point would make all but the simplest molecular-

replacement calculation impractical. For this reason,

phaser.MRage utilizes the branching-with-pruning strategy

also employed by Phaser (McCoy et al., 2007) to keep the

number of active branches down to a manageable level. This is

used after each extension cycle to select peaks for refinement

and also for propagation of peaks after refinement.

Although the above strategy works well when there is only

a small number of good solutions, it can break down when

there are several good alternative models, as can be the case

when all Sculptor protocols are used for model improvement

and all protocols result in accurate models with comparable

quality. In this case, growth of the search tree can be reduced

by equating models generated from the same template, clas-

sifying spatially equivalent solutions as symmetry equivalents

and keeping only the one with the highest score. Template

matching may be extended to cover all alternative models of

the same component, as long as a meaningful superposition

can be made.

3.8. Output solution selection

After the extension cycles have completed, the program

outputs the best potential solutions. These are selected from

the set of all peaks located in all extension cycles based on the

associated log-likelihood score. Thresholding is performed

as described previously. In addition, solutions that can be

regarded as subsets of a better solution (taking crystallo-

graphic symmetry into account) are identified and discarded.

This way, when the composition is overestimated, the model

with the correct number of components will possibly still have

the highest score and therefore will not be merged into

any other solutions. However, solutions containing additional

incorrect molecules (provided that these are not discarded on

packing grounds) will also be listed with the best solution but

associated with a lower score. Incomplete solutions on the

way to the full solution are merged into the full solution and

removed from the list, thereby providing a clearer picture.

Therefore, the correct and complete solution is still found and

output, although the search itself is not interrupted to save

computer time. A procedure that addresses the opposite

scenario (i.e. when the composition is underestimated) has not

yet been implemented.

3.9. Result handling

Instead of writing out individual PDB and MTZ files for

each solution, phaser.MRage uses a custom internal format

(based on the Python standard library pickle module) to

store all solutions found and provides a utility program

(phaser.MRage.solutions) to access these. This is a deliberate

design choice for three reasons. Firstly, it is not possible to

know in advance how many solutions will be found. If the

number of solutions output is limited and a solution needs to

be examined that was not output, one needs to either extract

this information from the log file manually or rerun the search

requesting a higher number of solutions to output. A poten-

tially better alternative is to store all solutions found in a

storage-efficient format and access these with a utility

program.

Secondly, this allows extra processing to be performed on

the results without rerunning the search, even algorithms that

are implemented after the search has finished. Candidates are

CPU-intensive calculations that are not an integral part of

the molecular-replacement workflow but are sufficiently

commonly performed, for example autobuilding.

Thirdly, the internal format does not incur information loss.

When using multi-model ensembles, limitations of the current

PDB format do not allow the outputting of a solution with full

information content in a general case. Therefore, the program

offers several options to deal with solutions containing multi-

model ensembles and allows users to inspect multiple repre-

sentation of the same solution. The possibilities are as follows.

(i) Instead of containing several alternative models, it can

reformat each multi-model ensemble as a chain with multiple

alternative conformations.

(ii) It can score each member of the ensemble against the

X-ray data and select the one with the highest score.

(iii) It can create a ‘chimera’ by pairwise combination of

constituent models using phenix.combine_models (Adams et

al., 2010) based on the electron-density map.

In addition to PDB format, phaser.MRage.solutions can

output solutions in several other formats, including XML for

easy integration and Phaser solution files for search continu-

ation.

4. Discussion

4.1. Comparison with existing software

BALBES (Long et al., 2008; Keegan et al., 2011) and

MrBUMP (Keegan & Winn, 2008; Keegan et al., 2011) are

existing molecular-replacement pipelines that are in common

use. Both of them are available in the CCP4 suite (Winn et al.,

2011) and approach automation from a different angle.

4.1.1. Architecture. Both BALBES and MrBUMP delegate

molecular replacement to the underlying Phaser (McCoy et al.,

2007) and/or MOLREP (Vagin & Teplyakov, 2010) binaries.

