

Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449

## addenda and errata

## A quality comparison of protein crystals grown under containerless conditions generated by diamagnetic levitation, silicone oil and agarose gel. Erratum

Hui-Ling Cao,<sup>a</sup> Li-Hua Sun,<sup>b</sup> Jian Li,<sup>b</sup> Lin Tang,<sup>b</sup> Hui-Meng Lu,<sup>a</sup> Yun-Zhu Guo,<sup>a</sup> Jin He,<sup>a</sup> Yong-Ming Liu,<sup>a</sup> Xu-Zhuo Xie,<sup>a</sup> He-Fang Shen,<sup>a</sup> Chen-Yan Zhang,<sup>a</sup> Wei-Hong Guo,<sup>a</sup> Lin-Jun Huang,<sup>a</sup> Peng Shang,<sup>a</sup> Jian-Hua He<sup>b\*</sup> and Da-Chuan Yin<sup>a\*</sup>

<sup>a</sup>School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, Xi'an City, Shaanxi 710072, People's Republic of China, and <sup>b</sup>Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, People's Republic of China

Correspondence e-mail: hejianhua@sinap.ac.cn, yindc@nwpu.edu.cn

Table 2 of the article by Cao *et al.* [(2013), *Acta Cryst.* D69, 1901–1910] is corrected.

The values of  $R_{\text{merge}}$  and  $\langle I \rangle / \langle \sigma(I) \rangle$  in Table 2 of the article by Cao *et al.* (2013) were swapped because of a typesetting mistake. The values have now been corrected as shown in Table 2 below.

## References

Cao, H.-L., Sun, L.-H., Li, J., Tang, L., Lu, H.-M., Guo, Y.-Z., He, J., Liu, Y.-M., Xie, X.-Z., Shen, H.-F., Zhang, C.-Y., Guo, W.-H., Huang, L.-J., Shang, P., He, J.-H. & Yin, D.-C. (2013). *Acta Cryst.* D69, 1901–1910.

## Table 2

A summary of X-ray diffraction data statistics for the crystals of seven different proteins grown under the four crystallization conditions.

Values in parentheses are for the highest resolution shell.

