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A novel procedure for the automatic identification of ligands

in macromolecular crystallographic electron-density maps is

introduced. It is based on the sparse parameterization of

density clusters and the matching of the pseudo-atomic grids

thus created to conformationally variant ligands using

mathematical descriptors of molecular shape, size and

topology. In large-scale tests on experimental data derived

from the Protein Data Bank, the procedure could quickly

identify the deposited ligand within the top-ranked

compounds from a database of candidates. This indicates the

suitability of the method for the identification of binding

entities in fragment-based drug screening and in model

completion in macromolecular structure determination.
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1. Introduction

Ligand molecules are present in many macromolecular crys-

tals and frequently indicate the function of the parent protein

or nucleic acid. Ligand identification and the elucidation of

ligand-binding modes in the structures derived from these

crystals underpins efforts to assess the macromolecule’s

mechanism of action and potential means by which these

actions can be manipulated (Abendroth et al., 2011; Li et al.,

2005). In classic structure-based drug design, where a specific

lead or drug compound has been added to the system prior

to (e.g. co-crystallization) or subsequent to (e.g. soaking)

crystallization experiments, identification of the ligands giving

rise to difference electron density following macromolecular

model building is generally facile. However, it is less

straightforward when small molecules, typically endogenous

substrates or effectors that adhere to the protein during

expression, remain bound during purification and crystal-

lization (Hamiaux et al., 2009; Girardi et al., 2010) or when

multiple ligands are added to crystals simultaneously. The

latter approach may improve efficiency in fragment-based

drug design (Mooij et al., 2006) and in metabolite cocktail

screening for identification of protein function (Shumilin et al.,

2012). In macromolecular crystallography (MX), small-

molecule entities are also derived from crystallization media

or cryoprotectant solutions, and the identification and fitting

of these into electron-density maps is necessary in order to

explain the experiment more fully. Bearing in mind that the

PDB ligand database (Golovin et al., 2004) now contains

17 000 entries, the task is clearly not trivial. Frequent discus-

sions on the nature of electron-density ‘blobs’ as well as the

often-questionable assignment of ligand structures to such

blobs (Kleywegt, 2007) attest to the complexity of a task that
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has hitherto relied on the expertise of the researchers involved

and their subjective analyses. Evidently, an automated and

efficient approach to the unbiased and accurate identification

of ligands in electron-density maps is desirable.
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Figure 1
Schematic representation of the protocol for ligand identification, shown for adenosine triphosphate (ATP) in the structure of a putative N-type ATP
pyrophosphatase (PDB entry 3rk1; Forouhar et al., 2011) at 2.3 Å resolution. The (Fo� Fc, �c) difference density map is shown contoured at 1.0� above
the mean; free atoms are shown as balls. The thickness of the visual slab has been adjusted for each image to provide the best view; however, it is reduced
in (b) in order to clarify the electron density of interest following protein model display in (a).



A variety of methods for the automated fitting of known

ligands into electron-density maps have been proposed, typi-

cally based either on the recognition of the location of a rigid

core of a ligand in electron density prior to full addition of

other elements of the ligand (Oldfield, 2001; Terwilliger et al.,

2006), the alignment of the ligand with the principal axes of

the density and fitting using Metropolis-type optimization

(Debreczeni & Emsley, 2012), or a combination of similar

methods (Evrard et al., 2007; Langer et al., 2012). Clearly, these

methods can be adapted for ligand identification by writing

scripts to cyclically fit each ligand from a database of mole-

cules to a specified electron-density cluster. Indeed, Terwil-

liger et al. (2007) demonstrated the usefulness of such an

approach, ranking each of the models produced by their

ligand-modelling protocol for a database of 119 ligands by

electron-density map correlations, and noting that the correct

entity (i.e. that deposited in the PDB entries used in testing)

was also the top-ranked compound in 46% of cases. However,

such an approach is inherently slow, since it necessitates the

fitting of all candidate ligands to the density.

Efforts to more rapidly match ligands to the electron

density have focused on the use of mathematical descriptors,

as comparison of their values can be both quick and robust.