While this can have advantages, it makes resource reallocation

and coordination very difficult. For example, if the search with

one model takes much longer than all other searches, idle

resources cannot be reallocated to the underlying process. In
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addition, if a solution has been found with one model it is very

difficult to communicate this information to ongoing searches,

since there is normally no support for it in the underlying

program.

4.1.2. Domains. Both BALBES and MrBUMP can

decompose homology-search hits into underlying domains.

However, phaser.MRage does not currently use domain-

boundary information explicitly. On the other hand, it does

benefit from domain-boundary information implicitly avail-

able through homology searches. Frequently, a homology-

search hit only covers a single domain from a multi-domain

protein. This is taken into account by assigning the sequence

covered to the homologue via a sequence alignment. The

assembly algorithm takes the modelled sequence into account

and can combine homologues modelling distinct (with some

tolerance) parts of the sequence.

4.1.3. Assemblies. BALBES records known assembly

information in its internal database, while MrBUMP can

query the PQS service at the EBI (http://www.ebi.ac.uk). The

detected assemblies are then used as regular models in the

search. However, the treatment of multimeric assemblies in

phaser.MRage is quite different. Assemblies are either found

by automatic solution analysis or input by the user. Although

it is possible to perform searches with these model assemblies,

better results can be achieved by using these with the auto-

matic solution-completion algorithm. The underlying problem

is that although tertiary structure is fairly well conserved

among models sharing only 30% sequence identity,

quaternary structure tends to be more variable; therefore,

assemblies found for homologue structures may not be good

models for the target structure. Phaser.MRage overcomes this

problem using two strategies. Firstly, it uses local information

from the assembly: it takes located molecules as anchors and

places the missing molecules accordingly. In the case where

the full assembly is not well preserved, but locally it is within

the convergence radius of refinement, extension will succeed.

Secondly, assemblies located during solution analyses are

representative of the current structure and are therefore

potentially transferable to further copies within the asym-

metric unit.

4.1.4. External scoring. Quality scores in both BALBES

and MrBUMP are derived from refinement. MrBUMP can

also start autobuilding for potential solutions found in the

procedure, as this is a very powerful way to identify the correct

one. Phaser.MRage itself does not perform additional scoring

calculations apart from calculating the log-likelihood gain

for each solution, but subsequent scoring actions could be

implemented into the utility program phaser.MRage.solutions.

4.1.5. Solution identification. All three systems have their

own criteria for identifying correct solutions. BALBES and

MrBUMP use more global criteria, such as refinement R

factors, while phaser.MRage uses the translation-function

Z-score, which is related to the significance of a peak to the

variance of the corresponding translation search. While this

score does not order solutions by quality, it can also be used

successfully to identify incomplete partial solutions and

therefore allows the program to analyse these at an earlier

stage.

4.2. Examples

4.2.1. Trypsin. Orthorhombic trypsin (PDB entry 1hj9, one

molecule in the asymmetric unit; Leiros et al., 2001) was solved

using a single template (PDB entry 2b9l, 32% identical; Piao

et al., 2005) and an alignment from ClustalW2 (Larkin et al.,

2007). All available protocols were used from Sculptor, which

resulted in 13 models.

Benchmarking was performed on a 64-core multi-CPU

machine in ‘full’ mode (to ensure that the exact same searches

are processed) to assess resource scaling. The results in Fig. 3

show that near-linear speedups were found for up to 13 CPU

cores (the same as the number of alternative models) and a

lower, but still measurable, speedup was found above that.

This is a consequence of parallelization at the function level,

which aligns resource scaling to the complexity of the search.

For very simple problems, scaling could completely stop at a
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Figure 3
Speedup of the trypsin example (full mode) relative to execution on a
single CPU (total time 41 min 30 s). Timings are single measurements
performed on a 64-CPU machine. Parallel jobs were run on separate
threads. Speedup factors were not corrected for the input-processing
(including anisotropic scaling) and job-startup overhead.