|                    | Condition           | Diffraction data statistics |                  |                            |                                               |             |                  |
|--------------------|---------------------|-----------------------------|------------------|----------------------------|-----------------------------------------------|-------------|------------------|
| Protein            |                     | Resolution range<br>(Å)     | Mosaicity<br>(°) | $R_{ m merge}^{ m }^{ m }$ | $\langle I  angle / \langle \sigma(I)  angle$ | Redundancy  | Completeness (%) |
| lys                | Magnetic levitation | 50-0.95 (0.98-0.95)         | 0.17             | 5.6 (77.8)                 | 73.9 (2.5)                                    | 24.9 (9.5)  | 98.3 (86.5)      |
|                    | Silicone oil        | 50-1.20 (1.22-1.20)         | 0.39             | 7.4 (51.7)                 | 88.5 (8.6)                                    | 27.2 (26.8) | 99.9 (100)       |
|                    | Agarose gel         | 50-1.10 (1.14-1.10)         | 0.57             | 6.2 (76.9)                 | 59.6 (6.6)                                    | 24.4 (24.0) | 99.4 (100)       |
|                    | Control             | 50-1.20 (1.22-1.20)         | 0.27             | 9.3 (60.6)                 | 54.0 (4.3)                                    | 14.3 (13.8) | 99.9 (96.8)      |
| рK                 | Magnetic levitation | 50-0.95 (0.98-0.95)         | 0.13             | 10.9 (50.0)                | 67.5 (6.8)                                    | 23.8 (10.5) | 98.2 (88.3)      |
|                    | Silicone oil        | 50-1.12 (1.14-1.12)         | 0.40             | 7.8 (31.7)                 | 59.9 (13.2)                                   | 26.8 (26.1) | 100 (100)        |
|                    | Agarose gel         | 50-1.02 (1.06-1.02)         | 0.25             | 11.5 (76.8)                | 46.7 (7.2)                                    | 25.2 (24.6) | 98.8 (96.2)      |
|                    | Control             | 50-1.14 (1.16-1.14)         | 0.19             | 15.3 (78.0)                | 24.9 (2.5)                                    | 26.4 (14.8) | 99.9 (99.1)      |
| TCS                | Magnetic levitation | 50-1.12 (1.14-1.12)         | 0.27             | 5.8 (43.5)                 | 36.4 (4.1)                                    | 6.8 (6.6)   | 99.8 (99.6)      |
|                    | Silicone oil        | 50-1.43 (1.45-1.43)         | 0.38             | 7.4 (47.7)                 | 37.1 (4.0)                                    | 7.1 (7.0)   | 100 (100)        |
|                    | Agarose gel         | 50-1.15 (1.17-1.15)         | 0.29             | 7.1 (42.9)                 | 52.1 (7.3)                                    | 14.1 (13.8) | 100 (100)        |
|                    | Control             | 50-1.07 (1.09-1.07)         | 0.22             | 6.8 (42.9)                 | 41.8 (5.0)                                    | 6.9 (6.6)   | 99.5 (98.8)      |
| con                | Magnetic levitation | 50-1.23 (1.25-1.23)         | 0.34             | 6.6 (90.1)                 | 58.0 (2.4)                                    | 14.0 (11.1) | 99.1 (84.7)      |
|                    | Silicone oil        | 50-1.76 (1.79-1.76)         | 0.53             | 7.6 (46.8)                 | 51.6 (4.6)                                    | 7.1 (6.3)   | 99.1 (98.7)      |
|                    | Agarose gel         | 50-1.79 (1.82-1.79)         | 0.67             | 4.9 (62.9)                 | 60.7 (5.0)                                    | 14.0 (13.5) | 99.7 (99.7)      |
|                    | Control             | 50-1.78 (1.82-1.78)         | 0.77             | 6.6 (94.4)                 | 54.2 (3.3)                                    | 14.2 (13.7) | 99.9 (99.9)      |
| HSP90 <sup>N</sup> | Magnetic levitation | 50-1.61 (1.64-1.61)         | 0.14             | 11.3 (52.6)                | 63.3 (7.4)                                    | 14.6 (14.6) | 100 (100)        |
|                    | Silicone oil        | 50-2.13 (2.17-2.13)         | 0.91             | 11.9 (33.8)                | 77.8 (34.8)                                   | 14.2 (14.2) | 99.5 (99.5)      |
|                    | Agarose gel         | 50-2.15 (2.19-2.15)         | 1.86             | 8.8 (52.5)                 | 42.3 (6.3)                                    | 14.2 (14.0) | 100 (100)        |
|                    | Control             | 50-2.89 (2.94-2.89)         | 2.26             | 13.5 (53.9)                | 10.5 (2.5)                                    | 3.1 (3.1)   | 88.7 (85.2)      |
| thau               | Magnetic levitation | 50-1.35 (1.37-1.35)         | 0.21             | 7.9 (53.3)                 | 76.0 (9.6)                                    | 28.2 (28.2) | 100 (100)        |
|                    | Silicone oil        | 50-1.60 (1.63-1.60)         | 0.70             | 9.3 (65.5)                 | 78.6 (11.4)                                   | 27.6 (27.6) | 99.0 (98.6)      |
|                    | Agarose gel         | 50-1.50 (1.53-1.50)         | 0.38             | 6.8 (56.1)                 | 57.6 (6.2)                                    | 14.8 (14.7) | 100 (100)        |
|                    | Control             | 50-2.70 (2.75-2.70)         | 1.18             | 16.6 (42.7)                | 91.6 (37.4)                                   | 24.8 (24.8) | 99.9 (99.9)      |
| cata               | Magnetic levitation | 50-2.28 (2.32-2.28)         | 0.77             | 15.3 (94.4)                | 31.5 (3.8)                                    | 10.3 (10.0) | 100 (100)        |
|                    | Silicone oil        | 50-3.59 (3.65-3.59)         | 0.73             | 16.8 (35.1)                | 29.2 (10.6)                                   | 9.5 (9.5)   | 91.5 (85.6)      |
|                    | Agarose gel         | 50-2.70 (2.75-2.70)         | 0.43             | 12.8 (53.1)                | 10.4 (2.5)                                    | 10.4 (10.3) | 85.5 (82.0)      |
|                    | Control             | 50-4.64 (4.72-4.64)         | 1.35             | 59.7 (95.5)                | 16.1 (7.8)                                    | 3.9 (3.7)   | 85.5 (82.1)      |

 $\dagger R_{\text{merge}} = \sum_{hkl} \sum_{i} |I_i(hkl) - \langle I(hkl) \rangle | / \sum_{hkl} \sum_{i} I_i(hkl), \text{ where } \langle I(hkl) \rangle \text{ is the mean intensity of the$ *i*th observation of reflection*hkl*.