Even simple shape features such as the volume of the

bounding box of a ligand molecule or density cluster can be

used to identify the appropriate density blob in a difference

map prior to ligand structure modelling (Langer et al., 2012).

The more challenging task of identifying a conformationally

variable ligand from its density given a large database of

candidates obviously requires methods of higher sophistica-

tion. Gunasekaran et al. (2009) used three-dimensional

Zernike moments to match ligands to the segmented electron-

density clusters obtained from OMIT maps, but despite the

high level of rigour associated with such an approach, the

correct ligand was identified at the top of the ranking in only

30% of cases.

An interesting approach to modelling ligand electron

density used a graph representation of the central axis of a

density cluster (Aishima et al., 2005) with subsequent structure

modelling using geometrical and conformational matching of

the ligand to the graph. The advantage of representing density

as a point graph has already been emphasized by the use of an

atomic labelling algorithm to match ligand atoms to the free

atoms of a sparse grid built within the electron-density blob

(Zwart et al., 2004). By representing electron density in a

pseudo-atomic manner, it becomes possible to use features

based on interatomic distances and connectivities to describe

both the density and the candidate ligands.

In this manuscript, we present a novel and effective method

for the fast parameterization of ligand electron density as a

pseudo-atomic point cloud and introduce the application of a

variety of mathematical features that describe molecular size,

shape and topology to enable the efficient matching of ligand

candidates to electron density. The methodology can rapidly

yet accurately identify ligands in experimental macro-

molecular crystallographic density maps and is expected to be

useful as both a modelling and a validation tool.

2. Methods

2.1. An overview of the method

The method for screening a database of candidate ligand

compounds is delineated in Fig. 1. Specifically, free atoms are

used to parameterize a specified electron density and a series

of mathematical features are calculated based on the locations

of the generated sparse-density points. These are compared

with the same features calculated for each conformation of

the candidate ligands and a ranking is deduced based on the

weighted sum of the scores for each feature. The highest-

ranking compounds, each in turn in their top-scored confor-

mations, are subjected to brief real-space refinement in the

electron-density map. Final rankings are based on the corre-

lation coefficient between the refined ligands and the electron

density.

2.2. Selection of unique ligands

We created a large data set of ligands commonly found

in crystal structures, containing both endogenous ligands

and compounds derived from the experimental procedures

common to MX. Analysis of the Protein Data Bank (PDB;

Berman et al., 2000) in May 2013 indicated that there were

over 15 000 different ligand entities in total. 294 of these were

present in at least 40 different deposited structures and were

therefore regarded as being common. As our focus of interest

was on noncovalently bound ligands that typically give rise to

isolated blobs in MX electron-density maps, modified amino

acids such as phosphoserine (SEP) and O-sulfo-l-tyrosine

(TYS) as well as saccharides involved in post-translational

glycosylation were not considered. Ligand entities with less

than five non-H atoms (mainly single-atom ions) were also

excluded.

Closer inspection of the remaining 140 ligands highlighted

the fact that many of them are very similar to each other. For

example, ligands such as adenosine-50-triphosphate (ATP),

phosphomethylphosphonic acid-adenylate ester (ACP) and

phosphoaminophosphonic acid-adenylate ester (ANP) have

identical substructures (with respect to their non-H atoms)

and differ only in atomic makeup. In place of the O atom

between the second and third phosphates in ATP, ACP has a

single C atom, while ANP has an N atom. Recognition of these

ligands from their electron density is only possible in maps

of very high resolution where atomic identity or hydrogen-

bonding networks can be identified, precluding their differ-

entiation by the methods described herein. Therefore, the

ligands were clustered to reduce such substructural redun-

dancy. Descriptors based on interatomic bonding patterns in

small molecules, such as the widely used BCUT descriptors

(the eigenvalues of symmetric matrices in which the terms

represent bonds and bond orders between atoms; Burden,

1989, 1997), are conformationally invariant and very suitable

for such a clustering task. Such features were calculated for

each of the ligands being considered. k-means clustering

followed by manual curation of the results yielded 82 unique

ligands ranging in size from five (sulfate, SO4, and imidazole,
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IMD) to 100 non-H atoms (cardiolipin, CDL) in groups of up

to eight different ligands.