Table 1
Course of the structure solution for shiga-like toxin (four pentamers,
using a monomer as a search model).

Significant solutions appear when placing the second copy. As the solution
becomes more and more complete, the program identifies a pentameric
assembly, adds it to the list of search models and uses it to locate a full
pentamer with very clear statistics. Note the low translation-function Z-score
obtained for the last molecule, which is a consequence of its high B factors. It is
difficult to locate this molecule using conventional searches and it requires a
very thorough exploration. However, when placed in an approximately correct
location predicted from available assembly information it is found immedi-
ately.

Index Model TFZ† LLG‡ �LLG§

1 Monomer 5.3 43.1 43.1
2 Monomer 11.9 154.7 111.6
. . .
10 Monomer 22.3 2005.9 293.3
11 5 � monomer 42.6 3889.3 1883.4
16 Monomer 33.5 4545.4 656.1
. . .
19 Monomer 38.1 6557.1 673.9
20 Monomer 9.2 7322.9 765.8

† Translation-function Z-score. ‡ Log-likelihood gain. § Change in LLG from
previous step.



single CPU. However, even moderately difficult problems

normally require hundreds of non-dependent calculations

which could be run in parallel.

Structure solution was also attempted in ‘quick’ mode. This

gave variable timings because models from the same template

are processed in random order. About half of the models

(protocols 7–12) gave clear solutions with translation-function

Z-scores in excess of 7.0, while the others were comparatively

worse, yielding solutions with translation-function Z-scores of

about 5 that were sometimes buried in the noise. This reiter-

ates the need to test several Sculptor protocols in molecular

replacement (Bunkóczi & Read, 2011). Time savings were

very significant when running on a small number of CPUs

compared with the full mode (a factor of six for a single CPU)

and yielded the same solution list, but diminished quickly with

multiple CPUs.

4.2.2. Aminopeptidase. XXA-Pro aminopeptidase (PDB

entry 3ovk, four molecules in the asymmetric unit; Midwest

Center for Structural Genomics, unpublished work) was

solved using a single template (PDB entry 3qoc, 28% iden-

tical; Midwest Center for Structural Genomics, unpublished

work). All available protocols were used from Sculptor.

From the second molecule onwards, all 13 models yielded

clear solutions with high Z-scores. However, this creates the

problem that there are 134 = 28 561 possible quasi-equivalent

complete solutions. There are possibilities to contain the

combinatorial explosion. In ‘quick’ mode, processing termi-

nates after the first clear solution is found. Therefore, in each

extension cycle only the best partial solution (with the highest

log-likelihood gain) will be processed (strictly speaking only

when running on a single CPU), but all models will be eval-

uated through superposition. Therefore, this technique leads

to the best combination of the best partial structure and all

possible models. Similarly, when using template equivalence,

all quasi-equivalent solutions are matched as symmetry

equivalents at each stage and only the one with the highest

score is propagated. This is equivalent to finding the best

combination of all partial solutions with all possible models. It

is important to note that none of the results are necessarily

equivalent to the globally best combination (this can only be
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Figure 4
Solution process for the glutathione synthase example: (a) target structure, (b) N-terminal domain found (PDB entry 3nzt; hit 4; 29% identical), (c)
C-terminal domain found (PDB entry 1uc8; hit 7; 21% identical), (d) structure after phenix.autobuild (Terwilliger et al., 2008). The grey trace indicates
the correct structure. This figure was created using PyMOL (v.1.6; Schrödinger LLC).



found by testing all possibilities), but it is a comparatively

good-quality one and reduces the number of calculations to

13 � 4 = 52.

4.2.3. Shiga-like toxin. This crystal form of shiga-like toxin

(PDB entry 1bos; Ling et al., 1998) contains four pentamers

in the asymmetric unit. A single 100% sequence-identical

monomer model was used from another shiga-like toxin

structure (PDB entry 1bov; Stein et al., 1992). Phaser.MRage

was able to find all 20 molecules in a relatively short time. This

was aided by the presence of pentamers, which were identified

early on and were used to fill in the missing chains, thereby

skipping many extension phases. When executing the search

on multiple CPUs, the search path taken is affected by the

precise timing of when a result is received from a worker.