2.3. Selection of training and test data sets

Experimental structures and structure factors for all entries

in the PDB containing at least one of the 82 ligands in the

ligand test set were downloaded. Only structures derived using

X-ray crystallography with resolutions between 1.0 and 2.5 Å

and present in the Electron Density Server (EDS; Kleywegt

et al., 2004) were used. MTZ datafiles were prepared using

the CIF2MTZ program from the CCP4 package (Winn et al.,

2011).
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Figure 2
Trimming of pseudo-atomic grid clusters for feature comparison with ligand features. Difference (Fo � Fc, �c) maps are shown contoured at 2.5� above
the mean. (a) Density values for placed free atoms are sorted in descending order and the differences in adjacent values are calculated. The standard
deviations of density differences are plotted, and only those atoms with density higher than the marked point are output. The data are shown for PDB
entry 4iun (Li et al., 2010). (b) The output atoms, shown as balls, are trimmed further based on distance cutoffs to produce the final shape for screening,
shown as crosses. It is an excellent match to the deposited ligand, THP. (c) As in (a) but with three clusters identified for the data in PDB deposition 3mb5
(Guelorget et al., 2010) are marked with arrows. (d) The third cluster, marked by arrow 3, is a good match to the final ligand, SAM.



In order to reduce the ‘memory’ of the deposited ligand

structure in the density map, re-refinement of the ‘apo’ protein

was undertaken. Specifically, all ligand and solvent atoms were

removed from the PDB files and restrained refinement of the

protein against the X-ray data was executed using REFMAC

(Murshudov et al., 2011).

The 5025 PDB entries thus obtained were further filtered

based on the correlation coefficient between the maps calcu-

lated from the deposited ligand structure and the difference

maps obtained after REFMAC refinement, with a threshold

of 0.75 being applied; correlation coefficients were calculated

using the CCP4 programs SFALL and OVERLAPMAP [see,

for example, Muller (2013) or Pozharski et al. (2013) for a

discussion on thresholds for correlation coefficients]. This

resulted in elimination of two thirds of the entries, highlighting

the rather poor-quality and inadequate interpretation of

ligand electron density in many PDB cases that has been noted

in several reports (Kleywegt, 2007; Cooper et al., 2011;

Liebeschuetz et al., 2012; Pozharski et al., 2013) and presents

obvious difficulties for model building and validation. None-

theless, more than 1100 different PDB entries were available

for use. 160 of these were placed into a ‘training set’ for

refinement of the method, while the remaining 970 entries

were used for the evaluation described later.

2.4. Parameterizing electron density

Difference electron density is computed at 0.3 Å spacing

and the user provides the approximate location of the density

cluster of interest. Preparation of the final grid for shape

comparison proceeds as follows.

(i) The density is parameterized by placing free atoms onto

a grid biased towards grid points with higher density. Every

free atom has a neighbour at between 1.2 and 1.7 Å distance.

(ii) A threshold of 2.0 Å distance is applied between free

atoms to select the cluster closest to the point of interest. All

other free atoms are removed.

(iii) Electron-density values at the locations of each free

atom are obtained and sorted in descending order. The

number of free atoms in the selected cluster is typically less

than 200. For each density value the standard deviation (�)

of the density-value differences amongst successively sorted

atoms is calculated; for example, � for atom i is calculated

from the three successive differences in density values

between atoms i � 3, i � 2, i � 1 and i.

Since the density values are sorted, the

differences between their successive

values are higher at the edges of the

density cluster and this is reflected by

peaks in � values, as depicted in Fig.

2(a). A threshold is set at the position of

the peak and up to five different

thresholds are used to thin the sparse

grids (Fig. 2a).

(iv) Following grid thinning, step (ii)

is repeated with the maximum inter-

atomic distance threshold increased to

2.3 Å, producing the final molecular shape(s) for comparison

using mathematical features (Fig. 1).

Grid thinning and clustering takes crystallographic

symmetry into account so that ligands located across formal

borders between different asymmetric units can be properly

recognized.

2.5. The numerical feature descriptors

Previous experiences working with shape and topological

features to model molecular fragments into crystallographic

electron density highlighted a range of such features that can

be used (Langer et al., 2012; Hattne & Lamzin, 2008, 2011;

Heuser et al., 2009).

A total of 22 features were selected for use and are

enumerated in Table 1. They are all invariant with respect

to translation and rotation of the ligand, and all except the

number of atoms are invariant to the ligand size. Only the

eigenvalues of the connectivity matrices (Burden, 1989, 1997)

and, of course, the number of atoms are conformation-

invariant; the others are dependent.

The features were pre-computed for all conformations (up

to 200) of each of the 82 ligands: a total of about 10 000 entries.

Shape comparisons are carried out against the sparse grids

in the density cluster at all (up to five) � thresholds. Pseudo-

connectivity between free atoms was derived as described in

Langer et al. (2012). Ranking is based on a composite of all

scores for all ligands against all sparse grids.

Since the features are defined in different units, they were

all normalized to unit variances based on the values calculated

to describe the ligands in the training set. This allowed their

variance–covariance matrix to become a convenient correla-

tion matrix with its diagonal elements equal to 1 and the

absolute values of the off-diagonal elements being less than 1.

Initial weights for the combination of the features were set

according to the extent of the variance explained by each

feature applied to the training set, calculated according to an

empirical equation,

wi ¼

P
j¼1;m

�ju
2
jiP

j¼1;m

�j

; ð1Þ
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Table 1
The 22 features used to compare the sparse-grid density representation with the set of ligands in
multiple conformations.

Feature type
No. of such
features Reference (where appropriate)

Third-order moment invariants 11 Lo & Don (1989); Hattne & Lamzin (2008)
Chirality index 1 Hattne & Lamzin (2011)
Features based on interatomic distances 2 Crippen & Havel (1988)
Features based on interatomic connectivity 4 Burden (1989, 1997)
Central moments of the Euclidean

distances of the atomic coordinates
3 Tabachnick & Fidell (1996)

No. of atoms 1



where wi is the calculated weight for the feature, m are the

five highest value eigenvalues, �j is the jth eigenvalue of the

correlation matrix and u is the corresponding eigenvector. The

weights were subsequently trained using the cross-entropy

method (Rubinstein & Kroese, 2004) to maximize the rank

of the correct ligand amongst the 82 candidates given the

features calculated from the data in the training set. The best

sparse grid was taken to be that with the lowest nearest-

neighbour root-mean-square deviation (NNRMSD) to the

correct ligand calculated as described in x3.1.

2.6. Small-molecule alignment and real-space refinement

As well as for training, a conformationally flexible align-

ment of the ligand to the pseudo-atomic sparse grids was

required following shape matching in order to place the

identified ligand appropriately into the map for subsequent

real-space refinement and ranking based on real-space

correlation coefficients. The standalone software ligalign was

developed in order to minimize nearest-neighbour distances

between the ligand and the sparse grid.

The stereochemistry of the ligand is automatically calcu-

lated from the coordinates as described previously (Langer et

al., 2012). The three principal axes of the ligand (in an arbi-

trary conformation) are aligned with those of the grid in all

four possible combinations (+x +y +z, �x �y +z, +x �y �z

and �x +y �z) and each is considered independently. Align-

ment is achieved through rotation around the bonds (i.e.

bonds that are deemed rotatable are stochastically rotated in

increments of 60� to produce all possible conformers in which

intra-atomic clashes do not occur) using a genetic algorithm

(Whitley, 1994). The ligand coordinates are least-squares

superimposed onto the nearest-neighbour sparse-grid points.