In certain search paths, phaser.MRage managed to use a full

pentameric assembly and fill in five molecules at a time. A

summary of such a run is shown in Table 1.

4.2.4. Glutathione synthase. The structure (PDB entry 3ln6;

J. Stout, D. De Vos, B. Vergauwen & S. N. Savvides, unpub-

lished work) is a 750-residue single-chain protein containing

two domains. Molecular replacement was started from an

HHpred (Söding et al., 2005) search that found 82 hits. All 13

Sculptor protocols were used. Phaser.MRage relatively quickly

located one domain with good statistics using hit 3nzt (Center

for Structural Genomics of Infectious Diseases, unpublished

work) and then tested all possibilities to find the missing

domain. A correct solution was eventually found using PDB

entry 1uc8 (Sakai et al., 2003). The solution is shown in Fig. 4.

This search was run on a managed cluster and 50 CPUs were

allocated. The total runtime was approximately 1 d, which is

equivalent to nearly two months of CPU time on a single-CPU

machine. This could be reduced by implementing equivalence

of (superposable) alternative models, but the processing

demand is still considerable. This scale of exhaustive searches

can only be performed meaningfully on computing clusters.

On the other hand, running the search did not require any

human intervention apart from performing an initial HHpred

search. In addition, the cost in manpower of solving the

structure manually is potentially much higher than that of the

required computing time. This suggests that given sufficient

processing power, a significant fraction of eventually

successful molecular-replacement searches could be auto-

mated.

5. Conclusions

With the increasing availability of relatively high-performance

computing resources, automated high-throughput molecular

replacement is becoming more prominent in crystallographic

structure solution. It is therefore important that automation

software is able to handle common molecular-replacement

scenarios and to offer a clear advantage to users over manu-

ally executing the same programs.

Phaser.MRage has been shown to be able to solve a wide

range of molecular-replacement problems. When making use

of built-in intelligence it can solve simple problems quickly,

but it can also handle more complex searches with increasing

calculation demands. Efficiency improvements are made

possible by the economy of scale and full control over the

molecular-replacement process. In addition, integrated tools

are used effectively and the possibility of misuse by non-

experts is reduced.

Although the program provides an up-to-date workflow

with currently state-of-the-art molecular-replacement proto-

cols, it is likely that improved tools and protocols will appear

in the near future and may require large-scale changes to the

workflow, which will then need to be updated. Therefore,

phaser.MRage is not tied to any particular workflow, but rather

to a set of rules that are believed to be well established and

less likely to change. Incorporation of new ideas requires

changes to this set of rules and is therefore not disruptive to

the program architecture.
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Bunkóczi, G. & Echols, N. (2013). Comput. Crystallogr. Newsl. 4,

16–22.
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Söding, J., Biegert, A. & Lupas, A. N. (2005). Nucleic Acids Res. 33,
W244–W248.

Stein, P. E., Boodhoo, A., Tyrrell, G. J., Brunton, J. L. & Read, R. J.
(1992). Nature (London), 355, 748–750.

Stokes-Rees, I. & Sliz, P. (2010). Proc. Nat. Acad. Sci. USA, 107,
21476–21481.

Terwilliger, T. C., Grosse-Kunstleve, R. W., Afonine, P. V., Moriarty,
N. W., Zwart, P. H., Hung, L.-W., Read, R. J. & Adams, P. D. (2008).
Acta Cryst. D64, 61–69.

Vagin, A. & Teplyakov, A. (2010). Acta Cryst. D66, 22–25.
Winn, M. D. et al. (2011). Acta Cryst. D67, 235–242.

research papers

2286 Bunkóczi et al. � Phaser.MRage Acta Cryst. (2013). D69, 2276–2286

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5210&bbid=BB31