For each conformer, a score is calculated according to

s ¼
P

j¼1;k

1� exp �
di

2

� �� �2

; ð2Þ

where k is the number of nearest-neighbour pairs and di is the

nearest-neighbour distance for each pair. Such an objective

function was chosen so that in cases in which an atom of one

model had two neighbours in the other, the shift of the first

model is biased towards a match of one atom pair while

leaving the second neighbour ‘unpaired’. In each cycle of

the algorithm, the rotations associated with the best scoring

overlays are crossed over, while refinement of the conforma-

tion is achieved by shaking the results of these crossovers by a

maximum of �10�.

In essence, the best conformation identified during the

shape-based search through the database is superseded by

ligalign, providing a closer match that may not be possible (or

accurate enough) based on the discrete conformations in

the database. ligalign can be seen as a preliminary real-space

refinement with rotations around bonds to provide a better

match to the grid that models the density rather than the

density per se.

Following placement of the identified ligand onto the sparse

grid, real-space refinement is applied as described previously

(Langer et al., 2012). This step highlights ligands matching the

actual density rather than merely the sparse grids. The real-

space correlation coefficient is calculated for the ligand region

of the density map.

3. Results and discussion

3.1. Matching ligands to sparse-grid substructures in the
training set

The preparation of ‘sparse-grid’ structures to indicate

potential candidate atom positions within electron density was

described as long ago as 1974 (Koch, 1974; Main & Hull, 1978;

Isaacs & Agarwal, 1985), and has been used by Zwart et al.

(2004) and elaborated upon by Langer et al. (2012) to model

ligand structures. Crucially, sparse-grid construction was

founded upon knowledge of the structure to be built and

therefore the number of free atoms to be placed (or, in other

words, the size of the sparse-grid cluster). The likely limits of

electron density in space (i.e. the contour level at which the

map should be used) and the likelihood that contiguous

density at low thresholds might belong to either an adjacent

ligand or solvent or otherwise be spurious were much clearer

than in the current instance, in which the nature of the ligand

and thus its size, shape and conformation were all to be found.
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Figure 3
The NNRMSD differences between the sparse grids calculated for the
training set and the ligand coordinates deposited in the PDB are
compared for (a) data for various resolutions and (b) ligands of different
sizes. The error bars depict the standard deviation of the values across the
set.



Using the methods described above and depicted in Fig. 2,

we could produce pseudo-atomic representations of the

density that for 93% of the cases in the training set were

within 1.0 Å nearest-neighbour root-mean-square deviation

(NNRMSD) of the actual ligand.

The grid substructure with the lowest NNRMSD to the true

ligand resulted from the first, second and third thresholds of

the density value (see Fig. 2c) in almost equal numbers of

cases. The fifth grid was the best in only a single case.

The ratio of the number of atoms in the ligand to the

number of selected grid points kept was quite variable, fluc-

tuating between 0.25 and 1.7; the distribution resembled a

Gaussian with a mean of 0.8 and a standard deviation of 0.3.

We note that here we do not construct the ligand from the

sparse grid as in the label-swapping approach (Zwart et al.,

2004). The sparse grid only contains the number of free atoms

that permit the use of shape descriptors. As the NNRMSD

values demonstrated, the overall shape of the grid substruc-

tures tended to match the ligands well, and as the majority of

the features used focused on the overall shape of the body, it

was anticipated that differences in the numbers between the

entities would be overcome by application of the features.

The concept of grid thinning based on subtle changes in the

values of electron density is very similar to that of the frag-

mentation tree introduced by Langer et al. (2012), where

characteristic breaks were observed in plots of density-cluster

volumes against isocontour sigma thresholds when density

that was contiguous with adjacent molecules fragments

between the different molecular entities. In the case described

here, atomic locations are used rather than density volumes,

enabling the more accurate thinning of extraneous free-atom

points based on distance, as shown in Figs. 2(b) and 2(d).

3.2. Dependence on data resolution, ligand size and
conformations in the training set

Further analysis (Fig. 3) indicated that performance was

dependent on the resolution of the data, but that the
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Table 2
The ligands used for training purposes, listed by PDB three-letter code
with the corresponding common ligand name (either the drug name or
the compound name commonly used in the literature).

Those with an asterisk next to their code are screened in at least two different
pucker conformations.

Ligand three-letter code Ligand common name

017 Darunavir
1PE Pentaethylene glycol
2GP Guanosine 2-monophosphate
2PE Nonaethylene glycol
5GP* Guanosine 5-monophosphate
A3P* Adenosine 30,50-diphosphate
ACO* Acetyl coenzyme A
ADE Adenine
ADN Adenosine
ADP Adenosine 50-diphosphate
AKG 2-Oxoglutaric acid
AMP Adenosine monophosphate
ATP* Adenosine 50-triphosphate
B3P 2-[3-(2-Hydroxy-1,1-dihydroxymethyl-ethylamino)-

propylamino]-2-hydroxymethyl-propane-1,3-diol
BCL Bacteriochlorophyll A
BTB Bis-tris buffer
BTN Biotin
C2E* Cyclic diguanosine monophosphate
CAM Camphor
CDL Cardiolipin
CHD Cholic acid
CIT Citric acid
CLA Chlorophyll A
CMP Adenosine 30,50-cyclic monophosphate
COA Coenzyme A
CXS 3-Cyclohexyl-1-propylsulfonic acid
CYC Phycocyanobilin
DIO 1,4-Diethylene dioxide
DTT 1,4-Dithiothreitol
EPE HEPES
F3S Fe3–S4 cluster
FAD* Flavin-adenine dinucleotide
FMN* Flavin mononucleotide
FPP Farnesyl diphosphate
GOL Glycerol
GSH Glutathione
H4B 5,6,7,8-Tetrahydrobiopterin
HC4 para-Coumaric acid
HEA* Haem A
HED 2-Hydroxyethyl disulfide
HEM Haem
IMD Imidazole
IPH Phenol
LDA Lauryl dimethylamine-N-oxide
MES 2-(N-Morpholino)ethanesulfonic acid
MLI Malonate ion
MLT d-Malate
MPD (4S)-2-Methyl-2,4-pentanediol
MTE Phosphonic acid mono-(2-amino-5,6-dimercapto-4-

oxo-3,7,8A,9,10,10A-hexahydro-4H-8-oxa-1,3,9,
10-tetraaza-anthracen-7-ylmethyl)ester

MYR Myristic acid
NAD* Nicotinamide adenine dinucleotide
NAP* Nicotinamide adenine dinucleotide phosphate
NCO Cobalt hexammine(III)
NHE 2-(N-Cyclohexylamino)ethanesulfonic acid
OLA Oleic acid
ORO Orotic acid
P6G Hexaethylene glycol
PEG Di(hydroxyethyl)ether
PEP Phosphoenolpyruvate
PG4 Tetraethylene glycol
PGA 2-Phosphoglycolic acid
PGO S-1,2-Propanediol
PHQ Benzyl chlorocarbonate

Table 2 (continued)

Ligand three-letter code Ligand common name

PLM Palmitic acid
PLP Pyridoxal-50-phosphate
POP Pyrophosphate2�

PYR Pyruvic acid
RET Retinal
SAM* S-Adenosylmethionine
SF4 Iron–sulfur cluster
SIA O-Sialic acid
SO4 Sulfate ion
SPO Spheroidene
STU* Staurosporine
TAM Tris(hydroxyethyl)aminomethane
THP Thymidine 30,50-diphosphate
TLA l-(+)-Tartaric acid
TPP Thiamine diphosphate
TRS Tris buffer
TYD Thymidine 50-diphosphate
U10 Coenzyme Q10
UPG Uridine 50-diphosphate-glucose



NNRMSD of the grid substructures to the ligand was consis-

tent across ligands of all sizes.

Our current method for conformation generation does not

test the different puckers of ring systems. Therefore, we

included multiple conformations of some ligands in the

database, as indicated in Table 2. The database for all tests

contained 96 different molecular entities representing 82

distinct ligands, each in up to 200 conformations.

3.3. Performance of the feature comparisons

Weighting of the features using the training set as described

above permitted the selection of the correct compound as

the top-ranked entity in 32% of the cases, without real-space

refinement and the use of density correlation coefficient as an

additional filtering criterion. We noted that the correct ligand

was identified in the top ten following feature-based ranking

in 86% of the cases and in the top 20 in 94% of the cases. We

decided to pass the top 20 ranked ligands to the final real-

space refinement step.

As mentioned in the Introduction, the use of mathematical

features individually to match ligands to their density has met

with more limited success than for protein or nucleotide

modelling. As ligands are much more variable chemically and

conformationally relative to macromolecules and their frag-

ments, it must be assumed that single features capturing

individual aspects of a ligand or density shape are insufficient

for the purpose of conformation-dependent ligand identifica-

tion. Based on these results, we concluded that a combination

of features describing such shapes more thoroughly should be

used.

Notwithstanding the discussion in the previous paragraph,

analysis of the detected weights, based on (3), indicated that

features based on interatomic distances were especially

suitable for the task of matching ligands to their sparse grids.

The third-order moment invariants also contributed to the

matching procedure to a reasonable extent, as did the features

based on interatomic connectivity. The latter are conforma-

tion-invariant descriptors and thus complemented the

conformation-variant features well. Notably, the three prin-

cipal components of the ellipsoid about a ligand, taken as

features, contributed only 0.1% of the overall contribution of

the 22 features in Table 1. This highlights the importance of

the third-order and higher-order features.

pf ¼

P
i¼1;l

wiP
i¼1;n

wi

ð3Þ

In (3), the discriminatory power, pf, of a particular category

of features is calculated as the sum of all l weights of these

features divided by the sum of weights for all 22 (n) features.

3.4. Dependence on the resolution of the data and the size of
the ligand in the evaluation set

Application of the method in its entirety to the large

evaluation set of experimental data indicated that feature

matching alone could identify the ligand in the top 20 ranked

compounds in 61% of the cases. Real-space refinement of

these 20 candidates superimposed onto the grid and re-

ranking by CC placed the correct compound at the top rank in

31% of cases. As shown in Fig. 4(a), the correct compound was

consistently ranked highly. Given that the method is looking

for the correct ligand in the correct conformation with low

NNRMSD, we conclude that if an appropriate sparse grid is

prepared such that identification by feature comparison is
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Figure 4
(a) Final ranks of the correct compound following real-space refinement
and ranking by CC for the 550 compounds passing through feature-based
ligand selection. (b) Performance with data at various resolutions
amongst those ligands passed to the final real-space refinement step. (c)
Performance with ligands of different sizes amongst those ligands passed
to the final real-space refinement step.



possible, then application of the ligalign procedure followed

by real-space refinement and ranking by CC is very efficient.

Further emphasizing this point was the fact that perfor-

mance was very dependent on the resolution of the data, as

was the case for sparse-grid construction. As highlighted in

Fig. 4(b), approximately 70% of ligands could be accurately

identified at the highest rank with data between 1.0 and 1.6 Å

resolution when the compound was passed to the final

refinement step. The majority of compounds are still recog-

nized at resolutions better than 2.0 Å, but performance

decreases at poorer resolutions. The reasons for this are likely

founded in the free-atom-based approach whereby individual

atoms and particularly the gaps between them must be iden-

tified in order to permit accurate thinning of the clusters based

on interatomic distances. The procedure still shows utility with

data of up to 2.5 Å resolution.

Performance is less influenced by the size of the ligands to

be fitted, as highlighted in Fig. 4(c). Indeed, it is likely to be the

composition of the ligand and whether its typical density is

unique in shape that influences performance most signifi-

cantly, as noted previously by Terwilliger et al. (2007).

3.5. Software implementation

The developed technologies have been implemented in the

ARP/wARP 7.4 package for crystallographic model building

that was co-released in October 2013 with CCP4 v.6.4.0.

Considering all ligand conformations, the final database for

use in the software contains almost 10 000 molecular entities.

Ligand identification can be accomplished intuitively through

simple selection of an electron-density cluster in the graphical

user interface ArpNavigator (Langer et al., 2013) and invo-

cation of the analysis by mouse click. The procedure is quick

to execute on account of the use of pre-calculated numerical

features for the ligand database. When run on a single core

of a desktop workstation, the average execution time is

approximately 2.5 min. Following execution, the top-ranked

compound is modelled within the density. Compounds that

cluster with this ligand, as described in the methods section,

are also output (for example, having attributed a particular

electron-density cluster to a sulfate ion, a phosphate ion is

offered as an alternative solution), enabling consideration of

the most appropriate ligands based on the likely crystal

contents. Thus, while the screening database only includes 82

ligands, the software can aid in the identification of up to 140

different compounds. The list of compounds screened is

provided in Table 2.

4. Conclusions

We have demonstrated that through the application of density

and distance constraints to a densely packed area representing

a particular cluster of difference electron density, pseudo-

atomic sparse-grid structures can be obtained that closely

resemble the structures of the ligands responsible for such

density. Furthermore, feature-based comparisons of the sparse

grids to a variety of ligand conformations can reliably point

to the correct ligand. Real-space refinement of the ligands

following their placement onto the grids provides a finer

means of ligand discrimination. Both sparse-grid construction

and ligand real-space refinement are dependent on the reso-

lution of the X-ray data; the majority of compounds can be

recognized at resolutions of better than 2.0 Å, but perfor-

mance decreases thereafter.

Our analysis indicates that the ligands identified almost

always fit the density blob well no matter whether they are

actually correct or not. The user could therefore examine

whether lower-ranked compounds might be more appropriate

in any particular instance. We have found that identification

errors typically arise from inaccuracies in grid preparation;

these in turn often result from difficulties in identifying the

boundary of a given cluster and placement of free atoms into

density attributable to other ligands or metal ions. We intend

to work on improving this aspect of the method in the future.

We note that although it is the combination of different

shape features that is most important, the result of this

combination and the estimation of the relative ‘power’ of

individual groups of features depend on the objective function

chosen. Here, we trained the weights for feature combination

so that the rank of the correct ligand is maximized. Clearly,

there are many ways in which this can be accomplished and

this could be the subject of future research.

Going forward, a number of other advances can be made to

the presented methodology in order to improve its accuracy

and/or efficiency. Re-parameterization of sparse-grid

construction and future research in improved determination

of density-blob boundaries might perhaps be warranted when

applied to data at lower resolutions. The addition of other

features for ligand–grid comparisons might also improve

recognition and as long as features can be quickly calculated

and compared their inclusion in the method could be

considered. It could be also worthwhile passing more ligands

on to final refinement than the current 20, and the establish-

ment of a supplementary protocol with a longer running time

may be considered.

The inclusion of data derived from the protein and the

consideration of protein–ligand contacts would be likely to

have a significant impact on performance. This could be

achieved in diverse ways, whether by inclusion of a physics-

based scoring function that accounts for such interactions

(Diller et al., 1999) or by using ligand-binding templates in the

protein (Liu & Altman, 2011). In either instance, it is likely

that ligands that can take on similar shapes could be distin-

guished based on the relative strengths of contact formation

and electrostatic clashes. However, it may not be straightfor-

ward to pre-compute a database for all possible protein–ligand

interactions.

Further advances could be obtained by reducing the

number of compounds to be considered. Rather than thinning

the search database stringently, it would be more advanta-

geous to only include those ligands that are feasible based

on the conditions in which the crystals are grown. It is our

intention to include an interface for user selection of the

buffers, crystallization reagents and protein-expression
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systems used for a sample under analysis in the future; this

would permit the population of a system-dependent database

that could be added to manually prior to screening. An

analogous pre-selection of the database constituents could be

obtained from analysing the protein sequence and structure

and extracting a data set of ligands that bind to similar

proteins or binding sites. The LigSearch method (de Beer et

al., 2013) is of interest in this regard.

The methodology for ligand identification introduced here

has great potential as an important step towards possible

automated model building to full completion. Thereby,

protein, ligands and solvent could all be modelled successively

following provision of just crystallographic data and a protein

sequence as input, all without any user intervention.
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